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l. Introduction

1.1. Attention as a scarce economic resource. Standard economic models conveniently

assume that cognition is instantaneous and costless. The current paper develops and tests models

that are based on the fact that cognition takes time. Like players in a chess tournament or

students taking a test, real decision-makers need time to solve problems and often encounter trade-

offs because they work under time pressure. Time almost always has a positive shadow value,

whether or not formal time limits exist.

Because time is scarce, decision-makers ignore some elements in decision problems while selec-

tively thinking about others.
1 Such selective thinking exemplifies the voluntary (i.e. conscious)

and involuntary processes that lead to attention allocation.
2

Economics is often defined as the study of the allocation of scarce resources. The process

of attention allocation, with its consequences for decision-making, seems like a natural topic for

economic research. Indeed, in recent years many authors have argued that the scarcity of attention

has large effects on economic choices. For example, Lynch (1996), Gabaix and Laibson (2001), and

Rogers (2001) study the effects of limited attention on consumption dynamics and the equity

premium puzzle. Mankiw and Reis (2002), Gumbau (2003), Sims (2003), and Woodford (2002)

study the effects on monetary transmission mechanisms. D'Avolio and Nierenberg (2002), Delia

Vigna and Pollet (2003), Peng and Xiong (2003), and Pollet (2003) study the effects on asset

pricing. Finally, Daniel, Hirshleifer, and Teoh (2002) and Hirshleifer, Lim, and Teoh (2003) study

the effects on corporate finance, especially corporate disclosure. Some of these papers analyze

limited attention from a theoretical perspective. Others analyze limited attention indirectly, by

studying its associated market consequences. None of these papers measures attention directly.

The current paper is part of a new literature in experimental economics that empirically studies

1 Simon (1955) first analyzed decision algorithms — e.g. satisficing — that are based on the idea that calculation

is time-consuming or costly. See Kahneman and Tversky (1974) and Gigerenzer et al. (1999) for heuristics that

simplify problem-solving. See Conlisk (1996) for a framework in which to understand models of thinking costs.

Attention "allocation" can be divided into four categories: involuntary perception (e.g., hearing your name spoken

across a noisy room at a cocktail party, see Moray 1959 and Wood and Cowan 1995); involuntary central cognitive

operations (e.g. trying to not think about white bears, but doing so anyway, see Wegner 1989); voluntary perception

(e.g. searching for a cereal brand on a display shelf, see Yantis 1998); and voluntary central cognitive operations (e.g.

planning and control of action, see Kahneman 1973, and Pashler and Johnston 1998). See Pashler (1998) for an

excellent overview of research on attention. The model that we analyze in this paper can be applied to all of these

categories of attention allocation, but we discuss an application that focuses on conscious attention allocation (the

last two categories).
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the decision-making process by directly measuring attention allocation (Camerer et al. 1993, Costa-

Gomes, Crawford, and Broseta 2001, Johnson et al 2002, and Costa-Gomes and Crawford 2003).

In the current paper, we report the first direct empirical test of an economic cost-benefit model of

endogenous attention allocation.

This economic approach contrasts with more descriptive models of attention allocation in the

psychology literature (e.g. Payne, Bettman, and Johnson 1993). The economic approach provides

a general framework for deriving quantitative attention allocation predictions without introducing

extraneous parameters.

1.2. Directed cognition: An economic approach to attention allocation. To implement

the economic approach in a computationally tractable way, we apply a cost-benefit model developed

by Gabaix and Laibson (2002), which they call the directed cognition model. In this model, time-

pressured agents allocate their thinking time according to simple option-value calculations. The

agents in this model analyze information that is likely to be useful and ignore information that is

likely to be redundant. For example, it is not optimal to continue to analyze a good that is almost

surely dominated by an alternative good. It is also not optimal to continue to investigate a good

about which you already have nearly perfect information. The directed cognition model calculates

the economic option-value of marginal thinking and directs cognition to the mental activity with

the highest expected shadow value.

The directed cognition model comes with the advantage of tractability. The directed cognition

model can be computationally solved even in highly complex settings. To gain this tractability,

however, the directed cognition model introduces some partial myopia into the option-theoretic

calculations, and can thus only approximate the shadow value of marginal thinking.

In this paper we show that this approximation comes at relatively little cost, since the partially

myopic calculations in the directed cognition model generate attention allocation choices that ap-

proximate the payoffs from a perfectly rational — i.e. infinitely forward-looking — calculation of

option values. Because infinite-horizon option value calculations are not generally computationally

tractable and because directed cognition is close to those calculations anyway (cf. Appendix C),

we focus our analysis on the directed cognition model.
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1.3. Perfect rationality: an intractable model in generic high-dimensional problems.

Perfect rationality represents a formal (theoretical) solution to any well-posed problem. But per-

fectly rational solutions cannot be calculated in complex environments and have limited value as

modeling benchmarks in such environments. Researchers in artificial intelligence have acknowledged

this limitation and taken the extreme step of abandoning perfect rationality as an organizing princi-

ple. Among artificial intelligence researchers, the merit of an algorithm is based on its tractability,

predictive accuracy, and generality — not by proximity to the predictions of perfect rationality.

In contrast to artificial intelligence researchers, economists use perfect rationality as their pri-

mary modeling approach. Perfect rationality continues to be the most useful and disciplined

modeling framework for economic analysis. But alternatives to perfect rationality should be active

topics of economic study either when perfect rationality is a bad predictive model or when perfect

rationality is not computationally tractable. The latter case applies to our attention allocation

analysis.

The complex environment that we study in this paper only partially reflects the even greater

complexity of most attention allocation problems. But even in our relatively simple setting perfectly

rational option value calculations are not computationally tractable. 3 Hence we focus our analysis

on a solvable cost-benefit model — directed cognition — which can easily be applied to a wide

range of realistic attention allocation problems. For our application, the merit of the directed

cognition model is its tractability, not any predictive deviations from the perfectly rational model

of attention allocation. We do not study such deviations due to the computational intractability

of the perfectly rational model.

1.4. An empirical analysis of the directed cognition model. This paper compares the

qualitative and quantitative predictions of the directed cognition model to the results of an exper-

iment in which subjects solve a generalized choice problem that represents a very common set of

economic decisions: choose one good from a set of N goods. Many economic decisions are special

cases of this general problem.

3 Of course, even when perfect rationality cannot be solved, its solution might still be partially characterized and
tested. We do not take this approach in the current paper because the predictions of the infinite-horizon model that

we have been able to formally derive have been quite weak (e.g., ceteris paribus, analyze information with the highest

variance).
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In our experiment, decision time is a scarce resource and attention allocation is measured

continuously. We make time scarce in two different ways. In one part of the experiment we give

subjects an exogenous amount of time to choose one good from a set of goods — a choice problem

with an exogenous time budget. Here we measure how subjects allocate time as they think about

each good's attributes before making a final selection of which good to consume.

In a second part of the experiment we give the subjects an open-ended sequence of choice

problems like the one above. In this treatment, the subjects keep facing different choice problems

until a total budget of time runs out. The amount of time a subject chooses for each choice problem

is now an endogenous variable. Because payoffs are cumulative and each choice problem has a

positive expected value, subjects have an incentive to move through the choice problems quickly.

But moving too quickly reduces the quality of their decisions. As a result, the subjects trade

off quality and quantity. Spending more time on any given choice problem raises the quality of

the final selection in that problem but reduces the time available to participate in future choice

problems with accumulating payoffs.

Throughout the experiment we measure the process of attention allocation. We measure

attention allocation within each choice problem (i.e. how is time allocated in thinking about

the different goods within a single choice problem before a final selection is made in that choice

problem?). In addition, in the open-ended sequence design, we measure attention allocation across

choice problems (i.e. how much time does the subject spend on one choice problem before making

a final selection in that problem and moving on to the next choice problem?).

Following the lead of other economists (Camerer et at. 1993 and Costa-Gomes, Crawford,

and Broseta 2001), we use the "Mouselab" programming language to measure subjects' attention

allocation.4 Mouselab tracks subjects' information search during our experiment. Information

is hidden "behind" boxes on a computer screen. Subjects use the computer mouse to open the

boxes. Mouselab records the order and duration of information acquisition. Since we allow only

one screen box to be open at any point in time, the Mouselab software enables us to pinpoint what

information the subject is contemplating on a second-by-second basis throughout the experiment. 5

4 Payne, Bettman, and Johnson (1993) developed the Mouselab language in the 1970's. Mouselab is one of many
"process tracing" methods. For example, Payne, Braunstein, and Carrol (1978) elicit mental processes by asking

subjects to "think aloud." Russo (1978) records eye movements.

Mouselab has the drawback that it uses an artificial decision environment, but several studies have shown that
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In our experiment, subject behavior corresponds well to the predictions of the directed cognition

model. Subjects allocate thinking time when the marginal value of such thinking is high, either

because competing goods are close in value or because there is a "large" amount of remaining

information to be revealed. We demonstrate this in numerous ways. First, we evaluate the pattern

of information acquisition within choice problems. Second, in the endogenous time treatment, we

evaluate the relationship between economic incentives and subjects' stopping decisions: i.e. when

do subjects stop working on one choice problem so they can move on to the next choice problem?

We find that the economic model of attention allocation outperforms mechanistic information

acquisition models. The marginal value of information turns out to be the most important predictor

of attention allocation.

However, the experiment also reveals one robust deviation from the predictions of the directed

cognition cost-benefit model. Subject choices are partially predicted by a "boxes heuristic." Specif-

ically, subjects become more and more likely to end analysis of a problem the more boxes they open,

holding fixed the economic benefits of additional analysis. In this sense, subjects display a partial

insensitivity to the particular economic incentives in each problem that they face.

We also test models of heuristic decision-making, but we find little evidence for commonly stud-

ied heuristics, including satisficing and elimination by aspects. Instead, our subjects generally

allocate their attention consistently with cost-benefit considerations, matching the precise quanti-

tative attention-allocation patterns generated by the directed cognition model. Hence, this paper

demonstrates that an economic cost-benefit model predicts both the qualitative and quantitative

patterns of attention allocation.

Section 2 describes our experimental set-up. Section 3 summarizes an implementable one-

parameter attention allocation model (Gabaix and Laibson 2002). Section 4 summarizes the

results of our experiment and compares those results to the predictions of our model. Section 5

concludes.

the Mouselab environment only minimally distorts final choices over goods/actions (e.g., Costa-Gomes, Crawford,

and Broseta 2001 and Costa-Gomes and Crawford 2002). Mouselab's interface does generate "upper-left" and
"left-to-right" search biases, which we discuss in subsection (4.4) below.
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2. Experimental Set-up

Our experimental design facilitates second-by-second measurement of attention allocation in a basic

decision problem, a choice among TV goods.

2.1. An TV-good game. An TV-good game is an TV-row by M-column matrix of boxes (Figure

1). Each box contains a random payoff (in units of cents) generated with normal density and zero

mean. After analyzing an TV-good game, the subject makes a final selection and "consumes" a

single row from that game. The subject is paid the sum of the boxes in the consumed row.

Consuming a row represents an abstraction of a very wide class of choice problems. We call

this problem an TV-good game, since the TV rows conceptually represent TV goods. The subject

chooses to consume one of these TV goods. The columns represent M different attributes.

For example, consider a shopper who has decided to go to Walmart to select and buy a television.

The consumer faces a fixed number of television sets at Walmart (TV different TV's from which

to choose). The television sets have M different attributes — e.g. size, price, remote control,

warranty, etc. By analogy, the TV TV's are the rows of Figure 1 and the M attributes (in a utility

metric) appear in the M columns of each row.

In our experiment, the importance or variability of the attributes declines as the columns move

from left to right. In particular, the variance decrements across columns equal one tenth of the

variance in column one. For example, if the variance used to generate column one is 1000 (squared

cents), then the variance for column 2 is 900, and so on, ending with a variance for column 10 of

100. So columns on the left represent the attributes with the most (utility-metric) variance, like

screen size or price in our TV example. Columns on the right represent the attributes with the

least (utility-metric) variance, like minor clauses in the warranty. 6

So far our game sounds simple: "Consume the best good (i.e., row)." To measure attention,

we make the task harder by masking the contents of boxes in columns 2 through M. Subjects are

shown only the box values in column l.
7 However, a subject can left-click on a masked box in

columns 2 through M to unmask the value of that box (Figure 2).

In our experiment, all of the attributes have been demeaned.

We reveal the value of column one because it helps subjects remember which row is which. In addition, revealing

column one initializes the game by breaking the eight-way tie that would exist if subjects began with the expectation

that all rows had the same value (zero).
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Only one box from columns 2 through M can be unmasked at a time. This procedure enables

us to record exactly what information the subject is analyzing at every point in time.8 Revealing

the contents of a box does not imply that the subject consumes that box. Note too that if a row is

picked for consumption, then all boxes in that row are consumed, whether or not they have been

previously unmasked.

We introduce time pressure, so that subjects will not be able to unmask — or will not choose

to unmask — all of the boxes in the game. Mouselab enables us to record which of the N(M — 1)

masked boxes the subject chooses to unmask. Of course, we also record which row the subject

chooses/consumes for his or her final selection.

We study a setting that reflects realistic — i.e. high— levels of decision complexity. This com-

plexity forces subjects to confront attention allocation tradeoffs. Real consumers in real markets

frequently face attention allocation decisions that are much more complex.

Masked boxes and time pressure capture important aspects of our Walmart shopper's experi-

ence. The Walmart shopper selectively attends to information about the attributes of the TV's

among which she is picking. The shopper may also face some time pressure, either because she

has a fixed amount of time to buy a TV, or because she has other tasks which she can do in the

store if she selects her TV quickly. We explore both of these types of cases in our experiment.

2.2. Games with exogenous and endogenous time budgets. In our experiment, subjects

play two different types of JV-good games: games with exogenous time budgets and games with

endogenous time budgets. We will refer to these as "exogenous" and "endogenous" games.

For each exogenous game a game-specific time budget is generated from the uniform distribution

over the interval [10 seconds, 49 seconds]. A clock shows the subject the amount of time remaining

for each exogenous-time game (see clock in Figure 2) . This is the case of a Walmart shopper with

a fixed amount of time to buy a good.

In endogenous games, subjects have a fixed budget of time— 25 minutes — in which to play as

many different A^-good games as they choose. In this design, adjacent A^-good games are separated

When we designed the experiment, we considered but did not adopt a design that permanently keeps boxes open

once they had been selected by the subject. This alternative approach has the advantage that subjects face a reduced

memory burden. On the other hand, if boxes stay open permanently then subjects have the option to quickly —
and mechanically — open many boxes and only afterwards analyze their content. Hence, leaving boxes open implied

that we lost the ability credibly to infer what the subject is attending to at each point in time.
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by 20 second buffer screens, which count toward the total budget of 25 minutes. Subjects are free

to spend as little or as much time as they want on each game, so time spent on each game becomes

an endogenous choice variable. This is the case of a Walmart shopper who can move on to other

purchases if she selects her TV quickly.

We study both exogenous time games and endogenous time games because these two classes

of problems commonly arise in the real world and any attention allocation model should be able

to handle both situations robustly. Both types of problems enable us to study within-problem

attention allocation decisions. In addition, the endogenous time games provide a natural framework

for studying stopping rules, the between-problem attention allocation decision.

2.3. Experimental logistics. Subjects receive printed instructions explaining the structure of

an iV-good game and the setup for the exogenous and endogenous games. Subjects are then given

a laptop on which they read instructions that explain the Mouselab interface.
9 Subjects play three

test games, which do not count toward their payoffs.

Then subjects play 12 games with separate exogenous time budgets. Finally, subjects play a

set of endogenous games with a joint 25-minute time budget. For half of the subjects we reverse

the order of the exogenous and endogenous games. At the end of the experiment, subjects answer

demographic and debriefing questions.

Subjects are paid the cumulative sum of all rows that they consume. After every game, feedback

reports the running cumulative value of the consumed rows.

3. Directed cognition model

The previous section describes an attention allocation problem. In exogenous games, subjects

must decide which boxes to unmask before their time runs out. In endogenous games, subjects

must jointly decide which boxes to unmask and when to move on to the next game.

We want to determine whether economic principles guide subjects' attention allocation choices.

We compare our experimental data to the predictions of an attention allocation model proposed

by Gabaix and Laibson (2002). This 'directed cognition' model approximates the economic value

of attention allocation using simple option value analysis.

Interested readers can view all of our instructions on the web: http://post.economics.harvard.edu/faculty/laibson/papers.html
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The option value calculations capture two types of effects. First, when many different choices

are being compared and a particular choice gains a large edge over the available alternatives, the

option value of continued analysis declines. Second, when marginal analysis yields little new

information (i.e. the standard deviation of marginal information is low), the economic value of

continued analysis declines. The directed cognition model captures these two effects with a formal

search-theoretic framework that makes sharp quantitative predictions about attention allocation

choices.

3.1. Summary of the model. The model can be broken down into three iterative steps, which

we first summarize and then describe in detail.

Step 1: Calculate the expected economic benefits and costs of different potential cognitive opera-

tions. For example, what is the expected economic benefit of unmasking three boxes in the

first row?

Step 2: Execute the cognitive operation with the highest ratio of expected benefit to cost. For

example, if exploration of the 'next' two boxes in the sixth row has the highest expected ratio

of benefit to cost, then unmask those two boxes.

Step 3: Return to step one unless time has run out (in exogenous time games) or until the ratio

of expected benefit to cost falls below some threshold value (endogenous time games).

We now describe the details of this search algorithm. We first introduce notation and then

formally derive an equation to calculate the expected economic benefits referred to in step one.

3.2. Notation. Since our games all have eight rows (goods), we label the rows A, B,...,H.

We will use lower case letters — a,b, ...,h — to track a subject's expectations of the values of the

respective rows.

Recall that the subject knows the values of all boxes in column 1 when the game begins. Thus,

at the beginning of the game, the row expectations will equal the value of the payoff in the left-most

cell of each row. For example, if row C has a 23 in its first cell, then at time zero c = 23. If the

subject unmasks the second and third cells in row C, revealing cell values of 17 and -11, then c

would be updated to 29 = 23 + 17 + -11.
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3.3. Step 1:. In step 1 the agent calculates the expected economic benefits and costs of dif-

ferent cognitive operations. For our application, a cognitive operation is a partial or complete

unmasking/analysis of boxes in a particular row of the matrix. Such an operation enables the

decision-maker to improve her forecast of the expected value of that row. In our notation, Or
A

represents the operation, "open V additional boxes in row A." Because tractability concerns lead

us to limit agents' planning horizons to only a single cognitive operation at a time, we assume that

individual cognitive operations themselves can include one or more box openings. Multiple box

openings increase the amount of information revealed by a single cognitive operator, increase the

option value of information revealed by that cognitive operator, and make the (partially myopic)

model more forward-looking. 10

The operator 0\ selects the boxes to be opened using a maximal-information rule. In other

words, the Ov
A operator would select the T unopened boxes (in row .A) that have the highest

variances (i.e. with the most information). In our game, this corresponds with left to right box

openings (skipping any boxes that may have been opened already).

We assume that an operator that opens T boxes has cost T-k, where k is the cost of unmasking a

single box. We take this cost to include many components, including the time involved in opening

a box with a mouse, reading the contents of the box, and updating expectations. Such updating

includes an addition operation as well as two memory operations: recalling the prior expectation

and rememorizing the updated expectation.

The expected benefit (i.e. option value) of a cognitive operation is given by

:i ,) S <7*g)-|*|*(-M),w (x,v) = *4>{±)-\x\*\-!f\, (1)

where 4> represents the standard normal density function, <& represents the associated cumulative

distribution function, x is the estimated value gap between the row that is under consideration and

its next best alternative, and a is the standard deviation of the payoff information that would be

10 To gain intuition for this effect, consider two goods A and B, with E(a) = 3/2 and E(b) = 0. Suppose that

opening one box reveals one unit of information so that after this information is revealed E(a') = 5/2 or E(a') = 1/2.

Hence, a partially myopic agent won't see the benefit of opening one box, since no matter what happens E(a ) > E(b).

However, if the agent considers opening two boxes, then there is a chance that E(a') will fall below 0, implying that

gathering the information from two boxes would be useful to the agent. Analogous arguments generalize to the case

of continuous information densities.
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revealed by the cognitive operator. We motivate equation (1) below, but first present an example

calculation.

In the game shown in Figure 2, consider a cognitive operator Oz
H that explores three boxes in

row H. The initial expected value of H is h = —28. The best current alternative is row C, which

has a current payoff of c = 23. So the estimated value gap between H and the best alternative is

xo = \h — c\ = 51.

A box in column n will reveal a payoff r\Hn with variance (40.8) (1 — n/10), and the updated value

of H after the three boxes have been opened will be

h' = -28 + r]H2 + Vm + VH4-

Hence the variation revealed by the cognitive operator is

(Q
o 7 \

To
+

To
+
To)'

i.e. oo = 63.2. So the benefit of the cognitive operator is w(xo,&o) — 7.5, and its cost is

To • k = 3k.

We now motivate equation (1). To fix ideas, consider a new game. Suppose that the decision-

maker is analyzing row A and will then immediately use that information to choose a row. Assume

that row B would be the leading row if row A were eliminated, so row B is the next best alternative

to row A.

The agent is considering learning more about row A by executing a cognitive operator O^.

Executing the cognitive operator will enable the agent to update the expected payoff of row A from

a to a' = a + e, where e is the sum of the values in the T newly unmasked boxes in row A.

If the agent doesn't execute the cognitive operator, her expected payoff will be

max (a, b)

.
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If the agent plans to execute the cognitive operator, her expected payoff will be

E [max (a', b)] .

This expectation captures the option value generated by being able to pick either row A or row

B, contingent on the information revealed by cognitive operator 0^. The value of executing the

cognitive operator is the difference between the previous two expressions:

E [max (a', 6)] — max (a, b)

.

(2)

This value can be represented with a simple expression. Let a represent the standard deviation

of the change in the estimate resulting from applying the cognitive operator:

a2 = E{a! - a)
2

.

Appendix A shows that the value of the cognitive operator is
11

E [max (a', &)] — max (a, b) — w (a — b,a) . (3)

To help gain intuition about the w function, Figure 3 plots w (x, 1). The general case can be

deduced from the fact that w (x, a) = aw (x/a, 1)

.

The option value framework captures two fundamental comparative statics. First, the value

of a row exploration decreases the larger the gap between the active row and the next best row:

w (x,a) is decreasing in \x\. Second, the value of a row exploration increases with the variability

of the information that will be obtained: w (x, a) is increasing in a. In other words, the more

information that is likely to be revealed by a row exploration, the more valuable such a path

exploration becomes.

3.4. Step 2. Step 2 executes the cognitive operation with the highest ratio of expected benefit

to cost. Recall that the expected benefit of an operator is given by the w(x,a) function and that

the implementation cost of an operator is proportional to the number of boxes that it unmasks.

This result assumes Gaussian innovations, which is the density used to generate the games in our experiment.
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The subject executes the cognitive operator with the greatest benefit/cost ratio
12

,

w{x ,(To) ...G = m
o
ax^f^' (4)

where k is the cost of unmasking a single box. Since k is constant, the subject executes the

cognitive operator

O* = argmaxiu(xo,o"o)/ro-

Appendix B contains an example of such a calculation.

3.5. Step 3. Step 3 is a stopping rule. In games with an exogenous time budget, the subject

keeps returning to step one until time runs out. In games with an endogenous time budget, the

subject keeps returning until G falls below the marginal value of time, which must be calibrated.

3.6. Calibration of the model. We use two different methods to calibrate the marginal value

of time during the endogenous time games.

First, we estimate the marginal value of time as perceived by our subjects. Advertisements for

the experiment implied that subjects would be paid about $20 for their participation, which would

take about an hour. In addition, subjects were told that the experiment would be divided into

two halves, and that they were guaranteed a $5 show-up fee.

Using this information, we calculate the subjects' anticipated marginal payoff per unit time

during games with endogenous time budgets. This marginal payoff per unit time is the relevant

opportunity cost of time during the endogenous time games. Since subjects were promised $5

of guaranteed payoffs, their expected marginal payoff for their choices during the experiment was

about $15. Dividing this in half implies an expectation of about $7.50 of marginal payoffs for the

endogenous time games. Since the endogenous time games were budgeted to take 25 minutes, which

was known to the subjects, the perceived marginal payoff per second of time in the experiment was

(750 cents)/ (25 minutes • 60 seconds/minute) = 0.50 cents/second.

12 Our model thus gives a crude but compact way to address the "accuracy vs simplicity" trade-off in cognitive

processing. See Aragones et al. (2003) for a much more sophisticated treatment.
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Since subjects took on average 0.98 seconds to open each box, we end up with an implied marginal

shadow cost per box opening of

(0.50 cents/second) (0.98 seconds/box) = 0.49 cents/box.

We also explored a 1-parameter version of the directed cognition model, in which the cost of

cognition — k — was chosen to make the model partially fit the data. Calibrating the model

so it matches the average number of boxes explored in the endogenous games implies k = 0.18

cents/box. Here k is chosen only to match the average amount of search per open-ended game, not

to match the order of search or the distribution of search across games.

3.7. Conceptual issues. This model is easy to analyze and is computationally tractable, im-

plying that it can be empirically tested. The simplicity of the model follows from three special

assumptions. First, the model assumes that the agent calculates only a partially myopic expected

gain from executing each cognitive operator. This assumption adopts the approach taken by Je-

hiel (1995), who assumes a constrained planning horizon in a game-theory context. Second, the

directed cognition model assumes that the agent uses a fixed positive shadow value of time. This

shadow value of time enables the agent to trade off current opportunities with future opportunities.

Third, the directed cognition model avoids the infinite regress problem (i.e. the costs of thinking

about thinking about thinking, etc.), by implicitly assuming that solving for O* is costless to the

agent.

Without some version of these three simplifying assumptions the model would not be useful

in practice. Without some partial myopia (i.e. a limited evaluation horizon for option value

calculations) , the problem could not be solved either analytically or even computationally. Without

the positive shadow value of time, the agent would not be able to trade off her current activity

with unspecified future activities and would never finish an endogenous time game without first

(counterfactually) opening up all of the boxes. Finally, without eliminating cognition costs at some

primitive stage of reasoning, maximization models are not well-defined.
13

We return now to the first of the three points listed in the previous paragraph: the perfectly

See Conlisk (1996) for a description of the infinite regress problem and an explanation of why it plagues all

decision cost models. We follow Conlisk in advocating exogenous truncation of the infinite regress of thinking.
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rational attention allocation model is not solvable in our context. An exact solution of the perfect

rationality model requires the calculation of a value function with 17 state variables: one expected

value for each of the 8 rows, one standard deviation of unexplored information in each of the 8

rows, and finally the time remaining in the game. This dynamic programming problem in R17

suffers from the curse of dimensionality and would overwhelm modern supercomputers. 14 By

contrast, the directed cognition model is equivalent to 8 completely separable problems, each of

which has only two state variables: x, the difference between the current expected value of the row

and the current expected value of the next best alternative row; and a, the standard deviation of

unexplored information in the row. So the "dimensionality" of the directed cognition model is

only 2 (compared to 17 for the model of perfect rationality).

Although this paper does not attempt to solve the model of perfectly rational attention allo-

cation (or to test it) , we can compare the performance of the partially myopic directed cognition

model and the performance of the perfectly rational model. Like the directed cognition model,

the perfectly rational model assumes that examining a new box is costly and that calculating the

optimal search strategy is costless (analogous to our assumption that solving for O* is costless).

Appendix C gives lower bounds on the payoffs of the directed cognition model relative to the payoffs

of the perfectly rational model. Directed cognition does at least 91% as well as perfect rationality

for exogenous time games and at least 71% as well as perfect rationality for endogenous time games.

3.8. Other decision algorithms. In this subsection, we discuss three other models that we

compare to the directed cognition model. The first two models are simple, mechanical search

rules, which can be parameterized as variants of the satisficing model (Simon 1955). These first

two models are just benchmarks, which are presented as objects for comparison, not as serious

candidate theories of attention allocation. The third model — Elimination by Aspects (Tversky

1972) — is the leading psychology model of choice from a set of multi-attribute goods.

The Column model unmasks boxes column by column, stopping either when time runs out (in

14 Approximating algorithms could be developed, but after consulting with experts in operations research, we
concluded that existing approximation algorithms cannot be used without a prohibitive computational burden. The
Gittins index (Gittins 1979, Weitzman 1979, Weitzman and Roberts 1980) does not apply here either - for much the

same reason it does not apply to most dynamic problems. In Gittins's framework, it is crucial that one can only do
one thing to a row (an "arm"): access it. In contrast, in our game, a subject can do more than one thing with a row.

She can explore it further, or take it and end the game. Hence our game does not fit in Gittins' framework. We
explored several modifications of the Gittins index, but they proved unfruitful at breaking the curse of dimensionality.
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games with exogenous time budgets) or stopping according to a satisficing rule (in games with

endogenous time budgets). Specifically the Column model unmasks all the boxes in column 2

(top to bottom), then in column 3,..., etc. In exogenous games, this column-by-column unmasking

continues until the simulation has explored the same number of boxes as a 'yoked' subject. 15 In

endogenous games, the unmasking continues until a row has been revealed with an estimated

value greater than or equal to ACoiuTan model
;
an aspiration or satisficing level estimated so that

the simulations generate an average number of simulated box openings that matches the average

number of empirical box openings (26 boxes per game).

The Row model unmasks boxes row by row, starting with the "best" row and moving to the

"worst" row, stopping either when time runs out (in games with exogenous time budgets) or

stopping according to a satisficing rule (in games with endogenous time budgets). Specifically

the Row model ranks the rows according to their values in column 1. Then the Row model

unmasks all the boxes in the best row, then the second best row, etc. In exogenous games, this

row-by-row unmasking continues until the simulation has explored the same number of boxes as

a yoked subject (see previous footnote). In endogenous games, the unmasking continues until a

row has been revealed with an estimated value greater than or equal to ARow model
, an aspiration

or satisficing level estimated so that the simulations generate an average number of simulated box

openings that matches the average number of empirical box openings.

A choice algorithm called Elimination by Aspects (EBA) has been widely studied in the psy-

chology literature (see work by Tversky 1972 and Payne, Bettman, and Johnson 1993). We apply

this algorithm to our decision framework to analyze games with endogenous time budgets. We

use the interpretation that each row is a good with 10 different attributes or "aspects" represented

by the ten different boxes of the row. Our EBA application assumes that the agent proceeds

aspect by aspect (i.e. column by column) from left to right, eliminating goods (i.e. rows) with an

aspect that falls below some threshold value AEBA . This elimination continues, stopping at the

point where the next elimination would eliminate all remaining rows. At this stopping point, we

pick the remaining row with the highest estimated value. As above, we estimate ^4
EBA so that

the simulations generate an average number of simulated box openings that matches the average

5
In such a yoking, the simulation is tied to a particular subject. If that subject opens N boxes in game g, then

the yoked simulation opens TV boxes in game g.
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number of empirical box openings.

4. Results

4.1. Subject Pool. Our subject pool is comprised of 388 Harvard undergraduates. Two-thirds

of the subjects are male (66%). The subjects are distributed relatively evenly over concentrations:

11% math or statistics; 21% natural sciences; 20% humanities; 29% economics; and 20% other

social sciences. In a debriefing survey we asked our subjects to report their statistical background.

Only 15% report taking an advanced statistics class; 40% report only an introductory level class;

45% report never having taken a statistics course.

Subjects received a mean total payoff of $29.23, with a standard deviation of $5.49. Payoffs

range from $13.07 to $46.69. 16 All subjects played 12 games with exogenous times. On average

subjects chose to play 28.7 games under the endogenous time limit, with a standard deviation of

7.9. The number of games played ranges from 21 to 65.

Payoffs do not systematically vary with experimental experience. To get a sense of learning,

we calculate the average payoff X (k) of games played in round k = 1, ..., 12 of the exogenous time

games. We calculate XB
(k) for the exogenous games played Before the endogenous games and

XA
(k) for the exogenous games played After the endogenous games. We estimate a separate

regression X (k) = a + fik for the Before and After datasets. We find that in both regressions,

/3 is not significantly different from 0, which indicates that there is no significant learning within

exogenous time games. Learning would imply /? > 0. Also, the constant a is statistically indis-

tinguishable across the two samples. Playing endogenous time games first does not contribute to

any significant learning in exogenous time games. Hence we fail to detect any significant learning

in our data. 17

4.2. Statistical methodology. Throughout our analysis we report bootstrap standard errors

for our empirical statistics. The standard errors are calculated by drawing, with replacement, 500

samples of 388 subjects. Hence the standard errors reflect uncertainty arising from the particular

16
Payoffs show little systematic variation across demographic categories. In light of this, we have chosen to adopt

the useful approximation that all subjects have identical strategies. Relaxing this assumption is beyond the scope

of the current paper, but we regard such a relaxation as an important future research goal.
17 See e.g. Camerer (2003), Camerer and Ho (1999) and Erev and Roth (1998) for some examples of problems

where learning plays an important role.
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sample of 388 subjects that attended our experiments. Our point estimates are the bootstrap

means. In the figures discussed below, the confidence intervals are plotted as dotted lines around

those point estimates.

We also calculated Monte Carlo means and standard errors for our model predictions. The

associated standard errors tend to be extremely small, since the strategy is determined by the

model. In the relevant figures (4-9), the confidence intervals for the model predictions are visually

indistinguishable from the means. 18

To calculate measures of fit of our models, we generate a bootstrap sample of 388 subjects

and calculate a fit statistic that compares the model predictions for that bootstrap sample to

the associated data for that bootstrap sample. We repeat this exercise 500 times to generate a

bootstrap mean fit statistic and a bootstrap standard error for the fit statistic.

4.3. Games with exogenous time budgets. We begin by analyzing attention allocation

patterns in the games with exogenous time budgets. Our analysis focuses on the pattern of box

openings across columns and rows. We compare the empirical patterns of box openings to the

patterns of box openings predicted by the directed cognition model.

We begin with a trivial prediction of our theory: subjects should always open boxes from left to

right, following a declining variance rule. In our experimental data, subjects follow the declining

variance rule 92.6% of the time (s.e. 0.7%19
). Specifically, when subjects open a previously

unopened box in a given row, 92.6% of the time that box has the highest variance of the as-yet-

unopened boxes in that row. For reasons that we explain below, such left-to-right box openings

may arise because of spatial biases instead of the information processing reasons implied by our

theory.

Now we consider the pattern of search across columns and rows. Figure 4 reports the average

number of boxes opened in columns 2-10. We report the average number of boxes unmasked,

column by column, for both the subject data and the model predictions.

The empirical profile is calculated by averaging together subject responses on all of the exoge-

nous games that were played. Specifically, each of our 388 subjects played 12 exogenous games,

1
In Figures 4-9, the width of the associated confidence intervals for the models is on average only one-half of one

percent of the value of the means.
19The units here refer to percentage points, not to a percentage of the point estimate.
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yielding a total of 388 x 12 = 4656 exogenous games played. To generate this total, each subject

was assigned a subset of 12 games from a set of 160 unique games. Hence, each of the 160 games

was played an average of 4656/160 ~ 30 times in the exogenous time portion of the experiment.

To calculate the empirical column profile (and all of the profiles that we analyze) we count only

the first unmasking of each box. So if a subject unmasks the same box twice, this counts as only one

opening. Approximately 90% of box openings are first-time unmaskings. We do not study repeat

unmaskings because they are relatively rare in our data and because we are interested in building

a simple and parsimonious model. Hence, we only implicitly model memory costs as a reduced

form. Memory costs are part of the (time) cost of opening a box and encoding/remembering its

value, which includes the cost of mechanically reopening boxes whose values were forgotten. 20

Figure 4 also plots the theoretical predictions generated by yoked simulations of our model. 21

Specifically, these predictions are calculated by simulating the directed cognition model on the

exact set of 4656 games played by the subjects. We simulate the model on each game from this set

of 4656 games and instruct the computer to unmask the same number of boxes that was unmasked

by the subject who played each respective game.

The analysis compares the particular boxes opened by the subject to the particular boxes opened

by the yoked simulation of the model. Figure 4 reports an R'2 measure, which captures the extent

to which the empirical data matches the theoretical predictions. This measure is simply the R2

statistic
22 from the following constrained regression: 23

Boxes(col) = constant + Boxes{col) +e(col).

Here Boxes(col) represents the empirical average number of boxes unmasked in column col and

An extension of this framework might consider the case in which the memory technology include memory capacity

constraints or depreciation of memories over time.

See footnote 15 for a description of our yoking procedure.
22
In other words,

Y^jcoI \Boxes{col) - (Boxes) — Boxes(col) + (Boxes)
]R =

^ :

/ - /_— \\2
Ylicol [Boxes(col) — (Boxes) I

where (} represents empirical means.
3
In this section of the paper, the constant is redundant, since the dependent variable has the same mean as the

independent variable. However, in the next subsection we will consider cases in which this equivalence does not hold,

necessitating the presence of the constant.
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Boxes(col) represents the simulated average number of boxes opened in column col. Note that col

varies from 2 to 10, since the boxes in column 1 are always unmasked. This R'2 statistic is bounded

below by —oo (since the coefficient on Boxes(col) is constrained equal to unity) and bounded

above by 1 (a perfect fit) . Intuitively, the R'2
statistic represents the fraction of squared deviations

around the mean explained by the model. For the column predictions, the R'2 statistic is 86.6%

(s.e. 1.7%), implying a very close match between the data and the predictions of the model.

Figure 5 reports analogous calculations by row. Figure 5 reports the number of boxes opened

on average by row, with the rows ranked by their value in column one. (Recall that column one is

never masked.) We report the number of boxes opened on average by row for both the subject data

and the model predictions. As above, the model predictions are calculated using yoked simulations.

Figure 5 also reports an R'2 measure analogous to the one described above. The only difference

is that now the variable of interest is Boxes(row), the empirical average number of boxes opened

in row row. For our row predictions our R'2 measure is -16.1% (s.e. 9.2%), implying a poor match

between the data and the predictions of the model. The model simulations predict too many

unmaskings on the top ranked rows and far too few unmaskings on the bottom ranked rows. The

subjects are much less selective than the model. The R'2 is negative because we constrain the

coefficient on simulated boxes to be unity. This is the only bad prediction that the model makes.

Figure 6 reports similar calculations using an alternative way of ordering rows. Figure 6 reports

the number of boxes opened on average by row, with the rows ranked by their values at the end of

each game. For our row predictions the R'2 statistic is 86.7% (s.e. 1.4%).

4.4. Endogenous games. We repeat the analysis above for the endogenous games. As dis-

cussed in section 3, we consider two variants of the directed cognition model when analyzing the

endogenous games. We calibrate one variant by exogenously setting k to match the subjects' ex-

pected earnings per unit time in the endogenous games: k = 0.49 cents/box opened (see calibration

discussion in section 3). With this calibration, subjects are predicted to open 15.67 boxes per game

(s.e. 0.01). In the data, however, subjects open 26.53 boxes per game (s.e. 0.55). To match this

frequency of box opening, we consider a second calibration with k = 0.18. With this lower level of

k, the model opens the empirically "right" number of boxes.

We begin with an evaluation of the declining variance rule. In our endogenous games, subjects
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follow the declining variance rule 91.0% of the time (s.e. 0.8%). Specifically, when subjects open

a previously unopened box in a given row, 91.0% of the time that box has the highest variance of

the as-yet-unopened boxes in that row.

Figure 7 reports the average number of boxes unmasked in columns 2-10 in the endogenous

games. We report the average number of boxes unmasked by column for the subject data and for

the model predictions with k = 0.49 and n = 0.18.

The empirical data is calculated by averaging together subject responses on all of the endogenous

games that were played. The theoretical predictions are generated by yoked simulations of our

model. Specifically, we use the directed cognition model to simulate play of the 10,931 endogenous

games that the subjects played. The model generates its own stopping rule (so we no longer yoke

the number of box openings).

Figure 7 also reports the associated R statistic for these column comparisons in the endogenous

games. For these endogenous games, the column R'2 statistic is 96.3% (s.e. 1.4%) for n = 0.49

and 73.1% (s.e. 4.2%) for « = 0.18.

Figure 8 reports analogous calculations by row for the endogenous games. Figure 8 reports

the number of boxes opened on average by row, with the rows ranked by their values in column

one. We report the mean number of boxes opened by row for both the subject data and the model

predictions. For these endogenous games, the row R'2
statistics are 85.3% (s.e. 1.3%) for k = 0.49

and 64.6% (s.e. 2.4%) for k = 0.18.

Figure 9 reports similar calculations using the alternative way of ordering rows. Figure 9

reports the number of boxes opened on average by row, with the rows ranked by their values at the

end of each game. For these endogenous games, the alternative row R'2
statistics are 91.8% (s.e.

0.5%) for k = 0.49 and 84.5% (s.e. 0.8%) for k = 0.18.

These figures show that the model explains a very large fraction of the variation in attention

across rows and columns. However, a subset of the results in this section are confounded by an

effect that Costa-Gomes, Crawford, and Broseta (2001) have found in their analysis. In particular,

subjects who use the Mouselab interface tend to have a bias toward selecting cells in the upper left

corner of the screen and transitioning from left to right as they explore the screen.

The up-down component of this bias does not affect our results, since our rows are randomly

ordered with respect to their respective payoffs. The left-right bias affects only our column results
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(figures 4 and 7) , since information with greater economic relevance is located toward the left-hand

side of the screen.

One way to evaluate this column bias would be to flip the presentation of the problem dur-

ing the experiment so that the rows are labeled on the right and variance declines from right

to left. Alternatively, one could rotate the presentation of the problem, swapping columns and

rows. Unfortunately, the internal constraints of Mouselab make either of these relabelings impos-

sible.
24 Future work should use a more flexible programming language that facilitates such spatial

rearrangements. Finally, we note that neither the up-down nor the left-right biases influence any

of our analyses of either row openings (above) or endogenous stopping decisions (below).

4.5. Stopping Decisions in Endogenous Games. Almost all of the analysis above reports

within-game variation in attention allocation. The analysis above shows that subjects allocate most

of their attention to economically relevant columns and rows within a game, matching the patterns

predicted by the directed cognition model. Our experimental design also enables us to evaluate how

subjects allocate their attention between games. In this subsection we focus on several measures

of such between-game variation.

First, we compare the empirical variation in boxes opened per game to the predicted variation

in boxes opened per game. Most importantly, we ask whether the model can correctly predict

which games received the most attention from our subjects. Our experiment utilized 160 unique

games, though no single subject played all 160 games. Let Boxes(g) represent the average number

of boxes opened by subjects who played game g. Let Boxes(g) represent the average number of

boxes opened by the model when playing game g. In this subsection we analyze the first and second

moments of the empirical sample {Boxes(g)}
1̂
and the simulated sample {Boxes(g)} 1

1̂
. Note

that these respective vectors each have 160 elements, since we are analyzing game-specific averages.

We begin by comparing first moments. The empirical (equally weighted) mean of Boxes(g)

is 26.53 (s.e. 0.55). By contrast the 0-parameter version of our model (with k = 0.49) generates

a predicted mean of 15.67 (s.e. 0.01). Hence, unless we pick k to match the empirical mean (i.e.

24 However, one could leave the labels on the left and have the unobserved variances decline from right to left. In

this design, the displayed cells would have the minimal variance instead of the maximal variance. Such a design

would eliminate the old left-right bias, but it would create a new bias by making the row "label" appear on the

opposite side of the screen from where search should (theoretically) begin.
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re = 0.18), our model only crudely approximates the average number of boxes opened per game.

We turn now to second moments. The empirical standard deviation of Boxes(g) is 6.32 (s.e.

0.14), while the 0-parameter version of our model (with re = 0.49) generates a predicted standard

deviation of 12.05 (s.e. 0.03). Moreover, when we set re = 0.18 to match the average boxes per game,

the standard deviation rises to 15.85 (s.e. 0.03). The relatively high standard deviations from the

simulations reflect the model's sophisticated search strategy The model continuously adjusts its

search strategies in response to instantaneous variation in the economic incentives that the subjects

face. By contrast, the subjects are less sensitive to high frequency variation in economic incentives.

Despite these shortcomings, the model successfully predicts the pattern of empirical variation

in the number of boxes opened in each game. The correlation between Boxes(g) and Boxes(g) is

0.66 (s.e. 0.02) when we set re = 0.49. Similarly, the correlation is 0.61 (s.e. 0.02) when we set

re = 0.18. See Figure 10 for a plot of the individual (160) datapoints for the re = 0.18 case. These

high correlations imply that the model does a good job predicting which games the subjects will

analyze most thoroughly.

The model also does a good job predicting the relationship between economic incentives and

depth of analysis. Figure 11 plots a non-parametric kernel estimate of the expected number of

additional box openings in a game, conditional on the current value of the ratio of the benefit of

marginal analysis to the cost of marginal analysis (see eq. 4)

:

w{xo,ao)
G = max-

O kTo

Recall that xo is the gap between the expected value of the current row and the expected value

of the next best row, ao is the standard deviation of the information which is revealed by mental

operator O, and To is the number of boxes opened by mental operator O.

The solid line represents the subject data. The light dashed line represents the relationship

predicted by the model (with re = 0.18). The figure also shows bootstrap estimates of the 99%

confidence intervals. For most levels of G (the benefit-cost ratio), the model's predictions are close

to the pattern in the subject data. Subjects do more analysis (i.e. open up more boxes) when the

economic incentives to do so are high. Moreover, the functional form of this relationship roughly

matches the form predicted by the theory.
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We also evaluate the directed cognition model by asking whether G predicts when subjects

decide to stop working on the current game and move on to the next game. We run a stopping

logit (1 = stop, = continue) with explanatory variables that include the measure of the economic

value of continued search (or G), the number of different boxes opened to date in the current

game (boxes), the expected value in cents of the leading row in the current /V-good game (leader),

and subject fixed effects. Note that satisficing models predict that G and boxes should not have

predictive power in this logit regression, but that a higher value of the leader variable will increase

the stopping probability.

Each observation for this logit is a decision-node (i.e. a choice over mouse clicks) in our en-

dogenous games, generating 330,873 observations.25 We find that the variables with the greatest

economic significance are G and boxes, with G playing the most important role. The coeffi-

cient on G is -0.3660 (with standard error 0.0081); the coefficient on boxes is 0.0404 (0.0008);

the coefficient on leader is 0.0064 (0.0002). At the mean values of the explanatory variables, a

one-standard deviation reduction in the value of G more than doubles the probability of stopping.

A one-standard-deviation increase in the value of boxes has an effect roughly 1/2 as large and a

one-standard-deviation increase in the value of leader has an effect less than 1/4 as large.

The logistic regression shows that the economic value of information — G — is by far the most

important predictor of the decision to stop searching. However, our subjects are also using other

information, as shown most importantly by the strong predictive power of the boxes variable. If

subjects place partial weight on the uboxes heuristic" — i.e. increasing the propensity to stop

analyzing the current A^-good game as more and more boxes are opened — they will be less likely

to spend a long time on any one game. For an unsophisticated player who can only imperfectly

calculate G, the boxes heuristic is a useful additional decision input. We view our subjects' partial

reliance on boxes as an example of sensible — perhaps constrained optimal — decision-making.

The predictive power of the boxes variables supports experimental research on "system neglect"

by Camerer and Lovallo (1999) and Massey and Wu (2002). These authors find that subjects use

~ 5
In other terms, we estimate:

expf5 x)
Probability of continuation = — "

1 + exp(P'x)

'

where x is a vector of decision-node attributes, and /3 is the vector of estimated coefficients.
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sensible rules, but fail to adjust those rules adequately to the particular problem at hand. The boxes

heuristic is a good general rule, but it is not the first-best rule since it neglects the idiosyncratic

incentives generated by each specific iV-good game. The boxes heuristic is a type of imperfectly

sophisticated attention allocation.

Finally, our experiment reveals another bias that we have not emphasized because we are

uncertain about its generalizability to other classes of games. Specifically, our subjects allocated

too much time per game in the endogenous games. Subject payoffs would have been higher if they

had generally collected less information in each game, thereby enabling them to play more games.

Exploring the robustness of this finding is a goal for future research.

4.6. Comparisons with Other Models. The analysis to date focuses on the predictions of

the directed cognition model. In this subsection we consider alternative models and evaluate

their performance. Table 1 reports R'2 measures for all of the alternative models summarized in

subsection 3.8.

None of these benchmarks does nearly as well as the zero-parameter directed cognition model.

For the exogenous games, the directed cognition model has an average R'2 value of 52.4% (with

a standard deviation of 3.4 percentage points). The Column and Row models have respective

averages of -18.8% (s.e. 6.4%) and -137.4% (s.e. 13.9%).

For the endogenous games, the zero-parameter directed cognition model has an average R'2 of

91.2% (s.e. 0.7%). The Column model with a satisficing stopping rule has an average Rl2 of 42.9%

(s.e. 0.7%). The Row model with a satisficing stopping rule has an average R'2 of 55.4% (s.e.

0.4%). The Elimination by Aspects model has an average R'2
of -6.3% (s.e. 6.2%).

We also evaluate the different models' ability to forecast game-by-game variation in average

time allocation. 26 Table 1 shows that all of the satisficing models yield effectively no correlation

between the game-by-game average number of box openings predicted by these models and the

game-by-game average number of box openings in the data. The Elimination by Aspects model

actually has a large negative correlation. By contrast, the zero-parameter directed cognition model

generates predictions that are highly correlated (0.66) with the empirical average boxes opened by

26
Recall that this analysis uses the average number of boxes opened per game for the 160 unique games in the

dataset. This data is compiled from the endogenous time segment of the experiment.
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game.

5. Conclusion

A rapidly growing literature shows that limited attention can play an important role in economic

analysis. Most of the papers in that literature have assumed that scarce attention is allocated

according to cost-benefit principals. In this paper we develop a tractable framework for such

cost-benefit analysis, and we directly measure the attention allocation process. We report the first

direct empirical test of an economic cost-benefit model of endogenous attention allocation.

Our research was conducted with a stylized choice problem that makes it possible to measure

attention allocation with a well-understood laboratory method (i.e. Mouselab). In this sense, our

choice problem was a natural starting point for this research program.

The directed cognition model successfully predicts the key empirical regularities of attention

allocation measured in our experiment. Moreover, the model makes these predictions without

relying on extraneous parameters. Instead, the model is based on cost-benefit principles.

Understanding how decision-makers think about complex problems is a relatively new frontier

in economic science. We believe that understanding the cognitive processes underlying economic

choices will further economists' understanding of the choices themselves. Stripping back decision-

making to the level of cognitive processes poses a fundamental set of long-run research goals.

The study of cognitive processes in economic decision-making is still in its infancy, particularly

the study of attention allocation. But we are optimistic that such process-based research will

ultimately pave the way for a science of decision-making with much greater predictive power than

the classical "as if modeling that treated cognition as a closed black box. This paper joins a

growing body of work that pries open that box (e.g. Camerer et al. 1993 and Costa-Gomes,

Crawford, and Broseta 2001). We look forward to future process-based research that will open the

box more completely.
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6. Appendix A: Derivation of equation (3)

To gain intuition for equation (3), begin by assuming that b > a. In this case,

.
j

if 6>a + E
max [a ,b) — max (a, b) = <

|
a + £ — 6 if 6 < a + e

Because e is drawn from a Normal(0, a2
) distribution, integrating over the relevant states yields

the right-hand-side of equation (3):

/"(.+«_»),(£)*_'/- (e _| o _ 6
|)0 (i)*

Jb-a KcrJ °"
J\a-b\ V CT y cr

We can re-express the option value formula by noting that x(j) (x) = —(f)' (x), so that:

= il> (|a — 6| ,a) .

Likewise, when b < a,

,,. !;6 — aif6>a + e
max (a , 6J

— max (a, 6) = <

le if b < a + e

Integrating over the relevant states again yields the right-hand-side of equation (3):

= u; (\b — a\ , a)

.

7. Appendix B: Example calculation of G

Consider a game where the payoffs in column 1 are drawn from a N(0,a2
) distribution. The

variance of payoffs in column n is then a\ = a2 (II — n) /10, for n E {1...10}. Call rjmn the payoff

of the box located in row m and column n. Using this notation, the current expected value of row
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A is

a = J2 VAn
already opened boxes n in row A

Suppose that at the current time in row A a subject has already opened boxes {1,2,4,7,8} and

that boxes {3, 5, 9, 10} remain unopened.27 The current value of row A is

a = VAl + VA2 + VA4 + VA7 + VA8

Call a the value of the current best alternative to row A. In most instances a is the value of the

leading row, except if A is itself the leading row itself, in which case a is the value of the second

leading row.

The relevant cognitive operators for exploring row A are 'open box 3,' 'open boxes 3 and 5,'

'open boxes 3, 5, and 9' and 'open boxes 3, 5, 9, and 10.' Their costs are respectively 1, 2, 3 and 4.

So, if x = a — a , then the value of the benefit/cost ratio Ga of row A is,

Ga = max{ii> (2,0-3) ,w( x,Jcrl+al ) /2,w( x,\Io\-\-o\+g\ \ /3,

>(x,yj'al+al+4+a\A /4}w\

x = a — a

and the value of G at the current time is simply the highest possible benefit/cost ratio across all

rows:

G = maxGn .

n

Finally, note that the highest benefit/cost ratio may be associated with a cognitive operator

that opens more than one box. For example, consider a case in which no boxes have been opened

in a game in which the leading row and the next best row differ by 3<7i. Hence, if only one box is

opened, a three-sigma event (p = 0.0013) is required to generate a rank reversal in the rows. By

contrast, if two boxes are opened, the chance of reversal is 11 time greater. Specifically, the standard

2T
This pattern of box openings — {1,2, 4, 7, 8} — would not arise under the model, since the model would never

skip a column. However, such skips can arise in experimental play, and hence the directed cognition model must be

able to handle such cases if it is used to predict continuation play (e.g., stopping decisions).
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deviation of aggregated noise in the two box case is a = \Jo\ + (0.9) a\. Since 3ui/'y'a\ + (0.9) a\ =

3/\/l^9 = 2.2, we only require a 2.2-sigma event (p = 0.0146) in the two-box case to generate a

rank reversal. Hence, the two-box cognitive operator may be much more cost effective (when

evaluated by the directed cognition algorithm) than the one-box cognitive operator, since the two-

box cognitive operator increases the chance of reversal by a factor of 11 but only has twice the

cognitive cost.

8. Appendix C: Lower bounds for the performance of the directed cognition

ALGORITHM

We wish to evaluate how well directed cognition does compared to the Perfectly Rational solution

of a model with calculation costs. Perfect Rationality's complexity makes it prohibitively hard

to evaluate. Here we provide bounds on its performance. We will show that directed cognition

performs at least 91% as well as Perfect Rationality for exogenous time games and at least 71% as

well as Perfect Rationality for endogenous time games.

A useful benchmark is that of Zero Cognition Costs, i.e. the performance of an algorithm that

could inspect all the boxes at zero cost. We first evaluate Zero Cognition Costs' performance for

a game with standard deviation of the first column a. Each of the 8 rows will have a value which

(
w V

/2

is a normal with mean and standard deviation a times [ Vj/10 = 5.5
1 /2

. Zero Cognition

Costs will select the best of those 8 values. The expected value of the maximum of 8 i.i.d. N (0, 1)

variables is:

v ~ 1.423. (5)

So the average performance of Zero Cognition Costs will be 5.5 X/2 ZA7 ~ 3.34a. We gather this as

the following Fact.

Fact: The average payoff V* of the optimal algorithm will be less than 3.34cr.

V* < 3.34<t. (6)

We use this result to analyze exogenous and endogenous time games.
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8.1. Exogenous time games. We simulate the performance of the directed cognition algo-

rithm on a large number of i.i.d. games with the same stochastic structure as in the experiments,

and unit standard deviation of the first column. The time allocated is randomly drawn from [lOsec,

49sec], as in the experiment. The performance of directed cognition is on average 3.064. Applying

inequality (6), the performance of Perfect Rationality is less than 3.34, so directed cognition's rel-

ative performance is at least 3.064/3.34 = 0.917. Hence, directed cognition does 91% as well as

Perfect Rationality in exogenous time games.

8.2. Endogenous time games. Monte-Carlo simulations determine the performance ofVDC (<x, k)

in games of standard deviation a, defined as the expected value of the chosen rows minus k, the

cost of time, times the time taken to explore the games. Call V* (a, k) the performance of Full

Rationality. The relative performance of directed cognition is:

VDC (a,K)

By definition 7r (<r, k) < 1. We now look for an upper bound on V* (a, k). We consider a

generic game G with a first column of unit variance. The cost of exploring t boxes is nt . V* is

the expected value under the optimal strategy. Call rjA i, ...,rjH i
the values of the 8 rows in column

1, and £ = max{r]A1 , ,TjHi } the highest valued box in the first column. The game G has thus a

lower value than the game G' that would have equal values of £ in the first column: V* < VG
. The

expected value of G" is the expected payoff of the first column, E [£] = v ~ 1.42, plus the value of

a game G" that has zeroes in the first column. VG = VG + v. So

V* < VG" + v

Game G" has the structure of our games, with zeros in column 1. It has 8 rows. Thus, it

has lower value than a game G'" that has an infinite number of rows, and the same stochastic

structure otherwise: column 1 has boxes of value 0, and column n 6 {2, ..., 10} has boxes with

variance (N+l-n)/N with N = 10 columns. VG" < VG'"
. The value M ~ VG'"

of G'" has the

property similar to a Gittins index. Indeed, suppose that one is thinking about exploring a new

row. Without loss of generality call that row A. One will stop exploring this row after stopping in
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column r. Call at the value of that row after exploring column 2 through t. So we have:

i-l / AT \ 1/2

VA,n+lEly — n \

(rir)

where the r\Ar^s are i.i.d. standard normals. In game G'" we have a\ = 0. At the end of the

exploration of this row, one can either pick the box, which has a value aT ,
or drop the current row,

and start the game from scratch, which has a value M = VG . So the payoff after exploring the

row is max (aT , M). So the value M of game G'" satisfies:

M= max E [max-(.aTj M) — k (r - 1) | ai = 0]

.

stopping time t

i.e.

= max E [max (aT - M, 0).
- « (r - . I)

|
a\ = 0]

.

(8)
stopping time r

Call u (a,t, k) the value of the game28 that has explored up to column t, has current payoff a,

and that at the end of the search r yields a payoff max (ar , 0) minus the cognition costs k(t — t).

Formally:

v (a, t, k) = max E [max (ar , 0) — k(t — t)
\

a t
= a]

stopping time r>t

for a 6 M, t G {1, ..., 10}, «; > 0. Because of (8), the value of the game M (k) satisfies v (—M, 1, k) =

0, and by standard properties of value functions it is the smallest real with that property:

M (k) = min {x > s.t. v (-x, 1, k) = 0}

Using (5), we conclude that

V* < 1.42 + M(«).

for a game of a unit standard deviation. As V* {a, k) is homogenous of degree 1, the inequality for

a general a is:

V* (a, k) < 1.42(7 + crM (k/<t) .

3
In terms of Gabaix and Laibson (2002), this is the value function of an "a vs 0" game.
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Full Rationality does less well that Zero Cognition Costs, so (6) gives:

V*{a,n) < 3.34o-

We combine those two inequalities using the fact that V is convex in k, which comes from the

usual replication arguments. This gives:

V* {a, k) < V* (a, k)

where V (a, k) is the convex envelope29 of 3.34ct and 1.42<r + aM (k/ct), seen as functions of k.

Eq. (7) finally gives

Tr{a,K)>7L:=miVDC (a,K)/V*(a,K) (9)
<r,re

We evaluate n numerically, and find tt_ = 0.71. We conclude that directed cognition does at least

71% as well as Full Rationality in endogenous games.

29 As we take the lower cord between and 3.34cr and 1.42cr + aM (ko/c), this gives, formally:

V (a, k) = min (l - —
)
3.34c7 + — (1.42ct + aM (so/ff)) .
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Table 1 : Evaluation of Alternative Models

Games with Exogi

Directed

Cognition

No

snous Time Budgets

Column Row

Model Model

No No

Games with Endogenous Time Budgets

Directed

Cognition

Column Row

Directed Model Model

Cognition Satisficing Satisficing

Directed

Cognition Elimination

Satisficing by Aspects

Free parameters? No k = 0.18 S = 42 S = 43 S = 45 A = -6

R'
2
for column profile 86.6% -107.7% 39.3% 96.3% 73.1% 79.7% 34.5% 75.3% -70.4%

(1.7%) (18.7%) (0.9%) (1.4%) (4.2%) (1.8%) (0.9%) (1.5%) (18.4%)

R'
2
for row profile -16.1% 26.2% -540.6% 85.3% 64.6% 25.1% 88.6% 65.6% -31.1%

(9.2%) (0.5%) (0.4%) (1.3%) (2.4%) (0.4%) (0.7%) (1.0%) (0.7%)

R'
2
for alt. row profile 86.7% 25.0% 89.1% 91.8% 84.5% 23.8% 43.0% 53.3% 82.5%

(1.4%) (0.4%) (1.5%) (0.5%) (0.8%) (0.3%) (0.6%) (0.8%) (0.8%)

Average R'
2

52.4% -18.8% -137.4% 91.2% 74.1% 42.9% 55.4% 64.7% -6.3%

(3.4%) (6.4%) (13.9%) (0.7%) (1.7%) (0.7%) (0.4%) (0.6%) (6.2%)

Correlation with Empirical

Number of Boxes per Game ... 0.66 0.61 0.00 0.02 0.03 -0.39

... ... ... (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Bootstrapped standard errors in parentheses.

R'
2
refers to the R2

statistic from a regression of the empirical number of boxes opened by subjects in each row or column on a constant

plus the number of boxes predicted by the models, where the co-efficient on the predictions is fixed to equal 1

.

Correlation refers to the correlation between the number of boxes opened by subjects in each of the 160 games and the number of box

openings predicted by the models.



Figure 1 : Sample Game with All Values Unmasked

In the actual experiment, the subjects see only the value of one box at

a time (see Figure 2). Values in each column are drawn independently

from a normal distribution with the same variance, with variances

declining linearly from left to right. In this sample, the left-most

column is generated with a standard deviation of 30.6 cents, which is

explained to subjects as a 95% confidence interval of-60 to 60 cents.

Figure 2: Sample Game with Values Concealed

This is how a sample game would appear to subjects, with values

concealed by boxes. Subjects can use the mouse to open one box at a

time. In this game the subject faces a set time limit; the clock in the

upper right corner reveals the fraction of time remaining.



Figure 3: w(x,o) for a = 1
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Figure 3 plots the expected benefit from continued

search on an alternative if the difference between

the value of the searched alternative and its best

alternative is x, and the standard deviation of the

information gained is c = 1 as defined in Equation 3.

This w function is homogeneous of degree one.

Figure 4: Column Profiles for Games with Exogenous Time Budgets
6r

DC Model (R'
2 = 86.6%)

5 6 7
Column

10

Figure 4 plots the mean number of boxes opened in each column by subjects

and by the directed cognition model, for games in which time budgets are

imposed exogenously. Dotted lines show the bootstrapped 95% confidence

intervals for the data.



Figure 5: Row Profiles for Games with Exogenous Time Budgets

DC Model (FT = -16.1%)

Data

Row

Figure 5 plots the mean number of boxes opened in each row by subjects and

by the directed cognition model, for games in which time budgets are imposed
exogenously. Dotted lines show the bootstrapped 95% confidence intervals for

the data. The rows are ordered according to the values in the first column.

Figure 6: Row Profiles (alternative ordering) for Games with Exogenous Time Budgets
8r

DC Model (FT = 86.7%)

Row
Figure 6 plots the mean number of boxes opened in each row by subjects and by

the directed cognition model, for games in which time budgets are imposed

exogenously. Dotted lines show the bootstrapped 95% confidence intervals for the

data. The rows are ordered according to all the information available to subjects

after they have concluded their search, just prior to making a choice.



Figure 7: Column Profiles for Games with Endogenous Time Budgets
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DC Model, k = 0.18 (R'
2
= 73.1%)

Data

DC Model, k = 0.49 (R'
2
= 96.3%)
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Figure 7 plots the mean number of boxes opened in each column by subjects

and by both calibrations of the directed cognition model, for games in which

agents choose how much time to allocate from a fixed time budget. Dotted

lines show the bootstrapped 95% confidence intervals for the data.

Figure 8: Row Profiles for Games with Endogenous Time Budgets

Data

DC Model, K := 0.18 (R'
2
= 64.6%)

DC Model, K := 0.49 (R'
2
= 85.3%)

Row

Figure 8 plots the mean number of boxes opened in each row by subjects and
by both calibrations of the directed cognition model, for games in which agents

choose how much time to allocate from a fixed time budget. Dotted lines show
the bootstrapped 95% confidence intervals for the data. The rows are ordered

according to the values in the initial column.



Figure 9: Row Profiles (Alternative Ordering) for Games with Endogenous Time Budgets
8 r
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Figure 9 plots the mean number of boxes opened in each row by subjects

and by both calibrations of the directed cognition model, for games in which

agents choose how much time to allocate from a fixed time budget. Dotted

lines show the bootstrapped 95% confidence intervals for the data. The rows

are ordered according to all the information available to subjects after they

have concluded their search, just prior to making a choice.

45
Figure 10: Boxes Opened by Game

10 20 30 40
Box openings predicted by the model (k= 0.18)

Figure 10 takes each of the 160 game-types played by

subjects and compares the number of boxes opened by

subjects to the number of box openings predicted by the

model, for the games in which agents choose their cross-

game time allocations. The correlation between the

model and the data is .61.



Figure 11: Expected Measure of Economic Gain "G" vs. Expected Remaining Time
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Figure 11 plots non-parametric (kernel) estimates of the expected number
of additional box openings in a game, conditional on the current "G" value. "G"

is the benefit-to-cost ratio of marginal analysis in the directed cognition model,

as defined in equation (4).
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