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Abstract

In this thesis, two sets of experimental studies in bosonic and fermionic gases are

described. In the first part of the thesis, itinerant ferromagnetism was studied in a

strongly interacting Fermi gas of ultracold atoms. The observation of nonmonotonic

behavior of lifetime, kinetic energy, and size for increasing repulsive interactions pro-

vides strong evidence for a phase transition to a ferromagnetic state. Our observations

imply that itinerant ferromagnetism of delocalized fermions is possible without lattice

and band structure, and our data validate the most basic model for ferromagnetism

introduced by Stoner.
In the second part of the thesis, the coherence properties of a Bose-Einstein con-

densate (BEC) was studied in a radio frequency induced double-well potential imple-

mented on a microfabricated atom chip. We observed phase coherence between the

separated condensates for times up to 200 ms after splitting, a factor of 10 longer

than the phase diffusion time expected for a coherent state for our experimental con-

ditions. The enhanced coherence time is attributed to number squeezing of the initial

state by a factor of 10.
Furthermore, the effect of phase fluctuations on an atom interferometer was stud-

ied in an elongated BEC. We demonstrated that the atom interferometer using the

condensates is robust against phase fluctuations; i.e., the relative phase of the split

condensates is reproducible despite axial phase fluctuations.
Finally, phase-sensitive recombination of two BECs was demonstrated on an atom

chip. The recombination was shown to result in heating, caused by the dissipation

of dark solitons, which depends on the relative phase of the two condensates. This

heating reduces the number of condensate atoms and provides a robust way to read

out the phase.
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Chapter 1

General Introduction

1.1 The Quest for Low Temperatures

The quest for low temperatures has a long history over 200 years. After Gaspard
Monge liquefied the first gas producing liquid sulfur dioxide in 1784, major efforts had
been directed toward liquefying oxygen (1877), hydrogen (1898), and helium (1908).
Helium-4, first liquified by Dutch physicist Heike K. Onnes in 1908 [140], was crucial
for the developments of two major concepts in modern physics, superconductivity and
superfluidity. In 1911, Onnes used liquid helium-4 as a refrigerant, and discovered

that the resistivity in solid mercury abruptly disappears at the temperature of 4.19
K [140]. He called this phenomenon as "superconductivity". Later in 1937, Pyotr
L. Kapitza, John F. Allen, and Don Misener discovered that below the famous A-
transition point at 2.17 K, liquid helium-4 becomes superfluid in which a liquid flows
through narrow capillaries or slits without exhibiting viscosity [3, 106]. Both concepts,
superconductivity and superfludity, have been actively researched in the 20th century
leading to the enhancement of our understanding of nature.

1.1.1 Bose-Einstein Condensation

The first idea of Bose-Einstein condensation (BEC) can be traced back to 1925 when
Satyendra N.Bose [28] and Albert Einstein [53, 54] predicted the occurrence of phase

transition in noninteracting bosonic particles such as photons. The phase transition

is accompanied by the condensation of atoms in the ground state. Unfortunately,
despite the novelty of this prediction, there had not been much attention paid to
Bose-Einstein condensation until the discovery of superfluidity in helium-4.

In 1938, Fritz London pointed out that Bose-Einstein condensation may be the



underlying phenomenon in superfluid helium-4 [130, 129]. Superfluid helium-4 was

the prototype Bose-Einstein condensate, and intense theoretical works had been de-

veloped in order to understand the relation between superfluidity and Bose-Einstein

condensation. Later, a microscopic theory for interacting Bose gases was developed

by Bogoliubov in 1947 [26]. In the 1950s, Penrose and Onsager introduced the concept

of off-diagonal long-range order and discussed the relation to a generalized criterion

of Bose-Einstein condensation [149].

In parallel to theoretical works to understand the phenomenon of Bose-Einstein

condensation, the experimental efforts had been made to realize Bose-Einstein con-

densates in spin-polarized hydrogen without success until 1998 [61]. Recently, Bose-

Einstein condensation was also observed in metastable helium-4 in 2001 [165, 171].

The first experimental realization of Bose-Einstein condensate was achieved in 1995

in ultracold dilute atomic gases at JILA by Eric A.Cornell and Carl E.Wieman [6] and

at MIT by Wolfgang Ketterle [47] independently. So far, BEC phase transitions have

been achieved in dilute atomic gases of 23Na, 7Li, 87Rb, 85Rb, 39K, 4 1K, 52Cr, 133Cs,
170Yb, 174Yb, 1H, and 4 He* (metastable helium) [152]. The success in dilute atomic

gases relied on the developments of laser cooling and magnetic trapping techniques in

the 1980s [12, 92]. Recently, atomic Fermi gases of 6Li and 40K atoms also could be

cooled to the degenerate temperature. This allowed for Bose-Einstein condensation

of molecules consisting of a pair of fermionic atoms. The field of ultraclold dilute

atomic gases keeps growing as we shall see in the following sections.

1.1.2 Ultracold Dilute Atomic Gas

Ultracold dilute atomic gases have several impressive features with respect to other

systems such as superfluid helium. Firstly, ultracold atomic gases have typically weak

interatomic interactions so that mean-field description of the system is well-suited [92].

This is one of the advantages for investigating quantum phenomena in atomic gases

which is not the case in superfluid helium.

Another feature is diluteness of the systems. The atomic density in condensates

of trapped atomic gases is typically ~ 1013cm 3 which is much lower than the density

of atoms in liquids or solids, ~ 1022 cm 3 . The low-density of atomic gases requires

the low temperature of 10-5 K or less for observing quantum phenomenon. Liquid

helium, in contrast to atomic gases, shows quantum phenomenon such as superfluidity

near 1 K.

Despite diluteness of atomic gases, the strength of interatomic interactions can



be tunable either by exploiting the Feshbach resonance [108, 38] or by introducing
optical lattices [25]. Feshbach resonance occurs when a bound state is coupled to
a free unbound state of colliding atoms allowing for tuning interaction strength di-
rectly in a broad range from negative to positive values. This technique opened a
new way to investigate Fermi atoms in the presence of weak attractive interactions

which is relevant to the famous theory of superconductivity developed by Bardeen,
Cooper, and Schrieffer (BCS theory) [17]. Further experiments realized the system
of molecular Bose-Einstein condensates consisting of two Fermi atoms, fermionic pair
condensates in the "BCS" side, and finally an intermediate regime, so-called a BCS-
BEC crossover [212, 210], where the pair size of Fermi atoms is comparable to the
interparticle disctance. For comprehensive discussions, I refer to the Ref. [91]

Alternatively, the effect of atom-atom interactions can be tuned in an optical
lattice. An optical lattice is a periodic potential produced by a standing-wave laser
beam [25]. In this artificial crystal, ultracold atoms can mimic the strongly correlated
behavior of electrons in condensed matter. One of the most prominent experiments

in optical lattices is the observation of superfluid-Mott transition insulator transition
of bosonic gas [66]. The sufficiently strong repulsive interactions change the many-
body ground state from the superfluid to the insulating phase in which the tunneling

of bosonic atoms between adjacent sites is suppressed and therefore each atom is

localized in one specific lattice site.

1.2 Next Challenges in the field of Ultracold Atomic

Gases: Quantum Simulator

In 1982, Richard Feynmann [57] proposed a quantum device, a so-called quantum

simulator, for efficient simulation of other quantum systems. The goal of quantum
simulator is to simulate a target quantum system with a controllable laboratory sys-
tem governed by the same Hamiltonian. The quantum simulation is expected to
simulate quantum systems that cannot be efficiently simulated on a classical com-

puter. There have been much attention paid to this idea because the understanding

of many phenomena in various field including condensed-matter physics and high-

energy physics would be enhanced through quantum simulations. To this end, major

efforts have been made to implement this idea with real quantum systems consisting

of neutral atoms, ions, photons, and electrons.



Cotrollable Model
knobs Hamiltonian

Experimental -- ' Theoretical
observations understanding

Figure 1-1: Concept of the quantum simulator. The quantum simulators are control-
lable quantum systems in the laboratory simulating a theoretical model Hamiltonian
describing the real system.

The rapid developments in the field of dilute atomic gases over last 15 years af-

ter the first realization of Bose-Einstein condensates have featured the possibility of

studying strongly correlated phenomena of condensed-matter physics in the context

of quantum simulation. The seminal paper in 1998 by Jaksch [95] proposed the obser-

vation of the superfluid-Mott insulator transition in cold atoms in an optical lattice,

which was experimentally observed in 2002 [66]. In the 2000s, the field of ultracold

atoms entered the area of strongly correlated systems. The great successes have been

achieved in the study of superfluid-Mott insulator transition of bosonic atoms in an

optical lattice [25], BCS-BEC crossover in a Fermi gas with tunable interactions [91],

and Anderson localizations of bosonic atoms in a disordered potential [164, 22]. Re-

markably, some of experimental investigations in those systems have been validated

through numerical studies.

Recently, the field of ultracold atomic gases keeps broadening the scope of re-

search direction toward the realization of quantum magnetism in cold atomic gases

which can serve as a tunable model system for understanding the physics behind

real condensed matter systems. The presence or suppression of magnetic ordering is

important not only for ferromagnetism and antiferromagnetism, but also for phenom-

ena like high-temperature superconductivity, quantum magnets, and spin liquids in

strongly correlated electron system [167]. In the system of ultracold atoms, the simi-

lar magnetic ordered states are expected to be realized when cold bosonic or fermionic

atoms are prepared in optical lattices or in a bulk system with magnetic interactions

such as exchange or superexchange interactions [123]. The magnetic interactions can

...... -------- .......................... - - - - - = " - "::



be controlled by tuning the interaction strength via Feshbach resonance and/or by
quenching kinetic energy of the atom with an increase of the lattice depth. Of partic-
ular interest is the study of the repulsive Fermi-Hubbard model with two-component
Fermi gases trapped in optical lattices since the high-temperature superconductivity
usually occurs near the antiferromagnetic phase in complex cuprate materials. Some
promising works, demonstrating the metallic and insulating behaviors in a Fermi gas,
have been reported [173, 103], and major efforts are being directed toward the ob-
servation of the antiferromagnetic ordered state. In related works, the ferromagnetic
ordered state in a Fermi gas is also very important because it may compete with
superconductivity near quantum phase transitions [128]. Recent experimental [102]
and theoretical progresses [86, 170, 4, 182, 52, 19, 206, 114] in ferromagnetism in a
repulsive Fermi gas shall be discussed in the first part of this thesis.

1.3 Identical Particles in Quantum Theory: Bosons

and Fermions

Two particles are identical if they are non-distinguishable under physical observations
and measurements. The nondistinguishability of identical particles plays a secondary
role in classical mechanics, but it becomes important in quantum mechanics charac-
terizing the nature of the fundamental particle.

We now consider N identical particles governed by the Hamiltonian H. The
wavefunction 4'(ri, r 2 , ... , rN) represents the probability amplitude for finding N par-
ticles at the position of ri, r2 , ... , TN. Under the exchange of any pair of particles, the
probability density of finding N particles is invariant since all particles are identical:

|0(ri .. , r 3 ... , ry,..rN) 2 = I(r1, .. , rj, -- - , T N)12  (1. 1)

This derivation implies that the wavefunction 0(ri, r2 , ... , rN) has an exchange degen-
eracy under particle exchange.

0L'(ri, _., Ti, -. , Ti, ..TN) =+(r 1 ,.,r, ... ,I ri, .. N) (1.2)

As a clear example illustrating the exchange degeneracy, let us consider two iden-
tical particles with their mass m governed by the Hamiltonian

p2 p2
H(1, 2) = 1 + 2 + V(|ri - r2 |) (1.3)

2m 2m



where the potential V depends only on the distance between two particles. The

energy engenvalue equation now reads,

H(1, 2)0(ri, r2 ) = EV(ri, r2)

H(2, 1)0(r 2 , ri) = E/(r2, ri) (1.4)

where V(ri, r2) and 0/(r 2, ri) are two eigenstates of the two-particle system by recog-

nizing the invariance of the Hamiltonian H(1, 2) = H(2, 1). Therefore, the eigenstate

of the system is the superposition of $(ri, r2) and 0(r 2, ri). Without loss of generality,

the eigenstate of the Hamiltonian 1.3, 0 , is expressed by

00 =a ( (ri, r2) + @)(r2, r1) 0(ri, r2) - @)(r2, ri)(15o=a() +p ( br~ 2  br~l) (1.5)

r(S),symmetric p(A),antisymmetric

(1.6)

where Ja12 + 10| 2 = 1. Thus far, the eigenstate contains both symmetric (O(s)) and

antisymmetric (O(A)) contribution. However, in contrast to above mathematical ap-

proach, only totally symmetric or antisymmetric states are observed in nature. This

difficulty is removed by the famous "symmetrization postulation" in quantum me-

chanics:

"The states of a system with N identical particles are necessarily either all symmetri-

cal (a = 1, 3 = 0 in the above example.) or all antisymmetrical (a = 0, 0 = 1) with

respect to particle exchanges"

Following this postulate, particles described by the symmetric state and the antisym-

metric state are called Bosons and Fermions respectively.

Systems consisting of identical particles of integral spin (0,1,2, . 1 are described

by symmetric wavefunctions, and such particles obey Bose-Einstein statistics and are

called bosons. In nature, photons, r-mesons, and K-mesons are examples of bosons.

On the other hand, identical particles of half-integral spin (1/2,3/2, ...) are called

fermions and obey Fermi-Dirac statistics. Since the system consisting of fermions is

described by the antisymmetric wavefunction, two identical fermions cannot occupy

the same quantum state leading to the "Pauli exclusion principle".

iThe connection between spin and statistics is explained by the relativistic quantum mechanics.
Further discussions can be found in Ref [150].



1.4 Outline of Thesis

The experimental works in this thesis have been performed by my colleagues and me
in the BEC III lab at MIT. Our team has been supervised by Professor Wolfgang
Ketterle and Professor David.E. Pritchard.

In this thesis, I mainly discuss: (1) itinerant ferromagnetism in a Fermi gas of
ultracold atoms [102], (2) apparatus upgrade for producing a Bose-Fermi mixture,
(3) studies of quantum coherence in a Bose gas [101, 99], and (4) development of
atom optics elements [100, 39]. I was also involved in the other projects including
"quantum reflection of BECs" [145], "optical weak link between two BECs" [176],
and "interference of BECs split on an atom chip" [179] which are described in the
Ph.D. theses of former members of BEC III [89, 147].

Outline

Chapter 2 describes the experimental procedures for producing a degenerate Bose-
Fermi mixture. Preliminary efforts for this apparatus upgrade are discussed in the
Ph.d. thesis by Thomas A. Pasquini [147]. Here, I briefly summarize the basic
procedures and tools which are used in the current experiment.

Chapter 3 and chapter 4 discuss quantum magnetism in a two-component Fermi
gas of ultracold 23Li atoms. In particular, the long-standing question of "itinerant
ferromagnetism" in condensed matter physics is addressed. The concept of quantum
simulation using cold atoms may apply to our work reported in this thesis. In chap-
ter 3, I introduce some theoretical tools necessary to understand magnetic properties
of a repulsive Fermi gas with short-range interactions. Chapter 4 mainly discusses
our experimental efforts and relevant theoretical understandings to observe itinerant
ferromagnetism in a Fermi gas. At the end of this chapter, I propose some future ex-
periments which may overcome technical limitations and enhance our understanding
of itinerant ferromagnetism in a Fermi gas.

In chapter 5, I deal with the basic concepts of Bose-Einstein condensates and
demonstrate experimental tools necessary to study the coherence properties of a Bose
gas. A coherent splitter using adiabatic RF-induced potential and phase read-out
methods shall be described.

Chapter 6 discusses the quantum phase coherence of a Bose gas in a double-
well system implemented on an atom chip. The observation of number squeezing in
condensates shall be described. Also, I provide a theoretical model describing the
dynamic splitting of the condensate. At the end of this chapter, I discuss the effect



of phase fluctuations on the coherence properties.

Finally, chapter 7 deals with newly developed techniques in the field of atom-

optics. First, I demonstrate the phase-sensitive recombination of two BECs which is

a new method of measuring the relative phase. Secondly, I briefly describe a proof-of-

principle experiment for trapping of ultracold atoms in a hollow-core photonic crystal

fiber.

* Publications of the Ph.D. work

* Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms

Gyu-Boong Jo, Ye-Ryuoung Lee, Jae-Hoon Choi, Caleb A. Christensen, Tony

H. Kim, Joseph H. Thywissen, David E. Pritchard and Wolfgang Ketterle

Science 325 , 1521-1524 (2009)

" Trapping of Ultracold atoms in a hollow-core photonic crystal fiber

Caleb A. Christensen, Sebastian Will, Michele Saba, Gyu-Boong Jo, Yong-Il

Shin, Wolfgang Ketterle, and David Pritchard

Phys. Rev. A 78, 033429 (2008)

e Matter-wave Interferometry with Phase Fluctuating Bose-Einstein Condensates

G.-B. Jo, J.-H. Choi, C.A. Christensen, Y.-R. Lee, T.A. Pasquini, W. Ketterle,

and D.E. Pritchard

Phys. Rev. Lett. 99, 240406 (2007)

* Phase Sensitive Recombination of Two Bose-Einstein condensates on an atom

chip

G.-B. Jo, J.-H. Choi, C.A. Christensen, T.A. Pasquini, Y.-R. Lee, W. Ketterle,

and D.E. Pritchard

Phys. Rev. Lett. 98, 180401 (2007)

e Long phase coherence time and number squeezing of two Bose-Einstein conden-

sates on an atom chip

G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E.

Pritchard, M. Vengalattore, and M. Prentiss

Phys. Rev. Lett. 98, 030407 (2007)

" Low Velocity Quantum Reflection of Bose-Einstein Condensates

T. A. Pasquini, M. Saba, G.-B. Jo, Y. Shin, W. Ketterle, D. E. Pritchard, T.



A. Savas, and N. Mulders

Phys. Rev. Lett. 97, 093201 (2006)

e Optical Weak Link between Two Spatially Separated Bose-Einstein Condensates

Y. Shin, G.-B. Jo, M. Saba, T. A. Pasquini, W. Ketterle, and D. E. Pritchard,

Phys. Rev. Lett. 95, 170402 (2005)

" Interference of Bose-Einstein condensates split with an atom chip

Y. Shin, C. Sanner, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E.

Pritchard, M. Vengalattore, and M. Prentiss

Phys. Rev. A 72, 021604(R) (2005)



Chapter 2

Apparatus and Basic Procedures

2.1 Versatile Apparatus: "Science Chamber"

The third generation machine at MIT, which is called the science chamber (or BEC

III), is very unique in that one produces a Bose-Einstein condensate (BEC) in the

main chamber and then manipulates and diagnoses the BEC in the auxiliary chamber.

This is implemented by transporting a BEC trapped in an optical dipole trap [37, 74].

The two-step experiment - first producing the BEC and then transporting it into the

auxiliary chamber - makes it possible to study the properties of the BEC in various

systems such as a double-well potential on an atom chip [112, 178, 101, 99], a double-

well optical potential [177, 166, 101, 99], or an atom-surface system [146, 145]. In

contrast to a conventional BEC machine in which optical and physical access to

cold atoms are restricted due to the presence of magnetic coils and optics near the

chamber, the science chamber machine has allowed us to change the experimental

system without perturbing the production of a BEC.

2.2 F=1 23 Na Bose-Einstein Condensates in the

Science Chamber

In this section, we demonstrate the basic operation procedure for producing a bosonic

23Na F=1 BEC. The condensate consists of the sodium atoms in the hyperfine state

of IF = 1, mF = -1). Before the apparatus was upgraded to have a Bose-Fermi

mixture (bosonic 23Na and fermionic 6 Li) in 2007, most of the experiments had been

performed with a F=1 condensate. Typical procedure for the production of the F=1

BEC includes:



* Pre-cooling atoms in magneto-optical trap (MOT) (-3 s) : A thermal atomic

beam slowed by a Zeeman slower is continuously loaded into a dark-SPOT type

magnetic-optical trap (MOT). The atomic flux into the MOT is ~ 10" atoms/s

with a mean velocity of ~ 30 m/s. In the dark-spot MOT, most of atoms lie in

the F=1 manifold.

* Forced rf-evaporation in the magnetic trap (-30 s) : Atoms in the IF =1, mF=

-1) state are tranferred from the dark-spot MOT into a Ioffe-Pritchard mag-

netic trap. Subsequently, forced evaporative cooling is applied using a radio

frequency (rf) transition from the IF = 1, mF =-1) to the |F = 1, mF = 0, +1)

states. We routinely produce a F=1 condensate of 10' atoms after 30 s evapora-

tion in the main chamber. The lifetime of the F=1 condensate in the magnetic

trap is longer than 60 s which is longer than the one for a F=2 condensate 1.

" Trapping a BEC in an optical dipole trap (ODT): For the transport of the con-

densate into the science chamber, we load the condensate into an optical dipole

trap (ODT). The loading process starts with the decompression of the magnetic

trap containing the atoms for the mode-matching between the magnetic trap

and the ODT. Then, the atoms are transferred from the nearly spherical mag-

netic trap into the ODT adiabatically. The ODT typically contains 2 - 4 x 106

atoms. The decompression and loading processes take 2 s and 0.5 s respectively.

* Transport into the science chamber (~ 2 s): To transport the condensate

trapped in the optical dipole trap into the science chamber, the focal spot

of the laser beam is spatially moved [74]. For more detailed information for

the design of the transportaion system, I refer to the Ph.D. thesis of the former

member of the Ketterle/Pritchard group [37].

" Bose-Einstein condensates in the science chamber : Once the condensate is

located in the science chamber, we initialized the condensate for a designed

experiment in the ODT. Additional cooling of the condensate in this stage

causes loss in the atom number. Finally, the atom number of the condensate is

typically 1 ~ 2 x 106 in the scicence chamber.

For more detailed description of F=1 BEC production, I refer to previous the-

ses [89, 147].

'A F=2 condensate consists of atoms in the hyperfine state of IF = 2, mF 2).



2.2.1 Magnetic Microtraps on an Atom Chip in the Science

Chamber

Atom optics on an atom chip The development of atom chips [60, 45] has led to

unprecedented control of a Bose-Einstein condensate with sub-micron precision. In

contrast to a conventional magnetic or optical trapping potential, the chip wires on an

atom chip are very close to the atoms (e.g. 10 - 1000pm from the chip surface) pro-

viding much tighter and complex traps. Encouraged by this, an atom chip has evolved

into a platform integrated with atom-optics elements. Following the experimental

demonstration of magnetic microtraps and beam splitters with thermal atoms, atom-

optics elements using Bose-Einstein condensates have been successfully integrated

with an atom chip. For example, an atom Michelson interferometer [196], coherent

dynamic splitting [174, 101], phase read-out through in-trap recombination [100], and

diffraction from magnetic lattices [71] were experimentally demonstrated.

In parallel to these efforts, an atom chip has been also used to study quantum

coherence in a double-well system [101], the non-equilibrium properties and phase

fluctuations in one-dimensional Bose gases [83, 99, 85], and vortex dynamics in a

condensate [112, 178]. More recently, atom chip technology has been combined with

high finesse optical resonators [161].

Atom chip in BEC III Trapping neutral atoms in a magnetic potential is a well-

known technique, but it usually needs several coils generating magnetic fields. In

a conventional experiment, changing magnetic trap geometry requires to redesign

the coils , which sometimes makes it difficult to study various system with a Bose

condensate. Combining the idea of the science chamber with an atom chip, we have

routinely redesigned the magnetic microtraps generated by wires on an atom chip 2.

This has allowed for the studies of double-well atom interferometry [177, 166, 101],

the quantum reflection of the atoms from a solid surface [146, 145], vortex in a Bose

condensate [112, 178], integrated atom optics on an atom chip [179, 100, 101], and

phase fluctuations in an elongated condensate [99]. The atom chip setup installed to

the science chamber in BEC III 3 is shown in figure 2-1.

2Typically, a newly designed atom chip is installed in the place of the old one every 6 - 12 months.
3This is the 5 th generation atom chip in BEC III built in 2005. The previous chip designs can be

found in Ref. [89].



Chip Mask Deisgn

Hollow-core Fiber

Figure 2-1: Microfabricated atom chip mask and the atom chip mounted on the

holder. (a) The mask design for lithography technique is shown. The black lines

describe the pattern of current-carrying wires on the substrate. The width of the wire

is 100 - 200pm. The green line describes a hollow-core fiber mounted on separate

supporting material. The conducting wires are established on the substrate through

evaporation or electroplating deposition after lithography, subsequently followed by

final chemical process. More details can be found in Ref. [120, 31] (b) An atom chip

setup consisting of an atom chip, aluminium mounting structure (2" x 2" x 0.5"),
and electric connections, is shown. In contrast to previous chip designs [89], electric

wires are soldered directly onto the conducting wires on an atom chip. In order to

prevent solder from melting during the baking stage, silver solder with a high melting

point was used (purchased from "Amtech solder products, Inc."). All chip-based

experiments in this thesis have been performed with the atom chip shown here.

............ ............. ...... ...............................................................................................



2.3 Apparatus for Producing a Degenerate gas of

2 3Na and 6 Li Atoms

In 2007, our appratus was upgraded to produce a degenerature Bose-Femri mixture.

Based on the successful experiences by other labs of the Ketterle group at MIT (BEC I

and II), we natuarally chose 6Li atoms as fermions. In our lab, a degenerate Fermi gas

was firstly produced in October 2007. When I was preparing for this thesis, major

efforts in BEC III had been directed toward two projects including (1) the study

of itinerant ferromagnetism in a Fermi gas and (2) the production of heteronucler

ground-state molecules consisting of 23Na and 6Li atoms. Both experiments have

been perforemd in the main chamber, but the idea of the science chamber (i.e. the

two-chamber system) is still attractive and we are planning to trasport 23Na and/or
6 Li atoms into the science chamber for the future experiments.

2.3.1 Producing a Degenerate 6Li Fermi Gas

Cooling fermions appears to be standard now. Especially, three different machines

(BEC I, II, and III) at MIT have a degenerate Fermi gas with a Bose-Einstein con-

densate as a coolant. In this section, a series of different techniques, implemented in

BEC III, for the reliable production of a degenerate Fermi gas will be summarized.

For more detiled descriptions of the procedure, I refer to the previous Ph.d. thesis of

former members of the Ketterle group [77, 183, 213].

New features of the dual-species apparatus in BEC III

Dual-species oven The dual-species oven in BEC III adopted the same oven design

implemented in BEC I and BEC II [183] as described in Figure 2-2. The only differ-

ence is an additional 450 elbow between the oven nozzle and the half-nipple lithium

cup to prevent lithium and sodium from spilling-over. The is necessary because the

zeeman slower has an angle (about 450) relative to the plane perpendicular to gravity.

Except for the half-nipples for sodium and lithium, all parts including mixing/oven

nozzle and mixing chamber is constantly kept at a temperature of 450'C. The typi-

cal operation temperature of the half-nipple cup is 370 C and 320 C for lithium and

sodium respectively. Due to the small vapor pressure of lithium, the lithium source

lasts more than a few years with only 25 g. For sodium, however, the operation life-

time with 25 g sodium is rather short, less than 1000 hours. The single-species oven

with sodium allowed for -2000 hours in BEC III.



330*C

NI I I To main
320*C 370*C $/ chamber

1. Half nipple 7. Oven nozzle
2. Sodium resovior (90 deg.elbow) 8. Reducer (4.5"to 2.75")
3. Mixing nozzle
4. Mixing chamber (Tee)
5. Intermediate Flange (Ni gasket)
6. Intermediate elbow (45 deg.) : Flange (Cu gasket)

Figure 2-2: A schematic of the dual-species oven. The dual-species oven is built from
2.75 inch ConFlat fittings, made from 316SS. Customized nickel gaskets are used to
seal the flanges because normal copper gaskets are likely to bond to the knife edge at
the operating temperature of 450'C. The nickel gasket allows us to disassemble the
oven and reuse the flange. For more technical details, please see Ref. [183].

Dual-species magneto-optical trap (MOT) To implement a new Li MOT in
the main chamber, each sodium beam in the MOT optics was combined with a new
lithium beam delivered through PM optical fibers4 . To this end, one mirror in each
path of sodium MOT light was replaced by a dichroic beam splitter, which are trans-
parent for the wavelength of 589 nm and reflective for 671 nm. After lithium and
sodium lights are overlapped, all the half and quarter waveplates are replaced by
zeroth-order waveplates designed for the wavelength of 633 nm. This makes it possi-
ble to manipulate the polarization for both wavelengths identically. The wrong po-
larization effect due to non-ideal wavelength is typically less than a few percent [77].
In contrast to the dark-spot MOT for sodium, the lithium MOT is bright; each MOT
beam for lithium contains both MOT and repumping lights. The typical dual-species
MOT is shown in figure 2-3.

New skimmer on the cold plate An old skimmer on the cold plate was built for
the single species oven (with sodium). After replacing the old single-species oven by
a new dual-species one, the unexpected deposition of sodium on the skimmer leaded
to the shorter lifetime (less than 500 hours) of the sodium in the oven. To avoid the
deposition, we decided to redesign a skimmer as described in appendix B. At the

4 PM means "polarization-maintaining"

.............. :..:..: ..................... .............. ........ .... ... .. ..... . ...............................................



Na MOTL O

Figure 2-3: Dual-species magneto-optical traps (MOT) are shown for 23Na and 6Li
respectively. A CCD camera with color fiters monitors the dual-species MOT from
three different angles. Typical absorption images of the 23Na and the 6Li cloud
released from the magnetic trap are shown with the time-of-flight of 45 ms and 6 ms
respectively.

moment when I wrote this thesis, a similar deposition of sodium on the new skimmer

was observed after ~800 hours running and the problem is still being assessed.

Sympathetic cooling with a F=2 sodium Bose-Einstein condensate The

rule of thumb in sympathetic cooling in a magnetic trap is that both 23Na and 6Li

must lie in the low-field seeking state. This allows us to simply add fermionic 6 Li

atoms in the process of evaporation cooling for 23Na. To this end, two possible

combination of hyperfine state are:

(a)

(b)
IF= mF = - 1)Na +IF = 1/2,mF = -1/2)Li

IF = 2, mF = 2)Na +IF = 3/2, mF = 3/2)Li

The other combinations suffer from spin-exchange collisions causing unwanted

heating. In BEC III, we decided to choose the combination of (b) based on the

experiences of BEC I and II. In this case (stretched state), 6Li atoms in the state of

IF = 3/2, mF = 3/2) can be stably trapped in a magnetic potential allowing effecient

sympathetic cooling of hot thermal 6Li atoms '.
5Here, 6 Li atoms in the state of |F = 1/2, mF = -1/2) are low-field seeking only below 28 G.
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First, a spin-polarized sodium cloud in the state of IF = 2, mF = 2) (F=2 con-

densate hereafter) is achieved by optical pumping from the F = 1 manifold to the

excited manifod (F pumping). The hyperfine pumping light with .+ polarization illu-

minates tha atom cloud for 2 ms right after switching off the MOT light. For 6Li, two

pumping beams resonant with the F=1/2 and F=3/2 states are used for 400 ps to

provide both F (hyperfine) and mF (Zeeman) pumping. During the pumping stage,
the polarization gradient cooling was omitted to improve the efficiency of lithium

loading into the magnetic trap.

Before the Ioffe-Pritchard trap is turned on, the 2 3Na atoms in the other hyperfine

states are optically pumped into the stretched state. For the purification, the 2 3Na

atoms are illuminated by F pumping light for 2.5 s in the presence of a 1.77 MHz

microwave sweep at the bias field of 80 G. Subsequently, the second purificaton is

done only with a microwave wave sweep for 0.5 s. Finally, - 30% 2 3Na atoms in the

MOT are transferred into the magnetic trap. For 6Li atoms, without the purification

stage, the transfer efficiency fom the MOT into the |F = 3/2, mF = 3/2) is about

~40%.

Preparation of a repulsive two-component Fermi gas of 6Li atoms After

sympathetic cooling, we routinely produce a spin-polarized Fermi gas of ~5x 106

atoms in the stretched state of IF = 3/2, mF = 3/2) (hereafter 16) state, also see

appendix A) in a magnetic trap. The typical temperature of the 6Li cloud is T ~

0.5TF where TF is the Fermi temperature. Then 6Li cloud is transferred into an

optical dipole trap, followed by an RF transfer into the lowest hyperfine state IF =

1/2, mF =1/2). Finally, a Landau-Zener RF sweep is applied in order to prepare a

equal mixture of |F = 1/2, mF = 1/2) (|1) state) and IF = -1/2,mF = 1/2) (12)
state) spin states. Additional evaporation cooling in the mixture of 1) and |2) atoms

has been implemented at 300 G after decoherence for 1 s.

2.3.2 Li Laser System

The new 6Li laser system consists of a master laser and four slaver lasers. The

master laser is a commercial grating stabilized diode laser purchased from TOPTICA

(model: TOPTICA DL100). The master laser gives us an output of ~30 mW, and

the linewidth is reduced to a typical value of 1 MHz (measured in a millisecond) which

is reasonably smaller than the lithium natural linewidth of F = (27r) x 6 MHz. The

master laser locked to the 6Li D2-resonance is amplified by injection locking of four

slave lasers. The slave laser diode placed in the TEC cooled mount (Thorlabs: model
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coils in the main chamber is shown. (a) Geometry
The coils are implemented into the re-entrant

setes is shown in (b). A large magnetic field for
by the current carried through the anti-bias coil.

TCLDM9) produces an output of ~150 mW at desired wavelength of 670.977 nm

while retaining the narrow spectral characteristics of the master laser. The slave

diode6 operates at a temperature of -70'C and at a current of 370~390 mA depending

on injection locking.

Power supply unit Connected coils Magnetic field direction
curvature curvature and antibias (+)

bias only curvature (+)
y-comp compensation (+)

y-trap bias compensation (-)
spin-flip compensation (+)
Feshbach antibias (-)

Table 2.1: The direction of the magnetic bias field is described with the information
of the coil and the power supply generating the field. The (+)-direction points in the
same direction as +y in figure 2-4
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2.3.3 Tools for Experiments

(1) Generating a large bias field for the Feshbach resonance

One of the main tools in our dual-species apparatus is a Feshach resonance with which

one can tune the atom-atom interaction strength by changing a bias magnetic field. A

Feshbach resonance occurs when the scattering state in the open channel approaches

the bound molecular state in the closed channel energetically [108] leading to strong

mixing between two channels. By changing a magnetic field, the energy difference

associated with difference in magnetic moments can be controlled, which is called a
"magnetically tuned Feshbach resonance".

A simple form describing a magnetically tuned Feshbach resonance was introduced

in Ref. [132] as follows:

a(B) = abg(1 - B ) (2.1)

where B is a magnetic field, a denotes the s-wave scattering length, abg is the back-

ground scattering length which is associated with the open channel potential, A is

the resonant width, and B0 is the resonant magnetic field where a diverges. In BEC

III, we are interested in two homonuclear and hetroneclear s-wave resonaces: 834 G
for 6Li atoms 7 and 795.6 G for 6 Li_2 3 Na atoms.

A large bias field for the Feshbach field is generated by the currents carried through

the antibias coil (see figure 2-4 and table 2.1). Tha Feshbach field can be ramped

upto 1500 G with the maxium current of 500 A. The geometry of magnetic coils in

the main chamber is descirbed in figure 2-4, and the field direction generated from

the coils are summarized in table 2.1. A stabilization scheme for Feshbach fields is

illustrated in figure 2-5.

(2) Optical dipole trap

In 6Li experiments, Li atoms in states |1) and 12) are both high-field seeking at

high magnetic field where the two states are strongly interacting with each other.

Unfortunately, it was shown by Wing [200] that the magnitude of static electric or

magnetic field in free space cannot have local maxima; therefore, they cannot trap

strong-field seeking atoms. Thus, the strongly interacting mixture can be stored only

in an optical dipole trap (ODT) as described in figure 2-4. The ODT is produced by

a commercial fiber-amplified Nd:YAG laser from IPG (model:YLR-30-1064-LP-SF).

6 The slave diode (model:ML101J27, Mitsubishi Laser Diodes) has a typical lifetime of a few
months,

7This Feshbach resonance occurs between 1l) and |2) state.
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Figure 2-5: Circuit diagram for producing a large bias magnetic field (called the
Feshbach field). A Feshbach power supply is connected to anti-bias coils to generate
a large bias field. The Feshbach power supply run in voltage control mode providing
an arbitrary current depending on the resistance. The current is PID-controlled via
an IGBT operating in the linear resistance regime. The direction of the Feshbach
field is opposite to one of curvature/bias as described in table 2.1. In this diagram,
the "de-bounce" circuit is omitted.



The laser light has single frequency at 1064nm and fixed polarization out of the laser.

The maximum output power of 30 W will be sufficient for future experiments in both

the main and science chamber.

(3) Science chamber designed for optical lattice experiments

Until summer 2007, the science chamber had been replaced several times when the

experiments required special features as described in other theses [89, 147]. For exam-

ple, it was required to have a rather spacious science chamber with 6" OD windows

in order to facilitate various atom optics experiment including atom interferometry

and quantum reflection. The spacious science chamber allowed us to assemble two

different experiments at the same time without any conflict. Two experiments - co-

herent splitting of the condensate and trapping of cold atoms in a hollow-core fiber

covered in this thesis - were performed in the same setup built in the science chamber

with 6" OD windows.

Despite flexibility of the spacious science chamber, it was difficult to image atoms

with high resolution since the closest lens for imaging cannot be close enough to the

atoms due to the 6" OD window of the chamber. This would be a potential problem

in future experiments which may require single-site imaging in the optical lattice.

Markus Greiner group at Harvard solved this problem by preparing an atomic cloud

right below the window surface using a combination of evanescent wave, standing

wave, and magnetic potential [64, 16].

To solve this imaging problem in BEC III, we adopted an idea similar to the one

used in the main chamber as described in figure. 2-6 and appendix B. We installed

a re-entrant "bucket" ports so that the closest lens of the imaging systems can be

close enough to the atoms. The distance between the first lens and the center of

the chamber (or the position of atoms) is about 1.5" which will allow us to improve

imaging resolution. The bucket ports were built by UKAEA who welded the 1.33" OD

viewport window onto the bucket ports supplied to them by Sharon vacuum. The

viewport window was polished to lambda/4. A detailed description of the science

chabmer is available in appendix B.



Metal bellow

Science Main
chamber chamber

Figure 2-6: (a) The science chamber is newly designed solely for flexible optical access.
The chamber is connected to the main chamber through a metal bellow as shown in
(b). The bellow mechanically isolates the main chamber from the science chamber.
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Chapter 3

Ferromagnetism in a Fermi Gas

Can a gas of spin-up and spin-down fermions become ferromagnetic due to repulsive

interactions?

This question exhibits a long-standing problem which has not found a definitive the-

oretical answer. In the following two chapters, we shall discuss the theoretical and

experimental efforts to find a rigorous answer in the system of a two-component Fermi

gas. To begin with, we review some basic aspect of quantum magnetism in a Fermi

gas.

3.1 Quantum Magnetism

3.1.1 What is magnetism?

Magnetism is a macroscopic phenomenon with its origin deeply rooted in quantum

mechanics. In the early 1910's [27], Bohr pointed out that a collection of classical

electrons in a box can never be sensitive to the external magnetic field; therefore any

solid consisting of electrons should be non-magnetic in the classical sense. This is

clearly illustrated by calculating the classical partition function Z of N electrons:

I - 2

f 2m



Figure 3-1: Classical electron gas in a box with external magnetic field is shown. The
red dot describes the classical electron and the black circle denotes the electron's orbit.
In the presence of magnetic field, the electrons move in a circle generating magnetic
moments. The total magnetic moment of the electron gas in the box, however, is
always zero.

As the vector potential A = A(x) is independent of Y classically 1, the partition

function splits into two parts:

Zeiassical oc Jd3Nx exp(- 3VQ()) d3Np eXp(-P (3.2)

constant

The second integral containing A is constant leading to a conclusion that the par-

tition function Zeassical is insensitive to the vector potential A: Z(A) = Z(A = 0).

Therefore, classical description is insufficient to explain the magnetic properties in a

solid. A collection of classical electrons in a box is a good example to emphasize this

as described in figure 3-1.

3.1.2 Origin of Ferromagnetism: Exchange interactions

The phenomenon of "spontaneous magnetization" or ferromagnetism, is the conse-

quence of magnetic interactions between the discrete sources of magnetic moment.

Now, we have a question: "Where do the magnetic interactions come from?". Our

first naive expectation is that the dominant magnetic interactions arise from dipole-

In quantum mechnics, the vector potential is not independent of p# due to [x, p] # 0.

S 0
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dipole interactions between discrete magnetic moments. These interactions between
dipole moments, however, are too weak to induce the magnetic structure. The mag-

nitude of dipole-dipole interaction energy, UdipQe can be estimated by considering an

atomic magnetic dipole moments mi and m 2 separated by r. For a typical solid,

1(g
1-B )2  104U = -[mi - m2 - 3(mi - r)(m2 r)] ~ ~ 10-eV (3.3)

rr

The value of 10- 4 eV is equivalent to 1K in thermal energy. Therefore the dipolar

interaction is typically too weak to induce spontaneously magnetization or ferromag-

netism in a solid whose ferromagnetic transition temperature is lager than 10K, even

1000K for iron.

What is the origin of spontaneous magnetization in a solid? Interestingly, mag-

netic fields are irrelevant to magnetic ordering of adjacent magnetic moments. In-

stead, Coulomb repulsion between electrons plays the important role. This seems

to be unreasonable because the Coulomb interactions are spin-independent (or non-
magnetic interactions). The problem is, however, reconciled by the Pauli exclusion

principle imposing a strict correlation between (spin-independent) Coulomb inter-

actions and the total spin of the system. The emergence of magnetic interactions

between electrons from Coulomb repulsion becomes more clear in the calculations

of the energy of a two-electron system 2. Since the total wavefuction of the two-

electron system must be antisymmetiric under particle exchanges, a spin singlet and

a spin triplet states have different symmetries of the spatial wavefunction. For ex-
ample, a spin triplet state, #T, has a antisymmetric spatial wavefunction and the

energy of the triplet state, ET, can be calculated by ET (#r5THJ#T) where H is the
spin-independent Hamiltonian of the system including Coulomb interactions. The

Hamiltonian acts only on spatial degree of freedom. Similarly, a spin singlet energy

becomes es = (#s|I Jqs). Now, the difference between triplet and singlet energies

determines the tendency toward ferromagnetism.

Er - ES = -J (3.4)

When J is positive, the groud state of the two-electron system becomes ferromagnetic.

Here, we call J the exchange energy leading to magnetism from electrostatic Coulomb

repulsion. The exchange interactions are nothing but the interplay of electrostatic

Coulomb interactions and the Pauli exclusion principle. The exchange energy denotes
2This calculation was done by Heitler and London in 1927. For more details, I refer to Ref. [49,

134, 109, 198]



the contribution to the Coulomb interaction energy of electrons associated with the

use of symmetric and antisymmetric wavefunctions.

Heisenberg model So far, we have seen that the Pauli exclusion principle corre-

lates the symmetric and the antisymmetric spatial wavefuction with the spin wave-

functions leading to the difference of Coulomb repulsion energy for the spin singlet

and the triplet states. Now, the idea of two-electron system gives us construction

blocks for many-electron system. The exchange interaction -can be expressed as an

effective spin Hamiltonian acting only on the spin degree of freedom. Since the spin-

spin interaction depends only the relative direction between two spins, the effective

spin Hamiltonian, Heff, which is identical to the original Hamiltonian acting only on

the spatial degree of freedom becomes

Heff = -JS1 - S2 (3.5)

where J is exchange energy. For a many-electron system in a lattice, the effective

Hamiltonian takes the form

He! = - Jn,n'Sn - Sn, (3.6)

n,n,

where n denotes the n'h lattice site. This model, so-called Heisenberg model, is the

starting point for further investigation of ferromagnetism and antiferromagnetism in

insulators.

3.1.3 Two Paradigms of Magnetism

In condensed matter physics, there are two paradigms for magnetism: localized spins

interacting via tunnelling, and delocalized spins interacting via an exchange energy.

For localized spins, the magnetic phenomenon arises from the interplay of localized

electrons. In this case, the exchange interactions we have just seen above come from

either the direct Coulomb interaction among electrons from different ions or indirect

coupling between magnetic ions mediated by nonmagnetic ions. The latter type

of magnetic interaction is called superexchange. Major open questions for localized

spins include the interplay of magnetism with d-wave superfluidity and frustrated

spin materials [115].

The delocalized spins gives rise to itinerant ferromagnetism which is responsible for

the properties of transition metals like cobalt, iron and nickel. Among the conduction



electrons in metals, the electrons are no longer localized but rather itinerant. The

exchange interaction among the free electrons is called itinerant exchange, and this is
the main ingredient for itinerant ferromagnetism in a free electron gas as we will see

later.

Note that both kinds of magnetism involve strong correlations and/or strong inter-

actions and are not yet completely understood. For example, phase transition theories

are still qualitative for itinerant ferromagnetism [24, 187, 124, 32, 194, 190, 188]. The

experimental and theoretical works for itinerant ferromagnetism shall be discussed in

this chapter and the next chapter 4.

3.2 Itinerant Ferromagnetism

3.2.1 Long-standing Problem in Condensed-matter Physics

Magnetism in a free electron gas

Itinerant ferromagnetism in a free electron gas has been a long-standing problem

in condensed-matter physics. Although the theory of magnetism in a free electron

gas is inadequate to describe magnetism in a real metal (due to a over-simplified

model), it is still of importance because of several reasons: (1) the model for itinerant

ferromagnetism does not require band structure and spin-dependent interactions, (2)

it represents itinerant aspect of exchange interactions, and (3) it may demonstrate

the ferromagnetic behavior in transition metals 3.

The origin of ferromagnetism in real material has been one of the mystery for a long

time [49]. Heisenberg first suggested that ferromagnetism is a quantum many-body

effect solely arising from the interplay between the spin-independent Coulomb repul-

sion and the Pauli exclusion principle, generating "exchange interaction" [201]. In the

early 1930's, Stoner proposed that the magnetism may coexist with one-electron band

theory [187]. He pointed out that exchange interactions between overlapping electrons

favor ferromagnetism in an itinerant electron gas. A fer years earlier, Bloch [24] first

pointed out in the Hartree-Fock approximation that a free electron gas with long-range

Coulomb interactions may become ferromagnetic when r. > 4 where r, oc 1/(/3)

is the Wigner-Seitz radius , depending only on the density(n) of the electron gas.

However, it was pointed out that Bloch's calculation may ignore the strong effect of
3Note that it is widely believed that the ferromagnetism in some transition metals arises from

the interplay between itinerant ferromagnetism, orbital degeneracy associated with band structure,
and Hund's rule [49, 134, 109, 198]



Long-range Coulomb interaction Short-range contact interaction
Kinetic energy (Ekin) oc n2/3 2/3

Interaction energy(Eint) oc n1/3 oc n

Table 3.1: Density dependence in Long-range Coulomb interactions and short-range
contact interactions is shown. For long-range Coulomb interactions, itinerant ferro-
magnetism is expected to occur at low density n as Eint/Ekifl> 1 only when n ~ 0.
The density dependence for short-range interactions is opposite; itinerant ferromag-
netism is expected to occur at high density n > 1.

correlations which reduce the gain in interaction energy in a ferromagnetic state [199].

Recently, it was shown by quantum Monte Carlo (QMC) calculations [209, 141] that

the ferromagnetic phase transition in a three-dimensional electron gas at zero tem-

perature occurs only at the very low density of r, ~ 50, suggesting that the effect of

correlations should be taken into account for calculating the critical density.

A free electron model has often been improved by including the screening effect

between electrons [49, 134, 109, 198]. For more simplicity, the screened Coulomb in-

teractions are sometimes approximated by short-range contact interactions (or hard-

sphere interactions). For such interactions, a rigorous calculation of the true ground

state does not exist yet. Variational approximations [203], however, support the

Hartree-Fock results. In contrast to bare Coulomb interactions, itinerant ferromag-

netism may occur at high atomic density of the electron gas with short-range contact

interactions (see table 3.2.1).
In parallel to these efforts, ferromagnetism in Hubbard models [98] has been ac-

tively studied [127, 136, 125, 189]. The Hubbard model allows us to describe the

quantum correlations in a proper way, leading to rigorous calculations of the true

ground state. For example, Elliott H. Lieb and F. Y. Wu showed that the true ground

state in the one-dimensional lattice system should have antiferromagnetic configura-

tions [127]. Some other mathematical proofs have been achieved in the Hubbard-type

model under certain conditions. For more discussions, please see section 3.2.3. But,

the question of "whether spin-independent Coulomb interaction can induce ferromag-

netism in an itinerant electron system" has not yet been rigorously answered for the

free gas.



3.2.2 Stoner Model in a Free Electron Gas with Short-range

Interactions

Itinerant Ferromagnetism often occurs in a "metallic magnetic material". Here, the
metallic nature captures the itinerancy of electrons in a conduction band. In this
section, we will discuss the Stoner model explaining the ferromagnetic instability
in a free electron gas. The metallic state is characterized by the kinetic energy of
conduction electrons, imposed by the Pauli principle.

Short-range contact interations

The Stoner model can be derived by estimating total kinetic and interaction energy of
the electron gas. Since electrons are itinerant, each single electron does not feel bare
Coulomb repulsion produced by other electron. Instead, the metallic state profoundly

modifies the Coulomb interactions between electrons, leading to a rapid decrease in

the Coulomb repulsion beyond some characteristic distance, the Thomas-Fermi length
ATF. The phenomenon, called screening, introduces a simple estimate of the Coulomb

interaction. The bare Coulomb potential U(r) = -4r between electrons is screened

by other electrons, and becomes exponentially weaker beyond ATF,

e 2 exp(_qTFr)
Us,(r) = - e (3.7)

47rEo r

where ATF = 27/qTF. In typical transition metals such as iron, cobalt, and nickel,
Thomas-Fermi length ATF is less than the mean distance between electrons; therefore,
qTF >> q for short-range of the potential. In the form of the screened Coulomb
potential in momentum space

e2 1
U,-cr,(q) = - 2 (3.8)

,Fo q2 q qTF

one can simply approximate the screened Coulomb potential Usc,(q) to a constant
neglecting the term q2 . Then, the screened Coulomb potential reduces to a contact
interaction

U(r) = IM(r). (3.9)

To evaluate the response of the electron system in the presence of a magnetic

field, we now calculate the magnetic susceptibility x. The behavior of the magnetic

susceptibility clearly illustrates the role of short-range repulsive interactions in the

ferromagnetic phase transition.
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Figure 3-2: Density of states of a metal. (a) In the presence of a magnetic field, the
density of states for spin-up and spin-down states shift in the opposite directions. This
leads to a paramagnetic behavior. (b) With introduction of exchange interactions,
the system of electrons are unstable toward a spontaneously magnetized state.

(1) Pauli paramagnetism (without Coulomb repulsion)

In the presence of the external magnetic field B, the electrons in the slice of energy

thickness 6s = MBB are transferred from one spin-state to other [see figure 3-2 (a)].

The net magnetic moment in equilibrium becomes

M = (N(EF)IBB x 2 ALB= 2(,B) 2 N(eF)B (3.10)

where N(EF) is a density of state (DOS) at the energy of EF Therefore, Pauli spin

susceptibility at T = 0 ' becomes

XPauli= 2po(B) 2 N(EF) (3-11)

clearly showing that there is no instability.

(2) Stoner model (with Coulomb repulsion)

Introducing Coulomb repulsion, we can examine the instability of the paramagnetic

state towards the ferromagnetic state. Here, we assume that Coulomb interactions

reduce to short-range contact interactions as describe in the relation 3.9. Thus the

interaction energy can be written as Ei = Inrtni, where n1 (n) is the density of

electrons with the spin-up (spin-down) state and I denotes the reduction in interaction

energy caused by reversing a spin. When electrons in a slice of energy thickness 6E

4The finite temperature effects change the density of state and displace the Fermi level. This
gives: X(T) = X(T = 0)(1 + 0(T 2 ))

............



are transferred as in figure 3-2 (b), the kinetic energy of the electron gas increases:

AEki, = N(eF)Q(E) 2  (3.12)

The interaction energy, however, decreases:

AEint= I[- + N(EF)E] [- - N(EF)E] - I( N )2 = -IN2(e 2  (3.13)

Therefore, total energy changes with introduction of the perturbation,

AEtotai = N(EF) 6E 2(1 - IN(EF)) (3.14)

This implies that the paramagnetic state is energetically stable only when IN(EF) <

1. When interaction strength I is strong enough satisfying the criterion of IN(EF) >
1, the electron system undergoes a ferromagnetic phase transition. The spin suscep-

tibility becomes:
XPauli

XStoner = 1 - IN(EF). (3.15)

This corresponds to the many-body correction to the Pauli susceptibility leading to

the Stoner's criterion,

IN(eF) > 1 (3.16)

where itinerant ferromagnetism occurs in a free electron gas. This Stoner's crite-

rion involves microscopic aspects of itinerant exchange, through the term I, and the

number of electrons, through the N(EF). Stoner's model is universal in that it de-

pends only on the two parameters. Note that two major ingredients for itinerant

ferromagnetism are the Pauli principle and the Coulomb repulsion.

3.2.3 Ferromagnetism in Hubbard Models

The stoner model is generally expected to apply to systems with broad bands or

partially filled bands. As the bands become narrower, atom-atom correlation effects

become more important. In this case, it is much more convenient to describe the sys-

tem in the Wannier basis. For this purpose, the Hubbard model [98] was proposed by

British physicist, John Hubbard, in the early 1960s to describe narrow band metals

in which the repulsive Coulomb interaction between two electrons at the same site

is likely to suppress the hopping between adjacent sites '. The model address both
5At about the same time, Martin Gutzwiller proposed a very similar model as well.
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Figure 3-3: Hartree-Fock phase diagram for the two-dimensional Hubbbard model.
A, F, and P denote the antiferromagnetic, ferromagnetic, and paramagnetic ground
state respectively. From Ref. [82]

the electronic quantum correlations and some degree of electron mobility leading to

magnetism which are not fully described in the tight binding model or classical Ising

model [109]. The Hubbard model has been widely believed to be the basic ingredi-

ent in order to explain two major phenomena : quantum magnetism (for example,

ferromagnetism and antiferromagnetism ) and electrical conductivity (for example,

high-Tc superconductivity) in condensed matter.

The model has a simple Hamiltonian,

H = -t E aa, + U[ ni,in,l (3.17)
(ij)o i

where ai, (as) is an fermionic annihilation (creation) operator of spin o- on the site

i and n =aa denotes the occupation number of the Wannier state #5(RI, r). The

Hamiltonian has two competing terms which are described by the hopping amplitude

t between neighboring lattice sites and the repulsive on-site interaction U between

atoms with opposite spin. For low filling factor, the Hubbard model reduces to the

Stoner model when one uses the Bloch basis #(k, r) and 21 in place of the Wannier

basis and U.



Can the Hubbard model favor particularly ferromagnetism or antiferromagnetism?

The answer is "YES in one-dimensional (1D) systems, but NOT always in other

cases.". In spite of the richness in quantum phases, an exact solution only exists

in one-dimensional system [127]. Lieb and Wu proved that the ground state in the

1D system must have antiferromagnetic configuration. In the 2D system, an anti-

ferromagnetic ground state is expected for half-filling (n) = 1 in the Hartree-Fock

approximation as described in figure 3-3.

On the other hand, the Hubbard model possesses a ferromagnetic ground state

under certain conditions. Nagaoka rigorously proved that the very strong repulsive

interactions induce ferromagnetism if the occupation number (n) is slightly short

of half-filling [136]. Even with a single vacancy, the ferromagnetism occurs when

U -4 oc. Another rigorous model was discovered by Lieb [125] showing that a dis-

persionless flatband supports ferromagnetism. Recently, Tasaki has concluded that a

ferromagnetic ground state is favored in the Hubbard model when the electron can

hop farther than the nearest-neighbor sites [190].

3.2.4 Similar Studies in Normal Liquid 3 He

The seminal discovery of the exotic superfluid phases of 3He in 1971 [143] stimulated

both experimental and theoretical researches on the normal phase of 3 He as well as

the superfluid phases [121, 193]. The normal liquid 3 He has served as a model system

of strongly interacting fermions. Due to the high density, the interatomic interactions

are approximated by short-range contact interactions neglecting an attractive Van der

Waals tail.

The properties of liquid 3 He can be described by Landau Fermi liquid theory [157]

which deals with an interacting Fermi liquid phenomenologically. The theory of Lan-

dau assumes that the ground state of an interacting Fermi liquid consists of quasi-

particles (or elementary excitations) characterized by an effective mass m* and an

effective interaction parameterized by Landau parameters. Here, quasiparticles obey

the same distribution function of a non-interacting Fermi liquid. In this frame work,
several physical quantities such as the specific heat, the spin susceptibility, and the

compressibility are given as a function of Landau parameters and m*. For example,
the spin susceptibility X, becomes,

m*

X8 1 a x (3.18)
1 + Fo0



where x0 denotes the spin susceptibility for a noninteracting system and Foa is one of

the Landau parameters.

Major efforts have been made toward an understanding of the properties of nor-

mal 3He [121, 193]. In particular, the enhancement in the spin susceptibility, Xs,

of normal 3He has stimulated many theoretical and experimental discussions. In

the expression 3.18, Foa has a negative value indicating the enhancement of the spin

susceptibility due to the ferromagnetic contribution arising from the Pauli exclusion

principle. When Fo -> -1, the diverging spin susceptibility implies a phase transition

to a ferromagnetic state. The experimental measurement of X, [68], however, shows

that the spin susceptibility is enhanced only by Fo ~_ -0.75 for all pressures .

The enhancement of the spin susceptibility can be described in the "paramagnon

theory" [111, 7]. In this theory, 3He is considered as "almost ferromagnetic" and its

properties are associated with the incipient ferromagnetic phase caused by low-energy

spin fluctuations. On the other hand, the same enhancement of the spin suscepti-

bility can be understood as a result of "localization due to strong correlations" [8].

In this picture, 3He is considered as "almost localized" (and therefore stays in the

paramagnetic phase) since the effective mass m* increases with pressure whereas the

Landau parameter Fo is almost constant in the experiment.

6At a pressure of -34 bars, liquid 3 He solidifies.



3.3 Itinerant Ferromagnetism in Ultracold Atomic

Gases

A Fermi gas of ultracold atoms as a model system

An important recent development in cold atom science has been the realization of su-
perfluidity and the BCS-BEC crossover in strongly interacting two-component Fermi

gases near a Feshbach resonance [91]. These phenomena occur for attractive inter-
actions for negative scattering length and for bound molecules (corresponding to a
positive scattering length for two unpaired atoms). Very little attention has been
given to the region for atoms with strongly repulsive interactions. One reason is that
this region is an excited branch, which is unstable against near-resonant three-body

recombination into weakly-bound molecules [153]. Nevertheless, many theoretical pa-
pers have proposed a two-component Fermi gas near a Feshbach resonance as a model
system for itinerant ferromagnetism [86, 170, 4, 182, 52, 19, 206, 114] assuming that

the decay into molecules can be sufficiently suppressed.

In contrast to the solid state system, the study of itinerant ferromagnetism in
a strongly interacting Fermi gas should address the effect of trap geometry and the
imposed spin polarization defined by the population imbalance for each spin state as
summarized in Table 3.2. For sufficiently large clouds (therefore neglecting surface

effects), trapped Fermi atoms can be simply treated as if each atoms are governed

by local Fermi energy and interactions imposed by other atoms. This approximation,
so-called "local density approximation (LDA)", allows us to use the result obtained
for the homogeneous Fermi gas.

Another feature of the atomic system is the pseudo-spin associated with two dif-

ferent hyperfine states. In an atomic Fermi gas, two lowest energy states are generally
selected as pseudo-spin states; therefore spin-spin relaxation collision is prohibited en-
ergetically. In this configuration, the two-component Fermi gas is also stable against
dipolar relaxation due to the Pauli exclusion principle [91].

The imposed population imbalance for each pseudo-spin state realizes a canonical
ensemble with the fixed number of particles whereas solid state systems usually are
represented by a grand canonical ensemble with the chemical potential. In the case of
balanced Fermi mixture, the net spin polarization is zero which corresponds to zero

external magnetic field in solid state systems (see Table 3.2).

One of the attractive feature in the cold atomic system is the unprecedented con-
trol of two-body interactions via the Feshbach resonance [38, 108]. There had been
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Figure 3-4: Itinerant ferromagnetism in second-order perturbation calculations. Mag-
netization is calculated as a function of kFa, for various temperatures. From left to
right T/TF =0, 0.1, 0.15, 0.2, and 0.25. The magnetization undergoes the first-order
phase transition at low temperatures (the dashed line in the graph). The critical
temperature for the ferromagnetic phase transition is shown as a function of kFa in
the inset. The solid line (the dotted line) denotes first-order transitions (second-order
transitions ). From Ref. [52]

many theoretical works studying a two-component Fermi gas with repulsive inter-

actions as a model system of itinerant ferromagnetism. The phase separation in a

two-component Fermi gas has been studied by Salasnich et al. [170] and Sogo and

Yabu [182]; they treated harmonically trapped atoms in the Thomas-Fermi approxi-

mation. Duine and McDonald characterized the ferromagnetic phase transition in a

homogeneous Fermi gas, showing that the transition changes from the second order

to the discontinuous first order at the very low temperature [52] as summarized in

figure 3-4. They indeed treated the effect of fluctuations in second-order perturbation

theory, and pointed out that Hartree-Fock theory may underestimate the tendency

towards ferromagnetism. Recently, the ferromagnetic phase transition and the spin

structure in the ferromagnetic state have been investigated in a Fermi gas in a har-

monic trap [114, 19, 44]. In addition, some aspects of nonequilibrium dynamics in

a Fermi gas have been studied when a non-interacting Fermi gas undergoes a rapid

quench to the repulsive side of a Feshbach resonace [14, 44]. Itinerant ferromagnetism

in a Fermi gas has been also investigated in optical lattices. By engineering the band

structure to have a flat band in a two-dimensional honeycomb lattice, one can realize

a ferromagnetic phase in a two component Fermi gas [207, 195].



Properties Cold atomic system Solid state system
Thermodynamic ensemble N1 ,N 2,E fixed y,B,T fixed

B Field Balanced 1 > -12 > mixture Electron gas with
zero external magnetic field

Inter-particle s-wave scattering Coulomb interactions
interactions (short-range interaction) (but screened)

Tunable interactions Feshbach resonance pressure
Charge Neutral system Charged system

Table 3.2: Comparison between cold atoms and solid state in the study of itinerant
ferromagnetism.

3.3.1 A Very Simple Mean-field Prediction for Stoner's In-

stability in an Ultracold Atomic Gas

A simple mean-field model captures many qualitative features of the expected fer-

romagnetic phase in equilibrium. In the strongly interacting regime, however, this
Hartree-Fock type approximation is not sufficient for a quantitative study since higher

order terms leading to quantum fluctuations play the important role. Nevertheless,
mean-field model would be a starting point to understand the properties of a two-

component Fermi gas.

We consider a uniform two-component Fermi gas interacting through a short-range

s-wave interactions (contact interactions). The main feature of the phase transition

in a homogeneous trap is expected to be maintained in a harmonic trap within the

local density approximation (LDA).

The Hamiltonian describing the system is given by

H = 3 Eickck + g J d3rc 1 c$c rICr,T (3.19)

where Ek = h2k2 is the kinetic energy of atoms with mass m and momentum hk, and2m

g = 4,h 2 denotes the contact interactions. Here, the interaction term represents any

short-range spin-independent potential.

For a two-component Fermi gas trapped in a homogeneous trap with volume V

and average atomic density n (per spin component), the total energy is given by in a

mean-field model

E77- V(EFO. n7) + gVni~rj (3.20)

h2 k 2

with density n, = N,/V of the spin a and Fermi energy EF, = F2
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Figure 3-5: Mean-field model at T = 0 for itinerant ferromagnetism in a Fermi gas of
ultracold atoms. With introduction of local density imbalance dn in a two-component
Fermi gas, the instability toward a ferromagnetic state can be described in a mean-
field model.

Now, we introduce the local magnetization of the Fermi gas, q = dn/n, as de-

scribed in figure 3-5. The local magnetization of the Fermi gas is non-zero when the

gas separates into two volumes although the total number of atoms in each pseudospin

state is conserved. The total energy with local magnetization 7 becomes

ETotai =EF2 Vn 3f-(I + 77) 5/ 3 + (1 _ 11)5/31 + 7 kFa(1 - n)(1 - 77)] (3.21)
1037

For a system at constant volume, the shape of the total energy Eotal as a function

of the magnetization 71 implies that the Landau-type second-order phase transition

occurs at critical value of kFa. Figure 3-6 (a) shows the total energy at different value

of kFa. It is clear that the system with minimum in energy spontaneously devolops

non-zero magnetization when kFa is larger than 7r/2. The phase transition occurs

when the curvature of the energy curve becomes zero at 77 = 0:

Totl o - 0 (3.22)

giving the critical value of kFa = 7/2.

To compare this model with a cold atomic system, it is more convenient to consider

the thermodynamic quantities at constant pressure because the atoms are trapped in

1> n+dn |2> n-dn

12> n-dn 12> n+dn
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Figure 3-6: Ferromagnetic phase transition at T=0, according to the mean-field model
described in the text. The onset of itinerant ferromagnetism occurs when the energy
as a function of magnetization flips from a U-shape to a W-shape (a). Figure (b)
shows the enthalpy, volume and kinetic energy (normalized to their values for the
ideal Fermi gas), and magnetization as a function of the interaction parameter kFa.
Note that kF is defined by the density of the gas. The dotted line marks the phase
transition.

a harmonic potential '. For this, we consider the enthalpy, H, of the system:

H = E17a - PV (3.23)

with the pressure P = -dEota/dV.

Similar to the constant volume case, one can calculate the magnetization r/ of

the system at a given kFa by minimizing the enthalpy. Subsequently, kinetic energy,
volume, and total enthalpy are known as a function of kFa (see figure 3-6 (b)).

9 Kinetic energy: For increasing repulsive interactions, the gas expands, lowering

its density and Fermi energy; kinetic energy is therefore reduced. When the

'In a harmonic potential, the pressure is actually not constant but this simple approach is very
useful to capture qualitative features in a ferromagnetic phase transition.

Z __1\j



gas enters the ferromagnetic phase, kinetic energy increases rapidly due to the

larger local density per spin state. When the gas is fully polarized, it avoids

the repulsive interaction, but increases its kinetic energy normalized by kF2 by

a factor of 22/3

" Volume: The volume has a maximum value at the phase transition. This can

be understood by noting that pressure in our model is given by

(2/3)Ekin/V + Eint/V (3.24)

where Ekin is kinetic energy and Eint interaction energy. At the phase transition,

the system increases its kinetic energy and reduces its interaction energy, thus

reducing the pressure. This maximum in pressure at constant volume turns into

a maximum in volume for a system held at constant pressure, or in a trapping

potential.

" Magnetization: In the mean-field model, the phase transition is second-order;
the magnetization, therefore, changes continuously. The phase transition, how-

ever, may become first-order at the very low temperature due to quantum fluc-

tuations [52].

In summary, we have obtained three predictions of this mean-field model:

(1) the onset of local magnetization

(2) the minimum in kinetic energy

(3) the maximum in the size of the cloud

Note that the qualitative features are generic for ferromagnetic phase transition and

should be present in more advanced model.

3.3.2 Domain Structure of the Ferromagnetic Ground State

As described in figure 3-7, there are several configurations for the ground state of

the ferromagnetic state in the uniform gas. When the number of atoms in each spin

state is not conserved (i.e. in the grand canonical ensemble), the true ground state

of the ferromagnetic phase is the homogeneous fully-polarized state with a constant

magnetization MO as described in figure 3-7 (b). In a trapped atomic gas, however,

this is not valid since the total spin population in each state must be conserved. For

the gas of equal spin populations, the total magnetization of the system is always

zero: f drM(r) = 0. Therefore, the configuration of the ferromagnetic ground state
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Figure 3-7: Schematic illustration of the ferromagnetic transition in the uniform two-
component Fermi gas. As the repulsive interaction strength is increased, the gas
of ultracold atoms becomes ferromagnetic at the critical value of kFa = 7r/2 in the
mean-field model. The kinetic energy of the gas increases by the factor of 22/3 when
(a) the state is phase-separated or (b) the state becomes fully coherent.
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Figure 3-8: The possible configuration of the ferromagnetic ground state in a two-
component Fermi gas trapped in a spherical potential. The hedhog state and the
domain wall state are shown in (a) and (b) respectively.

in the trapped gas must change to satisfy the above constraint. In a spherical three-

dimensional trap, two candidates, the hedge hog and the domain wall state, for the

ferromagnetic ground state are described in figure 3-8 (a) and (b) respectively. It has

been shown that the hedge hog state has lower energy than the domain wall state in

a three-dimensional trap [19, 114]. However, the energy difference between the two

configurations turns out to be very small compared to the Fermi energy EF or the

temperature kBT of the system [114].



Chapter 4

Itinerant Ferromagnetism in a

Fermi Gas of Ultracold Atoms

This chapter describes our research on itinerant ferromagnetism in a strongly inter-

acting Fermi gas of ultracold atoms. Our experiment can be regarded as quantum

simulation of a Hamiltonian for which even the existence of a phase transition was

unproven. The experiment was reported in the publication:

e Gyu-Boong Jo, Ye-Ryuoung Lee, Jae-Hoon Choi, Caleb A. Christensen, Tony

H. Kim, Joseph H. Thywissen,David E. Pritchard and Wolfgang Ketterle

Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms

Science 325 , 1521-1524 (2009). Included in appendix C

4.1 Two-component Fermi gas with strong repul-

sive interactions as a Model System

Overview

Recent developments in the field of ultracold Fermi gases rely on the ability of tun-

ing the scattering length a from zero to the value larger than mean interatomic dis-

tance [65, 38, 108]. This is done by simply changing the magnetic field near a Feshbach

resonance. In this section, we mainly discuss the properties of the system near the

Feshbach resonance. In particular, the repulsive gas is of interest since it would be a

model system for the study of itinerant ferromagnetism.

As described in figure 4-1, the Feshbach resonance couples a molecular bound

state (referred to as closed channel) with an unbound state describing a colliding pair



of atoms (referred to as open channel). In a two-particle picture, the energy spectrum

in the system of Fermi gases near the Feshbach resonance shows that there are several

energy branches for the macroscopic state of the Fermi gas (see figure 4-1). Here, the

two lowest-energy branches are of importance for our purpose.

1. The ground state branch : The ground state branch connects two different

regimes: a dilute gas of dimers (on the left-hand side of figure 4-1) and a weakly

attractive gas (on the right-hand side of figure 4-1). In the dilute Fermi gas with

negative scattering length (kFlal < 1), the many-body state can be described

in the BCS picture [17] both at T = 0 and at finite temperature. In this

regime, the Cooper paring instability toward the BCS state exists even in the

presence of extremely weak attraction. For the gas of dimers (kFa < 1), the

behavior can be described by the BEC picture (hereafter called BEC limit).

Experimentally, the molecular Bose-Einstein condensation has been observed

by several groups [211, 67, 30, 18, 144]. For both BCS and BEC limits, the gas

remains stable and shows superfluidity. The many-body physics becomes much

more challenging in the intermediate regime connecting the BCS and BEC limits

because the scattering length is larger than mean interatomic distance kFjaj

1. For this regime, so-called BCS-BEC crossover, many relevant experiments

and theoretical calculations have indicated that the gas exhibits superfluidity

and remains stable [65, 91]. In addition, the universal behavior at the unitary

regime (kFa -* oc) has been studied experimentally in good agreement with

relevant numerical calculations. For more details, I refer to Ref. [65, 91].

2. The first excited branch : The repulsive gas of atoms is realized in the

first excited branch. An attractive potential with a weakly bound state has

a positive scattering length describing repulsive interactions in the continuum.

In the dilute atomic gases, the true ground state in the presence of repulsive

interactions is the gas of the dimers since the long-range atom-atom interactions

are attractive. In the excited branch, therefore, the gas of atoms with positive

scattering length a is metastable since three-body collisions between atoms tends

to form a molecule [153] and populates ground state branch. The collision rate is

proportional to a' for small scattering length, kFa < 1, and the binding energy

of the produced dimer is carried away by the third atom. When kFa -- 0, the

gas corresponds to the weakly repulsive gas.

As we have seen above, two different branches near the Feshbach resonance al-

low us to prepare both an attractive and a repulsive gas of atoms. Experimentally,
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Figure 4-1: Schematic illustration of the energy spectrum of the two-particle system
in a spherical harmonic potential near a Feshbach resonance.

the atomic gas in the ground state branch has been achieved by (1) producing and

simultaneously cooling down a gas of dimers via three-body collisions with a fixed

(positive) scattering length or (2) crossing the Feshbach resonance adiabatically start-

ing from the negative scattering length. On the other hand, the repulsive gas can

be realized by adiabatically increasing the scattering length, starting from the small

value, a = 0+ [29]. For the repulsive atomic gas, the strongly interacting gas suffers

from molecule formation leading to a short lifetime. To minimize deleterious molecule

formation in the atomic gas, one should increase the scattering length from zero to

the large value as quickly as possible. This quench could be done by ramping up the

magnetic field [102] or by changing the hyperfine state of the atom with an RF pulse

as discussed in section 4.5.

Before we discuss the properties of the repulsive gas of atoms, it is useful to distin-

guish two different universal states in the unitary limit la - oo. In the ground state

branch, the effective interaction in the unitary limit is attractive, whereas it is repul-

sive in the first excited branch. This different behavior of the gas is clearly identified

in the calculation of the thermodynamic pressure in a toy model (see figure 4-2).

.............................................................



Strongly interacting repulsive atomic gas

For an weakly repulsive Fermi gas, the ground-state energy be exactly calculated

within standard perturbation theory. The atom-atom interactions are approximated

by the psedopotential with a scattering length a. At nearly zero temperature, the

energy per particle is given by the following asymptotic expansion [88, 116, 126]:

-- = EF(- 2kFa + (11 - 21n2)(kFa)2 + 0.23(kFa)3 + (4.1)
N 5 37r 357r

h2
k2where EF =- is Fermi energy and kF is the Fermi wavenumber, which should be

meaningful either for weakly interacting case (a - 0) or low density (kF -* 0). Note

that the energy in the equation 4.1 denotes the energy of the true ground state for

purely repulsive potentials such as the hard-sphere model. In the dilute atomic gas,
this result describes the energy of metastable repulsive gas in the first excited branch.

Each term in the expression 4.1 has a physical physical interpretation:

" The first term corresponds to the kinetic energy of the noninteracting Fermi

gas.

" The second term proportional to kFa implies both direct and exchange interac-

tion energy associated with the two-particle forward scattering. Indeed, this is

related to the definition of the s-wave scattering length a for low-energy colli-

sions in a low-density gas. Neglecting the effect of the presence of other particles

in the Fermi sea, free-particle scattering amplitude f(k, k') has a constant value

-a as k = k' -+ 0 (low-energy limit).

" The term proportional to (kFa)2 indicates the particle-hole excitation in the

presence of the Fermi sea. For example, this term includes the physical process

that an incident particle excites a particle in the Fermi sea, leaving a hole

behind. Subsequently, the same two particles collide with each other again,
removing a hole in the Fermi sea and bringing the system back to the initial

state.

* A correction of order (kFa)3 represents the three distinct collisions associated

with three-particle correlations [50].

The many-body problem for a large positive scattering length, kFa > 1, is much

more challenging. To date, an exact solution of the many-body ground state in this

regime is not available and one has to rely on the numerical calculations or advanced

Hartree-Fock theories including the second-order fluctuations [133, 1, 52, 43].



We may now ask for the thermodynamic property of the Fermi gas when the

scattering length is larger than the mean distance between particles. In particular,
the ground-state energy, the compressibility, and the thermodynamic pressure of the

repulsive gas near the Feshbach resonance are of interest.

For this purpose, we introduce a very simple model capturing relevant physics

in the strongly repulsive Fermi gas [160]. Although the many-body effects such as

correlation effects are not well taken into account in this model, it describes some

properties of strongly interacting gases.

A simple model: A two-component Fermi gas with arbitrary values of the scat-

tering length a can be simply modeled by considering a single fictitious particle in a

three-dimensional spherical box interacting with a fixed scatterer at the center. The

interactions between two atoms in different spin states are captured by the interaction

of the fictitious particle with the scatterer. The boundary of the sphere box repre-

sents the Pauli blocking in the presence of other fermions and, indeed, the radius of

the sphere, R, is determined by the density of the gas: kFR - 5/37r. For N/2 spin

+1/2 and N/2 spin -1/2 fermions, the total energy of the system, E(a), at arbitrary

scattering length a is given by [160],

1
E(kFa) = -Ne (4.2)

2

where e = h2 k2 represents the energy of fictitious particle. The wavefunction p(r) of

the fictitious particle satisfies
h V20 = sp (4.3)
m

with the contact interaction condition limro ) = [139, 154]. For low-energy
limit, the only relevant partial wave is the s-wave leading to rotational symmetric

solution of equation 4.3. A simple calculation gives the energy of the fictitious particle

as follow; for positive (negative) energy h 2 (-9 h 2 ), k is determined by the solution

of

tan kR = ka (tanh kR = ka). (4.4)

In figure 4-2, the total energy of the gas and the thermodynamic pressure are

shown as a function of kFa. Here, since we are interested in the two lowest branches,
only the two smallest eigenvalues in 4.4 are considered in figure 4-2. In figure 4-2

(a), the upper branch corresponds to the first excited branch in figure 4-1 whereas
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Figure 4-2: The energy per particle and the thermodynamic pressure of the repulsive
interacting two-component Fermi gas in the simple model. (a) The energy per particle
(in (a)) and the thermodynamic pressure (in (b)) are shown as a function of kFa. They
are normalized by the Fermi energy, EF, and the pressure, P, respectively for the
non-interacting ideal Fermi gas.

the lower one to the ground state branch. The total energy of the repulsive gas (the

upper branch) gradually increases with the interaction parameter kFa and eventually

saturates near the Feshbach resonance. On the other hand, the lower branch shows

the feature of dimers; the binding energy of a dimer near the resonance is given by

h2 /ma 2

The difference between the two branches becomes more prominent in the thermo-

dynamic pressure P(a) - -E(kFa) where V is the volume of the system. After a

simple algebra, the pressure for the first excited branch, Pe(a), is given by

Pe(kFa) = Po x kFa ) (4.5)h2k<1 - k~ aE

h 2
k5

where P = F is the Fermi pressure of the non-interacting gas. The result in

figure 4-2 (b) shows that the thermodynamic pressure at large kFa >> 1 implies the

behavior of the repulsive (Pe(kFa) > Po) and attractive (Pg(kFa) < o) gas for the

first excited and the ground state branch respectively.

4.2 Implementation of the Stoner model in an Ul-

tracold Atomic System

Motivation: So far, we have seen that the two-component Fermi gas near the Fes-

hbach resonance may offer an opportunity to study the property of the repulsive



Fermi gas. Encouraged by this, we now implement the Stoner model [181] using a

two-component gas of free fermions with short-range repulsive interactions which can

capture the essence of the screened Coulomb interaction in electron gases [181]. How-

ever, there is no proof so far that this simple model for ferromagnetism is consistent

when the strong interactions are treated beyond mean-field approaches. It is known

that this model fails in one-dimension where the ground state is singlet for arbitrary

interactions, or for two particles in any dimension [124]. Here, cold atoms are used

to perform a quantum simulation of this model Hamiltonian in 3D and provide ex-

perimental evidence that it leads to a ferromagnetic phase transition [187]. A similar

model is also realized in helium-3 [193], but it turns into solid and not into a fer-

romagnetic phase at high pressure. It has also been applied to neutrons in neutron

stars [156].

4.2.1 Experimental Technique

Preparation of the ultracold 6Li cloud

The first step is the production of a spin-polarized Fermi gas in the |F = 3/2, mF

3/2) state by sympathetic cooling with bosonic 2 3Na atoms in a magnetic trap as

described in Ref. [78]. The 6Li cloud was then loaded into a deep optical dipole trap

with a maxium power of 3W and radial trap frequency of ~3.0 kHz, followed by an

RF transfer into the lowest hyperfine state IF = 1/2, mF = 1/2). Additional axial

confinement was provided by magnetic fields. An equal mixture of |1) and |2) spin

states (corresponding to the IF = 1/2, mF = 1/2) and IF = 1/2, mF = -1/2) states

at low magnetic field, see also appendix A) was prepared by a Landau-Zener RF sweep

at a magnetic field of 590 G, followed by 1 s for decoherence and further evaporative

cooling at 300 G. Finally, the optical trapping potential was adiabatically reduced

over 600 ms, and the field increased back to 590 G. The trap had a depth of 7.1 PK

and was nearly cigar shaped with frequencies v,. = v ~_ 300 Hz and vz ~ 70 Hz.

Magnetic field ramp

Our current coil geometry does not allow very fast magnetic field ramping. After

improving the ramp rate of our power supplies to better than 1 ms, we observed that

the magnetic field was still lagging 4.5 ms behind, probably due to eddy currents as

described in figure 4-4. The actual magnetic field at the position of the atom cloud

was determined in a spectroscopic way. In the experiment, the magnetic field was

ramped up from 590 G to the field of interest within 4.5 ms.
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Figure 4-3: (a) The schematic shows the time sequence of the experiment. The sample

was exposed to the magnetic field of interest for 0 - 14 ms and analyzed in-situ for loss

measurement or after 4.6 ms time-of-flight for the measurement of kinetic energy and

the axial size of the cloud. The Feshbach fields were suddenly switched off at a rate of

1G/ps, preventing the conversion of interaction energy into kinetic energy during the

expansion. (b) This absorption image shows the |1) component of the cloud trapped

at 812 G (left), and after 4.6 ms ballistic expansion imaged at zero field (right). The

field of view is 84 0 pm x 550pm. The magnetic field ramp was limited by eddy currents

to 4.5 ins. Spectroscopic measurements of the magnetic field showed that the field

was trailing behind the current which was controlled with a time constant faster than

1 ms.
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Figure 4-4: The effect of eddy currents on the magnetic field ramp was measured.
Though the current from the power supply was ramped up within 1 ms (red solid
curve), the magnetic field at the position of the atom cloud requires at least 4.5 ms
(red solid circles). The magnetic field is also shown for the slower ramp rate (blue
dotted curve and blue open circle) .

Molecule formation and the effective temperature

We start with an atom cloud consisting of an equal mixture of 6Li atoms in the low-

est two hyperfine states, 1) and 12), held at 590 G in an optical dipole trap with
additional magnetic confinement. The number of atoms per spin state - 6.5 x 105

corresponds to a Fermi temperature TF of ~1.4 pK. The effective temperature T

could be varied between T/TF = 0.1 and T/TF = 0.6 and was determined right after

the field ramp by fitting the spatial distribution of the cloud with a finite temperature

Thomas-Fermi profile. Note that k' is the Fermi wavevector of the non-interacting

gas calculated at the trap center. Applying the procedure discussed in Ref. [107] to

repulsive interactions, we estimate that the real temperature is -20% larger than

the effective one. The effective temperature did not depend on koa for koa < 6. At

higher temperatures, additional shot-to-shot noise was caused by large fluctuations in

the atom number. From the starting point at 590 G, the magnetic field was increased

towards the Feshbach resonance at 834 G, thus providing adjustable repulsive inter-

actions. Due to the limited lifetime of the strongly interacting gas, it was necessary

to apply the fastest possible field ramp, limited to 4.5 ms by eddy currents. The ramp

time is approximately equal to the inverse of the axial trap frequency and therefore

only marginally adiabatic. Depending on the magnetic field during observation, ei-

ther atoms or atoms and molecules were detected by absorption imaging as described

.......... ..... ........ ............



in figure 4-3 [211].

4.3 Evidences for Itinerant Ferromagnetism in a

Fermi Gas of Ultracold Atoms

In this section, we introduce the experimental characterization of the ferromagnetic

phase transition in a Fermi gas of ultracold aotms. We have observed three different

evidences for ferromagnetic phase transition. The observations are qualitatively in

agreement with predictions in mean-field and more advanced models.

1. Local spin polariztion

The emergence of local spin polarization can be observed by the suppression of (either

elastic or inelastic) collisions, as the Pauli exclusion principle forbids collisions in a

fully polarized cloud. We monitor inelastic three-body collisions which convert atoms

into molecules. The rate (per atom) is proportional to f(a, T)nin 2 or f (a, T)n 2(1 _ 2 )
and is therefore a measure of the magnetization T1. For kFa < 1, the rate coefficient

f(a, T) is proportional to a' max(T, TF) [48]. For kFa > 1, the f(a, T) is unknown

and the rate coefficient may be suppressed at a very low temperature due to the

Pauli blocking. However, the effect of the Pauli blocking has not yet been studied

quantitatively. This rate can be observed by monitoring the initial drop in the number

of atoms during the first 2 ms after the field ramp. We avoided longer observation

times since the increasing molecule fraction could modify the properties of the sample.

Figure 4-5 shows a sharp peak in the atom loss rate around k'a 2.5 at T/TF =

0.12 indicating a transition in the sample to a state with local magnetization. The

gradual decrease is consistent with the inhomogeneous density of the cloud where the

transition occurs first in the center. The large suppression of the loss rate indicates

a large local magnetization of the cloud.

2. Kinetic energy of the cloud

The kinetic energy of the cloud was determined by suddenly switching off the optical

trap and the Feshbach fields right after the field ramp and then imaging state 11)
atoms at zero field using the cycling transition after a ballistic expansion time of

Atof = 4.6 ms. The kinetic energy was obtained from the Gaussian radial width o

as Eki. = 2 where m is the mass of the 6Li atom. Figure 4-6 demonstrates a

minimum of the kinetic energy at ka ~ 2.2 for the coldest temperature, T/TF= 0.12,
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Figure 4-5: (a) Atom loss rate as a probe for local spin polarization, for different
temperatures: T/TF= 0.55 (dashed curve), T/TF = 0.22 (dotted curve), and T/TF =
0.12 (solid black curve). The curves are guides to the eye, based on the assumption
of a loss rate which saturates for increasing a in the normal state. The shaded area
around the phase transition at T/TF = 0.12 highlights the same region as in figure 4-6
and 4-7. Atom loss rates at kFa = 2.5 and kFa = 4.9 are obtained by measuring the
initial drop in the atom number as shown in (b) and (c) respectively.
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nearly coinciding with the onset of local polarization. The peak in the atom loss rate

occurs slightly later than the minimum of kinetic energy, probably because f(a, T)

increases with a [114]. Since the temperature did not change around k'a 2.2,
the increase in kinetic energy is not caused by heating, but by a sudden change in

the properties of the gas, consistent with the onset of ferromagnetism. The observed

increase in kinetic energy is -20 % at T/TF = 0.12, smaller than the value (22/3_1) =

0.59 predicted for a fully polarized gas. This discrepancy could be due to the absence

of polarization or partial polarization in the wings of the cloud. Also, it is possible

that the measured kinetic energy of the strongly interacting gas before the phase

transition includes some interaction energy if the Feshbach fields are not suddenly

switched off. For the current switch-off time of -100 ps, this should be only a 5%

effect, but the magnetic field decay may be slower due to eddy currents.

3. Cloud size

Finally figure 4-7 shows our observation of a maximum cloud size at the phase tran-

sition, in agreement with the prediction of the model. The cloud size may not have

fully equilibrated since our ramp time was only marginally adiabatic, but this alone

cannot explain the observed maximum.

4. Temperature dependence

The suppression of the atom loss rate, the minimum in kinetic energy, and the maxi-

mum in cloud size show a strong temperature dependence between T/TF of 0.12 and

0.22. As the properties of a normal Fermi gas approaching the unitarity limit with

k'a >> 1 should be insensitive to temperature variations in this range, this provides

further evidence for a transition to a new phase.

At higher temperature (e.g. T/TF = 0.39 in figure 4-6), the observed non-

monotonic behavior becomes less pronounced and shifts to larger values of k'a for

3 k'a < 6. For all three observed properties (figure 4-5~ 4-7), a nonmonotonic

behavior is no longer observed at T/TF = 0.55. The interpretation of the loss rate

is complicated since f(a, T) is unkown for kFa > 1. The three body rate f(a, T) is

expected to be unitarity saturated for kFa > 1 [197]. The lines in figure 4-5 indicate

that the observed loss rate is consistent with unitarity saturation and a sudden drop

at the phase transition, which occurs at large values of kFa at higher temperature.

One interpretation is that at this temperature and above, there is no phase tran-

sition any more. Note that in a mean-field approximation, a ferromagnetic phase
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25 % of atoms were converted into molecules during the field ramp, and this fraction
stayed constant for koa > 1.8, where the phase transition was reached. This molecule
fraction was independent of temperature.
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would appear at all temperatures, but for increasing values of k'a. Our observations

may imply that the interaction energy saturates around k'a 5.

5. Limitations in the experiment

The spin-polarized ferromagnetic state should not suffer from inelastic collisions.

However, typical lifetime were 10 - 20 ms, probably related to a small domain size

(see below) and three-body recombination at domain walls.

We were unsuccessful in imaging ferromagnetic domains using differential in-situ

phase-contrast imaging [180]. A noise level of S/N -10 suggests that there were

at least 100 domains in a volume given by our spatial resolution of ~ 3 Pm and

the radial size of the cloud. This implies that the maximum volume of the spin

domains is - 5 pm3 , containing - 50 spin-polarized atoms. We suspect that the

short lifetime prevented the domains from growing to a larger size, and eventually

adopting the equilibrium texture of the ground state, which has been predicted to have

the spins pointing radially outward, like a hedgehog [19, 114]. All our measurements

are sensitive only to local spin polarization, independent of domain structure and

texture.

The only difference between our experiment and the ideal Stoner model is a molec-

ular admixture of 25 % (see figure 4-7). The molecular fraction was constant for

k'a > 1.8 for all temperatures and therefore cannot be responsible for the sudden

change of behavior of the gas at k'a ~ 2.2 for the coldest temperature T/TF = 0.12 -

This was confirmed by repeating the kinetic energy measurements with a molecular

admixture of 60 %. The minimum in the kinetic energy occurred at the same k'a

within experimental accuracy.

4.4 Discussion

4.4.1 The Critical Value of kFa Observed in the Experiment

The observed phase transition at k'a ~ 2.2 must be rescaled in order to compare it to

the theoretical predictions. For this, we have to replace the ideal gas k' by the value

for the interacting gas, which is smaller by - 15% because of the expansion of the

cloud (figure 4-7), and obtain a critical value for kFa ~_ 1.9 ± 0.2. At T/TF = 0.12,
the finite temperature correction in the critical value for kFa is predicted to be less

than 5% [52]. The observed value for kFa is larger than the mean-field prediction of

7r/2 and the second order prediction of 1.054 at zero temperature [52]. Depending on



the theoretical approach, the phase transition has been predicted to be first or second

order. This could not been discerned in our experiment due to the inhomogeneous

density of the cloud.

4.4.2 Estimation of the Maximum Total Repulsive Energy

Our work demonstrates a remarkable asymmetry between positive and negative scat-

tering length. Early work [86] predicted that for kFaj = 7r/2, both an attractive

and a repulsive Fermi gas become mechanically unstable (against collapse, and phase

separation, respectively). In an attractive Fermi gas, however, the mechanical in-

stability does not occur (due to pairing [138]), in contrast to our observations in a

repulsive Fermi gas. This suggests that the maximum total repulsive energy (in units

of 3/5(2Vn)EF) is larger than the maximum attractive energy 1#1 of 0.59 [34] realized

for infinite a.

Full phase separation at zero temperature requires a total repulsive energy of

(22/3 _ 1) = 0.59 in units of 3/5(2Vn)EF. At finite temperature T, one has to add TS

where S - (2Vn)kBlin2 is the entropy difference between the two phases as described

in figure 4-8. We can estimate the maximum repulsive energy by considering free

energy F,

F=E-TS (4.6)

where F is free energy of a two-component Fermi gas, T the temperature, and S the

entropy. Across the ferromagnetic transition, the chagne in free energy satisfies

r32 3AF = FFM - FNormal /2 - 1) NEF + kbTNlln2 - AErepuisive < 0 (4.7)

This gives us the maximum repulsive energy,

AErepuisve > -NEF((23/2 _ 1 (4.8)

Our tentative observation of a ferromagnetic phase at T = 0.39TF implies a repulsive

energy of ~ 1.04 assuming full phase separation, larger than the maximum attractive

energy of 0.59.
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Figure 4-8: The entropy difference between the normal and the ferromagnetic phase.

4.4.3 Comparison with Ferromagnetism in Spinor Bose-Einstein

Condensates.

So far, magnetism in ultracold gases has been studied only for spinor [184, 168]

and dipolar [110] Bose-Einstein condensates. In these cases, magnetism is driven by

weak spin-dependent interactions which nevertheless determine the structure of the

condensate due to a bosonic enhancement factor. Especially in spinor condensates,

the long-range dipole-dipole interactions are not negligible in contrast to a strongly

interacting Fermi gas in which the short-range exchange interactions are dominant.

4.4.4 Discrepancy of the Critical Value of kFa

The mean-field calculation predicts that itinerant ferromagnetism occurs at kFa

7r/2 in a homogeneous Fermi gas. The experiment reported in this thesis, however,

has observed that the critical value of kFa is rather larger. More advanced models

predicts even smaller critical interaction strength (see table 4.1). This discrepancy

raises a question if our theoretical predictions are not precise enough or other physical

mechanism plays a role. In any cases, it is very important to resolve the discrepancy

in the critical kFa since it would improve our theoretical understanding of a strongly

interacting many-body system. Recently, two rather opposite physical mechanisms

affecting the critical kFa have been proposed: quantum fluctuations enhancing inter-

acting energy and three-body losses damping out quantum fluctuations.



The role of quantum fluctuations

The energy density, E, of the Stoner Hamiltonian 3.19 can be calculated up to second-

order in kFa by either perturbation theory [133, 1, 52] or field-theoretical approach [43]

1 2kFa 2 (2kFa)2  nTr(Ck1)n (Ek2)[iT(Ek3 ) ± nt(Ek1 )]
V 7V V 3  iv Ckj+k -Ek -- Ek

mean-field

(4.9)
where n,(e) denotes the Fermi distribution at the energy of e, V is the density of state

at the Fermi surface, and a is the s-wave scattering length. The underbraced leading

terms simply recovers the mean-field Stoner model. The quantum fluctuations are

encoded into the term proportional to (kFa)2 leading to a first-order phase transition

at low temperature. Physically, the second-order term represent particle-hole excita-

tions which are neglected in mean-field calculations. Also, the unitarity limit close to

the Feshbach resonance is taken into account by renormalizing (or regularizing) the

interaction strength g [148]:

2kFa 2 2kFa 1
93 - Ek3 - C2( (4.10)xrv V 7xv ekl+ek --6k2

Note that this treatment regularize the unphysical divergence of the second-order

terms close to the Feshbach resonance.

The presence of the quantum fluctuations enhances the interaction energy so that
it decrease the critical interaction strength kFa* = 1.05. Here, the second-order

contribution in 4.9 is actually positive definite 1 because of the renormalization of
g [148].

Recently, the effect of the atom loss via the three-body collisions has been studied

in Ref [42] in a Fermi gas of ultracold atoms. It was shown that the atom loss hinders

the ferromagnetic phase transition by damping out the quantum fluctuations.

In summary, quantum fluctuations have an important role in a ferromagnetic

transition. Recently, however, it has been pointed out that the effect of quantum

fluctuations - first-order phase transition and lower critical interaction strength - may

be preempted by the formation of an inhomogeneous magnetic phase [43] and three-

body loss respectively [42]. In particular, the three-body loss damps quantum fluctu-

ations and thus increases the critical interaction strength needed for a ferromagnetic

'Therefore, the second-order term increases effective interaction strength.



Predictions kFa
MIT experiment [102] 1.9 t 0.3
Analytic method [52] 1.05

including quantum fluctuations
QMC [43] 0.85

Mean-field model [114] 1.84

Table 4.1: Prediction of critical interaction strength for itinerant ferromagnetism in
a Fermi gas of ultracold atoms.

transition.

4.4.5 Correlation Effects

The interpretation of our results in terms of a phase transition to itinerant ferro-

magnetism is based on the agreement with the prediction of simplified models based

on the Hartree-Fock approximation. In a strongly interacting regime, however, the

Hartree-Fock approximation does not take into account correlation effects [56].

In the Hartree-Fock method, the parallel spins are kept apart by the Pauli ex-

clusion principle whereas the antiparallel spins are spatially uncorrelated. Thus, the

antiparallel spins possess a relatively large energy via Coulomb repulsion or other

short-range interactions. In an exact treatment without any approximation, however,

it is likely that the antiparallel spins are somehow correlated due to strong repulsive

interactions. The correlation eventually would reduce the interaction energy, Uit, in

the system. The difference between the exact ground state of an strongly interacting

system and the approximated ground state in the Hartree-Fock method is caused by

so-called "correlation effects" [56].

The possible importance of correlations in the Hubbard model was pointed out

by Kanamori [105]. He argued that the short-range correlations reduce the effective

interaction energy, Uint; therefore Uint must be finite even with infinitely large bare

interactions. Furthermore, Gutzwiller [75, 76] approximately calculated that the non-

magnetic state in the presence of strong correlations can have lower energy than a

ferromagnetic state at low density. For this, he constructed his famous projected

wavefunction describing the reduction of on-site interaction energy in a lattice. How-

ever, both arguments by Kanamori and Gutzwiller are based on the lattice-model

so that further theoretical developments are required to treat correlation effects in a

interacting free Fermi gas.

Recent work [205] has shown, within a phenomenological model, that correlations



can lead to similar experimental signatures as we have observed [102]. However,
the model does not quantitatively agree with our data, and has some qualitative

discrepancies as well; for example the extrema of lifetime, kinetic energy and cloud size

do not occur at the same value of the parameter kFa in contrast to our observations.

It would be interesting to see if further development of the alternative theories could
lead to quantitative agreement with experiments.

4.5 Outlook: New Experiments

RF quench experiment with 1) and |3) atoms: studying of non-equilibrium
properties of the strongly interacting system.

As we have seen in the previous section, the MIT experiment shows some aspects
of both equilibrium and non-equilibrium dynamics. Our theoretical understanding

of Stoner's model basically relies on equilibrium properties whereas the finite ex-

perimental time scales (for example, field ramp time of 4.5 ms) suggests that the
system is marginally adiabatic after rapid ramps of the magnetic field; therefore,
non-equilibrium.

In the previous experiment, we have prepared a strongly interacting mixture of
|1) and |2) state atoms near the Feshbach resonance located at 834 G. For this, the
magnetic field is ramped towards the resonance (834 G) within 4.5 ms. Unfortunately,
our current coil geometry did not allow sufficiently fast field ramp and the times scale

of the field ramp is not fast enough to study the quantum dynamics of systems in
non-equilibrium state, e.g. how magnetic domains grow, how itinerant ferromagnetic
phase transition occurs, and how clock shifts are suppressed.

Here, we propose a rapid switching of interaction strength using a quick RF
spinflip, which transforms a weakly interacting |1)-|2) mixture of fermions into a
strongly interacting |1)-13) one (see figure 4.5). Preparing the |1)-12) mixture near

a |1)-13) Feschbach resonance for near 670 G, and applying RF photons to transfer

|2) atoms into the |3) state. The RF spinflip may take a few hundred As which

is marginally fast compared to the time scale of non-equilibrium dynamics (about
~ (EF/10) 1 ~ 300ps) [14]. Note that a 11)-13) mixture of fermions does not suffer

from "final-state effect" in the RF spectroscopy [175]. Therefore, the measurement

of clock shifts in the |1)-13) mixture offer another tool to characterize the system.

Single-domain ferromagnetic state: Ramsey-type measurement of coher-
ence The observation of ferromagnetic domains is considered as an experimental
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Figure 4-9: Schematic illustration of the RF quench experiment. A radio-frequency
pulse is applied in order to transform a weakly interacting |1)-12) mixture of fermions
into a strongly interacting |1)-13) one. The scattering length near the Feshbach res-
onance in the 11)-12) (red solid curve) and 11)-13) (blue dashed curve) mixture is
shown.

smoking gun in itinerant ferromagnetism of cold Fermi gas since the ground state in

the stable ferromagnetic state consist of a single domain. The ferromagnetic domains,

however, were not observed in the previous MIT experiment [102] probably due to

the short lifetime of the systems which did not allow the domains to grow to larger

sizes [14]. Although non-equilibrium dynamics after quenching, such as the growth

rate of the ferromagnetic domain, may offer an opportunity for experimental studies,

this limits us to characterize and test the ferromagnetic equilibrium state.

Here, we propose to use an alternative approach preparing the system directly

in the ground state. First, the absolute ground state can be created by preparing a

coherence mixture of atoms in the (|1)+|12))/v/5 state as pointed out in Ref [52]. In the

presence of magnetic field inhomogeneities 2, the coherent mixture rapidly dephases

in about ~ 10 ms for weak interacitons [72]. However, in the ferromagnetic region,

dephasing is suppressed since it costs energy to break up one domain into many. The

suppression of dephasing in this regime may be characterized by (1) monitoring clock

shifts in the sample or (2) measuring atom-atom collisions (lifetime of the sample). In

the ferromagnetic ground state, we expect that clock shifts and atom-atom collisions
2In our experimental setup, magnetic field inhomogeneities are inevitable as the axial confinement

in the trapping potential mainly rely on the magnetic trap
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Figure 4-10: Schematics illustration of the single domain experiment

are highly suppressed.

The interplay between magnetic inhomogeneities and the ferromagnetic stabiliza-

tion energy would be more prominent in the Ramsey-type measurement of coherence

(see figure 4.5). Preparing a single ferromagnetic domain (in x - y plane in the Bloch

sphere) via the first 7r/2 pulse, we can resolve spatial spin structures after some de-

phasing by selectively imaging the atomic cloud in two spin states (+z and -z in the

Bloch sphere) via the second 7r/2 pulse.



Chapter 5

Quantum Phase Coherence in

Degenerate Bosonic Gases

This chapter describes phase coherence of Bose-Einstein condensates (BECs) and

the decoherence dynamics. The experimental tools for a phase read-out and a phase

coherent splitting of Bose-Einstein condensates shall be discussed at the end of the

chapter.

5.1 Phase Coherence in a Bose-Einstein Conden-

sate

What is the phenomenon of Bose-Einstein condensation? To understand it, one needs

to formulate some of fundamental concepts such as long-range order, spontaneously

broken gauge symmetry , and order parameter [9]. In this section, I summarize

those concepts in the context of a weakly interacting Bose gas. From the following

discussions, we shall see that a many-body ground state of weakly interacting Bose

condensed atoms can be described by a condensate wavefunction (or a macroscopic

wavefunction) which possesses a well-defined phase.

Criterion for Bose-Einstein Condensation

In an ideal Bose gas in three dimensional potential, Bose-Einstein condensation occurs

when the particle density in the zero momentum state has a finite value. In this case,

the condensation is a first-order phase transition, but this is not generally valid in a

weakly interacting Bose gas [87]. The weakly interacting Bose gas requires a more

general definition of Bose-Einstein condensation, and surprisingly it had taken long



time about 40 years from the first theoretical work about BEC to the generalized
criterion for Bose-Einstein condensation [92]. The generalized criterion for Bose-
Einstein condensation was first proposed by Penrose and Onsager [149] considering
the one-particle density matrix p1(x, y) = (4't(z)W(y));

(0'(x)V)(y)) -+ (0(x))*(#(y)) when Ix - y| - 00 (5.1)

where () denotes ensemble average and O(x) is a quantized boson field operator
at the position of r. Here, the complex number (O(x)) is called as "condensate
wavefunction", and non-vanishing (O(x)) implies the existence of a Bose-Einstein

condensate. In this case, the condensate wavefunction is characterized by a modulus
no(x) and a phase #(x)

(O(x)) = <D(x) = Vno(x)ei'(x) (5.2)

This criterion is often referred to as "off-diagonal long-range order" [204] because it
involves the off-diagonal matrix element of the one-particle density matrix.

In the above criterion, however, one immediate question is raised up as follows.
Given a "global gauge invariance" of the Hamiltonian describing the system, (M(x))
must be always zero in the ensemble average because every value of V) = Voe" is
canceled by a value of 4 = VToei*+'7 after a constant phase change of @. Therefore,
Bose-Einstein condensation can never occur in this mathematical argument.

The resolution of this conceptual problem lies in the recognition that the symmetry
of the original Hamiltonian may be spontaneously broken in nature. In this picture,
the symmetry of the Hamiltonian is no longer applicable to the ground state. The
concept of spontaneously broken gauge symmetry (SBGS) is of importance nowadays
in condensed-matter physics, and generally believed to be the key to explore the exotic
phenomena such as superfluidity and superconductivity [9]. The idea of SBGS is often
adopted to account for a phase transition as it typically occurs between phases with
different symmetry. In most cases, the phase transition brakes the symmetry during
the process 1. Following this concept of SBGS, the ensemble average of 4, (O(x))

has a non-vanishing value even in the presence of the global gauge invariance.

Finally, the criterion of 5.1 reveals another major phenomenon of Bose conden-
sates, "phase coherence". Phase coherence implies that the phase of the condensate

'This is not always true. For example, the infinite-order phase transitions are continuous
but break no symmetries. One of the famous example is Kosterlitz-Thouless transition in two-
dimensional XY model. In 2D, many phase transitions in electron gases belong to this class.



wavefunction, #(x), must be spatially correlated over the length scale of the whole

system. This enables us to treat Bose condensed atoms as being governed by the

same wavefunction @(x), which is actually the condensate wavefunction.

We are now ready to identify an order parameter describing the Bose-Einstein

condensed phase. The order parameter is proposed by Landau in his theory of the

second-order phase transition [9]. He pointed out that one can define the order param-

eter for the phase transition accompanied by symmetry breaking. The order param-

eter is simply any parameter which is zero in the symmetric state and has a nonzero

value in the unsymmetrical state after the phase transition. In the case of Bose gases,

a suitable choice of the order parameter is the condensate wavefunction 5.2. Its mod-

ulus determines the density of the condensate through n (x) = |b (x) 2 and the phase

of the condensate is well-defined through #(x).

Mean-field description of a weakly interacting Bose gas.

So far, we have assumed that all particles stay in the zero momentum state when

Bose-Einstein condensation occurs. Starting from the generalized criterion 5.1, the

order parameter 5.2 characterizing the condensate wavefunction is identified for the

non-interacting Bose gas. This approach still retains validity when we introduce weak

interactions between atoms. To this end, the boson field operator is decomposed in

the form of

V(x) = 4(z) + V'(x) (5.3)

where '1(x) = Vno(x)eO(x) denotes the order parameter and 0'(x) describes the

non-condensed particles which occupy non-zero momentum states which is referred

to as the "quantum depletion" of the condensate. By treating 0'(x) as a small per-

turbation, Bogoliubov formulated a mean-field description of a dilute Bose gas with

weak interactions, and developed the first-order theory for the excitations of inter-

acting Bose gases [26]. In his approach, the boson field operator is replaced by the

mean-field term 1(x) with a small fluctuations characterized by 0'(x). For weakly

interacting alkali condensates, the quantum depletion is less than 1% whereas liquid

helium has large quantum depletion of 90%.

Bogoliubov's idea separating out the condensate contribution from the boson field

operator (see equation 5.3) becomes particulary useful when the quantum depletion

is negligible. In this case, we can derive the equation for the condensate wavefunction

1(x) as a result of the zeroth-order perturbation theory. To this end, we first introduce



a many-body Hamiltonian describing N interacting bosons trapped by an external
potential Vext in second quantization:

dr~f 7(r)[ 2mV2 + Vext(r)]/(r) + drdr' t(r) (r')V(r - r') (r')@(r)f I r t()2m 
-xtr'>/4r')y3(r2

(5.4)
where V(r - r') describes an arbitrary two-body interaction potential and m denotes
the mass of particles.

For a weakly interacting dilute alkali condensate, the two-body interaction poten-
tial V(r - r') reduces to the effective potential characterized by a single parameter,
the s-wave scattering length a:

V(r - r') = g6(r - r') (5.5)

where g = 4r 2
a

Now, nonlinear Schrodinger equation for the condensate wavefunction 1(x) is
derived in the mean-field description:

( 2m + Vrt(r) + g1.2 (x))O(x) = pA(x) (5.6)

where p is the chemical potential. The equation 5.6 is called "Gross-Pitaevskii equa-
tion" [69, 70] which is one of the main tools for investigating ultracold Bose condensed
atoms trapped in a nonuniform potential. The generalization of Bogoliubov's mean-
field description to time-dependent configurations is given by the Heisenberg equation

ih a((X, t) = [0,H] (5.7)

giving the equation for the condensate wavefuction TJ(x, t).

For more comprehensive discussions on the description of Bose condensed atoms,
I refer the reader to many excellent books, for example by Pethick and Smith [152]
and Pitaevskii and Stringari [159].



5.2 Decoherence in Interacting Bose Gases

Decoherence can be defined as the loss of information from the system that we are

considering into the environment. The major sources of decoherence are either the

interaction of the system with the environment or the intrinsic quantum and/or ther-

mal fluctuations in the system. In the system of cold atomic gases, the information we

are interested in is the phase of the condensate. By definition described in previous

section, the condensate has phase coherence over the whole system. However, the

system of condensates inevitably undergoes decoherence process due to quantum and

thermal fluctuations associated with atom-atom interactions. Of particular interest

is the loss of phase coherence with time (so-called phase diffusion) and the loss of

spatial coherence along the condensate (phase fluctuation).

Phase diffusion

For two separated Bose-Einstein condensates, a state of well-defined relative phase

(so called phase coherent state), 1#), is a superposition state of many relative number

states, IN1, N2) (or |k, N - k)), where N1 and N2 are the occupation of each well for

N = N1 + N2 atoms. Initially (t = 0), a phase coherent state takes the form of:

|$(t = 0)) = 22 NIkeipkk, N - k) (5.8)
k=O

Because of atom-atom interactions in the condensates, the energy of number

states, E(N1 , N2), have a quadratic dependence on the atom numbers N1 and N2 :

dp-N/) whr k + N-(N 1 -N 2 )(59
E(N 1 , N 2) d dJk=N/2(k - N/2)2 where k = 2 (5.9)

where p is the chemical potential of condensates. As a result, the different relative

number states have different phase evolution rates [35, 96] leading to a spread of

evolution rates, causing "phase diffusion" or "decoherence" of the relative phase with

time. A phase coherent state at time t is given by:

N

$(t) = N2 Z NCkeeik iR(k-N12)2t k, N - k) (5.10)
k=O

The phase diffusion rate, R, is proportional to the derivative of the chemical

potential of condensates, I(Ni) (i = 1, 2), with respect to the atom number and the

standard deviation of the relative atom number, ANr [35, 122, 202, 96, 117, 97]:



R = (21r/h)(dp/dNi)N.=N/2AN,

A typical decoherence time 1/R in a condensate is less than 50 ms. A number
squeezed state with sub-Poissonian number fluctuations (AN, = vW/Ns), where s > 1
is the squeezing factor, will exhibit a reduced phase diffusion rate relative to a phase
coherent state with AN, = VN. Now, the question is how to prepare a number
squeezed state in condensates. Indeed, it turned out that atom-atom interactions
tends to localize atoms during splitting process leading to number squeezing as we
shall discuss in the next chapter 6.

In contrast to normal diffusion processes, the phase uncertainty, AO, increases
here linearly. The phase uncertainty evolves with time as follows:

A#(t)2 + (Rt)2  (5.12)

where AZo ~- (s/AN,) is the initial phase uncertainty. Interestingly, the term "phase
diffusion" is not really appropriate because the phase diffusion has a time dependence
of oc t, not oc l.

Phase fluctuation

So far, we have seen that a Bose-Einstein condensate should have a phase coherence
over a long-range length scale which is equal to the size of the condensate. This long-
range coherence in a condensate is generally valid in three-dimensional systems, but
not in one- or two-dimensional systems where phase fluctuations play the important
role.

Phase fluctuations cause the condensate to break up into several quasi-condensates
with random phase, i.e. long range coherence is lost. This usually happens in elon-
gated geometries when the temperature is sufficiently high to excite such modes [155,
51], or in interacting one-dimensional condensates even at zero temperature due to
quantum fluctuations [23].

A typical elongated trap geometry, for example realized by an atom chip, has
an aspect ratio of -200 [179, 174, 101], sufficient to induce phase fluctuations in a
quasi-condensate along the axial direction [155] already at very low temperatures (or
in the ID case, even at zero temperature). When the temperature of a condensate is

(5.11)



above the characteristic temperature,

T* = 15N(hwz) (5.13)
32p

where p is the chemical potential, N total atom number, w axial trap frequency, and

h the Planck's constant divided by 27r [155], then thermal excitations of low energy

axial modes lead to longitudinal phase fluctuations. For temperatures above T*, the

coherence length L* of a phase-fluctuating condensate is shorter than the length L of

the condensate L*/L = T*/T [155].

When Bose condensates are used for atom interferometry, spatial phase fluctu-

ations have two major consequences. First, they speed up phase diffusion, since

AN/N refers now to the atom number in a single quasi-condensate. Second, they

make the atom interferometer much more sensitive to random relative displacements

of the split condensates, which have to be smaller than the coherence length, which,

for condensates with phase fluctuations, can be much smaller than the size of the

condensate.

5.3 Measurement of the Relative Phase between

Two Condensates

Bose-Einstein condensates have phase coherence over the whole atomic cloud unless

phase diffusion and phase fluctuations emerge and destroy it. Of particular interest

has been the investigation of phase coherence properties in various systems such as

the Josephson junction in a double-well potential, optical lattices, and elongated one-

dimensional system.

In related efforts, access to a phase-coherent condensate has brought a new family

of interferometry technique in atom optics, so-called confined atom interferometry.

Until our work reported in chapter 7, the only method to read out the relative phase

has been the "ballistic expansion" method. In this scheme, two spatially separated

condensates with the well-defined relative phase are released after some hold time

from their confining potential, and finally the phase shift is obtained by imaging and

analyzing the interference pattern formed in the overlapped atomic cloud. To date,

the relative phase has been reliably measured after ballistic expansion of two separated

condensates to decrease the atomic density [177]; therefore atom-atom interactions are

negligible during phase read-out. Nevertheless, the ballistic expansion method lacks



the simplicity and robustness of in-trap recombination. In addition, the condensates
cannot be recycled after phase read-out because of the destructive expansion of the
condensates.

In this section, we demonstrate three different phase read-out methods; (1) bal-
listic expansion method (2) phase sensitive in-trap recombination method and (3)
optical read-out method (summarized in figure 5-2). Recent developments including
the method (2) and (3) suggest that the confined atom interferometer can circumvent
the deleterious effects of atom-atom interactions during phase read-out.

(1) Ballistic expansion method

In this method, the relative phase between the two separated condensates is deter-
mined by the spatial phase of their matter wave interference pattern formed after
ballistic expansion as described in figure 5-1. The ballistic expansion reduces the
atomic density so that the effects atom-atom interactions are neglected when two
condensate are overlapped. For a ballistic expansion time t > 1/Wr where Wr is the
trap frequency along the axis connecting two condensates, each condensate had a
quadratic phase profile [46],

±(7, t) = n+(Y7, t) exp(i T+ ± d/2|2 +0#) (5.14)2ht

where ± indicates the left or right condensate, ni the condensate density, m atomic
mass, d the vector connecting two condensates, and #a the condensate phase. The
overlapped interference pattern now becomes,

n(, It) = |0+ + 0_|12 = [n+ + n- + 2/nn_ cos(mdx + #r)] (5.15)
ht

Here, the relative phase (#+ - #) can be extracted from the spatial phase shift

Or = 0+ - 0- in the modulated pattern of eq. 5.15. In the experiment, one can fit
an integrated cross section of the matter wave interference pattern with sinusoidally-

modulated Gaussian curve (see figure 5-1),

I(x) = acexp(-(x - o) 2 U2 )[1 + # cos( (x - X0 ) +#)]. (5.16)

obtaining the relative phase, #0, of two condensates. Note that fringe spacing, A =

is proportional to the expansion time and the inverse of the separation between two
condensates.



(a) (b)

Position

Figure 5-1: Matter-wave interference and relative phase read-out. (a) Absorption
image of an overlapped condensate released from double-well potential is taken after
10 ms time-of-flight. The optical density profile (open circle in (b)), obtained by
integrating the the optical signal between two dashed lines, is fitted to a sinusoidally-
modulated Gaussian curve (blue curve in (b)) as showns in section 5.3 from which
the relative phase is measured.

(2) Phase sensitive in-trap recombination method

In contrast to the ballistic expansion of atom clouds, in-trap recombination of two

condensates is inherently simple and robust, and moreover it allows one to store the

condensates in a confined potential during the measurement process. This is one

definite advantage of a confined atom interferometer without precedent in optics.

The challenge, however, is how to extract the relative phase after connecting two
originally separated condensates. It was pointed out that the recombination process

may produce the excited mode with exponential growth rate, leading to an unstable

measurement in phase [60]. Recently, however, we demonstrated that in-trap recom-

bination leads to heating of the atomic cloud. The heating is phase-sensitive and can

be used as a robust phase read-out of the atom interferometer. This method poten-

tially gives us an opportunity to recycle condensates after resetting the temperature

through evaporating cooling. Experimental details shall be discussed in chapter 7.1.

(3) Optical read-out method

Both phase read-out methods we have seen above rely on the merger of two sepa-

rated condensates with or without ballistic expansion. This requires coherent control

of external (motional) state in order not to perturb the phase. Recently, a new

phase-readout method based on stimulated light scattering was proposed [158], and
demonstrated experimentally [166]. Two counter-propagating laser beams outcouple
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Figure 5-2: Schematics for measuring the relative phase of two separated condensates
are shown: (a) ballistic expansion method, (b) in-trap recombination method, and
(c) non-destructive optical read-out method. Additional details are discussed in the
text.

a small fraction of atoms from the two spatially separated condensates leading to a
interference between outcoupled atomic clouds. By monitoring the rate of outcoupled
atoms or the number of scattered photons, the relative phase between two original

condensates can be determined. In this process, the phase measurement establishes

the relative phase between two (originally) independent condensates. Note that this
method is nondestructive similar to the in-trap recombination method.

(a) Ballistic Expansion

BEC 1 Ballistic
Expansion (t)

Fringes
d Spacing

BEC 2

(b) In-trap Recombination

Recombination Heating

(c) Non-destructive Optical Read-out

Atomic Flux

g5 g .......11s
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5.4 Tools for the Study of Coherence Properties

of a Bose gas

For the study of coherence properties in Bose gases including phase diffusion [177,

174, 101], phase fluctuations [80, 163, 99], and non-equilibrium dynamics in one-

dimensional system [83, 23], interferometric measurements provide a very robust and

precise way to extract the physical quantities that we want to measure. For all

these purposes, it is imperative that the relative phase between two Bose condensates

is not perturbed by the splitting process itself. Recently, the coherent control of

external (or motional) [177, 174, 101] and internal [21] quantum states 2 in a Bose

condensate has been demonstrated. Here, we focus on the external dynamics assuming

that internal quantum states (usually hyperfine state in cold atom experiments) are

conserved. By deforming a single trapping potential into double wells, the wavepacket

of a condensate is spatially delocalized into two wells adiabatically; we call this process

"coherent splitting". For the coherent splitting, there are two important time scales,

namely the oscillation period in a trap Ttrap and the collapse time Tcollapse. The

time scale T at which the splitting ends up should be adiabatic with respect to the

external dynamics (i.e. T > Ttrap), but non-adiabatic the internal time scale related

to collapse-revival process (i.e. T < Tcoiapse). In a typical BEC experiment, Tcollapse

is on the order of 5-50 ms.

The coherent splitting in a confined interferometer has been firstly demonstrated

by Shin et al. in an optical double-well potential [177], and then by Schumm et al.

in a magnetic trap combined with oscillating radio frequency field [174].

Coherent splitter using an adiabatic RF-induced potential

Adiabatic RF-induced potential was first proposed in order to trap neutral atoms in a

two-dimensional geometry [208]. Combining static magnetic trapping field with oscil-

lating radio frequency (RF) near fields, the original magnetic potential adiabatically

evolves into the effective dressed potential as described in figure 5-3 (a)-(c). Here, an

RF field couples internal atomic state with different magnetic moments characterized

by the quantum number mF 3. In a dressed state basis, the effective potential Veff (r)
2Note that coherent control of internal states (in state-dependent fashion) is a crucial ingredient

to realize quantum entanglement in combination with controlled collisions.
3Adiabatic RF-induced splitting sometimes can be considered as "anti-evaporation". Whereas

the evaporation process removes atoms with higher kinetic energy in an untrapped internal state by
adiabatically coupling two different internal state, RF-induced splitting adiabatically keeps atoms
in trapped internal state. In evaporation, the RF resonance is near the outer turning point; in
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Figure 5-3: Schematic for an adiabatic RF-induced splitter used in MIT experiments.
Three different spin states are shown in (a). In the presence of oscillating radio
frequency fields (b), the effective potential becomes double wells in a dressed state
basis (c). (d) By adjusting the RF frequency, a single well is smoothly transformed
into double wells allowing for coherent splitting of a condensate. Note that coherent
splitting can also be possible by varying RF amplitude at a fixed RF frequency [174].

at position r is determined by

Veff(r) = mF v"[UB9FBd.c(r) - hWRF] 2 + [[B9FBRFL(r)12 2 (5.17)

where gF is the Lande g-factor, pB the Bohr magneton, Bd.c the magnitude of the

static magnetic field, BRFL the magnitude of the component of the RF field perpen-

dicular to the direction of static field, and WRF the RF frequency.

Recently, the adiabatic rf-induced potential has been implemented into an atom

chip realizing coherent splitting of condensates [174]. By turning on the RF field

adiabatically, the single trapping potential smoothly transforms into double wells.

Here, the conditions for adiabatic switch-on of the RF field are given by Landau-

Zener theory.

The wires on the atom chip carry both d.c current and oscillating current. De-

pending on the relative geometry between the static trapping potential and the RF

field, the direction of splitting can be arbitrarily controlled as described in figure 5-4

(a) [84].

RF-induced splitting, it is near the inner turning point.

I I .



(a) Horizontal splitting (b) Vertical splitting

RF wire * d.c. RF wire +d.c.
trapping

Gravity Gravity

RF field - Rfield

Trapping Trapping
field field

Figure 5-4: The spatial orientation of the double-well potential is determined by the
relative orientation of the static magnetic field and the oscillating magnetic RF field.
Potential minima form where both the static and the oscillating fields are parallel as
described in (a) and (b). The red circle in (a) represents the position of the trapping
potential where a double-well potential is formed in the horizontal direction.

The adiabatic RF-induced splitting has several advantages [119] over the con-
ventional two-wire scheme [179] which requires two independent wires generating
quadrupole trap. During the merging and splitting process in the two-wire scheme,
the trapping potential becomes very weak. Confinement is no longer parabolic, but
caused only by higher-order multipoles (usually hexapole) leading to a significant weak
confinement. This often induces unwanted atom loss during splitting, and therefore
makes the splitting region unstable. The adiabatic RF-induced splitting, however
keeps the confinement tight during splitting or merging and does not suffer from the
atom loss. In addition, the RF-induced splitting is less sensitive to magnetic bias
fields and realizes high trap-frequencies far from a surface.

Figure 5-4 demonstrates the coherent beam splitter implemented at MIT (see
chapter 6 for experimental details).

Towards precision measurement with Bose-Einstein condensates.

So far, we have discussed the phase coherence between two separated condensates.
This property allows us to build a new type of atom interferometer with BECs. In
atomic physics, precision measurements are usually performed at low atomic densities
because of collisional shifts and dephasing. Since the atom-atom interaction energy
results in so-called clock shifts [63] which are proportional to the high density, most
precision measurements with neutral atoms are performed with free-falling atoms in

.......... ........ ............ .. .. . ........... ...........................



atomic beams [118, 73] or in fountain geometries [151]. Major efforts are currently di-
rected towards atom interferometry using confined geometries, such as atom traps or
waveguides, often realized by using atom chips [59, 45]. These geometries are promis-
ing in terms of compactness and portability, and also offer the prospect of extending
interrogation times beyond the typical 0.5 s achievable in the atomic fountains [151].
Is spite of these advantages, confined atom interferometer has a few intrinsic limita-
tions; e.g. phase diffusion [35, 122, 202, 96, 117, 97] and spatial phase fluctuations

(see section 5.2). In the following chapter, we shall show that a chip-based atom in-
terferometer can be operated even in the presence of both phase diffusion and phase
fluctuations.



Chapter 6

Long Phase Coherence Time via

Number Squeezing and Phase

Fluctuations of BECs in a

Double-well Potential

This chapter describes the experimental studies of phase coherence and the decoherence

dynamics of Bose-Einstein codensates in a double-well potential. The experiments

were reported in two publications:

9 G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E.

Pritchard, M. Vengalattore, and M. Prentiss

Long phase coherence time and number squeezing of two Bose-Einstein conden-

sates on an atom chip

Physical Review Letters 98, 030407 (2007) Included in appendix H.

* G.-B. Jo, J.-H. Choi, C.A. Christensen, Y.-R. Lee, T.A. Pasquini, W. Ketterle,

and D.E. Pritchard

Matter-wave Interferometry with Phase Fluctuating Bose-Einstein Condensates

Physical Review Letters 99, 240406 (2007) Included in appendix E.

In this chapter, we discuss the phase coherence of a Bose-Einstein condensate

trapped in an elongated atom-chip trap. Two main questions are addressed in section

6.1 and 6.2 respectively:

(1) How long can the phase coherence between separated condensates be maintained



and how can one enhance the phase coherence time?

(2) What is the effect of spatial phase fluctuations on atom interferometry?

6.1 Long Phase Coherence Time and Number Squeez-

ing

The distinguished property of Bose-Einstein condensates (BECs) is their phase co-

herence. High-contrast interference between condensates [11] clearly revealed this

property. Observations of many interesting phenomena, including Josephson oscil-

lations [36, 5], number squeezing [142], and the transition from superfluid to Mott

insulator [66] rely on phase coherence between two spatially separated condensates.

As we have seen in the previous chapter 5, an RF beam splitter allows us to

study and/or exploit the phase coherence in condensates in many different ways.

Here, our system consists of a double-well potential on an atom chip with adjustable

barrier between two wells. This tunable barrier in a double-well system allows for the

preparation of coherent state of condensates, the realizatoin of Josephson junction, the

study of decoherence dynamics, and the development of confined atom interferometry.

Furthermore, the geometry of the magnetic trap generated by an atom chip introduces

low-dimensional effects including phase fluctuations as follows.

" Highly nonequilibrium system :

In contrast to equilibrium properties of a Bose condensate, the relaxation dy-

namics from nonequilibrium states is not well-understood [90]. One reason is

that it is relatively difficult to prepare such a nonequilibrium state in a coherent

manner. For the split-condensate system built in MIT experiments [99], a phase

coherent state is highly out of equilibrium, and the condensates inevitably suf-

fer from both quantum and thermal decoherence over time. In particular, the

relaxation process is of interest and importance in low-dimensional systems in

which quantum decoherence effects are more prominent [99, 83, 85].

" Bosonic Josephson Junction (BJJ) :

The Josephson effects, predicted by Brian D. Josephson in 1962 [104], occur

when two macroscopic quantum states are weakly connected. First experimen-

tal realization was made in the system of two superconductors coupled via an

insulating thin film and later the effects were observed in superfluid helium-3

and helium-4. Recently, the Josephson effects was also studied in Bose-Einstein



condensates [36, 2]. Bose-Einstein condensates in a double-well potential with

tunable barrier becomes available allowing for unprecedented quantitative in-

vestigation of the Josephson effects.

" Low-dimensional physics :

As we have discussed in the section 5.2, the effect of phase fluctuations associ-

ated with quantum and thermal fluctuations becomes important in elongated

quasi-1D condensates realized on an atom chip. The coherent dynamics in de-

generate quasi-1D Bose atoms can be investigated in a interferometric way using

coherent the RF splitter.

* Towards chip-based atom interferometry:

A coherent beam splitter is one of the essential parts for confined atom interfer-

ometry. In general, a good confined atom interferometer requires the following

conditions: (1) high atomic density leading to large sinal-to-noise ratio, (2)long

phase coherence time for high sensitivity, (3) efficient and reliable phase read-

out, and (4) uniform phase along the condensate. Bose-Einstein condensates, a

very bright source of atoms, have been considered to be used in a confined atom

interferometer because of their phase coherence and high atomic density (con-

dition (1)). In this chapter, we experimentally demonstrate that a chip-based

atom interferometer installed at MIT is promising to maintain phase coher-

ence over a sufficiently long time (condition (2)). The robustness of the system

against phase fluctuations is also described in section 6.2 (condition (4)). For

phase read-out methods, conventional and recently developed methods are de-

scribed in section 5.3 and chapter 7. All recent developments including MIT

experiments suggest that it is possible to operate confined atom interferometer

with Bose condensates at high atomic density.

6.1.1 Splitting Process in a Double-well Potential: a Bosonic

Josephson Junction

Splitting of the condensate results in two separated condensates which cannot be

suitably described by the Gross-Pitaevskii equation (GPE) [69, 70] which describes

atoms only in a single-mode. This can be resolved by taking an approximate form of

the bosonic field operator in the two-mode basis which naturally consists of the ground

[symmetric, figuure 6-1 (a)] and the first excited state [antisymmetric, figuure 6-1 (b)]

in a double-well system. In this section, I will derive a relevant Josephson Hamiltonian



(a) Symmetric state (b) Antisymmetric state

Figure 6-1: Schematic illustration of the ground and the first excited state in a double-

well potential. The symmetric ground state (a) and the antisymmetric excited state

(b) are shown.

describing the splitting of the condensates in the two-mode approximation.

Two-mode approximation and a Josephson Hamiltonian

The relevant Hamiltonian describing weakly interacting bose condensed atoms in a

double-well potential is given by

H = ] d3 r_2 t (r)V2 (r) + U(r)It(r)1(r) + S~I(r)Wt(r)(r)W(r)] (6.1)

where I(r) is a bosonic field operator, U(r) the external potential describing a double-

well, and g = 47rah2/m the interaction strength with the s-wave scattering length a

and atomic mass m. In two-mode approximation, I(r) becomes the superposition of

the ground state Og and the excited state @, with appropriate creation (or annihila-

tion) operators:

I(r) = &g4 g + &ege (6.2)

Here, &t (t) is the creation operator for a particle in the ground state (excited state).

Now, the observable quantities such as the atom number and the relative phase can

be conveniently described by changing the basis as follows:

1 1
-L (g +he) and R =- (g - he) (6-3)

In this new basis, the relevant quantum state become #R (OL) denoting the wave-

function of localized atoms in the right (left) well. More intuitive form can be obtained

by inserting equations 6.2 and 6.3 into equation 6.1. Neglecting two-particle tunneling
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process 1, the two-mode Hamiltonian takes a form of

H = 2 - ej& (6.4)
2

where

n R L aL R (6.5)
2 '2

Here, two conjugate operators n and & are the atom number difference (or relative

atom number) and the tunneling operator related to the relative phase respectively.

The coefficient ec = 4g f dr|g 12 2 describes the local interaction within each well

and ej tunneling energy of particles. In the splitting process, ej is a function of time.

The equation 6.4, sometimes known as Bose-Hubbard Hamiltonian, captures essential

physics of many phenomena including ac/dc-Josephson effect and self-trapping.

What is the ground-state wavefunction of the Hamiltonian 6.4? In the limiting

case of large tunneling energy e > ec, the ground state wavefunction takes the form

of bR+IkL containing the well-defined relative phase between two wells. On the other

hand, the ground state beccoms a Fock state minimizing the atom number difference

when the local interaction ec is dominant.

The equation 6.4 derived from the two-mode approximation describes relevant dy-

namical properties of Bose Josephson junction as a function of two relevant wavefunc-

tions @g and @e. Two conjugate observables, however, the atom number difference

AN and the relative phase #, can be calculated only when @g and e are exactly

known. For a sufficiently low temperature, the many-body Schr6dinger equation re-

duces to Gross-Pitaevskii equation (GPE) and two wavefunctions @g and e can be

derived. Now, a Josephson Hamiltonian in terms of AN and # is given by

HJosephson = N 2 - Ejcos(#) ~ c N2 + Ejc#2 (6.6)

where Nr = NL - NR is the atom number difference of atoms in the two conden-

sates 2. Here, N, and # are conjugate variables satisfying [N,, #] = i. Indeed, the

charging energy Ec is given by Ec = - where p is the chemical potential. NotedN

that the equation 6.6 is equivalent to the Hamiltonian of a harmonic oscillator with

a characteristic frequency of w = NEc Ej when Nr and # correspond to position and

momentum variables.

1Two-particle tunneling process term is proportional to (ht&&R - d±adL)2.
2Here, we assume that h = m = 1 for convenience.



Description of the splitting process: Rabi, Josephson, and Fock regime

To describe the splitting process of the condnesates, it is useful to study the property

of the ground state of the Josephson Hamiltonian 6.6. First, comparing the equa-

tion 6.6 with a harmonic oscillator, the relative number fluctuation is simply given

by AN, = (2)1/4 strongly depending on the ratio of the charging and tunneling en-

ergies. Note that this expression is not suitable in Rabi regime. In Rabi regime, the

two-particle tunneling process we have neglected in the expression 6.4 is not negligi-

ble. In this case, the tunneling energy Ej must be renormalized to obey Poissonian

distribution.

For our purpose, it is convenient to divide three different regimes as follows (see

figure 6-2):

" Rabi regime: Ec/EJ < 1/N 2 and AN, N V

" Josephson regime: 1/N 2 < Ec/E < 1 and 1 < AN, < 

* Fock regime: 1 < Ec/E and AN, < 1

The ground states in these regimes have different statistics in the atom number and

the relative phase. In Rabi regime, the relative atom number fluctuates with AN, ~

N, obeying Poissonian distribution. The system corresponds to the non-interacting

limit in this regime, and the relative phase is well-defined. In the Josephson regime,

the distribution of atom number is sub-Poissonian leading to a number-squeezed state

(1 < AN, < N). The relative phase can be well-defined in this regime although

there is a small amount of quantum noise in the phase. In a Bose condensate, the

uncertainty in the phase is negligible as the atom number, N, is large enough. In

contrast to other regimes, the ground state in the Fock regime have only a well-defined

atom number, not a relative phase. The uncertainty in the phase diverges infinitely.

The description of three different regimes in the Josephson junction may guide

us to obtain a simplified description of the splitting process. The tunneling energy

Ej(t) changes from infinity to zero within the time scale of T, when a condensate

splits into two parts. By noting that two time scales w(t) = IEcE and T, exist

in the system, we can distinguish two steps of the splitting process (see figure 6-2).

When w(t) > 1/r, (step 1 in figure 6-2), the system of the double-well potential

evolves adiabatically so that the ground state of the equation 6.6 should describe

the actual state of the system in a good approximation. If adiabatic condition is no

longer valid at V (therefore w(t) < 1/T), the rest of the splitting is approximated to

"instantaneous splitting" (step 2 in figure 6-2). In other word, one assumes that the
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Figure 6-2: Three different regimes in the description of the dynamic splitting of
condensate: Rabi, Josephson, and Fock regimes.

tunneling energy Ej becomes zero at t*. Therefore, the final state when the splitting

ends is determined by the ground state of the system at the moment t*. Note that

slow (or adiabatic) splitting results in the Fock state in which ANr = 0 whereas the

fast splitting 3 the final state lies in the Rabi regime.

The condition w(t*) = 1/T implies that the uncertainty in the relative atom

number after the splitting process is given by

1 d p
ANr = |t=t* where Ec = (6.7)

Eers dN

This result implies that one can prepare a number-squeezed state in a double-well

potential via the dynamic splitting. The main knob is the speed of the splitting

process, -r, which will determine the critical time t* (see figure 6-2). In a harmonic

trap, a squeezing factor ( becomes:

__ 2

AN, V 5Pr (6.8)

As we have seen in the previous chapter 5, Bose condensates suffer from intrinsic

phase diffusion leading to the potential problem with atom interferometry. In the fol-

lowing section 6.1.2, we will discuss how we prepare a number-squeezed state through

the dynamic splitting and the effect of number squeezing on the phase diffusion. In

the MIT experiment [101], this simple model gives a squeezing factor of -13 with

T, =75 ms and y = hx6 kHz.

3We shall see the condition for "fast splitting" in the next paragraph: -r, < 1/p.

......................... ...............
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Figure 6-3: (a) Schematic of the atom chip interferometer is shown. (b) Double-well
potential. The separation d between the two wells and the barrier height U were
controlled by adjusting the frequency or amplitude of the RF field. (c) Matter wave
interference. For various hold times after splitting, absorption images of condensates
released from the double-well potential were taken after 10 ms time-of-flight. The
field of view is 260 x 200 pm.

6.1.2 Preparation of a Number-squeezed State on an Atom

Chip

So far, we have discussed the possibility of preparing a number-squeezed state through

splitting precess. The result (see equation 6.8) may encourage us to operate an atom

interferometer with high atomic density source even in the presence of deleterious

phase diffusion. Indeed the repulsive atom-atom interactions make it energetically fa-

vorable for the two condensates to split with equal numbers in a double-well potential,
whereas number fluctuations , such as in a coherent state, cost energy [131, 33]. The

relation 6.8 implies this process; the higer the atomic density (or chemical potential)

is, the less the relative atom number fluctuates. Interaction-induced squeezing reduces

the phase diffusion caused by the same interactions [35, 122, 202, 96, 117, 97, 131, 33]

Coherent splitting and matter-wave interference

Bose-Einstein condensates of ~ 4 x 105 23Na atoms in the IF = 1, mF -1) state

were transported into the science chamber and subsequently transferred into a mag-

netic trap generated by atom chip wires and external bias field [179]. A double-well

potential in the horizontal plane was formed using adiabatic RF-induced splitting as

described in figure. 6-3 (a) [208, 174] and in section 5.4.

Atoms were confined radially by the combined magnetic potential of a current-

carrying wire and external bias field as described in figure 6-3. Axial confinement in

................ ... I .. "



x direction was provided by a pair of endcap wires (not shown) [1791. By dressing the

atoms with an oscillating radio frequency (RF) field from a second wire, the single

minimum in the magnetic trapping potential was deformed into a double-well [174].

If the trapping position lies on the circle containing the trapping wire and centered

on the RF wire, the splitting occurs in the horizontal plane. Condensates were placed

185 pm away from the chip surface. For the single well, the radial (axial) trap

frequency was f, = 2.1 kHz (f, = 9 Hz) and the Larmor frequency at the trap center

was ~ 190 kHz (Bx ~ 0.27 G). Splitting was performed over T, =75 ms by linearly

ramping the frequency of the RF field from 143 kHz to 225 kHz. Gravity points in the

+z direction. Typical double-well potential is shown in figure. 6-3 (b). The separation

d between the two wells and the barrier height U were controlled by adjusting the

frequency or amplitude of the RF field. Typically, the separation of the two wells was

d ~ 8.7 pm, the height of the trap barrier was U ~ h x 30 kHz, and the chemical

potential of the condensates, measured from the trap bottom, was A ~ h x 6 kHz (see

figure 6-3(b)).

The lifetime of the atoms at the splitting position was ~1.8 s, significantly longer

than in our previously demonstrated two-wire splitting method [81, 41, 179].

Atoms were held in the double-well potential for varying hold times, released by

turning off the trapping potential within 30 1 s at a known phase of the RF field,

overlapped, and interfered in time-of-flight (see figure 6-3 (c)). The relative phase of

the two condensates was measured as the spatial phase of the interference pattern [177,

179] as described in chapter 5.

When the trapping potential was switched off, we observed strong correlation

between the population distribution of the spin components and the phase of the RF

field at the moment of release, probably since the strength of the RF field (~0.35G)

was comparable to the local static field (~0.27G) [13]. The trapping potential was

switched off at a value of the RF phase chosen to release atoms predominantly in the

IF = 1,mF = -1) state.

Atom interferometry in a double-well potential

Phase evolution : An atom interferometer requires two independent condensates

without any weak link which may lock the phase [177, 179]. To demonstrate this in-

dependence, we monitored the relative phase over short intervals right after and after

up to 190 ms delay time. During each of these intervals, the phase evolved linearly

with time at ~ 27r x 200 Hz, the signature of independent condensates (figure 6-4).

The non-vanishing phase evolution rates are attributed to small asymmetries in the
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Figure 6-4: Phase evolution of the relative phase during three different time intervals.

The evolution rate of the relative phase are determined from the linear fit to be (a)

191 Hz, (b) 198 Hz, and (c) 255 Hz. The data points represent the average of ten

measurements for (a) and (b), and fifteen for (c).

two trapping potentials, which lead to slightly different chemical potential after the

splitting process. The time variation of this rate is attributed to axial motion of the

two separated condensates. Note that the observed drift of the phase evolution rate

of - 60 Hz is only 1% of the condensates' chemical potential. In principle, the phase

drift could be zeroed by a compensation field, but this has not been attempted.

Phase imprinting and read-out To rule out the possibility that any weak link

existed during the 200 ms time evolution and reset the relative phase, we demon-

strated that an applied phase shift could be read out 200 ms after its appliance

(figure 6-5). This proves that two independently evolving condensates have preserved

phase coherence up to 200 ms, a factor of 10 longer than the phase diffusion time,

Tc = 1/R ~20 ms, for our parameters.
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Figure 6-5: Applying various phase shifts to the condensates at 2 ms after splitting,
the shifts of the relative phase were measured at 7 ms and 191 ms, showing strong

correlation. The dotted line denotes the ideal case of perfect phase coherence. Phase

shifts were applied by pulsing an additional magnetic field in the z direction for 50 Ps

with variable amplitude.

Quantitative analysis of phase coherence: Rayleigh test

What is the experimental criterion for phase coherence between two condensates after

some hold time? Most conveniently, one can measure the relative phases from the in-

terference patterns formed after some ballistic expansion, and obtain the distribution

of phases for different experimental runs [177, 174] which is typically characterized by

the standard deviation. For the quantitative study of phase coherence, however, the

standard deviation of the phase does not provide the best characterization because

the phase is measured modulo 27 (so-called circular data). In the limit of a large data

set, a completely random distribution has a phase variance of ~ (37r/5)2 . Already

for smaller variances, the overlap of the tails of the Gaussian distribution can cause

ambiguities.

To measure correlations in circular data appropriately, we perform a Rayleigh

test [58] on the measured relative phases as described in figure 6-6. Here, we represent

each measurement of the relative phase as a phasor with unit length and compare

the length of the sum of N measured phasors with the expectation value of V/N for

N random phasors. The larger the difference, the smaller is the probability that

the data set is compatible with a random phase distribution. This probability of
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Figure 6-6: Quantitative study of phase coherence. In a circular data (1), the Rayleigh
test compares the phasor sum of the data (2) with the distribution of phasor sums for
random data (3) and returns the randomness (4), the probability that uncorrelated
measurements would produce a phasor sum larger than the measurement.
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uncorrelated phases is called randomness [58]. Uncorrelated data have an expected

value of randomness near 0.5, while strongly correlated data would have a small

value, e.g. ten data points drawn from a distribution with variance (7r/5)2 have a

probability of only 10- to be compatible with uncorrelated phases. If a series of

phase measurements has a randomness value of 0.01 (0.1), the relative phase is non-

random with a probability of 99% (90%).

6.1.3 Phase Diffusion and Number Squeezing

To study phase diffusion in our system, we analyze the distribution of ten measure-

ments of the relative phase at various times after splitting, as shown in figure 6-7.

The data show a well-defined phase (with probability > 90%) for times shorter than

~ 200 ms. In contrast, the simulation for a coherent state in our experimental condi-

tions, shown as a blue dotted line, predicts the same scatter of phase measurements

already after -20 ms. Fitting a phase diffusion model to the data points with ran-

domness probability > 0.1, gives a phase diffusion time of 200 ms. The solid line is a

fit which includes the initial variance A42:

A#(t) = Aq#0 + (Rt)2  (6.9)

The variance of the initial state, A#2 = (0.287r) 2 is dominated by technical noise

including fitting errors and non-ideal trap switch off. The contribution due to initial

number fluctuations, A#2 ~ (s/VN)2, is ~ (7.1 x 10- 4 r) 2 for a coherent state (s=1),

and remains small unless the squeezing leads to number fluctuations on the order

of a single atom, s - N. The fitted value for the phase diffusion rate of R =

5 s- includes technical shot-to-shot variations in the relative atom number of two

condensates after splitting and thermal fluctuation. Therefore, the inferred squeezing

factor s=10 represents a lower bound. It implies that our relative atom number

fluctuations were smaller than ±0.03% corresponding to ±50 atoms.

Locally the interference pattern of two pure condensates should always have 100%

contrast, where contrast is defined as the density amplitude of the interference fringes

over the mean density. Since in our experiment the contrast is derived from interfer-

ence pattern integrated along the line-of-sight, it decreased gradually with time and

exhibited fluctuations most likely due to asymmetric axial motion (figure 6-7(b)).

Except for small regions near 110 and 300 ms hold time, the contrast was above 10%,

sufficient for accurate determination of the phase. The small windows with poor

contrast have a large probability for random phases.
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Figure 6-7: (a) The randomness probability of ten measurements of the relative phase
is displayed up to 400 ms after splitting. The blue dotted curve (red dashed curve)
shows a simulation for a phase-coherent state (number squeezed state with s = 10),
which have negligible initial phase uncertainty. The solid line includes an initial phase
uncertainty of 0.287r (see text). The shaded region represents the window where ten
data points from the sample with the given phase uncertainty would fall with 50%
probability. (b) Contrast of the interference pattern. Since the endcap wires generate
a field gradient a-g as well as a field curvature 8 at the position of the condensates,
the two wells are not parallel to the trapping wire and consequently have slightly
different axial trapping potential. This difference induces relative axial motion of the
two condensates, which periodically reduces the contrast.
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Figure 6-8: a) A single trapped condensate at rest was accelerated by shifting the trap
center by ~ 430 pm in the axial direction (t = 0 ms). The frequency of the RF field
was linearly ramped from 154 kHz to 204 kHz during 16 ms after launch, splitting the
condensates and separating them by 5-6 pm. (b) Phase measurements were done for
up to 26 ms after the launch. The probability for random phases was determined for
data sets of ten measurements. Until 16 ms, this probability was extremely low (less
than 10-12) and the relative phase was constant, implying that the two condensates
were still connected. For t > 16 ms, the relative phase evolved (similar to figure 6-
4), and the probability for a random phase distribution was smaller than 10%. This
demonstrates that phase coherence was preserved after full splitting. The figure shows
the interference pattern for t = 22 ms. The field of view is 260 x200 pm.

6.1.4 Conclusion and Remarks

So far, we showed that we can operate a BEC interferometer at high atomic density,

with mean-field energies exceeding h x 6 kHz. Using a radio frequency (RF) induced

beam splitter [208, 41, 174], we demonstrate that condensates can be split repro-

ducibly, so that even after 200 ms, or more than one thousand cycles of the mean-field

evolution, the two condensates still have a controlled phase. The observed coherence

time of 200 ms is ten times longer than the phase diffusion time for a coherent state.

This work is a major advance in the coherence time of confined atom interferome-

ters, which have operated at interrogation times below -50 ms [177, 174, 62] due to

technical limitations. This work also advances the preparation of number squeezed

states to much higher atom numbers [101, 172]. Previous experiments in optical lat-

tices [142, 66, 55] and in an optical trap [40] were limited to very small populations

(- 1 - 1000 atoms). In addition, the fact that the clouds could be prepared on an

atom chip with dc and RF electric currents, but without any laser beams, is promising

for future applications.
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Rotational sensitive interferometry: "Sagnac effect"

The work presented so far, and also all previous work on interferometry of confined

or guided atoms, featured geometries without any enclosed area between the two

paths of the interferometer. An enclosed area is necessary for rotational sensitivity

[169, 118, 73] and requires moving atoms. As described in figure 6-8, we were able

to extend the coherent beam splitter to condensates moving on an atom chip. The

observed coherence time (10 ms) and propagation distance after splitting (- 350 pm)

were only limited by the chip geometry. This corresponds to an enclosed area of

~1500 Pm 2, and a response factor 4rmA 7.9 x 10-5rad/Qe for rotation sensing,h

where m is the probe particle mass and Qe the earth rotation rate [20].

Atom loss and Number squeezing

In the experiment, the condensates after coherent splitting exhibit losses with the

lifetime of 1.8 s. Thess stochastic atom losses introduce the relative atom number

uncertainty AN,,,, during the hold

ANOS, ~ No (6.10)
V 7los,

where No ~ 4 x 105 is the total number of atoms right after splitting, At ~ 200 ms

denotes hold time, and -ri1 - (1.8 s)-' is an initial atom loss rate. According to the

relation 6.10, the atom number fluctuation due to atom losses becomes AN10 , ~1 200

atoms. This estimation is inconsistent with our estimation of relative atom number

fluctuations of 50 atoms in the experiment.

The discrepancy in the atom number fluctuations may be resolved in two ways.

First, the stochastic nature of the atom losses spontaneously suppresses the relative

atom number fluctuations [93]. The dependance of the atom loss rate on the atomic

density tends to reduce the relative atom number; therefore suppresses the atom

number fluctuation. For the loesses via three-body collisions, it has been shown that

the atom losses induce atom number squeezing by a factor of - 2 [93]. Second, the

lifetime of the condensates after splitting may be longer than -1.8 s since the atom

loss rate is proportional to n2 where n is the atomic density. In the experiment, the

lifetime of -1.8 s was measured at the splitting position without RF fields.
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Figure 6-9: Phase fluctuations in an elongated condensate. (a) Relevent energy scale

is described in an elongated condensate of the MIT experiment. The characteristic

temperature T* for phase fluctuations and the typical temperature T of the conden-

sate are shown. (b) In the splitting process, the effect of the phase flucuations are

common-mode to both condensates. Therefore, the interference pattern formed in

the overlapped atomic cloud after ballistic expansion must be straight even in the

presence of the phase fluctuations. However, the relative motion of the condensates

associated with asymmetries in the double well potential may cause the degradation

the contrast in the interference fringe.

6.2 Matter-wave Interferometry with Phase Fluc-

tuating Bose-Einstein Condensates

6.2.1 Phase Fluctuations in an Elongated Bose-Einstein Con-

densate

The phase coherence in elongated Bose-Einstein condensates (BECs) suffers from

spatial phase fluctuations even well below the BEC transition temperature. In this

section, I briefly demonstrate that atom interferometers using such condensates are

robust against phase fluctuations, i.e. the relative phase of the split condensate is

reproducible despite axial phase fluctuations. For comprehensive discussion on the

experimental details, I refer to Ref. [99].

Previous experiments [179, 174, 101] including the one in the previous sectoin 6.1.2

on atom interferometry have operated in a regime, where phase fluctuations are pre-

dicted to be present. As described in figure 6-9 (a), the characteristic temperature
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Figure 6-10: Measurement of phase fluctuations in a single condensate. (a) Ab-
sorption image of the expanded atomic cloud after 7 ms time-of-flight was taken.
For quantitative analysis of the spatial phase fluctuations in a condensate, the den-
sity profile in (b) obtained from an absorption image is Fourier transformed as in
(c). After filtering out high and low momentum components as in (d), the profile is
transformed back (e) and its root-mean-square average is determined (f). The high
momentum limit of 0.2 pixel-' in (d) corresponds to the phonon energy of 100 nK
which is eaual to the characteristic energy determined by the radial trap frequecy.
Note that the phonons with low energy less than 100 nK mainly contributes to the
phase fluctuations in the elongated trap.

T* for phase fluctuations (see equation 5.13) is much lower than the temperature, T,
of the system. However, their presence has not been observed because the interfer-

ometer was read out by integrating the interference fringes along the axial direction.

Other experiments characterized phase fluctuations by interferometric techniques [80]

and Bragg spectroscopy [163], but didn't study the effect of phase fluctuations on an

atom interferometer.

In this section, we demonstate the axial phase fluctuations spatially resolved and

characterize their effect on the atom interferometer. We show explicitly, that atom

interferometry can be performed in the presence of phase fluctuations. This has been

expected [23], since for sufficiently short times after splitting, those fluctuations are

identical for both condensates and therefore don't affect the measurement of the rel-

ative phase (see figure 6-9 (b)). For the same reason, atom interferometry is possible
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with thermal clouds of atoms [73]. However, already at short times, phase fluctua-

tions degrade the contrast and can limit the performance of the atom interferometer.

This degradation is not due to the quantum effect of the increased relative number

fluctuations in each quasi-condensate because of the high degree of number squeezing,

but is rather caused by asymmetries in the double well potential leading to relative

motion of the condensates.

6.2.2 Effect of Phase Fluctuations on Atom Interferometry

Quantifying phase fluctuations

To study the effect of phase fluctuations, we first characterized the amount of phase

fluctuations in the condensate before splitting by observing density modulations of

the expanded atomic cloud after 7 ms time-of-flight (figure 6-10 (a)). In trap, the

mean-field interaction energy suppresses density fluctuations, but ballistic expansion

converts phase fluctuations into density modulations [51] since the initial velocity

field is proportional to the gradient of the phase. The number of observed density

striations of around ten is consistent with the ratio of the measured temperature of

~ 650 ± 100 nK and the calculated value of T* ~ 60 nK. Since the barrier height is

comparable to the temperature, we assume that both condensates interact with the

same heat bath. However, we don't expect any difference to the case of two separated

thermal clouds.The longitudinal phase fluctuations were quantified by measuring the

root-mean-square average of the density fluctuations as described in figure 6-10.

The amount of phase fluctuations was controlled by changing the atom number

and the temperature with rf-evaporation. The rf field generated by the rf wire [fig-

ure 5-4 (b)] was swept down from ~ 20 kHz above the Larmor frequency at the trap

center to a variable final value, leading to a variable chemical potential and tem-

perature of the condensate (figure 6-11 inset) '. The variation of the spatial phase

fluctuations with chemical potential is shown in figure 6-11 (a).

Effect of phase fluctuation on the reproducibility of the relative phase

The effect of phase fluctuation on an atom interferometry was characterized by mea-

suring the reproducibility of the relative phase of split condensates as described in

figure 6-11 (b). To this end, we split the condensates coherently and observe the

reproducibility of ten interference fringes ("randomness") obtained by recombining

4In the final stage of the evaporation, the ratio of trap depth to temperature was rather small

(~2), possiblely due to heating from the atom chip potential.
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Figure 6-11: (a) Spatial phase fluctuations in a single condensate. The phase fluctua-
tions were characterized by observing the density modulations in an absorption image
of the expanded cloud after 8 ms time-of-flight (see inset) and calculating the rms
fluctuations as described in reference [51]. The chemical potential (or atom number)
was controlled by additional rf-evaporative cooling. The temperature of the conden-
sate is shown in the inset graph. For chemical potentials less than 3.5 kHz, we could
not measure the temperature of a condensate due to the lack of discernable thermal
atoms. The observed phase fluctuations do not decrease monotonically, but show a
minimum at the chemical potential of - 3.5kHz, probably because the effect of the
lower temperature was more than offset by the loss in the atom number. In the inset
graph, T* displays the characteristic temperature for the onset of the phase fluctu-
ations. (b) Effect of spatial phase fluctuations on the reproducibility of the relative
phase right after splitting. The probability of random phases was measured with
variable longitudinal phase fluctuations immediately after splitting (0 ms hold time).
The phase was determined by analyzing the central ~40% of the axial length of the
interference pattern.
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the condensates during ballistic expansion. For values of the chemical potential larger

than 3.0 kHz, the randomness is less than 0.1 which implies a reproducible phase with

90% confinence.

Comparing (a) and (b) in figure 6-11, one clearly recognizes the degradation of

reproducibility of the relative phase with increasing spatial phase fluctuations. We

cannot rule out that the condensate had some weak collective excitations after prepa-

ration. However, the amount of the excitation should not depend on the final tem-

perature. Therefore, we attribute the temperature dependence of the fringe contrast

to phase fluctuations.
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Chapter 7

Development of Atom Optics

Elements

This chapter focuses on the experiments reported in two publications:

" G.-B. Jo, J.-H. Choi, C.A. Christensen, T.A. Pasquini, Y.-R. Lee, W. Ketterle,
and D.E. Pritchard

Phase Sensitive Recombination of Two Bose-Einstein condensates on an atom

chip

Physical Review Letters 98, 180401 (2007) Included in appendix F

" Caleb A. Christensen, Sebastian Will, Michele Saba, Gyu-Boong Jo, Yong-Il
Shin, Wolfgang Ketterle, and David Pritchard

Trapping of Ultracold atoms in a hollow-core photonic crystal fiber

Phys. Rev. A 78, 033429 (2008) Included in appendix G

7.1 Phase Sensitive Recombination of Two Bose-

Einstein Condensates

Coherent splitting of a Bose-Einstein condensate and resulting long phase coherence

time have allowed us to study merger dynamics of two separated condensates. Encour-

aged by the long phase coherence time for the time up to 200 ms (see chapter 6), we

tried to coherently split a condnesate and reversely recombine two separated conden-

sates in a trap. Many discussions of confined atom interferometers, inspired by optical

fiber interferometers, propose a read-out by merging the two separated clouds as we

tried [79, 185, 137]. These discussions usually assume non-interacting atoms [79, 10]
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and don't address the deleterious effects of atomic interactions, including dephasing,

collisional shifts, and phase diffusion [35, 122, 202, 96, 117, 97]. A recent study showed

that the recombination process is much more sensitive to atomic interactions than

the splitting process since merging clouds with the opposite phase involves excited

modes of the recombined potential and can lead to exponential growth of unstable

modes [186]. To circumvent these problems, previous realizations of confined atom

interferometry usually used ballistic expansion of the two spatially independent con-

densates, which decreases the atomic density before overlap [177, 179, 174, 101] or

worked at very low atom densities and pushed the clouds into each other with pho-

ton recoil [62]. While this avoids the deleterious effects of atom-atom interactions

during the recombination, it lacks the inherent simplicity and robustness of in-trap

recombination.

In this section, I briefly introduce a new phase read-out method using in-trap

recombination of two separated condensates. It turns out that in-trap recombination

leads to heating of the atomic cloud which is phase-dependent. Our result demon-

strated that it can be used as a robust and sensitive read-out of the atom interferome-

ter. The resulting oscillations of the condensate atom number are dramatic (typically

-25% contrast), occur over a wide range of recombination rates, and permit high

signal to noise ratios since they simply require a measurement of the total number of

condensate atoms in the trap.

Phase-sensitive recombination of two condensates

The recombination of two condensates was implemented using a radio frequency in-

duced double well potential as described in figure 6-3. By changing the RF frequency,

two separated condensates with well-defined relative phase were prepared and then

the double well potential was deformed into a single well as described in figure 7-1

(a).

The phase-sensitive excitations after recombination lead to an increase in tem-

perature based on our working assumption that the phase-sensitive excitation of the

cloud decays quickly, on the order of -1 ms in our system, and leads to an increase

in temperature on the order of hw/kB ~ 100 nK for the case of A# = 7r, and less for

other values of A# where w is the radial trap frequency and A# denotes the relative

phase.

The increase in temperature of a merged cloud can be monitored by measuring the

central atom density during ballistic expansion. Phase-sensitive collective excitations,

in addition to mechanical excitations from the splitting and merging processes, heat
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Figure 7-1: Phase-sensitive recombination of two separate condensates. (a) The
phase-coherent condensates were prepared using a radio frequency induced double
well potential on an atom chip [101]. The splitting was done within 75 ms by ramp-
ing up the rf frequency from 140 kHz to 225 kHz. During the hold time, the relative
phase of two independent condensates evolved with time at ~500 Hz. After a variable
time, the double well potential was deformed into a single well and the two trapped
condensates were merged by decreasing the rf frequency by 33 kHz over a variable
"recombination time". The condensates started to spill over the barrier after <10%
of the recombination time or -3 kHz decrease of the rf frequency. (b) The relative
phase of two split condensates was monitored for various hold time after splitting by
suddenly releasing the two condensates and observing interference fringes. For the
independent condensates (solid circle), the evolution rate of the relative phase were
determined from the linear fit to be -500 Hz. For the weakly coupled condensates
(open square), the relative phase did not evolve. At 0 ms hold time, the relative
phase was set to zero for both cases. (c) For the same range of delay times as in
(b), the condensate atom loss after in-trap recombination was determined. The rel-
ative phase (x-axis) was obtained from interference patterns as in (b). The merging
time was 5 ms. The matter-wave interference patterns (after 9 ms time-of-flight) and
absorption images of merged clouds (after 8 ms time-of-flight) show the correlation
between phase shift and absorption signal (see inset). The field of view is 260 x 200
pm and 160 x 240 pm for matter-wave interferences and merged clouds respectively.
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Figure 7-2: The condensate atom loss was monitored during a variable hold time for

the two split condensates whose relative phase evolved at -500 Hz. The merging

was done for different values of the recombination time: 100 ms (a), 10 ms (b), 5 ms
(c), and 1 ms (d). The dotted lines are sinusoidal curves fitted with fixed frequency
~500Hz. The reproducible phase shift for the 5 ms and 10 ms data occurred during

the recombination process. The data points represent the average of 6 measurements.

the cloud and lower the condensate fraction and, therefore, reduce the central density.

In the experiment, the split condensates were held in the double well potential for

varying hold times, merged into a single potential, and released by turning off the

trapping potential.

After 8 ms time-of-flight, we measured the number of atoms in a fixed area which

is comparable to the size of (expanded) Thomas-Fermi radius [dotted box in figure 7-

1(c)]. While the total atom number was conserved, the number within the fixed

area decreased, indicating that the temperature had increased. The fractional loss of

condensate atoms was obtained as the ratio of atom number after recombination to

the atom number before splitting.

To confirm that this oscillatory heating was associated with the relative phase

115



of the split condensates, we measured the relative phase as the spatial phase of the

interference pattern when the split condensates were suddenly released and interfered

during ballistic expansion [figure 7-1 (b)] [177]. Figure 7-1 (b) and (c) show the strong

correlation between the relative phase and the heating of atom clouds. As the relative

phase increased from 0 to ir, the atom loss after recombination increased [figure 7-

1(c)]; 7r-relative phase (0-relative phase) difference leads to maximum (minimum) loss

of condensate atoms.

The use of phase-sensitive recombination as a read-out for an atom interferometer

is demonstrated in figure 7-2. The separated condensates accumulate relative phase

for an evolution time of up to 6 ms which is read out after in-trap recombination.

The phase-sensitive recombination signal showed high contrast over a wide range of

recombination times (figure 7-2). The observed largest amplitudes of condensate atom

loss correspond to a change in temperature on the order of ~100 nK, in agreement with

the estimate in the introduction. This is testimony to the insensitivity of the energy of

phase-dependent excitations against changes in the exact recombination parameters,

and is promising for further applications of chip-based atom interferometry.
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7.2 Trapping of Ultracold Atoms in a Hollow-core

Photonic Crystal Fiber

In this section, I briefly describe a proof-of-principle experiment showing the pos-

sibility of trapping of ultracold atoms in a hollow-core photonic crystal fiber. This

project was originally initiated by Michele Saba in BEC III. The hollow-core fiber was

implemented into the atom chip setup described in figure 2-1. For more experimental

details, I refer to Ref. [39].

Ultracold atoms in waveguides are being used for studying quantum optics [191],

performing atom interferometry [196, 101], and implementing schemes for quantum-

information science [192]. Of particular interest is the ability of waveguides and

microtraps to strongly confine atoms, providing high optical densities, strong inter-

actions with light, and mechanisms for transporting atoms for further experiments.

Recently major efforts has been directed toward trapping of ultracold atoms in the

hollow-core optical fibers because of its intrinsic feature: simultaneously confining

both a small number of ultracold atoms and photons inside the small volume of the

hollow-core.

In particular, recently developed hollow-core photonic crystal fibers (model: Blaze

Photonics HC-1060-02) which propagate a single Gaussian mode light (1064 nm

wavelength) confined to a hollow core allow us to overcome the uncontrolled guid-

ing of atoms in the conventional hollow core fibers used in the previous experi-

ments [162, 94, 135]. Here, we have succeeded in trapping of ultracold atoms in

the hollow-core photonic crystal fiber. This preliminary experiment has shown that

the ensemble of cold atoms can be loaded into the hollow core fiber with tight con-

finement.

In the experiment, the Bose-Einstein condensates trapped in the red-detuned opti-

cal dipole trap (ODT) is positioned 1 mm away from the end of a fiber (see figure 7-3).

The atoms trapped in the ODT is transferred into the core of the fiber by coupling

the red-detuned light into the fiber from the other side of the fiber [hereafter called

the hollow-core trap(HCT)]. By adjusting the intensities of two lights, the atom can

be loaded into the fiber or be retrieved controllably as described in figure 7-4. The

number of atoms after retrieval is about 5% of the 106 atoms initially prepared in the

ODT.

This system, consisting of tightly confined ultracold atoms in the core of the fiber,

would open a new area of nonlinear quantum optics if a small number of photons are

introduced in the same region. To date, few-photon nonlinear optics has been only
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Figure 7-3: Schematic illustrations for trapping of atoms in a hollow-core fiber. (a)
The atoms are transferred from a free-space ODT into a trap formed by a red-detuned
Gaussian light mode confined to the core of the fiber (HCT). The fiber used in the
experiment is 2 cm long. (b) Diagram of the optics setup. The light for the ODT and
the HCT is produced by a 1064 nm Spectra-Physics J201-BL-106C diode pumped
solid state multimode laser. Intensities are controlled by using acousto-optical modu-
lators. The beams are frequency shifted such that they have 50 MHz relative detuning
in order to prevent static interference fringes in regions where the traps overlap.
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Figure 7-4: Images of atoms in the ODT during the experiment. (a) Atoms are held
in the ODT near the fiber, with no light coupled into the fiber. The dashed line
indicates the position of the 100 pm thick fiber. (b) Light is coupled to the fiber, and
as the ODT intensity is ramped down, atoms are depleted from the ODT until (c) no
atoms remain outside the fiber when the ODT power reaches zero. (d) After ramping
the ODT back up, atoms that were trapped in the HCT return to the ODT.

possible in the system of the cavity in which atoms strongly interact with photons.

This enhancement between atoms and photons would be also feasible in the hollow-

core fiber system. For example, the recent seminal work has demonstrated the optical

switching with cold atoms in the hollow core fiber [15].
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Chapter 8

Conclusion and Outlook

Transition to strongly interacting physics in BEC III

This thesis contains two different experimental studies of bosonic and fermionic gases.

Over 6 years after producing the first Bose-Einstein condensate in the BEC III lab

(June 2001), major efforts had been directed toward understanding the properties

of condensates and demonstrating atom interferometry with Bose condensed atoms.

To this end, a series of proof-of-principle experiments had been successfully demon-

strated as summarized in the Ph.d. theses [113, 89, 147] of former members of Ket-

terle/Pritchard group. These highly productive results benefit from the concept of

"Science Chamber" in our lab. In summer 2007, the apparatus was upgraded to gen-

erate a degenerate Bose-Fermi mixture of 23 Na and 6 Li. Adding fermions opened new

opportunities to explore quantum magnetism in a repulsive Fermi gas and heteronu-

clear molecules consisting of bosonic 23Na and fermionic 'Li atoms. Also, from this

point, we broadened the scope of research direction toward the understanding of the

strongly interacting regime in a gas of ultracold atoms. My Ph.D. research described

in this thesis is an example showing how the field of ultracold dilute gases evolves

into the area of strongly correlated physics.

8.1 The future in BEC III

At the moment when I was writing this thesis, the major efforts were directed toward

two projects simultaneously in the science chamber: (1) the study of itinerant fer-

romagnetism in a Fermi Gas of ultracold atoms and (2) the production of fermionic

heteronuclear molecules. For itinerant ferromagnetism, the study can be extended

into a low-dimensional system with or without optical lattices. In a lattice system,
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there are many fundamental questions relevent to magnetism, waiting to be answered

by experiments with cold atoms [123]. Also, the simulation of a model Hamiltonian in

a repulsive Fermi gas such as the Stoner model would contribute to the realization of

the quantum simulator in atomic physics. The production of fermionic heteronuclear

molecules would also open a new era to study the properties of the dipolar atomic

gas. In addition, the flexibility of the science chamber will allow us to explore systems

consisting of fermi atoms, fermionic heteronuclear molecules, or Bose-Fermi mixtures.

I am leaving the science chamber lab in capable hands and I hope that the science

chamber will continue to contribute to the field of cold atom physics. Given the

advances and successes we have already accomplished in the science chamber, I believe

the future is bright.
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Appendix A

Properties of 23Na and 6Li.

This appendix contains summarizes properties of 2 3Na and 'Li.
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Figure A-1: Sodium and lithium D2 transition hyperfine structure, with frequency
splittings between the hyperfine energy levels. The frequency of the light used for
trapping, repumping, slower, and imaging is shown.
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Lithium

F=2

F=1

F--i

0 50 100 150 200 250 300
Magnetic field [G]

ms=+ 1/2 16
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F=1/2 '

13>
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- 11>
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Figure A-2: 23Na and 6Li hyperfine structure in an external magnetic field. For
2 3Na with a nuclear spin I = 3/2, there are (2S + 1)(21 + 1) = 8 hyperfine states.
For 6Li with I = 1, six hyperfine states are available. A F=1 and F=2 sodium
condensate is produced in the hyperfine state |F = 1, mF = -1) (black solid line)
and IF = 2, mF = 2) (red solid line) respectively. Sympathetic cooling with a F=2
condensate is performed in the stretched state IF = 3/2, mF = 3/2) (labeled as 16),
black solid line) for lithium atoms. A repulsive two-component Fermi gas of lithium
atoms is prepared in the two lowest hyperfine states IF = 1/2, mF = -1/2) and
IF = 1/2, mF = 1/2) (labeled as |1) and 12) repectively) near the Feshbach resonance
located at 834 G.
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Appendix B

Designs for the Apparatus

This appendix contains designs for the apparatus.

9 Atomic beam skimmer

e Oven nozzle design

e Mount design for an atom chip experiment

e Design for a new science chamber

e Design for a re-entrant port
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(b) Oven Nozzle Design

* All CF flanges are for Ni gaskets (with less indentation),
nominal diameter 2.75"

* All the parts are made of 316SS

** All the parts are made of 316SS.
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Appendix C

Itinerant ferromagnetism in a

Fermi gas of ultracold atoms

This appendix contains a reprint of Ref. [102]: Gyu-Boong Jo, Ye-Ryoung Lee, Jae-

Hoon Choi, Caleb A. Christensen, Tony H. Kim, Joseph H. Thywissen, David E.

Pritchard, and Wolfgang Ketterle Itinerant Ferromagnetism in a Fermi Gas of Ultra-

cold Atoms, Science 325, 1521-1524 (2009).
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ble spectra could easily push this effect to higher
frequencies that are beneficial for a variety of
practical applications (30).
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An important recent development in cold .o
atom science has been the realization of super- .0
fluidity and the BEC-Bardeen-Cooper-Schrieffer O
(BCS) crossover in strongly interacting, two- c
component Fermi gases near a Feshbach reso-
nance (14). These phenomena occur for attractive
interactions for negative scattering length and for
bound molecules (corresponding to a positive
scattering length for two unpaired atoms). Very
little attention has been given to the region of
atoms with strongly repulsive interactions. One
reason is that this region is an excited branch,
which is unstable against near-resonant three-
body recombination into weakly bound mole-
cules. Nevertheless, many theoretical papers
have proposed a two-component Fermi gas near le
a Feshbach resonance as a model system for itin-
erant ferromagnetism (15-22), assuming that the
decay into molecules can be sufficiently sup- 0
pressed. Another open question is the possibility
of a fundamental limit for repulsive interactions. 0
Such a limit due to unitarity or many-body phys-
ics may be lower than the value required for the
transition to a ferromagnetic state. We show that
this is not the case and that there is a window of
metastability where the onset of feromagnetism
can be observed.

A simple mean-field model captures many
qualitative features of the expected phase transi-
tion but is not adequate for a quantitative de-
scription of the strongly interacting regime. The
total energy of a two-component Fermi gas of
average density n (per spin cpmponent) in a
volume V is given by EF2Vn t[(I + )513+
(I - T)") + -kr~a(1 + 71)(1 - 1n)}, where Er;
is the Fermi energy of a gas, k. is the Fermi wave
vector of a gas, a is the scattering length charac-
terizing short-range interactions between the two
components, and Ti = An/n = (nI - n2)/(nI + n2)
is the magnetization of the Fermi gas. The local
magnetization of the Fermi gas is nonzero when
the gas separates into two volumes, where the
densities n, and n2 of the two spin states differ
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by 2An. We studied an ensemble in which the
number of atoms in each spin state is conserved.
This is equivalent to a free electron gas at zero
external magnetic field where the total magne-
tization is zero. The interaction term represents
any short-range spin-independent potential. When
the gas is fully polarized, it avoids the repulsive
interaction but increases its kinetic energy by a
factor of 2 21. The phase transition occurs when
the minimum in energy is at nonzero magneti-
zation (Fig. IA) at kra = n/2. This onset was
previously discussed in the context of phase sep-
aration in a two-component Fermi gas (15-18).
Figure I B shows several consequences of the
phase transition for a system at constant pres-
sure. First, for increasing repulsive interactions,
the gas expands, lowering its density and Fermi
energy; kinetic energy is therefore reduced.
When the gas enters the ferromagnetic phase,
kinetic energy increases rapidly because of the
larger local density per spin state. Furthermore,
the volume has a maximum value at the phase
transition. This can be understood by noting that
pressure in our model is (2/3)Ekin/V + Ei/V
where Eki, is kinetic energy and E1,,1 is interaction
energy. At the phase transition, the system in-
creases its kinetic energy and reduces its inter-
action energy, thus reducing the pressure. This
maximum in pressure at constant volume turns
into a maximum in volume for a system held at
constant pressure or in a trapping potential. We
have observed three predictions of this model: (i)
the onset of local magnetization through the
suppression of inelastic collisions, (ii) the mini-
mum in kinetic energy, and (iii) the maximum in
the size of the cloud. These qualitative features
are generic for the ferromagnetic phase transition
and should also be present in more-advanced
models (19).

We start with an atom cloud consisting of an
equal mixture of 6Li atoms in the lowest two
hyperfine states held at 590 G in an optical
dipole trap with additional magnetic confine-
ment (23). The number of atoms per spin state is
approximately 6.5 x 10-, which corresponds to
a Fermi temperature TF of -1.4 gK. The ef-
fective temperature T could be varied between
T/TF = 0. 1 and T/TF = 0.6 and was determined
immediately after the field ramp by fitting the
spatial distribution of the cloud with a finite
temperature Thomas-Fermi profile. We define
k; as the Fermi wave vector of the noninteract-
ing gas calculated at the trap center. Applying
the procedure discussed in (24) to repulsive in-
teractions, we estimate that the real temperature
is approximately 20% larger than the effective
one. The effective temperature did not depend
on kF a for kia < 6. At higher temperatures,
additional shot-to-shot noise was caused by
large fluctuations in the atom number. From
the starting point at 590 G, the magnetic field
was increased toward the Feshbach resonance at
834 G. thus providing adjustable repulsive inter-
actions. Because of the limited lifetime of the
strongly interacting gas, it was necessary to ap-

ply the fastest possible field ramp. limited to
4.5 ms by eddy currents. The ramp time is ap-
proximately equal to the inverse of the axial trap
frequency (23) and therefore only marginally
adiabatic. Depending on the magnetic field dur-
ing observation, either atoms or atoms and
molecules were detected by absorption imaging
as described in fig. SI (25).

The emergence of local spin polarization can
be observed by the suppression of (either elastic
or inelastic) collisions, because the Pauli exclu-
sion principle forbids collisions in a fully po-
larized cloud. We monitored inelastic three-body
collisions, which convert atoms into molecules.
The rate (per atom) is proportional tof(a,T)nin2
orfla,T) n2(1 - n2) and is therefore a measure
of the magnetization n. For kFa G 1, the rate
coefficient fia,T) is proportional to t max(TTF)
(26). This rate can be observed by monitoring
the initial drop in the number of atoms during
the first 2 ms after the field ramp. We avoided
longer observation times, because the increasing
molecule fiaction could modify the properties of
the sample.

A sharp peak appears in the atom loss rate
around ka = 2.5 at T/Ty = 0.12 (Fig. 2), in-
dicating a transition in the sample to a state with
local magnetization. The gradual decrease is con-
sistent with the inhomogeneous density of the
cloud, where the transition occurs first in the
center. The large suppression of the loss rate
indicates a large local magnetization of the cloud.

The kinetic energy of the cloud was deter-
mined by suddenly switching off the optical trap
and the Feshbach fields immediately after the
field ramp and then imaging state 11) atoms at
zero field using the cycling transition after a
ballistic expansion time of At = 4.6 ms. The ki-
netic energy was obtained from the Gaussian
radial width a, as Ek., = [(3maY(2Ai 2)} where
m is the mass of the 6Li atom. A minimum of
the kinetic energy at k/a 2.2 for the coldest
temperature TITF = 0. 12 nearly coincided with
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the onset of local polarization (Fig. 3). The peak in
the atom loss rate occurs slightly later than the
minimum of kinetic energy, probably because
f(a.T) increases with a (22). Because the temper-
ature did not change around kia m 2.2, the in-
crease in kinetic energy is not caused by heating
but by a sudden change in the properties of the
gas, which is consistent with the onset of ferro-
magnetism. The observed increase in kinetic ener-
gy is approximately 20% at TTF = 0. 12, smaller
than the value (2 -1 1) = 0.59 predicted for a
fully polarized gas. This discrepancy could be
due to the absence of polarization or partial po-
larization in the wings of the cloud. Also, it is
possible that the measured kinetic energy of the
strongly interacting gas before the phase transition
includes some interaction energy if the Feshbach
fields are not suddenly switched off. For the cur-
rent switch-off time of -100 ps, this should be
only a 5% effect, but the magnetic field decay
may be slower because of eddy currents.

Finally, Fig. 4 shows our observation of a
maximum cloud size at the phase transition. in
agreement with the prediction of the model. The
cloud size may not have fully equilibrated, because
our ramp time was only marginally adiabatic, but
this alone cannot explain the observed maximum.

The suppression of the atom loss rate, the
minimum in kinetic energy, and the maximum
in cloud size show a strong temperature depen-
dence between T/TF = 0.12 and 0.22. The prop-
erties of a normal Fermi gas approaching the
unitarity limit with k;a >> I should be insensitive
to temperature variations in this range; therefore.
the observed temperature dependence provides
further evidence for a transition to a new phase.

At higher temperature (e.g.. T/TF = 0.39 as
shown in Fig. 3), the observed nonmonotonic
behavior becomes less pronounced and shifts to
larger values of ka for 3 5 k'a <6. For all three
observed properties (Figs. 2 to 4). a nonmonotonic
behavior is no longer observed at 77TF = 0.55(27).
One interpretation is that at this temperature and

Fig. 1. Ferromagnetic phase tran-
sition at T = 0, according to the
mean-field model described in the
text. The onset of itinerant ferro-
magnetism occurs when the energy
as a function of magnetization flips
from a U shape to a W shape (A).
(B) Enthalpy, volume, and kinetic
energy, normalized to their values
for the ideal Fermi gas, and mag-
netization as a function of the inter-
action parameter kFa. kF is defined
by the density of the gas. The dotted
line marks the phase transition.

-1 -0.5 0 +0.5 +1

Magnetization
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above, them is no longer a phase transition. In
mean-field approximation, a ferromagnetic phas
would appear at all temperatures but for increasinl
values of kyta. Our observations may imply tha
the interaction energy saturates around kya - 5.

Fig. 2. Atom loss rate as a probe
for local spin polarization, for
different temperatures. TTF = 0.55
(triangles, dashed curve), TTF = 200 -
0.22 (open circles, dotted curve), y
and TTF = 0.12 (solid circles, solid is5 -
black curve). The curves are guides ti
to the eye, based on the assump- ilo -
tion of a loss rate that saturates for o
increasing a in the normal state. The E -
shaded area around the phase o
transition at TTF = 0.12 highlights < 0
the same region as in Figs. 3 and 4.

Fig. 3. Kinetic energy of
a repulsively interacting 600 75
Fermi gas determined for L..J
different interaction pa- o.6o-
rameters kya and tem-
peratures. The measured 055
kinetic energy is normal-
ized by the Fermi energy 4
EO of the noninteracting 0.50
Fermi gas at T = 0, cal-
culated at the trap center 0.45-
with the same number of
atoms per spin state. Each
data point represents the
average of three or four 0.55
measurements.
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The spin-polarized ferromagnetic state should
not suffer from inelastic collisions. However,
typical lifetimes were 10 to 20 ms, which were
probably related to a small domain size and three-
body recombination at domain walls.
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We were unsuccessful in imaging ferromag-

netic domains using differential in situ phase-
contrast imaging (28). A signal-to-noise level of
~ 10 suggests that there were at least 100 do-

mains in a volume given by our spatial resolution
of-3 pm and by the radial size of the cloud. This
implies that the maximum volume of the spin do-
mains is -5 pm-, containing -50 spin-polarized
atoms. We suspect that the shod lifetime prevented
the domains from growing to a larger size and
eventually adopting the equilibrium texture of the
ground state, which has been predicted to have
the spins pointing radially outward, like a hedgehog
(20, 22). All our measurements are sensitive only
to local spin polarization and are independent of
domain structure and texture.

The only difference between our experiment
and the ideal Stoner model is a molecular ad-
mixture of 25% (Fig. 4). The molecular fraction
was constant forkya > 1.8 for all temperatures and
therefore cannot be responsible for the sudden
change of behavior of the gas at ka 2.2 at the
coldest temperature T/TF = 0.12. This prediction n
was confirmed by repeating the kinetic energy 0
measurements with a molecular admixture of 60%.
The minimum in the kinetic energy occuned at the c
same value of ky!a within experimental accuracy.

For a comparison of the observed phase tran-
sition atkya a 2.2 to the theoretical predictions, the
ideal gas k has to be replaced by the value for the
interacting gas, which is smaller by -15% because
of the expansion of the cloud (Fig 4), resulting in a
critical value for kFa = 1.9 ± 0.2. At T/ITF=0.12, the
finite temperature correction in the critical value for
kra is predicted to be less than 5% (19). The
observed value for ka is larger than both the mean-
field prediction of n/2 and the second-order pro E
diction of 1.054 at zero tcmperature (19). Depend- .=

ing on the theoretical approach, the phase transition
has been predicted to be fist or second order. This a

(a
could not been discemed in our experiment because 0
of the inhomogeneous density of the cloud.

It has been speculated (/9) that earlier expen-
ments on the measurement of the interaction ener-
gy (29) and radio fiequency spectroscopy of Fermi
gases (30) showed evidence for the transition to a
fenomagnetic state at or below kva = 1. This inter-
pretation seems to be ruled out by our experiment.

Our work demonstrates a remarkable asym-
metry between positive and negative scattering
length. Early work (15) predicted that for kFjal =
n/2, both an attractive and a repulsive Fermi gas
become mechanically unstable (against collapse
and phase separation, respectively). In an attract-
ive Fermi gas, however, the mechanical in-
stability does not occur [due to pairing (31)], in
contrast to our observations in a repulsive Fermi
gas. This suggests that the maximum total re-
pulsive energy [in units of 3/5(2Vn)Er is larger
than the maximum attractive energy |pl of 0.59
(32) that is realized for infinite a (23).

The interpretation of our results in terms of
a phase transition to itinerant ferromagnetism
is based on the agreement with the prediction
of simplified models [Fig. 1, (15-22)]. Future
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work should address how the observed signa-
tures are modified by strong interactions and
correlations. Additional insight can be obtained
by varying the magnetic field ramp time over a
wide range and studying the relaxation toward
an equilibrium state (33).

Ieisenberg and Bloch's explanation for fer-
romagnetism was based on exchange energy;
that is. the Pauli principle and spin-independent
repulsive interactions between the electrons.
I lowever, it was unknown what other "ingre-

dients" were needed for itinerant fernomagnetism.
It was not until 1995 (6, 7) that a rigorous proof
was given that, in certain lattices, spin-independent
Coulomb interactions can give rise to fenomag-
netism in itinerant electron systems. Our finding
suggests that H-eisenberg's idea does not require a
lattice and band structure but already applies to a
fiee gas with short-range interactions. Our exper-
iment can be egarded as quantum simulation of a
Hamiltonian for which even the existence of a
phase transition was unproven. This underlines the
potential of cold atom experiments as quantum
simulators for many-body physics.
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Materials and Methods

Preparation of the ultracold 'Li cloud The first step is the production of a spin-polarized

Fermi gas in the IF = 3/2, mF = 3/2) state by sympathetic cooling with bosonic 23Na atoms

in a magnetic trap as described in ref (Si). The 'Li cloud was then loaded into a deep optical

dipole trap with a maxium power of 3W and radial trap frequency of ~3.0 kHz, followed by an

RF transfer into the lowest hyperfine state IF = 1/2, mF = 1/2). Additional axial confinement

was provided by magnetic fields. An equal mixture of 1) and |2) spin states (corresponding

to the |F = 1/2,mF = 1/2) and IF = 1/ 2 ,mF = -1/2) states at low magnetic field)

was prepared by a Landau-Zener RF sweep at a magnetic field of 590 G, followed by 1 s for

decoherence and further evaporative cooling at 300 G. Finally, the optical trapping potential

was adiabatically reduced over 600 ms, and the field increased back to 590 G. The trap had

I



a depth of 7.1 pK and was nearly cigar shaped with frequencies V, = y ~ 300 Hz and

v2 ~- 70 Hz.

Supporting online text

Estimation of the maximum total repulsive energy Full phase separation at zero tempera-

ture requires a total repulsive energy of (22/3 - 1) = 0.59 in units of 3/5(2Vn)EF. At finite

temperature T, one has to add TS where S = (2Vn)kBln2 is the entropy difference between

the two phases. Our tentative observation of a ferromagnetic phase at T = 0.39TF implies a

repulsive energy of ~ 1.04 assuming full phase separation, larger than the maximum attraction

energy of 0.59.
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Fig. Sl: (A) The schematic shows the time sequence of the experiment. The sample was

exposed to the magnetic field of interest for 0 - 14 ms and analyzed in-situ for loss measurement

or after 4.6 ms time-of-flight for the measurement of kinetic energy and the axial size of the

cloud. The Feshbach fields were suddenly switched off at a rate of lG/ps, preventing the

conversion of interaction energy into kinetic energy during the expansion. (B) This absorption

image shows the |1) component of the cloud trapped at 812 G (left), and after 4.6 ms ballistic

expansion imaged at zero field (right). The field of view is 840pm x 550pm. The magnetic field

ramp was limited by eddy currents to 4.5 ms. Spectroscopic measurements of the magnetic field

showed that the field was trailing behind the current which was controlled with a time constant

faster than 1 ms.
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Response to comment by Tin-Lun Ho on "Itinerant
Ferromagnetism in a Strongly Interacting Fermi Gas

of Ultracold Atoms", Science 325, 1521 (2009)
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Tony H. Kim', Joseph H. Thywissen2 , David E. Pritchard1 , and Wolfgang Ketterle'
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Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, University of Toronto, Toronto, Ontario M5S 1 A7, Canada

Ho claims in his comment that our experiment is direct evidence that itinerant
N ferromagnetism does not exist in ultracold Fermi gases. This claim is incorrect

and based on an invalid estimate of relaxation times and an erroneous inter-
pretation of the detectability of ferromagnetic domains. We point out that the
experimental evidence is consistent with the existence of ferromagnetism, but
further experiments are needed to distinguish a ferromagnetic ground state
from a non-magnetic ground state with ferromagnetic correlations.

In our recent paper (1), we showed for a Fermi gas of lithium-6 atoms that the lifetime,
> kinetic energy, and cloud size vary non-monotonously for increasing repulsive interactions, and

that this behavior is consistent with predictions of a phase transition to a ferromagnetic state
based on mean-field models. However, we were not able to observe ferromagnetic domains due
to finite imaging resolution and line of sight integration, which suggests that the size of domains
were smaller than 2pm.

We explicitly state in our paper that all our measurements are sensitive only to local spin
polarization and are independent of domain structure. This implies that further experimental
evidences are required to distinguish between equilibrium domains and short-rage fluctuating
domains. In our conclusion, we explicitly point out that our interpretation in terms of a phase
transition to itinerant ferromagnetism is based on the qualitative agreement with the prediction



of simple models (2). We also stated that strong interactions and correlations, for which no
detailed theoretical treatment exists, could possibly modify our findings.

The possible importance of correlations is reiterated by Ho. However, no theoretical treat-
ment is provided in his comment. Instead, he refers to theoretical studies in lattices, but it is
not clear how they can be applied to the continuum case studied in our paper. Recent work (3)
shows, within a phenomenological model, that correlations can lead to similar experimental
signatures as we have observed. However, the model does not quantitatively agree with our
data, and has some qualitative discrepancies as well; for example the extrema of lifetime, ki-
netic energy and cloud size don't occur at the same value of the parameter kFa, where kF is the
Fermi momentum and a the s-wave scattering length, in contrast to our observations. It would
be interesting to see if further development of the alternative theories could lead to quantitative
agreement with experiments. Note that a ferromagnetic phase transition has been predicted by
theories including mean-field and correlations in second order (4,5), but it remains to be seen if
correlations are adequately treated.

Ho argues that our non-observation of spin domains clearly shows their absence and there-
fore the existence of a non-magnetic state. He states that even if the formation of domains
favors small sizes, there should be occasionally a domain which is large enough to be detected.
However, Ho makes no predictions about the statistics of occurrence of large domains, and how
they could be detected in the presence of statistical and systematic noise sources. We note that
our non-observation of domains was based on visual inspections of several images which didn't
show any discernable textures. We presented these results in our paper using weak language (for
example, "a signal-to-noise ratio ... suggests" and "we suspect..." ) and gave estimates without
any error bars. Ho's suggestion of looking for the rare event of a large domain conflicts with
interference fringes, speckle and other imaging artifacts which, at some level, are present in all
experimental images. To exclude the existence of such domains, one needs a prediction about
their probability of occurrence, and a careful analysis of all experimental limitations.

Recent work (6), posted prior to Ho's comment, makes predictions about the size distri-
bution of domains and their growth rate after a rapid quench across a critical value of kFa.
These authors conclude that the expected pattern size of - 2kFv' is much smaller than the
experimental imaging resolution and provide a theoretical explanation for the non-observation
of domains.

Finally, Ho claims that large domains should form on a time scale h/EF, where h is Plancks
constant divided by 27r and EF the Fermi energy, which is fast compared to the hold time in our
experiment. This estimate is incorrect. It should apply only to the local response, i.e. screening
of interactions and local correlations, but not to the formation of domains, which should show
a slowing down near the quantum critical point. The time of domain formation must depend on
their size 1, so there is a second dimensionless parameter kFl in the problem. This is directly
confirmed in the calculations of Ref. (6) which predict that the time scale for domain formation
strongly depends on the domain size and how far the system is quenched beyond the critical
point.



In conclusion, we strongly disagree with Ho that our experiment has shown that Fermi gases
with strong repulsive interactions are non-magnetic. Ho's claim ignores the dependence of the
time scale for domain formation on their size. So far, the experimental evidence is consistent
with a phase transition to a ferromagnetic state, but it cannot rule out a non-magnetic state with
strong ferromagnetic correlations, partly due to the fact that no detailed theoretical predictions
exist for such a state.

We thank Eugene Demler for valuable discussions.
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on an Atom Chip
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We measure the relative phase of two Bose-Einstein condensates confined in a radio frequency induced
double-well potential on an atom chip. We observe phase coherence between the separated condensates
for times up to -200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a
coherent state for our experimental conditions. The enhanced coherence time is attributed to number
squeezing of the initial state by a factor of 10. In addition, we demonstrate a rotationally sensitive (Sagnac)
geometry for a guided atom interferometer by propagating the split condensates.

DOI: 10.1 103/PhysRevLett.98.030407

Precision measurements in atomic physics are usually
done at low atomic densities to avoid collisional shifts and
dephasing. This applies to both atomic clocks and atom
interferometers. At high density, the atomic interaction
energy results in so-called clock shifts [1], and leads to
phase diffusion in Bose-Einstein condensates (BECs) [2-
7]. Most precision measurements with neutral atoms are
performed with free-falling atoms in atomic beams [8,9] or
in fountain geometries [10]. Major efforts are currently
directed towards atom interferometry using confined ge-
ometries, such as atom traps or waveguides, often realized
by using atom chips [11]. These geometries are promising
in terms of compactness and portability, and also offer the
prospect of extending interrogation times beyond the typi-
cal 0.5 s achievable in the atomic fountains [10].

However, given the deleterious effects of high atomic
density, those devices were thought to be able to operate
only at low density and therefore at small flux, seriously
limiting the achievable signal-to-noise ratio and sensitivity.
Here we show that we can operate BEC interferometer at
high density, with mean field energies exceeding h X
6 kHz, where h is Planck's constant. Using a radio fre-
quency (rf) induced beam splitter [12-14], we demonstrate
that condensates can be split reproducibly, so that even
after 200 ms, or more than 1000 cycles of the mean field
evolution, the two condensates still have a controlled
phase. The observed coherence time of 200 ms is 10 times
longer than the phase diffusion time for a coherent state.
Therefore, repulsive interactions during the beam splitting
process [15] have created a nonclassical squeezed state
with relative number fluctuations 10 times smaller than
for a Poissonian distribution.

Our work is a major advance in the coherence time of
confined atom interferometers, which have operated at
interrogation times below -50 ms [13,16,17] due to tech-

PACS numbers: 03.75.Dg, 03.75.Lm, 39.20.+q

nical limitations. Our work also advances the preparation
of number squeezed states to much higher atom numbers.
Previous experiments in optical lattices [18,19] and in an
optical trap [20] were limited to very small populations
(-1-1000 atoms). In addition, the fact that the clouds could
be prepared on an atom chip with dc and rf electric cur-
rents, but without any laser beams, is promising for future
applications. Finally, operating the rf-induced beam split-
ter on propagating condensates, we realized an on-chip
Sagnac interferometer.

For two separated Bose-Einstein condensates, a state of
well-defined relative phase (phase-coherent state), 1#),
is a superposition state of many relative number states,
INr = N, - N2), where N, and N2 are the occupation of
each well for N = N, + N2 atoms. Because of atom-atom
interactions in the condensates, the energy of number
states, E(NI, N2), have quadratic dependence on the atom
numbers N, and N2 so that the different relative number
states have different phase evolution rates [2,5]. A super-
position state will therefore have a spread of evolution
rates, causing "phase diffusion" or "decoherence" of the
relative phase with time. In contrast to normal diffusion
processes, the phase uncertainty, A 4, increases here line-
arly. The phase diffusion rate, R, is proportional to the
derivative of the chemical potential of condensates, p(N;)
(i = 1, 2), with respect to the atom number and the stan-
dard deviation of the relative atom number, ANr: R =
(27r/h)(dp/dN;)N;=N/ 2ANr [2-7]. A number squeezed
state with sub-Poissonian number fluctuations (ANr =
,\IN/s), where s > 1 is the squeezing factor, will exhibit
a reduced phase diffusion rate relative to a phase-coherent
state with ANr = r-.

Bose-Einstein condensates of -4 X 105 23Na atoms in
the IF = 1, mF = - 1) state were transferred into a mag-

@ 2007 The American Physical Society0031-9007/07/98(3)/030407(4) 030407-1
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netic trap generated by the trapping wire on an atom chip
and external bias field [211. A double-well potential in the
horizontal plane was formed using adiabatic rf-induced
splitting as described in Fig. 1(a) [12-14]. Typically, the
separation of the two wells was d - 8.7 pm, the height of
the trap barrier was U - h X 30 kHz, and the chemical
potential of the condensates, measured from the trap bot-
tom, was y - h X 6 kHz [Fig. 1(b)]. The lifetime of the
atoms at the splitting position was -1.8 s, significantly
longer than in our previously demonstrated two-wire split-
ting method [21,22]. rf-induced splitting has several ad-
vantages over two-wire schemes: no loss channel (open
port) during splitting, less sensitivity to magnetic bias
fields, and realization of high trap frequencies far from a
surface [23]. Atoms were held in the double well for
varying hold times, released by turning off the trapping
potential within 30 ps at a known phase of the rf field [24],
overlapped, and interfered in time of flight [Fig. 1(c)]. The
relative phase of the two condensates was measured as the
spatial phase of the interference pattern [16,21].

An atom interferometer requires two independent con-
densates without any weak link which may lock the phase
[16,21]. To demonstrate this independence, we monitored
the relative phase over short intervals right after and after
up to 190 ms delay time. During each of these intervals, the

(a) 400W m

rf wire Trapping Wre 0
70 (OrnA) (-lA)

condensates
8-5 ,*n -

Owe dip awlacs) -

,- 10.5 G

B,- -2.2 G

LWMJ

FIG. 1 (color online). Schematic of the atom chip interferome-
ter. (a) Atoms were confined radially by the combined magnetic
potential of a current-carrying wire and external bias field. Axial
confinement in the x direction was provided by a pair of end cap
wires (not shown) [21]. By dressing the atoms with an oscillating
rf field from a second wire, the single minimum in the magnetic
trapping potential was deformed into a double well [13]. If the
trapping position lies on the circle containing the trapping wire
and centered on the rf wire, the splitting occurs in the horizontal
plane. Condensates were placed 185 pm away from the chip
surface. For the single well, the radial (axial) trap frequency was
f,. = 2.1 kHz (f, = 9 Hz) and the Larmor frequency at the trap
center was - 190 kHz (B, - 0.27 G). Splitting was performed
over 75 ms by linearly ramping the frequency of the rf field from
143 to 225 kHz. Gravity points in the +z direction. (b) Double-
well potential. The separation d between the two wells and the
barrier height U were controlled by adjusting the frequency or
amplitude of the rf field. (c) Matter wave interference. For
various hold times after splitting, absorption images of conden-
sates released from the double-well potential were taken after
10 ms time of flight. The field of view is 260 X 200 pm.

phase evolved linearly with time at -27r X 200 Hz, the
signature of independent condensates (Fig. 2). The non-
vanishing phase evolution rates are attributed to small
asymmetries in the two trapping potentials, which lead to
slightly different chemical potential after the splitting pro-
cess. The time variation of this rate is attributed to axial
motion of the two separated condensates. Note that the
observed drift of the phase evolution rate of -60 Hz is
only 1% of the condensates' chemical potential. In princi-
ple, the phase drift could be zeroed by a compensation
field, but this has not been attempted.

To rule out the possibility that any weak link existed
during the 200 ms time evolution and reset the relative
phase, we demonstrated that an applied phase shift could
be read out 200 ms after its appliance (Fig. 3). This proves
that two independently evolving condensates have pre-
served phase coherence up to 200 ms, a factor of 10 longer
than the phase diffusion time, r, = 1/R = 20 ms, for our
parameters.

For the quantitative study of phase fluctuations, the
standard deviation of the phase does not provide the best
characterization because the phase is measured modulo
27r. In the limit of a large data set, a completely random
distribution has a phase variance of -(37r/5) 2 . Already for
smaller variances, the overlap of the tails of the Gaussian
distribution can cause ambiguities. As a more appropriate
measure of correlation, we represent each measurement of
the relative phase as a phasor with unit length and compare
the length of the sum of N measured phasors with the
expectation value of -,IN- for N random phasors. The larger
the difference, the smaller is the probability that the data
set is compatible with a random phase distribution. This
probability of uncorrelated phases is called randomness
[26]. Uncorrelated data have an expected value of random-
ness near 0.5, while strongly correlated data would have a
small value, e.g., ten data points drawn from a distribution
with variance (ir/5)2 have a probability of only 10-4 to be
compatible with uncorrelated phases.

To study phase diffusion in our system, we analyze the
distribution of ten measurements of the relative phase at

0 2 4 6 71 73 75 77 79 190 192 194 196

Hold Time (ms)

FIG. 2 (color online). Phase evolution of the relative phase
during three different time intervals. The evolution rate of the
relative phase are determined from the linear fit to be (a) 191,
(b) 198, and (c) 255 Hz. The data points represent the average of
ten measurements for (a) and (b), and 15 for (c).
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FIG. 3. Long phase coherence of two separated condensates.
Applying various phase shifts to the condensates at 2 ms after
splitting, the shifts of the relative phase were measured at 7 and
191 ms, showing strong correlation. The dotted line denotes the
ideal case of perfect phase coherence. Phase shifts were applied
by pulsing an additional magnetic field in the z direction for
50 pts with variable amplitude.

various times after splitting, as shown in Fig. 4. The data
show a well-defined phase (with probability >90%) for
times shorter than -200 ms. In contrast, the simulation for
a coherent state in our experimental conditions, shown as a
blue dotted line, predicts the same scatter of phase mea-
surements already after -20 ms. Fitting a phase diffusion
model to the data points with randomness probability
>0.1, gives a phase diffusion time of 200 ms. The solid
line is a fit which includes the initial variance A4:

A4(t)2 = A 4g + (Rt)2. (1)

The variance of the initial state, A 42 = (0.281r)2 is domi-
nated by technical noise including fitting errors and non-
ideal trap switch off. The contribution due to initial number
fluctuations, A42 - (sIANr)2, is -(7.1 X 104)2 for a
coherent state (s = 1), and remains small unless the
squeezing leads to number fluctuations on the order of a

single atom, s - -IN. The fitted value for the phase diffu-
sion rate of R = 5 s-1 includes technical shot-to-shot var-
iations in the relative atom number of two condensates
after splitting and thermal fluctuation. Therefore, the in-
ferred squeezing factor s = 10 represents a lower bound. It
implies that our relative atom number fluctuations were
smaller than ±0.03% corresponding to ±50 atoms.

Locally the interference pattern of two pure condensates
should always have 100% contrast, where contrast is de-
fined as the density amplitude of the interference fringes
over the mean density. Since in our experiment the contrast
is derived from interference pattern integrated along the
line of sight, it decreased gradually with time and exhibited
fluctuations most likely due to asymmetric axial motion
[Fig. 4(b)]. Except for small regions near 110 and 300 ms
hold time, the contrast was above 10%, sufficient for
accurate determination of the phase. The small windows

0 50 100 1

week ending
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50 200 250

Hold Time (ms)

5 +

5-

0L

FIG. 4 (color online). Phase diffusion and number squeezing.
(a) The randomness probability of ten measurements of the
relative phase is displayed up to 400 ms after splitting. The
blue dotted curve (red dashed curve) shows a simulation for a
phase-coherent state (number squeezed state with s = 10),
which have negligible initial phase uncertainty. The solid line
includes an initial phase uncertainty of 0.287r (see text). The
shaded region represents the window where ten data points from
the sample with the given phase uncertainty would fall with 50%
probability. (b) Contrast of the interference pattern. Since the
end cap wires generate a field gradient - as well as a field
curvature = at the position of the condensates, the two wells
are not parallel to the trapping wire and consequently have
slightly different axial trapping potential. This difference indu-
ces relative axial motion of the two condensates, which periodi-
cally reduces the contrast.

with poor contrast have a large probability for random
phases.

The observed long phase coherence time implies that the
initial state is number squeezed. The probable origin of
number squeezing during the splitting is repulsive atom-
atom interactions [15]. The interactions make it energeti-
cally favorable for the two condensates to split with equal
numbers in a symmetric double-well potential, whereas
number fluctuations, such as in a coherent state, cost
energy. Describing splitting dynamics by the Josephson
Hamiltonian shows how the interplay of tunneling and
interactions leads to an increase of squeezing as the barrier
is increased [15,27]. Assuming that the squeezing can no
longer increase when the Josephson frequency becomes
slower than the inverse splitting time, we estimate a
squeezing factor of -13 for our experimental conditions
[27]. For our elongated condensates, phase fluctuations are
present for temperature above -100 nK which is ~1/10 of
the BEC transition temperature [28]. Since we cannot
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FIG. 5 (color online). Confined atom interferometry with en-
closed area. (a) A single trapped condensate at rest was accel-
erated by shifting the trap center by -430 pm in the axial
direction (t = 0 ins). The frequency of the rf field was linearly
ramped from 154 to 204 kHz during 16 ms after launch, splitting
the condensates and separating them by 5-6 im. (b) Phase
measurements were done for up to 26 ms after the launch. The
probability for random phases was determined for data sets of
ten measurements. Until 16 ms, this probability was extremely
low (less than 10-12) and the relative phase was constant,
implying that the two condensates were still connected. For t >
16 ms, the relative phase evolved (similar to Fig. 2), and the
probability for a random phase distribution was smaller than
10%. This demonstrates that phase coherence was preserved
after full splitting. The figure shows the interference pattern
for t = 22 ms. The field of view is 260 X 200 pm.

measure the temperature of an almost pure condensate in
time of flight, it is not clear whether the interfering con-
densates had correlated phase fluctuations or not.

The work presented so far, and also all previous work on
interferometry of confined or guided atoms, featured ge-
ometries without any enclosed area between the two paths
of the interferometer. An enclosed area is necessary for
rotational sensitivity [8,9,29] and requires moving atoms.
As described in Fig. 5, we were able to extend the coher-
ent beam splitter to condensates moving on an atom chip.
The observed coherence time (10 ms) and propagation
distance after splitting (-350 Mm) were only limited by
the chip geometry. This corresponds to an enclosed area
of -1500 pm 2, and a response factor 4i"A ~ 7.9 x
10- rad/fl, for rotation sensing, where m is the probe
particle mass and fi, the earth rotation rate [30].

In conclusion, the present work demonstrates a long
phase coherence time of -200 ms between two spatially
separated condensates on an atom chip, rivaling the inter-
rogation times in fountain-type interferometers [10].
Number squeezing by a factor 210 occurs during the
preparation of the split state, providing a well-defined
phase beyond the phase diffusion limit for a coherent state.
Thus, interaction-induced squeezing reduces the phase
diffusion caused by the same interactions [15]. These
results show that it is both possible and promising to use

condensates at high density for interferometry on an atom
chip.
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NASA. G.-B. Jo and S. Will acknowledge additional sup-
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Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below
the BEC transition temperature. We demonstrate that atom interferometers using such condensates are
robust against phase fluctuations; i.e., the relative phase of the split condensate is reproducible despite
axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the
presence of some asymmetries in the two wells of the interferometer.

DOI: 10.1 103/PhysRevLett.99.240406

A noninteracting zero temperature Bose-Einstein con-
densate is the matter-wave analogue to the optical laser,
and therefore the ideal atom source for atom interferom-
etry. Finite temperature and atomic interactions profoundly
change the coherence properties of a condensate and in-
troduce phase fluctuations and phase diffusion. Those phe-
nomena are of fundamental interest [1-6], but also of
practical importance because they may limit the perform-
ance of atom interferometers [7-9]. This applies, in par-
ticular, to magnetic microtraps and waveguides (e.g., atom
chips) [10] since tight confinement and elongated geome-
try enhances phase diffusion and phase fluctuations.

Phase diffusion is a quantum effect associated with the
coherent splitting of the condensate. Number fluctuations
lead to density fluctuations, which, due to interactions,
cause fluctuations of the energy and cause diffusion of
the relative phase proportional to the chemical potential
times AN/N, the amount of fluctuations in the relative
atom number. In our previous work [11,12], we showed
that such phase diffusion could be dramatically reduced by
number squeezing, increasing the coherence time. In this
paper, we characterize and discuss the role of spatial phase

fluctuations in an atom interferometer.
Phase fluctuations cause the condensate to break up into

several quasicondensates with random phase; i.e., long
range coherence is lost. This usually happens in elongated
geometries when the temperature is sufficiently high to
excite such modes [1,2], or in interacting one-dimensional
condensates even at zero temperature due to quantum
fluctuations [13]. Spatial phase fluctuations have two major
consequences for atom interferometry. First, they speed up
phase diffusion, since AN/N refers now to the atom num-
ber in a single quasicondensate. Second, they make the
atom interferometer much more sensitive to random rela-
tive displacements of the split condensates, which have to
be smaller than the coherence length, which, for conden-
sates with phase fluctuations, can be much smaller than the
size of the condensate.

A typical elongated trap geometry, realized by an atom
chip, has an aspect ratio of -200 [8,11,14], sufficient to
induce phase fluctuations in a quasicondensate along the

PACS numbers: 03.75.Dg, 03.75.Lm, 39.20.+q

axial direction [1] already at very low temperatures (or in
the 1 D case, even at zero temperature). When the tempera-
ture of a condensate is above the characteristic tempera-
ture, T* = 15N(hw.) 2 /32p, where p is the chemical

potential, N total atom number, wz axial trap frequency,
and h the Planck's constant divided by 2 r [1], then thermal
excitations of low energy axial modes lead to longitudinal
phase fluctuations. For temperatures above T* the coher-
ence length L* of a phase-fluctuating condensate is shorter
than the length L of the condensate L*/L = T*/T [1].

Previous experiments [8,11,14] on atom interferometry
have operated in a regime where phase fluctuations are
predicted to be present. However, their presence has not
been observed because the interferometer was read out by
integrating the interference fringes along the axial direc-
tion. Other experiments characterized phase fluctuations
by interferometric techniques [15] and Bragg spectroscopy
[16], but did not study the effect of phase fluctuations on an
atom interferometer.

In this Letter we observe the axial phase fluctuations
spatially resolved and characterize their effect on the co-
herence time of the atom interferometer. We show explic-
itly that atom interferometry can be performed in the
presence of phase fluctuations. This has been expected
[13], since for sufficiently short times after splitting, those
fluctuations are identical for both condensates and there-
fore do not affect the measurement of the relative phase.
For the same reason, atom interferometry is possible with
thermal clouds of atoms [17]. However, already at short
times, phase fluctuations degrade the contrast and can limit
the coherence time. As we discuss below, we believe that
this degradation is not due to the quantum effect of the
increased relative number fluctuations in each quasicon-
densate because of the high degree of number squeezing,
but is rather caused by asymmetries in the double-well
potential leading to relative motion of the condensates.

Bose-Einstein condensates of -4 X 10 2'Na atoms in
the IF = 1, mF = - 1 state were transferred into a magnetic
trap generated by the trapping wire on an atom chip and
external bias field [14]. Using adiabatic rf-induced splitting
[8,18], a double-well potential in the vertical plane (paral-
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lel to the gravity direction) was formed as illustrated in
Fig. 1(a) [19]. Gravity was compensated by a magnetic
field gradient from the trapping wire. Typically, the sepa-
ration of the two wells was d - 6 y4m, the height of the
trap barrier was U - h X 10 kHz, and the difference of the
trap bottom between two wells -h X 300 Hz. The trap-
ping frequencies were -2 kHz (radial) and -10 Hz (ax-
ial). The absorption imaging light for data acquisition was
resonant with the IF = 2)-+ IF' = 3) cycling transition for
the trapped atoms and was aligned perpendicular to the con-
densate axis [side imaging in Fig. 1(c)]. The atoms were
optically pumped into the IF= 2) hyperfine level with a
pulse resonant with the IF = 1)-+ IF'- 2) transition.

First, we characterized the presence of phase fluctua-
tions in the condensate before splitting by observing den-
sity modulations of the expanded atomic cloud after 7 ms
time of flight (Fig. 2 inset). In trap, the mean-field inter-
action energy suppresses density fluctuations, but ballistic
expansion converts phase fluctuations into density modu-
lations [2] since the initial velocity field is proportional to
the gradient of the phase. The number of observed density
striations of around ten is consistent with the ratio of the
measured temperature of -650 ± 100 nK and the calcu-
lated value of * ~60 nK. Since the barrier height is com-
parable to the temperature, we assume that both conden-
sates interact with the same heat bath. However, we do not
expect any difference to the case of two separated thermal
clouds.

Mal
knaging
Ught

(C)

FIG. 1 (color online). Geometry of the atom chip interferome-
ter. (a) Atoms were confined radially by the combined magnetic
potential of a current-carrying wire and an external bias field. A
pair of end cap wires (not shown) provided axial confinement.
The single well was deformed into a vertical double well within
15 ms by adding rf current into the trapping wire dressing the
atoms with oscillating rf fields. Absorption image was taken by a
probe beam directed along the condensate axis [(b), axial imag-
ing] and perpendicular to the condensate axis [(c), side imaging].
All data in this Letter were obtained using side imaging. The
fields of view are 160 X 260 yum and 180 X 100 m for axial
and side imaging, respectively.

The longitudinal phase fluctuations were quantified by
measuring the root-mean-square average of the density
fluctuations as described in Fig. 2 [20]. The amount of
phase fluctuations was controlled by changing the atom
number and the temperature with rf-evaporation. The rf
field generated by the rf wire [Fig. 1(a)] was swept down
from -20 kHz above the Larmor frequency at the trap
center to a variable final value, leading to a variable chemi-
cal potential and temperature of the condensate (Fig. 2
inset) [21]. The variation of the spatial phase fluctuations
with chemical potential is shown in Fig. 2.

Having firmly established the presence of phase fluctua-
tions, we can now demonstrate the robustness of an atom
interferometer against longitudinal phase fluctuations. For
this, we split the condensates and observe the reproduc-
ibility of ten interference fringes obtained by recombining
the condensates during ballistic expansion. The regular,
almost straight interference fringes (Figs. I and 3) show
that the spatial phase fluctuations are common mode and
do not affect the relative phase in a major way.

However, when we increase the amount of phase fluc-
tuations, we observe an increasing blurring or waviness of
the interference fringes (Fig. 3). The number of wiggles of
the waviness is comparable to the modulation pattern
observed in the ballistic expansion of single condensates
(Fig. 2). Of course, without any technical imperfection in

2.5 3.0 3.5 4.0 4.5
Chemical Potential (kHz)

FIG. 2. Spatial phase fluctuations in a single condensate. The
phase fluctuations were characterized by observing the density
modulations in an absorption image of the expanded cloud after
8 ms time-of-flight (see inset) and calculating the rms fluctua-
tions as described in Ref. [2]. The chemical potential (or atom
number) was controlled by additional rf-evaporative cooling.
The temperature of the condensate is shown in the inset graph.
For chemical potentials less than 3.5 kHz, we could not measure
the temperature of a condensate due to the lack of discernible
thermal atoms. The observed phase fluctuations do not decrease
monotonically, but show a minimum at the chemical potential of
-3.5 kHz, probably because the effect of the lower temperature
was more than offset by the loss in the atom number. In the inset
graph, r displays the characteristic temperature for the onset of
the phase fluctuations.
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FIG. 3 (color online). Effect of spatial phase fluctuation on the
waviness of interference fringes. (a) Interference fringes ob-
tained right after splitting a condensate. For large spatial phase
fluctuation (e.g., 4.6 kHz), the fringe pattern shows more sig-
nificant wiggles than for smaller phase fluctuations (e.g.,
3.6 kHz). (b) From the fringes for 3.6 kHz (dashed line) and
4.6 kHz (solid line) chemical potentials, relative phases are
obtained along the axial direction. In both cases, the overall
relative phase can be well determined by averaging along the
axial coordinate, but considerable axial variations of the relative
phase were observed in the regime of large longitudinal phase
fluctuations (solid line). The error bars indicate the statistical
uncertainty in the phase determination.

the splitting process, phase fluctuations would be com-
mon mode and not lead to any observable effects right
after the splitting. For the smallest amount of spatial phase
fluctuations, the relative phase is almost constant along the
axial direction [dashed line in Fig. 3(b)]. The effect of
larger phase fluctuations is displayed by the solid line.
However, an average relative phase can still be determined.

To quantify the reproducibility of the relative phase, we
determine the probability of the ten measurements of the
relative phase being random (called randomness) [11]
(Fig. 4). For values of the chemical potential larger than
3.0 kHz, the randomness is less than 0.1 which implies a
reproducible phase with 90% confidence. However, by
comparing Figs. 2 and 4, one clearly recognizes the deg-
radation of reproducibility of the relative phase with in-
creasing spatial phase fluctuations. We cannot rule out that
the condensate had some weak collective excitations after
preparation. However, the amount of the excitation should
not depend on the final temperature. Therefore, we attrib-
ute the temperature dependence of the fringe contrast to
phase fluctuations.

By introducing a variable hold time after the splitting,
we can examine how spatial phase fluctuations limit the
coherence time of a matter-wave interferometer. Figure 5

2.5 3.0 3.5 4.0 4.5

Chemical Potential (kHz)

FIG. 4. Effect of spatial phase fluctuations on the reproduc-
ibility of the relative phase right after splitting. The probability
of random phases was measured with variable longitudinal phase
fluctuations immediately after splitting (0 ms hold time). The
phase was determined by analyzing the central -40% of the
axial length of the interference pattern. In the inset graph, the
visibility of the integrated interference fringe over the central
-40% is shown.

shows the increase of randomness with hold time. For the
smallest amount of phase fluctuations (chemical potential
-3.4 kHz, black squares in Fig. 5), the phase coherence
time is -23 ms. As the spatial phase fluctuations increase
(solid circles and open squares in Fig. 5), the phase coher-
ence time becomes shorter [22]. It should be noted that in
the absence of spatial phase fluctuations, for a condensate
with zero temperature, the rate of phase diffusion decreases
with chemical potential, proportional to ~p114 [3,4],
which is also valid at finite temperature [3]. Our observed
increase of decoherence with increasing chemical potential
is therefore attributed to the increase of spatial phase
fluctuations. The increasing waviness of the interference
fringes show that the decoherence is caused by random-
ization of the relative phase along the axial direction
[Fig. 5(b)].

By which mechanism do the spatial phase fluctuations
affect the interferometer signal? For our experimental pa-
rameters, the rate of phase diffusion (assuming Poissonian
number fluctuations after the splitting) is -20 ms [3,4].
For our value of TIT, the condensate fragments into -10
quasicondensates which should decrease the coherence
time by a factor of Nff to about 7 ms. Our observation
of much longer coherence times implies strong squeezing
of the relative number fluctuations, as already observed in
Ref. [11]. In Ref. [11] we inferred a reduction of the
number fluctuations below shot noise by a factor of 10.
However, having now established the presence of strong
phase fluctuations, we should reinterprete our previous
result. Those data were taken at a value of TIT* of about 7,
which implies that the number fluctuations for each quasi-
condensate was squeezed by a factor of -25. Our current
experiments were carried out in a rotated geometry (in

240406-3

0.25

0.20

0.15

0.10

0.05

0.00



PRL. 99 240406 (2007) PHYSICAL REVIEW LETTERS week ending
14 DECEMBER 2007

U) 1(-

0

C

0.1

.
0

0 5 10 15 20 25
Hold Time (ms)

23ms Hold Time

FIG. 5. Effect of longitudinal phase fluctuations on the coher-
ence time between the split condensates. (a) The probability for a
random phase for ten measurements of the relative phase is
shown for three different amounts of the longitudinal phase
fluctuations. (b) For condensates in the regime of large longitu-
dinal phase fluctuations (-4.5 kHz), interference fringes show
more wavy patterns, which led to the increased randomness of
the measured relative phase.

order to be able to observe along a radial direction), but the
value of T/T* ~ 10 is similar. If we assume that the
squeezing factor is the same, then we should have observed
phase coherence times comparable to the 200 ms observed
previously [11].

We therefore conclude that the shorter coherence times
observed in this Letter are not limited by the fundamental
quantum phase diffusion of quasicondensates because of
strong number squeezing, but rather reflect the interplay of
spatial phase fluctuations and some relative motion of the
two condensates. This is probably due to some asymme-
tries in the current trapping potential [23] and/or technical
noise. The loss of coherence due to phase fluctuations starts
already during the splitting process (Figs. 3 and 4), and
increases with hold time.

The main conclusions of this Letter are that matter-wave
interferometers are robust against spatial phase fluctua-
tions, especially when strong number squeezing mitigates
the fragmentation into smaller quasicondensates (which
show faster phase diffusion than a single condensate)
resulting in coherence times of up to 200 ms [11].
However, spatial phase fluctuations make the interferome-

ter much more sensitive to residual relative motion of the
two split condensates and therefore require a highly sym-
metric double-well potential.
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The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating
which depends on the relative phase of the two condensates. This heating reduces the number of
condensate atoms between 10% and 40% and provides a robust way to read out the phase of an atom
interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of
dark solitons created during the merging of the condensates.

DOI: 10.1 103/PhysRevLett.98.180401

Most experiments in atom interferometry use freely
propagating atom clouds [1-3]. Alternative geometries
are confined-atom interferometers where atoms [3] are
guided or confined in trapping potentials [4], often realized
by using atom chips [5]. These geometries are promising in
terms of compactness and portability, and also offer the
prospect of extending interrogation times beyond the typi-
cal 0.5 s achievable in the atomic fountains. Such interfer-
ometers can be used to study atom-surface interactions [6]
and Josephson phenomena [7].

Many discussions of confined-atom interferometers pro-
pose a readout by merging the two separated clouds [8-
10]. These discussions usually assume noninteracting
atoms [8,11] and do not address the deleterious effects of
atomic interactions, including dephasing, collisional shifts,
and phase diffusion [12-17]. A recent study showed that
the recombination process is much more sensitive to
atomic interactions than the splitting process since merg-
ing clouds with the opposite phase involves excited modes
of the recombined potential and can lead to exponen-
tial growth of unstable modes [18]. To circumvent these
problems, previous realizations of confined-atom interfer-
ometry used ballistic expansion of the two spatially inde-
pendent condensates, which decreases the atomic density
before overlap [4,19-21] or worked at very low atom
densities and pushed the clouds into each other with photon
recoil [22,23]. While this avoids the deleterious effects of
atom-atom interactions during the recombination, it lacks
the inherent simplicity and robustness of in-trap recombi-
nation. Furthermore, in-trap recombination, combined
with dispersive, in situ, imaging [24], could make it pos-
sible to recycle the condensate for the next measurement
cycle after resetting the temperature through evaporating
cooling. The detection optics for in situ imaging may even
be integrated onto the atom chip [25]. Moreover, a trapped
sample at high optical density can be read out with subshot
noise precision using cavity-enhanced atom detection [26].

In this Letter, we show that in-trap recombination leads
indeed to heating of the atomic cloud. However, this heat-
ing is phase dependent and can be used as a robust and
sensitive readout of the atom interferometer. The resulting

PACS numbers: 03.75.Dg, 03.75.Lm, 39.20.+q

oscillations of the condensate atom number are dramatic
(typically -25% contrast), occur over a wide range of
recombination rates, and permit high signal to noise ratios
since they simply require a measurement of the total
number of condensate atoms in the trap.

The implications of phase-sensitive recombination ex-
tend beyond atom interferometry. Recombination with un-
controlled phase was used to replenish a continuous Bose-
Einstein condensate (BEC) [27] or to create vortices [28].
An extreme case of the merge process, where two con-
densates are suddenly connected, has been studied by
optically imprinting a dark soliton into a single trapped
condensate [29,30]. Here we use methods of atom inter-
ferometry to prepare two condensates with well-defined
relative phase and study the merging process for variable
recombination times.

Two special cases of the merging process can be exactly
described (Fig. 1). Two noninteracting separated conden-
sates with the same phase should adiabatically evolve into
the ground state of the combined potential, whereas a
r-relative phase should result in the lowest lying antisym-

metric state with excitation energy Nhw, where N is the
total number of atoms in a trap and w is the transverse
frequency of the trapping potential. The other limiting case
is a merging process where a thin membrane separates two
interacting condensates until the potentials are merged, and
then is suddenly removed. For the 0-relative phase, the
merged condensate is in its Thomas-Fermi ground state.
For a ir-relative phase, however, the merged condensate
contains a dark soliton. Although the wave function differs
from the ground state only in a thin layer, the total energy
of this excited state is proportional to Nhw, as the lowest
antisymmetric state in the noninteracting case [311.

Our working assumption is that the phase-sensitive ex-
citation of the cloud decays quickly, on the order of -1 ms
in our system, and leads to an increase in temperature on
the order of hw/kg ~ 100 nK for the case of A 4 = ir, and
less for other values of A O, where kB is the Boltzmann
constant. The parameters of our experiment were inter-
mediate between limiting cases of suddenness or adiaba-
ticity, and we found a window of recombination times for

@ 2007 The American Physical Society
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FIG. 1 (color online). Schematic of the in-trap recombination
with a well-defined relative phase. (a) The phase-coherent con-
densates were prepared using a radio frequency induced double-
well potential on an atom chip [21]. The splitting was done
within 75 ms by ramping up the rf frequency from 140 to
225 kHz. During the hold time, the relative phase of two
independent condensates evolved with time at -500 Hz. After
a variable time, the double-well potential was deformed into a
single well and the two trapped condensates were merged by
decreasing the rf frequency by 33 kHz over a variable "recom-
bination time." The condensates started to spill over the barrier
after -<10% of the recombination time or -3 kHz decrease of
the rf frequency. (b),(c) The merged matter-wave functions are
shown for the cases of an adiabatic merger of noninteracting
condensates and for a sudden merger of interacting condensates.

the phase-sensitive readout to which none of these descrip-
tions apply.

Bose-Einstein condensates of -4 X 10 23Na atoms in
the IF = 1, mF = -1) state were transferred into a mag-
netic trap generated by the trapping wire on an atom chip
and an external bias field [19]. The cloud had a condensate
fraction = 90% and the temperature was - 1/2 of the BEC
transition temperature, well above 0.1 when axial phase
fluctuations are excited. Using adiabatic rf-induced split-
ting [20,32], a double-well potential in the horizontal plane
was formed. Typically, the separation of the two wells was
d - 6 pm, the height of the trap barrier was U-h X
10 kHz, and the chemical potential of the condensates,
measured from the trap bottom, was y - h X 6 kHz, where
h is Planck's constant. In the experiment, the coherence
time of two separated condensates was at least -50 ms
[21]. The recombination of two split condensates was
realized by reducing the rf frequency as described in
Fig. 1(a), which decreases the trap barrier height. The
merging occurred slowly compared to the time scale de-
termined by the radial trap frequency (-I kHz) to mini-
mize mechanical excitation.

To monitor the energy increase after recombination, we
measured the central atom density during ballistic expan-
sion. Phase-sensitive collective excitations, in addition to
mechanical excitations from the splitting and merging
processes, heat the cloud and lower the condensate fraction
and, therefore, reduce the central density. In the experi-
ment, the split condensates were held in the double-well
potential for varying hold times, merged into a single
potential, and released by turning off the trapping potential
within 30 ps. After 8 ms time of flight, we measured the
number of atoms in a fixed area which is comparable to the
size of (expanded) Thomas-Fermi radius [dotted box in
Fig. 2(c)]. While the total atom number was conserved, the
number within the fixed area decreased, indicating that the
temperature had increased. The fractional loss of conden-
sate atoms was obtained as the ratio of atom number after
recombination to the atom number before splitting.

The fractional loss of condensate atoms was reproduc-
ible for a given hold time, and observed to oscillate be-
tween 15% and 35% as a function of hold time at a rate of
500 Hz (Figs. 2 and 3). The observed oscillations are sinu-
soidal, although the nonlinear interactions can give rise to
nonsinusoidal variations [16]. To confirm that this oscilla-
tory heating was associated with the relative phase of the
split condensates, we measured the relative phase as the
spatial phase of the interference pattern when the split
condensates were suddenly released and interfered during
ballistic expansion [Fig. 2(a)] [4]. The strong correlation
between the two measurements [Fig. 2(b)] is the central re-
sult of this Letter. As the relative phase increased from 0 to
7r, the atom loss after recombination increased [Fig. 2(b)];
the ir-relative phase (0-relative phase) difference leads to
maximum (minimum) loss of condensate atoms.

The use of phase-sensitive recombination as a readout
for an atom interferometer is demonstrated in Fig. 3. The
separated condensates accumulate relative phase for an
evolution time of up to 6 ms which is read out after in-
trap recombination. The phase-sensitive recombination
signal showed high contrast over a wide range of recom-
bination times [Figs. 3 and 4(a)]. The observed largest
amplitudes of condensate atom loss correspond to a change
in temperature on the order of -100 nK, in agreement with
the estimate in the introduction. This is testimony to the
insensitivity of the energy of phase-dependent excitations
against changes in the exact recombination parameters,
and is promising for further applications of chip-based
atom interferometry.

The dependence of the condensate atom loss on the
recombination time allows us to speculate about different
excitations caused by the merging process. The 1 ms re-
combination time shows little contrast [Fig. 3(d)]. This
time scale is comparable to the period of radial oscillations,
and one would expect breakdown of adiabaticity and ex-
citation of collective excitations independent of the relative
phase. Significant loss (-30%) was observed for all rela-
tive phases and masked or suppressed any phase-sensitive
signal. The loss of contrast for the long recombination
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FIG. 2 (color online). Phase-sensitive recombination of two
separate condensates. (a) The relative phase of two split con-
densates was monitored for various hold time after splitting by
suddenly releasing the two condensates and observing interfer-
ence fringes. For the independent condensates (solid circle), the
evolution rate of the relative phase was determined from the
linear fit to be -500 Hz. For the weakly coupled condensates
(open square), the relative phase did not evolve. At 0 ms hold
time, the relative phase was set to zero for both cases. (b) For the
same range of delay times as in (a), the condensate atom loss
after in-trap recombination was determined. The relative phase
(x axis) was obtained from interference patterns as in (a). The
merging time was 5 ms. (c) The matter-wave interference
patterns (after 9 ms time of flight) and absorption images of
merged clouds (after 8 ms time of flight) show the correlation
between phase shift and absorption signal. The field of view is
260 X 200 p~rm and 160 X 240 yzm for matter-wave interfer-
ences and merged clouds, respectively.

times could be caused by relaxation of the phase-sensitive
collective excitation during the merging process when the
condensates are connected only by a region of low density,
and solitonlike excitations have lower energy. An alterna-
tive explanation is the evolution of the relative phase (at
-500 Hz) during the effective recombination time. In a
simple picture assuming a thin membrane being slowly
pulled out between the condensates, a phase evolution
during this time would create local solitons with phases
varying between 0 and ir. This could wash out the phase-
sensitive signal to an average value. Since the data for
100 ms recombination time show low loss [comparable
to the zero relative phase loss for faster recombination

4 1
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FIG. 3. Oscillations of condensate atom loss after recombina-
tion reflecting the coherent phase evolution. The condensate
atom loss was monitored during a variable hold time for the
two split condensates whose relative phase evolved at -500 Hz.
The merging was done for different values of the recombination
time: 100 (a), 10 (b), 5 (c), and 1 ms (d). The dotted lines are
sinusoidal curves fitted with fixed frequency -500 Hz. The
reproducible phase shift for the 5 and 10 ms data occurred
during the recombination process. The data points represent
the average of 6 measurements.

times, Fig. 3(d)], we favor the first explanation. Further-
more, it is not clear during what fraction of the ramp time
of the rf frequency (called the recombination time) the
effective merging of the condensates and the creation of
a phase-sensitive collective excitation occurs. The time
between when the barrier equals the chemical potential
and when the barrier reaches -70% of the chemical po-
tential is 10% of the recombination time. Another open
question is what the rate of phase evolution is at the mo-
ment of the merger. It is plausible that during splitting, the
condensates have the same chemical potential, and that the
observed difference is created only when the condensates
are further separated by ramping up the barrier. This would
imply that during recombination, the situation reverses, the
chemical potential difference is reduced and reaches near
zero when the condensates merge. In any case, our work
raises intriguing questions for further experimental and
theoretical studies: What kind of phase-sensitive excita-
tions are created during a merger process? How and when
do they dissipate, and what would happen when two con-
densates with different chemical potentials are merged?

The present work demonstrates that interactions be-
tween atoms and collective excitations are not necessarily
deleterious to direct recombination of separated trapped
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FIG. 4 (color online). Recombination time and atom loss.
(a) The amplitude of atom loss oscillations was determined for
various recombination times. (b) Assuming that minimum atom
loss occurs at 0-relative phase of the two condensates, relative
phases were obtained from the fitted atom loss oscillations in
Fig. 3.

condensates that have acquired a relative phase in atom
interferometry. In contrast, the phase-sensitive generation
of collective excitations is used to monitor the relative
phase. This complements our previous work where atomic
interactions were shown to enhance the coherence time by
preparing a number squeezed state with the help of atomic
interactions during the beam splitting process [21]. So the
merger between condensed matter and atomic physics goes
both ways. In recent years, atomic physics has developed
powerful tools to study many-body physics [33], and, as we
have shown here, many-body physics provides methods
and tools to atom optics.
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Ultracold sodium atoms have been trapped inside a hollow-core optical fiber. The atoms are transferred from
a free-space optical dipole trap into a trap formed by a red-detuned Gaussian light mode confined to the core
of the fiber. We show that at least 5% of the atoms held initially in the free-space trap can be loaded into the
core of the fiber and retrieved outside.

DOI: 10.1103/PhysRevA.78.033429

I. INTRODUCTION

Ultracold atoms in waveguides are being used for study-
ing quantum optics [1], performing atom interferometry
[2-5], and implementing schemes for quantum-information
science [6]. Of particular interest is the ability of waveguides
and microtraps to strongly confine atoms, providing high op-
tical densities, strong interactions with light, and mecha-
nisms for transporting atoms for further experiments.

Hollow-core optical fibers can guide and confine both at-
oms and light. Previous experiments have reported guiding
atoms in optical dipole traps (ODTs) formed by light guided
in hollow fibers [7-10]; these experiments used capillaries
which guide light in multiple modes in the cladding or core.
Such fibers are susceptible to speckle or inhomogeneous
fields causing uncontrolled guiding, heating, or loss due to
local absence of confinement. Recently developed alterna-
tives are photonic crystal fibers which propagate a single
Gaussian mode confined to a hollow core [11,12]. If ultra-
cold atoms are efficiently loaded into such a mode using
red-detuned light, the atoms might be held for long times or
controllably transported along the fiber. The first experiments
have succeeded in trapping ultracold atoms [13] or guiding
thermal [14] or laser-cooled atoms [15] through hollow-core
photonic band gap fibers.

This paper presents results [13] on the transfer of trapped
ultracold sodium atoms into a hollow-core fiber, and the re-
trieval of a significant fraction (at least 5%) back in the ex-
ternal trap.

11. EXPERIMENTAL PROCEDURE

We produce sodium Bose-Einstein condensates (BECs)
using laser cooling and rf evaporation in a dc loffe-Pritchard
magnetic trap, then load the BEC into a red-detuned ODT
formed by a focused laser. The ODT focus can be moved by
translating the focusing optics outside the vacuum chamber
[16]. This procedure typically delivers a condensate of 106
atoms to a separate vacuum chamber holding a fiber. The
ODT is positioned 1 mm from the end of a hollow-core pho-
tonic crystal fiber (2 cm long, Blaze Photonics HC-1060-02)
which supports a red-detuned Gaussian mode in the core,

PACS number(s): 37.10.Gh, 03.75.Be, 42.70.Qs

hereafter called the hollow-core trap (HCT). The fiber has a
10 pm hollow core that atoms can enter. By adjusting the
intensities of the two traps, the atoms can be controllably
transferred between them.

The light for the ODT and the HCT is produced by a
1064 nm Spectra-Physics J201-BL-106C diode pumped
solid state multimode laser. Intensities are controlled by us-
ing acousto-optical modulators. The beams are frequency
shifted such that they have 50 MHz relative detuning in or-
der to prevent static interference fringes in regions where the
traps overlap. The laser is coupled to the core mode by fo-
cusing the beam onto the fiber tip from outside the vacuum
chamber (Fig. 1). Using a retractable mirror, the light exiting
the other end of the fiber can be observed to determine how
well the core mode is coupled, as well as how much light has
coupled into other modes that can propagate in the cladding
or on the surface of the fiber.

Because the 1064 nm trapping light is far detuned from
the 589 nm 23Na D 2 line, the light scattering rate, which
scales as 1/ 82, is less than 10- Hz. Therefore radiation pres-
sure, heating, and trap loss associated with scattering are
negligible in the experiment. In the far-detuned limit where
8> R, F, the potential is given by

U(r)1 +
4 (rw & o 00&t+ WO

hF 2I(r) (I I
= ls -+ , ~2O~ (I)

8sat 82o+

where [flR(r)]2 is the squared Rabi frequency, proportional
to the position-dependent beam intensity I(r), 8=&W)-W is
the laser detuning in rad/s, and F is the natural linewidth. For
the sodium D2 line, the saturation intensity Isat= 6 mW/cm 2

and F=2rx 10 MHz. Note that the counter-rotating term
accounts for 25% of the potential.

The focus of the ODT has a waist w0=20 pum, approxi-
mated by a Gaussian profile of

I(p,z) = 2P e2,lw(Z)2 (2)
irw(z)2

where p is the radial coordinate, z is the axial distance
from the focal plane, w(z) is the beam radius
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FIG. 2. Time line for transferring atoms by ramping laser power.
The fiber light is ramped up while the atoms are in the ODT, and the
ODT is ramped down to transfer to the HCT (1), turned off for
holding (2), and ramped up to retrieve the atoms (3).
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FIG. 3. Images of atoms in the ODT during the experiment.
Also shown are sketches of the corresponding combined potential
of the HCT and ODT. (a) Atoms are held in the ODT near the fiber,
with no light coupled into the fiber. The dashed line indicates the
position of the 100 pmn thick fiber. (b) Light is coupled to the fiber,
and as the ODT intensity is ramped down, atoms are depleted from
the ODT until (c) no atoms remain outside the fiber when the ODT
power reaches zero. (d) After ramping the ODT back up, atoms that
were trapped in the HCT return to the ODT.

xcited, The calculated depths of the ODT and HCT are 5.8
rges at X 10-2 and 1.2 LK/mW, respectively [Fig. 1(b)]. The maxi-
th the mum power in the ODT is 150 mW. Potentials are qualita-

tively consistent with our observations if we assume a maxi-
mum power of 5 mW in the core mode of the fiber. Bench
tests suggested that three times more power could couple
through the fiber, but we believe that the extra power was in

.0 surface or cladding modes and did not contribute to the core
intensity.

0.5 The ODT is positioned in front of the fiber, and the laser
0.0 intensities in the two traps are ramped to perform the transfer

1.0 (Fig. 2). As the ODT depth is reduced (step I in the figure),
atoms are pulled out of the trap and are accelerated into the

0.5 potential well of the HCT. The ODT is turned off completely
00 while the atoms are held within the HCT (step 2). After some

1.0

hold time the ODT is ramped up and atoms transfer back to
the ODT (step 3).

Absorption images are obtained during the loading and
me retrieving process to measure the atom number in the ODT
(Fig 3). From the final ODT number we determine the over-
all efficiency of the process.

soO

M. RESULTS

Based on the analysis of absorption images we measure
5 X 104 atoms in the ODT after retrieval, corresponding to
about 5% of the 106 atoms initially delivered at the start of
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the experiment. The successful transfer of atoms into the
HCT and their retrieval is the main result of this paper.

Images recorded while the ODT power is ramped down
reveal that the number of atoms is gradually reduced until
the ODT power reaches zero [see Figs. 3(b) and 3(c)]. Once
the ODT power drops to zero, any remaining atoms either
fall into the HCT potential well, or are lost from either trap.

The atoms are then held in the trap for up to 30 ms, sev-
eral hundred radial trapping periods. After this time, the
ODT intensity is ramped back up, and the atom number out-
side the fiber increases over 80 ms [Fig. 3(d)] until a maxi-
mum is reached. In varying the hold time, the retrieved num-
ber changed by at most 30%, indicating a lifetime longer
than 50 ms. Longer hold times were not explored in the cur-
rent setup. To rule out alternate trapping mechanisms, we
performed some experimental runs under identical param-
eters except with no light in the HCT, and found that no
atoms are recovered, indicating that the atoms indeed are
loaded into and retrieved from the HCT.

The initial and final cloud sizes were similar, implying
similar temperatures before and after the transfer. This tem-
perature may be estimated at a few microkelvins by assum-
ing evaporation continually occurs in the finite-depth optical
trap, leading to temperatures at a fraction of the trap depth.

IV. DISCUSSION

Our experimental scheme for transferring atoms between
the two traps was guided by the concept of adiabatic transfer
in a double-well potential, where the atoms always occupy
the deeper well. Our results are consistent with this picture.
We do not know whether the transfer of atoms involves tun-
neling, spilling over the barrier, or sloshing. This reflects that
the potential between the two traps is likely to be affected by
spurious modes traveling along the fiber surface or in the
cladding and interfering with the light in the core. In fact, we
frequently observed light coupled into the cladding leading
to distortions in the mode after the fiber. Without proper
alignment, the cladding modes prevented atoms from being
loaded into the fiber or trapped atoms in local maxima out-
side the fiber. The successful transfer was possible only with
great care in coupling to minimize light in the cladding
modes. In the future, a coupling lens inside the vacuum

PHYSICAL REVIEW A 78, 033429 (2008)

could replace the final lens (which was 10 cm away from the
fiber), resulting in more controlled and stable coupling of
light. We do not try to describe the exact dynamics of the
transfer without better knowledge of the potential between
the two wells.

Observation of the atoms inside the fiber would reveal the
dynamics of the loading and trapping process. Although the
fiber is transparent to resonant light, absorption imaging
from the side was not possible due to severe scattering and
refraction. However, resonant light could be propagated
along the core mode to provide information on the integrated
density of atoms inside the fiber.

We were unable to observe atoms being guided com-
pletely through the fiber, probably because of low atom den-
sity and the lack of an appropriate trap in which to collect
them after the fiber. It may turn out to be difficult to control
the light intensity along the fiber core sufficiently to avoid
undesirable accelerations of the atoms, to localize them in-
side the fiber, or to propagate them through the fiber in a
controlled way. In this case, it may be advantageous to use
the fiber mode for strong transverse confinement but add
magnetic confinement for the axial direction. This could be
accomplished with a quadrupole trap, where, by changing
the balance of currents in anti-Helmholtz coils, the axial
minimum could be swept across the fiber to controllably
propagate the atomic cloud. With this setup, one could obtain
detailed information on atom lifetime at different positions
within the fiber. Originally, we had the intention to take more
quantitative data with such an improved setup, but the pri-
orities of the laboratory changed. Therefore, we have pre-
sented our qualitative results in this paper.

In conclusion, we have shown that optical dipole traps are
well suited to load ultracold atoms into a hollow-core pho-
tonic crystal fiber. The reported retrieval efficiency of 5% is
a lower bound for the transfer efficiency, and can probably
be substantially increased with an improved setup.
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Interference of Bose-Einstein condensates split with an atom chip
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We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into
two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly
confining direction into a purely magnetic double-well potential. We observed the matter wave interference
pattern formed upon releasing the condensates from the microtraps. The intrinsic features of the quartic
potential at the merge point, such as zero trap frequency and extremely high field-sensitivity, caused random
variations of the relative phase between the two split condensates. Moreover, the perturbation from the abrupt
change of the trapping potential during the splitting was observed to induce vortices.

DOI: 10.1 103/PhysRevA.72.021604

Coherent manipulation of matter waves is the ultimate
goal of atom optics, and diverse atom optical elements have
been developed such as mirrors, beamsplitters, gratings, and
waveguides. An atom chip integrates these elements on a
microfabricated device allowing precise and stable alignment
[1-3]. Recently, this atom chip technology has been com-
bined with Bose-Einstein condensed atoms [4,5], and opened
the prospect for chip-based atom interferometers with Bose-
Einstein condensates. Despite various technical problems
[6-10], there have been advances toward that goal, such as
excitationless propagation in a waveguide [6] and demon-
stration of a Michelson interferometer involving splitting
along the axis of a single waveguide [II].

Coherent splitting of matter waves into spatially separate
atomic wave packets with a well-defined relative phase is a
prerequisite for further applications such as atom interferom-
etry and quantum information processing, and it has been
a major experimental challenge. The methods envisioned
for coherent splitting on atom chips can be divided in two
classes. One is splitting in momentum space and subse-
quently generating a spatial separation, using scattering of
atoms from a periodic optical potential [11,12]. The other is
dynamical splitting by directly deforming a single wave
packet into two spatially separated wave packets, which
can be considered as cutting off the link between two wave
packets, i.e., stopping tunneling through the barrier separat-
ing two wave packets. Splitting in momentum space has
led to remarkably clean interferometric measurements
when the atoms were allowed to propagate freely after
splitting, but it has been pointed out that momentum splitting
of confined atoms (e.g., inside a waveguide) is problematic
due to spatially dependent phase shifts induced by atom-
atom interactions during separation [11,13]. Dynamical
splitting in real space instead is perfectly compatible with

*URL: http://cua.mit.edu/ketterlegroup/

PACS number(s): 03.75.Dg, 03.75.Kk, 39.20.+q

keeping atoms confined, a feature beneficial to the versatility
of interferometers. There has been a theoretical debate
concerning the adiabatic condition for coherent dynamical
splitting [14-17]. In our recent experiment with an optical
double-well potential, we demonstrated that it is possible to
dynamically split a condensate into two parts in a coherent
way [18].

In this work, we studied the dynamical splitting of con-
densates in a purely magnetic double-well potential on an
atom chip. We developed an atom chip to generate a
symmetric double-well potential and succeeded in observing
the matter wave interference of two split condensates, from
which the coherence of the splitting process was investi-
gated. We found that the mechanical perturbations during
splitting are violent enough to generate vortices in conden-
sates. We discuss the adiabatic condition of the splitting
process.

A magnetic double-well potential was realized with
an atom chip using a two-wire scheme [19]. The experimen-
tal setup of the atom chip is shown in Fig. 1. When two
chip wires have currents, Ic, in the -y direction and
the external magnetic field, B,, is applied in the +x direction,
two lines of local minima in the magnetic field are generated
above the chip surface. Each local minimum has a quadruple
field configuration in the xz plane, and with an additional
nonzero magnetic field in the axial direction (y-direction),
two loffe-Pritchard magnetic traps can be formed. The
relative magnitude of B, to the field from Ic determines
the direction of separation and the distance of the two
traps. The atom chip was set to face downward and the
two traps are vertically (horizontally) separated when

<Bx)(B,> B {)). Br)=poIC/Td is the critical field
magnitude for merging two magnetic harmonic potentials to
form a single quartic potential, where d is the distance
between the two chip wires and so is the permeability of
the vacuum. The merge point is located at the middle of
the two wires and d/2 away from the chip surface. In our
experiment, d=300 pcsm; thus, the splitting happened

1050-2947/2005/72(2)/021604(4)/$23.00 021604-1 @2005 The American Physical Society
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FIG. 1. (Color online) Schematic diagram of the atom chip. A
magnetic double-well potential was created by two chip wires with
a current Ic in conjunction with an external magnetic field. The
distance between the two chip wires was 300 pm. A pair of external
wires with 1B provided the axial confinement along the y direction,
and another pair of external wires with IT were used for reducing
the antisymmetry effect. (For details, see text.) Gravity was in the
+z direction.

more than 200 pm away from the chip wires to avoid del-
eterious surface effects [6-10]. The chip wires of 12 pm
height and 50 pm width were electroplated with Au on a
thermally oxidized Si substrate with a 2-pum-thick Au evapo-
rated film. The chip was glued on an Al block for heat dis-
sipation [20] and the current capacity was 5 A in a continu-
ous mode.

The axial trapping potential was carefully designed to
ensure that condensates split perpendicular to the axial
direction and stay in the same axial position. The two
wells have opposite responses to B.: positive B. makes
the left (right) well move upward (downward). If B. changes
along the axial direction, the two wells are no longer parallel
and the gravitational force would cause an axial displace-
ment of the two split condensates. When endcap wires
are placed only on the chip surface as in our previous
work [21], a nonzero field gradient B/0y inevitably accom-
panies a field curvature 62BJdy2 for the axial confinement,
i.e., B. changes from positive to negative along the axial
direction. In order to provide the axial confinement and at
the same time minimize dB/ dy, we placed two pairs of
external wires 1.5 mm above and 4 mm below the chip
surface. This three-dimensional design of axial confinement
was necessary for obtaining the interference signal of two
split condensates. Moreover, maintaining the geometric sym-
metry of two wells will be crucial for longer coherence time
after splitting [18].

The splitting process was demonstrated with the experi-
mental procedures described in Fig. 2. Bose-Einstein con-
densates of IF= I,mF=- ) 23Na atoms were transferred and
loaded in a magnetic trap generated by the atom chip
[6,21,22]. Experimental parameters were Ic= 1.8 A, BxO
=24 G, By= 1 G, and the axial trap frequency f,= 13 Hz.
Condensates were first loaded in the bottom well, 500 pm
away from the chip surface, brought up to 30 pm below the
merge point in 1 s, and held there for 2 s to damp out exci-
tations. The long-living axial dipole excitation induced in the
transfer phase was damped by applying a repulsive potential
wall at the one end of the condensates with a blue-detuned

FIG. 2. Splitting of condensates. (a) Condensates were initially
loaded and prepared in the bottom well and (b) split into two parts
by increasing the external magnetic field, B,. For clarity, two con-
densates were split by 80 pm. The dash line indicates the chip
surface position. The currents in the chip wires flow into the page
and B, is parallel to the wire separation. Two condensates were
released from the magnetic double-well potential and the matter
wave interference pattern of two condensates formed after time-of-
flight. (c) Typical absorption image of interference fringes taken
after 22 ms time-of-flight. The fringe spacing was 14.8 pm, corre-
sponding to a condensate separation of 25.8 pm.

laser beam (532 nm)1 . The whole procedure was carried out
with a radio-frequency (rf) shield and, just before splitting,
condensates contained over 8.0 X 10 atoms without a dis-
cernible thermal population. Splitting was done by ramping
AB,=B,-BA linearly from -140 mG to 100*20 mG in
200 ms. The separation between two condensates was con-
trolled by the final value of B. The magnetic trap was then
quickly turned off within 20 ps, a duration much shorter
than the inverse of any trap frequency, preventing random
perturbations. High-contrast matter wave interference fringes
were observed after releasing the condensates and letting
them expand in time-of-flight (Fig. 2), indicating that the
splitting procedure was smooth enough to produce two con-
densates having uniform phases along their long axial axis
perpendicular to the splitting direction. In order to study the
coherence of the splitting, the relative phase of the two split
condensates was determined from the spatial phase of the
matter wave interference pattern.

The relative phase of two split condensates turned out to
be unpredictable when they were fully separated (Fig. 3).
The separation of two condensates was determined from the
spacing, X, of the interference fringes, using the formula d
=ht/mX, where h is Planck's constant, m is atomic mass, and
t is time-of-flight. The typical fringe spacing was X
~ 15 pm with t=22 ms, corresponding to d- 26 pm. Given

the precise knowledge of the fabricated wires, the full trap
parameters can be calculated. Assuming that the condensates
followed trap centers in the motional ground state, it was
found that when the barrier height was over 1.5 kHz, the

'In a perfectly symmetric double-well potential, two condensates
would oscillate in phase after splitting. Furthermore, this could be
used for developing a rotation-sensitive atom interferometer with a
guiding potential. However, the axial trap frequencies for the two
wells were found to be different by 12% due to the imperfect fab-
rication of wires.
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FIG. 3. Spatial phase of interference fringes. The separation of
two condensates was determined from the spacing of interference
fringes. Fifty repetitions of the same experiment are plotted, where
the experimental control value for the external magnetic field, B,
was fixed when the atoms were released. Three dash lines indicate
the separations of two wells with the barrier height of 1 kHz,
2 kHz, and 3 kHz, respectively.

relative phase started to be random. 2 Since the chemical po-
tential of the condensates, p= 1.4±0.2 kHz, was very close
to this barrier height, the condensates just started to lose their
coupling at this point.

Surprisingly, a phase singularity was observed in the in-
terference patterns with high visibility. The fork shape of
interference fringes represents a phase winding around a vor-
tex core [23]. This vortex interference pattern appeared more
frequently with faster splitting and further separation. An ex-
ternal perturbation can lead to internal excitations in conden-
sates. Splitting might be considered as slicing condensates in
two parts. The fact that the observed "forks" (Fig. 4) always
open towards the top implies that the slicing always occurred
in the same direction and created either vortices with positive
charge on the left side or with negative charge on the right
side. A possible vortex formation mechanism is topological
imprinting when the zero point of the magnetic field crosses
though condensates resulting in a doubly quantized vortex in
spin-1 condensates [21,22]. However, since we have never
observed the interference pattern of a doubly quantized vor-
tex, we think that this scenario is unlikely.

We now discuss how the trapping potential changes
during the splitting process (Fig. 5). When condensates split
into two wells, the trap frequency, f,, in the splitting direc-
tion vanishes and the separation of two wells abruptly in-
creases to 15 ptm with a small magnetic field change of
8B.,= 10 mG. For a single particle in a harmonic potential,
the quantity a=(1 /f)(dfx/B)(dBrIdt) accounts for the
transition probability from the ground state to the first ex-
cited state and parametrizes the external adiabaticity of the
process, neglecting the collective excitations of a condensate.
a4 I should be maintained to keep condensates staying in
the motional ground state. With dB,/dt= 1.2 G/s, a< 1 at
f,> 150 Hz, but obviously, a diverges to infinity near the
merge point and its definition no longer holds. Since the

2When the separation was less than 20 pm and two condensates
were linked, the uncertainty of the spatial phase of fringes was less
than 60*.
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(a) (b)

FIG. 4. Vortex interference. (a) An absorption image showing
the vortex interference pattern of a vortex state. The probability of
vortex generation was -8% for the experimental parameters of Fig.
3, where data points with vortices were not included. Vortex inter-
ference patterns appeared more frequently with faster splitting and
further separation. (b) Same as (a), but with lines indicating regions
with constant phase.

energy level spacing diminishes, the adiabatic condition in
the quartic potential around the merge point becomes more
stringent. The abrupt change of trapping potential will induce
mechanical perturbations of condensates. Subsequent dissi-
pation or coupling into internal excitation modes [24] would
make the relative phase of two split condensates unpredict-
able. The observed phase singularity definitely shows the
breakdown of adiabaticity.

One possible alternative to avoid passing through the
merge point is starting with two weakly linked condensates
in a double-well potential where the barrier height is lower
than the chemical potential of condensates and controlling
the coupling between two condensates with a small change
of the barrier height. This method was used to reduce the
motional perturbation in our previous work [18]. However,

0 2 4kHz
(a)

0

20 AB =0mG AB =50mG AB 100mG

-10 0 10 -10 0 10  -10 0 10

(b) (c)
300 -- 30 - separation 6
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FIG. 5. (Color online) Trapping potential during splitting. (a)
Radial cross sections of trapping potential including gravity for
AB,=O, 50, and 100 mG, where AB, is the field deviation from the
critical field magnitude Bo which is the field magnitude for forming
a single quartic trap. The origin of coordinates is the merge point
without gravity. Contour lines correspond to 0.5, 1, 1.5, and 2 kHz
above the bottom of the trap. (b) Trap frequencies in each direction.
(c) Separation of two trap centers and barrier height between two
wells.
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since the sensitivity of the trapping potential to the magnetic
field is extremely high when the trap centers are close to the
merge point, it was technically difficult to have a stable
double-well potential with a small barrier height. The life-
time of condensates measured around the merge point was
>5 s away from the merge point (AB, <-50 mG or AB,
>150 mG) and <100 ms near the merge point (0<AB,
<100 mG).3 With a barrier height of 0.5 kHz in our experi-
ment, the sensitivity of the barrier height and the condensate
separation to B, is 0.04 kHz/mG and 0.3 pm/mG, respec-
tively. SB,= I mG corresponds to 81c=7.5 X 10- A. Ex-
treme current stabilization and shielding of ambient magnetic
field fluctuations may be necessary for controlling a phase-
coherent splitting process. Another alternative for preparing
a coherent state of two spatially separated condensates is
first preparing two condensates in the ground states in

3For positions with AB,>0 ("after" splitting), the condensates
were moved to the left well without passing through the merge
point.

each well and then establishing a well-defined relative phase
with an optical method [25]. This scheme is currently under
investigation.

In conclusion, we have demonstrated the interference of
two Bose-Einstein condensates released from an atom chip.
The condensates were created by dynamical splitting of a
single condensate and could be kept confined in a magnetic
double-well potential, separated by an arbitrary distance. We
studied the coherence of the dynamical splitting process by
measuring the relative phase of two split condensates and
identified technical limitations, intrinsic to the magnetic field
geometry, that prevented coherent splitting with a predictable
phase. This study is a promising step in the route towards
atom chip interferometers and might serve as a guide for the
design of future microfabricated atom optics devices.
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