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Abstract

This Thesis considers the scenario in which an extra-solar planet (ezoplanet) passes
in front of its star relative to our observing perspective. In this event, the light curve
measured for the host star features a systematic drop in flux occurring once every
orbital period as the exoplanet covers a portion of the stellar disk. This exoplanetary
transit light curve provides a wealth of information about both the planet and star.
In this Thesis we consider the transit light curve as a tool for characterizing the
exoplanet. The Thesis can divided into two parts.

In the first part, comprised of the second and third chapters, I assess what ob-
servables describing the exoplanet (and host) may be measured, how well they can be
measured, and what effect systematics in the light curve can have on our estimation
of these parameters. In particular, we utilize a simplified transit light curve model
to produce simple, analytic estimates of parameter values and uncertainties. Later,
we suggest a transit parameter estimation technique that properly treats temporally
correlated stochastic noise when determining a posteriori parameter distributions.

In the second part, comprised of the fourth and fifth chapters, I direct my at-
tention to real exoplanetary transit light curves, primarily for two exoplanets: HD
149026b and HD 189733b. We analyze four transits of the ultra-dense HD 149026b,
as measured by an instrument on the Hubble Space Telescope, in an effort to properly
constrain the stellar and exoplanetary radius. In addition, we assess a detection of
strong, wavelength dependent absorption, possibly due to an unusual atmospheric
composition. For HD 189733b, we utilize seven ultra-precise Spitzer Space Telescope
transit light curves in an effort to make the first empirical measurement of asphericity
in an exoplanet shape. In particular, we constrain the parameters describing an oblate
spheriod shape for HD 189733b and, attributing oblateness to rigid-body rotation,
we place lower bounds on the rotation period of the exoplanet.

Thesis Supervisor: Joshua N. Winn
Title: Assistant Professor of Physics
Class of 1942 Career Development Professor
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Chapter 1

Introduction

One of the burning questions of astronomy deals with frequency of
planet-like bodies in the galazy which belong to stars other than the Sun.
- Otto Struve (1952)

In looking over the long history of human science from time immemo-
rial to our own times, it is impossible to overestimate the role played in it
by the phenomena of eclipses of the celestial bodies both within our solar

system as well in the stellar universe at large.

- Zdenek Kopal (1990)

1.1 Planets near and far

1.1.1  Our own Solar System

It was realized early in recorded history that, looking at the night sky, amongst
the “fixed” stars in the “heavenly firmament” a group of wandering objects traced
repeatable paths on the celestial sphere. These planets (literally “wanderers” in
Greek), initially regarded as the physical manifestations of powerful mythological
gods, were, in fact, worlds in many ways like the Earth, likely arriving from the
same evolutionary process that gave birth to our common stellar host Sol. Upon

closer inspection, famously first by Galileo’s pioneering work identifying the moons of

17



Jupiter and the phases of Venus, each planet is found to be remarkably distinct from
its siblings. In order of increasing semi-major orbital distance, the interior planets
Mercury, Venus, Earth and Mars are small rocky worlds, while Jupiter and Saturn
are gas giants lacking any substantial rocky core, and finally, Uranus and Neptune
are “ice giants” having mean densities lying in between that of the terrestrial and
Jovian worlds [see Carrol & Ostlie (2006) Part 111 for an excellent review of the Solar
System]!. Most planets are also accompanied by a collection of natural satellites
(and now even artificial satellites) in the form of moons and diffuse rings. Each
planetary system is, in its own right, a complicated and rich dynamical collection of
gravitationally bound objects. Humanity has gone to extensive investigative lengths
to classify, explain, or simply photograph these worlds with complex (and expensive)
experiments including a series of manned (in the case of the Moon) and unmanned
spacecraft missions right to the source. We work towards both an explanation of the
planets in isolation from the remaining planets and as a Solar System as a whole. In
particular, we ask the questions that relate most to our own planet’s existence: how
do these other planets (and moons) compare to Earth? Is Earth an atypical object
in this small sample? Could other planets in our Solar System harbor their own form
of life? Intelligent life? The final two questions are likely to induce the strongest
inquisitive response from even the most uninformed, given that the answers to these

questions will no doubt shed light on our very relevance in the universe.

1.1.2 Extrasolar planets:

Planets outside our own Solar System

The most natural question following the above line of questioning is, given the pre-
ponderance of Sun-like stars in our own galaxy, how many planets are there that
orbit stars other than our Sun? And assuming this answer is non-zero (yes, it is)
are there multiple planets orbiting a single star other than our Sun? Going further,

we may ask: How many of these extrasolar systems contain Jovian-type planets? Ice

'In August 2008, the International Astronomical Union (IAU) defined the term “planet.” Unfor-
tunately Pluto, previously the ninth planet in our Solar System, did not make the cut.
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giant-like? Terrestrial planets? Earth-like? Do these planets have rings? Moons?
Atmospheres? Life? We as a research community, at the time of writing, have at

least some idea of the answers to many of these questions.

Extrasolar planets, or eroplanets in the parlance of the field, number in the hun-
dreds (353, as of July 2009). However, prior to 1995 [and the discovery of 51 Peg b by
Mayor & Queloz (1995)], we only knew of the 9 Solar System planets (reduced now
to 8, see footnote). The expectation for discovery was in place, as suggested in the
short note by Struve (1952) in which the possibility of detection was first appreciated.
The next section reviews Struve’s recommended method of detection and other tech-
niques, including the transit. Since 1995, however, the pace of discovery has steadily
grown. In Figure (1-1) we show the number of exoplanets discovered by year, since
1995. In particular, the pace of discovery of planets that transit their stellar host
(see § 1.2.2 below) has recently reached a doubling time that is less than one year

[Charbonneau et al. (2009)].

As the number of exoplanets with precisely measured properties (see § 1.3) grows,
we find ourselves on the frontier of a realm in which statistically meaningful general-
izations may be drawn of planets as a whole. Homogeneous analyses of these precisely
characterized systems (Torres et al. 2008, Southworth 2008) demonstrate trends in
the parameter space [see Figure (1-2)] allowing us to reach somewhat-informed con-
clusions about the population of exoplanets yet to be discovered. However, in many
ways, we are still very far from a complete understanding. But the prospects look
good: initial estimates based upon our current sample of exoplanets imply that nearly
6% of stars harbor at least one giant planet within 4 AU. With this statistic as mo-
tivation, we need to (1) find more planets and (2), in the pursuit of a fundamental

theory of planets, characterize these objects as accurately as possible.

While the work presented in this Thesis is geared more to the goal of point (2),

we review the techniques relating to exoplanet discovery in the next section.
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Figure 1-1 Exoplanet detections and totals by year. Data from exoplanets.eu,
organized by J. Schneider.
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Figure 1-2 Exoplanet trends and correlations. Plotted are parameters determined
in the homogeneous analysis by Torres et al. (2008) for a selection of exoplanets.
In particular, correlations between exoplanet radius, R,, mass M,, orbital period P,
surface gravity g, and equilibrium temperature Teq are shown. Figures by Torres et
al. (2008); refer to their paper for details.
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1.2 Detecting extrasolar planets

We must actually find exoplanets prior to attempting accurate parameter estimation.
A number of techniques exist to detect exoplanets and may be organized into the
following categories: (1) photometric (transits), (2) dynamical (primarily radial ve-
locity, but also astrometry and timing), (3) microlensing, (4) direct imaging and (5)
others (Perryman et al. 2005). Figure (1-3) organizes these detection techniques in
a graphical manner indicating planetary mass detection limits. While this diagram
is out-dated and statistics have changed [only 4 years old and missing hundreds of
exoplanets that have been discovered since! See Fig. (1-1)], the top three techniques
by total yield remain the same and in the following order: radial velocity (327 plan-
ets), transits (59 planets) and microlensing (7 planets). Each of these techniques has
their respective advantages and disadvantages in terms of detection capability. We
will show, in § 1.3, that while transit detection may be considered inferior to (or
incomplete without) radial velocity detection, transit characterization of exoplanets
is unrivaled. We will briefly describe the radial velocity technique before moving onto
detection via transit. See Perryman et al. (2005) and the references therein for a

discussion of alternate detection techniques (including microlensing).

amical effects

Timing
Detectable {ground)

planet mass Astrometry
White Radial Radio
Pulsarsf  Ndwarfs velocity
Binary ical
10M, eciipees e

r:;,"..
AR R
Slow — ='
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19 s
Mg :

of which T4 muluple)

Figure 1-3 Exoplanet detection methods and yields as of 2005. Figure by Perryman
et al. (2005).
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1.2.1 Detection via radial velocity

The well-studied and understood two-body gravitational problem [see, e.g., Carrol
& Ostlie (2006)] includes the basic prediction that each massive object moves in
an elliptical orbit about the common center of mass. As a result, the velocity of
the objects (in the center-of-mass frame, without loss of generality) oscillates at the
orbital period, P, and each with a unique amplitude, f(i, that depends on a formula
involving the masses. In particular, if one of the objects is a star and the other
is an unseen planet, we may infer the existence of the less massive component by
monitoring the periodic signature on the stellar component’s velocity [this was first
appreciated by Struve (1952)]. We may measure the component of the velocity along
the line of sight by using the principle of Doppler spectroscopy [see, for example,
Butler et al. (1996)]. Here, information regarding the relative velocity along the
radial direction is encoded in the spectral lines of the stellar spectrum as a result of
Doppler frequency-shifting. One may obtain better than 3 m s~ precision on the
measurement of radial-velocity with a proper calibration of rest wavelengths of the
spectral lines (and other instrumental calibrations, Butler et al. 1996). We may
fit a model to the collection of radial velocity measurements to determine orbital
parameters and masses. For a single planetary component, a simple Keplerian model
will suffice. In particular, we may solve for the mass of the planetary object, M, and

orbital semi-major axis a,

M,sini = Kv1—e?

1/
P (M, + M,sinq) } (1.1)

2rG
a \3 M, + M,sin+ P\?
) = (™) (%) 12)

in terms of the stellar mass M, and the inclination angle i of the orbital plane to the

observational plane, where K is the amplitude of the radial velocity, e is the orbital
eccentricity and P is the orbital period. The parameters K, ¢ and P may be measured
directly from the radial velocity data [e.g. Butler et al. 2006 and see Fig. (1-4)] . The

stellar mass M, may be precisely estimated via spectral identification, for example.
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The inclination 4 is an unknown parameter degenerate with the planetary mass; we
therefore can only estimate M, sini < M,,.

The radial velocity exoplanet detection technique has several advantages. While
the mass is degenerate with inclination #, only parallel orbital plane configurations
(i = 0°) yield a non-detection. Current radial velocity exoplanet detection technology
allows for the detection of exoplanet’s with masses equal to a few times an Earth mass
or less (the so-called “Super Earths”). Examples include the three orbiting HD 40307,
with masses 4.2, 6.9, and 9.2 Mg, found by Mayor et al. (2009) with the HARPS
spectrograph (Pepe et al. 2002) at the La Silla Observatory in Chile. Currently, radial
velocity is the detection method best suited to the detection of Earth-like analogs.

Exoplanet detection via radial velocity is unfortunately very costly in both dollars
and time. Radial velocity measurements must uniformly sample the orbital phase in
order to precisely measure orbital parameters of the unknown planetary component.
For a Jupiter analog (5 AU from the Sun making one orbit every 12 years), it would
take several years of observations to make detection possible. Radial velocity surveys
are capable of tremendous yield for short-period giant exoplanets [i.e., 51 Peg b-
like, Mayor & Queloz (1995)]. However, given the limited information that may be
derived about the exoplanet and its orbit (namely M,sini, e, P), radial velocity

characterization of short-period giants has quickly diminishing returns.

1.2.2 Detection via transit

If the orbital plane of the exoplanetary system were to lie in the plane perpendicular
to our observational plane (¢ = 90°), then the exoplanet will periodically pass in
between its star and our telescopes. This fortunate configuration results in what is
referred to as a transit?. The observational effect of transit is that the obscured star

is perceived to experience a systematic decrease in total flux. For a planet in a stable

2The obscuration of one celestial body by another is referred to as an eclipse, in general, and
is the subject of the general mathematical theory of Kopal et al. (1990) or as found in Mandel &
Agol (2002). In practice, the word eclipse is reserved for the situation common to eclipsing stellar
binaries where the two eclipsing components are of equal radial extent. If the object passing in front
of the other from our perspective is significantly smaller (larger) than its companion then the eclipse
is referred to as a transit (occultation).
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Figure 1-4 Exoplanet detection via radial velocity. The left panel shows the radial
velocity signature of the exoplanet HD 209458b on HD 209458 [Figure by Mazeh et
al. (2000)]. The right panel shows the radial velocity signature of HD 80606b on HD
80606 [Figure by Naef et al. (2001)]. The sharp features in the radial velocity curve
for HD 80606 are as a result of the high orbital eccentricity of HD 80606b. See § 1.2.1
for details.

Keplerian orbit, the size and duration of the flux deficit are fixed. Additionally, the
time between subsequent events is constant (equal to the orbital period, P). When
the exoplanet passes behind the star from our perspective (so-called occultation), an
analogous drop in total flux is observed, this time owing to the stellar obscuration of
the planetary flux. The transit configuration is illustrated in Fig. (1-5) along with
the “transit light curve,” the dynamical curve describing the total flux measured for

star and planet.

The depth & of the transit is related to the fraction of area obscured by the
exoplanet and, therefore, is related to the ratio of the radii of planet and star (see
Chapter 5 for an alternate possibility). The spacing of subsequent transit events is
directly related to the orbital period P. Thus, a photometric survey program can
establish the existence of a transiting body with the observation of repeated, uniform
drops in flux from a star. This was first realized in the same note as discussed above by
Struve (1952) and considered further by Rosenblatt (1971) and Borucki & Summers
(1984).

For a Jupiter sized planet transiting a Sun-like star, the expected deficit in flux,

3, should be about 1%. This precision may obtained for bright stars with modest

24



Flux

occultation

Figure 1-5 A transiting exoplanet configuration and transit light curve. Figure
courtesy of J. Winn. The transit portion of the light curve can be minimally described
by a depth, 6, transit duration, T and ingress or egress duration 7. See § 1.3 for details.

telescopes and imaging equipment. For this reason, a number of relatively cheap pho-
tometric surveys have sprung up for the purpose of exoplanet transit detection. See
Perryman et al. (2005) for a comprehensive list of ground and space-based photo-
metric surveys. The most “famous” of this collection are those with largest harvests.
From the ground: OGLE [the first such survey, 7 planets, Udalski (2007)], TrES [4
planets, Alonso et al. (2004a)], XO [5 planets , McCullough et al. (2005)], HATNet
[12 planets, Bakos et al. (2007)] and WASP [15 planets, Pollacco et al. (2006)]; from
space: CoRoT [7 planets, Baglin et al. (2003), see Fig. (1-6)]. Recently, the space-
based transit-survey mission Kepler (Borucki et al. 2009) was launched and has the
potential for most transit-discoveries, likely out-pacing the radial velocity discovery

rate.

One negative cost of transit discovery is based upon simple probability: given that
planetary systems in the galaxy are likely to be randomly oriented, it is improbable to
find a significant number of exoplanets whose chance alignment allows a transit from
our perspective. We can quantify this probability via geometric analysis. Namely,
the probability of observing a transit of a particular exoplanet is equal to the ratio

of the solid angle in which the planet will be seen to transit and the total available
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Figure 1-6 Detecting an exoplanet via transit. Plotted here is discovery data showing
the transit of CoRoT-1b in successive transit epochs [Baglin et al. (2003)].

solid angle (4m). The probability of transit, Piansi, iS, therefore, mainly dependent

on the ratio of the semi-major axis a and stellar radius R, as

P = 0.0045 1AU\ [(R.+ Ry [1+ecos(n/2 —w) (1.3)
a Ry 1—e?

where e and w are the eccentricity and argument of periastron for the orbit and
our line-of-sight, respectively (Charbonneau et al. 2007). For an Earth analog, the
probability of transit is therefore P ,ng; =~ 0.45%. On the other hand, a Jupiter-
sized planet orbiting a Sun-like star at 0.05 AU has a more palatable 10% transit
probability. Before the identification of 51 Peg b-like “Hot Jupiters,” or short-period
gas giants, it was assumed, based upon our experience with our own Solar System,
that transit surveys would be a low yield affair. Post 1995, as radial velocity survey
yields implicated that fully 1% of nearby sun-like stars hosted these “Hot Jupiters,”

the interest in photometric surveys grew (Horne 2003).

The expectations from the research community for transit surveys were tremen-
dous, with an anticipation of ~ 10 “Hot Jupiter” planets discovered per month for
surveys with WASP-like characteristics (Horne 2003). That the current generation
of surveys has not reached this rate is a testament to the additional difficulties as-
sociated with being able to identify transits in data and definitively declaring a flux

decrement to be planetary in nature. The former problem is related to the discussion
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in Chapter 3 and is, in part, related to the fact that time-correlated noise can affect
the exoplanet detection threshold, reducing the number of detected planets based on
a uncorrelated assumption (see, Chapter 3 and Pont et al. 2006). The latter prob-
lem arises because, while radial velocity detection can make some statement about
the mass of the secondary object, a transit light curve only can measure fractional
obscuration. The signal interpreted as a planetary transit could be as a result of
grazing eclipsing binaries, the transit of a brown dwarf across a giant star, the blend-
ing of light from a triple star system in which two components are transiting, and
more (see, e.g., Alonso et al. 2004b, O’Donovan et al. 2007). Such confusion can be
eliminated by a subsequent radial-velocity follow-up of the exoplanet candidate host
thereby constraining the planetary mass M,. Here, since the planet is seen to transit,

i = 90° and the degeneracy between planetary mass and inclination is broken.

Even in the face of these difficulties, modern transit surveys survive by collecting
light curves for a large number stars. Acquiring large numbers of stars is accomplished
rather easily for a photometric survey covering a significant portion of the sky (wide)

and/or capable of detecting very faint stars (deep).

1.3 Characterizing extrasolar planets that transit

While the detection of exoplanets via transit can be a profitable endeavor, the real
power of transit light curve analysis lies in exoplanet characterization. The infor-
mation encoded in the transit light curve is capable of uniquely determining a large
number of exoplanet observables. In this section of the introduction, we quickly re-
view the transit light curve as a tool for precise exoplanet analysis. Prior to diving
into the details, it is useful to carefully study the model light curve in Fig. (1-5) and
the “gallery” of real, space-based transit light curve data in Figure (1-7).
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Figure 1-7 High precision exoplanetary transit light curves as measured from space.
Figures by Winn (2009).

1.3.1 The exoplanetary transit light curve:
From top to bottom

The effect of a transit of an exoplanet across the face of its star is most simply
described by the following equation for F, the total flux measured for the combined
exoplanet-host system

F = F(planet) + F. (star) — F,(planet Nstar) if planet nearer (1.4)

F,(planet Nstar) if star nearer

where Fp,(Q), F,(Q), are the integrated flux of planet and star over the integration
region (). We have used the shorthand “planet,” ”star,” or “planet N star” to indicate
whether the integration region {2 is over the sky-projected planet surface, stellar
surface or the intersection of the two. To first order, the sky-projected shape of
exoplanet and star are disks with radius R, and R, respectively (see Chapter 5 for

an alternative model).
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Timescales and observables

The total flux F' depends upon time, . Most importantly, given that the exoplanet
is in orbit around the star, planet N star is a function of time. In particular, the
duration of the transit, 7, (when planet N star # () scales with the orbital period,
P, as

T 2o (1.5)

R, P
a T

while the duration of ingress or egress, 7, (for which planet N star # planet) scales as

~
TR (1.6)

A

If we use Kepler’s third law [Eqn. (1.2)], we may write T in a more suggestive form

PAY3 [\
T ~13 (—) (”—) hr. (1.7)
lyr Po

It is therefore feasible to utilize the duration of the transit (or occultation) to make
estimates of the mean stellar density, p, [Perryman et al. 2005, Seager & Mallén-
Ornelas 2003]. These precise density estimates may then be used in combination
with stellar evolution models to constrain properties of star and planet (see Chapter
4). Again utilizing Kepler’s third and also the radial velocity-determined mass M, in

Eqn. (1.1), we may write 7 in the more suggestive form

P\ 2 g -1/2 K 1/2
~ 24 P in. .
(L) (1) () @)

It is therefore also feasible to utilize the duration of transit ingress to make estimates
of the planetary surface gravity, g, [Southworth et al. (2007)].
Timing and additional, unseen planets

If we assume the exoplanet follows a Keplerian orbit around its star then the time

between two successive transits At, should be equal to the orbital period P. However,
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if the planet’s orbit is perturbed by the gravitational tug of other unseen planets then
At, = P 4 dP(t). The perturbation to the linear model, §P(t), is a function of the
mass of the unseen object (Holman & Murray 2005, Agol et al. 2005). It is therefore
possible to detect additional planets and their masses from an analysis of a collection
of midtransit times [see Fig. (1-8)]. It is important to note that midtransit times are
acutely affected by time-correlated noise in the data; special care must therefore be

taken to ensure these times are accurate for physical interpretation (see Chapter 3).

HD209458b (P, = 3.5248 d, e, = 0.025)
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Figure 1-8 Changes in midtransit time as a result of a second planet. This figure,
by Holman & Murray (2005), presents variation in the time of midtransit (between
successive transits) of HD 209458b in response to gravitation perturbations from a
second planet with orbital period P, and orbital eccentricity es.

Transit or occultation depth: Stellar and exoplanetary atmospheres

The relative transit depth, 4, is given by the normalized form of Eqn. (1.4) at maxi-

mum obscuration (planet N star = planet),

F,(planet) + F,(star) — F,(planet)
F,(planet) + F(star)
F, (planet)
F,(planet) + F,(star)

b = 1-

(1.9)
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We have assumed that the stellar and planetary fluxes are constant, however, stellar
variability can have a significant effect on the transit light curve [see, e.g., Czela et
al. (2009), Silva (2003)]. If, for the moment, we assume the stellar brightness profile

I,(r,0) is constant then

5 = (%)2(14-%%%;)). (1.10)

If we assume further the flux due to the planet, F}, is negligible compared to that of
the star then 6 ~ (R,/R.)?. Thus, the transit depth places a precise constraint on

the exoplanetary radius.

Constant stellar brightness profiles are reasonable approximations at mid-infrared
and longer wavelengths (see Chapter 5), however, in general, stellar limb-darkening
suppresses flux at the stellar disk edges. The effect of the limb-darkening is strongly
wavelength dependent and significantly affects the shape of the transit light curve at
optical wavelengths [see Figs. (1-7,1-9)]. Limb-darkening tends to round the otherwise
boxy transit light curve profile, working to confuse accurate estimation of transit
parameters (see Chapter 2). On the other hand, exoplanetary transit light curves
provide valuable information about limb-darkening profiles [such as those proposed

by Claret (2000)] for stars other than our Sun (Knutson et al. 2007a).

So far, we have regarded the planetary radius, R,, as independent of how we
observe the transit. This is not generally true. In particular, the radial extent of the
planet depends on the wavelength of observation, so that R, = R,()). The reason
for this dependence is simple: what we as the observer perceive as the radial extent
of the exoplanet is determined by the height in the exoplanet atmosphere at which
the optical depth for stellar light passing through the atmosphere on its way to us
reaches unity, say. This height, z, is dependent on the structure of the atmosphere,
the sources of opacity [rotation-vibrational molecular absorption, for example, see
Fig. (1-10)], and the wavelength X of our observation (Seager & Sasselov 2000, Brown
2001, Hubbard et al. 2001, Hui & Seager 2002 and Chapter 4). By observing transits

and determining transit depths at multiple wavelengths, we may form an absorption
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spectrum of the planetary atmosphere. This technique, as executed by Swain et al.

(2008) and illustrated in Fig. (1-10), is often referred to as transmission spectroscopy.

Relative Flux

(Y| PR PRI UL e AP ENUTRTTS AU
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Time From Center of Transit (days)

Figure 1-9 The effect of stellar limb-darkening on the transit light curve of HD
209458b. In this figure by Knutson et al. (2007), transit light curve data is shown
for HD 209458b in wavelength bands spanning from 293 to 1019 nm. The curvature
in each light curve is as a result of wavelength dependent stellar limb-darkening.

While we, in this Thesis, are concerned mainly with the transit portion of the
total light curve [Eqn. (1.4)], an observation at occultation is extremely useful in
constraining the atmosphere of the exoplanet. The occultation depth, d,, may be

derived in an analogous fashion to Eqn. (1.9) as

F,(planet) + F,(star) — F,(planet)
a Fp(planet) + Fj(star)
F,(star)
F,(planet) + F,(star)

F,(planet)
F,(star) (Ll1)

& =1

If we again assume that the brightness profile of both planet and star are constant
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Figure 1-10 Transmission spectroscopy of HD 189733b. This figure by Swain et al.
(2008) plots the wavelength-dependent transit depth for the exoplanet HD 189733b.
The shape of the spectrum suggests the presence of methane in the exoplanet atmo-
sphere.

then

5, = (%)25—” (1.12)

where the ratio of the planetary and stellar intensities I, /1, is, to first order, related
to the black-body temperature of planet and star. For an observation in the infrared,
I,/I, = T,/T,. A measurement of occultation depth can, therefore, constrain the

temperature of the photosphere of the exoplanet [see, for example, Harrington et al.

(2007)].

The thermal emission from the exoplanetary photosphere may be non-uniform
across its surface. Thus, as the planet rotates to show different faces while it moves
through its orbit, we will measure a time-varying total flux, F(star)+ Fj,(planet). By
measuring this light curve (the so-called “phase function”) we may learn how heat
is transported through and redistributed throughout the exoplanet atmosphere. If
the rotational period is known precisely, this phase function may be inverted into
a temperature map of the planetary photosphere [as was done for HD 189733b, see
Knutson et al. (2007b)].
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At visible wavelengths, stellar light reflected off the planetary surface (by clouds,

for example) is the dominant contribution to the occultation depth, whereby

5.~ a(—R—p>2 (1.13)

a

where « is the geometric albedo of the exoplanet (e.g., Seager 2008). By first measur-
ing the quantity R,/a during transit, a measurement of occultation depth in optical

wavelengths would yield the albedo a.

Moons, Rings and Oblateness

While we have so far assumed the exoplanet is circular in projection, perturbations to
the obscuring shape are possible, if not likely. If, for example, the exoplanet has close
gravitationally bound companions, such as moons or rings, it is likely they will induce
a non-trivial effect on the transit light curve. Even with no companions present, the
exoplanet itself is likely to be non-spherical, as is the case with Solar System planets
(Murray & Dermott 2000).

Moons present the most obvious perturbation, contributing to the total flux deficit
as an additional transit on top of the transit of the exoplanet. Time varying effects
in the photometry may help to constrain the exomoon mass and orbital period. Cur-
rently no transit data support the presence of an exomoon around any of the transiting
planets [see, for example, Pont et al. (2007)]. Exomoons may also be detected by
identifying the signature of their gravitational effect on their planetary host from
anomalies in a collection of midtransit times or in the time variability of transit
durations (Kipping 2000).

Rings present a subtler effect on the transit light curve, depending on the orien-
tation of the rings in the sky plane and the level of extinction due to ring particles
[Barnes & Fortney 2004, Ohta et al. 2009, see Figure (1-11)].

The shape of the exoplanet, most notably oblateness owing to rigid-body rotation
of the bulk (see Chapter 5), is in principle measurable from the transit light curve. The

effect is most evident during the phases of ingress and egress. With a measurement
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of oblateness, it is possible to constrain the planet’s rotation period, its internal

constitution and possible evolutionary histories (see Chapter 5).
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Figure 1-11 Signatures of exoplanetary rings in the transit light curve. Figure by
Barnes & Fortney (2004).

Transits in radial velocity

The transit, when observed with Doppler spectroscopy (as used for detection in
§ 1.2.1), appears as an “anomalous” perturbation to the radial velocity of the stellar
host [see Fig. (1-12)]. This so-called Rossiter-McLaughlin effect is as a result of the
obscuring exoplanet covering a portion of the receding (approaching) half of the ro-
tating stellar disk inducing an excess of “red” (“blue”) Doppler-shifted photons. By
measuring the radial velocity at transit, it is therefore possible to measure the sky
projection of the angle between the spin axis of the star and that of the exoplanetary
orbit (Gaudi & Winn 2007). This angle can be used to constrain possible dynamical
scenarios involving additional planets in the stellar system [see, for example, Fabrycky

& Tremaine (2007)].
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Figure 1-12 “Anomalous” velocity in radial velocity measured during transit. This
figure showing the Rossiter-McLaughlin effect for HD 189733b is by Winn et al.
(2006). See § 1.3.1 for details.

1.4 Thesis overview

As we have attempted to make clear, the light curve of an exoplanetary transit can be
used to estimate the planetary radius and other parameters of interest. Because accu-
rate parameter estimation is a non-analytic and computationally intensive problem,
it is often useful to have analytic approximations for the parameters as well as their
uncertainties and covariances. In Chapter 2, we give such formulas, for the case of
an exoplanet transiting a star with a uniform brightness distribution. We also assess
the advantages of some relatively uncorrelated parameter sets for fitting actual data.
When limb darkening is significant, our parameter sets are still useful, although our
analytic formulas underpredict the covariances and uncertainties.

We consider, in Chapter 3, the problem of fitting a parametric model to time-series
data that are afflicted by correlated noise. The noise is represented by a sum of two
stationary Gaussian processes: one that is uncorrelated in time, and another that has
a power spectral density varying as 1/f7. We present an accurate and fast [O(N)]

algorithm for parameter estimation based on computing the likelihood in a wavelet

36



basis. The method is illustrated and tested using simulated time-series photometry
of exoplanetary transits, with particular attention to estimating the midtransit time
(see § 1.3.1). We compare our method to two other methods that have been used
in the literature, the time-averaging method and the residual-permutation method.
The algorithm presented in this chapter generally gives more accurate results for

midtransit times and truer estimates of their uncertainties.

The transiting exoplanet HD 149026b is an important case for theories of planet
formation and planetary structure, because the planet’s relatively small size has been
interpreted as evidence for a highly metal-enriched composition. We present, in Chap-
ter 4, observations of 4 transits with the Near Infrared Camera and Multi-Object Spec-
trometer on the Hubble Space Telescope within a wavelength range of 1.1-2.0 um.
Analysis of the light curve gives the most precise estimate yet of the stellar mean
density (see § 1.3.1), p, = 0.49775022 ¢ cm~3. By requiring agreement between the
observed stellar properties (including p,) and stellar evolutionary models, we refine
the estimate of the stellar radius: R, = 1.54110045 Ry. We also find a deeper transit
than has been measured at optical and mid-infrared wavelengths. Taken together,
these findings imply a planetary radius of R, = 0.813%005¢ Rjup, which is larger
than earlier estimates. Models of the planetary interior still require a metal-enriched
composition, although the required degree of metal enrichment is reduced. It is also
possible that the deeper NICMOS transit is caused by wavelength-dependent absorp-
tion by constituents in the planet’s atmosphere (see § 1.3.1), although simple model
atmospheres do not predict this effect to be strong enough to account for the dis-
crepancy. We use the 4 newly-measured transit times to compute a refined transit

ephemeris.

Finally, in Chapter 5, we place empirical constraints on the oblateness (see § 1.3.1)
of the “Hot Jupiter” HD 189733b by completing a careful analysis of 7 transits ob-
served with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope.
We rule out, at 95% confidence, oblateness similar to that of Saturn at all or, for that
of Jupiter, at most obliquities. By assuming the oblateness to be as a result of

rigid-body rotation, we place constraints on the rotational period of the planet. In
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particular, we find that HD 189733b is rotating slower than once every 21 hours at
95% confidence. We also consider the detection of oblateness for the highly eccentric
transiting exoplanet HD 80606b. The algorithm developed to quickly calculate the

transit light curve of an oblate exoplanet is described in depth.
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Chapter 2

Analytic approximations for transit
light-curve observables,

uncertainties, and covariances

2.1 Introduction

In general, the parameters of a transiting system and their uncertainties must be
estimated from the photometric data using numerical methods. For example, many
investigators have used x2-minimization schemes such as AMOEBA or the Levenberg-
Marquardt method, along with confidence levels determined by examining the appro-
priate surface of constant Ax? (see, e.g., Brown et al. 2001, Alonso et al. 2004) or by
bootstrap methods (e.g., Sato et al. 2005, Winn et al. 2005). More recently it has be-
come common to use Markov Chain Monte Carlo methods (e.g., Holman et al. 2006,
Winn et al. 2007, Burke et al. 2007). However, even when numerical algorithms are
required for precise answers, it is often useful to have analytic approximations for the

parameters as well as their uncertainties and covariances.

Analytic approximations can be useful for planning observations. For example,
one may obtain quick answers to questions such as, for which systems can I expect

to obtain the most precise measurement of the orbital inclination? Or, how many
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transit light curves will I need to gather with a particular telescope before the sta-
tistical error in the planetary radius is smaller than the systematic error? Now that
nearly 50 transiting planets are known, we enjoy a situation in which a given night
frequently offers more than one observable transit event. Analytic calculations can
help one decide which target is more fruitfully observed, and are much simpler and
quicker than the alternative of full numerical simulations. Analytic approximations
are also useful for understanding the parameter degeneracies inherent in the model,
and for constructing relatively uncorrelated parameter sets that will speed the con-
vergence of optimization algorithms. Finally, analytic approximations are useful in
order-of-magnitude estimates of the observability of subtle transit effects, such as
transit timing variations, precession-induced changes in the transit duration, or the

asymmetry in the ingress and egress durations due to a nonzero orbital eccentricity.

Mandel & Agol (2005) and Giménez (2007) have previously given analytic for-
mulas for the received flux as a function of the relative separation of the planet and
the star, but their aim was to provide highly accurate formulas, which are too com-
plex for useful analytic estimates of uncertainties and covariances. Protopapas et
al. (2007) provided an analytic and differentiable approximation to the transit light
curve, but they were concerned with speeding up the process of searching for tran-
sits in large databases, rather than parameter estimation. Seager & Mallén-Ornelas
(2003) presented an approximate model of a transit light curve with the desired level

of simplicity, but did not provide analytic estimates of uncertainties and covariances.

This chapter is organized as follows. In § 2.2 we present a simple analytic model
for a transit light curve, using a convenient and intuitive parameterization similar to
that of Seager & Mallen-Ornelas (2003). In § 2.3, we derive analytic approximations
for the uncertainties and covariances of the basic parameters, and in § 2.4 we verify the
accuracy of those approximations through numerical tests. Our model assumes that
the flux measurements are made continuously throughout the transit, and that stellar
limb-darkening is negligible; in § 2.4.1 and § 2.4.3 we check on the effects of relaxing
these assumptions. In § 2.5 we derive some useful expressions for the uncertainties

in some especially interesting or useful “derived” parameters, i.e., functions of the
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basic model parameters. In § 2.6 we present alternative parameter sets that are
better suited to numerical algorithms for parameter estimation utilizing the analytic
formalism given in § 2.3. We compare the correlations among parameters for various
parameter sets that have been used in the transit literature. Finally, § 7 gives a

summary of the key results.

2.2 Linear approximation to the transit light curve

Imagine a spherical star of radius R, with a uniform brightness and an unocculted
flux fo. When a dark, opaque, spherical planet of radius R, is in front of the star, at a
center-to-center sky-projected distance of 2R, the received stellar flux is F*(r, z, fo) =

fo(1 = Xé(r, 2)), where

0 1+r<z
Xe(r, 2) = %(7‘21-@04—/@1— ﬂ—‘”—f“‘i) l—r<z<l4r, (21
7'2 ZS].—’/‘

with s = cos ![(1 — r? + 22)/2z] and ko = cos™[(r? + 2% — 1)/2r2] (Mandel & Agol
2002). Geometrically, A is the overlap area between two circles with radii 1 and »
whose centers are z units apart. The approximation of uniform brightness (no limb
darkening) is valid for mid-infrared bandpasses, which are increasingly being used for
transit observations (see, e.g., Harrington et al. 2007, Knutson et al. 2007, Deming et
al. 2007), and is a good approximation even for near-infrared and far-red bandpasses.
We make this approximation throughout this chapter, except in § 2.4.3 where we

consider the effect of limb darkening.

For a planet on a circular orbit, the relation between z and the time ¢ is

2(t) = aR;'+/[sin n(t — t.)]2 + [cos icos n(t —t.)]? (2.2)
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where a is the semimajor axis, ¢ is the inclination angle, n = 27/P is the angular

frequency with period P, and ¢, is the transit midpoint (when z is smallest).

The four “contact times” of the transit are the moments when the planetary disk
and stellar disk are tangent. First contact (¢;) occurs at the beginning of the transit,
when the disks are externally tangent. Second contact (#1) occurs next, when the
disks are internally tangent. Third and fourth contacts (¢;;; and ¢1y) are the moments
of internal and external tangency, respectively, as the planetary disk leaves the stellar
disk. The total transit duration is ¢;y —¢;. The ingress phase is defined as the interval
between ¢; and ¢y, and likewise the egress phase is defined as the interval between ¢y
and try. We also find it useful to define the ingress midpoint ting, = (¢1 + t11)/2 and
the egress midpoint teg = (tur + trv)/2.

Although Eqns. (2.1) and (2.2) give an exact solution, they are too complicated
for an analytic error analysis. We make a few approximations to enable such an
analysis. First, we assume the orbital period is large compared to transit duration,

in which case Eqn. (2.2) is well-approximated by

2(t) = \/[(t —t.)/To0)? + b2, (2.3)

where, for a circular orbit, 7y = R,P/2ma = R,/na and b = acosi/R, is the nor-
malized impact parameter. In this limit, the planet moves uniformly in a straight
line across the stellar disk. Simple expressions may be derived for two characteristic

timescales of the transit:

tegr —ting = To (\/(1 +7)2— b2+ /(1 —7)2— b2) = 219V1 — b2 + O(r?) (2.4)
=t = 7 (VI+rP—0 - 1= - B = 2my +0(r%)(2.5)

r
V1—b?
It is easy to enlarge the discussion to include eccentric orbits, by replacing a by the

planet-star distance at midtransit, and n by the angular frequency at midtransit:

a(l — €?)
1+ esinw’
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n(1 + esinw)?

(1- e}

—

’

where e is the eccentricity, and w is the argument of pericenter. Here, too, we ap-
proximate the planet’s actual motion by uniform motion across the stellar disk, with
a velocity equal to the actual velocity at midtransit. Methods for computing these
quantities at midtransit are discussed by Murray & Dermott (2000), as well as recent
transit-specific studies by Barnes (2007), Burke (2008), Ford et al. (2008), and Gillon
et al. (2007). We redefine the parameters 75 and b in this expanded scope as

_ acosz’( 1—é? ) (2.6)

R, \l+esinw
— o2
o o= De(ViZE ) (2.7)
an \1+esinw

We do not restrict our discussion to circular orbits (e = 0) unless otherwise stated.

Next, we replace the actual light curve with a model that is piecewise-linear in

time, as illustrated in Figure 2-1. Specifically, we define the parameters

= for® = fo(Rp/R.)? (2.8)
T = wmVI=W (29)
o= 2 (2.10)

V1 —b?

and then we define our model light curve as

fo—190 [t —t| <T/2—1/2
Fit) =3 fo—0+2(t—t|—T/2+7/2) T/2—7/2<|t—t]|<T/2+7/A2.11)
Jo [t —t| >T/2+7/2

We use the symbol F' to distinguish this piecewise-linear model ({ for linear) from the
exact uniform-source expression F* given by Eqns. (2.1) and (2.2). The deviations
between F' and F*® occur near and during the ingress and egress phases. The approx-

imation is most accurate in the limit of small 7 and b and is least accurate for grazing
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transits. As shown in Eqn. (2.5), when 7 is small, 7 = ¢;; — #; (the ingress or egress
duration) and T' & teg — ting (the total transit duration). Neither this piecewise-linear
model nor the choice of parameters is new. Seager & Mallén-Ornelas (2003) also used
a piecewise-linear model, with different linear combinations of these parameters, and
both Burke et al. (2007) and Bakos et al. (2007) have employed parameterizations
that are closely related to the parameters given above. What is specifically new to this
chapter is an analytic error and covariance analysis of this linear model, along with
useful analytic expressions for errors in the physical parameters of the system. The

“inverse” mapping from our parameterization to a more physical parameterization is

ﬁ

= (Ry/R.)* = 0/fo (2.12)

) ( Smw) _ 1—7; (2.13)

1—e? Tt
= —. 2.14
) ( esmw) 4r (2.14)

_ | R A .
fO 6 I 1 1 1 1 Tlme
Ir I I hiy

Figure 2-1 Comparison of the exact and piecewise-linear transit models, for the
parameter choice r = 0.2, b = 0.5. The dashed line shows the exact uniform-source
model F*, given by Eqn. (2.1). The solid line shows the linear model F', given by
Eqn. (2.11).
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2.3 Fisher information analysis

Given a model F(t; {p;}) with independent variable ¢ and a set of parameters {p;}, it
is possible to estimate the covariance between parameters, Cov(p;, p;), that would be
obtained by measuring F(t) with some specified cadence and precision. (Gould 2003
gives a pedagogical introduction to this technique.) Suppose we have N data points
taken at times ¢, spanning the entire transit event. The error in each data point is
assumed to be a Gaussian random variable, with zero mean and standard deviation

ok Then the covariance between parameters {p;} is
COV(pi,pj) = (Bgl)ij (215)

where B is the zero-mean Gaussian-noise Fisher information matrix, which is calcu-

lated as

=3y - Fltws )| B |- Pl (o) (2.16)

k=1 I=1

Here, By, is the inverse covariance matrix of the flux measurements. We assume
the measurement errors are uncorrelated (i.e., we neglect “red noise”), in which case
Bii = 60y, 2. We further assume that the measurement errors are uniform in time
with oy = o, giving By = dpo 2.

In Table (2.1), we compute the needed partial derivatives' of the piecewise-linear
light curve F', which has five parameters {p;} = {t., 7, T4, fo}.

Fig. (2-2) shows the time dependence of the parameter derivatives, for a particular
case. The time dependence of the parameter derivatives for the exact uniform-source
model F* is also shown, for comparison, as are the numerical derivatives for limb-
darkenened light curves. This comparison shows that the linear model captures the

essential features of more realistic models, and in particular the symmetries. The most

1Tn computing these derivatives we have ignored the dependence of the piecewise boundaries in
Table. (2.1) on the parameter values. The derivatives associated with those boundary changes are
finite, and have a domain of measure zero in the limit of continuous sampling. Thus they do not
affect our covariance calculation.
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Totality Ingress/Egress Out of Transit
st {pm}) [0 T ;
E%Fll(t; {Pm}) 0 — 2 (It -t~ 1) 0
o E (& {pm 0 _3 0
%TFl(t'{p ) 1 (-l Ty 1 0
og” (L () L(lt -t 1) - 4
s (G{en}) | 1 1 .

Table 2.1 Table of partial derivatives of the piecewise-linear light curve F*, in the five
parameters {p;} = {t.,7,T,9, fo}. The intervals |t —¢t,| < T/2 —1/2, T/2 —7/2 <
|t —t| <T/2+71/2, and |t —t.| > T/2 + 7/2 correspond to totality, ingress/egress,
and out of transit respectively.

obvious problem with the linear model is that it gives a poor description of the 7-
derivative and the d-derivative for the case of appreciable limb darkening, as discussed
further in § 2.4.3. From Fig. (2-2) and Table (2.1) we see that for the parameters
T, 7, and ¢, the derivatives are symmetric about t = ¢, while the derivative for the
parameter ¢, is antisymmetric about .. This implies that ¢. is uncorrelated with the
other parameters. (This is also the case for the exact model, with or without limb

darkening.)

We suppose that the data points are sampled uniformly in time at a rate ' =
N/Ti, where the observations range from ¢t = t4 to t = to + Tio; and encompass
the entire transit event. In the limit of large I' we may approximate the sums of

Eqn. (2.16) with time integrals,

r to+Ttot
Bij == [ 8

P {pm}ﬁ [E%Fl(t; {pm})} g (217)

; to
Using the derivatives from Table (2.1) we find

(20 0 0o 0 )

82 s
. 0 & 0 —% 0
B=—lo0o o £ ¢ —4 (2.18)
§ 4 T
0 —-¢ 5 T-3 -T
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Figure 2-2 Parameter derivatives, as a function of time, for the piecewise-linear model
light curve F! (top row), the exact light curve for the case of zero limb darkening
F¢ (second row), and for numerical limb-darkened light curves with a linear limb-
darkening coefficient v = 0.2 (third row) and u = 0.5 (bottom row). See § 2.4.3 for
the definition of u. Typical scales are shown in the first row and are consistent in the
following rows.
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In what follows, it is useful to define some dimensionless variables:

Q = VIT’,

o
6 = /T,

n = T/(Tiw—T —71). (2.19)

The first of these variables, @), is equal to the total signal-to-noise ratio of the transit
in the limit 7 — 0. The second variable, 6, is approximately the ratio of ingress (or
egress) duration to the total transit duration. The third variable, 7, is approximately
the ratio of the number of data points obtained during the transit to the number of
data points obtained before or after the transit. Oftentimes, r and  are much smaller
than unity, which will later enable us to derive simple expressions for the variances
and covariances, but for the moment we consider the general case.

Inverting B, we find the covariance matrix for the piecewise-linear model,

COV({tc, T, T, 6, fO} y {tcv T, T7 (5, fo}) =
(e g 0

0 0
. 0 [n0+S32160T% [n—15] 02T [n+ 25] 00T 705T
i [n— 51 0°T*  [n6+325] 0T [n— 5] 06T nosT |. (2.20)
0  [n+:5]00T [n—15]06T [n+L5]0% ne?
\ 0 10T ndsT nd2 ns*

The elements along the diagonal of the covariance matrix are variances, or squares of
standard errors, o,, = 1/Cov(p;, p;).

This result can be simplified for the case when many out-of-transit observations
are obtained and 7 — 0. In this limit, f; is known with negligible error, and we
may assume fo = 1 without loss of generality. In this case, § is the fractional transit

depth, and the covariance matrix becomes
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1
Q?
T2 0 0

COV({tC, T, T, 6} ’ {tca T, Ta 5}) =

9(6—50) 92 9
0 T Tt —15T7 1T (2.21)
92 6(2—-0 9 ’
0 -T2 NPT —%0T
[ [ 1
0 50T — 1507 =507

from which it is obvious that @ is the key controlling parameter that deserves special

attention. Using Eqns. (2.9) and (2.10) we may write

0 = . (2.22)

Unless the transit is grazing, we have b < 1 — r, and 6 is restricted to the range
[r,éi—r]. Fig. (2-3) shows the dependence of § on the impact parameter, for various
choices of the transit depth. It is important to keep in mind that for b < 0.5, 8 is
nearly equal to r and depends weakly on b. This implies that § is expected to be quite
small for most transiting systems. For planetary orbits that are randomly oriented
in space, the expected distribution of b is uniform, and hence we expect 8 < 0.3 for
90% of a random sample of transiting planets with R, < Ryyp®. For this reason, in
the following figures we use a logarithmic scale for 6, to emphasize the small values.
Fig. (2-4) shows the (suitably normalized) elements of the covariance matrix as a
function of 6.

In the limits 7 — 0 (errorless knowledge of fp) and § — 7 (small impact parame-

ter), the expressions for the standard errors are especially simple:

o, = Q'T+/0/2,
0. ~ Q'TV60,
or ~ Q_IT\/%,

2In fact, the fraction of discovered systems with § < 0.3 may be even larger than 90%, because
selection effects make it harder to detect grazing transits.
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Figure 2-3 Dependence of § = % on depth § = r? and normalized impact parameter
b, for the cases 7 = 0.05 (solid line), r = 0.1 (dashed line), and r = 0.15 (dotted line).

o5 ~ Q6. (2.23)

In this regime, we have a clear hierarchy in the precision with which the time param-

eters are known, with o;, < or < 0.

To further quantify the degree of correlation among the parameters, we compute

the correlation matrix,

Cov(i. i
Corr({te, 7, T, 0, fo} , {te; 7, T, 0, fo}) = {\/COV(?‘;()%Z))VU ])} -

(10 0 0 0 \
0 1 (B-1)0 Bre 50
V6-06-p)2-001-p) V 6-9G-5) 6-06-5)
(8-1)0 1 (B_1)vb Vo (2.24)
V(6-06-5)2—0(1-5) ViEne-oa-g) V2-00-8 =
0 (B+1)0 B-1)vo 1 L
6-0(5-5) VB+1)(2-6(1-5)) o
/[ 3o 30 /B
\ 0 V&em 3-9(1—B) B+1 1 /

where we have defined 3 = n(1 — 6) to simplify the resulting expression. For § — 0,

all correlations with f, vanish except for the correlation with 4. Due to the fact the
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Figure 2-4 Standard errors and covariances, as a function of § = 7/T, for different
choices of 7. The analytic expressions are given in Eqn. (2.20). The definitions of 7,
0, and @ are given in Eqn. (2.19). Solid line — n = 0; Dashed line — n = 0.5; Dotted
line — n=1.
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correlation between & and f; is oc 32, it remains large even for fairly small 3. In the
limit of n — 0 (8 — 0), we remove all correlations with f, and have the remaining

correlations depending only on the ratio 6:

(10 0 0 0\
_ 9 9
01 \/(6-50)(2—6) 5 U
i ) = 6 _./°
%%Corr( ,) 0 o) Vs 0 |- (225)
[ [’
\ 0 0 0 0 1)

Correlations with f, decline with n as /7.

In Fig. (2-5), we have plotted the nonzero correlations as a function of 6 for a few
choices of 1. The special case of n — 0 is plotted in Fig. (2-6). In the n — 0 limit,
all correlations are small (< 0.3) over a large region of the parameter space. Thus,
our choice of parameters provides a weakly correlated set for all but grazing transits
(8 ~ 1/2), as noted during the numerical analysis of particular systems by Burke et
al. (2007) and Bakos et al. (2007). One naturally wonders whether a different choice
of parameters would give even smaller (or even zero) correlations. In § 2.6 we present
parameter sets that are essentially uncorrelated and have other desirable properties
for numerical parameter estimation algorithms.

The analytic formalism given in this section and more specifically the simple
analytic covariance matrices in Eqns. (2.20, 2.21) provide a toolbox with which to
evaluate the statistical merits of any parameter set that can be written in terms of
our parameters. In § 2.5 this technique is defined and applied to produce analytic

formulas for variances, covariances and uncertainties in several interesting parameters.

2.4 Accuracy of the covariance expressions

Before investigating other parameter sets, it is necessary to examine the validity of

Eqns. (2.20, 2.21, 2.24, 2.25) when compared to similar quantities derived from more
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Figure 2-5 Correlations of the piecewise-linear model parameters, as a function of
6 = 7/T for different choices of 7. Solid line — n = 0; Dashed line — n = 0.5; Dotted
line — n =1.
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Figure 2-6 Correlations of the piecewise-linear model parameters, as a function of
§ = 7/T, for the case n — 0 (errorless knowledge of the out-of-transit flux). Solid
line — Corr(7,T). Dashed line — Corr(r, §). Dotted line — Corr(T},9).
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realistic transit light curve models. The utility of the covariance matrix in Eqn. (2.20)
depends on the accuracy of the integral approximation of Eqn. (2.17), and on the
fidelity with which the parameter dependences of the piecewise-linear model mimic
the dependences of the exact uniform-source model. In this section we investigate

these two issues.

2.4.1 Finite cadence correction

The case of a finite observing cadence, rather than continuous sampling, can be
analyzed by evaluating the exact sums of Eqn. (2.16). Generally, given a sampling
rate I', we expect the integral approximation in Eqn. (2.17) to be valid to order (I't) 1.
In the n — 0 limit we may evaluate the exact sums, under the assumption of a uniform
sampling rate, with data points occurring exactly at the start and end of the ingress
(and egress) phases as well as at some intermediate times. This directly summed

covariance, Covgunm, is related to the integral-approximation covariance Eqn. (2.21) as

00 0 O
T\? ¢ 0 € ¢ 0
Coveum(+,:) = Cov(-,-)+6 (—) 5 (2.26)
Q) 1-e 0 e € 0
00 0 O

where € = (I't)~L.

The quantity I'r is approximately the number of data points obtained during
ingress or egress. It is evident from Eqn. (2.26) that for this sampling scheme only
the variances of T' and 7 along with their covariance are corrected. The corrections

to the variances and covariance are O(€?) and O(e) respectively.

2.4.2 Comparison with covariances of the exact uniform-source

model

We tested the accuracy of the covariance matrix based on the piecewise-linear model

by (1) performing a numerical Fisher analysis of the exact uniform-source model, and
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also (2) applying a Markov Chain Monte Carlo (MCMC) analysis of simulated data
based on the exact uniform-source model. In both analyses, orbits are assumed to
be circular. For the first task, we evaluated the analytic parameter derivatives of
Eqn. (2.1), which are too cumbersome to be worth reproducing here, and numerically
integrated Eqn. (2.17) to generate covariance matrices over a wide range of parameter
choices. Fig. (2-2), in § 2, shows the parameter derivatives for the exact model, as well
as the piecewise-linear model and some limb-darkened light curves. For the second
task, idealized data was generated by adding Gaussian noise with standard deviation
o/fo = 5x 107" to Eqn. (2.1) sampled at I' = 100 (in units of the characteristic
timescale 75, Eqn. (2.7)). With this sampling rate, approximately 50 samples occur
during the ingress and egress phases. Approximately 10* links per parameter were
generated with a Gibbs sampler and a Metropolis-Hasting jump-acceptance criterion.
The jump-success fraction (the fraction of jumps in parameter space that are actually
executed) was approximately 25% for all parameters. The effective length, defined as
the ratio of the number of links to the correlation length (see the end of § 2.6 for the
exact definition), was roughly 1000 — 2000 for the piecewise-linear model parameter
set. More details on the MCMC algorithm are given by Tegmark et al. (2004) and
Ford (2005). Standard errors were determined by computing the standard deviation of
the resulting distribution for each parameter. The Fisher-information analysis should
mirror the MCMC results, as long as the log-likelihood function is well approximated

as quadratic near the mean (Gould 2003).

The numerical Fisher analysis was performed for n = 0 and 0.05 < 8 < 1/2. In
practice this was done by choosing r = 0.05 and varying b across the full range of
impact parameters. (The numerical analysis confirmed that the suitably-normalized
covariances vary only as a function of § = 7/T, with the exception of slight J-
dependent positive offset in o5 that goes to zero as d goes to zero.) The MCMC
analysis for n = 0 was accomplished by fixing the out of transit flux, fo = 1, and
varying the remaining parameters We chose r = 0.1 for the MCMC analysis. Fig. (2-
7) shows all of the nonzero numerical correlation matrix elements, as a function of

#. The MCMC results, plotted as solid symbols, closely follow the curves resulting
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from the numerical Fisher analysis. Fig. (2-8) shows the nonzero numerical covariance
matrix elements, also for the case n = 0.

The correlations of the piecewise-linear model match the correlations of the exact
model reasonably well, with the most significant deviations occurring only in the
grazing limit, § ~ 1/2. We have also confirmed that a similar level of agreement is
obtained for nonzero 7, although for brevity those results are not shown here. We
concluded from these tests that the errors in the analytic estimates of the uncertainties
are generally small enough for the analytic error estimates derived from the piecewise-

linear model to be useful.

1.07 T T T T

0.5/

0.00o===""

%ii‘-‘iiiiiiiiiiiﬁ,j”nﬁ'iiiei.

L "t ':- waa®, A-{\\‘?'\T\-a ]

=0.5 i - ii.""sg&-’.{?i .
~10 ' S S

0.05 0.1 0.15 0.2 03 04 05

0

Figure 2-7 Comparison of the non-zero correlation matrix elements for the exact light-
curve model and the piecewise-linear model, as a function of § = 7/T, for n — 0.
Black curves: correlations for the piecewise-linear model. Gray curves: correlations
for the exact uniform-source model. Black dots: correlations based on an MCMC
analysis of simulated data with Gaussian noise (r = 0.1).

2.4.3 The effects of limb darkening

The piecewise-linear function of Eqn. (2.11) was constructed as a model of a transit

across a stellar disk of uniform brightness, with applications to far-red and infrared
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Figure 2-8 Comparison of the covariance matrix elements for the exact uniform-source
model, linear limb-darkened model, and the piecewise-linear model, as a function of
¢ = 7/T, for n — 0. Black curves: covariances for the piecewise-linear model. Gray
curves: covariances for the exact model with linear limb-darkening coefficient u = 0
(solid) and u = 0.5 (dashed). Black dots: covariances as determined by a MCMC
analysis of simulated data with Gaussian noise (u = 0 and 7 = 0.1). The dimensionless
number Q = VI'T§ /o (see Eqn. 2.19) is approximately the signal-to-noise ratio of
the transit.
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photometry in mind. At shorter wavelengths, the limb darkening of the star is impor-
tant. How useful are the previously derived results for this case, if at all? We used
the limb-darkened light-curve models given by Mandel & Agol (2002) to answer this

question.

To simplify the analysis we adopted a “linear” limb-darkening law, in which the

surface brightness profile of the star is

@ = 1-u(1-vi-2) (2.27)

0

where u is the linear limb-darkening parameter. Claret (2000) finds values of u ranging
from 0.5-1.2 in UBV R for a range of main-sequence stars. Longer wavelength bands
correspond to a smaller u for the same surface gravity and effective temperature.
Solar values are u =~ 0.5 in the Johnson R band and 0.2 in the K band. Fig. (2-2) of
§ 2 shows the time-dependence of the parameter derivatives of a linear limb-darkened
light curve, for the two cases u = 0.2 and u = 0.5, to allow for comparison with the
corresponding dependences of the piecewise-linear model and the exact model with

no limb darkening.

From the differences apparent in this plot, one would expect increased correlations
(larger than our analytic formulas would predict) between the transit depth and
the two timescales 7 and T. This is borne out by our numerical calculations of
the covariance matrix elements, which are plotted in Figs. (2-8,2-9). The analytic
formulas underpredict the variances in § and 7 by a factor of a few, and they also

severely underpredict the correlation between those parameters.

It is possible to improve the agreement with the analytic formulas by associating
0 with the minimum of the transit light curve, rather than the square of the radius

ratio. Specifically, one replaces the definition of Eqn. (2.12) with the new definition

—-8(V1I-0-1)u

9
_ 2
0 = for 9— 8u

(2.28)

For the previously-derived formulas to be valid, we must adopt a value for u based on
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Figure 2-9 Comparison of the analytic correlations (black lines; Eqn. 2.24)
numerically-calculated correlation matrix elements for a linear limb-darkened light
curve (gray lines), as a function of § = 7/T, for n — 0. Linestyles follow the conven-
tions of Fig. (2-7).

other information about the parent star (its spectral energy distribution and spectral
lines, luminosity, etc.) rather than determining u from the photometric data. Fig. (2-
10) shows the correlations resulting from this new association, for the case u = 0.5.
Fig. (2-11) shows the improvement with this new association for the variance in ¢ and
the covariance between & and 7, for the case u = 0.5. While this new association im-
proves on the agreement with the analytic covariances (particularly at low normalized
impact parameter), a disadvantage is that we no longer have a closed-form mapping

from {6, T, 7} back to the more physical parameters {r, b, 7o}

It should be noted that there is evidence that linear limb darkening may not
adequately fit high-quality transit light curves relative to higher order models (Brown
et al. (2001), Southworth (2008)). A more complete analysis with arbitrary source
surface brightness would minimally include quadratic limb darkening but is outside
the scope of this discussion. Pal (2008) completes a complementary analysis to this

one of uncertainties in the quadratic limb darkening parameters themselves.

63



0.05 01 0.5 02 03 04 05
6

Figure 2-10 Comparison of correlation matrix elements for the piecewise-linear model
(black curve) and a linear limb-darkened light curve (u = 0.5; gray curve), as a
function of § = 7/T. Here, the § parameter has been redefined as the minimum of
the limb-darkened light curve, as approximated by Eqn. (2.28). Linestyles follow the
conventions of Fig. (2-7).
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Figure 2-11 Comparison of select covariance matrix elements for the piecewise-linear
model (black curve) and a linear limb-darkened light curve (u = 0.5; gray curves),
as a function of # = 7/T. The ¢ parameter has been redefined as the minimum
of the limb-darkened light curve, as approximated by Eqn. (2.28), in the solid gray
curve. The dashed gray curve uses the initial § association, as defined in Eqn. (2.8).
Linestyles follow the conventions of Fig. (2-8).
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2.5 Errors in derived quantities of interest in the

absence of limb darkening

The parameters {t., 7,T,d, fo} are preferred mainly because they lead to simple ana-
lytic formulas for their uncertainties and covariances. The values of these parameters
are also occasionally of direct interest. In particular, when planning observations, it
is useful to know the transit duration, depth, and the predicted midtransit time. Of
more direct scientific interest are the values of the “physical” parameters, such as the
planetary and stellar radii, the orbital inclination, and the mean density of the star.
Those latter parameters also offer clearer a priori expectations, such as a uniform

distribution in cosi.

For affine parameter transformations p — p’ , we may transform the covariance

. . . /
matrix C via the Jacobian J = %% as

c'=JrCJ. (2.29)

Using Eqns. (2.12-2.14), we may calculate the Jacobian

(10 0 0 0)
2 o) 0 % z 0 0
a{tmb yTos Ty f(]
= _r T 2.30
3107, 1.5, fo) 0-F & 0 0 (2:30)
0 — T T 1 0
2fort 8for3  2for
T TT T
\0 %  sar  “am L)

between the parameters of the piecewise-linear model and the more physical param-
eter set when limb darkening is negligible. Using this Jacobian, the transformed

covariance matrix is

COV,({bZ’ T(?? r? fo} b {bz’ Tg’ /r? fo}) =
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24—6(23—4(0—2)0) 24—-6(4(—1)6+23) —20
1 oG L s gy 01" 161(139) 07% 0 n
2 20+1 1-26 2 1
@ 40(1+—9) r? =01 1(1-9) r? 0
0 0 0 0
—20)2 - r3(1—
(14022) r2 1_16 (1- 402) T2 (14920)7"2 (12029) fo
62(1420)2
o | w4 T SEET LO(1+20)T? Lro(1+26) foT? 231)
Q? (=26) .2 Lo(1+20)1 L2 13 fo
301
G2 g Lrf (1+20) foT? irf, rtf2

where we have ignored the unmodified covariance elements involving t., and have kept
only the leading-order terms in r in the n-dependent matrix.
The standard errors for other functions of the parameters, f({p;}), can be found

via error propagation, just as in Eqn. (2.29),

Valf(ph)] = 33 Covips pj)g_;%. (2.32)

i
The results for several interesting and useful functions, such as the mean densities
of the star and planet, are given in Table (2.2). For brevity, the results are given
in terms of the matrix elements of Eqn. (2.31). Simplified expressions for covariance
matrix elements in the limit of » — 0, § small (plentiful out-of-transit data) and

negligible limb darkening are given in Table (2.3).

2.6 Optimizing parameter sets for fitting data with

small limb darkening

The parameter set {t.,7,T,d, fo} has the virtues of simplicity and weak correlation
over most of the physical parameter space. However, when performing numerical anal-
yses of actual data, the virtue of simplicity may not be as important as the virtue of
low correlation, which usually leads to faster and more robust convergence. To take

one example, lower correlations among the parameters result in reduced correlation
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L9

[ Quantity | Variance (Standard Error Squared) | Notes |

R,=rR, R2 [Var(r)/r? + (log M, /My)*Var(z)] 1
R./a = (y/72)2770/ P ;(B./a)*Var(r3) /15
Ry/a = (71/v2)2mror /P (Rp/a)? [, Var(7§) /75 + Var(r)/r?]
¥ = (2/mlacosi/ .| Nar(2)/
E?i’?/’)’%)??”o b] /P 4 cos? 4 [Var(b?)/b* + Cov (7§, b%) /75b° + Var(75) /75
a 2 Var(r2)

= (2/m)*(3/8Gn?) P/7
Py |3 Var (1) /g + 9Var(r) /r? + JCov(r, 78) /r7§

pp 1 . 4 2y 3 . 9 075 7.2

e L ST R TNG it ey ey 4 KL

- (Y2/m)*ReP/(2778) g2 [§Var(73) /73 + (log M, /M¢)*Var(z)] 1
9;2> [Var(78) /78 + 4Var(r)/r? + 2Cov(r, 78) /178

” +1(cos i/b)*Var(b?) — }(cosi/b)*Cov(b?, 73) /73 )

= (/M) KP/ @rrrg sin) —(cosi/b)*Cov(b?,r)/r + Var(K,)/ K]

Table 2.2 Table of transit quantities and associated variances, in terms of the matrix elements given in Eqn. (2.31). We have
assumed that both the orbital period, P, and stellar mass, M,, are known exactly. We have defined the noncircular-orbit
parameters y; = 1 + esinw and v, = v/1 — €2 where e is the eccentricity and w is the argument of pericenter (see § 2.2 for a
discussion of eccentric orbits). Notes: (1) A mass-radius relation R, o (M,/Mg)* is assumed; (2) We have assumed 7 2 80° in
simplifying the inclination dependence in the variance. Quantities in bold are not determined by the transit model and must
be provided from additional information. K, is the semi-amplitude of the source radial velocity. Terms have been arranged in
order of relative importance with the largest in absolute magnitude coming first. Refer to Table (2.3) for matrix elements of
Eqn. (2.31) for the case in which the planet is small, the out-of-transit flux is known precisely and limb darkening is negligible.



Q*Var(r)/r? =~ 1/4 Q*Cov(b?, 13)/b*18 =~ 6r/6%b?
Q*Var(b?)/b* =~ 6r2/63%* | Q?Cov(b%,r)/V?r =~ 1/40b?
Q*Var(rd) /18 ~ 3/20 Q*Cov(rg,r)/1er =~ 1/16

Table 2.3 Covariance matrix elements from Eqn. (2.31) in the limit 7 — 0 and 6 small
for use in Table (2.2). These approximations are valid in the case in which the planet
is small, the out-of-transit flux is known precisely and limb darkening is negligible.

lengths for Monte Carlo Markov Chains, and faster convergence to the desired a pos-
teriort probability distributions, and can obviate the need for numerical Principal
Component Analysis (Tegmark et al., 2004). In Fig. (2-12), we compare the degree
of correlations for various parameter sets that have been used in the literature on
transit photometry. Of note is the high degree of correlations among the “physi-
cal” parameter set {R./a, R,/a, b}, which is a poor choice from the point of view of

computational speed.
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Figure 2-12 Comparison of correlations for various parameter sets that have been
used in the literature. The correlations were derived from the piecewise-linear model
(Eqn. 2.21) assuming n = 0. (a) Parameters {b% 7Z,7}. (b) {R./a = nro, Ry/a =
ntor, b2}, (c) {2/T,b% r} (e.g., Bakos et al. (2007)). (d) {T,,6}, the set introduced
in this chapter.
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Nevertheless, one advantage of casting the model in terms of physical parameters
is that the a priori expectations for those parameters are more easily expressed, such
as a uniform distribution in b. The determinant of the Jacobian given by Eqn. (2.29),
|J|, is also useful in translating a priori probability distributions from one parameter
set to the other [see Burke et al. (2007) or Ford (2006) for an example of how this is
done in practice]. For the case of the parameter set {t., 7,79, fo}, we may use the

Jacobian, Eqn. (2.30), to convert a priori probability distributions via

plte, 7, T, 0, fo)dt.drdT dé dfy = plt, b, 78, fo) 0f ——dt. db* drd dr df,

1
47'9f04b’7’0

= p(te,b fo) _li
= Ple 0,70, 7, Jo 16b7’27’0_f0

= plte, b, 70,7, fo) —— ——dt. dbdro dr dfo(2.33)

)m@MM%.

where we have remeasured the phase space volume via the determinant,

‘ ia{tc, b2, 75,7, fo} (2.34)

8{t07 7, T) 5) fO}

_ 1
N 47’0]00.

One may use this expression to enforce a uniform prior in b, for example, by
weighting the likelihood function as shown in Eqn. (2.34). However, there is a practical
difficulty due to the singularity at b = 0. One way to understand the singularity is
to note that uniform distributions in 7, T lead to a nearly uniform distribution in
§ = 7/T, which highly disfavors b = 0; in order to enforce a uniform distribution in b,
the prior must diverge at low b. Fig. (2-3) graphically captures the steep variation for
small b with . Consider, instead, the parameter set {t., b, T,r = \/m, fo} where,
from Eqn. (2.13), b = 1 — rT/7. We may calculate the determinant of the Jacobian

(not reproduced here)

H Nt b, T, 7, fo} (2.35)

8{tC7 T, T7 65 fO}

_ (1_b2)2
b r2fT
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Combining this result with Eqn. (2.34)

T
g g e dbdrodr df

1
= p(tc, b, To0, 7, fo) Z\/—ﬁdtc db dTO dr df0(236)

p(tc, b, T, T, f[))dtc db dT dT dfo = p(tc, b, To, 7, f())

The singularity at b = 0 has been removed with this parameter choice. There is a
singularity at b = 1 instead, which is only relevant for near-grazing transits, and is not
as strong of a singularity because of the square root. We confirm that this parameter
set also enjoys weak correlations, as shown in Fig. (2-13), and therefore this set is
a reasonable choice for numerical parameter-estimation algorithms. The merits of
other parameter sets, from the standpoint of correlation and a priori likelihoods,
may be weighed in a similar fashion, using the simple analytic covariance matrix

of Eqn. (2.20), and the appropriate transformation Jacobian, in combination with

Eqn. (2.29).

1.0 . . . , 1
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Figure 2-13 Correlations for the parameter set {b, T, r}. The correlations were derived
from the piecewise-linear model (Eqn. 2.21) assuming n = 0.

If the issues associated with the transformation of priors are ignored (i.e. if the

data are of such quality that the results will depend negligibly on the priors), we can
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give essentially uncorrelated parameter sets. Consider, for example, the parameter
set {t.,Se =d/7,T, A= 6T}. The new parameter S, is the magnitude of the slope of
the light curve during the ingress and egress phases, and the new parameter A is the
area of the trapezoid defined by the transit portion of the light curve (i.e., the time
integral of the flux decrement). For simplicity we assume n = 0 and fix fo = 1. The
transformed correlation (Eqn. (2.25)) is found via the transformation Jacobian, Eqn.

(2.29) as

Corr({te, Se, T, A} , {te,Se, T, A}) =

1 00 0
010 0 (2.37)
0(1-9) ’
001 (2—0)(6+1)
6(1-6)
00 \/(2—0)(0+1) 1

The determinant of the transformation Jacobian (for use with Eqn. (2.34)) is given

as

Hc’?{tc, S., T, A} H _ -y 2.35)

Mt.,1,T,6} T

With this new parameter set, the only nonzero correlation is between 71" and A, and
this correlation is < 0.3 even for grazing transits (see Fig. 2-14). We have found that
these parameters provide a nearly optimal set for data fitting when little is known at
the outset about the impact parameter of the transit.

It is possible to do even better when the impact parameter is known at least
roughly. Consider the parameter set {¢.,S., Il = Téé,é} where S, is the slope of
ingress, and 6 is a constant (whose chosen value will be discussed momentarily). The
new parameter II has no simple physical interpretation. We again assume 7 = 0 and

fo = 1. The correlation matrix in this case is
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Corr({tc, S, 11,0} , {tc, Se, 1L, 6}) =

(10 0 0 \

010 0
V/(6-6)2+20(1-06)
(6-6)
\0 0 V/(6-6)2+26(1-0) 1 /

The determinant of the transformation Jacobian is given as

Ha{tc,se,n,a}u (-

b%)
o{t,,r, T, 5} T2 (2.40)

With this choice, the only nonzero correlation is between II and §. If the constant 8
is chosen to be approximately equal to 8, then this sole correlation may be nullified.
Thus, if § is known even approximately at the outset of data fitting—from visual
inspection of a light curve, or from the approximation 8 ~ r valid for small planets
on non-grazing trajectories—a parameter set with essentially zero correlation is im-
mediately available. As an example, Fig. (2-14) shows the correlation between II and

§ as a function of @, for the choice § = 0.1, which has a null at § = 0.1 as expected.

The utility of this parameter set is not lost if # cannot be confidently specified
when used with Markov chain Monte Carlo parameter estimation codes. At each
chain step ¢, the next candidate state can be drawn from the candidate transition
probability distribution function generated by the above parameter set with 6 = 6, ;.
Thus, the Markov chain will explore the parameter space moving along principal axes
at each chain step. Additionally, allowing the candidate transition function to vary as

the Markov chain explores parameter space may prove useful for low S/N data sets.

As a concrete example of the effectiveness of uncorrelated parameters, we apply
the MCMC algorithm to simulated data. For a given choice of the parameter set,
we generate chains with a fixed jump-success fraction, and calculate the resulting

autocorrelations of the Markov chain. For a particular parameter p (with value p; at
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Figure 2-14 Comparison of the correlations among the parameters, for the set {3,7, 7}
(black lines), the set {S.,T, A = T'6} (dashed-dot gray line) and the set {Se, I =
T6%,5} (solid gray line) for the case § = 0.1. For the latter set, the only nonzero
correlation is between II and S., which vanishes at 6 = 0.1.
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chain step i), the autocorrelation a at a given chain step j is defined as

<pipi+j> - (lh')z
(p7) — (pi)?

a; (2.41)
where the averages refer to the averages over the whole chain (Tegmark et al., 2004).
The correlation length of the chain is the number of steps NV that are required before
the autocorrelation drops below 0.5. The total chain length divided by the correla-
tion length is referred to as the effective length of a chain. The effective chain length
is approximately the number of independent samples, which quantifies the degree of
convergence of the algorithm. A lower correlation length, for the same total chain
length, gives a more accurate final distribution. This autocorrelation analysis was
performed for both the “physical” parameter set {t., b?, 72, 7%} as well as the parame-
ter sets {t., 7, T, 0} and {t., b, T, 7}, with n = 0 in all cases (i.e., plentiful out-of-transit
data). The MCMC was executed as detailed in § 2.4.2 with a fixed jump rate ~50%
for all parameter chains. (In practice this was achieved by adjusting the size of the
Gaussian random perturbation that was added to each parameter at each trial step.)
By choosing either the parameter set {t., 7, T,d} or {t., b, T, 7}, the correlation lengths
are reduced by a factor of approximately 150. By using the minimally-correlated pa-

rameter set {t., Se, T, A}, the correlation lengths are reduced by an additional factor

of ~2.

To completely eliminate the correlations between parameters, one can diagonalize
the symmetric covariance matrix, Eqn. (2.37), and find the linear combinations of
parameters that eliminates correlations. This was done by Burke et al. (2007) for the
particular case of the transiting planet XO-2b. Analytic expressions for the eigenvec-
tors are available because there are only two entangled parameters. However, these
eigenvectors are linear combinations of local parameter values; they do not constitute
a global transformation rendering the covariance diagonal. Thus, this procedure is

useful for numerical analysis of a particular system, although not for analytic insights.
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2.7 Summary

We have presented formulas for uncertainties and covariances for a collection of pa-
rameters describing the light curve of an exoplanet transiting a star with uniform
brightness. These covariances, given in Eqns. (2.20, 2.31), are derived using a Fisher
information analysis of a linear representation of the transit light curve. The key
inputs are the uncertainty in each measurement of the relative flux, and the sampling
rate. We have verified the accuracy of the variance and covariance estimates derived
from the piecewise-linear light curve with a numerical Fisher analysis of a more real-
istic (nonlinear) light-curve model, and with a Markov Chain Monte Carlo analysis

of idealized data.

We focused on a particular parameterization of this piecewise-linear light curve
that we believe to be most useful. The parameters are the midtransit time (t.), the
out-of-transit flux (fo), the flux decrement during the full phase of the transit (J), the
duration of ingress or egress (), and the duration between the midpoint of ingress
and the midpoint of egress (T'). This set is observationally intuitive and gives simple
analytic formulas for variances and covariances. The exact parameter definitions are
provided in Eqns. (2.8, 2.9, 2.10) in terms of normalized impact parameter, stellar
and planetary radii, semi-major axis and orbital period. Inverse mappings to more
physical parameters are provided in Eqns. (2.12, 2.13, 2.14). The analytic covari-
ance matrix is given in Eqn. (2.20) and the analytic correlation matrix is given in
Eqn. (2.24). Some quick-and-dirty (but still rather accurate) expressions for the pa-
rameter uncertainties, for the case in which the planet is small, the out-of-transit flux

is known precisely and limb darkening is negligible, are given as

oy, = Q"IT\/G/_Q,
o, ~ Q'TV60,
Q™'TV26,
Q16
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where 8 = 7/T is the ratio of the ingress or egress duration to the total duration, and
Q= FT% is the total signal-to-noise ratio of the transit in the small-planet limit
(see Eqn. 2.19).

We investigated the applicability of these results to a limb darkened brightness
profile, in which the true light curve is not as well-described by a piecewise-linear
function. We found that the analytic formulas underestimate some of the variances
and covariances by a factor of a few, for a typical degree of limb darkening at optical
wavelengths. Significant improvements to covariance estimates in the limb darkened
case may be made by redefining the depth parameter as a function of darkening
coefficient and impact parameter as in Eqn. (2.28). Unfortunately, no closed-form
mapping to more physical parameters exists with this choice, and therefore most of

the appeal of the analytic treatment is lost.

Quantities that are derived in part or in whole from the transit light curve (such
as stellar mean density or exoplanet surface gravity) are provided in terms of the
suggested parameter set. In Table (2.2), uncertainties propagated from the covariance
estimates for these quantities are provided with simple analytic formulas. In Table 2.3,
covariance elements relevant to the uncertainties in Table 2.2 are given for the case
in which the planet is small and the out-of-transit flux is known precisely. This
allows the uncertainty in a given physical parameter to be predicted in advance of
any data, bypassing the need for time-consuming simulations. For transit surveys,
these formulas may also be useful in giving closed-form expressions for the expected
distributions for some of the key properties of a sample of transiting planets.

In § 2.6, with the tools provided, we approach the question of what parameter
sets are best suited to numerical parameter estimation codes. This question depends
both on the level of parameter correlation and the behavior of any a priori likelihood
functions. We advocated a parameter set that has the virtue of both weak correlation
and essentially uniform a priori expectations: specifically, the parameters are the mid-
transit time, the out-of-transit flux, the ratio of planetary to stellar radii (R,/R,), the
normalized impact parameter, and the duration between the midpoint of ingress and

the midpoint of egress. Fig. (2-13) graphically describes the parameter correlations
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while Eqn. (2.36) gives the a priori probability distribution. Finally, two parame-
ter choices are given that are less intuitive than the suggested set but that provide
smaller correlations, depending on information that may be inferred or guessed prior
to analysis. Correlations may be tuned to zero with the second parameter choice for
a non-grazing transit and an estimate of R,/R,. The resulting correlation matrices
for both parameter choices are given in Eqns. (2.37, 2.39). Lower correlations relate
directly to more efficient data fitting, as demonstrated by reduced correlation lengths
with a Markov Chain Monte Carlo method.
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and in particular for pointing out the consequences of the singularity in Eqn. (2.34).
We also thank the referee for helpful comments, and for suggesting the Markov chain
technique for use with the parameter choices in Eqn. (2.39). Sara Seager and Paul
Joss also provided helpful comments. We are grateful for support from the William
S. Edgerly Innovation Fund and from NASA grant HST-GO-11165 from the Space
Telescope Science Institute, which is operated by the Association of Universities for
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Chapter 3

Parameter Estimation from
Time-Series Data with Correlated
Errors:

A Wavelet-Based Method and its
Application to Transit Light

Curves

3.1 Introduction

Frequently one wishes to fit a parametric model to time-series data and determine
accurate values of the parameters and reliable estimates for the uncertainties in those
parameters. It is important to gain a thorough understanding of the noise and de-
velop appropriate methods for parameter estimation, especially at the research fron-
tier, where the most interesting effects are often on the edge of detectability. Un-
derestimating the errors leads to unjustified confidence in new results, or confusion

over apparent contradictions between different data sets. Overestimating the errors
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inhibits potentially important discoveries.

When the errors in the data are well understood and uncorrelated, the prob-
lem of parameter estimation is relatively straightforward (see, e.g., Bevington &
Robinson 2003, Gould 2003, Press et al. 2007). However, when the noise is not
well-understood—and particularly when the noise exhibits correlations in time—the
problem is more challenging (see, e.g., Koen & Lombard 1993, Beran 1994). Tra-
ditional methods that ignore correlations often give parameter estimates that are
inaccurate and parameter errors that are underestimated. Straightforward general-
ization of the traditional methods is computationally intensive, with time-complexity
O(N?) in the worst cases (where N is the number of data points). This makes certain

analyses impractical.

Our specific concern in this chapter is the analysis of time-series photometry of
exoplanetary transits. During a transit, a planet passes in front of the disk of its
parent star, which is evident from the slight diminution in the light received from
the star. A model of a transit light curve may have many parameters, but we focus
mainly on a single parameter, the midtransit time ¢., for three reasons. The first
reason is the simplicity of a single-parameter model. The second reason is that t. is
a unique piece of information regarding each transit event, and as such, the accuracy
cannot be improved by combining results from multiple transit observations. Instead
one must make the most of single-event observations even if they are afflicted by
correlated noise. The third reason is that transit timing offers a means of discovering
additional planets or satellites by seeking anomalies in a sequence of transit times
due to gravitational perturbations [Holman & Murray (2005), Agol et al. (2005)].!

Beginning with the work of Pont, Zucker, & Queloz (2006), it has been widely
recognized that time-correlated noise (“red noise”) is a limiting factor in the analysis
of transit light curves. Many practitioners have attempted to account for correlated

errors in their parameter estimation algorithms (see, e.g., Bakos et al. 2006, Gillon

et al. 2006; Winn et al. 2007, 2009; Southworth 2008). Among these schemes are

IThe transit duration is also expected to vary in the presence of additional gravitating bodies;
see, e.g., Kipping (2009).
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the “time-averaging” method, in which the effects of correlations are assessed by
computing the scatter in a time-binned version of the data (Pont et al. 2006) and the
“residual-permutation” method, a variant of bootstrap analysis that preserves the

time ordering of the residuals (Jenkins et al. 2002).

In this chapter we present an alternative method for parameter estimation in the
presence of time-correlated noise, and compare it to those two previously advocated
methods. The method advocated here is applicable to situations in which the noise is
well described as the superposition of two stationary (time-invariant) Gaussian noise
processes: one which is uncorrelated, and the other of which has a power spectral
density varying as 1/f7.

A more traditional approach to time-correlated noise is the framework of autore-
gressive moving average (ARMA) processes (see, e.g., Box & Jenkins 1976). The
ARMA noise models can be understood as complementary to our 1/f7 model, in
that ARMA models are specified in the time domain as opposed to the frequency
domain, and they are most naturally suited for modeling short-range correlations
(“short-memory” processes) as opposed to long-range correlations (“long-memory”
processes). Parameter estimation with ARMA models in an astronomical context
has been discussed by Koen & Lombard (1993), Konig & Timmer (1997), and Tim-
mer et al. (2000). As we will explain, our method accelerates the parameter esti-
mation problem by taking advantage of the discrete wavelet transform. It is based
on the fact that a the covariance matrix of a 1/f7 noise process is nearly diagonal
in a wavelet basis. As long as the actual noise is reasonably well described by such
a power law, our method is attractive for its simplicity, computational speed, and
ease of implementation, in addition to its grounding in the recent literature on signal

processing.

The use of the wavelets in signal processing is widespread, especially for the
restoration, compression, and denoising of images (see, e.g., Mallat 1999). Parameter
estimation using wavelets has been considered but usually for the purpose of estimat-
ing noise parameters (Wornell 1996). An application of wavelets to the problem of

linear regression with correlated noise was given by Fadili & Bullmore (2002). What is
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new in this work is the extension to an arbitary nonlinear model, and the application
to transit light curves.

This paper is organized as follows. In § 3.2, we review the problem of estimating
model parameters from data corrupted by noise, and we review some relevant noise
models. In § 3.3 we present the wavelet method and those aspects of wavelet theory
that are needed to understand the method. In § 3.4, we test the method using
simulated transit light curves, and compare the results to those obtained using the
methods mentioned previously. In § 3.5 we summarize the method and the results of

our tests, and suggest some possible applications and extensions of this work.

3.2 Parameter estimation with “colorful” noise

Consider an experiment in which samples of an observable y; are recorded at a se-
quence of times {¢; : 4 = 1,..., N}. In the context of a transit light curve, ¥; is the
relative brightness of the host star. We assume that the times ¢; are known with
negligible error. We further assume that in the absence of noise, the samples y; would

be given by a deterministic function,

y(ts) = fltipy,....px) = f(t;P), (no noise) (3.1)

where = {p1,...,pk} is a set of K parameters that specify the function f. For an
idealized transit light curve, those parameters may be the fractional loss of light 4,
the total duration 7', and ingress or egress duration 7, and the midtransit time ¢.,
in the notation of Carter et al. (2008). More realistic functions have been given by
Mandel & Agol (2002) and Giménez (2007).

We further suppose that a stochastic noise process €(¢) has been added to the

data, giving

y(t:) = f(ti;; p) + €(t;). (with noise) (3.2)

As a stochastic function, €= {e(t1),...€(tn)} is characterized by its joint distribution
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function D(€; ¢), which in turn depends on some parameters ¢ and possibly also the
times of observation. The goal of parameter estimation is to use the data y(t;) to
calculate credible intervals for the parameters p, often reported as best estimates py,
and error bars 6, with some quantified degree of confidence. The estimate of p and
the associated errors depend crucially on how one models the noise and how well one
can estimate the relevant noise parameters ¢.

In some cases one expects and observes the noise to be uncorrelated. For example,
the dominant noise source may be shot noise, in which case the noise process is an
uncorrelated Poisson process that in the limit of large numbers of counts is well-

approximated by an uncorrelated Gaussian process,

p(ed = Meio) = [T o (). 53)

in which case there is only one error parameter, o, specifying the width of the distri-
bution.

If the noise is correlated then it is characterized by a joint probability distribution
that is generally a function of all the times of observation. We assume that the
function is a multivariate Gaussian function, in which case the noise process is entirely

characterized by the covariance matrix

B(ti, t5) = {e(ta)e(t;))- (3.4)

Here, the quantity (€} is the mean of the stochastic function € over an infinite number
of independent realizations. We further assume that the covariance depends only on
the difference in time between two samples, and not on the absolute time of either
sample. In this case, the noise source is said to be stationary and is described entirely

by its autocovariance R(7) (Bracewell 1965):
R(7) = (e(t)e(t + 7)). (3.5)

The parameter estimation problem is often cast in terms of finding the set of pa-
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rameters Py that maximize a likelihood function. For the case of Gaussian uncorrelated

noise the likelihood function is

Moo r?
L = H — exp (—2(;2), (3.6)

where 7; is the residual defined as y; — f(¢;; P), and & is an estimate of the single noise

parameter 0. Maximizing the likelihood L is equivalent to minimizing the x? statistic

N

=) (%)2 (3.7)

i

In transit photometry, the estimator & of the noise parameter o is usually not taken to
be the calculated noise based on expected sources such as shot noise. This is because
the actual amplitude of the noise is often greater than the calculated value due to
noise sources that are unknown or at least ill-quantified. Instead, & is often taken to
be the standard deviation of the data obtained when the transit was not occurring,
or the value for which x* = Nyo¢ for the best-fitting (minimum-x?) model. These
estimates work well when the noise process is Gaussian, stationary, and uncorrelated.

For the case of correlated noise, Eqn. (3.7) is replaced by (Gould 2003)

X2 = eri(i)_l)iﬂj’ (38)

i=1 j=1

The case of uncorrelated noise corresponds to ¥;; = 6%;;.

It is at this point where various methods for modeling correlated noise begin
to diverge. One approach is to estimate 3 from the sample autocovariance R(7)
of the time series, just as ¢ can be estimated from the standard deviation of the
residuals in the case of uncorrelated noise. However, the calculation of x? has a worst-
case time-complexity of O(N?) and iterative parameter estimation techniques can be

prohibitively slow. One might ameliorate the problem by truncating the covariance
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matrix at some maximum lag, i.e., by considering the truncated x? statistic

X2(L)=Z Z Ti(i)—l)i(i+l)7'i+l, (3.9)

i=1 =1L
1<i+l<N

but in the presence of long-range correlations one needs to retain many lags to obtain
accurate parameter estimates. (In § 3.4.3, we will give an example where 50-75 lags
were needed.) Alternatively, one may model the autocorrelation function and there-
fore the covariance matrix using an autoregressive moving-average (ARMA) model
with enough terms to give a good fit to the data (see, e.g., Koen & Lombard 1993).
Again, though, in the presence of long-range correlations the model covariance matrix

will be non-sparse and computationally burdensome.

Pont et al. (2006) presented a useful simplification in the context of a transit
search, when data are obtained on many different nights. In such cases it is reasonable
to approximate the covariance matrix as block-diagonal, with different blocks corre-
sponding to different nights. Pont et al. (2006) also gave a useful approximation for
the covariance structure within each block, based on the variance in boxcar-averaged
versions of the signal. Ultimately their procedure results in an equation resembling
Eqn. (3.7) for each block, but where 6 is the quadrature sum of o, (the “white noise”)
and o, (the “red noise,” estimated from the boxcar-averaged variance). In this paper,
all our examples involve a single time series with stationary noise properties, and the
net effect of the Pont et al. (2006) method is to enlarge the parameter errors by a

factor
o\ 2
B=4/1+ (—’”—) (3.10)

relative to the case of purely white noise (0, = 0). We will refer to this method as

the “time-averaging” method.

Another approach is to use Eqn. (3.7) without any modifications, but to perform
the parameter optimization on a large collection of simulated data sets that are in-
tended to have the same covariance structure as the actual data set. This is the basis

of the “residual permutation” method that is also discussed further in § 3.4.4. As
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mentioned above, this method is a variant of a bootstrap analysis that takes into
account time-correlated noise. More details on both the time-averaging and residual-

permutation methods are given in § 3.4.4.

Our approach in this paper was motivated by the desire to allow for the possibility
of long-range correlations, and yet to avoid the slowness of any method based on
Eqn. (3.9) or other time-domain methods. Rather than characterizing the noise in
the time domain, we characterize it by its Power Spectral Density (PSD) S(f) at
frequency f, defined as the square of the Fourier transform of €(t), or equivalently,
the Fourier transform of the autocovariance R(7). We restrict our discussion to noise

sources with a PSD

S(f) =+ (3.11)

for some A > 0 and spectral index . For the special case of uncorrelated noise,
v =0 and S(f) is independent of f. This type of noise has equal power density at all
frequencies, which is why it is called “white noise,” in an analogy with visible light.
As 7 is increased, there is an increasing preponderance of low-frequency power over

high-frequency power, leading to longer-range correlations in time.

Noise with a power spectrum 1/f7 is ubiquitous in nature and in experimental
science, including astrophysics (see, e.g., Press 1978). Some examples of 1/f7 noise
are shown in Fig. 3-1 for a selection of spectral indices. In an extension of the color
analogy, v = 1 noise is sometimes referred to as “pink noise” and v = 2 noise as “red
noise.” The latter is also known as a Brownian process, although not because of the
color brown but instead because of the Scottish botanist Robert Brown. However,
as we have already noted, the term “red noise” is often used to refer to any type of

low-frequency correlated noise.

Here we do not attempt to explain how 1/f7 noise arises in a given situation.
Instead we assume that the experimenter has done his or her best to understand and
to reduce all sources of noise as far as possible, but despite these efforts there remains

a component of 1/f7 noise. In transit photometry these correlations often take the
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Figure 3-1 Examples of 1/f7 noise. Uncorrelated (white) noise corresponds to v = 0.
“Pink” noise corresponds to v = 1. “Red” noise or Brownian motion corresponds to
4 = 2. These time series were generated using the wavelet-based method described
in § 3.4.

form of “bumps,” “wiggles,” and “ramps” in a light curve and are often attributed
to differential atmospheric extinction, instrumental artifacts such as imperfect flat-
fielding, and stellar granulation or other astrophysical effects. The method presented
in this paper is essentially a model of the likelihood function that retains the essential
information in the covariance matrix without being prohibitively expensive to com-
pute and store. It is based on a wavelet-based description, the subject of the next

section.

3.3 Wavelets and 1/f” noise

One may regard a time series with N points as a vector in an N-dimensional space
that is spanned by N orthonormal unit vectors, one for each time index (the “time
basis”). The computational difficulty with correlated noise is that the sample covari-

ance matrix ¥ is not diagonal in the time basis, nor is it necessarily close to being
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diagonal in realistic cases. This motivates a search for some alternative basis span-
ning the data space for which the covariance matrix is diagonal or nearly diagonal.
For example, if the noise took the form of additive quasiperiodic signals, it would be
logical to work in a Fourier basis instead of the time basis.

The mathematical result that underpins our analysis algorithm is that in the
presence of 1/ f7 noise, the covariance matrix is nearly diagonal in a suitable wavelet
basis. Before giving the details of the algorithm we will briefly review the wavelet
transform. Our discussion is drawn primarily from Wornell (1996), Teolis (1998),
Daubechies (1988), and Mallat (1999). Practical details and an sample implementa-
tion of the wavelet transform are given by Press et al. (2007).

A wavelet is a function that is analogous to the sine and cosine functions of the
Fourier transform. Some properties that wavelets share with sines and cosines are
that they are localized in frequency space, and they come in families that are re-
lated by translations and dilations. Wavelets are unlike sine and cosine functions in
that wavelets are strongly localized in time. A wavelet basis is derived from a single
“mother wavelet” 9(t), which may have a variety of functional forms and analytic
properties. The individual basis functions are formed through translations and dila-
tions of ¥(t). The choice of mother wavelet depends on the specific application. We

restrict our focus to dyadic orthogonal wavelet bases with basis functions
Y (t) = ¢(27t —n) (3.12)

for all integers m and n, and we further require ¢(t) to have one or more vanishing
moments.? In this case, the pair of equations analogous to the Fourier series and its

inversion 1is

ety = DD ey (3.13)

m=—00 Nn=—00

€ = /oo e(t)Yr(t)dt (3.14)

—00

2In particular it is required that the mother wavelet ¥(t) has zero mean. This is a necessary and
sufficient condition to ensure the invertibility of the wavelet transform.
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where € is referred to as the wavelet coefficient of €(t) at resolution m and translation

n.

3.3.1 The wavelet transform as a multiresolution analysis

We will see shortly that some extra terms are required in Eqn. (3.14) for real signals
with some minimum and maximum resolution. To explain those terms it is useful
to describe the wavelet transform as a multiresolution analysis, in which we consider
successively higher-resolution approximations of a signal. An approximation with a
resolution of 2™ samples per unit time is a member of a resolution space Vy,. Following

Wornell (1996) we impose the following conditions:
1. if f(t) € V;, then for some integer n, f(t —27™n) € Vi,
2. if f(t) € V,,, then f(2t) € Vipy1.

The first condition requires that V;, contain all translations (at the resolution scale) of
any of its members, and the second condition ensures that the sequence of resolutions
is nested: V,, is a subset of the next finer resolution Vi, ;. In this way, if €n(t) € Vi, is
an approximation to the signal €(t), then the next finer approxmation €,41(t) € Viny1
contains all the information encoded in €,,(t) plus some additional detail d,,,(t) defined

as

A (t) = €ma1(t) — em(t). (3.15)

We may therefore build an approximation at resolution M by starting from some

coarser resolution k£ and adding successive detail functions:

emt) = &(t)+ Y dn(t) (3.16)
m=k

The detail functions d,,(t) belong to a function space Wp,(t), the orthogonal comple-
ment of the resolution V,,.
With these conditions and definitions, the orthogonal basis functions of Wy, are the

wavelet functions 9™ (¢), obtained by translating and dilating some mother wavelet

91



¥(t). The orthogonal basis functions of V;, are denoted ¢7*(t), obtained by translating
and dilating a so-called “father” wavelet ¢(¢). Thus, the mother wavelet spawns the
basis of the detail spaces, and the father wavelet spawns the basis of the resolution
spaces. They have complementary characteristics, with the mother acting as a high-
pass filter and the father acting as a low-pass filter.?

In Eqn. (3.16), the approximation €(t) is a member of Vj, which is spanned by
the functions ¢ (), and d,,(t) is a member of W,,,, which is spanned by the functions

Yrt(t). Thus we may rewrite Eqn. (3.16) as

o0

em(t) = Y @O+ Y emyn(). (3.17)

n=—o0 m=k n=—o0

The wavelet coefficients €' and the scaling coefficients €™ are given by

en - /_ " ety )t (3.18)
o /_ " tom byt (3.19)

Eqn. (3.17) reduces to the wavelet-only equation (3.13) for the case of a continuously
sampled signal €(¢), when we have access to all resolutions m from —oo to 0o.?
There are many suitable choices for ¢ and v, differing in the tradeoff that must

be made between smoothness and localization. The simplest choice is due to Haar

(1910):

o(t) = 1 ifo<t<Ll ‘ (3.20)

0 otherwise

1 if —3<t<0
() = § -1 ifo<t<! (3.21)
0 otherwise

3More precisely, the wavelet and scaling functions considered here are “quadrature mirror filters”
(Mallat 1999).

4The signal must also be bounded in order for the approximation to the signal at infinitely coarse
resolution to vanish, i.e., limg_,_ €x(t) = 0.
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The left panel of Fig. 3-2 shows several elements of the approximation and detail
bases for a Haar multiresolution analysis. The left panels of Fig. 3-3 illustrate a Haar
multiresolution analysis for an arbitrarily chosen signal €(¢), by plotting both the
approximations €,(t) and details d,,(t) at several resolutions m. The Haar analysis
is shown for pedagogic purposes only. In practice we found it advantageous to use
the more complicated fourth-order Daubechies wavelet basis, described in the next
section, for which the elements and the multiresolution analysis are illustrated in the

right panels of Fig. 3-2-3-3.

3.3.2 The Discrete Wavelet Transform

Real signals are limited in resolution, leading to finite M and k in Eqn. (3.17). They
are also limited in time, allowing only a finite number of translations N,, at a given
resolution m. Starting from Eqn. (3.17), we truncate the sum over n and reindex the

resolution sum such that the coarsest resolution is & = 1, giving

() = SEsn+3S emr) (3.22)

where we have taken ¢t = 0 to be the start of the signal. Since there is no information

on timescales smaller than 27, we need only consider € (¢;) at a finite set of times

tii
Ny M Nn
et:) = D adnlt)+ > D erpr(t). (3.23)
n=1 m=2 n=1

Eqn. (3.23) is the inverse of the Discrete Wavelet Transform (DWT). Unlike the
continuous transform of Eqn. (3.13), the DWT must include the coarsest level ap-
proximation (the first term in the preceding equation) in order to preserve all the
information in €(¢;). For the Haar wavelet, the coarsest approximation is the mean
value. For data sets with N = ny2™ uniformly spaced samples in time, we will have
access to a maximal scale M, as in Eqn. (3.23), with N,, = no2™ L.

A crucial point is the availability of the Fast Wavelet Transform (FWT) to perform
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the DWT (Mallat 1989). The FWT is a pyramidal algorithm operating on data sets
of size N = no2M returning no(2M — 1) wavelet coefficients and ng scaling coefficients
for some ng > 0, M > 0. The FWT is a computationally efficient algorithm that is
easily implemented (Press et al. 2007) and has O(N) time-complexity (Teolis 1998).

Daubechies (1988) generalized the Haar wavelet into a larger family of wavelets,
categorized according to the number of vanishing moments of the mother wavelet.
The Haar wavelet has a single vanishing moment and is the first member of the
family. In this work we used the most compact member (in time and frequency),
Y% =4D and ¢ =4.A, which is well suited to the analysis of 1/f7 noise for 0 < v < 4
(Wornell 1996). We plot ;D and 4A™ in the time-domain for several n, m in Fig. 3-
2, illustrating the rather unusual functional form of 4/D. The right panel of Fig. 3-3
demonstrates a multiresolution analysis using this basis. Press et al. (2007) provide

code to implement the wavelet transform in this basis.

3.3.3 Wavelet transforms and 1/f” noise

As alluded in § 3.3, the wavelet transform acts as a nearly diagonalizing operator for
the covariance matrix in the presence of 1/ f” noise. The wavelet coefficients €™ of such
a noise process are zero-mean, nearly uncorrelated random variables. Specifically, the
covariance between scales m, m’ and translations n, n’ is (Wornell 1996, p. 65)
(ememy = (02277™) oG- (3.24)

The wavelet basis is also convenient for the case in which the noise is modeled as

the sum of an uncorrelated component and a correlated component,
ft) = eolt) + (), (3.25)

where €y(t) is a Gaussian white noise process (y = 0) with a single noise parameter
Ow, and €,(t) has S(f) = A/f”. In the context of transit photometry, white noise

might arise from photon-counting statistics (and in cases where the detector is well-
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calibrated, o,, is a known constant), while the v # 0 term represents the “rumble”
on many time scales due to instrumental, atmospheric, or astrophysical sources. For

the noise process of Eqn. (3.25) the covariance between wavelet coefficients is
(€re™) =~ (0227 + 02) Sy Oy (3.26)
and the covariance betwen the scaling coefficients €' is
(Erey) = a227mg(v) +ay, (3.27)

where g(7) is a constant of order unity; for the purposes of this work g(1) = (2In2)~! =
0.72 (Fadili & Bullmore 2002). Eqns. (3.26) and (3.27) are the key mathematical re-
sults that form the foundation of our algorithm. For proofs and further details, see
Wornell (1996).

It should be noted that the correlations between the wavelet and scaling coefhi-
cients are small but not exactly zero. The decay rate of the correlations with the
resolution index depends on the choice of wavelet basis and on the spectral index +.
By picking a wavelet basis with a higher number of vanishing moments, we hasten
the decay of correlations. This is why we chose the Daubechies 4th-order basis in-
stead of the Haar basis. In the numerical experiments decribed in § 4, we found the
covariances to be negligible for the purposes of parameter estimation. In addition,
the compactness of the Daubechies 4th-order basis reduces artifacts arising from the

assumption of a periodic signal that is implicit in the FWT.

3.3.4 The whitening filter

Given an observation of noise €(t) that is modeled as in Eqn. (3.25), we may estimate
the v # 0 component by rescaling the wavelet and scaling coefficients and filtering

out the white component:

1) fj( o2 2N asio+ (3.29)

— 02277g(y) + o2
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Figure 3-2 Examples of discrete wavelet and scaling functions, for N = 2048.

Left.—Haar wavelets and the corresponding father wavelets, also known as 2nd-order
Daubechies orthonormal wavelets or 5D and 24™. Right.—4th-order Daubechies
orthonormal wavelets, or ;D" and 4A7".
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Figure 3-3 Illustration of a multiresolution analysis, for the function e(t) =
sin[47(t/1024)%) (dashed line). Plotted are the approximations €,(t) to the func-
tion at successive resolutions, along with the detail functions d,,(t). Left.—Using the
Haar wavelet basis. Right.—Using the 4th-order Daubechies wavelet basis.
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We may then proceed to subtract the estimate of the correlated component from the
observed noise, €(t) = €(t) — €,(t) (Wornell 1996, p. 76). In this way the FWT can

be used to “whiten” the noise.

3.3.5 The wavelet-based likelihood

Armed with the preceding theory, we rewrite the likelihood function of Eqn. (3.6) in

the wavelet domain. First we transform the residuals r; = y; — f(¢; p), giving

= Yo — fa'(P) = €5 €O (3-30)

o= Oh— @) =8, +&, (3.31)

where y™ and f*(p) are the discrete wavelet coefficients of the data and the model.
Likewise, 7} and f}(p) are the ng scaling coefficients of the data and the model. Given
the diagonal covariance matrix shown in Eqns. (3.26) and (3.27), the likelihood L is
a product of Gaussian functions at each scale m and translation n:

T (rn)?
o= (I e | 521}

3 nei 271'0

(73’
{H\/z_ﬁexp[ 203 }} (3.32)

where

oy, = 027" 402 (3.33)

a5 = 0;277g(7) + oy, (3.34)
are the variances of the wavelet and scaling coefficients respectively. For a data set

with N points, calculating the likelihood function of Eqn. (3.32) requires multiplying
N Gaussian functions. The additional step of computing the FWT of the residuals
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prior to computing £ adds O(N) operations. Thus, the entire calculation has a
time-complexity O(N).

For this calculation we must have estimators of the three noise parameters v, o,
and o,. These may be estimated separately from the model parameters 7, or simul-
taneously with the model parameters. For example, in transit photometry, the data
obtained outside of the transit may be used to estimate the noise parameters, which
are then used in Eqn. (3.32) to estimate the model parameters. Or, in a single step
we could maximize Eqn. (3.32) with respect to all of v, o,, 0, and p. Fitting for
both noise and transit parameters simultaneously is potentially problematic, because
some of the correlated noise may be “absorbed” into the choices of the transit param-
eters, i.e., the errors in the noise parameters and transit parameters are themselves
correlated. This may cause the noise level and the parameter uncertainties to be
underestimated. Unfortunately, there are many instances when one does not have
enough out-of-transit data for the strict separation of transit and noise parameters
to be feasible.

In practice the optimization can be accomplished with an iterative routine [such as
AMOEBA, Powell’s method, or a conjugate-gradient method; see Press et al. (2007)].
Confidence intervals can then be defined by the contours of constant likelihood. Al-
ternatively one can use a Monte Carlo Markov Chain [MCMC; see, e.g., Gregory
(2005)], in which case the jump-transition likelihood would be given by Eqn. (3.32).
The advantages of the MCMC method have led to its adoption by many investiga-
tors (see, e.g., Holman et al. 2006, Burke et al. 2007, Collier Cameron et al. 2007).
For that method, computational speed is often a limiting factor, as a typical MCMC

analysis involves several million calculations of the likelihood function.

3.3.6 Some practical considerations

Some aspects of real data do not fit perfectly into the requirements of the DWT. The
time sampling of the data should be approximately uniform, so that the resolution
scales of the multiresolution analysis accurately reflect physical timescales. This is

usually the case for time-series photometric data. Gaps in a time series can be fixed
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by applying the DWT to each uninterrupted data segment, or by filling in the missing
elements of the residual series with zeros.

The FWT expects the number of data points to be an integral multiple of some in-
tegral power of two. When this is not the case, the time series may be truncated to the
nearest such boundary; or it may be extended using a periodic boundary condition,
mirror reflection, or zero-padding. In the numerical experiments described below, we
found that zero-padding has negligible effects on the calculation of likelihood ratios
and parameter estimation.

The FWT generally assumes a periodic boundary condition for simplicity of com-
putation. A side effect of this simplication is that information at the beginning and
end of a time series are artificially associated in the wavelet transform. This is one
reason why we chose the 4th-order Daubechies-class wavelet basis, which is well lo-
calized in time, and does not significantly couple the beginning and the end of the

time series except on the coarsest scales.

3.4 Numerical experiments with transit light curves

We performed many numerical experiments to illustrate and test the wavelet method.
These experiments involved estimating the parameters of simulated transit light
curves. We also compared the wavelet analysis to a “white” analysis, by which we
mean a method that assumes the errors to be uncorrelated, and to two other analysis
methods drawn from the literature. Because we used simulated transit light curves
with known noise and transit parameters, the “truth” was known precisely, allowing

both the absolute and relative merits of the methods to be evaluated.

3.4.1 Estimating the midtransit time: Known noise param-

eters

In this section we consider the case in which the noise parameters v, o,, and o,, are

known with negligible error. We have in mind a situation in which a long series of
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out-of-transit data are available, with stationary noise properties.

We generated transit light curves with known transit parameters p, contaminated
by an additive combination of a white and a correlated (1/f7) noise source. Then we
used an MCMC method to estimate the transit parameters and their 68.3% confidence
limits. (The technique for generating noise and the MCMC method are described in
detail below.) For each realization of a simulated light curve, we estimated transit
parameters using the likelihood defined either by Eqn. (3.6) for the white analysis, or
Eqn. (3.32) for the wavelet analysis.

For a given parameter pi, the estimator p, was taken to be the median of the
values in the Markov chain and 6,, was taken to be the standard deviation of those

values. To assess the results, we considered the “number-of-sigma” statistic
)

N = (Pr — pr) /6y, (3.35)

In words, N is the number of standard deviations separating the parameter estimate
P from the true value p;. If the error in py is Gaussian, then a perfect analysis
method should yield results for N with an expectation value of 0 and variance of 1. If
we find that the variance of N is greater than one, then we have underestimated the
error in Pr and we may attribute too much significance to the result. On the other
hand, if the variance of A is smaller than one, then we have overestimated o,, and
we may miss a significant discovery. If we find that the mean of N is nonzero then

the method is biased.

For now, we consider only the single parameter t., the time of midtransit. The
. parameter is convenient for this analysis as it is nearly decoupled from the other
transit parameters (Carter et al. 2008). Furthermore, as mentioned in the introduc-
tion, the measurement of the midtransit time cannot be improved by observing other
transit events, and variations in the transit interval are possible signs of additional

gravitating bodies in a planetary system.

The noise was synthesized as follows. First, we generated a sequence of N = 1024

independent random variables obeying the variance conditions from Eqns. (3.26) and
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(3.27) for 1023 wavelet coefficients over 9 scales and a single scaling coefficient at the
coarsest resolution scale. We then performed the inverse FWT of this sequence to
generate our noise signal. In this way, we could select exact values for v, 0., and oy,
We also needed to find the single parameter o for the white-noise analysis; it is not
simply related to the parameters v, o,, and o,,. In practice, we found o by calculating
the median sample variance among 10* unique realizations of a noise source with fixed

parameters 7, o, and oy,.

For the transit model, we used the analytic formulas of Mandel & Agol (2002), with
a planet-to-star ratio of R,/R, = 0.15, a normalized orbital distance of a/R, = 10,
and an orbital inclination of 7 = 90°, as appropriate for a gas giant planet in a close-
in orbit around a K star. These correspond to a fractional loss of light § = 0.0225,
duration T = 1.68 hr, and partial duration 7 = 0.152 hr. We did not include the
effect of limb darkening, as it would increase the computation time and has little
influence on the determination of ¢, (Carter et al. 2009). Each simulated light curve
spanned 3 hr centered on the midtransit time, with a time sampling of 11 s, giving

1024 uniformly spaced samples. A noise-free light curve is shown in Fig. 3-4.

For the noise model, we chose ¢, = 1.35 x 1072 and v = 1, and tried different
choices for o,. We denote by a the ratio of the rms values of the correlated noise
component and the white noise component.> The example in Fig. 3-4 has o = 1/3.
As «a is increased from zero, the correlated component becomes more important, as is
evident in the simulated data plotted in Fig. 3-5. Our choice of o, corresponds to a
precision of 5.8 x 10™* per minute-equivalent sample, and was inspired by the recent
work by Johnson et al. (2009) and Winn et al. (2009), which achieved precisions
of 5.4 x 107* and 4.0 x 10~* per minute-equivalent sample, respectively. Based on
our survey of the literature and our experience with the Transit Light Curve project
(Holman et al. 2006, Winn et al. 2007), we submit that all of the examples shown
in Fig. 3-5 are “realistic” in the sense that the bumps, wiggles, and ramps resemble

features in actual light curves, depending on the instrument, observing site, weather

5We note that although o, is the rms of the white noise component, o, is generally not the rms
of the correlated component. The notation is unfortunate, but follows that of Wornell (1996).
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Figure 3-4 Constructing a simulated transit light curve with correlated noise. The
total noise is the sum of uncorrelated Gaussian noise with standard deviation o,
(upper left panel) and correlated noise with a power spectral density S(f) o< 1/f
and an rms equal to o,,/3 (upper right panel). The total noise (middle left panel)
is added to an idealized transit model (middle right panel) to produce the simulated
data (bottom panel).
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conditions, and target star.

For a given choice of a, we made 10,000 realizations of the simulated transit light
curve with 1/f noise. We then constructed two Monte Carlo Markov Chains for t,
starting at the true value of {. = 0. One chain was for the white analysis, with a
jump-transition likelihood given by Eqn. (3.6). The other chain was for the wavelet
analysis, using Eqn. (3.32) instead. Both chains used the Metropolis-Hastings jump
condition, and employed perturbation sizes such that ~40% of jumps were accepted.
Initial numerical experiments showed that the autocorrelation of a given Markov
chain for ¢, is sharply peaked at zero lag, with the autocorrelation dropping below
0.2 at lag-one. This ensured good convergence with chain lengths of 500 (Tegmark et
al. 2004). Chain histograms were also inspected visually to verify that the distribution
was smooth. We recorded the median ¢, and standard deviation 0y, for each chain
and constructed the statistic A for each separate analysis (white or wavelet). Finally,

we found the median and standard deviation of A over all 10,000 noise realizations.

Fig. 3-6 shows the resulting distributions of N, for the particular case o = 1/3.
Table 3.1 gives a collection of results for the choices @ = 0, 1/3, 2/3, and 1. The
mean of N is zero for both the white and wavelet analyses: neither method is biased.
This is expected, because all noise sources were described by zero-mean Gaussian
distributions. However, the widths of the distributions of N show that the white
analysis underestimates the error in t.. For a transit light curve constructed with
equal parts white and 1/f noise (o = 1), the white analysis gave an estimate of ¢,
that differs from the true value by more than 1 o nearly 80% of the time. The factor
by which the white analysis underestimates the error in ¢, appears to increase linearly
with a. In contrast, for all values of «, the wavelet analysis maintains a unit variance

in NV, as desired.

The success of the wavelet method is partially attributed to the larger (and more
appropriate) error intervals that it returns for £,. It is also partly attributable to
an improvement in the accuracy of £, itself: the wavelet method tends to produce .
values that are closer to the true ¢,. This is shown in the final column in Table (3.1),

where we report the percentage of cases in which the analysis method (white or
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wavelet) produces an estimate of ¢, that is closer to the truth. For o = 1 the wavelet

analysis gives more accurate results 66% of the time.
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Figure 3-6 Histograms of the number-of-sigma statistic A for the midtransit time ..
Each distribution shows the probability of estimating a value for ¢, that differs by
No from the true value. The simulated data were created by adding an idealized
transit model to a noise source that is the sum of uncorrelated noise and 1/f noise
with equal variances (a = 1; see the text).

3.4.2 Estimating the midtransit time: Unknown noise pa-

rameters

In this section we consider the case in which the noise parameters are not known in
advance. Instead the noise parameters must be estimated based on the data. We
did this by including the noise parameters as adjustable parameters in the Markov
chains. In principle this could be done for all three noise parameters v, oy, and oy,
but for most of the experiments presented here we restricted the problem to the case
v = 1. This may be a reasonable simplification, given the preponderance of natural
noise sources with v = 1 (Press 1978). Some experiments involving noise with vy # 1

are described at the end of this section.
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Table 3.1. Estimates of mid-transit time, ., from data with known noise properties

Method «a (6:) [sec] (N)  on prob(N > 1) prob(best)?

White 0 4.1 +0.004 0.95 29% 50%
1/3 4.3 —0.005 1.93 61% 39%

2/3 5.0 +0.005 3.04 75% 35%

1 5.9 —-0.036 3.82 79% 34%

Wavelet 0 4.0 +0.005 0.95 29% 50%
1/3 7.2 —-0.004 0.93 28% 61%

2/3 11.5 -0.004 0.94 28% 65%

1 16.0 —-0.001 0.95 29% 66%

2The probability that the analysis method (white or wavelet) returns
an estimate of ¢, that is closer to the true value than the other method.

We also synthesized the noise with a non-wavelet technique, to avoid “stacking
the deck” in favor of the wavelet method. We generated the noise in the frequency
domain, as follows. We specified the amplitudes of the Fourier coefficients using the
assumed functional form of the power spectral density [S(f) o 1/f], and drew the
phases from a uniform distribution between —7 and #. The correlated noise in the
time domain was found by performing an inverse Fast Fourier Transform. We rescaled
the noise such that the rms was a times the specified o,,. The normally-distributed
white noise was then added to the correlated noise to create the total noise. This in

turn was added to the idealized transit model.

For each choice of a, we made 10,000 simulated transit light curves and analyzed
them with the MCMC method described previously. For the white analysis, the mid-
transit time ¢. and the single noise parameter o were estimated using the likelihood
defined via Eqn. (3.6). For the wavelet analysis we estimated ¢, and the two noise

parameters o, and o, using the likelihood defined in Eqn. (3.32).

Table 3.3 gives the resulting statistics from this experiment, in the same form
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Table 3.2. Effect of time sampling on the white analysis

N2 Cadence [sec] on

256 42.2 1.72
512 21.1 2.04
1024 10.5 2.69
2048 9.27 3.49
4096 2.63 4.39

2The number of samples in
a 3 hr interval.

as were given in Table 3.1 for the case of known noise parameters. (This table also
includes some results from § 3.4.4, which examines two other methods for coping with
correlated noise.) Again we find that the wavelet method produces a distribution of
N with unit variance, regardless of «; and again, we find that the white analysis
underestimates the error in .. In this case the degree of error underestimation is
less severe, a consequence of the additional freedom in the noise model to estimate o
from the data. The wavelet method also gives more accurate estimates of ¢, than the
white method, although the contrast between the two methods is smaller than it was
with for the case of known noise parameters.

Our numerical results must be understood to be illustrative, and not universal.
They are specific to our choices for the noise parameters and transit parameters. Via
further numerical experiments, we found that the width of A/ in the white analysis
is independent of oy, but it does depend on the time sampling. In particular, the
width grows larger as the time sampling becomes finer (see Table 3.2). This can
be understood as a consequence of the long-range correlations. The white analysis
assumes that the increased number of data points will lead to enhanced precision,

whereas in reality, the correlations negate the benefit of finer time sampling.

Table 3.4 gives the results of additional experiments with v # 1. In those cases we

created simulated noise with +v # 1 but in the course of the analysis we assumed vy = 1.
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Table 3.3. Estimates of ¢, from data with unknown noise properties

Method a  (6y,) [sec] (N on  prob(N > 1) prob(better)?
White 0 4.0 —0.011 0.97 31% —
1/3 4.2 +0.010 1.70 57% —
2/3 4.9 +0.012 2.69 73% —
1 5.8 +0.023 3.28 78% -
Wavelet 0 4.5 —0.009 0.90 26% 50%
1/3 6.9 —0.003 1.03 33% 56%
2/3 11.2 —0.005 1.07 35% 57%
1 15.7 —0.007 1.09 36% 57%
Time-averaging 0 4.4 —0.006 0.88 26% 50%
1/3 6.8 +0.009 1.15 36% 50%
2/3 11.6 —-0.012 1.24 40% 50%
1 17.6 +0.007 1.21 38% 50%
Residual-permutation 0 3.5 —0.012 1.16 37% 50%
1/3 6.6 +0.013 1.24 37% 50%
2/3 11.8 —0.014 1.28 38% 49%
1 17.3 +0.008 1.30 38% 48%

2The probability that the analysis method returns an estimate of ¢, that is closer to
the true value than the white analysis.

The correlated noise fraction was set to & = 1/2 for these tests. The results show
that even when « is falsely assumed to be unity, the wavelet analysis still produces

better estimates of ¢, and more reliable error bars than the white analysis.

3.4.3 Runtime analysis of the time-domain method

Having established the superiority of the wavelet method over the white method, we
wish to show that the wavelet method is also preferable to the more straightforward
approach of computing the likelihood function in the time domain with a non-diagonal

covariance matrix. The likelihood in this case is given by Eqn. (3.8).
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Table 3.4. Estimates of ¢, from data with unknown noise properties

Method ~* (6.) [sec] (N)  on prob(N >1) prob(best)®

White 0.5 4.5 —0.025 1.34 47% 50%
1.5 4.6 +0.020 3.10 7% 32%
Wavelet 0.5 6.7 —-0.021 0.97 30% 50%
1.5 6.9 +0.002 1.17 39% 68%

2The spectral exponent of the Power Spectral Density, S(f) oc 1/f7.

bThe probability that the analysis method (white or wavelet) returns
an estimate of ¢, that is closer to the true value than the other method.

The time-domain calculation and the use of the covariance matrix raised two
questions. First, how well can we estimate the autocovariance R(7) from a single
time series? Second, how much content of the resulting covariance matrix needs
to be retained in the likelihood calculation for reliable parameter estimation? The
answer to the first question depends on whether we wish to utilize the sample au-
tocorrelation as the estimator of R(7) or instead use a parametric model (such as
an ARMA model) for the autocorrelation. In either case, our ability to estimate the
autocorrelation improves with number of data samples contributing to its calcula-
tion. The second question is important because retaining the full covariance matrix
would cause the computation time to scale as O(N?) and in many cases the analysis
would be prohibitively slow. The second question may be reframed as: what is the
minimum number of lags L that needs to be considered in computing the truncated
x? of Eqn. (3.9), in order to give unit variance in the number-of-sigma statistic for
each model parameter? The time-complexity of the truncated likelihood calculation
is O(NL). If L <5 then the time-domain method and the wavelet method may have
comparable computational time-complexity, while for larger L the wavelet method

would offer significant advantage.
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We addressed these questions by repeating the experiments of the previous sections
using a likelihood function based on the truncated x?2 statistic. We assumed that the
parameters of the noise model were known, as in § 3.4.1. The noise was synthesized
in the wavelet domain, with v = 1, o,, = 0.00135, and « set equal to 1/3 or 2/3. The
parameters of the transit model and the time series were the same as in § 3.4.1. We
calculated the “exact” autocovariance function R(!) at integer lag [ for a given « by
averaging sample autocovariances over 50,000 noise realizations. Fig. 3-7 plots the
autocorrelation [R(l)/R(0)] as a function of lag for o = 1/3, 2/3. We constructed
the stationary covariance %;; = R(|i — j|) and computed its inverse (¥71);; for use in
Eqn. (3.9).

Then we used the MCMC method to find estimates and errors for the time of
midtransit, and calculated the number-of-sigma statistic N as defined in Eqn. (3.35).
In particular, for each simulated transit light curve, we created a Markov chain of
1,000 links for ¢., using x*(L) in the jump-transition likelihood. We estimated ¢, and
oy,, and calculated . We did this for 5,000 realizations and determined oy, the
variance in N, across this sample. We repeated this process for different choices of

the maximum lag L. Fig. (3-8) shows the dependence of o upon the maximum lag
L.

The time-domain method works fine, in the sense that when enough non-diagonal
elements in the covariance matrix are retained, the parameter estimation is successful.
We find that oy approaches unity as L=® with 8 = 0.15, 0.25 for o = 1/3, 2/3,
respectively. However, to match the reliability of the wavelet method, a large number
of lags must be retained. To reach on = 1.05, we need L ~ 50 for a = 1/3 or
L ~ 75 for oo = 2/3. In our implementation, the calculation based on the truncated

covariance matrix [Eqn. (3.9)] took 30-40 times longer than the calculation based on
the wavelet likelihood [Eqn. (3.32)].

This order-of-magnitude penalty in runtime is bad enough, but the real situation
may be even worse, because one usually has access to a single noisy estimate of the
autocovariance matrix. Or, if one is using an ARMA model, the estimated parameters

of the model might be subject to considerable uncertainty as compared to the “exact”
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autocovariance employed in our numerical experiments. If it is desired to determine
the noise parameters simultaneously with the other model parameters, then there
is a further penalty associated with inverting the covariance matrix at each step of
the calculation for use in Eqn. (3.9), although it may be possible to circumvent that

particular problem by modeling the inverse-covariance matrix directly.
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Figure 3-7 Autocorrelation functions of correlated noise. The noise was computed as
the sum of white noise with o,, = 0.00135 and 1/f noise with an rms equal to aoy,
for o = 1/3 or 2/3.

3.4.4 Comparison with other methods

In this section we compare the results of the wavelet method to two methods for
coping with correlated noise that are drawn from the recent literature on transit
photometry. The first of these two methods is the “time averaging” method that was
propounded by Pont et al. (2006) and used in various forms by Bakos et al. (2006),
Gillon et al. (2006), Winn et al. (2007, 2008, 2009), Gibson et al. (2008), and others.
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Figure 3-8 Accuracy of the truncated time-domain likelihood in estimating midtransit
times. Plotted is the variance in the number-of-sigma statistic o for the midtransit
time t., as a function of the maximum lag in the truncated series. The estimates of
t. were found using the truncated likelihood given in Eqn. (3.9).

In one implementation, the basic idea is to calculate the sample variance of unbinned
residuals, 62, and also the sample variance of the time-averaged residuals, &2, where
every n points have been averaged (creating m time bins). In the absence of correlated
noise, we expect
2 = Ot <—71—> . (3.36)
" n \m-—1
In the presence of correlated noise, 62 differs from this expectation by a factor B,zl
The estimator B is then found by averaging Bn over a range An corresponding to
time scales that are judged to be most important. In the case of transit photometry,
the duration of ingress or egress is the most relevant time scale (corresponding to
averaging time scales on the order of tens of minutes, in our example light curve).
A white analysis is then performed, using the noise parameter ¢ = (30, instead of

o1. This causes the parameter errors 6, to increase by [ but does not change the
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parameter estimates P, themselves.®

A second method is the “residual permutation” method that has been used by
Jenkins et al. (2002), Moutou et al. (2004), Southworth (2008), Bean et al. (2008),
Winn et al. (2008), and others. This method is a variant of a bootstrap analysis,
in which the posterior probability distribution for the parameters is based on the
collection of results of minimizing x? (assuming white noise) for a large number of
synthetic data sets. In the traditional bootstrap analysis the synthetic data sets are
produced by scrambling the residuals and adding them to a model light curve, or
by drawing data points at random (with replacement) to make a simulated data set
with the same number of points as the actual data set. In the residual permutation
method, the synthetic data sets are built by performing a cyclic permutation of the
time indices of the residuals, and then adding them to the model light curve. In
this way, the synthetic data sets have the same bumps, wiggles, and ramps as the
actual data, but they are translated in time. The parameter errors are given by the
widths of the distributions in the parameters that are estimated from all the different
realizations of the synthetic data, and they are usually larger than the parameter
errors returned by a purely white analysis.

As before, we limited the scope of the comparison to the estimation of ¢, and its
uncertainty. We created 5,000 realizations of a noise source with v = 1 and a given
value of « (either 0, 1/3, 2/3, or 1). We used each of the two approximate methods
(time-averaging and residual-permutation) to calculate B and its uncertainty based
on each of the 5,000 noise realizations. Then we found the median and standard
deviation of 3/8 over all 5,000 realizations. Table (3.3) presents the results of this
experiment.

Both methods, time-averaging and residual-permutation, gave more reliable un-
certainties than the white method. However they both underestimated the true un-

certainties by approximately 15-30%. Furthermore, neither method provided more

6 Alternatively one may assign an error to each data point equal to the quadrature sum of the
measurement error and an extra term o, (Pont et al. 2006). For cases in which the errors in the
data points are all equal or nearly equal, these methods are equivalent. When the errors are not all
the same, it is more appropriate to use the quadrature-sum approach of Pont et al. (2006). In this
paper all our examples involve homogeneous errors.
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accurate estimates of ¢, than did the white method. For the time-averaging method
as we have implemented it, this result is not surprising, for that method differs from
the white method only in the inflation of the error bars by some factor 3. The

parameter values that maximize the likelihood function were unchanged.

3.4.5 Alternative noise models

We have shown the wavelet method to work well in the presence of 1/f7 noise. Al-
though this family of noise processes encompasses a wide range of possibilities, the
universe of possible correlated noise processes is much larger. In this section we test
the wavelet method using simulated data that has correlated noise of a completely
different character. In particular, we focus on a process with exclusively short-term
correlations, described by one of the aforementioned autoregressive moving-average
(ARMA) class of parametric noise models. In this way we test our method on a
noise process that is complementary to the longer-range correlations present in 1/f7
noise, and we also make contact between our method and the large body of statistical

literature on ARMA models.

For 1/ f7 noise we have shown that time-domain parameter estimation techniques
are slow. However, if the noise has exclusively short-range correlations, the auto-
correlation function will decay with lag more rapidly than a power law, and the
truncated-x? likelihood [Eqn. (3.9)] may become computationally efficient. ARMA
models provide a convenient analytic framework for parameterizing such processes.
For a detailed review of ARMA models and their use in statistical inference, see Box
& Jenkins (1976). Applications of ARMA models to astrophysical problems have
been described by in Koen & Lombard (1993), Konig & Timmer (1997) and Timmer
et al. (2000).

To see how the wavelet method performs on data with short-range correlations
we constructed synthetic transit data in which the noise is described by a single-

parameter autoregressive [AR(1; ¢)] model. An AR(1; ¢) process €(t;) is defined by
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the recursive relation
e(t:) = n(t:) + Ye(ti-1) (3.37)

where 7(t;) is an uncorrelated Gaussian process with width parameter o and ¢ is the

sole autoregressive parameter. The autocorrelation y(I) for an AR(1; %) process is

o?

v(l) = i—_dﬂd} : (3.38)
An AR(1;9) process is stationary so long as 0 < ¢ < 1 (Box & Jenkins 1976). The
decay length of the autocorrelation function grows as 1 is increased from zero to
one. Figure (3-9) plots the autocorrelation function of a process that is an additive
combination of an AR(1; ¢ = 0.95) process and a white noise process. The noise
in our synthetic transit light curves was the sum of this AR(1; ¢ = 0.95) process,
and white noise, with o = 1/2 (see Fig 3-9). With these choices, the white method
underestimates the error in t., while at the same time the synthetic data look realistic.

We proceeded with the MCMC method as described previously to estimate the
time of mid-transit. All four methods assessed in the previous section were included
in this analysis, for comparison. Table 3.5 gives the results. The wavelet method
produces more reliable error estimates than the white method. However, the wavelet
method no longer stands out as superior to the time-averaging method or the residual-
permutation method; all threc of these methods give similar results. This illustrates
the broader point that using any of these methods is much better than ignoring
the noise correlations. The results also show that although the wavelet method is
specifically tuned to deal with 1/f7 noise, it is still useful in the presence of noise
with shorter-range correlations.

It is beyond the scope of this paper to test the applicability of the wavelet method
on more general ARMA processes. Instead we suggest the following approach when
confronted with real data [see also Beran (1994)]. Calculate the sample autocorrela-
tion, and power spectral density, based on the out-of-transit data or the residuals to

an optimized transit model. For stationary processes these two indicators are related
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Table 3.5. Estimates of ¢, from data with autoregressive correlated noise

Method (0¢.) [sec]  (N)  on  prob(N >1) prob(better)®
White 4.5 —0.010 2.50 70% —
Wavelet 8.7 —-0.016 1.33 44% 51%
Time-averaging 9.9 —0.010 1.25 40% 49%
Residual-permutation 10.2 —0.010 1.23 38% 51%

#The probability that the analysis method returns an estimate of t. that is
closer to the true value than the white analysis.

as described in § 3.2. Short-memory, ARMA-like processes can be identified by large
autocorrelations at small lags or by finite power spectral density at zero frequency.
Long-memory processes (1/f7) can be identified by possibly small but non-vanishing
autocorrelation at longer lags. Processes with short-range correlations could be an-
alyzed with an ARMA model of the covariance matrix [see Box & Jenkins (1976)],
or the truncated-lag covariance matrix, although a wavelet-based analysis may be
sufficient as well. Long-memory processes are best analyzed with the wavelet method

as described in this paper.

It should also be noted that extensions of ARMA models have been developed
to mimic long-memory, 1/f” processes. In particular, fractional autoregressive in-
tegrated moving-average models (ARFIMA) describe “nearly” 1/f7 stationary pro-
cesses, according to the criterion described by Beran (1994). As is the case with
ARMA models, ARFIMA models enjoy analytic forms for the likelihood in the time-
domain. Alas, as noted by Wornell (1996) and Beran (1994), the straightforward
calculation of this likelihood is computationally expensive and potentially unstable.
For 1/f7 processes, the wavelet method is probably a better choice than any time-

domain method for calculating the likelihood.

116



1.0

0.8

0.6

0.4

0.2

Autocorrelation

0.0

llllllllllllllllllllll
lllllllllll'lllllllllll

10 100
Lag

—

Figure 3-9 An example of an autoregressive noise process with complementary char-
acteristics to a 1/f7 process. The top panel shows the sum of an AR(1) process with
¢ = 0.95 and white noise. The correlated and uncorrelated components have equal
variances (a = 0.5).
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3.4.6 Transit timing variations estimated from a collection

of light curves

We present here an illustrative calculation that is relevant to the goal of detect-
ing planets or satellites through the perturbations they produce on the sequence of
midtransit times of a known transiting planet. Typically an observer would fit the

midtransit times ¢.;, to a model in which the transits are strictly periodic:

tei = teo+ EiP (3.39)

for some integers F; and constants t.o and P. Then, the residuals would be computed
by subtracting the best-fit model from the data, and a test for anomalies would
be performed by assessing the likelihood of obtaining those residuals if the linear
model were correct. Assuming there are N data points with normally-distributed,

independent errors, the likelihood is given by a x2-distribution, prob(x?, Ng.), where

) Z[tc,i—(tc,o—rEiP) 2 (3.40)

i otc,i

and Ngof = N —2 is the number of degrees of freedom. Values of x? with a low prob-
ability of occurrence indicate the linear model is deficient, that there are significant
anomalies in the timing data, and that further observations are warranted.

We produced 10 simulated light curves of transits of the particular planet GJ 436b,
a Neptune-sized planet transiting an M dwarf (Butler et al. 2004, Gillon et al. 2007)
which has been the subject of several transit-timing studies (see, e.g., Ribas et al. 2008,
Alonso et al. 2008, Coughlin et al. 2008). Our chosen parameters were R,/ R, = 0.084,
a/R, = 12.25, i = 85.94 deg, and P = 2.644 d. This gives § = 0.007, T =1 hr, and
7 = 0.24 hr. We chose limb-darkening parameters as appropriate for the SDSS r
band (Claret 2004). We assumed that 10 consecutive transits were observed, in each
case giving 512 uniformly-sampled flux measurements over 2.5 hours centered on the
transit time. Noise was synthesized in the Fourier domain (as in § 3.4.2), with a

white component o,, = 0.001 and a 1/f component with rms 0.0005 (o = 1/2). The
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Table 3.6. Linear fits to estimated midtransit times

Method Fitted Period / True Period x2/Ngot prob(x* < x?)

White 1.00000071 £ 0.00000043 2.25 98%
Wavelet ~ 1.00000048 + 0.00000077 0.93 51%

10 simulated light curves are plotted in Fig. (3-10). Visually, they resemble the best
light curves that have been obtained for this system.

To estimate the midtransit time of each simulated light curve, we performed a
wavelet analysis and a white analysis, allowing only the midtransit time and the
noise parameters to vary while fixing the other parameter values at their true values.
We used the same MCMC technique that was described in § 3.4.2. Each analysis
method produced a collection of 10 midtransit times and error bars. These 10 data
points were then fitted to the linear model of Eqn. (3.39). Fig. (3-11) shows the
residuals of the linear fit (observed — calculated). Table 3.6 gives the best-fit period
for each analysis (wavelet or white), along with the associated values of x?.

As was expected from the results of § 3.4.2, the white analysis gave error bars
that are too small, particularly for epochs 4 and 7. As a result, the practitioner of
the white analysis would have rejected the hypothesis of a constant orbital period
with 98% confidence. In addition, the white analysis gave an estimate for the orbital
period that is more than 1o away from the true value, which might have complicated
the planning and execution of future observations. The wavelet method, in contrast,
neither underestimated nor overestimated the errors, giving x? & Ngof in excellent
agreement with the hypothesis of a constant orbital period. The wavelet method also

gave an estimate for the orbital period within 1o of the true value.
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3.4.7 Estimation of multiple parameters

Thus far we have focused exclusively on the determination of the midtransit time, in
the interest of simplicity. However, there is no obstacle to using the wavelet method to
estimate multiple parameters, even when there are strong degeneracies among them.
In this section we test and illustrate the ability of the wavelet method to solve for all

the parameters of a transit light curve, along with the noise parameters.

We modeled the transit as in §§ 3.4.1 and 3.4.2. The noise was synthesized in
the frequency domain (as in § 3.4.2), using o, = 0.0045, v = 1, and @ = 1/2. The
resulting simulated light curve is the upper time series in Fig. 3-12. We used the
MCMC method to estimate the transit parameters { R,/ R,, a/R,,1,t.} and the noise
parameters {0, 0y} (again fixing v = 1 for simplicity). The likelihood was evaluated

with either the wavelet method [Eqn. (3.32)] or the white method [Eqn. (3.6)].

Fig. 3-13 displays the results of this analysis in the form of the posterior distribu-
tion for the case of t., and the joint posterior confidence regions for the other cases.
The wavelet method gives larger (and more appropriate) confidence regions than the
white analysis. In accordance with our previous findings, the white analysis underes-
timates the error in ¢, and gives an estimate of ¢, that differs from the true value by
more than 1o. The wavelet method gives better agreement. Both analyses give an
estimate for R,/R, that is smaller than the true value of 0.15, but in the case of the
white analysis, this shift is deemed significant, thereby ruling out the correct answer
with more than 95% confidence. In the wavelet analysis, the true value of R,/R,
is well within the 68% confidence region. Both the wavelet and white analyses give
accurate values of a/R, and the inclination, and the wavelet method reports larger
errors. As shown in Fig. (3-13), the wavelet method was successful at identifying the

parameters (o and o,,) of the underlying 1/f noise process.

Fig. 3-12 shows the best-fitting transit model, and also illustrates the action of the
“whitening” filter that was described in § 3.3.4. The jagged line plotted over the upper
time series is the best estimate of the 1/ f contribution to the noise, found by applying

the whitening filter [Eqn. (3.29)] to the data using the estimated noise parameters.
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The lower time series is the whitened data, in which the 1/f component has been
subtracted. Finally, in Fig. 3-14 we compare the estimated 1/f noise component
with the actual 1/f component used to generate the data. Possibly, by isolating the
correlated component in this way, and investigating its relation to other observable

parameters, the physical origin of the noise could be identified and understood.
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Figure 3-12 Wavelet analysis of a single simulated transit light curve. Top.—
Simulated light curve with correlated noise. The jagged line is the best-fitting transit
model plus the best-fitting model of the 1/f component of the noise. Bottom.—
Simulated light curve after applying the whitening filter of Eqn. (3.29), using the
noise parameters estimated from the wavelet analysis. The solid line is the best-

fitting transit model.

3.5 Summary and Discussion

In this paper we have introduced a technique for parameter estimation based on fit-
ting a parametric model to a time series that may be contaminated by temporally

correlated noise with a 1/fY power spectral density. The essence of the technique
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Figure 3-13 Results of parameter estimation for the simulated light curve of Fig. 3-
12. Results for both the wavelet method (solid lines) and the white method (dashed
lines) are compared. The upper left panel shows the posterior distribution for the
midtransit time. The other panels show confidence contours (68.3% and 95.4%) of
the joint posterior distribution of two parameters. The true parameter values are

indicated by dotted lines.
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1/f components of the noise in the simulated light curve plotted in Fig. (3-12). The
estimated 1/f signal was found by applying the wavelet filter, Eqn. (3.29), to the
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is to calculate the likelihood function in a wavelet basis. This is advantageous be-
cause a broad class of realistic noise processes produce a nearly diagonal covariance
matrix in the wavelet basis, and because fast methods for computing wavelet trans-
forms are available. We have tested and illustrated this technique, and compared
it to other techniques, using numerical experiments involving simulated photometric

observations of exoplanetary transits.

For convenience we summarize the likelihood calculation here:

e Given the N data points y(¢;) obtained at evenly-spaced times ¢;, subtract
the model f;(t;;p) with model parameters p to form the N residuals r(t;) =

y(t:) — f(t:; D)

e If N is not a multiple of a power of two, either truncate the time series or

enlarge it by padding it with zeros, until N = ng2™ for some ny > 0, M > 0.

e Apply the Fast Wavelet Transform (FWT) to the residuals to obtain ng(2¥ —1)

wavelet coefficients r™ and ng scaling coefficients 7.
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e For stationary, Gaussian noise built from an additive combination of uncor-
related and correlated noise (with Power Spectral Density S(f) o 1/f7), the
likelihood for the residuals r(¢;) is given by

¢\l B e 5|
{H N exp {— (;(’1;)% w } (3.41)
7TO'S

where

oy = 0227 402 (3.42)

05 = 07279(7) + (3.43)
for some noise parameters o,, > 0, o, > 0 and g(v) = O(1) [e.g., g(1) =~ 0.72].

The calculation entails the multiplication of N terms and has an overall time-complexity
of O(N). With this prescription for the likelihood function, the parameters may be
optimized using any number of traditional algorithms. For example, the likelihood
may be used in the jump-transition probability in a Monte Carlo Markov Chain anal-
ysis, as we have done in this work.

Among the premises of this technique are that the correlations among the wavelet
and scaling coefficients are small enough to be negligible. In fact, the magnitude of
the correlations at different scales and times are dependent on the choice of wavelet
basis and the spectral index y describing the power spectral density of the correlated
component of the noise. We have chosen for our experiments the Daubechies 4th-
order wavelet basis which seems well-suited to the cases we considered. A perhaps
more serious limitation is that the noise should be stationary. Real noise is often
nonstationary. For example, photometric observations are noisier during periods of
poor weather, and even in good conditions there may be more noise at the beginning
or end of the night when the target is observed through the largest airmass. It is

possible that this limitation could be overcome with more elaborate noise models, or
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by analyzing the time series in separate segments; future work on these topics may
be warranted.

Apart from the utility of the wavelet method, we draw the following conclusions
based on the numerical experiments of § 3. First, any analysis that ignores pos-
sible correlated errors (a “white” analysis in our terminology) is suspect, and any
2-30 results from such an analysis should be regarded as provisional at best. As
shown in §§ 3.4.1, 3.4.2, and 3.4.6, even data that appear “good” on visual inspec-
tion and that are dominated by uncorrelated noise may give parameter errors that
are underestimated by a factor of 2-3 in a white analysis. Second, using any of the
methods described in 3.4.4 (the wavelet method, the time-averaging method, or the
residual-permutation method) is preferable to ignoring correlated noise altogether.

Throughout this work our main application has been estimation of the parameters
of a single time series or a few such time series, especially determining the midtransit
times of transit light curves. One potentially important application that we have not
discussed is the detection of transits in a database of time-series photometry of many
stars. Photometric surveys such as the ground-based HAT (Bakos et al. 2007) and
SuperWASP (Pollacco et al. 2006), and space-based missions such as Corot (Baglin
et al. 2003) and Kepler (Borucki et al. 2003) produce tens to hundreds of thousands
of time series, spanning much longer intervals than the transit durations. It seems
likely that the parameters of a noise model could be very well constrained using these
vast databases, and that the application of a wavelet-based whitening filter could
facilitate the detection of transits and the elimination of statistical false positives.
Popular techniques for dealing with correlated noise in large photometric databases
are those of Tamuz et al. (2005), Kovécs et al. (2005), and Pont et al. (2006). A
priority for future work is to compare these methods with a wavelet-based method,
by experimenting with realistic survey data.

We are grateful to Frederic Pont for a very detailed and constructive critique of an
early version of this manuscript. We also thank Scott Gaudi and Jason Eastman for
helpful comments. This work was partly supported by the NASA Origins program
(grant no. NNX09AB33G).
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Chapter 4

Near-infrared transit photometry

of the exoplanet HD 149026b

4.1 Introduction

Since its discovery by Sato et al. (2005), HD 149026b has been one of the most closely
scrutinized planets outside the Solar system. It is a close-in gas giant, orbiting a G star
with a period of only 2.5 d. Observations of transits (Sato et al. 2005, Charbonneau et
al. 2006, Winn et al. 2008b, Nutzman et al. 2008), in combination with observations
of radial-velocity variations of the parent star (Sato et al. 2005), have shown that
the planet has approximately Saturn’s mass but is considerably denser, despite the
intense irradiation from the parent star that should inflate the planet and lower its
density. There is consensus among theorists that the reason for the “shrunken radius”
is a highly metal-enriched composition, although the total metal mass, its distribution
within the planet, and the reason for the enrichment are debated [Sato et al. (2005),
Fortney et al. (2006), Ikoma et al. (2006), Broeg & Wuchterl (2007), Burrows et al.
(2007)]. The total metal mass, for example, ranges from 60 Mg to 114 Mg among
the possible models. The latter estimate would represent 80% of the total mass of
the planet.

The planet’s outer atmosphere is also of interest, given the possibly unusual com-

position and the strong heating from the parent star. Models by Fortney et al. (2005)
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indicated the possibility of a very hot stratosphere as a result of gaseous TiO and
VO opacity. By using the Spitzer Space Telescope to observe a planetary occultation,
Harrington et al. (2007) found the planet’s 8 um brightness temperature to be much
larger than the temperature that one would expect based on thermal equilibrium
with the incident stellar radiation. This may be the result of the predicted TiO and
VO heating, although the details of whether and where these absorbers actually con-
dense in the atmosphere are not yet understood (Fortney et al. 2005, Harrington et

al. 2007).

Fundamental to all these discussions are the measurements of the mass and radius
of HD 149026b. These measurements are limited by the uncertainties in the stellar
mass and radius. One way to improve the situation is to observe transits with greater
photometric precision than has been possible before. As shown by Seager & Mallen-
Ornelas (2003), with a good light curve and Kepler’s third law, one may determine
the stellar mean density. If the mean density is known precisely enough, it is a key
constraint that can be combined with the other stellar observables (parallax, apparent
magnitude, effective temperature, metallicity, etc.) and stellar-evolutionary models
to determine the stellar mass and radius. This technique has been put into practice
for many other systems [see, e.g., Sozzetti et al. (2007), Holman et al. (2007), Torres
et al. (2008)] but never to advantage for HD 149026b because of the limited precision
of prior determinations of p, (Winn et al. 2008b, Nutzman et al. 2008). Observers
must cope with the small transit depth of 2.5 mmag (smaller than any other transiting
exoplanet by a factor of two) and the paucity of suitable comparison stars within the

field of view of most telescopes.

In this chapter we present observations of transits of HD 149026b with the Near
Infrared Camera and Multi-Object Spectrometer [NICMOS, Thompson (1992)] on
board the Hubble Space Telescope (HST). We chose this instrument because a high
precision in relative photometry is possible even without using comparison stars
(Gilliland 2006, Swain et al. 2008) and because the reduced stellar limb-darkening
at near-infrared wavelengths is advantageous for the light-curve analysis (Carter et

al. 2008, Pal et al. 2008). We have organized this chapter as follows. In § 4.2 we
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describe the observations and data reductions leading to the final photometric time
series. In § 4.3 we describe our photometric model and the results of the NICMOS
light-curve analysis. In § 4.4, we describe how the light-curve results were incorpo-
rated into stellar-evolutionary models to determine the parameters of the HD 149026
system. In § 4.5, the light analysis is repeated using not only the NICMOS data but
also the most precise light curves that have been obtained at optical and mid-infrared
wavelengths. In § 4.6, all the available transit times are analyzed to produce a refined
transit ephemeris and to search for possible period variations that could be indica-
tive of additional bodies in the HD 149026 system (Holman & Murray 2005, Agol et
al. 2005, Ford & Holman 2007). Finally, in § 4.7, we discuss the possible implications

of our observations and analysis.

4.2 Observations and Reductions

We observed HD 149026 on four occasions (“visits” in HST parlance) when transits
were predicted to occur, on 2007 Dec 22, 2007 Dec 24, 2008 Feb 08, and 2008 Mar 20.
Each visit consisted of five orbits spanning a transit. Between each pair of orbits
is an observing gap of approximately 45 minutes, when HST’s vision is blocked by
the Earth. The visits were scheduled in such a manner that the combined data set
provides complete phase coverage of the transit, including redundant coverage of the
critical ingress and egress phases. In particular, visits 1 and 3 covered the ingress
phase, and visit 2 covered both ingress and egress phases. Visit 4 captured the
beginning of egress.

We used Camera 3 of the NICMOS detector, a 256 x 256 HgCdTe array with a
field of view of 51.27 x 51.2". We used the G141 grism filter, which is centered at
1.4pm, spans 0.8 um and is roughly equivalent to H band. An exposure was ob-
tained every 13 s. The camera was operated in “MULTIACCUM” mode, wherein five
nondestructive readouts are recorded during a single exposure, and the first readout
is subtracted from the final readout. After accounting for overheads, the effective

integration time was 4 s per exposure. We deliberately defocused the instrument to
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give a full-width at half-maximum (FWHM) of approximately 5 pixels in the cross-
dispersion direction. This was done for two reasons: firstly, when focused, camera
3 undersamples the point-spread—function (PSF) of point sources; and secondly, the
detector pixels exhibit intra-pixel sensitivity variations as large as 30%. Defocus-
ing the images causes the PSF to be well-sampled and averages over the intra-pixel

sensitivity variations.

Approximately 220 exposures were collected during each HST orbit. Experience
with HST has shown that photometric stability is relatively poor during the first
orbit of a given visit. Our observations were scheduled under the assumption that
the first orbit from each visit would not be utilized, and indeed we ended up omitting
the first-orbit data from our analysis. At the start of each visit, we obtained a single
non-dispersed image using a narrow filter centered at 1.66 um in order to establish
the pixel position corresponding to zero dispersion. We then adopted the relation

from the HST Data Handbook for NICMOS!,

A(Az) = —0.007992 Az + 1.401 (4.1)

where A(Az) is the wavelength (measured in pm), and Az is the z coordinate (mea-
sured in pixels) relative to the center of the undispersed image.

For completeness, we performed the steps of flat-fielding, background subtraction,
and pixel flagging, as described below; however, it is noteworthy that these steps in
the data reduction made very little difference in the aperture photometry or in the
final results. Flat-field correction for grism images is not straightforward and is not
done as part of the standard NICMOS pipeline reductions, because the appropriate
flat field depends both upon wavelength and upon the position of the source in the
non-dispersed image. To accomplish the flat-field correction, we obtained seven flat
fields, each using a narrow bandpass within the G141 bandpass, and fitted the data
for each pixel with a quadratic function of wavelength C[X;x,y]. We then applied

C[A(Az);z,y] as a multiplicative correction to each of our science images, using

lhttp://www.stsci.edu/hst/nicmos/documents/handbooks/DataHandbookv7/
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the wavelength-coordinate relation A(Az) that was determined from the single non-
dispersed image. The background level was estimated in each image based on the
counts in a relatively clean region of the detector (away from the spectral trace) and
subtracted from the entire image. To identify bad pixels, all images from a given
orbit were used to create a time series of counts specific to each pixel. Pixels showing
an anomalously large variance were flagged. The list of flagged pixels was appended
to the list of hot or cold pixels that were identified in the standard NICMOS pipeline
reductions, and the values of all of those bad pixels were replaced by interpolated
values of the neighboring good pixels.

Aperture photometry was performed on the first-order spectrum, using a simple
sum of the counts within a rectangular box centered on the spectral trace. The box
had a width of 20 pixels in the cross-dispersion direction (the y direction), which
was four times the FWHM of the PSF. The box had a length of 120 pixels in the
dispersion direction (the x direction), which was long enough the capture the entire
first-order spectrum.

At this stage the data had been reduced to a single number per image: the total
number of counts in the aperture (the “flux”). We examined the resulting time series.
As expected, the data collected during the first orbits of each visit showed flux varia-
tions that were both larger in amplitude and different in their time-dependence than
the variations observed in subsequent orbits. The first-orbit data were excluded from
subsequent analysis. In addition, we excluded the 10 exposures near the beginning
and end of each orbit sequence, because they showed strong flux variations that are
probably due to “Earth shine.” After these exclusions, there remained 800, 820, 800,

and 792 good data points in visits 1, 2, 3, and 4, respectively.

4.3 NICMOS Light-Curve Analysis

Fig. 4-1 shows the time series of the aperture-summed flux, after dividing by the
mean flux. In each panel, the zero point of the z-axis is the expected mid-transit

time. The flux decrement during the transit is identifiable, but this decrement is su-
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perimposed on at least two other sources of variability: orbit-to-orbit discontinuities,
and smooth intra-orbital variability showing a consistent pattern among all orbits of
a given visit. The intra-orbital variability has been seen by all other investigators at-
tempting precise HST photometry of single bright stars, since the pioneering work by
Brown et al. (2001), and the flux discontinuities have been seen by other investigators
using NICMOS (see, e.g., Swain et al. 2008). The origins of these systematic effects
have not been established. The orbit-to-orbit consistency of the smooth variations
suggests a phenomenon that is a function of the phase of the telescope’s orbit around
the Earth, such as thermal cycling or scattered light. The discontinuities between
orbits suggest a non-repeating event associated with the re-aquisition of the target
star after each Earth occultation, such as pointing changes or positional shifts of the

grism filter.

Ideally, the underlying physical processes giving rise to these systematic effects
could be ascertained, and this understanding would lead to either the recognition of an
improved method for deriving the photometric signal or a physical model that could
be used to correct the aperture-summed flux. Given that we do not yet have such
knowledge, what can be done? The intra-orbital variations are very well-described
by a smooth function of the HST orbital phase; following other investigators we used
a smooth function with several adjustable parameters as an ad hoc model for this
variation. The parameters of this model are fairly well constrained by the out-of-

transit data, for which all variations are assumed to be systematic effects.

The inter-orbital discontinuities are more problematic. To investigate the system-
atic effects, we examined the spectral trace on each image. Specifically we computed
the flux-weighted mean y position as a function of z, giving a curve y(z) representing
the centroid of the spectral trace (the “footprint” of the spectrum on the detector).
We also estimated the orientation of the spectral trace relative to the detector edges,
by performing a linear fit to the previously calculated function y(x). Figure 4-2 shows
the results. Within a single orbit, the position and orientation of the spectral trace are
relatively constant, as compared to the larger movements that are observed between

orbits. The largest variations of the spectral trace (its position and width) seem to
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coincide with the largest discontinuities in the flux time series.

Given the correlations that are observed between the properties of the spectral
trace and the aperture-summed flux, the approach taken by Swain et al. (2008) and
other investigators is to “decorrelate” the flux against a number of measured pa-
rameters (“state variables”) such as the mean y position, cross-dispersion width,
orientation angle, and so forth. One way to achieve this decorrelation is to fit linear
functions of the state variables to the out-of-transit data, for which all time variations
are expected to be due to the systematic effects. Then the best-fitting parameters
are used to correct all of the data. Alternatively, one could fit for the linear functions
of the state variables simultaneously with the parameters describing the transit light

curve.

We attempted both of these procedures and found that while they do reduce the
amplitude of the systematic effects, they still leave highly significant systematic vari-
ations. We also find this procedure to be undesirable because it is not clear which
parameters to include in the fit; because the fitted parameters are highly correlated
(the state variables do not vary independently); and because we have no justifica-
tion for the assumption of a linear function for any of these parameters, without an
understanding of the underlying physical effect. An example of a possibly relevant
physical effect that would not necessarily be described by a linear function is intra-
pixel sensitivity variation, which could lead to a function that is periodic in the pixel
coordinates of the spectral trace.

We attempted to fit numerous physically-motivated models (based on the premise
of intra-pixel sensitivity variations, among others), and did not find any such model
that provided a good fit to the data while also having only a few, nondegenerate
adjustable parameters. Ultimately we gave up on attempting to correct the intra-
orbital discontinuities based on a priori information. Instead we included in our
model an adjustable multiplicative factor specific to each orbit. This might seem
devastating to the goal of analyzing the transit light curve, but this is not so. It
means that we cannot make use of the relative flux between orbits to derive the

transit depth; but as we will show, the truly precious information is in the duration of
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ingress or egress, which is much less vulnerable to the problem of flux discontinuities.
In addition, four of the orbits spanned a full ingress or egress. Data from those
four orbits does provide useful information about the transit depth, because the

discontinuities appear between orbits and not within orbits.

All together, our model for the flux variation due to systematic effects is

foya(t) = f5 {1+ coo(t) + cl[6(t)]* + c3lo(8))*} (4.2)

where the v index specifies the visit number (1-4), the o index specifies the orbit
number (1-4) within each visit after omitting the first orbit, the 16 numbers fY are
the multiplicative factors describing the inter-orbital discontinuities, ¢(t) is the HST
orbital phase at time ¢, and the 12 numbers ¢} (3 per visit) are constants specifying a
polynomial function of ¢ that describes the intra-orbital variation. The HST orbital
phase was defined as

o(t) = (t — (t)) mod PHST, (4.3)

Pysr

where Pgsr = 1.5975 hours is the orbital period of the HST around the Earth and (¢)
is the midpoint of each orbit’s observations. The choice of a polynomial, as opposed to
some other smoothly varying function, was arbitrary. We also tried using sinusoidal
functions with an angular frequency of 27/Pysr, with no significant differences in

any of the results described below.

For the transit model, we used the analytic formulas of Mandel & Agol (2002).
Our parameters were the planet-to-star radius ratio (R,/R,), the cosine of the orbital
inclination (cos%), the semimajor axis in units of the stellar radius (a/R,), the mid-
transit time ¢, and the two coefficients u; and us of a quadratic limb-darkening

law,

%= 1—ui(1 = p) —up(1 — p)’? (4.4)

where p is the cosine of the angle between the observer and the normal to the stellar
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Figure 4-1 NICMOS photometry (1.1-2.0 pm) of HD 149026b of 4 transits, with
interruptions due to Earth occultations. Plotted are the results of simple aperture
photometry. The observed variations are a combination of the transit signal and
systematic effects (intra-orbital variations and inter-orbital discontinuities). The solid
curve is the best-fitting model that accounts for both the transit signal and systematic
effects.
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Figure 4-2 Illustration of inter-orbital variations of the spectral trace. The solid curves
are the flux-weighted mean y position of the first-order spectrum as a function of z.
Overplotted are linear fits to y(x). The inset figure shows the measured light curve
after dividing out the intra-orbital variations correlated with HST orbital phase. The
largest rotation of the spectral trace (at the fifth orbit) coincides with the largest
discontinuity in the flux time series.
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surface and I, is the specific intensity as a function of u. We allowed u; and uy to
vary freely, subject to the conditions u; +ug < 1, uy +uz > 0, and u; > 0. These
conditions require the brightness profile to be everywhere positive and monotonically

decreasing from limb to center. In practice, the fitting parameters were actually

vy = wugcos40° — uysin40° (4.5)

uy = upsind0° + ugcos40° (4.6)

because u) and u}, are weakly correlated, unlike u; and u; (P4l 2008). In computing
the transit light curve we assumed the orbit to be circular, consistent with the findings
of Sato et al. (2005) and Madhusudhan & Winn (2008). We held the orbital period
fixed at the value P = 2.87588 days based on the results of Winn et al. (2008b).
Here the period is used only to relate the measured transit durations and a/R,. The
fractional error in P is approximately 10* times smaller than the fractional error in

a/R, and is safely ignored (Carter et al. 2008).

Our complete model of the photometric time series was the product of the transit
model and fiy(t) (Eq. 4.2). We fitted simultaneously for the parameter set R,/ R.,
cost, a/R,, uy, uy, {t'}, {f'}, and {c¢!}). The polynomial describing intra-orbital
variations was specific to each visit, and the flux discontinuities were specific to each
orbit, but the transit parameters were required to be consistent across all orbits and
visits. We performed a least-squares fit to the unbinned data using a box-constrained
Levenberg-Marquardt algorithm (Levenberg 1944, Marquardt 1963, Lourakis 2004)
utilizing the Jacobian calculation of P&l (2008). Box constraints were needed to
enforce the restrictions on the limb darkening parameters u; and us. The goodness-

of-fit statistic was

v = Zi( obs (t4) —fé’alc(ti))2 @7)

v=1 i=1

where f?_,() the calculated flux at the time of the i" data point during visit v, fa,, (i)

is the 7" flux measurement during visit v, N, is the number of data points in visit v,

143



and o, was assumed to be a constant at this step. The solid curve in Fig. 4-1 shows
the best-fitting model. The root-mean-square (rms) residual between the data and
the best-fitting model is 440 parts per million (ppm). This is approximately 2.2 times
the expected noise level calculated within the NICMOS calibration pipeline (which
is dominated by photon noise). Fig. 4-3 shows histograms of the residuals for all the
data and for each visit individually. The residuals are not Gaussian; the flattened

peak in the histograms indicates a nonzero kurtosis?.

Evidently the noise is not photon-limited, and is not Gaussian, but at least it does
not appear to be strongly correlated in time. We assessed the degree of temporal cor-
relations (“red noise”) in two ways. First, we binned the residuals in time by a factor
N ranging from 1 to 100, and calculated the standard deviation oy of the binned
residuals. The results are shown in Fig. 4-4. They follow closely the expectation of
independent random numbers, oy = oy N~Y2 [M/(M — 1)]*/?, where M is the num-
ber of bins. Second, we calculated the Allan (1964) variance 0%(l) of the residuals,

defined as

1 N2 /)l 2
2 _ ST
oAl = sn i) 2 (7 D T T ”’) (48)

i=0 j=0

where 7, denotes the residual of the kth data point, N is the number of data points,
and [ is the lag. The Allan variance is commonly used in the time metrology literature
to assess 1/f noise. For independent residuals, one expects 0% (1) =~ ¢%(0)/l. The
results for our data, also shown in Fig. 4-4, satisfy this expectation. There is no

readily identifiable time-correlated component in the time series of residuals.

Plotted in Fig. 4-5 is the measured flux after dividing by the optimized function

20One may wonder about the effect of the apparent non-Gaussianity of the noise, shown in Fig. 3.
To investigate this issue we used an Edgeworth expansion to create a new x2-like statistic that
accounts for the skewness and kurtosis of the residuals (see, e.g., Amendola et al. 1996). Using this
different fitting statistic, we found that the best-fit parameter values were unchanged. This was not
surprising because bias is expected to arise from skewness (as opposed to kurtosis) and the skewness
of the residuals is very small. However, the confidence intervals are affected by the kurtosis. We
found that accounting for kurtosis leads to error bars that are smaller than the error bars quoted
here, but only by a modest amount (< 20%). For simplicity, the results quoted in this chapter are
based on the standard x? statistic given in Eq. (7).
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Figure 4-3 Histograms of the residuals between the data and the best-fitting model.
The solid line is the histogram based on all the data. The other lines are for data
specific to visit 1 (dotted), visit 2 (dashed), visit 3 (dash-dot), and visit 4 (dash-dot-
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Figure 4-4 Assessment of correlated noise. Left panel: The rms of time-binned residu-
als, as a function of bin size, for each of the 4 visits. Right panel: The Allan variance
of the residuals, as a function of lag, for each of the 16 orbits. The dotted lines are the
results of the calculations based on the data, and the solid lines show the expected
trend if the noise were uncorrelated.
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fsys(t). This represents our best effort to correct for the systematic effects. In Fig. 4-
6, we show the results of combining the data from all the visits (after correcting for
systematic effects) into a single transit light curve. In this composite light curve,
the median time between samples is 7.2 s. Finally, in Fig. 4-7 we show a time-
binned version of the composite light curve to allow a visual comparison with the
best previously-measured light curves, at optical and mid-infrared wavelengths.

To determine the “allowed range” of each parameter—or, more precisely, the a
posteriors joint probability distribution of all the parameter values—we employed the
Markov chain Monte Carlo (MCMC) technique (see, e.g., Winn et al. 2007; Burke
et al. 2007). We produced 8 chains of length 7.4 x 10® using a Gibbs sampler and a
Metropolis-Hastings jump condition such that each parameter had an effective chain
length of roughly 2 x 10°. This was accomplished by adjusting the scale of the
jump-function distribution such that the probability of accepting a jump is roughly
uniform and equal to approximately 40% across all parameters. To establish initial
estimates of parameter uncertainties, a preliminary Monte Carlo bootstrap analysis
was performed, based on the Levenberg-Marquardt least squares minimization; then,
the MCMC initial conditions were drawn from normal distributions with widths equal
to five times these initial error estimates. The first 25% of each chain was trimmed,
and then all the chains were concatenated. Each parameter had a Gelman & Rubin
(1992) R statistic smaller than 1.01, a sign of good convergence of the posterior
parameter distributions. For each parameter, the values at each link of the chain
were sorted. To describe the results, we report the median (50%) value, along with
the interval between the 15.85% and 84.15% levels (the 68.3% confidence interval).
The results are given in Column 2 of Table (4.1).

4.3.1 Results from NICMOS photometric analysis

For the orbital inclination, we find i = 84.55703> deg. This is in agreement with the
independent estimate of i = 85.410% deg by Nutzman et al. (2008), using the 8 um
channel of the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope. For

the normalized orbital distance, we find a/R, = 6.01133%. This is also in agreement
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Figure 4-5 NICMOS photometry (1.1-2.0 pm) of 4 transits of HD 149026b, after
correcting for systematic effects. In each panel, the solid line shows the best-fitting
model.
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Figure 4-7 Comparison of the best available transit light curves of HD 149026. Top
panel: optical [Stromgren (b +y)/2] photometry from Sato et al. (2005) and Winn et
al. (2008b), with a time sampling of 8.6 s and an rms residual of 2017 ppm. Middle
panel: near-infrared [1.1-2.0 pm] photometry from this work, with a time sampling of
7.2 s and an rms residual of 440 ppm. Bottom panel: mid-infrared [8 um] photometry
from Nutzman et al. (2008), with a time sampling of 7.4 s and an rms residual of
1854 ppm. The solid lines show the best-fitting model, which was calculated as
described in § 4.5.
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with the results of Nutzman et al. (2008), who found a/R, = 6.20732. The new
result is more precise, which (as we will show in § 4.4) leads to tighter constraints
on the stellar mass and radius. This is important because the uncertainties in the
stellar properties have been the limiting factors in the analysis of this system. Based
on the preceding results, we find the impact parameter (defined as b = acosi/R,)
to be 0.57170035. This is the tightest such constraint that has been achieved for
HD 149026b. The earliest measurements of the impact parameter were consistent
with zero (Sato et al. 2005, Charbonneau et al. 2006, Winn et al. 2008b), a situation
leading to strong degeneracies among the transit parameters (Carter et al. 2008).
More recently, Nutzman et al. (2008) found b = 0.6213:93 consistent with the new and
more precise result. The increased precision in a/R, and b is a direct consequence of
the improved precision with which the ingress (and egress) duration is known (Carter

et al. 2008). In this sense, the greatest value of the NICMOS data is in the good

coverage of the ingress and egress phases.

The enhanced precision of the NICMOS data relative to previous data sets does
not lead to a correspondingly enhanced precision in the planet-to-star radius ratio.
This is because we allowed the time series from each orbit to have its own adjustable
flux multiplier. Consequently, all of the information about R,/R, comes only from
those orbits that span an entire ingress or egress event. However, the value of R,/ R,
that we derive is at least comparable in precision to previous determinations. We find
R,/R, = 0.0541670:0009. Interestingly this is larger by 20 than the values derived
previously, which were based on optical and mid-infrared data. Winn et al. (2008b)
found R,/R, = 0.049175:052 based on Stromgren (b-+y)/2 photometry, and Nutzman
et al. (2008) found R,/R, = 0.05158 £ 0.00077 based on 8 um photometry.

Since we do not understand all of our noise sources with a physically-grounded
model, we cannot rule out the possibility that the discrepancy between our result
and the previous results is due to a faulty model of the systematic effects. The
culprit would probably need to be the polynomial function of orbital phase. We
do find that our result is unaffected if we replace the polynomial function of ¢ with

trigonometric functions, as mentioned previously; and we also find that our results are
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unchanged if we use a linear limb darkening law or fix the quadratic limb darkening
parameters to those tabulated by Claret (2000). These tests do not prove that our
results are valid but they do suggest that our analysis procedure is robust to changes
in the functional form of the model. However, to the extent that the intra-orbital
variations are not strictly repeatable within a given visit, our model would produce
biased results. Fig. 4-8 shows the data after dividing by the optimized values of f
(the orbit-specific flux multipliers) and dividing by the optimized transit model. The
purpose of the divisions is to isolate the intra-orbital systematic effects, which do

appear consistent among the orbits within a given visit.

Another possibility for the discrepancy in the transit depth between our near-
infrared result and the previous optical and mid-infrared results is differential ab-
sorption due to constituents in the outer, optically-thin portion of the planet’s atmo-
sphere. This interpretation is the basis of the “transmission spectroscopy” technique
for identifying constituents of exoplanetary atmospheres pioneered by Charbonneau

et al. (2002). We consider this possibility at some length in sections 4.5 and 4.7.

We find that the center-to-limb variation is less pronounced than was expected
based on the tabulated limb darkening coefficients of Claret (2000). Fig. 4-9 shows
the confidence contours in the wu;, up parameter space. The open square corresponds
to the tabulated values for H band (for a star with Teg = 6250 K, logg, = 4.5,
[Fe/H] = 0.3, matching the properties of HD 149026). The tabulated values are

excluded with >95% confidence.

Two quantities intrinsic to the star and planet that may be calculated directly in
terms of observables are the surface gravity of the planet, and the mean density of

the star. The surface gravity of the planet is calculated as (Southworth et al. 2007)

21 K

% = P Rya)eni (4.9)

where K is the semiamplitude of the stellar radial-velocity variation (43.3+1.2 m s™%;
Sato et al. 2005), and R,/a and sini are derived from our MCMC analysis. We find

log g, = 3.13210.0% where gj, is in cgs units. The mean stellar density p, is calculated
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Figure 4-8 Isolation of the intra-orbital variations. The flux time series has been
divided by the optimized flux multipliers f and by the optimized transit model. The
remaining variation appears to present a consistent pattern among all orbits within
a given visit, as assumed in our model. The solid line is the optimized model. Each
column shows data from all orbits of a given visit. Each row shows orbits arranged
from first to last in rows from top to bottom, respectively.
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as (Seager & Mallen-Ornelas 2003, Sozzetti et al. 2007)

3m a\® R, 3
. = — - — 4.10
where p, is the mean density of the exoplanet. We may neglect the correction term
involving the planetary density as p, ~ pp, (Rp/Ri)® ~ 1 x 107* and the fractional

uncertainty in a/R, is larger than the fractional uncertainty in R,/R, by a factor of
2.
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Figure 4-9 Results for the limb-darkening parameters u; and uy. The contours are
the 68% and 95% confidence regions as determined by the MCMC analysis of the
photometric time series. The solid square is the minimum-x? solution, u; = 0.0,
us = 0.1789. The open square marks the tabulated values of Claret (2000) for H
band (u; = 0.044, uy = 0.344).

4.4 Stellar Parameters

The basic inputs to models of the planetary interior are the planetary mass M, and

radius R, in units of grams and kilometers, or in units of Jupiter’s mass and radius.
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Transit photometry and Doppler velocimetry alone do not determine these quantities.
Additional information about the star must be introduced. Several techniques for es-
timating the stellar mass M, and radius R, were reviewed by Winn et al. (2008b).
We chose to estimate M, and R, using stellar-evolution models that are constrained
by the best available, relevant, observable properties of the star: the mean density
0.49713052 g cm ™ determined from our light-curve analysis, the absolute magnitude
My = 3.65 £ 0.12 derived from the Hipparcos parallax and apparent magnitude
[ = 12.59 £ 0.70 mas, V = 8.15 & 0.02; van Leeuwen (2007)], effective tempera-
ture [Tog = 6160 £ 50 K, a weighted mean of the results from Sato et al. (2005)
and Masana et al. (2006)], and metallicity [0.36 & 0.08, from Sato et al. (2005)
with a more conservative error bar]. We chose not to use the spectroscopically-
determined stellar surface gravity [logg. = 4.26 £+ 0.07; Sato et al. (2005)] because
the photometrically-determined value of p, provides an effectively tighter constraint,

and because spectroscopically-determined surface gravities have been found to be sus-

ceptible to systematic error (see, e.g., Winn et al. 2008a, Johns-Krull et al. (2008)).

Following the procedure of Torres, Winn, & Holman (2008), we employed Yonsei-
Yale stellar models® (Yi et al. 2001, Demarque et al. 2004). Model isochrones were
interpolated in both age and metallicity, for metallicities [Fe/H]| ranging from 0.28 to
0.43 and for ages ranging from 0.1 to 14 Gyr, in steps of 0.1 Gyr. Fig. 4-10 shows sev-
eral of these theoretical isochrones, along with some of the observational constraints.
The upper left panel illustrates the constraint due to the spectroscopically-determined
surface gravity, even though we did not actually apply that constraint, as explained

above. It is evident that the constraint due to p, is stronger.

The isochrones were interpolated to provide a fine grid in stellar mass (with a

step size of 0.005 My). We then assumed that the likelihood of each point on the

3We chose the Y2 models mainly because of the convenient form in which they are publicly
available. Other stellar-evolutionary models are available, and other investigators have examined
the sensitivity of results such as ours to the choice of model. For HD 149026 in particular, Southworth
(2008) found that the Y? models and independent models by Claret (2007) gave results for M, and
R, that agreed to within 1%. Another set of publicly available models, the Padova models of
Girardi et al. (2000), are not computed for the high metallicity observed for HD 149026; but at zero
metallicity, at least, both Torres et al. (2008) and Southworth (2008) found that the Padova models
give results for the stellar mass and radius that are also within 1% of the Y? results.
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Figure 4-10 Stellar-evolutionary model isochrones, from the Yonsei-Yale series by Yi
et al. (2001). The points and shaded boxes represent the observationally-determined
values and lo errors. Here, surface gravity is determined spectroscopically (Sato
et al. 2005), My is derived from Hipparcos parallax and V magnitudes, and p, is
determined photometrically from the transit light curve. Isochrones are shown for
ages of 1 to 13 Gyr (from left to right) in steps of 1 Gyr for a fixed stellar metallicity

of [Fe/H]= 0.36.
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interpolated isochrones was proportional to exp(—yx2/2), where

AlFe/H)\?* (ATg\> [(AMy\?  [Ap,\?
2= (o) () < () < (Gr) e
O-[F e/ H] oTeﬁ oM v O-IJ*
and the A quantities denote the differences between the observed and calculated
values. The asymmetry in the error distribution for p, was taken into account. Ad-
ditionally, the likelihood was taken to be proportional to an Salpeter initial mass

function, £(M) o M~0%2) with z = 1.35 (Salpeter 1955). The joint probability

function, P, was taken to be proportional to the likelihood, viz.,
P(R*) M*, Teﬁa ]-Og Gxs MV7 [FG/H], Pxs Age) &8 exp(_XZ/z) (412)

For a given parameter X, from this list, we calculated the cumulative distribution

function (CDF) by numerically evaluating

DXO(iL')—_—/ dX()/ Xm/ dXN P(X(),Xl,"',XN). (413)

For each parameter, we record the values of z for which the CDF takes the values
15.85%, 50%, and 84.15%. The 50% level (the median) is reported as the “best-fit
value” and the interval between the 84.15% and 15.85% levels is reported as the 68.3%
(1) confidence interval.4

Table (4.1) reports the best-fit stellar parameters and confidence intervals. We
find the stellar radius to be R, = 1.5411915 Rg. This is larger than (but in agreement
with) the previous estimates of R, = 1.46 +0.10 R, by Sato et al. (2005), and R, =

4 Although our procedure was inspired by the work of Torres et al. (2008) and is similar in almost
all respects, there is one significant difference. The best fit values reported by Torres et al. (2008)
were those that minimized x? as in our analysis. The difference is that Torres et al. (2008) estimated
the 1o errors in the stellar properties based on the total span of the calculated values that gave
agreement within 1o with the observables. Effectively, they assumed a uniform error distribution
for each observable, rather than a Gaussian error distribution as we have done. Consequently, our
method produces smaller error intervals in the stellar properties. Caution would dictate that larger
error intervals are desirable, especially since we are relying on the theoretical isochrones that surely
have some unaccounted-for systematic errors. However, using a uniform error distribution for the
observables is an arbitrary way to inflate the output errors, and the true error distribution for the
observables is probably closer to Gaussian. For these reasons we chose our approach and emphasize
the caveat that our results place complete trust in the Y? isochrones.
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1.4974+0.069 Ry) by Nutzman et al. (2008). By combining the derived distribution for
R, with the photometrically-determined distribution for R,/R., we find the planetary
radius to be R, = 0.81310037 Rj,p. This is larger than any previous result. Using
optical photometry, Sato et al. (2005) found 0.725 £ 0.050 Rj,p, Charbonneau et
al. (2006) found 0.726 & 0.064 Ry, and Winn et al. (2008b) found 0.71 £ 0.05 Rjyp.
Using mid-infrared photometry, Nutzman et al. (2008) found 0.755 £ 0.040 Rjyp. It
is important to note that these determinations were not wholly independent, and
therefore should not be combined into a weighted average. They all used many
common inputs for the stellar properties, and the analyses of optical photometry all
included a common subset of at least 3 light curves.

As mentioned previously, we did not apply any constraint to the models based on
the spectroscopically determined value of logg,. However, given our results for M,
and R, we computed the implied value of log g, finding log g, = 4.18910930. This in
agreement with, and is more precise than, the spectroscopically-determined value of

log g, = 4.26 £ 0.07 (Sato et al. 2005).

4.5 Joint Analysis with Optical and Mid-Infrared

Light Curves

Transit observations of HD 149026b have now been made at optical wavelengths (Sato
et al. 2005, Charbonneau et al. 2006, Winn et al. 2008b), near-infrared wavelengths
(this work), and mid-infrared wavelengths (Nutzman et al. 2008). In this section we
repeat our analysis on all of these data, in order to bring all of these data to bear
on the determination of the system parameters, while seeking possible wavelength
variations in the planet-to-star radius ratio.

It is reasonable to require consistency across these data in the parameters re-
lating to the orbital configuration of the transit, such as the inclination angle and
normalized semi-major axis. However, the inferred planet-to-star radius ratio is a

wavelength-dependent quantity, depending on the opacity of the exoplanetary atmo-
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sphere and the emergent flux from the planetary nightside (which is expected to be
unimportant). With this in mind, we performed a joint analysis of all of the data,
requiring consistency in cos¢ and a/R, but allowing R,/R, to take separate values
for each of the three types of data: optical, near-infrared, and mid-infrared.

Specifically, we fitted our NICMOS data, the 8 um IRAC time series of Nutzman
et al. (2008), and the 8 light curves obtained in the Stromgren (b+y)/2 band by Sato
et al. (2005) and Winn et al. (2008b). Our photometric model for the NICMOS data,
including the associated systematic effects, has already been described. For the data
sets presented by other authors, we followed those authors’ prescriptions to account
for systematic errors. For the (b+ y)/2 data, we corrected the data by allowing the
out-of-transit flux to be a linear function of time. For the 8 yum data, we modeled the
time-variable sensitivity of the detector (the “ramp”) as a multiplicative correction,
fsys = ao + ay log(t — to) + aglog?(t — ty), where o is the time immediately prior to
the start of the observation.

We performed an MCMC analysis of this joint data set. The free parameters
relating to the transit model were the three values of R,/R, (corresponding to the
ratios measured at approximately 0.5 pm, 1.5 um, and 8.0 um); the geometric pa-
rameters cosi and a/R,; the quadratic limb-darkening coefficients for the NICMOS
light curve; the linear limb-darkening coefficients for the optical and infrared light
curves (for which the precision of the data do not justify the more accurate quadratic
law); and the mid-transit times for the NICMOS data and the IRAC data.® We also
fitted for the ramp-correction terms for the IRAC data and the parameters relating
to the flux offsets and intra-orbital variations for the NICMOS data. Six chains of
length 9 x 10° were created, representing approximately 2 x 10° correlation-lengths
per parameter. These were concatenated after removing the first 25% of each chain.
The Gelman-Rubin R statistic was smaller than 1.01 for each parameter. We then
repeated the analyses that were described in § 4.3 and § 4.4 to determine the stel-

lar, planetary, and orbital parameters, based on this joint analysis. The results are

5To keep the number of parameters as small as possible, we did not vary the optical mid-transit
times or baseline correction parameters at this stage, having found that they are uncorrelated with
the other parameters of interest.
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tabulated in Table (4.1).

The results for the geometric parameters are hardly changed from the NICMOS-
only analysis, a reflection of the greater precision of the NICMOS light curve. The
planet-to-star radius ratio was found to be larger for the NICMOS data than for the
other bandpasses, as was already evident from the comparison of our NICMOS-only
analysis to previously published analyses. Fig. 4-11 shows the variation in (R,/R.)?
with wavelength. The quantity (R,/R,)? is essentially the transit depth, or fractional
loss of light during the total phase of the transit, after “removing” the effects of
limb darkening. The radius ratios that we derive for the mid-infrared and optical
data are in agreement with those reported previously. For the IRAC data we find
R,/R, = 0.05188) 00085 as compared to the value 0.05158 & 0.00077 reported by
Nutzman et al. (2008). For the (b + y)/2 data we find R,/R, = 0.0507010 0005 as
compared to the value 0.049170-000% found by Winn et al. (2008b). The precision in
the optical R,/R, has been increased because the NICMOS data pins down all of the

other parameters that are correlated with R,/R,.

4.6 Ephemeris and transit timing

The NICMOS-only analysis resulted in the measurement of four distinct mid-transit
times, with uncertainties smaller than 45 s. These are given in Table (4.2). We
pooled together all of the independent measurements of mid-transit times from Winn
et al. (2008b), Nutzman et al. (2008), and this work, to derive a new transit ephemeris.
We fitted the times to a linear function of the integral epoch E,

T.(E) = T.(0) + EP (4.14)

where P is the period and T,(0) is the mid-transit time at some fiducial epoch. The
results were T,(0) = 2454456.78761 & 0.00014 HJD and P = 2.8758911 + 0.0000025
days. The linear fit had x? = 20.16 and 14 degrees of freedom. This is a marginally
unacceptable fit. The formal probability to find a value of x? this large is 15%.

159



©
W
o
LA RRRRRARRES LRRRRRERD)
il

o
N
~
IIIIIIIIIIIIIIIIIIIIIIIIIII
1

g
[STTITESTI IRTTORTITI FUTTTRSTCI INUTRCRIT] SRTRINICI ITARIT]

o

N

w
LALRLRLRLNERLRRRERLD|

1 " " " 1 i " i 1 n " L 1

4 6 8
Wavelength (um)

o
N
(@]

Figure 4-11 The planet-to-star area ratio, (R,/R,)?, as a function of observing wave-
length, based on a joint fit to the NICMOS data, the (b + y)/2 data of Winn et
al. (2008), and the IRAC data of Nutzman et al. (2008). The horizontal error bars
show the approximate wavelength range of each bandpass.
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Further transit observations are needed to distinguish the possibilities of a genuine
period variation, a statistical fluke, and underestimated timing errors. Fig. 4-12 shows

the O—C (observed minus calculated) timing diagram.
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Figure 4-12 Transit-timing variations for HD 149026b. The differences between ob-
served and calculated mid-transit times are plotted. The last 4 points represent the
new NICMOS observations. The dashed lines show the 1o range in the calculated
times according to the linear ephemeris presented in § 4.6.

4.7 Discussion of broadband results

We have presented observations of four transits of HD 149026b at near-infrared wave-
lengths with the HST NICMOS detector. The NICMOS data place the strongest
constraints yet on the geometrical system parameters. In particular, the increased
precision of the measurement of the normalized semi-major axis (a/R.) leads to an
improved estimate of the mean stellar density, which was then coupled with stellar
evolution models to constrain the stellar mass and radius. Improved knowledge of the

stellar mass and radius leads to greater precision in the planetary mass and radius.
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We have found a larger stellar radius, and a larger planet-to-star radius ratio, than
previous estimates. As a result of these two factors, we have also found the planetary

radius to be larger than previously thought. The planet has “grown” by about 7%.

Despite this increase, our results are still consistent with the contention that
HD 149026b is highly enriched in heavy elements. It is still smaller than expected for a
hydrogen-helium planet with the given mass and degree of stellar irradiation (Burrows
et al. 2007). For comparison, the tabulated models by Fortney et al. (2007) predict
a 1.3 Rjyp hydrogen-helium HD 149026b at an age of 1 Gyr. A variety of models
have been developed to estimate the heavy-element content of HD 149026b (Sato et
al. 2005, Fortney et al. 2006, Tkoma et al. 2006, Burrows et al. 2007), most of which
suppose that the metals are confined to an inner core of material beneath a hydrogen-
helium envelope. Other physical considerations in these models include the equation
of state for heavy elements at core pressures, atmospheric opacities and the upper
boundary condition where energy is delivered from the star. To determine a revised
estimate for the heavy-element content, we used the tabulated models provided by
Sato et al. (2005) and Fortney et al. (2007), and interpolated the tabulated results
as appropriate for the planetary radius, planetary mass, and degree of irradiation
that follow from the parameters determined from the NICMOS data. We find a core
mass in the range of 45 — 70 Mg, depending on assumed stellar age and core density.
Thus, the interpretation of the planet as highly enriched is unaffected, although the
required amount of enrichment is slightly reduced.

It is also interesting that the planet-to-star area ratio, (R,/R,)?, was found to
be 2-30 larger in the NICMOS band (1.1-2.0 pum) than in the optical band (0.45—
0.55 pm) or mid-infrared bands (6.5-9.5 pum), while the results for the latter two
bands are in agreement. Caution dictates that this discrepancy should not be over-
interpreted. It is possible that the discrepancy is at least partly the result of unre-
solved systematic errors in any of the data sets. We have already noted that the noise
in the NICMOS data exceeds the photon noise level by a factor of 2, and is not well

understood.

However, it is also worth considering that this wavelength-dependent variation
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represents selective absorption by constituents in the outermost layer of the planet’s
atmosphere. Molecules with strong absorption bands at near-infrared wavelengths
would cause the transit to appear deeper at those wavelengths. Strong bands are
expected for the common molecules CO, H,0O, and CHy (Brown 2001, Hubbard et
al. 2001, Seager & Sasselov 2000). If this were the case, then a detailed analysis of
the NICMOS spectrophotometry—breaking it down into smaller wavelength bins, as
opposed to summing the entire first-order spectrum—might be used to identify some
constituents of the planet’s atmosphere. In addition, more care would be needed in
choosing which radius to use in the comparison with models of the planet’s interior.
It is beyond the scope of this chapter to analyze the wavelength dependence of the
transit depth across the NICMOS band, or to compute a realistic atmospheric model
to see if the contrast between the optical, near-infrared, and mid-infrared results can
be accommodated. We can, however, perform an order-of-magnitude calculation to

check on the plausibility of this interpretation.

Let z(7) be the height in the planet’s atmosphere at which the optical depth
is 7 for a path from the star to the observer, as diagrammed in Fig. 4-13. This
height is measured relative to an atmospheric base radius Ry, where the planet is
optically thick at all relevant wavelengths. The height z(7) depends, in part, on the
wavelength-dependent opacity and the density profile of the atmosphere. We define
R,()\) as Ro + 2(7 = 1) and § = (R,/R.)% If we assume that z(1) < Ry, then the

transit depth is approximately linear in z(1):

5 = B‘ifR_j(liQ ~ (%)2 {”22(01)]' (4.15)

Next, we consider the difference in § as measured in two distinct wavelength bands:

_ 2R,
01—y = R [21(1) — 22(1)]

2Ry
=7%3—

0z (4.16)

where we have defined the height difference §z = 21(1) — 22(1). The height difference
§z reflects differing levels of absorption in the two bands. Solving for 6z in Eqn. (4.16)
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Figure 4-13 Illustration of wavelength-dependent absorption. Shown are some rays
that skirt the planetary atmosphere on their way to Earth. At some height z(7) above
the fiducial radius Ry, the ray (parameterized by path length s) has an optical depth
of 7 (solid line). Light that follows paths with z < 2(7 = 1) are mainly absorbed.
The height z(7 = 1) corresponding to optical depth of unity depends on wavelength,
giving rise to a wavelength-dependent transit radius.

For HD 149026b, to evaluate the idea that the larger near-infrared measurement
of § is due to molecular absorption, we assume that Ry is the optically-derived radius
(Ry = 0.757 Ryyp) because the optical spectrum is expected to show comparatively
weak absorption features (Brown 2001, Seager & Sasselov 2000). Using Eqn. (4.17),
the 3.5 x 10~ difference in § between near-infrared and mid-infrared wavelengths
implies 4z ~ 2500 km (4% of Ry). To judge if this is realistic, we are interested in
expressing 6z in units of the pressure scale height, for which an order-of-magnitude
expression is H = kT'/um,g,, where T is a representative atmospheric temperature,
f is the mean molecular weight of the atmosphere, m,, is the proton mass and g, is
the surface gravity. Using the surface gravity that was determined from our analysis
of the optical light curve (g, = 1535 cm s72), and assuming a Hy~He atmosphere with
T = 2300 K [as measured at 8 pum by Harrington et al. (2007)], we find H =~ 530
km, and Ny ~ 5. If instead we use the planet’s predicted temperature at thermal

equilibrium with the incident stellar radiation (T" = 1700 K), we find H ~ 400 km
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and Ny =~ 6.

If we assume further that the absorbers have an exponential density profile,

z

pz) = p(0)exp (), (4.18)
where h is the density scale height, then we may express z(7) in terms of the opacity
o of the absorbing molecules, as follows. By integrating the optical depth 7 across

the optical path at height z < Ry (as illustrated in Fig. 4-13), where a change of
path length ds results in a change in optical depth d7 as

S

exp [_f;g <\/(1 +2/Ro)” + (s/ Ro)? — 1)] d

dr = —sop(0) , (4.19)
0+ 2/ Ro)? + (57 Ro? Bo
we find
Z(hT) ~ In (2'“’7_” (0)) ~1. (4.20)

In general, h may be different for each atmospheric constituent. If we assume that the
components are uniformly mixed throughout the atmosphere, then h is independent
of composition, and the difference between two heights z;(7) and 23(7) at two distinct
wavelength bands with different opacities o1 and o can be written independently of
the optical depth, as

dz=2z1—2 = hln (01) . (4.21)

g2

If we assume further that the temperature scale height is large compared to the

pressure scale height, then h &~ H and Ny = In (01/03).

We may now judge the plausibility of this interpretation with reference to the
typical opacities and widths of molecular absorption features. For strong molecular
bands and atomic lines, the ratio of the in-band opacity to the nearby continuum

opacity may be as large as 10* (Brown 2001, Seager & Sasselov 2000), yielding a
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maximum height difference of Ny & 10 scale heights within the absorption band.
The NICMOS band from 1.1 — 2.0 um includes strong rotation-vibration molecular
absorption bands due to H,O, CO and CH4. An example of a very strong absorption
band is a water band centered at 1.4 ym, spanning approximately 10% of the effective
filter width. If we assume that this is the dominant spectral feature in this band,
then the result of Ny &~ 5 across the entire bandpass translates into Ny = 50 within
the bandpass of the absorption feature. This is larger than the criterion Ny =~ 10
mentioned above.

Therefore this interpretation seems to require significantly more opaque or broader-
band absorption features than are seen in the models. In one sense the result of the
order-of-magntiude calculation is discouraging, as it may make it seem more likely
that the discrepancy in depths is due to systematic errors. On the other hand, if the
noise were well-understood and the discrepancy could be confidently proclaimed, then
it would be the sign of new and interesting atmospheric physics that is not described
in the standard models.

Some priorities for progress on this issue include an examination of the wavelength-
dependence of the transit across the NICMOS band (see the next section), and the
observation of the system with other NICMOS grisms, which are reputed to be more

stable than the G141 grism used here.

4.8 Transmission spectroscopy

To further assess the larger-than-expected transit depth seen with the broadband
light curve, we performed transmission spectroscopy over the NICMOS bandpass
from 1 — 2 pum. To this end, we divided the rectangular aperture described in § 4.2
along the dispersion axis into twenty-four uniformly sized sub-apertures. Twenty-
four wavelength “channels,” as constructed here, correspond to a sub-aperture width
approximately equal to the full-width-at-half-maximum of the defocused stellar PSF.
Each sub-aperture is indexed by a wavelength which is calculated via the relation in

Eqn. (4.1) where now Az is the z coordinate of the sub-aperture center relative to
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the center of the undispersed image. We perform aperture photometry on each sub-
aperture as described in § 4.2 generating twenty-four transit light curves for each of
four transit observations. Total counts are suppressed at either end of the wavelength
range as the G141 filter’s transmission has sharp but not perfectly vertical profiles at
the edges.

We fit, via Levenberg-Marquardt, a transit light curve to each wavelength chan-
nel and for each visit. We require that the global orbital parameters describing the
transit (inclination, a/R,, time of mid-transit) be consistent across all wavelengths
and visits, but we allow the transit depth, out-of-transit flux, and systematic cor-
rection parameters ( f?, ¢y, ¢¥, 3, ¢4 ) to vary freely with wavelength. We fixed
the limb-darkening quadratic parameters to those values found from the broadband
analysis®.

Figure (4-14) shows the systematic-corrected light curves spanning the wavelength
range of the NICMOS G141 filter. It is obvious from this figure that the transit
depth is a strong function of wavelength. The variation is nonlinear in that there are
banded features near 1.2 and 1.6 micron. Such features are suggestive of absorption
features due to molecular absorption [as may have been identified by Swain et al.
(2008)]. Figure (4-11) plots the transit depth, with error bars estimated from x?,
versus wavelength. The minimum absorption level of the spectrum is consistent with
the depth measured in the optical [at 0.5um, the 68% confidence region is indicated by
the blue bar in Fig. (4-14)]. This result is encouraging as the transit depth measured at
0.5um should correspond to the minimum transit radius, Ry (Brown 2001). However,
the strength of the absorption near 1.2 and 1.6 micron is unphysically large compared
to expectations making standard assumptions. In particular, using the formalism
from the previous section, the feature at 1.2 micron corresponds to an opacity source

for which Ny > 15.

Investigating further, we computed an expected transmission spectrum for HD

6While there is no reason to suspect the limb darkening parameters are constant for all wave-
lengths in the NICMOS band, we find that fixing u; and ug across all wavelengths has a negligible
effect on the transmission spectrum as compared to wavelength dependent models. For example, we
experimented with limb darkening models for which u; and/or ug varied linearly with wavelength
and observed no significant difference in the transmission spectrum.
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149026b following the formalism provided by Brown (2001). In detail, we populated
our model atmosphere with the most important molecules in the NICMOS band as
determined by their respective wavelength dependent opacities. These molecules are
H,, He, Ny, CO, H,0, CHy, and NH3. Opacities for each molecular species are spec-
ified using the values tabulated in the HITRAN database (Rothman et al. 1998).
Atmospheric height z is related to temperature and pressure by solving the equation
of hydrostatic equilibrium assuming a pressure-temperature profile for HD 149026b as
specified by Fortney et al. (2006). We then calculated partial pressures and densities
at several atmospheric heights for the mixture of molecules assuming chemical equi-
librium. We then integrated the total wavelength-dependent opacity, oiot()), along
an optical path tangential to the exoplanetary surface at height z, as diagrammed in
Fig. (4-13). The transit depth at wavelength ) is defined by the atmospheric height
z(7) for which the optical depth is unity, 7 = 1, where d7 = —a4;(\)ds. The red
spectrum in Fig. (4-11) gives this calculated transmission spectrum at high spectral
resolution over the NICMOS G141 wavelength range. The green curve shows this
same spectrum after convolution with the expected PSF for our defocused observa-

tion.

The model transmission spectrum is clearly incompatible with the measured trans-
mission spectrum. The strong features at 1.2 and 1.6 micron occur at wavelengths
where the model spectrum suggests no significant absorption should occur. The ab-
sorption feature near 1.4 micron can be partly attributed to absorption by water,
however, the measured transit depth is still too large to be completely explained.
Currently, we have no model for the absorption features suggested by the data, how-
ever, it is possible the features seen are as a result of a yet-to-be-identified wavelength
dependent systematic with the G141 grism. Given the unusual systematics already
seen with this grism and filter, intuition would suggest this interpretation is plausible.
On the other hand, our atmospheric model may be too simplistic. While we have tried
to incorporate the most likely molecular atmospheric physics in our model transmis-
sion spectra, it may be the case that the strong absorption is due to non-molecular

absorption such as that due to Rayleigh scattering or collision-induced absorption by
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Figure 4-14 Measured transit light curves of HD 149026b at the same transit epoch over twenty-four uniformly distributed
wavelength channels covering the NICMOS G141 1.1 — 2.0 um bandpass. The solid blue curves give the best fit transit model.

The data have been corrected for systematics due to intra-orbital variation and inter-orbital offsets. The channel numbers
increase from blue to red wavelengths.
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Figure 4-15 The transmission spectrum from 1.1 —2.0 pm for HD 149026b. The black
points are the transit depths estimated from a global analysis of twenty-four transit
light curves for each of four transit epochs over distinct wavelengths as measured with
NICMOS. The blue bar represents the 68% confidence interval in the transit depth
from a independent analysis of optical (0.5 um) transit data. The red curve is the
expected transmission spectrum, at high spectral resolution, modeled as described in

§ 4.8. The green curve is the same model spectrum convolved with the expected PSF
for the NICMOS observation.
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H,. Basic scaling arguments show that these effects are unlikely to completely account
for the anomalously large transit depth (Brown 2001). More likely is that the strong
absorber, should it exist, is atomic in nature. We expect the atmosphere to be quite
diffuse at the extreme height implicated by the measured transmission spectrum at
1.2 pm, for example. At such heights, molecules should be rare. A carefully tailored
distribution of ionized particles may yield continuum or wide band absorption in the
NICMOS band, possibly accounting for the transit depth features at 1.2 and 1.6 ym.
We do not speculate further on such atomic absorption as it is beyond the scope of
this chapter. Another possibility accounting for the stronger than expected absorp-
tion is that we may have simply misrepresented the opacities of the rotation-vibration
modes of the specified molecular families. Indeed, the HITRAN database is not suited
for use at the high temperatures expected in the exoplanet atmosphere. Our model
will need to be recalculated using the forthcoming high temperature complement to
HITRAN, HITEMP (Rothman, private communication) and possibly additional high
temperature line-lists (e.g., Nassar & Bernath 2003).

While the transmission spectrum in Fig. (4-11) is intriguing, little may be con-
strained from it about the atmosphere of HD 149026b assuming only simple atmo-
spheric models as described above. We intend to revisit our analysis discussed in this
section with new observations and models as soon as they become available.

We thank G. Torres for helpful discussions concerning the determination of stellar
parameters. We thank L. Rothman for helpful discussions concerning the HITRAN
molecular opacity database. This work was supported by NASA grant HST-GO-11165
from the Space Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Incorporated, under NASA contract NASS5-

26555.
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Simultaneous Fit

Parameter NICMOS only NICMOS Spitzer 8 um  (b+1y)/2
Wavelength range [um| 1.1-2.0 1.1-2.0 6.5-9.5 0.45-0.55
Cadence [secs]? 7.2 7.2 4.1 8.6
Normalized error® 0.00044 0.00044 0.0026 0.0020

R,/R, . 0.0541Eg§§§§$3 0. 05439:%50)5;;323 0.051883:(8];3885% 0. 050702%33539322
(Rp/R.)* x 100 02933700576 0.2949T00ss  0.26927( 008 0.25700505

i [deg] 84.55%02° 84.5058

a/R, 6.0175:17 5.9910%

b=acosi/R, 0.57170:0%3 0. 574+3 oas

Ingress Duration [hr]°
Transit Duration [hr]¢

ozt it
3.2475 15

3-25—0.15

o2y
3.247g 5

0.227;_“81;3};
3.237515

M, [Mp) 134550000 1.3420:050
R, [Ro] L541700  1.534%000
pe [g em™] 0497%00s  0.492* ol
log g, [cgs] 4.189t3;3§§’ 4.192100%3
Distance [pc] 83.0128 82.675%
Stellar Age [Gyr] 2. 6“:83 2.6752

L, [Lg) 3.0310:%3 3.0010:3

M, [Myyp)° 0.36870:013 0.36679:014

R, [Ryup) 0.813%“81 (ggg 0.811:):81;339, 0. 775:811332 0.757581;13%
pp [g em™] 0857009 0.85%0 09 0. 981L0 11 1052515

log g, [cgs]® 3.132+5:929 3.127+0-933 3.186+5:532

Table 4.1 System Parameters of HD 149026. *Defined as the median time interval
between data points in the composite (phase-folded) light curve. ®Defined as op/F
where o is the rms residual between the data and best-fitting model, and F is the
out-of-transit flux. “Defined as the time between first and second contacts, or between
third and fourth contacts. (In our model these durations must be equal.) 9Defined
as the time between the first and fourth contacts. ®Using K = 43.34+1.2 m s™!, from
Sato et al. (2005).

Epoch Mid-transit time [HJD] Error

0 2454456.78751 0.00030
1 2454459.66379 0.00023
17 2454505.67688 0.00034
31 2454545.94133 0.00047

Table 4.2 Mid-transit times, based on the NICMOS data.
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Chapter 5

An Empirical Upper Limit on the

Oblateness of an Exoplanet

5.1 Introduction

To first order, an exoplanet is shaped like a sphere. The spherical approximation is
appropriate for a non-rotating, self-gravitating, fluid planet in isolation. In general
though, the shape of an exoplanet is affected by two components: one owing to ex-
ternal gravitational influences and the other to exoplanetary rotation. The surficial
shape of tidally influenced objects is due, in part, to the presence of tidal “bulges”
formed in response to a gravitational potential gradient. For example, perturba-
tions to Earth’s spherical shape (in its oceans and atmosphere) are as a result of the
gravitational tug of the Moon and Sun (Murray & Dermott 2000). An analogous per-
turbation is expected in the case of “Hot Jupiter” exoplanets, this time as a result of
tides raised by the nearby host star. Some satellites, notably the Moon to the Earth
and Mercury to the Sun, have “frozen-in” bulges existing in equilibrium with their
companion (Murray & Dermott 2000). Exoplanets incapable of establishing perma-
nent bulges, such as is expected with gas giants, are likely to suffer from dissipative
effects in their interiors, relinquishing orbital and rotational energy as tides are raised
(Goldreich & Soter 1966, Peale 1999, Murray & Dermott 2000). A measure of exo-

planetary shape in combination with an understanding of these dissipative timescales
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(see, e.g., Hut 1981) will give clues to the orbital evolution of exoplanet and star.

Even in isolation from tides, properties intrinsic to the exoplanet shape its surface,
primarily rotation (Hubbard 1984, Murray & Dermott 2000). Uniform rotation of a
self-gravitating fluid should yield an oblate spheroidal equilibrium shape having min-
imum radial extent being along the axis of rotation (Eddington 1926). The deviation
from sphericity can be dramatic for fast rotators. Saturn and Jupiter, for example,
rotate rapidly enough (with rotational periods of 9.9 hr and 10.2 hr, respectively)
such that their respective oblateness is plainly evident in full disk images. The oblate
spheroidal shape is a valid approximation for planets within our own Solar System
(Murray & Dermott 2000) and is a likely model for exoplanets not under strong tidal
influence by their host. Ignoring for the moment the effects of external gravitational
perturbations, a measurement of planet shape would yield the planetary rotation rate,
likely a key observable describing the planet’s formation history!.

For these reasons and more (such as the enhancement in the polarization of scat-
tered starlight by an oblate exoplanet; Sengupta & Maiti 2006 ) it is of great interest
to determine the shapes of planets outside our own Solar System. Fortunately, exo-
planetary transit light curves are sensitive to the line-of-sight projected shape of the
transiting exoplanet. In particular, it is possible to utilize the transit light curve to
constrain the oblateness of the exoplanet, f, defined as

Req - Rpol

f=

(5.1)

in terms of the polar and equatorial radii of the oblate spheriod (Murray & Dermott
2000). Additionally, with the transit light curve, we may constrain the obliquity
angle, 6, measured between the orbital spin angular momentum axis and the polar
axis. That exoplanetary oblateness could induce an observable light curve signature
had been reported first by Seager & Hui (2002) and investigated further by Barnes
& Fortney (2003). Both appreciated the need for high precision light curves for an

unambiguous detection of an exoplanetary oblateness signature. For example, in order

1A measure of oblateness is not the only route to a constraint on planetary rotation. See, for
example, Speigel et al. (2007) for a novel route.

178



to detect the rotationally induced oblateness signature in the transit light curve for
the case of a synchronously rotating HD 209458b, one would need to measure the

light curve to better than 0.1 parts-per-million (ppm) (Barnes & Fortney 2003).

Currently, no transit data is available at this precision, however in the near future,
space-based missions, such as the recently launched Kepler mission (Borucki et al.
2009), will likely provide many high-precision light curves for short period exoplanets.
It is important, therefore, to develop the necessary tools to assist in precisely mea-
suring exoplanetary oblateness from transit light curves. In this chapter, we present
a fast, efficient method for the calculation of light curves of oblate exoplanets. We
then demonstrate this tool by analyzing seven high-precision transit light curves of
the well-studied Hot Jupiter HD 189733b (Agol et al. 2009), constraining, for the
first time, parameters relating to an exoplanet’s oblateness. Finally, we calculate
constraints on oblateness for the eccentric transiting exoplanet HD 80606b (Naef et
al. 2001, Moutou et al. 2009) with a single, simulated high precision Hubble Space

Telescope transit light curve.

This chapter is organized as follows: In § 5.2, we review some physics involved
with exoplanetary oblateness, primarily those associated with exoplanetary rotation.
Here, we also pause to consider other effects that may compete or mask the signal
of planetary oblateness in the transit light curve. In § 5.3, we describe a numerical
algorithm to quickly calculate transit light curves of oblate exoplanets via a semi-
analytic, quasi-Monte Carlo integration technique. In § 5.4, we present seven Spitzer
IRAC 8 um transit observations of HD 189733b. In § 5.4.3, we present results of
a Markov chain Monte Carlo (MCMC) analysis of the combined light curve of the
seven transit light curves constraining, in addition to standard transit parameters, the
projected oblateness and obliquity. In § 5.5, we summarize our methods and results,
highlighting extensions of the work completed in this chapter. We conclude § 5.5 by
asking what may be inferred with regards to oblateness from a single high-precision

transit light curve for HD 80606b.
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5.2 Physical review

In this section we review the physics needed for interpreting a measurement of exo-
planetary oblateness. Our discussion follows Murray & Dermott (2000) pp. 150 ff.,
Peale (1999) and is similar to the treatments in Seager & Hui (2002) and Barnes &
Fortney (2003).

5.2.1 Relevant timescales

The tidal influence of a star on a close exoplanet can result in changing orbital param-
eters owing to friction in the planet’s interior. In particular, tidal oscillation forced
by the stellar gravity in a rotating exoplanet’s bulk are frictionally damped in such a
way that the axis of the tidal “bulge” lags behind the line connecting the centers of
planet and host. As a result, a torque is established on the planet, opening a channel
of energy and angular momentum transfer (Murray & Dermott 2000, Peale 1999).
The final result of this transfer is synchronous rotation of planet and host (i.e., 1:1

spin-orbit synchronization). The characteristic timescale for synchronization is given

by

R?nean MP 2 a °
~ = eGir) e () () o2

where Rpean = \/m, a is the orbital semi-major axis, wpim is the planet’s
primordial rotation rate, M, is the planet mass, M, is the stellar mass, and Q is the
specific dissipation factor of the tidal oscillator (Goldreich & Soter 1966, Hubbard
1984, Guillot et al. 1996, Murray & Dermott 2000). The dissipation factor Q is
poorly known even for Solar System planets (Goldreich & Soter 1966). A detection of
oblateness in combination with a precise estimate of the stellar system’s age could be
used to derive the exoplanetary @ (Seager & Hui 2002). Additional information about
the evolutionary state of the orbital system is also encoded in the obliquity angle 8
as described as follows. If the planet is in a tidally influenced phase, a non-zero

obliquity would bring the tidal “bulge” out of the orbital plane as the planet rotates.
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A torque in the perpendicular direction to the orbital plane will be established and,
as a result, the obliquity angle will increase to some quasi-equilibrium angle related to
the rotation rate. Upon reaching this quasi-equilibrium configuration, the obliquity
will reduce to zero in a similar time as the time to the march to synchronous rotation
(Peale 1999). For a fixed circular orbit, this equilibrium obliquity is § = 0 and
the timescale for zeroed obliquity and synchronous rotation are equivalent (Peale
1999). It is possible, however, to sustain a non-zero obliquity in true equilibrium for
exoplanets in a so-called Cassini state. Here, if the stellar and orbital spin axes are
initially precessing (by torques set up by other planets, or satellites for example), the
final equilibrium state is that in which the spin axes precess at the same rate about a
common precession axis. In this case, the equilibrium obliquity may be significantly
different from zero (Winn & Holman 2005). Notably, the Earth-Moon system are in
a Cassini state (Ward 1975).

Planets with orbital planes tilted relative to the stellar equatorial plane or having
non-zero eccentricities tend to coplanarity and circular orbits, with timescales for
the associated processes being longer than the timescale of synchronization.? (Hut
1981). Planets with large orbital eccentricity (and with close periastron distances),
are likely to achieve pseudo-synchronous rotation in that the exoplanet rotates at
the instantaneous orbital velocity at periastron (Hut 1981). For HD 80606b, such
a configuration seems plausible, however, the dynamics are not so simple owing to
the complex interaction between HD 80606 and its nearby companion HD 80607.
In particular, the large eccentricity of HD 80606b may have been pumped from a
primordial, wide, circular orbit to its current state (Wu and Murray 2003) from
gravitational perturbations by HD 80607 (the so-called Kozai effect; Kozai 1962).
Spin-orbit obliquity is a trademark consequence of the Kozai process. Spin-orbit
misalignment has in fact been detected for HD 80606b (Winn et al. 2009b). The
slow rotation rate expected for a pseudo-synchronous HD 80606b (on the order of
days) may not be realized owing to these effects. Thus, it may be possible that HD

80606b is rotating fast enough to induce a measurable oblateness. A constraint on

2Qrbital eccentricity couples to obliquity in a more complicated manner (see Peale 1999).
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the rotation of HD 80606b will be of great interest to dynamicists.

We may estimate the synchronization time 7 for HD 189733b to help in our
interpretation of any measurement of oblateness. Using M, = 0.81 My, M, =
1.14 Mjupiters Fmean = 1.14 Ryupiter, @ = 0.031 AU (Torres et al. 2008) and Q = 10°,
Wprim = 1.7 x 107* 87! (Jupiter’s values; Guillot et al. 1996), we find 7 ~ 10° yr.
It is therefore a likely conclusion that the planet has reached synchronous rotation
having compared the calculated 7 to the age of HD 189733 ( = 6 + 5 Gyr; Torres et
al. 2008). The fact that HD 189733 has a negligible measured orbital eccentricity
corroborates this conclusion (Agol et al. 2009). Therefore, we expect HD 189733b to
be rotating once every orbital period, with the length of the “exoday” being ~ 2.2
days. Additionally, the spin-orbit obliquity angle should be near zero. If our the-
oretical expectations are physically accurate, rotationally induced oblateness of HD

189733b should be small (see below).

5.2.2 Oblateness and rotation

The relationship between oblateness, f, and the rotational period P,,, may be estab-
lished with the following planetary model (following Murray & Dermott 2000). We
consider an exoplanet that, as a result of rotation or otherwise, is an oblate spheroid,

whose external gravitational potential may be written as

e

M‘ n
Vgravity (7, ) = —Gr E ) Pr(cos 0)] (5.3)
where J, are the spherical moments of the mass distribution® , and P,(cos) is the

Legendre polynomial of degree n. For an exoplanet with rotational angular speed

Q) = 27/ P, the centrifugal potential* may be written as

1
VLentrifugal(ﬂ 9) = ‘3‘Q27'2 [PQ(COS 0) — ].] . (54)

Req +1
3, = Mleeq o T T Pa(p)p(r, w)2mr? dp dr
4The centrifugal potential is the scalar that describes the conservative “force” felt by otherwise

unforced test particles in a uniformly rotating non-inertial reference frame.
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For an exoplanet with symmetric hemispheres, Jar4s = 0 for all integers k>0 We
assume that even moments Jo(k4+1) With & > 0 are negligible relative to Jo so that the

total potential may be written as

‘/total(ra 0) = -

r r3d 3

GM,R? 1 1
&My + ( P47, + —QQT2) Pa(cosf) — §Q2r2 (5.5)

The surface of the planet must lie on an equipotential of this potential. As such, we

may relate equatorial and polar radii via Vigtal(Req, 5) = Viotal (Rpol, 0):

M, GM,R?
J2+QQR§Q> = _C; Pt g (5.6)
eq

pol

GM, 1(GM,
R 2\ Req

which in turn requires that to leading order in f [Eqn. (5.1)]

3 1R,
f o= §J2+§GMP' (5.7)
Solving for Py, = 27/, we find
R3
Pt = 2 -4
ot 7r\/GM,, (2f — 3J5)
R?nean
= 27 TR (5.8)
GM, (2f —3J2) (1 - f)

This equation differs from Seager & Hui (2002) in the addition of the J; term and
from Barnes & Fortney (2003) in that we did not immediately relate the exoplanetary
moment of inertia to Jo, 2, and f via the Darwin-Radau relation (see § 5.5). For a

planet with uniform density it can be shown that (Hubbard 1984)

102R3
Jo = = —1. (5.9)
2 GM,
In this case, Eqn. (5.8) becomes
R3
Py = 2 =
TV ieM, s
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A . — (5.10)
iGM,f (1 - f)Y

The J> may be measured for Solar System planets by monitoring elliptical orbits of
satellites whose orbits precess in response to the aspherical gravitational field of their
host. Here the parameter J, appears as a parameter competing with the oblateness
f in the determination of P,.. However, should we have some expectation of the
rotational period (based upon the timescales presented above, for example) it may
be possible to estimate .J, with a measurement of oblateness. Table 5.1 tabulates f
and J, for planets in our Solar System. It should be noted that the uniform density
approximation for f [by combining Eqns. (5.9) and (5.7)] is incapable of producing

the oblateness seen in Saturn or Jupiter, for example.

A minimum rotational period Ppi, may be set by considering the limit f = 1,
however, a more physically interesting bound on f is set by the rotational-breakup
limit. Rotational breakup will occur for oblateness fyreax when the outward centrifugal
acceleration, acey; is equivalent to the gravitational acceleration, g. Considering the

acceleration at the equator (6 = 7/2, r = Re),

Geent = 2°Req (5.11)
GM, 3GM,
Rz 2 RZ
GM,,( 3 )
= 1-20,). (5.12)
RZ, 2

Then, %2—5[%‘ = (1 —3/2 J,)Q* at breakup (acen; = g). Therefore, by applying

Eqn. (5.7), we have

1 3

fbreakup = ‘2‘ + ZJ2 (513)
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Table 5.1. Solar System planet parameters

Planet  Oblateness f Jo

Mercury 0.00012 0.000060

Venus 0.00009 0.000004
Earth 0.00350 0.001083
Mars 0.00520 0.001960
Jupiter 0.06487 0.014736
Saturn 0.09796 0.016298

Uranus 0.02293 0.003343
Neptune 0.01708 0.003411

References. — Murray & Dermott
(2000), Barnes & Fortney (2003),
Hubbard (1984)

5.2.3 Competing effects in the transit light curve

Other effects may interfere with the detection of oblateness from transit light curve
data or masquerade as a rotationally induced oblateness. In this section, we briefly
discuss possible contaminants.

Rayleigh scattering, cloud scattering, refraction, absorption and diffraction will
affect the measured transit radius, however will not, to first order, induce a non-zero
projected-oblateness when the underlying total potential has spherical equipotentials
(Seager & Sasselov 2000, Hubbard et al. 2001, Hui & Seager 2002). Refraction (also
referred to by Hui & Seager (2002) as “atmospheric lensing”) will weakly affect the
transit light curve; the observer’s distance to the lens is much greater than the lens’
distance to the source, making angular deviations at the lens imperceivable to the
observer. Diffraction is likely negligible for the same geometric reasons as with lensing
and additionally unlikely due to the incoherent nature of starlight emitted from the
stellar surface (Hui & Seager 2002). Inhomogenieties in cloud cover could organize in

such a way to generate an oblate signal, however, these inhomogeneities would have
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to be large in extent to change the light curve appreciably (Hui & Seager 2002).

Companions of the exoplanet may induce an oblateness signal in the transit light
curve. Moons, if close to their host but displaced in projection, would introduce
higher moments in the projected shape of the exoplanet-moon combination. For the
case of HD 189733b, Pont et al. (2007) ruled out orbiting moons larger than 0.8 Rg
using a high precision HST light curve. Rings around an exoplanet, when viewed
at favorable orientations, would likely yield a noticeable oblate-like signal in excess
of that expected from rotation alone (Barnes & Fortney 2004, Ohta et al. 2009).
Using an oblate model to fit light curves to ringed-exoplanets would therefore have
an advantage over a purely spherical model. It is a reasonable assumption that tidally
locked planets, such as is likely for HD 189733b, will have ring systems that are in
the orbital plane as opposed to being at tilted viewing angles thereby making their
detection less likely (Pont et al. 2007).

Finally, stellar effects may contribute to asymmetry or deformation of the transit
light curve (see, e.g., Czesla et al. 2009). Stellar oscillations may be present in the
data as fluctuations in the received flux at the 107> level over the course of a transit
(Hui & Seager 2002). These fluctuations are likely to manifest themselves in random
fashion resulting in “bumps” and “wiggles” impeding a measurement of oblateness
or any other transit parameter (see Chapter 3). Stellar variability is present at the
1% level at optical wavelengths for the case of HD 189733b; this variability may be
damaging for any attempt at accurate parameter estimation (Pont et al. 2007). Non-
radial brightness profiles on the projected surface of the star would naturally lead to
asymmetry in the transit light curve, the most dramatic examples of are as a result
of star spots (as may have been seen with TrES-1; see Alonso et al. 2004, Rabus et
al. 2009 for evidence for and Winn et al. 2007 for a non-detection of star spots).
To combat the asymmetries resulting from spots and variability, we may make our
observations farther into the infrared. For example, the effect of a star spot on the
light curve would scale as the product of the ratio of intensities of the spot to stellar
surface and the square of the ratio of spot radius and stellar radius (Silva 2003, Winn

et al. 2007). At 8 micron (where the HD 189733b observations were made), a typical
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solar-like spot would induce an anomaly in the transit light curve at the 5 x 1076

level [using temperatures and spot sizes from Steinegger et al. (1990)].

5.3 A numerical method for computing transit light
curves of ellipsoidal exoplanets

Our goal in this section is to provide a method for fast, stable calculation of light
curves of ellipsoidal exoplanets (so that the projection of the body on the observing
plane traces an ellipse®). Ideally, our algorithm would be able to produce arbitrary
precision light curves in times conducive for use with iterative parameter estimation
codes. In particular, we utilize a Markov Chain Monte Carlo (MCMC) algorithm
to produce posterior parameter distributions. Proper convergence of these posterior
distributions may require on the order of millions of executions of the light curve
calculation. Seager & Hui (2002) and Barnes & Fortney (2003) both provide details
for oblate light curve calculation, however, the time required for computation was
likely of little concern.

Figure 5-1 illustrates the basic geometry of the calculation. Here an ellipse (the
projected ellipsoidal exoplanet), with minor-axis length b and major-axis length a,
obscures some portion of a circular disk (the stellar disk). The projected-oblateness,

f , is given by

~

f=(a—0b)/a. (5.14)

It is the projected-oblateness and the projected-obliquity, 3, that we will be able to
constrain from transit light curve data. Distances are normalized to the stellar radius,
R,, such that the circular disk has unity radius. The semi-major axis of the ellipse

is inclined by « from the line connecting the centers of the two ellipses®. The centers

5Tt can be shown that the projection of an ellipsoid onto any projective plane is an bounded by
an ellipse.
See http://www.geometrictools.com/Documentation/PerspectiveProjectionEllipsoid.pdf
6The angle a is equivalent to the projected-obliquity B only for a central transit (i.e. the two
angles are equal if the transit chord is along a diameter of the stellar disk).
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are separated by a distance . We assume the stellar disk has some brightness profile
I.(r,0) including, for example, a radial limb-darkening profile. The obscuring ellipse
is assumed to be dark and opaque. The fractional flux deficit, F(z;a, b, o, 1), due to

the obscuring ellipse is given by
Fzia,ba,I,) = - / L(r,0) r dr db (5.15)
Fy enc

where Fp is the total, unobscured flux and the integral is performed over the region
bounded by the intersection of the ellipse and circle, denoted as £ N C. Specializing,

we consider radial brightness profiles describing stellar limb-darkening given by

L(r,0) = L(r;uy,u9)
— L(1) [1 — (1 - m) —u, (1 - m)z] (5.16)

for two “quadratic” limb-darkening parameters u; and uy (Claret 2000) and Fy/I,(1) =
m(1 — 1/3u; — 1/6usy). We denote the quadratic-profile fractional flux deficit by the
form F(z;a,b, o, u1,u). For a = b= R,/R,, F(z;a,u1,us) = F(z;a,a,a,u, uy) has
a closed-form analytic solution in terms of elliptic integrals (Mandel & Agol 2002).
For general a, b, u1, us, the problem is more complicated since the intersection region
& N C may not be written in a closed form. Making matters worse, the integral over

the brightness profile is also non-analytic.

If the disk has uniform brightness (u; = uy = 0 for the quadratic limb-darkened
profile) the integral in Eqn. (5.15) may be calculated analytically by using the formula
for the area of an elliptical chord A(6y, 65, a, b):

A(61,05,a,6) = ab[(6, — 62) — sin(6, — 65)] /2 (5.17)

where the angles 6,5, specifying the location of the ellipse-circle intersections (in
Fig. 5-1, the points &1 and Z3), are measured relative to the semi-major axis and

from the ellipse center. To solve for F(z;a,b,a,0,0) we add (1) the area of the
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elliptical chord defined by the line connecting the points of intersection” and the
curve bounding the ellipse that is internal to the stellar disk to (2) the area of the
circular chord defined by the complement of this elliptical chord and &N C.
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Figure 5-1 Geometrical configuration for the transit of an ellipsoidal planet across
a spherical star. The deficit in flux due to the obscuring ellipse with semi-major
axis a, semi-minor axis b and orientation « a distance = from the center of the star
may be found by integrating the brightness profile of the star over the intersection
region of the ellipse £ and circle C (with intersection points & 2). An analytic closed
form solution for the flux deficit exists for the inscribed circle C of radius b; only the
intersection region less this circle, € N C/C need be integrated numerically.

Routines exist (see, e.g., Hill 1994) to quickly compute the points of intersection
of two ellipses. We find, however, that these algorithms are numerically stable only
for a portion of the configuration space. In some cases no intersections are reported
when using these routines for intersecting configurations. We choose, therefore, to
sacrifice runtime (by a small factor) to ensure stability by finding the intersections
of a “poly-line” representation of the obscuring ellipse and the disk as described as

follows. We find the coordinates in the z — y plane of points on the boundary of the

"In general, a circle and an ellipse may intersect at up to four distinct locations; for an exoplanet
with small oblateness and Rpyean & Rjupiter Orbiting a star with R, ~ R, only two intersections
(at most) are expected.
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ellipse at NV uniformly selected angles (from 0 to 27) that are measured relative to
the semi-major axis and from the ellipse center. These points in the plane are then
connected by line segments. The routine accumulates approximate intersections of
the ellipse and circle by (stably) determining the intersections of the circle and each

line segment. We choose N = 200 to ensure adequate precision.

Having determined the points of intersection, we must now tackle the integral
given by Eqn. (5.15) for non-zero u; and us. We could perform the two-dimensional
integral over £ N C [as was done by Seager & Hui (2002)] or integrate in the radial
direction, calculating the intersections of circle and ellipse at each integration step [as
was done by Barnes & Fortney (2003)]. For our application we preferred the former.
We found using standard integration techniques [see, e.g., Press et al. (2007) Chap.

4] over the integration region to be too slow for our application.

Instead, we choose to use Monte Carlo integration [see, e.g., Press et al. (2007)]. In
Monte Carol integration, the integral [ 4 f(z,y) dz dy over the region A is calculated
by sampling the function f(z,y) at N uniformly distributed random points in a region
R that covers A [for sample points (z,%) in R but not in A select f(z,y) = 0]. The

fundamental theorem of Monte Carlo integration is then expressed as

/f(:v,y) dz dy =~ Area[R] !(f)i _Vajl;[_(f)] (5.18)
A

where means ((-)) are calculated over the N randomly sampled points (Press et al.
2007). In general, Monte Carlo integration is reserved for integrals of high dimension
due to its slow convergence (1/v/N) compared to more traditional two-dimensional
integration methods. For our purposes, Monte Carlo integration reduces the diffi-
culty associated with bounding the intersection region £ N C. Some improvement in
convergence (~ 1/N) may be obtained by sampling R “quasi-randomly” as opposed
to randomly, using a low-discrepancy random sequence such as the Sobol’ sequence
(Sobol’” & Shukhman 1995, Press et al. 2007). The Sobol’ sequence is a sequence
of uniformly distributed values, s; for ¢ > 0, on the unit interval such that a given

sample at index I is mazimally distant from all samples ¢ < I. As we shall show,
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by carefully tailoring our problem, guasi-Monte Carlo integration yields oblate light

curves with speed and efficiency.

To this end, we first simplify the computational effort involved in the integral in

Eqn. (5.15) when using a quadratic limb-darkened profile [Eqn. (5.16)]:

F(z;a,b,a,u,ug) X w (1 _o %)

+/ [(ul + 2up) V1 — 12 —uy (1 —r2)] r dr df
£nc
= (1 —wu; —uy) X F(z;a,b,,0,0)
+/ L(r;uy,ug) T dr df (5.19)
enc

where F(z;a,b,,0,0) is the uniform-brightness solution (calculated as described
above) and I, (r; w1, us) = (w1 + 2u2) V1 — 72 — ug (1 — %) describes the non-uniform
component of the brightening profile, with I,(r = 1;uy,up) = 0 at the stellar “limb”.
As a result of this reorganization, the only non-trivial integral is of a function [Z, (; u1, us)]
that has low variance over any bounding region R covering the limb, making the ab-
solute error in the Monte Carlo integration smaller for a fixed N as compared to

integrating I, in full.

Second, we recognize that we only need to integrate over the intersection region
excluding the circle C of radius b inscribed in & [see Fig. (5-1)]. We denote this
smaller region as £ NC/C. The integral over C may be computed instead by utilizing

the analytic solutions, F(x;b,u1,uz), by Mandel & Agol (2002). Then Eqn. (5.19)

may be reduced to

F(z;a,b,,up,ug) X 7w (1 - % — %Z)

= (1 —uy —ug) x [F(z;a,b,,0,0) — F(z;b,0,0)]

—|—F($, b> Ui, u2)
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+/ L(r;u1, us) v dr db. (5.20)
enc/C

The only non-trivial component left to compute for our total solution, for which
we shall use quasi-Monte Carlo integration to solve, is the final integral in the sum,
Z= fene P f*(r; u1,ug) 7 dr df. For slightly oblate exoplanets or weakly limb-darkened
brightness profiles, the contribution of this integral in the total flux deficit is small
compared to the remaining terms in Eqn. (5.20). To be exact, it is easy to show the

absolute contribution of this term to the flux deficit is bounded by

1 Uy Us\ ! U1 + 2uq 9
e L R b—b
= 3 6) S T30, - 16w, < (@)
X 2
— abf— T (5.21)

1— 1/3U1 — 1/6'lL2

For comparison, the depth of the flux deficit in the absence of limb-darkening is ab.

Now we may focus on calculating Z via quasi-Monte Carlo integration. We must
select a covering region, R O £ NC/C, that can be sampled easily in the Monte Carlo
technique (€ NC/C cannot). Here, easily sampled means that we may take a two
dimensional Sobol’ sequence, uniform in [0, 1] x [0, 1], and analytically transform it
such that the transformed points uniformly sample our chosen covering region without
omitting any sequence points. Rectangular regions are easily sampled via a Sobol’
sequence, however, are poorly shaped to efficiently bound & N C/C, especially for the
crucial phases of ingress or egress (where the boundaries of ellipse and circle have
greater than one intersection point). A more useful sampling region may be found
via equal area coordinate transformations. A uniform sampling on the unit square
([0,1] x [0,1]) may be mapped to a uniform sampling over a region bounded by an
elliptical annular sector (see Appendix A for details). An elliptical annular sector is
the region bounded between two “concentric” ellipses (having equal axis ratio, center
and orientation with the obscuring ellipse) with semi-major axes a; < as and by the
rays (emanating from the common center) at angles 6, 6, relative to the semi-major
axis. We now only need to provide formula for the specific values of 6, 65, a; and as

for use in the integration routine as functions of the parameters z, a, b, and a.
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We specify 0, 5 and a; 2 with respect to the following cases [refer to Figure (5-2)

for illustrations of these phases]:

(I) One or fewer intersections between circle and ellipse.
(a) x > 1; The obscuring ellipse is external to the circle, Z = 0.
(b) x < 1; The obscuring ellipse is properly contained in the circle;
0,=0,0, =27 a; =0b, a; =a.
(II) Two points of intersection between circle and ellipse.
The circle and ellipse intersect at z-coordinates z; 2 at angles 6] , from the z-axis.
(a) z > 1; For each intersection z-coordinate ' = x;, angle §' = 6;
and final, solution angle § = 6;:
(1) |z| > |1/2'|; The line connecting the point of intersection and the ellipse
center [at (x,0)] intersects the circle exactly once: § =6’ — a.
(2) |z| < |1/2|; The line connecting the point of intersection and the ellipse center
[at (x,0)] intersects the circle twice: use 6 = f — o where the angle
6 =tan"'1 /+/1 — 22 defines the line segment that connects
the ellipse center and the point of tangency on the circle.
If @’ is the semi-major axis of the concentric ellipse “kissing” the circle® then
a; = max(b,a’), as = a.
(b) z < 1; Use the angle 6, defined by the intersection points of the inscribed circle
with radius b (C) and the stellar disk (C): 612 = £6, — @, a1 = b, a3 = a.

The integration region bounded by the elliptical annular sector as defined above
ensures that approximately 50% of its area covers the desired integration region
(8 ne /@ for all possible parameters z, a, b, and a. As a result of our reorgani-
zation and bounding, the time to compute F(z;a,b, o, u1,us) to one ppm precision
during ingress for a typical example takes on average 0.5 ms’. This completes the

description of our numerical algorithm. Refer to Seager & Hui (2002) or Barnes &

8Ellipses that are “kissing” intersect at exactly one point. The “kissing” ellipse semi-major axis
a’ is found via a (quick) linear search.

9n this test: z = 1, a = 0.155, b = 0.148, u; = 0.2, uz = 0.3, @ = 0.5. These parameters
correspond to a strongly oblate (f = 0.05) HD 189733b in transit. Coded in C++ and executed on
a 2.6 GHz Intel Core 2 Duo MacBook Pro.
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Figure 5-2 Quasi-Monte Carlo integration of the non-trivial component of the total
flux deficit for the stellar transit of an oblate planet. These figures demonstrate
graphically the transit phases and quasi-Monte Carlo integration regions as described
in the § 5.3 to evaluate the non-trivial integral Z [see Eqn. (5.20)]. The labels in the
upper left hand corners of each figure correspond to those in the text. In each figure,
the inner ellipse with semi-major axis a; (thin black line) gives the inner boundary
of the elliptical annular sector. The red rays indicate the angular extent of the sector
(with angles 6, 5 relative to the semi-major axis). The black and blue points are 1000
uniformly distributed Sobol’ points in the elliptical annular sector. The blue points
are those which fall in the integration region £ N C/C.
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Fortney (2003) for qualitative descriptions of transit light curves for oblate exoplan-
ets. We verified our computed light curves exactly match those computed for their

respective papers.

5.4 Spitzer transits of HD 189733b: An oblate

analysis

In this section, we present the results of an analysis of seven high precision transit
light curves of HD 189733b, for the first time constraining parameters relating to
oblateness (f and 3). All seven light curves were observed in a common mode using
the 8 micron channel of the InfraRed Array Camera (IRAC) instrument (Fazio et al
2004) onboard Spitzer. One observation is the subject of the work by Knutson et al.
(2007a) whereby the first light curve indicating a changing “phase” of an exoplanet
was collected. The remaining six observations are part of an observing program by E.
Agol and others [see Agol et al. (2007)] aiming to detect additional planets by ana-
lyzing times of mid-transit (Holman & Murray 2005, Agol et al. 2005). We find each
individual observation yields a light curve with a precision of roughly 500 ppm, mak-
ing these light curves some of the most precise currently available [with mid-transit
times precise to ~ 3 seconds (Agol et al. 2009, and this work)]. While other space-
based observations with HST can offer greater precision (see, for example, Brown
et al. 2001, Knutson et al. 2007b, and Pont et al. 2008), light curves observed in
optical wavelengths are subject to increased stellar variability, star spots (see § 5.2.3)
and strong limb-darkening whose combined effects may suppress our ability to de-
tect oblateness. For this reason, we consider the seven Spitzer observations as the
most capable for constraining oblateness for HD 189733b (or any other transiting

exoplanet).

We do not expect to actually measure the parameters f or 3 for HD 189733b with
this data, for the following reason. If we make the reasonable assumption that HD

189733b is synchronously rotating (see § 5.2.1) with a rotational period of Py, = 2.2
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days, the expected true oblateness, in the absence of any tidal effects, is f ~ 6 x 1073,
In Figure (5-3), we plot the excess signal after fitting and subtracting a spherical
model (f = 0) to the transit light curve of a f = 6 x 1073, zero projected-obliquity
transit of a hypothetical HD 189733b [taking other relevant transit parameters from
Torres et al. (2008)]. The amplitude of the excess signal is roughly 2 x 107® in
relative flux. This can be compared to the ~ 2 x 10~ precision of the combined data
comprised of the seven Spitzer light curves binned to a cadence of 30 seconds (see
below). Nevertheless, at this precision we may make physically relevant constraints on
the projected-oblateness f for HD 189733b. Namely, we show (below) that projected-
oblatenesses consistent with Jupiter (f = 0.06487) or Saturn (f = 0.09796) are
effectively ruled out by this data set. We have plotted, in Fig. (5-3), the excess signal
after fitting a spherical model to the transit light curve of a hypothetical HD 189733b
with an oblateness comparable to that measured for Saturn at an obliquity of 45°.
We also plot the expected noise level at 60s binning for our seven light curves with
this excess, visually demonstrating that such an oblateness signature should be easily

excluded by the data.

5.4.1 Observations and data reduction

We reanalyzed all the data from the seven Spitzer observations from the raw im-
ages. (all publicly available for download by using the Spitzer data request software
“Leopard!?”) All observations were performed with the 8 micron channel of IRAC
instrument in “subarray” mode. Here, only a 32x32 pixel portion of the detector is
recorded. Images are taken in quick succession at a cadence of 0.4 s (0.32 s total inte-
gration time). The data are packaged into post-calibration!! FITS files of 64 images
each (~ 26s total observation time for each 64). Roughly 500 files per observation
cover the transit of HD 189733b [I" = 1.41 hr, 7 = 0.41 hr in the notation of Carter et
al. (2008)] for a total of ~ 32000 images collected for each transit event. In addition

to excellent time resolution, the subarray mode avoids issues of saturation with the

Ohttp://ssc.spitzer.caltech.edu/propkit/spot/
1 As performed by the pipeline at the Spitzer Science Center.
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Figure 5-3 Signals of oblateness for hypothetical transit light curve models of HD
189733b. The left panel plots the excess signal after fitting a spherical model transit
light curve ( f = 0) to the transit light curve expected for a hypothetical synchronously
rotating, tidally uninfluenced HD 189733b. Here, theory predicts oblateness f ~
0.006 and zero obliquity (see § 5.2). The right panel gives the analogous excess signal
for a Saturn-like oblateness. The dotted lines mark the level of noise expected for the
seven Spitzer observations when binned to 60 s (the spacing between dots is 60 s).
The high frequency “noise” seen in the light curve in the left panel is an artifact of
the random noise induced via the Monte Carlo integration technique (with absolute
precision set to 107°; see § 5.3).

brightness of HD 189733 (V = 7.7, Hgg et al. 2000).

The sub-second time sampling is overkill for the analysis of an effect that is evident
on ~ 7 timescales (Seager & Hui 2002, Barnes & Fortney 2003). As such, to reduce
the data volume to a manageable level and, as an added bonus, correct for transient
pixel effects (for example, cosmic rays) we generate mean images of each set of 64 as
described as follows. First, we “stack” the 64 images and take the median value for
each pixel coordinate. Second, we flag values 3.5-sigma from the median value for
each image and each pixel in the 32x32 array. A mean image is then constructed for
each 64 image data cube, excluding flagged pixels in the average.

We perform aperture photometry on the resulting mean images, with an aperture
size 3.5-4.5 pixels in radius around HD 189733 (depending on observation). Several
rectangular apertures are placed in regions away from HD 189733 and a dim com-
panion to produce a median estimate of the sky background, which is subtracted
from the circular aperture sum for each mean image. At this point, our reductions

result in a sequence of flux measurements indexed by the time stamps giving in the
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image headers. These time-series are reproduced, without systematic correction, in
Figure (5-4).

The most evident systematic is the “ramp” effect, a rise in the observed flux with
time, likely due to charge-trapping in the detector. This effect has been seen in other
similar campaigns (Knutson et al. 2007a, Gillon et al. 2007, Nutzman et al. 2008) and
may be modeled by a multiplicative correction that is a function of time. We choose
to use a quadratic function of time as described below, although more complicated
models have been utilized (see, e.g., Nutzman et al. 2008).

The seven observations span 268 transits of HD 189733b, which occur every 2.218
days (Torres et al. 2008). In particular, if epoch zero is arbitrarily chosen to coincide
with the transit on June, 30 2007 (UT), then the observations occurred at epochs
-110, 0, 1, 51, 62, 157, and 158. In each light curve, we clip the most strongly varying
portion of the “ramp” systematic and additionally the majority of the Knutson et
al. (2007a) observation that was collected after transit [which follows HD 189733b
to the secondary transit (occultation)]. The final time-series [shown after corrections
in Fig (5-5)] have 410, 491, 407, 386, 451, 402, 451 data points for the epochs listed

above, respectively.

5.4.2 The combined transit light curve

The oblateness analysis is performed on the combined light curve comprised of all
seven light curves (as described below). In combining these time-series we have im-
plicitly assumed that the parameters f and (3 are constant across all transit epochs

in our sample. In § 5.5 we consider analyses where this restriction is not applied.

Prior to combining the seven light curves, we use a global oblate model fit to
the light curves to determine the times of mid-transit, the coefficients of the ramp-
correction and the out-of-transit flux level for each curve. We model the multiplicative

ramp-correction as

Cramp(t; €0, €15 t0) = 1+ co(t — to) + e1(t — to)? (5.22)
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Figure 5-4 Light curves from seven Spitzer observations of HD 189733b. Each figure
gives the aperture summed flux from a continuous observation of a single transit of HD
189733 by HD 189733b. The blue lines give the best-fit correction [see Eqn. (5.22)]
for the “ramp” systematic for each individual light curve. See § 5.4 for reduction
details. 199



where ¢y and c¢; are the variable model parameters, and t, is fixed to some time
near mid-transit for each light curve. In addition to the ramp-correction, each light
curve is described by an out-of-transit flux level, Fy and a mid-transit time Ty. All
seven transit light curves are fitted to a common transit model parameterized by the
mean radius ratio Rmean/ R4, inclination ¢, normalized semi-major orbital radius a /R,
(not to be confused with the projected semi-major axis of the exoplanet ellipsoid),
projected-oblateness f , projected-obliquity 3, and a single limb-darkening coefficient
uq 2.

In fitting, we use the standard x? statistic in which we have assumed the data are

affected in an additive sense by Gaussian, white noise. In other words, we assess x2

defined as

Zz": [F" (obs) UOF"(calc) (5.23)

o=1 =0

where o indexes the observations, N, is the number of data points in observation
o, F?(obs) is a measurement of the relative flux of HD 189733 during observation
0, FY(calc) is the calculated model describing this flux measurement, and o© is the
uncertainty in flux measurement during observation o. We estimate uncertainties by
calculating the root-mean-square flux out-of-transit after the transit (where the ramp
effect is less-pronounced) for each transit light curve. Epochs -110, 0, 1, 51, 62, 157,
and 158 have uncertainties in relative flux of 597 ppm, 567 ppm, 576 ppm, 536 ppm,
541 ppm, 520 ppm, and 540 ppm, respectively. Photon noise is the dominate noise
type for these observations, with an expected photon-limited precision of <460 ppm.

We minimize x? using the AMOEBA routine (Press et al. 2007) so as to solve for
the model parameters. We find a global limb darkening parameter u; = 0.11340.011
[consistent with that estimated by Agol et al. (2009)] and mid-transit times precise
to ~ 3s. We find no evidence for transit-timing variations greater than ~ 6s in
amplitude for the seven mid-transit times [in agreement with a preliminary analysis

of five transits by Agol et al. (2009)].

12Here, we fix ug = 0 for simplicity. Limb-darkening is expected and is found to be small at 8
micron (Agol et al. 2009).
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After finding the best-fit solution, we correct each light curve by dividing each
by its estimated ramp correction [Eqn. (5.22)] and out-of-transit flux level. We then
construct the combined light by shifting the time indices in each time-series by the
respective midtransit time solutions such that midtransit occurs at ¢ = 0 and, finally,
merge the individual time-series into one. The resulting light curve, containing 2999
points, is binned by a factor of six to average out any “red” or time-correlated noise
and to reduce data volume. The final combined light curve contains 512 data points.
Each data point corresponds to an integration time of 30s, such that we have =50
samples during the phases of ingress or egress. The combined light curve has a preci-
sion of 240 ppm or 1.28 times the photon-limited noise expectation. The light curves,
corrected for the ramp systematics, are shown in Fig. (5-5). The final combined light
curve is shown in Fig. (5-6). Two unexpected features, occurring before ingress and

near mid-transit, are evident in the combined light curve.

5.4.3 Oblateness constraints

In this section we present the methods and results from an analysis of the combined
light curve of the seven observations. We employ a Markov Chain Monte Carlo
(MCMOC) algorithm'? for the purpose of determining posterior parameter distributions
of the following parameters: Riean/Rx, inclination (z), normalized semi-major orbital
axis (a/R,), out-of-transit flux level (Fj), the time of mid-transit (7p), the projected
oblateness ( f), the projected obliquity (3) and a single limb-darkening parameter
(u;1). We choose Rmean/ Ry as the parameter describing the transit depth as opposed
to, for example, Requatorial 8 the former is nearly uncorrelated with f whereas the
latter is strongly correlated. The level of limb-darkening at 8 micron only weakly
suppresses that oblateness signal, however, we include limb-darkening in our model
for completeness. The orbital parameters i and a/R, are expected to be correlated

with f (Barnes & Fortney 2003).
In the MCMC, the jump-transition probability is given by the likelihood propor-

13For background on the MCMC method, see Gregory (2005), and for example applications to
transit light curves, see e.g. Holman et al. (2006), Winn et al. (2007), or Burke et al. (2007).
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Figure 5-5 Systematic corrected transit light curves of seven Spitzer observations of
HD 189733b. The “ramp” corrected and mid-transit aligned light curves are offset
in flux for comparison. The blue line gives the best fit oblate model. See § 5.4.2 for
details.
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Figure 5-6 Combined transit light curve and residuals of seven Spitzer observations
of HD 189733. The seven transits [as seen post-systematic corrections in Fig. (5-5)]
are merged into one time-series and then binned (such that the final cadence is 30 s)
to produce the light curve in the top panel. The bottom panel shows the residuals
after subtracting the best-fit oblate model (blue line in top panel) from the combined
light curve. The residuals have a root-mean-square of 241 parts-per-million.

203



tional to exp(—x?/2) with

2 2 [Fi(obs) — F(calc)]?
X ; - (5.24)
in analogy with Eqn. (5.23) for the combined light curve (where now ¢ = 2.41 x 104
is the flux uncertainty for the combined, binned light curve). We use Gibbs sampling
in the construction of a chain of one million links. For a Gibbs sampler, at each jump-
attempt we perturb a randomly selected parameter. We select individual parameter
jump sizes so that the fraction of jumps accepted by a Metropolis-Hasting condition
is approximately 40% for each parameter. We trim the first 10% of the resulting chain

to accommodate a period of “burn in,” resulting in a chain comprised of 9 x 10 links.

We report for each parameter the median value and the 15.85% and 84.15% levels
of the cumulative distribution. Table (5.2) collects these results. Curiously, our
estimate of the normalized mean radius is consistent with the normalized planetary
radius listed in Table 2 of the paper by Torres et al. (2009) [completed on an analysis
of the single Knutson et al. (2007) light curve], but different by nearly 7 of our sigma
from the result quoted by Agol et al. (2009) after a preliminary global analysis of
five of the Spitzer light curves. Our limb-darkening coefficient is consistent with that
found by Agol et al. (2009). Some of this discrepancy may be due to the additional
freedom in determining the oblateness parameters (and as a result of their effect on
the normalized impact parameter). Agol et al. (2009) did not provide estimates of

other transit parameters that could be used to help elucidate this discrepancy.

Figure (5-7) presents constraints on the oblateness parameters via confidence
curves in the f—ﬂ plane. The projected-oblateness f is more tightly constrained,
relative to zero projected-oblateness, for projected obliquities 8 ~ /4 becoming less
constrained in a symmetric fashion for | — 7/4| > 0. We determine the 68% and
95% confidence regions by the following technique. We divide the projected obliquity
range, [0,7/2], into M uniform bins. For chain links with 3-coordinate falling in a
specific projected-obliquity bin, we sort the associated f—coordinates and determine

f' such that 68% (95%) of the f in the bin are less than f’. In Fig. (5-7), we plot,
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Table 5.2.

Parameters for HD 189733b and the combined Spitzer transit light curve
Parameter Median Uncertainty

Global transit parameters:

Rinean 0.15498 +0.00009

Orbital Inclination, ¢ [degree] 85.75 +0.03

a/R, 8.929 +0.022

Projected Oblateness f 0 < 0.034 (95% conf.)

Projected Obliquity G unconstrained
Light curve parameters:

Limb-darkening parameter v; 0.113 + 0.011

Mid-transit time T [s] 0.0 +1.3

Out-of-transit level Fy 0.99999 +0.00002
Derived parameters:

Rotational Period [day]® 2.37° > 0.88 (95% conf.)

Jot 0 < 2.1 x 1072 (95% conf.)

Note. — For the light curve shown in Fig. (5-6). (a) Calculated using
Eqn. (5.10) with R, = 0.756 R, M, = 1.144 Mjpiter (Torres et al. 2008).
Assuming HD 189733b is unaffected by tides. Assuming HD 189733b has
a uniform mass distribution. (b) The median estimate of P is strongly
affected by our a priori assumptions on f . Here we have assumed a uniform
prior on f. (c) Calculated using Eqn. (5.7) assuming P,y = 2.218573 day

(Torres et al. 2008).
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in blue, confidence curves at 68% and 95% confidence levels. Additionally, we plot
as black points the first 5000 points (f, B) from a random reindexing (shuffle) of the

Markov chain.

The oblateness parameters are consistent with the theoretical expectation for a
synchronously rotating, tidally unmodified HD 189733b (where f ~ f~6x1073
and 3 =~ 0). The red, dashed line marks f = 6 x 1073 in Fig. (5-7). We also
mark the oblatenesses as measured for the Solar System planets Saturn, Jupiter and
Uranus. The data have ruled out a projected-oblateness comparable to that found for
Saturn at greater than 95% at all projected obliquities. Projected-oblateness similar
to that seen with Jupiter is ruled out at 95% confidence for all projected obliquities
B > 7/30. Projected-obliquities near /4 and f similar to that measured for Uranus
are also ruled out at greater than 95% confidence. See Table (5.1) for the specific
values of f used in Fig. (5-7).

We use Eqn. (5.10) and the results from the MCMC analysis to derive the ro-
tational period, P, of HD 189733b under the following assumptions. First, we
assumed the projected-oblateness is equivalent to the true oblateness (i.e., f = f,
B = 6). Second, we assumed the measured oblateness is as a result of rotation alone
(i.e., tides are negligible). Third, we have assumed that HD 189733b has a uniform
mass distribution. We used in our analysis the values for the stellar radius of HD
189733 and planetary mass of HD 189733b as provided by the tables in the work by
Torres et al. (2008). The median value, P, = 2.37 days, is similar to the expected
synchronous rotation period of 2.12 days, however, the posterior distribution in P,y
is significantly affected by the assumption that f is a priori uniformly distributed.
We can, nevertheless, constrain the planet to be rotating slower than once every 0.88
days (~ 20 hours) at 95% confidence. It is likely that HD 189733b is more centrally
condensed than a uniform model would allow. The derived rotational period, at a
fixed oblateness, reduces as more mass is relocated to the core in our model (Murray

& Dermott 2000).

If, conversely, we assume HD 189733b is synchronously rotating with P.,, =

2.218573 days, we may place constraints on J» via Eqn. (5.7). In particular, we find,
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Figure 5-7 Oblateness constraints for HD 189733b based upon seven Spitzer transit
observations. The solid blue curves bound the regions containing 68% or 95% of the
Markov Chain Monte Carlo samples in the projected oblateness-obliquity (f — 3)
plane. The black points represent a shuffled and “sifted” sample of the full Markov
Chain of 9 x 10° links. The red dashed line marks the oblateness of a theoretical
synchronously rotating, tidally uninfluenced HD 189733b; f = 0.006 (see § 5.2 for

details). The solid red lines mark the oblatenesses measured for Jupiter, Saturn and
Uranus.
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with this assumption, that J; is smaller than 2.1 x 1072 at 95% confidence [Jupiter
has J; = 1.47 x 1072 for reference; Hubbard et al. (1984)]. In Figure (5-8) we plot the
posterior distributions of P, and J; as calculated with the above assumptions. We

have indicated the location of the median and 68% confidence interval with vertical

lines.
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Figure 5-8 Posterior distributions for the rotational period, P, and the second
spherical moment of the mass distribution, J,, of HD 189733b based upon seven
Spitzer transit observations. The solid black lines mark the median value of the
respective parameter, while the dashed lines mark the 15.85% or 84.15% confidence
intervals. The dotted curve over-plotted in the left panel marks the expectation in
posterior distribution for P,y for a uniformly distributed posterior distribution in f
for 0 < f < foreakup Where foreaxup is the rotational breakup limit defined in § 5.2. See
§ 5.4.3 for more details.

5.5 Discussion

In this chapter, we have made the first attempt to constrain the projected shape
of a transiting exoplanet: we have placed interesting bounds on the shape of HD
189733b. To this end, we developed an algorithm capable of producing high precision
light curves of ellipsoidal exoplanets transiting their stellar host. The algorithm,
involving analytical and semi-analytical components along with quasi-Monte Carlo
integration, can yield part-per-million light curves in fractions of seconds (see § 5.3).
Such speed allowed for proper determination of parameter estimates and uncertainties

via a Markov Chain Monte Carlo (MCMC) method.
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We applied MCMC to determine both traditional transit parameters and two pa-
rameters describing the elliptical perturbation to the projected shape of HD 189733b.
In particular, we were able to constrain both the projected-oblateness f which is the
sky-plane projection of the true oblateness, f, as defined in terms of the exoplanetary

equatorial and polar radii as
. (5.25)

and the projected-obliquity 3, which is the sky-plane projection of the angle 6 between
the minor axis of the oblate spheroid shaped exoplanet and the orbital spin axis. In
the absence of tidal effects, the oblateness f may be directly related to the rotational

period, P, of the planet where, assuming a uniform planetary density,

R3
Prot = 27 mean (526)
\/gGMpfu — f)¥?

with Rumean = v/ ReqFpol and M, is the planetary mass (see § 5.2 for details).

Our constraints on f and 3 are found from an analysis of seven high-precision
Spitzer light curves, identical in observation technique and nearly identical in preci-
sion. The seven light curves all have a precision of approximately 550 parts-per-million
at ~ 30 s cadence. Figure (5-5) shows the individual observation light curves while
Fig. (5-6) gives the light curve after all seven light curves are appropriately merged

and the final time-series is resampled to a 30 s cadence.

While we cannot measure the oblateness expected for a theoretical synchronously
rotating, tidally uninfluenced HD 189733b (see § 5.2.1 for relevant timescales), we
can set interesting limits on parameters describing its shape and, with some addi-
tional assumptions, the rotational period. Namely, we exclude Saturn-like projected-
oblateness at all obliquities with greater than 95% confidence and for Jupiter-like
projected-oblateness at all but obliquities near zero. Table (5.2) collects estimates
and uncertainties of the oblateness parameters ( f , B), transit parameters and the de-

rived parameters P, and J. The rotation period is found to be Py, = 2.37131] days,
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where we have given the 68% confidence interval in this parameter. By chance, the
median value of 2.37 days is close to the theoretical expectation for a synchronously
rotating HD 189733b where Pyt = Pomital = 2.22 days. However, this median esti-
mate is significantly affected by our prior assumption that f is uniformly distributed

from 0 < f < foreakup With foreakup being the oblateness at rotational breakup.

We also constrained the second sperical mass distribution moment J, < 2.1x1072,
using Eqn. (5.7), by assuming HD 189733b has rotation period P, = 2.218573 day.
This upper-bound value of J; is larger than J, for any Solar System planet (see
Table 5.1). While our data constraint on J; tells us little about the internal structure
of HD 189733b, the technique applied to more precise transit data can yield useful
information about how centrally condensed an exoplanet is (as compared to Saturn
and Jupiter, for example). In particular, the ratio J,/f depends only on the moment
of inertia of the exoplanet via, for example, the Darwin-Radau relation (Dermott
1984). Of course, in order to independently constrain Jo/f via Eqn. (5.7), we must
have some fixed assumption about the value of the rotational period of the planet,
P,o. For Hot Jupiters, for which the stellar age is several times the synchronization

timescale [Eqn. (5.2)], Prot = Pomital 1S an expected theoretical equivalence.

In merging our data into a single light curve, we have implicitly assumed for
our analysis that HD 189733b has both constant projected-oblateness and projected-
obliquity over the 1.62 year span encompassing the seven Spitzer observations. How-
ever, it is the case that both projected quantities should be time-variable even if the
true oblateness f and obliquity 6 are constant if the exoplanet’s spin axis precesses. In
particular, the spin axis should precess in response to torques exerted by the star on
a non-uniform mass distribution for the exoplanet. If the orbital angular momentum
vector is constant, then the spin axis will precess about it with precession period

2P, C 1

== 5.27
pre 3 Pyt Jocost ( )

where P, is the orbital period and 27TCMpqu / P,ot is the planet’s spin angular mo-

mentum (see, for example, Tremaine 1991). Spin precession for planets in the Solar
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System occurs on timescales much longer than one year. For example, Saturn com-
pletes one precession cycle in ~ 10® year. However, Py is a strong function of semi-
major orbital distance with Pprec a3. For the case of a hypothetical HD 189733b
with oblateness similar to that measured for Saturn with a spin-orbit obliquity angle
of 45°, the precession period is, in fact, of order one year. In this calculation we have
assumed P. is related to f and J, through Eqn. (5.8) and f and J; are related to C
through the Darwin-Radau relation (Murray & Dermott 2000)

1
S 34 gc - g’c?. (5.28)

710

We have fixed C = 0.225 which is a reasonable value for gas giant planets (Murray &
Dermott 2000). In Fig. (5-9) we have reproduced the content of Fig. (5-7) and have
additionally specified approximate spin precession periods in the f — 8 plane as solid

black contour lines.

Our assumption of constant projected-oblateness and obliquity over the timeframe
of the observations appears to be invalid for arbitrary f and 6. At first glance, it
would seem that a more appropriate reanalysis assuming unique projected-oblateness
parameters for each of the seven measured transit light curves allowing for arbitrary
precession periods would result in much weaker constraints than have been presently
determined. However, our current constraints, while not fully self-consistent, are not
entirely useless. In fact, it may be argued that there is already ample evidence with
our data that HD 189733b cannot be precessing at periods shorter than the timescale
of our observations for even large values of f. Our evidence is as follows. Should an
oblate planet execute spin precession, the area of the sky-projection of the exoplanet
should be time variable. The depth, d, of the transit light curve, in the absence of
stellar limb-darkening, is a direct, precise measurement of this area divided by the
area of the sky-projection of the star (see, for example, Chapter 2). In particular,

it can be shown that the limb-darkening free transit depth measured for an oblate
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spheroidal exoplanet varies with precession phase, 9, as

Req

R. ) \/(1 — f)~2sin® [fsin (¥ — to)] + cos? [@sin () — ¥g)]  (5.29)

s() = (

for some initial phase 1)y where 6(1)9) = (Req/R+)? [we have utilized the formalism by
Fillmore (1986) in this derivation].

For strongly oblate planets (f = 0.1) the amplitude of the fractional change in
the transit depth, §(¢)/d(v), can be several percent. In comparison, we can measure
the depth of a single Spitzer transit light curve for HD 189733b to better than 0.3%
(this work, Torres et al. 2008). The transit depths of each of the seven transit light
curves analyzed in this chapter agree with one another at this precision. Therefore,
the data exclude transit depth variations whose fractional amplitudes are in excess of
this fractional uncertainty in transit depth. In Fig. (5-9) we plot, as dashed contour
lines, the peak-to-peak amplitude of §(1))/d(1o) in units of fractional transit depth
uncertainty (i.e., the contours mark the number of “sigma” the function §(1/)/8 (1)
spans). It is clear from this figure that we may constrain a significant portion of the
f — 0 plane even when using an analysis including a precession model that allows
arbitrary spin precession periods. Future work includes such a reanalysis with this
data set. It may even be possible to constrain parameters relating to oblateness,
obliquity and precession period by monitoring transit light curve depths over many
transit epochs. Such long term monitoring may be possible using transit data collected

from the Kepler mission, for example.

The recently-found-to-transit exoplanet HD 80606b would be an ideal target for
an oblate analysis with a single, high precision, space-based transit light curve for the
following reasons. First, the total duration of the transit, at around 12 hr (Winn et al.
2009), would make even a single epoch’s transit light curve viable as a high precision
measurement, owing to the superb time sampling. Second, the ultra-high eccentricity
(e = 0.93279) and possibly unique dynamical status of HD 80606b (see § 5.2, Winn
et al. 2009 and references therein) will make any determination of oblateness of great

scientific interest.
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Figure 5-9 Theoretical spin precession periods and transit depth variations for HD
189733b. Refer to the text in § 5.5 for details.
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To investigate what what may be learned, we constructed a hypothetical transit
light curve for HD 80606b using “standard” transit parameters from Winn et al.
(2009) and we additionally assumed the planet has an oblateness f = 0.097 (that
measured for Saturn) at a 45° obliquity. In Figure (5-10), we plot this transit light
curve (with Gaussian white noise added to the light curve as described below) and we
also plot the asymmetry of the transit light curve about the time of midtransit. The
large asymmetry curve is as a result of the combined effects of oblateness, obliquity
and the large eccentricity of the orbit. A single space-based transit observation should
uncover this asymmetry with visual significance [the asymmetry due to eccentricity

alone is at the ~ 1074 level, see Fig. (5-10)].
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Figure 5-10 Simulated transit light curves for an oblate HD 80606b. The left panel
shows a simulated transit light curve as would be measured with the STIS spectro-
graph on the Hubble Space Telescope for an oblate HD 80606b. The right panel shows
the asymmetry (about mid-transit) and simulated noise in a transit light curve for
HD 80606b having a projected oblateness equal to that of Saturn and at a 45° oblig-
uity. The asymmetry is as a result of both oblateness/obliquity and the high orbital
eccentricity (e = 0.93) of HD 189733b.

Going further, we sample this hypothetical transit light curve model for HD 80606b
at a 186 s cadence and assume Gaussian, white noise having characteristic width
o = 7.2 x 107° (in relative flux) is added to each flux measurement. This noise is
consistent with that found using data from the STIS spectrograph on the Hubble
Space Telescope with observing parameters described by Brown et al. (2001) for an
observation of HD 209458 (which is 10x brighter than HD 80606; we assume our

observation would be photon-limited). The time sampling ensures that ~ 50 points
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are sampled during the phases of ingress of egress (with duration 7 ~ 2.6 hr). We
complete an analogous analysis for our hypothetical transit light curve for HD 80606b
as was performed on the seven HD 189733b light curves (as was described in § 5.4.3).
Figure (5-11) shows the results of this analysis in terms of confidence regions in the
f — (3 parameter plane. In this case, we would have in fact measured the projected-
oblateness and projected-obliquity. Such a result would offer priceless constraints on

possible modes of formation and evolution of this intriguing planet and system!
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Figure 5-11 Measuring oblateness in a simulated transit light curve for HD 80606b.
This figure shows confidence regions in the projected oblateness-obliquity ( f- B)
plane based upon a Markov Chain Monte Carlo analysis of the simulated transit light
curve shown in Fig. (5-10). The cross marks the simulated oblateness and obliquity
(equal to that of Saturn and at a 45° obliquity).

As the number of transiting exoplanets grows (with the help of the recently
launched Kepler mission, for example), we will without doubt encounter many more
systems having and exceeding the dynamical complexity of HD 80606b and certainly
HD 189733b. A transit light curve model including exoplanet oblateness will likely

be required for proper (and likely exciting) interpretation. For transiting exoplanets
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not tidally influenced by their host and possibly residing in their respective habitable
zone, the detection of oblateness would be a key measurement to precisely constrain
the length of the “exoday.”

Thanks to D. Fabrycky for his useful comments concerning exoplanetary spin

precession.
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Appendix A

Uniform sampling of an elliptical

annular sector

A.1 Elliptical annular sector

A point (z,y) € R is inside the elliptical annular sector centered at (0,0) with semi-

major axis in the z-direction with axis ratio ¢ = A/B, inner radius a,, outer radius

as, and sector angles 6, o if the following conditions are all satisfied:

72 y?
- +—=>1 (A.1)
aj (661)2

72 y?

-+ —= <1 (A.2)
a% (6&2)2

The line from (0,0) to (z,y) is at an angle 6 such that 8, > 6 > 6,.(A.3)

as illustrated in Fig. (A-1).

A.2 Uniform sampling

Let (u,v) be a uniform sample of the unit square [0, 1] x [0, 1]. Then («/, %) is uniform

sample of the elliptical annular sector centered at (0,0) with semi-major axis in the
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Figure A-1 An elliptical annular sector.

z-direction and described by parameters €, a; 2, and 6, o where

u = agrcos()
d = a—j"isin(e)

where

o= \/(1—u) al+u

9 = (1—v)tan ‘(etand;) +vtan '(etanb,).
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