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Multipole moments of bumpy black holes
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(Received 6 August 2010; published 18 November 2010)

General relativity predicts the existence of black holes, compact objects whose spacetimes depend only

on their mass, spin, and charge in vacuum (the ‘‘no-hair’’ theorem). As various observations probe deeper

into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work

suggested that such tests can be performed by measuring whether the multipolar structure of black hole

candidates has the form that general relativity demands, and introduced a family of ‘‘bumpy black hole’’

spacetimes to be used for making these measurements. These spacetimes have generalized multipoles,

where the deviation from the Kerr metric depends on the spacetime’s ‘‘bumpiness.’’ In this paper, we show

how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean

mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen

moments. We also extend our previous results to define bumpy black holes whose current moments,

analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.

DOI: 10.1103/PhysRevD.82.104041 PACS numbers: 04.25.Nx, 04.70.Bw

I. INTRODUCTION

In many areas of physics, multipolar expansions are used
as tools for describing the shape of a distribution of matter
or energy, or for describing the behavior of a potential
function. Multipole moments are most commonly used to
describe fields whose governing equations are linear, since
the functions describing the angular behavior are typically
eigenfunctions of the angular piece of the governing
differential operator. For example, the Newtonian gravita-
tional potential� arising from a matter distribution �must
satisfy Poisson’s equation:

r2� ¼
�
4�G� ðinteriorÞ;
0 ðexteriorÞ: (1.1)

In the exterior region, we can write � as a sum over
multipolar contributions:

�ðr; �; �Þ ¼ �G
X
lm

MlmYlmð�;�Þ
rlþ1

: (1.2)

The coefficients Mlm are mass multipole moments. By
matching the expansion of � on the boundary to a similar
expansion for the interior, they can be shown to describe
the angular distribution of the mass of the source.
(Throughout this paper, we will restrict ourselves to axi-
symmetric spacetimes, for which the axial indexmmust be
zero; we ignore it in what follows.)

Using multipole moments to describe gravity in general
relativity is not as simple, thanks largely to the nonlinear
nature of the governing equations. Geroch [1] and Hansen
[2] developed a very useful multipolar description for
spacetimes of isolated, stationary, axisymmetric objects
in GR in terms of scalar multipoles. Their definition ap-
plies to spacetimes that are asymptotically flat; for such
spacetimes there is a well-defined ‘‘large r’’ limit in which

multipoles can be defined in a way that roughly accords
with our usual intuition. When one computes the Geroch-
Hansen moments of a source, one finds that its spacetime is
described by a family of mass momentsMl, very similar to
those appearing in our Newtonian expansions in Eq. (1.2),
as well as a family of currentmoments Sl. For a fluid body,
the current moments describe how the matter flow is
distributed through the compact body, much as magnetic
moments describe how electric current is distributed
through an electromagnetic source. These moments
can be conveniently combined in the complex moment
Ml ¼ Ml þ iSl.
For a generic source, the moments Ml are uncon-

strained.1 As we will discuss in more detail in Sec. II, for
a Kerr black hole the moments take a particularly simple
form:

M l ¼ MðiaÞl; (1.3)

where Ml is the lth moment, M is the total mass of the
black hole, a is its spin parameter, and we are using units
where G ¼ c ¼ 1. (We neglect the astrophysically unin-
teresting possibility of a black hole with macroscopic
charge.) This is a statement of the ‘‘no-hair’’ theorem:
the spacetime of a Kerr black hole is completely described
by its mass and spin [3].
The sharply constrained nature of the Kerr multipoles

implied by Eq. (1.3) suggests that this relation may be
useful as a test of black hole spacetimes: if the spacetime
is Kerr, then knowledge of only two moments is needed to
determine all of the others. Ryan [4] was the first to build a

1If we assume the spacetime is reflection-symmetric, then only
the even mass moments and odd spin moments can be nonzero.
In this paper, we do not restrict ourselves to reflection-symmetric
spacetimes.

PHYSICAL REVIEW D 82, 104041 (2010)

1550-7998=2010=82(10)=104041(12) 104041-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.104041


scheme to test this idea, constructing spacetimes in which
all of the moments were arbitrary. This scheme was suffi-
cient to prove the principle of the idea, but did not work
well for building spacetimes good in the strong-field re-
gime. Collins and Hughes [5] noted that, if general relati-
vity correctly describes black hole candidates, then testing
their nature amounts to trying to falsify the hypothesis that
they are Kerr black holes. They suggested formulating
black hole tests as a null experiment by examining space-
times for which

M l ¼ MðiaÞl þ �Ml; (1.4)

and using measurements to test whether �Ml ¼ 0, as it
should if they are Kerr black holes.

Collins and Hughes formulated a simple version of this
test by showing how to deform the multipoles of a non-
rotating black hole. Glampedakis and Babak [6] extended
this idea by modifying the quadrupole moment of a Kerr
black hole. Though not as generic in the form of the mo-
ment that can be modified, this significantly improved the
astrophysical relevance of this test by allowing for space-
times with angular momentum. Vigeland and Hughes [7]
then improved the Collins and Hughes construction, using
the Newman-Janis algorithm [8] to transform bumpy
Schwarzschild black holes into bumpy Kerr black holes.
Their approach allows one to vary any of the spacetime’s
mass moments, an important consideration since black
hole candidates may agree with the Kerr metric’s multi-
poles up to some lmax but differ for l > lmax.

We have chosen to focus on the Geroch-Hansen mo-
ments, as opposed to the tensor moments described by
Thorne [9], for the sake of simplicity. However, as we
discuss in Sec. II, Geroch-Hansenmoments are only defined
for spacetimes for which R�� ¼ 0. As we show in Secs. IV

and VI, when we add bumps to the Kerr metric, the space-
time is no longer vacuum in general relativity. It will turn
out that for the perturbations we have considered, the non-
vacuum nature is of sufficiently ‘‘high order’’ (in a sense
made precise in Sec. IV) that we can still define Geroch-
Hansen moments up to some order. In order to study the
multipolar structure of other kinds of perturbations to the

Kerr metric, we would need to calculate the spacetime’s
tensor moments. For example, this would facilitate analyz-
ing the ‘‘bumpiness’’ of black holes in other theories of
gravity, such as dynamical Chern-Simons extensions to
general relativity. We leave this for future work.
The purpose of this paper is twofold. First, we map the

mass perturbations described in Ref. [7] to perturbations
in the Geroch-Hansen moments �Ml. In constructing a
bumpy black hole, we work in a few different coordinate
systems, and specify the spacetime’s bumps by adding a
function which is proportional to a spherical harmonic in
one of those coordinate systems. Our goal is to demonstrate
that this choice maps in a natural way to the spacetime’s
Geroch-Hansen moments. For example, a bump which is
built from an l ¼ 2 spherical harmonic changes the even
Geroch-Hansen moments above the l ¼ 2 moment. In
principle, one could construct a change to a single
Geroch-Hansen mass moment by including multiple ap-
propriately weighted spherical harmonic terms in the
bumpy black hole spacetime.
Second, we show how one can build bumpy black

hole spacetimes for which the current moments are
modified. This expands the domain of tests that one
can perform, making it possible to test the full range
of the gravitational moments. For example, Yunes and
Pretorius [10] showed that dynamical Chern-Simons ex-
tensions to general relativity lead to a rotating black hole
solution that is not the Kerr metric; in the slow rotation
limit, the spacetime’s moments are the same as Kerr for
l < 3, but its l ¼ 4 current moment differs from the Kerr
value [11]. Having control over both a spacetime’s mass
and spin moments completes our ability to build bumpy
black holes and allows us to test the Kerr metric in great
detail. We show that the spin moment perturbations
behave similarly to the mass moment perturbations; if
we add an order l spin moment perturbation, which we
define in Secs. V and VI, we leave the spin moments
unchanged up to order l. When we allow for both mass
moment and spin moment perturbations, the bumpy Kerr
spacetime is described by three perturbation potentials
c 1, �1, and 	1:

ds2 ¼ �
�
ð1þ 2c 1Þ

�
1� 2Mr

�

�
þ 4aMr

�2
	1

�
dt2 � �1

4a2Mrsin2�

��
dtdr�

�
ð1þ 2c 1 � �1Þ 4aMrsin2�

�

þ 4	1

�ðr2 þ a2Þ2Mr

�2
þ�

�
� �

2�� 4Mr

��
dtd�þ ð1þ 2�1 � 2c 1Þ�� dr2

þ 2�1

�
1þ 2Mrðr2 þ a2Þ

��

�
asin2�drd�þ ð1þ 2�1 � 2c 1Þ�d�2 þ

�
ðr2 þ a2Þ2 � a2�sin2�

þ ð�1 � c 1Þ 8a
2M2r2sin2�

�� 2Mr
� 2c 1

�2�

�� 2Mr
þ 4aMr

�� 2Mr
	1

�
�þ 2Mrðr2 þ a2Þ

�

��
sin2�

�
d�2; (1.5)
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where � ¼ r2 þ a2cos2�, � ¼ r2 � 2Mrþ a2, and we
are using Boyer-Lindquist coordinates. In the following
sections, we will treat mass perturbations and spin pertur-
bations separately; we include the complete bumpy Kerr
metric here for completeness.

The remainder of this paper is organized as follows. In
Sec. II, we review in detail how Geroch-Hansen moments
are calculated, and demonstrate the procedure on the Kerr
spacetime. We then apply this procedure to the
Schwarzschild spacetime with mass perturbations in
Sec. III, followed by a Kerr spacetime with mass perturba-
tions in Sec. IV. Finally, we present our procedure for
perturbing the spin moments of both Schwarzschild
(Sec. V) and Kerr (Sec. VI) black holes. We conclude in
Sec. VII by discussing some directions for future work in
this problem. We adopt the following conventions in this
paper. We work in geometrized units where G ¼ c ¼ 1.
When writing tensors, we use a Greek letter to indicate a
spacetime index, and a Latin letter to indicate a spatial
index.

II. COMPUTING GEROCH-HANSEN MOMENTS

We begin our analysis by showing how to compute the
Geroch-Hansen moments for the spacetime of a compact
object. As an important example, we demonstrate the
procedure on the Kerr metric, which in Boyer-Linquist
coordinates is written

ds2 ¼ �
�
1� 2Mr

�

�
dt2 � 4aMrsin2�

�
dtd�þ �

�
dr2

þ �d�2 þ ½ðr2 þ a2Þ2 � a2�sin2�� sin
2�

�
d�2:

(2.1)

In order to compute the Geroch-Hansen moments, the
spacetime must have a timelike Killing vector and be
asymptotically flat. Let the spacetime’s Killing tensor be
K
, and let the manifold V be the 3-surface orthogonal to
this vector. The metric on V can be written

hij ¼ �gij þ KiKj; (2.2)

where � ¼ �K
K
 is the norm of K
. To calculate the
moments, we perform a conformal transformation to map
infinity onto a point �. The space is asymptotically flat if
it can be conformally mapped to a 3-space ~V which
satisfies [1]

(i) ~V ¼ V [�, where � is a single point;

(ii) ~hij ¼ �2hij is the conformal metric;

(iii) �j� ¼ 0, ~Di�j� ¼ 0, ~Di
~Dj�j� ¼ 2~hij;

where � is the conformal factor and ~Di is the derivative

operator associated with ~hij. The conformal metric has the

form [12]

ds2 ¼ dr2 þ r2d�2 þ r2sin2�e�2�ðr;�Þd�2: (2.3)

The function �ðr; �Þ parametrizes the deviation of the
conformal metric from sphericity.
In order to construct the spacetime’s Geroch-Hansen

moments, we need its Ernst potential [13] and the confor-
mal factor�. We begin with the Ernst potential, which we
build from the norm � and twist ! of K
. For the Kerr
metric, the norm is given by

� ¼ 1� 2Mr

�
: (2.4)

The twist is related to the ‘‘generalized curl’’2 of the time-
like Killing vector,

!
 ¼ 
���K
�r�K�: (2.5)

From the Bianchi identities, we can write the curl as [14]

r½
!�� ¼ �
���K
�R�

�K
�: (2.6)

For a spacetime that is vacuum in GR, the condition
R�� ¼ 0 implies that r½a!b� ¼ 0. This allows us to write

!
 ¼ r
!, where the scalar function ! is the twist of
K
. (If R�� � 0, we cannot construct the Ernst potential.

We will discuss this issue in more detail in Secs. IVand VI.)
For the Kerr spacetime, we find

! ¼ � 2Ma cos�

�
: (2.7)

We then combine the norm and twist into the complex
quantity

 ¼ �þ i! (2.8)

¼ 1� 2Mr

�
� i

2Ma cos�

�
; (2.9)

where on the second line we have specialized to Kerr. From
this, two definitions of the Ernst potential appear in the
literature: Ref. [13] defines it as

� ¼ 1þ 

1� 
; (2.10)

while [15] defines the Ernst potential as

� ¼ 1� 

1þ 
: (2.11)

These definitions are simply related to one another
(� ¼ ��1). We find the potential � to be most useful for
computing multipoles of bumpy black hole spacetimes, but
we use � to perturb a spacetime’s current multipoles.
Next, we must find the conformal factor�. We begin by

defining a new radial coordinate �R according to

2Normally, the curl of a vector is only defined in a
3-dimensional vector space; we follow the lead of Ref. [15] in
generalizing the notion of the curl here.
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r ¼ �R�1

�
1þM �RþM2 � a2

4
�R2

�
: (2.12)

The point� corresponds to �R ¼ 0. The conformal factor is
given by

� ¼ �R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� M2�a2

4
�R2Þ2 � a2 �R2sin2�

q ; (2.13)

and the conformal metric is given by

ds2 ¼ d �R2 þ �R2d�2 þ �R2sin2�d�2

�
�
1�

�
4a �R sin�

4� ðM2 � a2Þ �R2

�
2
��1

: (2.14)

This corresponds to � equal to

� ¼ 1

2
ln

�
1�

�
4a �R sin�

4� ðM2 � a2Þ �R2

�
2
�
: (2.15)

As shown by Bäckdahl and Herberthson [12], the multi-
pole moments can be computed from derivatives of a

function y, which we now describe. Begin by defining ~�,
a conformally weighted variant of the Ernst potential �,

~� ¼ ��1=2�; (2.16)

and new cylindrical coordinates ~z and ~�:

~z ¼ �R cos�; (2.17)

~� ¼ �R sin�: (2.18)

We now write the potential ~� as a function of these

variables, ~�ð~z; ~�Þ, and introduce yet another variation:

�Lð �RÞ ¼ ~�ð �R; i �RÞ: (2.19)

We need to define a few more functions related to the
metric:

�Lð �RÞ ¼ �ð �R; i �RÞ; (2.20)

�Lð �RÞ ¼ � ln

�
1� �R

R �R
0
e2�L ð �R0Þ�1

�R02 d �R0 � �RC

�
þ �Lð �RÞ;

(2.21)

where � is defined in Eq. (2.3) and C is the integration
constant. We can choose the gauge so that C ¼ 0. The
multipoles are calculated from the function

yð �RÞ ¼ e��Lð �RÞ=2�Lð �RÞ; (2.22)

with the lth multipole moment given by

M l ¼ 2ll!

ð2lÞ!
dly

d�l

���������¼0
; (2.23)

where �ð �RÞ ¼ �Re�Lð �RÞ��Lð �RÞ.

For the Kerr spacetime, the potential �L is given by

�Lð �RÞ ¼ Mð1þ ia �RÞ
ð1þ a2 �R2Þ3=4 : (2.24)

The functions �Lð �RÞ and �Lð �RÞ are given by

�Lð �RÞ ¼ 1

2
ln½1þ a2 �R2�; (2.25)

�Lð �RÞ ¼ 1

2
ln

�
1þ a2 �R2

ð1� a2 �R2Þ2
�
: (2.26)

Then the variable � is given by � ¼ �Rð1� a2 �R2Þ�1 and

yð �RÞ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 �R2

p

1� ia �R
: (2.27)

In this case, the multipoles can be written compactly as

M l ¼ MðiaÞl: (2.28)

III. PERTURBATIONS TO THE MASS MOMENTS:
SCHWARZSCHILD BACKGROUND

In this section and the following one, we apply this
procedure to compute the multipoles of bumpy black
hole spacetimes as presented in Ref. [7]. We begin with a
bumpy Schwarzschild black hole:

ds2 ¼ �ð1þ 2c 1Þ
�
1� 2M

r

�
dt2

þ ð1þ 2�1 � 2c 1Þ
�
1� 2M

r

��1
dr2

þ ð1þ 2�1 � 2c 1Þr2d�2 þ ð1� 2c 1Þr2sin2�d�2:

(3.1)

The perturbation to the mass moments is described by the
potentials c 1 and �1, with c 1 ¼ �1 ¼ 0 corresponding to
a Schwarzschild black hole. We further restrict ourselves
to perturbations for which the metric satisfies the vacuum
Einstein equations to first order; thus the potential c 1 must
satisfy Laplace’s equation:

@2c 1

@�2
þ 1

�

@c 1

@�
þ @2c 1

@z2
¼ 0; (3.2)

where the Weyl coordinates ð�; zÞ are related to
Schwarzschild coordinates by

� ¼ r sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

s
; (3.3)

z ¼ ðr�MÞ cos�: (3.4)

Because c 1 satisfies Laplace’s equation in Weyl coordi-
nates, we can take it to be a spherical harmonic times an

appropriate power of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
. Once we specify c 1, the

potential �1 is calculated by integrating a constraint
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equation involving the perturbation c 1 and the background
potentials c 0 and �0, which are given by

c 0ðr; �Þ ¼ 1

2
ln

�
1� 2M

r

�
; (3.5)

�0ðr; �Þ ¼ � 1

2
ln

�
1þ M2sin2�

r2 � 2Mr

�
: (3.6)

See Ref. [7] for further details.
The norm and twist of the timelike Killing vector field,

to first order in the perturbation, are given by

� ¼ ð1þ 2c 1Þ
�
1� 2M

r

�
; (3.7)

! ¼ 0: (3.8)

The Ernst potential is given by

� ¼ M

r�M
�

�
1�

�
M

r�M

�
2
�
c 1: (3.9)

The conformal factor becomes

� ¼ �R2

�
1�M2

4
�R2

��1ð1� �1Þ; (3.10)

and the conformal metric is

ds2 ¼ d �R2 þ �R2d�2 þ ð1� 2�1Þ �R2sin2�d�2; (3.11)

where �R has the same definition as for an unperturbed
Schwarzschild spacetime,

r ¼ �R�1

�
1þM �RþM2 �R2

4

�
: (3.12)

A. l ¼ 2 mass perturbation

Now, we calculate the perturbations to the moments for
particular choices of c 1 and �1. We begin by considering a
solution to Eq. (3.2) that has the form of an l ¼ 2 spherical
harmonic:

c l¼2
1 ð�; zÞ ¼ B2M

3

4

ffiffiffiffi
5

�

s
1

ð�2 þ z2Þ3=2
�

3z2

�2 þ z2
� 1

�
:

(3.13)

We use Eqs. (3.3) and (3.4) to write c l¼2
1 in terms of

Schwarzschild coordinates:

c l¼2
1 ðr; �Þ ¼ B2M

3

4

ffiffiffiffi
5

�

s
1

dðr; �Þ3
�
3ðr�MÞ2cos2�

dðr; �Þ2 � 1

�
;

(3.14)

where

dðr; �Þ � ðr2 � 2MrþM2cos2�Þ1=2: (3.15)

The potential �1 that corresponds to this choice of c 1 is

�1ðr; �Þ ¼ B2

ffiffiffiffi
5

�

s �ðr�MÞ
2

½c20ðrÞ þ c22ðrÞcos2��
dðr; �Þ5 � 1

�
;

(3.16)

where

c20ðrÞ ¼ 2ðr�MÞ4 � 5M2ðr�MÞ2 þ 3M4; (3.17)

c22ðrÞ ¼ 5M2ðr�MÞ2 � 3M4: (3.18)

We calculate the multipole moments for the bumpy
Schwarzschild spacetime by following the procedure laid
out in Sec. II. The first few multipole moments are listed
below:

�M0 ¼ 0; (3.19)

�M1 ¼ 0; (3.20)

�M2 ¼ � 1

2
B2M

3

ffiffiffiffi
5

�

s
; (3.21)

�M3 ¼ 0; (3.22)

�M4 ¼ 4

7
B2M

5

ffiffiffiffi
5

�

s
; (3.23)

�M5 ¼ 0: (3.24)

Thus, an l ¼ 2 mass perturbation in the Weyl sector
changes only the even Geroch-Hansen mass moments
with l � 2, and the perturbations to the moments depend
on magnitude of the perturbation B2.

B. l ¼ 3 mass perturbation

For an l ¼ 3 perturbation in the Weyl sector, the poten-
tials c 1 and �1 are given by

c l¼3
1 ðr; �Þ ¼ B3M

4

4

ffiffiffiffi
7

�

s
1

dðr; �Þ4
�
5ðr�MÞ3cos3�

dðr; �Þ3

� 3ðr�MÞ cos�
dðr; �Þ

�
; (3.25)

�l¼3
1 ðr; �Þ ¼ B3M

5

2

ffiffiffiffi
7

�

s
cos�

�
�
c30ðrÞ þ c32ðrÞcos2�þ c34ðrÞcos4�þ c36ðrÞcos6�

dðr; �Þ7
�
;

(3.26)

where

c30ðrÞ ¼ �3rðr� 2MÞ; (3.27)

c32ðrÞ ¼ 10rðr� 2MÞ þ 2M2; (3.28)
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c34ðrÞ ¼ �7rðr� 2MÞ; (3.29)

c36ðrÞ ¼ �2M2: (3.30)

The first few multipole moments are listed below:

�M0 ¼ 0; (3.31)

�M1 ¼ 0; (3.32)

�M2 ¼ 0; (3.33)

�M3 ¼ � 1

2
B3M

4

ffiffiffiffi
7

�

s
; (3.34)

�M4 ¼ 0; (3.35)

�M5 ¼ 2

3
B3M

6

ffiffiffiffi
7

�

s
: (3.36)

An l ¼ 3 mass perturbation in the Weyl sector changes
only the odd Geroch-Hansen mass moments with l � 3 by
an amount proportional to B3.

IV. PERTURBATIONS TO THE MASS MOMENTS:
KERR BACKGROUND

Now, we repeat this procedure for a bumpy Kerr black
hole with perturbed mass moments. We generate this
spacetime by applying the Newman-Janis algorithm [8]
to the bumpy Schwarzschild spacetime, yielding [7]

ds2 ¼ �ð1þ 2c 1Þ
�
1� 2Mr

�

�
dt2 � �1

4a2Mrsin2�

��
dtdr� ð1þ 2c 1 � �1Þ 4aMrsin2�

�
dtd�

þ ð1þ 2�1 � 2c 1Þ�� dr2 þ 2�1

�
1þ 2Mrðr2 þ a2Þ

��

�
asin2�drd�þ ð1þ 2�1 � 2c 1Þ�d�2

þ
�
ðr2 þ a2Þ2 � a2�sin2�þ ð�1 � c 1Þ 8a

2M2r2sin2�

�� 2Mr
� 2c 1

�2�

�� 2Mr

�
sin2�

�
d�2; (4.1)

where, as before, � ¼ r2 � 2Mrþ a2 and � ¼
r2 þ a2cos2�. This spacetime limits to the Kerr metric
when c 1 ! 0 and �1 ! 0; in the limit a ! 0, it reprodu-
ces the bumpy Schwarzschild metric.

As with the bumpy Schwarzschild case, we need to
compute the conformal factor and the Ernst potential for
the spacetime. The conformal factor is

� ¼ �R2

��
1�M2 � a2

4
�R2

�
2 � a2 �R2sin2�

��1=2ð1� �1Þ:
(4.2)

To compute the Ernst potential, we need to compute the
norm and the twist of the timelike Killing vector. The norm
is straightforward; it is given by

� ¼
�
1� 2Mr

�

�
ð1þ 2c 1Þ: (4.3)

Notice that the portion of the norm proportional to the

perturbation falls off as r�ðlþ1Þ.
The twist is much trickier. Formally, it does not exist; the

construction detailed in Ref. [7] for making a bumpy Kerr
black hole does not leave the spacetime vacuum in general
relativity. Consider, for example, the l ¼ 2 perturbation,
described in more detail below. If we compute the Einstein
tensor and enforce the Einstein equation G�� ¼ 8�T��,

we find that, in the large r limit and to leading order in a,
the spacetime has a stress-energy tensor whose only non-
vanishing components are

T�� ¼ 3

8�
aB2M

4

ffiffiffiffi
5

�

s
ð3� 5cos2�Þ cos�sin3�

r5
: (4.4)

It may be possible to generalize Geroch-Hansen moments
to nonvacuum spacetimes, but that is beyond the scope of
this paper. For our purposes, it is sufficient to say that for
the kinds of perturbations we have considered, the space-
time approaches vacuum very rapidly in the region where
we need to use the twist. In general, since the stress-energy
tensor is constructed from two derivatives of the metric, an
order l perturbation to the metric produces nonzero stress-

energy tensor which fall off as r�ðlþ3Þ. This enables us to
define the spacetime’s twist to the order necessary to define
the Geroch-Hansen moments to order lþ 1.
We divide the curl into two parts: the gradient of a scalar

function !0 plus some correction term �
:

!
 ¼ r
!
0 þ �
: (4.5)

For an order l mass perturbation, the scalar function !0 is
the same as for the unperturbed Kerr spacetime:

!0 ¼ � 2aM cos�

�
: (4.6)

The correction term �
 falls off as r�ðlþ3Þ. Since, at large r,
the portion of the norm proportional to the perturbation

falls off as r�ðlþ1Þ, the correction to the curl can be
neglected. We thus treat !0 as the spacetime’s twist.
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A. l ¼ 2 mass perturbation

We generate an l ¼ 2 mass moment perturbation on a
Kerr background by applying the Newman-Janis algorithm
to the potentials on a Schwarzschild background,
Eqs. (3.14) and (3.16). This yields

c l¼2
1 ðr; �Þ ¼ B2M

3

4

ffiffiffiffi
5

�

s
1

dðr; �; aÞ3
�
3Lðr; �; aÞ2cos2�

dðr; �; aÞ2 � 1

�
;

(4.7)

�l¼2
1 ðr; �Þ ¼ B2

ffiffiffiffi
5

�

s �
Lðr; �; aÞ

2

� ½c20ðr; aÞ þ c22ðr; aÞcos2�þ c24ðr; aÞcos4��
dðr; �; aÞ5 � 1

�
;

(4.8)

where

dðr; �; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2Mrþ ðM2 þ a2Þcos2�

q
; (4.9)

Lðr; �; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�MÞ2 þ a2cos2�

q
; (4.10)

and

c20ðr; aÞ ¼ 2ðr�MÞ4 � 5M2ðr�MÞ2 þ 3M4; (4.11)

c22ðr; aÞ ¼ 5M2ðr�MÞ2 � 3M4

þ a2½4ðr�MÞ2 � 5M2�; (4.12)

c24ðr; aÞ ¼ a2ð2a2 þ 5M2Þ: (4.13)

The Ernst potential is given by

� ¼ M

r�M� ia cos�
þ B2M

3

4

ffiffiffiffi
5

�

s
rðr� 2MÞ
ðr�MÞ2

�
�
rðr� 2MÞ � ð3r2 � 6Mrþ 2M2Þcos2�

dðr; �Þ5
�
:

(4.14)

We calculate the multipole moments following the pro-
cedure outlined in the previous sections. The changes to the
multipole moments are

�M0 ¼ 0; (4.15)

�M1 ¼ 0; (4.16)

�M2 ¼ � 1

2
B2M

3

ffiffiffiffi
5

�

s
; (4.17)

�M3 ¼ 0: (4.18)

The lowest-order multipole that is affected is the l ¼ 2
mass moment, and the change is the same as for an l ¼ 2
mass perturbation on a Schwarzschild background. The
multipole moments are well defined up to theM3 moment;
the higher-order moments are not well defined because of
the presence of a fluid that behaves in the large r limit as an
l ¼ 4 multipole.

B. l ¼ 3 mass perturbation

We generate an l ¼ 3 mass moment perturbation on a
Kerr background by applying the Newman-Janis algorithm
to the potentials on a Schwarzschild background,
Eqs. (3.25) and (3.26), which yields

c l¼3
1 ðr; �Þ ¼ B3M

4

4

ffiffiffiffi
7

�

s
1

dðr; �; aÞ4
�
5Lðr; �; aÞ3cos3�

dðr; �; aÞ3 � 3Lðr; �; aÞ cos�
dðr; �; aÞ

�
; (4.19)

�l¼3
1 ðr; �Þ ¼ B3M

5

2

ffiffiffiffi
7

�

s
cos�

�
c30ðr; aÞ þ c32ðr; aÞcos2�þ c34ðr; aÞcos4�þ c36ðr; aÞcos6�

dðr; �; aÞ7
�
; (4.20)

where

c30ðr; aÞ ¼ �3rðr� 2MÞ; (4.21)

c32ðr; aÞ ¼ 10rðr� 2MÞ þ 2M2 � 3a2; (4.22)

c34ðr; aÞ ¼ �7rðr� 2MÞ þ 10a2; (4.23)

c36ðr; aÞ ¼ �2M2 � 7a2: (4.24)

The Ernst potential is given by

� ¼ M

r�M� ia cos�
þ B3M

4

4

ffiffiffiffi
7

�

s
rðr� 2MÞ
r�M

�
�
3rðr� 2MÞ � ð5r2 � 10Mrþ 2M2Þcos2�

dðr; �Þ7
�
:

(4.25)
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The changes to the multipole moments are

�M0 ¼ 0; (4.26)

�M1 ¼ 0; (4.27)

�M2 ¼ 0; (4.28)

�M3 ¼ � 1

2
B3M

4

ffiffiffiffi
7

�

s
; (4.29)

�M4 ¼ 0: (4.30)

The perturbation changes the l ¼ 3 mass multipole, and
the change is the same as for an l ¼ 3mass perturbation on
a Schwarzschild background. The lower-order multipoles
are unchanged.

V. PERTURBATIONS TO THE SPIN MOMENTS:
SCHWARZSCHILD BACKGROUND

When we defined mass perturbations in Secs. III and IV,
we based our definition on the multipolar expansion of the
gravitational potential in Newtonian gravity. We cannot do
the same thing for spin perturbations because in Newtonian
gravity, mass currents are not a source of the gravitational
field. Instead, we create perturbations to the spin moments
by adding an imaginary perturbation to the Ernst potential
as defined in Eq. (2.10):

� ¼ �Schw þ i�1; (5.1)

where �Schw ¼ r=M� 1 is the Ernst potential for the
Schwarzschild spacetime.

When we constructed mass perturbations, we defined a
set of perturbations that are proportional to spherical
harmonic functions in the large r limit by imposing the
condition that the metric satisfy the Einstein equations to
first order. We want to define a similar set of perturbations
to the spin moments. As shown by Ernst [13], enforcing the
vacuum Einstein equations to first order gives the follow-
ing constraint equation for �1:

r2

�
@2�1

@r2

�
¼ 0: (5.2)

As discussed in Ref. [13], one class of solutions to this
equation includes the linearized Kerr spacetime; we dis-
cuss this in more detail in the appendix. We construct
bumpy black holes by considering another class of solu-
tions to Eq. (5.2). Since ð@2�1=@r

2Þ satisfies Laplace’s
equation, we can define an order l spin perturbation as
one for which ð@2�1=@r

2Þ is an order l spherical harmonic.
We can relate the perturbation to the Ernst potential to
changes in the timelike Killing vector field by inverting
Eq. (2.10):

 ¼ �� 1

�þ 1
(5.3)

¼ 1� 2M

r
þ i

2M2

r2
�1: (5.4)

The perturbation leaves the norm of the timelike Killing
vector unchanged, but it changes the twist of the timelike
Killing vector, which was formerly zero, to

! ¼ 2M2

r2
�1: (5.5)

The metric now has a nonzero gt� component, which we

denote 	1:

ds2 ¼ �
�
1� 2M

r

�
dt2 þ 2	1dtd�

þ
�
1� 2M

r

��1
dr2 þ r2d�2 þ r2sin2�d�2; (5.6)

where 	1 is related to �1 by

@

@r

�
r	1

r� 2M

�
¼ 2M2 sin�

ðr� 2MÞ2
@�1

@�
; (5.7)

@	1

@�
¼ 2M2 sin�

r

�
2�1 � r

@�1

@r

�
: (5.8)

Equations (5.7) and (5.8) overdetermine 	1; we will use
Eq. (5.7) to calculate 	1 with the boundary conditions

lim
r!1	1 ¼ 0; (5.9)

lim
r!1

@	1

@r
¼ 0: (5.10)

Once we have the perturbed metric, we can calculate the
multipole moments using the same procedure as in Sec. III.

A. l ¼ 2 spin perturbation

We define an l ¼ 2 spin perturbation by specifying a
solution to Eq. (5.2) that has the form of an l ¼ 2 spherical
harmonic:

@2�1

@r2
¼ S2M

4

ffiffiffiffi
5

�

s
1

ð�2 þ z2Þ3=2
�

3z2

�2 þ z2
� 1

�
: (5.11)

We can use Eqs. (3.3) and (3.4) to rewrite Eq. (5.11) in
terms of Schwarzschild coordinates:

@2�1

@r2
¼ S2M

4

ffiffiffiffi
5

�

s
1

dðr; �Þ3
�
3ðr�MÞ2cos2�

dðr; �Þ � 1

�
;

(5.12)

where dðr; �Þ is defined in Eq. (3.15). Integrating and
imposing the conditions @	1=@r ! 0 and 	1 ! 0 as
r ! 1 yields
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�1ðr; �Þ

¼ S2
4

ffiffiffiffi
5

�

s
½dðr; �Þ2 � ðr�MÞdðr; �Þ þM2cos2��

Mdðr; �Þ :

(5.13)

From the perturbation to �, we can calculate the perturba-
tion to the metric 	1:

	1 ¼ S2M

2

ffiffiffiffi
5

�

s
cos�

�
2dðr; �Þ

r
� r�M

dðr; �Þ �
�
1� 2M

r

��
:

(5.14)

The first few multipole moments are listed below:

�M0 ¼ 0; (5.15)

�M1 ¼ 0; (5.16)

�M2 ¼ i
1

4
S2M

3

ffiffiffiffi
5

�

s
; (5.17)

�M3 ¼ 0; (5.18)

�M4 ¼ �i
1

28
S2M

5

ffiffiffiffi
5

�

s
; (5.19)

�M5 ¼ 0: (5.20)

The l ¼ 2 spin perturbation changes the even spin mo-
ments for l � 2, but leaves the odd spin moments and all of
the mass moments unchanged.

B. l ¼ 3 spin perturbation

Consider an l ¼ 3 spin perturbation:

@2�1

@r2
¼ S3M

2

4

ffiffiffiffi
7

�

s
1

ð�2 þ z2Þ2
�

5z3

ð�2 þ z2Þ3=2

� 3z

ð�2 þ z2Þ1=2
�
: (5.21)

Then, the perturbation to the Ernst potential�1 is given by

�1 ¼ i
S3
12

ffiffiffiffi
7

�

s
cos�

�
3� ðr�MÞð3dðr; �Þ2 �M2cos2�Þ

dðr; �Þ3
�
:

(5.22)

This corresponds to a perturbation to the metric given by

	1 ¼ S3M

6

ffiffiffiffi
7

�

s ��
1� 2M

r

�

� r2ð2r� 3MÞ � 3Mrðr� 2MÞcos2�� 2M3cos4�

dðr; �Þ3

� 2r�M� 3Mcos2�

r
�: (5.23)

The first few multipole moments are listed below:

�M0 ¼ 0; (5.24)

�M1 ¼ 0; (5.25)

�M2 ¼ 0; (5.26)

�M3 ¼ i
1

12
S3M

4

ffiffiffiffi
7

�

s
; (5.27)

�M4 ¼ 0; (5.28)

�M5 ¼ �i
1

36
S3M

6

ffiffiffiffi
7

�

s
: (5.29)

The l ¼ 3 spin perturbation changes only the odd Geroch-
Hansen moments for l � 3.

VI. PERTURBATIONS TO THE SPIN MOMENTS:
KERR BACKGROUND

We generate a Kerr spacetime with perturbed spin
moments by applying the Newman-Janis algorithm to the
Schwarzschild spacetime with perturbed spin moments,
whose metric is given in Eq. (5.6). This yields

ds2 ¼ �
�
1� 2Mr

�
� 4aMr

�2
	1

�
dt2 �

�
4aMrsin2�

�

þ 4	1

�ðr2 þ a2Þ2Mr

�2
þ �

�
� �

2�� 4Mr

��
dtd�

þ �

�
dr2 þ �d�2 þ

�
ðr2 þ a2Þ2 � a2�sin2�

þ 4aMr

�� 2Mr
	1

�
�þ 2Mrðr2 þ a2Þ

�

��
sin2�

�
d�2:

(6.1)

The norm of the timelike Killing vector is

� ¼ 1� 2Mr

�
þ 4aMr

�2
	1: (6.2)

As in Sec. IV, we cannot define the twist because the
spacetime is not vacuum. For example, in the large r limit
and expanding in a, the stress-energy tensor of the Kerr
spacetimewith an l ¼ 2 spin perturbation, which we define
in the following section, has nonzero terms

MULTIPOLE MOMENTS OF BUMPY BLACK HOLES PHYSICAL REVIEW D 82, 104041 (2010)

104041-9



T�� ¼ � 39

8�
aS2M

4

ffiffiffiffi
5

�

s
cos�sin2�

r5
; (6.3)

T�� ¼ � 27

8�
aS2M

4

ffiffiffiffi
5

�

s
cos�sin4�

r5
: (6.4)

In general, an order l spin perturbation creates nonzero

terms in the stress-energy tensor that fall off like r�ðlþ3Þ.
As in Sec. IV, this allows us to define the Geroch-Hansen
moments up to order lþ 1. Unlike in the case of a mass
perturbation on a Kerr background, we will find that
the twist depends on the perturbation, so we cannot go
further in our calculation without choosing a particular
perturbation.

A. l ¼ 2 spin perturbation

We define an l ¼ 2 spin perturbation with the perturba-
tion potential

	1ðr; �Þ ¼ �S2M

2

ffiffiffiffi
5

�

s
cos�

�
M

Lðr; �; aÞ þM

� Lðr; �; aÞ þMsin2�

dðr; �; aÞ
þ Lðr; �; aÞ �M� dðr; �; aÞ

Lðr; �; aÞ þM

�
; (6.5)

where dðr; �; aÞ and Lðr; �; aÞ are defined in Eqs. (4.9) and
(4.10), respectively. Now, we need to construct the Ernst
potential. The norm of the timelike Killing vector is given
by Eq. (6.2). As discussed in Sec. IV, we can write the curl
of a nonvacuum spacetime in the form of Eq. (4.5). We
define !0 by ignoring all terms of order aS2 in the curl.
This yields

!0 ¼ � 2aM cos�

�
� S2M

2

ffiffiffiffi
5

�

s
1

r

�
�
r2 � 2Mrþ 2M2cos2�

rdðr; �Þ �
�
1�M

r

��
: (6.6)

In this case, �
 falls off like r�5, so we are justified in
treating !0 as the twist. The Ernst potential is

� ¼ M

r�M� ia cos�
þ i

S2M

4

�
ffiffiffiffi
5

�

s
rðr� 2MÞ � ðr�MÞdðr; �Þ þ 2M2cos2�

ðr�MÞ2dðr; �Þ :

(6.7)

Applying the procedure from the previous sections gives
the multipole moments:

�M0 ¼ 0; (6.8)

�M1 ¼ 0; (6.9)

�M2 ¼ i
1

4
S2M

3

ffiffiffiffi
5

�

s
; (6.10)

�M3 ¼ 0: (6.11)

The perturbation changes the l ¼ 2 spin moment by the
same amount as an l ¼ 2 spin perturbation on a
Schwarzschild background, and it leaves lower-order
moments unchanged.

B. l ¼ 3 spin perturbation

We consider an l ¼ 3 spin perturbation:

	1ðr; �Þ ¼ S3M

6

ffiffiffiffi
7

�

s �
Lðr; �; aÞ �M

Lðr; �; aÞ þM

� s30ðr; aÞ þ s32ðr; aÞcos2�þ s34ðr; aÞcos4�
dðr; �; aÞ3

� 2Lðr; �; aÞ �Mð3cos2�� 1Þ
Lðr; �; aÞ þM

�
; (6.12)

where

s30ðr; aÞ ¼ 2Lðr; �; aÞ3 þ 3rðr� 2MÞ þ 2M3; (6.13)

s32ðr; aÞ ¼ �3Mðrðr� 2MÞ � a2Þ; (6.14)

s34ðr; aÞ ¼ �2M3 � 3a2M: (6.15)

Now, we need to construct the Ernst potential. The norm
of the timelike Killing vector is given by Eq. (6.2). As
discussed in Sec. IV, we can write the curl of a nonvacuum
spacetime in the form of Eq. (4.5). We define !0 by ignor-
ing all terms of order aS3 in the curl. This yields

!0 ¼ � 2aM cos�

�
þ S3M

2

6

ffiffiffiffi
7

�

s
cos�

r2

�
�ðr�MÞð3r2 � 6rMþ 2M2cos2�Þ

dðr; �Þ3 � 3

�
:

(6.16)

In this case, �
 falls off like r�6, so we are justified in
treating !0 as the twist. The Ernst potential is

� ¼ M

r�M� ia cos�
þ i

S3M
2

12

ffiffiffiffi
7

�

s
cos�

�
3rðr� 2MÞðdðr; �Þ � rþMÞ þM2cos2�ð3dðr; �Þ � 2rþ 2MÞ

ðr�MÞ2dðr; �Þ3
�
: (6.17)
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Applying the procedure from the previous sections gives
the multipole moments:

�M0 ¼ 0; (6.18)

�M1 ¼ 0; (6.19)

�M2 ¼ 0; (6.20)

�M3 ¼ i
1

12
S3M

4

ffiffiffiffi
7

�

s
; (6.21)

�M4 ¼ 0: (6.22)

As in the case of an l ¼ 3 spin perturbation on a
Schwarzschild background, the perturbation changes the
l ¼ 3 spin moment but leaves lower-order moments
unchanged.

VII. CONCLUSION

This paper extends the formal definition of bumpy black
holes that was introduced in Refs.[5,7]. We consider two
kinds of static, axisymmetric perturbations: those that per-
turb the mass moments and those that perturb the spin
moments. The mass perturbations, as defined in Ref. [7],
correspond to pure multipoles in the Weyl sector. We map
these perturbations to changes in the Geroch-Hansen
moments and showed that an order l Weyl perturbation
changes the Geroch-Hansen mass moments above Ml but
leaves the lower-order moments unchanged. We introduce
bumps that perturb the spin moments, and we show that an
order l spin perturbation changes the Geroch-Hansen spin
moments above Ml. In principle, this allows us to build
spacetimes whose multipoles agree with those of the Kerr
spacetime up to some arbitrary order L but differ for l � L.

Now that the bumpy black hole formalism has been
developed, the next step is to use this framework to con-
struct tests of general relativity. As discussed in Ref. [7],
changes to multipolar structure of the spacetime result in
changes to the frequencies of geodesics. They also change
the images that distant observers would see when rays
are traced through the spacetime [16]. Previous work
has focused on the effect of perturbations to the mass
moments; we expect that perturbations to the current mo-
ments will produce different effects. Detailed analysis will
be needed to see if perturbed current moments also leave
an observationally important imprint. For any system in

which the relevant motions are well described by geo-
desics, at least on short time scales, this framework should
enable us to construct useful and interesting tests of the
black hole no-hair theorem.
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APPENDIX A: LINEARIZED KERR

One solution for a current-type perturbation is well
known: the linearized Kerr spacetime, i.e., Kerr expanded
to leading order in the spin parameter a. In our notation,
this spacetime is given by Eq. (5.6) with

	1 ¼ � 2aMsin2�

r
: (A1)

The purpose of this appendix is to demonstrate that the
framework we have developed includes the linearized Kerr
spacetime; however, it requires a modification to the pro-
cedure we present in Sec. V.
To begin, note that one family of solutions to Eq. (5.2)

can be written

�1 ¼ Af0ð�Þ þ Brf1ð�Þ: (A2)

Let us choose a solution with B ¼ 0 and f0 ¼ cos�. We
calculate the perturbation to the spacetime 	1 by enforcing
Eq. (5.8):

@	1

@�
¼ 4AM2 sin� cos�

r
; (A3)

which we readily integrate to obtain

	1 ¼ 2AM2sin2�

r
: (A4)

It is simple to verify that this satisfies Eq. (5.7). If we now
choose

A ¼ � a

M
; (A5)

we identify this solution as the linearized Kerr spacetime.
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