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ABSTRACT

The literature on networks suggests that the value of a network is positively affected

by the number of geographically dispersed locations it serves (the "network effect")

and the number of its users (the "production scale effect"). We show that as a result

a firm's expected time until adoption of technologies with network effects declines

in both users and locations. We provide empirical evidence on the adoption of

automated teller machines by banks that is consistent with this prediction. Using

standard duration models, we find that a bank's date of adoption is decreasing in

the number of its branches (a proxy for the number of locations and hence for the

network effect) and the value of its deposits (a proxy for number of users and hence

for production scale economies). The network effect is the larger of the two effects.
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1. Introduction

With the proliferation of information technology over the past several decades, net-

works have become increasingly important. Examples include banks' automated

teller machines, airlines' customer reservation systems, and the growing network of

facsimile machines. In such networks, the value to each individual or firm of partic-

ipating increases with network size. Network effects, and demand-side economies of

scale more generally, have been shown in theory to have implications for a variety

of important economic activities including technology adoption, predatory pricing,

and product preannouncements. 1 There have not, however, been any attempts to

test econometrically for the effects of networks on these phenomena. 2 In this pa-

per we construct and apply a test for network effects on the adoption by banks of

automated teller machines (ATMs).

For telephone systems, which are perhaps the best known example of a technol-

ogy with important network effects, there are two types of effects. First, the benefit

of the technology to an individual user increases in the number of telephones, i.e.,

in the number of locations from which the system can be accessed. This size effect

also exists, for example, in retail distribution networks where consumer benefit in-

creases in the number of outlets at which the good is available. Second, the benefit

increases in the number of people who are on the system: as the number of people

who make and receive calls increases, each individual can communicate with more

people. This second effect is the source of network externalities because each new

user confers a benefit on all other users.

In the case of ATMs the network effect is of the first type. A cardholder is

better off the larger the number of geographically dispersed ATMs from which she

can access her account. The convenience of access to one's account wherever one

happens to be means that the value of the ATM network increases in the number

of ATM locations it includes. A bank can increase its network size by adding more

ATMs to its proprietary system and by linking its network with the networks of

1 See, for example, Katz and Shapiro (1986) and Farrell and Saloner (1985,1986).
2 Several case studies have been conducted to confirm the relevance of the the-

ories. For example, David (1985) argues that demand-side economies explain the

dominance of the QWERTY typewriter keyboard.



other banks. In the early days of ATM adoption studied here, interbank networks

were quite rare for a variety of technical and institutional reasons. As a result the

value of the network to depositors was increasing in the number of ATM locations

in their bank's network.

Because differences in banks' post-adoption network size would generate dif-

ferent valuations to their depositors, the value of adopting an ATM system would

be higher for banks expecting to have larger proprietary networks in equilibrium,

all else equal. Because new technologies diffuse gradually through an industry, it

is common and reasonable to expect those firms that value the technology more to

adopt earlier. If either the cost of adopting an ATM network of a given size falls over

time (because banks and/or suppliers have a learning curve) or the benefit rises over

time (because depositors learn about the value of ATMs or ATMs perform more

functions), then banks with a relatively higher valuation of the technology at any

point in time will adopt relatively early.

A reasonable version of the network effects hypothesis, therefore, is that banks

expecting to have a larger number of locations in equilibrium will adopt sooner. To

test this hypothesis we proxy unobservable expected network size by the number of

branches a bank has. Branches are a good proxy for expected network size because

they are the most common location for ATMs, they are the lowest-cost locations,

and because legal restrictions limited placement outside branches during the sample

period. Further, commentary in the trade press and casual empiricism suggest that

banks eventually place ATMS in most, if not all, branches. Accordingly we focus

on the likelihood that banks adopt as a function of the number of branches they

have.

The net value of an ATM system to a bank also will be affected by the number

of its depositors to whom ATMs are valuable. Because there are fixed costs of

adoption, economies of scale in production mean that a bank's propensity to adopt

will increase in the number of these depositors. Indeed, earlier studies of ATM
adoption by Hannan and McDowell (1984, 1987) find that bank size, as measured

by total assets, is an important determinant of time of adoption. We confirm

these results by including a measure of size more directly related to the number of

depositors. By including measures of both network size and number of depositors



we are able to separate the network effect from the scale economies effect.

Controlling for variation in the number of depositors and other heterogeneity,

we find that increasing network size increases the probability of early adoption.

When evaluated at the sample mean, the estimated probability that a bank would

have adopted in the first nine years ATMs were available is 17.1 percent. Adding

a single branch increases this probability by at least 5.7 percent (to 18.1 percent)

and perhaps by as much as 10 percent. In comparison, adding enough depositors

to equal an average sized branch increases the adoption probability by 4.3 percent.

The strong network effect is robust to specification and to removing large outliers.

In section 2, we discuss the determinants of ATM adoption and develop a test

for network effects. In Section 3 we briefly discuss the statistical models used. The

data used to implement these models are discussed in Section 4, and in Section 5

we present our results. Section 6 provides some concluding comments.

2. Network Effects and ATM Adoption

In this section we develop a framework for considering a bank's adoption decision.

While this discussion does not identify structural parameters, it does provide insight

into the relationship between network size and a bank's propensity to adopt ATMs

that guides the empirical analysis. In particular, we focus on distinguishing the

effect of network size from the effect of the number of end-users.

In our context, end-users are the bank's depositors and the relevant measure

of network size is the number of physical locations at which any given depositor

can carry out a transaction. While each user is largely unaffected by the number of

other users of the same network, each user is better off the greater the number of

outlets from which she can access the network. Feasible locations for ATMs include

the bank's branches and may also include some non-branch locations.
3 To simplify

the analysis and be consistent with the data available for empirical work, we assume

that if a bank decides to adopt ATMs it will be optimal for it to install ATMs in

all feasible locations and make the system accessible to all its depositors.

3 As discussed in a subsequent section, placing ATMs outside of existing branches

is constrained by regulatory agencies.



We start with banks endowed with a set of characteristics including its depos-

itors and feasible ATM locations. Throughout the analysis, we treat these charac-

teristics as predetermined, focusing on the adoption decision conditional on bank

characteristics. With the number of depositors and potential network size prede-

termined, a bank decides whether to adopt an ATM system of a fixed size to serve

a fixed number of depositors and, if so, when.

The bank's decision, depends on the flow of benefits and costs from adoption.

We begin by considering the "benefit side", and in particular, the benefits to an

individual user. In the theoretical literature on network effects, an end-user's per

period benefits are frequently represented by a + b(N), where a represents the

"stand-alone" benefit from the technology and b(N) represents the network effect.
4

The "stand-alone" or "network independent" component of the user's benefit is that

which the user obtains regardless of the size of the network. Thus, a might represent

the utility that a depositor receives from having an ATM installed at the branch she

"usually" uses: the depositor may get superior service simply by substituting the

automated teller for the human one during normal business hours, and will be able

to lengthen the period during which she can transact at that branch by substituting

an after-hours ATM for a daytime teller.

The network effect term, b(N), increases in N which measures the size of the

network (JV > 1). The variable N then represents the number of other locations

from which a depositor is able to access her account from an ATM. If those ATMs are

located at existing branches the benefits they provide are of two kinds. First, they

provide the benefits discussed above of substituting machines for tellers and after-

hours use for daytime use. Second, by standardizing depositor identification and

account access procedures the existence of an ATM in branches other than the one

at which the user has an account may make it easier for the user to transact at those

branches. If the ATMs are not located at existing branches, they effectively increase

the number of branches (for the subset of transactions that can be performed by an

ATM). 5

4 See Farrell and Saloner (1986) for example.
5

In this setting a probably depends on N. The value of having an ATM at one's

"usual" branch might be lower if the network of ATMs is larger. However, it is useful



The aggregate per period value of the ATM network to a bank's depositors if

there are n of them is n[a + b(N)]. In general one might expect the per period

benefits to increase with calendar time as the number of services which ATMs

provide increase. In what follows we suppose that benefits have growth factor g,

where g > 1. The flow of benefits that the bank's users derive from an ATM during

period t is therefore [a + ^N^g*. Assuming that the per-period increase in revenues

to the bank is proportional to the per-period benefits to the depositors (in particular

if the bank's revenues are A times the benefit to depositors where A < 1), then the

present value of the bank's revenues (evaluated at time T) from adopting an ATM
at time T are:

oo

J]An[a + 6(iV)]^T+t (1)

<=o

where 8 is the discount factor. Note that these benefits are increasing in both n

and N. 6

We turn now to the "cost" side of the analysis. In making its adoption decision,

the bank must consider both variable and fixed costs. The variable costs are mainly

supplies (such as film) that are incurred with each transaction. Because we assume

that each depositor makes the same number of transactions, the variable costs

are proportional to the number of depositors. For simplicity, we assume that the

variable costs are incorporated in A so that \n[a + b(N)]g l represents the benefit

net of variable cost in period < to a bank that has adopted an ATM.

The fixed costs include the cost of making alterations to branches to accom-

modate ATMs, expenses related to adapting the bank's computer software to the

ATMs, the cost of purchasing or leasing the ATMs themselves, the cost of service

to maintain the distinction between stand-alone effects and the network effect of

additional locations in what follows. For simplicity we suppress the dependence of

a on N in the notation. If this effect is important it will reduce the network effect

measured in the empirical work.
6 For reasons discussed at length later (principally that banks did not share

ATM networks in the 1970s), we assume that bank A's depositors are unable to use

bank B's ATMs. Therefore N represents only the bank's own ATM locations. If

such networks were shared and if a bank thereby obtained some benefits from the

adoption of ATMs by other banks, there might be an externality in banks' adoption

decisions. In our case, where each bank's network benefits are independent of other

banks' actions, no externality is involved. Hence the term "network effect".



and the cost of marketing. Many of these costs, such as the cost of purchasing

or leasing ATMs or of installing them, depend on N. Others, such as software or

marketing costs, are "system costs" and are arguably independent of N. We de-

note the present value of the cost of adopting an ATM system in N locations at

time T as C(N,T) = S(T) + JVc(T), where S(T) represents the system costs and

c(T) represents the cost per location. A typical assumption in the literature on

the adoption of technology, and one which we make as well, is that the fixed cost

of adopting the technology, C(N,T), declines over time as the suppliers' and/or

the banks' experience with the technology accumulates. The net present value of a

bank's profits from adopting ATMs at time T is therefore:

oo

II = ^ A«[a + b(N)]6 t

g
T+t - C(N, T).

<=o

A bank with n depositors and N locations earns higher profits from adopting

at time T than from waiting until time T + 1 if:

A*
T

f + «*>' - C(N,T) > if**'*
1

*? KN)] - C(N,T + 1)),
1 — og V 1 — Og t

Anto +W-^,,^
1 - og

i.e., if Xn[a + b(N)]g
T > C(N,T) - 6C(N,T + 1). (2)

The assumptions that variable profits grow and the cost of adoption declines over

time implies that every bank eventually finds it profitable to adopt ATMs. This

allows us to focus on when, rather than whether, adoption takes place. Provided

the rate of decline of the cost of adopting decreases over time, the smallest T that

satisfies Equation (2) is the optimal time to adopt. 7

There are two interesting polar cases of Equation (2). The first is where

C(N, T) is constant over time so that growth is the only factor in the timing of

adoption. In that case Equation (2) reduces to:

Xn[a + b(N)]gT

1-8 > C(N),

7 A similar model of the optimal adoption time (but without network effects) is

contained in David and Olsen (1986).



i.e., the bank adopts as soon as the net present value of variable profits assuming no

further growth exceeds the cost of adoption. Since costs do not decline with time in

this case there is no point to waiting: future per-period profits will be higher than

today's, and if adoption would be profitable with a stream of profits equal to this

period's, the bank should adopt.

The second polar case is where there is no growth (g = 1) and the only temporal

effect is the declining cost of adoption over time. Then Equation (2) becomes

\n[a + b(N)] > C(N,T) - SC(N,T + 1). The right-hand-side of this expression is

the cost-saving from delaying adoption by one period, and the bank adopts as soon

as that cost saving is less than the (constant) per-period variable profit.

The general case (Equation (2)) is a combination of these two effects. The

bank adopts when the per-period variable profits exceed the cost-saving of waiting

an additional period. Each period adoption becomes more tempting both because

per-period variable profits are higher and because the cost of adoption is lower.

In this model n enters on the left-hand-side of (2) only, i.e., it increases the

benefits (net of variable costs) and does not affect fixed costs. As is apparent by

dividing (2) by n, the bank's net benefit per depositor is constant, but total costs

decline in n; there are production side economies of scale in ATM systems. As a

result of these scale economies, the bank's profit from an ATM system is increasing

in n. Therefore, adoption occurs earlier the larger the number of depositors.

In the empirical work, we are interested primarily in testing for a network

effect and assessing its magnitude. This requires separating the effect of variation

in network size from the effect of variation in number of depositors. One simple test

for network effects is to estimate the effect of variation in N holding n constant.

However correctly interpreting the result is complicated by the cost-side effects.

The overall effect of N on the timing of adoption is ambiguous since it affects

both the left- and right-hand-sides of (2). The left-hand-side of (2) is increasing

in N because of the network effect. However, the right-hand-side also increases

8 The assumption that fixed costs are not a function of n is violated if usage levels

vary across locations, particularly if banks respond to usage variation by varying

the number of ATMs across locations. Multiple ATMs per location was perhaps

less common in the early days of ATM adoption studied here than it is now. If fixed

costs increase in n, the sign of the overall effect of n is, in principle, ambiguous.

8



with N. To see this recall that C(N,T) = S(T) + Nc(T), so that the right-hand-

side of (2) is [S(T) - S(T + 1)] + N[c(T) - c(T + 1)]. Two banks with different

numbers of locations enjoy the same benefits in terms of reduction in the system

costs if they wait; however the bank with more locations reaps the reduction in

the location specific costs at more locations. Thus, holding n constant, banks with

more locations will adopt earlier only if the network effect outweighs this cost effect.

Consequently a test that measures the effect of N on adoption propensities, holding

n constant, is immune to false positives, but will tend to understate the network

effect and may yield a false negative.

An alternative way to get at the network effect is to hold n/N = v constant

rather than n, that is, to hold constant the number of depositors per location and

increase the number of locations. Dividing (2) by n gives:

M„

+

KN)] > md-^+di +
[cm-^T+i^

n v

Holding v constant removes the downward bias from the additional location-specific

cost. However, because increasing N while holding v constant adds both a location

and v depositors to the network, an upward bias is introduced. The term involving

S is now decreasing in n because system costs are spread over more depositors.

Thus if banks with more locations (holding v constant) are found to have a higher

propensity to adopt this could simply be due to increasing returns to scale in system

costs and not due to the network effect. This test, then, will overstate the network

effect and can yield false positives but not false negatives.

In summary, examining the propensity to adopt holding n constant understates

the impact of the network effect, while holding n/N constant overstates it. As

described in Section 5, we test for the presence of a network effect by holding n

constant, then use these two assessments to bound the magnitude of the impact of

the network effect. The size of the network effect will be closer to the upper bound

estimate if location-specific costs are more important than system costs.

We have assumed thus far that there is no variation in the valuation of an ATM
network among banks with the same number of depositors and ATM locations. In

practice, however, this is unlikely to be the case. For example, some banks might

face higher labor costs so that substituting ATMs for tellers is more attractive.



Alternatively, the benefits of after-hour banking might be greater for some banks,

such as those situated in the suburbs, than for others. In this case, among the

banks with a given number of depositors and locations, the banks for whom such

idiosyncratic benefits are the greatest will adopt earliest while the others wait.

To take account of such differences among banks, let e t
- (E(ei) — 0) represent

the deviation of the per period profits of bank i from the mean profit of banks with

the same number of depositors and locations. In this case the net present value of

a bank's profit from adopting at time T is:

and Equation (2) becomes:

e, > C(N, T) - SC(N, T + 1) - \n[a + b(N)]gT
, (3)

i.e., banks with idiosyncratically large net benefits adopt early while others wait.

The smallest T
;
= T(n, N, e;) that satisfies (3) is the optimal adoption date for the

ith bank.

In general the rate of adoption may change over time. This depends on how

the cost or benefits of adoption change over time and on how e; is distributed. To

see this, use Equation (3) to define:

e*i(n, N, T) = C{N, T) - 6C(N, T + 1) - Xn[a + b(N)]gT . (4)

Then e*(n,N,T) is the e; of the bank with n depositor and N locations that is just

indifferent between adopting and not adopting at time T. Then the probability that

a bank with n depositors and N locations adopts in period T (i.e., the hazard rate

at period T) is:

H[e*(n,N,T + l)]-H[e*(n,N,T)}

l-H[e*(n,N,T)}
' l

°
J

where H(-) is the cumulative distribution function for e. If, as assumed above,

the benefits of adopting relative to costs increase over time, the right-hand-side

of equation (4) decreases with T. Therefore even if e is uniformly distributed so

that the numerator of (5) is constant over time, the denominator declines in T. As

10



a result, more banks find it profitable to adopt each period than did the period

before. Moreover, if e, is normally distributed, say, then in the early periods when

the Normal density is an increasing function even more banks find it profitable to

adopt each period than the period before so that this tendency is reinforced. For

both of these reasons we expect to find positive duration dependence in the hazard

rate.

3. Estimation Models

Equation (4) implies that adoption time, conditional on a bank's observable charac-

teristics, is a random variable. The choice of an estimation model involves choosing

a distribution for adoption dates. In addition, because our observations of adoption

times are right-censored, the estimation model must accommodate censoring. The

strategy we follow is to estimate standard duration models. These models easily

incorporate censored observations and yield readily interpretable reduced form pa-

rameters. 9 The duration model which is the main focus of our analysis assumes

that the time until adoption for bank i conditional on its characteristics follows a

Weibull distribution. Let Xi be the vector of observed characteristics for bank i and

/? be the unknown coefficients. Then the probability that bank i adopts before time

T is given by:

For convenience, we make the standard assumption that ip^x'^) can be written as

An attractive feature of the Weibull distribution is that the computation of

the effects of the covariates on adoption probabilities from parameter estimates is

relatively simple. The hazard rate is (l/f)ip(x'
i
(3)t

1 ~ 1 /~t
. Under the assumption

that ^(x'jP) — e
x <P, the estimated coefficients are simply the effect of x on the log

of the hazard rate. The Weibull distribution allows the hazard rate for a given

bank to change monotonically over time. This probability increases, declines, or is

9 For a discussion of duration models in general, see Kiefer (1988), and for an
overview of applying these techniques to technology diffusion, see Rose and Joskow
(1990).

11



constant as 7 is less than, greater than, or equal to one. 10 For reasons discussed in

Section 2, we expect to find 7 < 1.

The Weibull, however, constrains the hazard rate in two potentially important

ways. First, it requires that duration dependence be monotonic. A standard em-

pirical regularity in diffusion studies is an initially increasing then declining hazard

rate. Since we have data on only the early years of the diffusion process for ATMs,

it seems likely that a functional form that allows a monotonically increasing rate

will be adequate. Nonetheless, a more general functional form is a useful check on

the Weibull results. Second, the Weibull (in common with the other members of

the family of proportional hazard models) constrains the relative hazard rates of

any two banks to be constant over time. For example, the ratio of the hazard rate

of a bank with many depositors and many locations to the hazard rate of a bank

with many depositors and one location is assumed to be time invariant. Suppose,

however, that the date of adoption conditional on bank characteristics is Normally

distributed. Then this ratio might be relatively large early on and decline over

time. This could happen because, with a Normal distribution, the density func-

tion of the many-location bank can be declining while the density function for the

single-location bank is increasing.

To test the results for sensitivity to the constraints imposed by the Weibull,

we estimate a duration model in which the underlying adoption date distribution

is assumed to be log-logistic. The log-logistic distribution allows a non-monotonic

hazard rate and allows relative hazard rates to change over time. It approximates

a model in which the log of adoption dates is Normally distributed. For the log-

logistic, the probability that bank i has an adoption date earlier than T is given

by:

1_
Ii + ti/7^(x;/?)J'

10 The Weibull is a generalization of the exponential distribution used in the

Hannan and McDowell (1984, 1987) analysis. It collapses to the exponential when
7 = 1. Although they assume a time invariant underlying hazard rate, Hannan
and McDowell use time varying covariates so that the hazard rate can change as

bank characteristics change over time. We have chosen an alternative approach of

allowing the hazard rate to be a function of t directly and using each bank's 1971

characteristics. With this approach, bank characteristics are necessarily exogenous.

12



where we assume again that i/>(x'
t
(3) = exp(x[/3). The hazard rate is

l + ^lx'ipph

For 7 less than 1, this functional form has an underlying hazard function that

initially increases and then decreases over time. If 7 is greater than or equal to one,

the underlying hazard function has negative duration dependence.

For both distributions, the likelihood function for observations on m banks is:

m

Y[f(x'ip,T, 7)

d<[l-F(x'
i
p,Tn)]

1- di

where d is an indicator variable equal to one if the firm adopts and /(•) (F(-)) is the

density function (cumulative distribution function) for the Weibull or log-logistic

distribution. The first term is the contribution to the likelihood of a firm observed

to adopt at time T; the second term is the contribution of a firm failing to adopt

prior to time T after which it is no longer observed.

Both these models assume a distribution for adoption times conditional on

bank characteristics. If these parameterizations fit the data badly, the coefficient

estimates may be adversely affected. We therefore compare these parametric es-

timates to results from a nonparametric (Cox) partial-likelihood estimator. This

estimator makes no assumption about the underlying distribution of adoption times,

but instead uses the proportional hazard model assumption that the ratios of hazard

rates for any two banks are time invariant and estimates the relative probabilities.

4. Data

Testing the hypothesis that network size matters given the number of depositors

requires variables that capture network size, number of depositors, and date of

adoption. This section describes these variables as well as variables used to control

for other bank characteristics that might affect adoption probabilities and be cor-

related with the variables of interest. Descriptive statistics for the variables used in

the analysis appear in Table 1.

The data base includes information on adoption dates, bank characteristics and

state regulations. Because adoption is presumptively more likely in urban areas,

13



the sample was restricted to commercial banks operating in a county that was part

of an SMSA or had a population center of at least 25,000 in 1972. This subset of

all commercial banks in operation between 1971 and 1979 was further restricted to

conform to the available adoption data and to capture variation in network size. The

final sample includes all commercial banks that satisfied the geographic criterion in

1971 and that existed throughout the 1971-1979 sample period.

The adoption data come from surveys of all commercial banks conducted by

the Federal Deposit Insurance Corporation in 1976 and 1979. The 1976 survey asks

the year the bank first installed at least one ATM. The 1979 survey asks whether

the bank has installed an ATM by the 1979 sample date. Combining these surveys

gives a date of first adoption for banks adopting prior to 1977 and identifies banks

adopting between 1976 and 1979. Year of adoption for these later adopters was

collected by a supplementary survey conducted by Hannan and McDowell (1987).
n

The date of adoption is the year the bank first installed at least one ATM. Because

the surveys cover only banks existing at the survey dates, consistency requires that

our sample be restricted to banks existing in 1976 and 1979. Since we use 1971

characteristics data, the sample also is restricted to banks in existence by 1971.

The adoption data were merged with data on firm characteristics maintained

by the Federal Reserve Board in the Report of Condition and Income and the Sum-

mary of Deposits. These sources have detailed balance sheet and other summary

information on all commercial banks operating in the United States. In particular,

they contain the best available information on number of depositors and network

size as well as information used to control for other dimensions of bank heterogene-

ity.

In the 1990s ATMs are commonly linked in regional and national networks.

For at least some ATM transactions then, the relevant network size is now the size

of the interbank network. In the 1970s, however, interbank connections were un-

11 The raw survey data and the supplementary information on later adopters were

generously given to us by Hannan and McDowell. Our sample has been constructed

to be roughly consistent with theirs. Despite their efforts, adoption dates are not

available for 87 banks known to have adopted and otherwise consistent with the

sample definition. Except where otherwise noted, these banks have been dropped
from the sample.

14



common. Many of the early machines were independent units; they were not fully

connected with the bank's data system, let alone an interbank system. Further,

in the early seventies ATM producers had not yet achieved a technological stan-

dard that would make machines compatible. Legal issues with respect to shared

ATMs also slowed the development of interbank networks. Interstate banking was

not permitted in this period and many state's regulated the number and location

of bank branches. Allowing interbank networks would clearly affect the existing

regulatory regimes, and sharing was delayed while regulators decided how it should

be managed. State and federal rulings on interbank networks have reflected both

a concern that large, single bank systems might reinforce the market dominance

of banks already large and a countervailing concern that cooperative arrangements

among banks might create collusive pricing.
12 The combination of potential or ac-

tual legal constraints and the rudimentary state of the new technology meant that

interbank networks were not important in the 1970s. As a result, the network size

relevant to a cardholder was the size of her bank's proprietary network. 13

For these single bank networks, the relevant network size is the number of ATM
locations the firm expected to have in equilibrium when making the adoption deci-

sion. This number, however, is inherently unobservable. Even if the data reported

the number of ATM locations for each bank in each year, these numbers would not

necessarily include the planned equilibrium number. 14 We therefore use the number

of branches a bank has (BRANCH) as a proxy for expected network size. BRANCH

12 For a review of the law on interbank networks, see Felgran (1984).
13

If banks anticipated that ATM networks would ultimately be interlinked, this

would of course affect their estimates of the net present value of benefits in Equation

(1). However, provided that in the 1970s banks believed that such interlinking

would not occur until the 1980s, such benefits would be irrelevant to the timing

of adoption decision represented by Equation (2). However the analysis in Section

2 ignores possible competitive advantages that might accrue to banks that adopt

early. For example, if firms that pioneer interbank networks are able to extract some
of the rents from the creation of such networks, and if banks with many branches

who adopt early are well-positioned in the competition to form interbank networks,

those banks would have an added incentive to adopt early. We hope to consider

such competitive incentives to adopt, which are largely ignored in this paper, in

future work.
14 In fact, the data do not report the number of ATM locations. Nor is the number

of ATMs installed systematically available.
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is an excellent proxy if banks typically place at least one ATM in each branch and

place relatively few or no ATMs elsewhere.

Banks tend to place ATMs in branches for several reasons. Installing and

maintaining ATMs on the premises of existing branches may be less expensive than

at off-premise locations. Consumers also may - at least in the early days of ATM use

covered in this study - have felt more comfortable using machines located where

they could get assistance with usage problems. Further, the legal status of off-

premise placement was unresolved for a substantial portion of the sample period.

State regulatory agencies and legislatures control whether off-premise placement

is allowed for state chartered banks. For national banks, off-premise placement is

controlled by the Comptroller of the Currency. In 1979, the Comptroller ruled that

off-premise placement by national banks would be allowed. 15 Some state authorities

acted to allow off-premise placement prior to the Federal ruling and some tied state

regulations to the Federal standard. Still others had not yet issued regulations for

off-premise placement by 1979. 16 Until off-premise placement was authorized, the

number of branches was a clear upper bound on network size. Even when off-premise

placement was allowed, on-premise placement was more common. Commentary in

the trade press during this period suggests that banks eventually place ATMs in

most branches so that the number of branches is also a good lower bound.

Because states regulate branching, the distribution of branches per bank will

vary across states. In some states, branching is not allowed; banks can have no

more than a single banking office. Because there is no variation in network size in

these states, banks in these states are not included in the sample. 17 As a result,

the 2293 banks in the sample are distributed over the 37 states in which multiple

branches were allowed in 1971. Among these states, 19 placed no restrictions on

15 This ruling meant that the Federal government no longer had an interest in

regulating ATMs. As a result, national data on ATMs were not collected after 1979.
16 Most states regulate off-premise placement in some fashion even where it is

allowed. For example, banks may be required to get approval for each off-premise

location or to share off-premise locations with rival banks.
17 In principle, these single branch banks can be included in the analysis to pro-

vide additional information on the effect of variation in the number of depositors

on adoption probabilities. But including them does not substantively affect the

parameter estimates.
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the number or location of branches. We refer to these states as "unrestricted". The

remaining 18 states had some limitation on the number or location of branches.

Banks in these "limited" states may be required to restrict branching to, say, a

single county or to refrain from placing a branch in a small community already

served by a competitor. 18

Ideally, the n in Equation (1) would be implemented as the number of deposi-

tors for whom ATM transactions have value. A close proxy might be the number of

depositors with personal checking accounts. However, there are no data available

on the number of accounts of any type.
19 The next best proxy is total deposits by

customers who would use an ATM. This proxy might be affected by variation in the

size of accounts across banks. The closest available proxy is "demand deposits by

individuals, partnerships, and corporations" (DEPOSITS). DEPOSITS specifically

excludes time and savings deposits (certificates of deposits and savings accounts,

for example) and other less liquid holdings, as well as deposits held for other banks

or the public sector, but includes commercial demand accounts even though these

accounts probably do not generate ATM demand. The extent to which DEPOSITS

is a good proxy for n depends on how much variation there is in the proportion of

individual accounts in DEPOSITS across banks.

Four additional variables are used to control for other factors that might affect

adoption: wage in the area (WAGE), labor expense per employee (WB/L), the

average number of branches per bank in the state (PROPBR), and product mix

(PRODMDC). The wage variable is included to control for variations in ATM value

arising from variations in labor cost. If tellers are more expensive, technology that

can substitute for tellers should be more attractive. In this case, higher wages

should promote ATM adoption. On the other hand, the wage, as a measure of

average income in the bank's area, may also be correlated with the average size

18 The data used to classify states with respect to branching regulations were

provided by the Conference of State Bank Supervisors. Two states changed from
limited to unrestricted regulation during the sample period. Because substantive

changes in branching regulations might change adoption behavior, observations for

banks in these states are treated as censored at the date of change.
19 The only data on number of accounts come from the Functional Cost Analysis

reports. These data are not publicly available in disaggregate form and cover only

a very small, nonrandom sample of banks.
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of checking accounts. If people with higher income typically hold larger demand

deposits, the WAGE variable may pick up some variation in the relationship between

DEPOSITS and the number of customers for whom ATMs are of value. The wage

used is the average manufacturing wage for 1977. 20

The bank's labor expense per employee is total expenditures on salaries and

benefits divided by the number of employees. There is some evidence that this

variable is high in concentrated markets, presumably because of rent sharing with

employees (Rhoades 1980). In that case, banks with high values of WB/L may

be more likely to adopt because they can extract a larger share of the resulting

consumer value (i.e., they have higher As in Equation (1) than banks in less con-

centrated markets). On the other hand, WB/L might capture variation in the mix

of banks' employees. It is possible, for example, that a bank with a relatively high

value for WB/L has fewer relatively low-wage tellers and more relatively high-wage

commercial account managers or investment advisors. A high value of WB/L might

therefore indicate a low proportion of individual depositors and, therefore, a low

propensity to adopt.

The variable PROPBR is included to absorb variation in state branching reg-

ulations. Within the limit category there is substantial variation in the severity of

the branching restrictions. As a result, the average number of branches per bank

in limit states varies from less than 2 to more than 8.
21

Increasingly restrictive branching regulations suggest that the stand-alone value

of adoption (a in Equation (1)) might be higher. The reason for this is that a

depositor at a bank with, say, a single branch has no substitute for visiting that

bank's single location during normal business hours. By contrast, a depositor at a

multi-branch bank may at least be able to substitute a transaction during normal

20 As reported in the City and County Data Book.
21 Wisconsin banks average less than 1.5. branches per bank, and branching is

allowed only within the same county as the bank's main office and then only if

there is no other bank operating in that municipality or within three miles of the

proposed branch. New York, in contrast, has more than eight branches per bank
and allows statewide branching except that a bank cannot branch in a town with a

population of 50,000 or less in which another bank has its main office. The number
of branches per bank is a statewide average based on all the banks in the state, not

just those in our sample.
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hours at another branch for a transaction at her usual branch. Or, more generally,

banks whose depositors would feel constrained if they could only bank at their

usual branch during daytime hours might find it in their interests to open additional

branches. Since restricted banks are unable to open as many branches as they would

like, they might more readily turn to ATMs as a way to relieve a tightly binding

constraint. As a result, since a lower value of PROPBR indicates a more restrictive

regulatory environment, PROPBR should have a negative effect on adoption. There

is, however, a potentially offsetting competitive effect. If a bank operates in a

state in which there are many multi-branch competitors, competition may push a

bank to adopt earlier than it would if it faced a less competitive environment. In

that case, PROPBR might be positively correlated with adoption. In unrestricted

states the regulatory effect should be absent so that PROPBR should reflect the

competitive effect. We therefore expect a positive coefficient there. In the limited

states, however, both effects might be present. If the regulatory effect outweighs

the competitive effect in those states, the coefficient will be negative.

Finally, following Hannan and McDowell (1984) we include a product mix vari-

able, PRODMIX, which we measure as the ratio of DEPOSITS to the sum of all

deposits. The denominator, therefore, includes all time and savings deposits and

deposits held for the public sector as well as the commercial and individual demand

deposits appearing in the numerator. 22 Since in the 1970s ATMs were used mainly

for transactions involving checking accounts, banks whose total deposits include

a larger share of individual and commercial demand deposits might have a higher

demand for ATM services. In that case PRODMIX would have a positive coefficient.

Table 1 presents summary statistics for the entire sample of banks in multi-

branching states and for the limited and unrestricted subsamples. The average

bank has over $36 million in DEPOSITS. As might be expected, banks in states

that do not restrict branching are larger on average than those in states with limited

branching. As a result, there are many more banks in the 18 limited states than in

the 19 unrestricted states. The size distribution of banks is skewed to the right: the

22 Alternative product mix ratios were used in unreported regressions, including

the ratio of DEPOSITS to the bank's total assets. The results were substantively

unaffected.
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largest banks have DEPOSITS over $5,000 million, but only 22 banks have deposits

over $500 million, and 75 percent of the banks have DEPOSITS under $16 million.

While the average bank across both regulatory regimes has slightly more than

six branches, the average unrestricted bank has three times as many branches as the

average limited bank. This variation is also reflected in the PROPBR variable that

reports the average number of branches for all banks in the state. The PROPBR val-

ues are somewhat lower than the sample averages for BRANCH because PROPBR

includes banks operating only in less densely populated areas excluded from the

sample. Like DEPOSITS, BRANCH is skewed to the right: the bank with the

most branches (Wells Fargo in California) has 1013 branches, but the next highest

number is 443, and 75 percent of the banks have fewer than five branches. Because

the DEPOSITS and BRANCH variables have similarly skewed distributions, there

is much less variation in the average for DEPOSITS per BRANCH across regimes.

The limited branching states have banks that average $5 million per branch versus

$3.6 million in unrestricted branching states.

The adoption rate during the sample period is 17-19 percent and is higher in

unrestricted states. Among adopting banks, the average time until adoption is 5.5

years with unrestricted banks adopting earlier than limited banks (4.7 versus 5.7).

5. Results

In this section we present the empirical evidence for a network effect on adoption

rates. To develop the argument, we focus initially on the relationship between the

number of depositors, as proxied by DEPOSITS, and the propensity to adopt early.

Next, the main results are presented by introducing the number of branches as a

proxy for expected network size. These results are first presented as estimates from

a Weibull specification. To test for robustness to functional form, the Weibull results

are then compared to estimates based on the Cox partial-likelihood and log-logistic

forms. Finally, the possibility that the observed relationship between number of

branches and propensity to adopt is simply an order statistic effect is addressed.

Weibull estimates of the relationship between adoption and number of depos-

itors are reported in Table 2. Pooled estimates for banks in all states permitting

multiple branches and separate estimates for banks in limited and unrestricted states
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are reported. The results are consistent with the findings of Hannan and McDowell:

the coefficients imply that the log of the hazard rate is an increasing, concave func-

tion of DEPOSITS. The estimates are precise, and the pattern is consistent across

regulatory regimes. As reported at the bottom of the table, these estimates imply

that increasing DEPOSITS by $1 million above the sample mean leads to about

an 0.5 percent increase in the hazard rate in the pooled regression. The increase is

more marked in limited than unrestricted states, perhaps because banks in limited

states have much smaller DEPOSITS on average and the log of the hazard rate is

concave in DEPOSITS.23

When BRANCH is included in the regressions it is entered as a quadratic

to allow it to have a curvature independent of DEPOSITS. As suggested by the

model in Section 2, we also include DEPOSITS/BRANCH to account for location-

specific costs of installing ATMs. The sign on DEPOSITS/BRANCH should be

positive, and if location-specific costs are high relative to the system fixed costs,

this coefficient might capture a large share of the effect of DEPOSITS.

For the pooled regression, the coefficients on the BRANCH terms imply that

adding a branch has - at best - no effect on the adoption rate. The derivative of the

log of the hazard rate with respect to branch is negative with a large standard error.

The estimates for banks in unrestricted states, however, tell a very different story.

The branch derivative is positive in this regime. But, including the BRANCH

variables changes the sign of the DEPOSITS derivative: the apparent effect of

an increase in DEPOSITS holding number of branches constant is to reduce the

adoption rate. This counterintuitive result and the poor showing of BRANCH in

the pooled regression appear to be the results of near colinearity of DEPOSITS and

BRANCH in the unrestricted states.

The correlation coefficient between BRANCH and DEPOSITS for banks in

unrestricted states is .98. Apparently, when branching is unrestricted, banks add

depositors by adding branches. The effect of near colinearity is reflected in the large

increase in the standard errors on the DEPOSITS coefficients when BRANCH is

added. In (unreported) regressions including only linear DEPOSITS and BRANCH

23 All reported derivatives are evaluated at the sample means for the observations

included in the associated regression.
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terms, the estimates display the classic near colinearity pattern: the estimated

coefficients are opposite in sign, have a large covariance and sum approximately to

the size of the coefficient on DEPOSITS in a regression including only DEPOSITS.

This correlation makes the coefficient estimates in the unrestricted states unreliable

and may well contaminate the pooled results as well.

In contrast, colinearity does not appear to be a problem in the limited branching

states. Perhaps because branching regulations disrupt the natural growth pattern

of banks, the correlation coefficient is smaller (0.77) and including branches does

not have much effect on the standard errors for the DEPOSITS coefficients. To

avoid the colinearity problem, our analysis of the branching effect is restricted to

banks in limited branching states.
24

The results for the limited branching states are consistent with the hypothesis

that ATM adoption is affected by network benefits. In these states, both adding

an additional branch and increasing the value of DEPOSITS are associated with an

increase in the adoption rate. Adding a branch (an ATM location) to the average

bank, while holding DEPOSITS constant, increases the hazard rate by 6.3 percent,

adding 0.97 percentage points to the nine year cumulative adoption probability.

The effect of adding enough in DEPOSITS to equal an average size branch, but

holding the number of branches constant, increases the hazard rate by 4.5 percent.

Adding a "branch worth" of people increases the cumulative probability of adoption

over the sample period by 0.79 percentage points.

The effect of the size of deposits appears to come through the DEPOSITS/

BRANCH ratio rather than through DEPOSITS, implying that there are important

location-specific costs and that system fixed costs are not particularly important.

This is consistent with the early state of the technology. As late as 1975, 50 percent

of the stock of ATMs in place and 30 percent of the machines on order were not

on-line machines.25 The primary system cost for off-line machines is the planning

and acquisition process. There is little research and development or applications

24 The eighteen limit branching states are: Alabama, Georgia, Indiana, Iowa,

Kentucky, Louisiana, Massachusetts, Michigan, New Hampshire, New Jersey, New
Mexico, New York, Ohio, Pennsylvania, Tennessee, Virginia and Wisconsin.
25 Computerworld, April 16, 1975, p.35.
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software for the system and most software was supplied by the vendor. 26
.

As discussed in Section 2, the above estimate of the effect of adding a branch

understates the network effect. Holding DEPOSITS constant while increasing

BRANCH necessarily reduces depositors per branch. If location-specific costs are

important, as suggested by the DEPOSITS/BRANCH coefficient, this will increase

unit costs, partially offsetting the network effect.

Recall, however, that the analysis in Section 2 suggests another calculation

that overstates the network effect and therefore gives us an upper bound on its

magnitude. The thought experiment is to add a branch (an ATM location) with

enough new depositors to keep depositors per branch constant. Doing so increases

the hazard rate by 11.3 percent and increases the nine year cumulative probability

of adoption by 1.76 percentage points. Combining this result with that above, we

can conclude that the effect on the adoption rate of increasing network size by one

location is between 0.97 and 1.8 percentage points. This translates to a 5.7 to 10.3

percent increase in the adoption probability for the average bank.

The coefficients on the other variables have plausible signs and magnitudes.

In all the regressions, 7 is well below unity, implying positive duration dependence

as expected. This is consistent with the net benefits of adoption increasing over

time at an increasing rate during this early phase of ATM diffusion. The sign of

the PROPBR variable in the limited states is consistent with restrictive branching

regulation increasing the stand-alone benefit to adoption. Although the standard

error is fairly large in the unrestricted states, the positive coefficient there is consis-

tent with competition creating a race to adopt when there are several many-branch

banks. 27

Consistent with incentives for substituting ATMs for tellers, the WAGE coeffi-

cient is always positive, although its standard error is quite large. The coefficient is

26 The positive coefficient on DEPOSITS/BRANCH also suggests that fixed costs

are not substantively affected by the number of depositors, an assumption built into

Equation 2. If costs per location increased in n, this coefficient would be small and
perhaps even negative
27 To test for bias introduced by other state-specific effects, the regressions were

also run using state fixed effects. The coefficient estimates on the BRANCH and
DEPOSITS terms were substantively unchanged.
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economically and statistically more significant in unrestricted states than in limited

states. This is consistent with the notion that in limited states ATM adoption is

in large part an attempt to relax the effects of the regulatory branching constraints

that the banks face by, for example, adding after-hours banking possibilities, rather

than to substitute automated transactions for human ones. This would lead the

sensitivity to WAGE in limited states to be smaller than in unrestricted states.

When it is significantly different from zero, the coefficient on WB/L is positive.

This is consistent with the hypothesis that a bank earning positive rents will adopt

sooner because it is better able to extract the resulting surplus.
28

Finally, the

PRODMIX coefficient is positive as expected.

As noted in section two, the Weibull imposes a structure on the adoption pro-

cess that may affect the coefficient estimates. In Table 3, the Weibull results are

presented again along with the results from a nonparametric (Cox) partial likeli-

hood and a duration model that allows the underlying hazard to have a log-logistic

distribution. The results are clearly robust across these functional forms. The

similarity of the Cox and Weibull estimates argues that imposing the additional

structure for the Weibull has not substantively affected the estimates. The Weibull

and log-logistic estimates are also very close. Apparently the time invariance of

relative probabilities imposed by the Weibull has not adversely affected the coeffi-

cient estimates. The estimate of gamma for the log-logistic implies a hazard rate

that increases initially. Although this functional form implies that the hazard will

decrease as t gets large, the hazard is increasing at mean values throughout the

sample period. This suggests that the simpler, monotonic Weibull hazard is an

adequate characterization of the time path of adoption over the sample period.

The network effect results were also tested for sensitivity to having omitted

the observations for 87 banks known to have adopted but for whom adoption dates

are not available. For this purpose, banks known to have adopted by 1976, but

for whom adoption dates are not available were treated as 1976 adopters. Banks

without adoption dates but known to adopt between 1976 and 1980 were assigned

28 The WAGE and WB/L results are not an artifact of colinearity. The correlation

coefficient for these variables is .03 and dropping one of the variables from the

regression has no substantive effect on the coefficient of the other.
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an adoption date of 1978. Repeating the estimation for limit banks confirms the

reported results. If anything, the effect of adding a branch is increased by including

this additional information. As expected, duration dependence increases.

Another robustness issue is raised by the very skewed BRANCH and DEPOS-

ITS distributions. Given these distributions, it is possible that the results are heav-

ily influenced by outliers. To check for outlier effects, the limited state regressions

were run on a sample trimmed to eliminate the banks with more than $1.2 billion

in DEPOSITS or more than 84 branches. 29 This eliminates the six largest banks

with respect to DEPOSITS and the six largest banks with respect to BRANCH for

a total of eight banks. The effect on the distribution of banks is dramatic. In the

untrimmed sample, the maximum values were $5.2 billion in DEPOSITS and 201

branches. Trimming reduces the standard deviation for DEPOSITS by more than

one-half and the standard deviation for BRANCH by approximately one-quarter.

However, trimming has little effect on the estimated derivatives. The BRANCH
derivative is slightly larger than in the full sample and the DEPOSIT derivative is

essentially unchanged.

The regressions summarized in Tables 2 and 3 support the hypothesis that

the number of branches increases the propensity to adopt early when controlling for

number of depositors. We have interpreted these results as evidence that banks with

more potential ATM locations will adopt relatively early because they benefit from

a network effect. An alternative interpretation is that the relationship between

BRANCH and time of adoption is only an order statistic effect. If there is no

network effect and if, as argued above, system fixed costs are relatively small, banks

could make the decision to adopt on a branch by branch basis where the decision

to adopt at any one of its branches is independent of the decision to adopt at any

other of its branches. In this case, a bank with many branches will adopt earlier

because its observed adoption date is simply the minimum of the adoption dates of

all of its branches.

If the observed relationship between branches and adoption dates is an order

statistic effect, the adoption of an ATM at one branch of a bank should have no effect

29 The trimming criteria are arbitrary and several variations were implemented
without changing the basic results.
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on the adoption decision at another of its branches. A simple test of this indepen-

dence assumption would compare the expected number of of adopting branches at

banks where at least one branch has adopted with the number of branches adopting

at banks with at least one adopting branch. Data for a test of this sort are presented

in Table 4.

The first row of Table 4 reports the adoption rates over the sample period

observed in the data for banks with two, five, ten and fifteen branches. As exepected,

these rates increase in the number of branches. Under the order statistic hypothesis,

these frequencies are the probabilities that at least one branch has adopted by 1979.

Abstracting from the distribution of adoption dates over time, this means that these

are the probabilities of at least one success in N draws where N is the number

of branches and the adoption distribution is binomial. For example, .455 is the

probability that a bank with ten branches will have at least one adopting branch.

Let these probabilities be denoted by q. The second row calculates the probability

that any single branch adopts (p) that is consistent with the observed q. That is,

p satisfies the expression q = 1 — (1 — p)
N where (1 — p)

N
is the probability of no

successes in N draws from a binomial with parameter p. If a bank with 10 branches

has a .455 probability of at least one success, for example, then each of its ten

branches must have a .059 probability of adoption. Given p one can then calculate

the expected number of adopting branches for banks that do adopt (Nq = pN/q).

These numbers are reported in the the third row of the table. Thus, the order

statistic effect and the observed adoption rates imply that a ten branch bank that

adopts has, on average, 1.294 adopting branches.

The number of adopting branches are not in the data set. However, the 1979

survey does contain information on the number of ATMs installed by each bank by

1979. The average number of ATMs at adopting banks is recorded in the fourth row

of Table 4. If banks typically place one ATM in a branch, the average number of

adopting branches for ten branch banks is 6.778, for example, well above the 1.294

expected under the order statistic hypothesis. This pattern is consistent across all

branch categories and holds even if banks are assumed to install two ATMs per

branch on average. The number of adopting branches is too high to be consistent

with the order statistic hypothesis.
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6. Concluding Comments

The main finding of this paper is that banks with many branches adopt ATMs

earlier than banks with fewer branches, adjusting for the number of depositors.

This is consistent with the presence of a network effect. An ATM network is more

valuable to depositors when it has many geographically dispersed ATMs because

of the convenience it provides. If banks are able to extract some of the benefits

to depositors, banks that will have many ATM locations are likely to adopt first.

Since banks with many branches are likely to have large networks, it is they whom

we expect to adopt early.

The theoretical framework developed here suggests two thought experiments

for providing bounds on the magnitude of the network effect. The first, which

provides a lower bound, is to add an additional branch while holding the number of

depositors constant. Doing this necessarily lowers the average number of depositors

per branch. Because the location-specific costs of adopting ATMs mitigate against

adoption when depositors per branch falls, this understates the value of adding a

branch. Nonetheless, this thought experiment yields the result that adding a branch

increases the hazard rate by 6.3 percent, adding almost one percentage point to the

estimated nine year cumulative adoption probability (which is 17.1 percent for the

average bank).

The second though experiment involves adding a branch while keeping the size

per branch constant. This therefore involves adding some depositors at the same

time as the branch is added and therefore overstates the network effect. Performing

this calculation yields the result that adding a branch increases the hazard rate by

11.3 percent, adding 1.8 percentage points to the nine year cumulative probability

of adoption. Therefore the effect of adding a single additional location adds between

0.97 and 1.8 percentage points to the cumulative probability of adoption.

We can contrast this result with the effect of increasing the number of depos-

itors, holding the number of branches constant to isolate the effect of production

scale economies. Adding enough in depositors to equal an average size branch in-

creases the hazard rate by 4.5 percent. The effect of this is to increase the nine year

cumulative probability of adoption by 0.79 percentage points. The network effect

is larger than the scale effect documented in previous studies.
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There axe two open issues not addressed here which relate to the effect of

competition on adoption. The first relates to the incentives for banks to use the

adoption of ATMs to gain competitive advantage. In particular, are banks that

have a dominant position in terms of number of branches able to exploit network

effects to gain market share over their rivals by adopting ATMs? The second issue is

whether this potential for exploiting network effects leads to races to adopt among

equally well-positioned rivals, and how this is affected by market structure. We

hope to address these issues in future work.
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TABLE 1: DESCRIPTIVE STATISTICS

MULTIPLE UNRESTRICTED LIMITED

BRANCHING BRANCHING BRANCHING

DEPOSITS

(millions)

BRANCH

PRODMIX

WAGE

WB/L

DEPOSITS/

BRANCH

PROPBR

ADOPTION (%)

ADOPTION TIME

NUMBER OF OBSERVATIONS

36.495 69.520 28.763

(218.39) (338.13) (178.412)

6.260 13.789 4.497

(27.230) (58.062) (10.529)

0.334 0.387 0.321

(0.110) (0.122) (0.103)

6.013 5.708 6.084

(1.062) (0.852) (1.093)

7.580 7.649 7.564

(2.181) (3.624) (1.674)

4.704 3.552 4.973

(12.542) (4.255) (13.768)

4.934 10.407 3.653

(4.206) (6.302) (1.974)

17.750

5.509

(2.441)

2293

19.080

4.651

(2.506)

435

17.438

5.728

(2.379)

1858

Standard deviations in parentheses



TABLE 2: WEIBULL ESTIMATES FOR MULTI-BRANCHING STATES

ALL MULTI-BRANCH UNRESTRICTED LIMITED

-7.862 -7.936 -6.179 -6.253

(1.149) (1-147) (0.493) (0.512)

2.3 E-3 -7.1 E-3 0.011 2.4 E-3

(4.4 E-4) (-2.7 E-3) (1.2 E-3) (1.6 E-3)

0.054 0.112

(0.016) (0.018)

-3.9 E-7 4.4 E-6 -7.4 E-6 -3.2 E-6

(1.2 E-7) (1.9 E-6) (1.7 E-6) (6.7 E-7)

-1.5E-4 -1.1E-3

(6.2 E-5) (2.4 E-4)

0.079 0.036

(0.017) (4.4 E-3)

2.148 1.647 1.373 0.870

(0.873) (0.907) (0.539) (0.580)

WAGE 0.088 0.073 0.292 0.245 0.047 0.050

(0.048) (0.048) (0.149) (0.150) (0.052) (0.052)

CONSTANT -7.181

(0.406)

-7.074

(0.413)

DEPOSITS 4.7 E-3

(4.6 E-4)

3.7 E-3

(1.2 E-3)

BRANCH 0.011

(7.2 E-3)

DEPOSITS 2 -1.4 E-6

(1.9 E-7)

-3.3 E-6

(5.6 E-7)

BRANCH 2
5.7 E-5

(1.8 E-5)

DEPOSITS/
BRANCH

0.027

(3.4 E-3)

PRODMIX 1.848

(0.431)

1.466

(0.445)

WB/L 0.045

(0.015)

0.039

(0.018)

0.045

(0.013)

0.053

(0.013)

-0.034

(0.036)

-0.051

(0.039)

PROPBR -0.025

(0.013)

-0.028

(0.014)

0.021

(0.018)

0.020

(0.018)

-0.166

(0.039)

-0.222

(0.042)

GAMMA 0.540

(0.025)

0.541

(0.025)

0.750

(0.079)

0.716

(0.075)

0.500

(0.026)

0.493

(0.027)

NO. OF OBS. 2293 2293 435 435 1858 1858

Loglikelihood -1181.38 -1151.81 -250.21 -240.68 -884.35 -842.66

V(°DEPO
Z
st^)

)
°-005 7 -8E"3 2.2 E-3 -7.9 E-4 0.011 0.010

(4.6 E-3) (1.1 E-3) (4.4E-4) (1.9E-3) (1.2E-3) (1.5E-3)

-8.9 E-3 0.030 0.063

(6.6 E-3) (0.012) (0.015)

^°(branchP -8.9E-Z 0.030 0.063

Standard errors in parentheses



TABLE 3: ALTERNATIVE FUNCTIONAL FORMS FOR LIMITED
BRANCHING BANKS

CONSTANT

DEPOSITS

BRANCH

DEPOSIT2

BRANCH 2

DEPOSITS/
BRANCH

PRODMIX

WAGE

WB/L

PROPBR

GAMMA

NUMBER OF OBSERVATIONS

LOGLIKELIHOOD

WEIBULL COX LOG-LOGISTIC

-6.253

(0.512)

-6.719

(0.588)

2.4 E-3

(1.6 E-3)

2.2 E-3

(1.6 E-3)

3.2 E-3

(2.4 E-3)

0.112

(0.018)

0.110

(0.017)

0.148

(0.021)

-3.2 E-6

(6.7 E-7)

-3.2 E-6

(6.7 E-7)

-4.6 E-6

(1.0 E-6)

-1.1 E-3

(2.4 E-4)

-0.001

(2.2 E-3)

-1.2 E-3

(2.5 E-4)

0.036

(4.4 E-3)

0.035

(0.004)

0.050

(7.7 E-3)

0.870

(0.580)

0.870

(0.580)

1.089

(0.679)

0.050

(0.052)

0.053

(0.052)

0.051

(0.060)

-0.051

(0.039)

-0.054

(0.039)

-0.070

(0.046)

-0.222

(0.042)

-0.234

(0.039)

-0.271

(0.050)

0.493

(0.027)

0.437

(0.022)

1858 1858 1858

-842.66 -2267.90 -832.24

Standard errors in parentheses



TABLE 4: ORDER STATISTIC TEST
(LIMITED BRANCHING BANKS)

TWO FIVE TEN FIFTEEN
BRANCHES BRANCHES BRANCHES BRANCHES

BANK ADOPTION 0.157

RATE (q)

0.166 0.455 0.545

BRANCH ADOPTION 0.081

RATE (p)

0.036 0.059 0.052

EXPECTED ADOPTING 1.043

BRANCHES PER (0.957)

1.074

(1.036)

1.294

(1.218)

1.408

(1.336)

ADOPTING BANK (N )

AVERAGE ATMS 2.390 4.167 6.778 10.000

PER ADOPTING BANK

NO. OF OBS. 274 78 22 11

Standard errors in parentheses
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