з 9080 00583082 0

Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium Member Libraries

working paper department of economics

```
Kenne=h R. French
    James M. Poterba
```

massachusetts institute of technology

50 memorial drive cambridge, mass. 02139

ARE JAPANESE STOCK PRICES TOO HIGH?

Kenneth R. French
James M. Poterba

Kenneth R. French
University of Chicago and NBER

James M. Poterba
MIT and NBER

February 1989
Revised February 1990

ABSTRACT

The difference between reported price-earnings ratios in the United States and Japan is not as puzzling as i= appears at first glance. Nearly half the disparity is caused by differences in accounting practices with respect to consolidation of earnings from subsidiaries and depreciation of fixed assets. If Japanese firms used U.S. accounting rules, we estimate the: the P/E ratio for the Tokyo Stock Exchange would have been 32.1, not the reported 54.3, at the end of 1988. Accounting differences are unable, however, to explain the sharp rise in the Japanese stock market during the mid-1980s. Changes in recuired returns on equities, or in investor expectations of future growth for Japanese firms, must be invoked to explain inis phenomenon. Real interest rates declined during the period of rapid price increase, but there is little evidence that growth expectations became more optimistic. The real interest rate changes do not, however, appear large enough to fully account for the change in stock prices.

We are grateful to David Boyle, Milan Brahmbhatt, Fumio Hayashi, Sarah Johnson, Deborah Kesler, Mark Sladkus, Atsushi Suzuki, Takanori Tanabe, Masahiro Tsuji, and Hiroaki Yamaji for provicing us with data, to Eischer Black, Eugene Fama, Takatoshi Ito, Ancrew Lo, Merzon Miller, Myron Scholes, Larry Summers, Mark Wolfson, Kazuo Uedia, and Mark Zmijewski for helpEul discussions, and to Paul Gompers for research assistance. This research was supported by the Alfred P. Sloan Foundation, the Center for Research in Security Prices, the National Institute Eor Research Advancement, and the National Science Foundation. It is part of the NBER Programs in Financial Markets and Monetary Economics and Taxation.

Japanese equities trade at a higher earnings multiple than shares in any other major equity market．At the end of 1989，the price－earnings ratio for the Nomura Research Institute（NRI）350，a broad index of Japanese nonfinan－ cial firms，was 53．7．The comparable ratio for the Standard and Poor＇s Industrial index of American stocks was 15.0 ，and the average P / E ratio for all nations except Japan in the Morgan Stanley－Capital International database was 13．6．

The iarge difference detween price－earnings ratios in japan anc other markets is a recent phenomenon．In the early 1970s，Japanese P / E ratios were below P／Es in the United States．Between 1973 and 1985，Japanese P／Es were approvimately twice those of the United States．Most of the recent divergence between the two P／Es occurred in 1986，when the Japanese ratio doubled from 29.4 to 58.6 while the U．S．P／E increased by only 20ε ，from 15.4 to 18.7.

The developments of the last decade in the Tokyo stock marke＝have led many analysts to ask if high Japanese price－earnings raこios are consisteñ with much lower P／Es in other naこions．Differences could be aこtributed $=0$ differential accounting practices and tax rules winch complicate the iñerna－ tional comparison of $P / E s$ ，or to divergences in requirec returns or expected earnings growth．This papez examines the most important eifferences between U．S．anc japanese Einancial accounting pračices and ここミes to＂cozrect＂ Japanese P／Es for comparison with U．S．values．We then ask：whether the Eapid growth in share values during the 1980 s can be Eraced to Euncamentais such as falling investor discount rates or increased growth expectations．

This paper is Civided into Eive sections．The Eirst presents a stylized overview of the U．S．and Japanese equizy markezs．We repor＝the price－ earnings and cividend－price ratios in both countries，as well as infomation on the size of each equity market，the volume of trade，anc tine composition of shareonnership．The second section relazes the rise in Japanese share prices
to the equally dramatic increase in land values. The escalation of Japanese land prices is simply another manifestation of recently-rising price-earnings multiples for assets in Japan relative to those elsewhere. Our analysis focuses on stock market valuation because available data on common stocks are far better than data on the cash flows from land and other real assets.

Section three explores the influence of accounting differences on the disparity between the price-earnings ratios of the two countries. We show that several factors make japanese price-earnings ratios systematically higher than their U.S. counterparts, but none of these factors can account for the recent increase in Japanese P / E ratios. Section four examines differences in required after-tax returns and expected growth rates in the two countries. We first calibrate the changes in discount factors and growth expectations that would be needed to explain the recent increase in Japanese share values. We then consider various proxies for actual changes in required returns and growth expectations. We find that rather extreme assumptions would be needed to explain the post-1985 increase in Japanese share prices. There is a brief conclusion.

1. Overview of Japanese and U.S. Equity Markezs

The relative importance of the Japanese and U.S. equity markets has shifted dramatically during the last two decades, the result of rapid growth in Japanese share prices and depreciation of the dollar. This section provides background information on these markets.

1.1 Market Size

The widely cited cata from Morgan Stanley-Capital International (MSCI) Perspectives and other data sources imply that the Japanese equity market was 55\% larger than the U.S. market at the end oi 1988 . However, these data
provide a misleading measure of relative market capitalization for two reasons. First, the U.S. data include only shares listed on the New York Stock Exchange (NYSE), thereby capturing less than 85% of the market value of listed U.S. shares. ${ }^{1}$ A second and more important problem is that the reported market values are not adjusted for intercozporate share ownership, which causes double-counting of corporate shares. Because such cross-ownership is much more prevalent in Japan than in the United Stães, the size of the japanese equity market is significantiy overstaced.?

An example illustraces the potential difficulty. Consider an economy with two firms, A and B, each with assezs worth $\$ 100$. If each firm relies exclusively on equity financing and there is no intercorporate omership, the total value of traded equity will be $\$ 200$. Suppose firm B now issues $\$ 50$ in new shares and uses the proceeds to purchase one half of the equity in firm A. This Eransaction increases the markez value of B =0 $\$ 150$ ($\$ 100$ in physical assets and $\$ 50$ in shares of A), without affecting the market value of A. A. though the value of the uncerlying productive assets remains unchanged at $\$ 200$, the intercorporate purchase of stock raises the apparent value of the mazket =0 $\$ 250$.

[^0]The appayent ma:ket value overstates the value of the firms underlying assets because half of A 's assets are included in the equity of both firm A and firm B. One can eliminate this double-counting and get an accurate estimate of the underlying asset value by measuring only the value of equity held outside the corporate sector. In our example, the public holds $\$ 50$ of A and $\$ 150$ of B, so the value of shares held outside the corporate sector is $\$ 200$, the value of the underlying assets. More generally, the value of the equity held outsife the corporate sector is

$$
\begin{equation*}
V_{\text {Outside }}=(1-s) \times V_{\text {Total }} \tag{1}
\end{equation*}
$$

where s is the fraction of the stock held by firms and $V_{\text {Total }}$ is the total value of equity, including corporate crossholdings.

Table 1 reports data on the aggregate ownership of traded shares in both the United States and Japan. ${ }^{3}$ In the United States, individuals hold about half of the outstanding equity either directly or through mutual funds. Intercorporate equity holdings account for only one seventh of total equity. This fraction excluces holdings by cefined-benefit pension plans. The assers of these plans are arguably assezs of the shareholders; including them as corporate crossholcings would raise the intercorporate ownership to over twenty percent. Insurance companies, with holdings for both insurance operations and pension plans, own 23.9 of the market. The remaining equizy

[^1]holdings are diverse. Slighily more than 6 of the equity is held by foreig-n-
ers and a similar fraction held by state and local government pension funds. Corporations of various kinds hold nearly two thirds of the equity in Japan. These holdings includes nonfinancial corporations (30s), banks (20f), and insurance companies (17£). Direct incividual holdings account Eor only one fifth of the market value of the Tokyo Stock Exchange (ISE). Moreover,
 time, from nearly óz $a t$ the beginning of the 1050 s to only 20 f tociay.

Table 2 presents a detailed example of cross-omnership, the case of the Toyota Motor Company. Toyoza omns more than 40 \& four other firms on the TSE First Section, and at least Eive percent of twenty-two other companies. Most of these firms supply Toyota with inputs. In Eurn, several bantis own nearly 30 \& of Toyoza's stock. For many other firms, especially those which, unlike Toyota, are part of loosely-affiliated corporate groups, the cegree of intercozporate holding is substantialiy greãez.4

Table 3 presenzs both unacjusted anc cozeectec measures of szock mazkeえ Value in the U.S. and Japan. The Eirst =ino colurns =epoz= wáajuszeci dãa, dramn from MSCI. Colums three and four zepore the value of Japarese and U.S equizy markets acjuustec Eor intercoypozaze hoidings. The acjustrants have a suzprising effect: even at the end of 1988 , the market vaiue of the outsicie equity in the Japanese market was smalier thar. that in the United states. Our adjusted values stand in striking contrast to the Morgan Saarley caza. The market values repozted by MSCI in December 1988 (1989) imply that the world equizy shares of Japan and the Unized Stazes aze 44% (39.6) and 29% (30.6%).

[^2]Our adjusted data reverse this ranking: the U.S. accounts for 35.9$\}$ of the world equity portfolio, and Japan for 28.7 \& , at the end of 1988 . For 1989 . the comparable fractions are 37.7% and 25.0%. These findings suggest that portfolio allocation rules based on the most widely used measures of market value, the MSCI indices, significantly overstate the importance of Japanese relative to U.S. equities.
1.2 Valuation, Trading, and Leverage Trends

Table 4 presents price-earnings ratios and dividend-price ratios for the NRI 350 index of nonfinancial Japanese firms and for the S\&P Industrial index of nonfinancial American firms. ${ }^{5}$ The cisparity between Japanese and U.S. P/E ratios is apparent. Between 1974 and 1984, the Japanese P/E was about Ewice the U.S. P/E. During 1986, however, the Japanese P / E ratio doubled from 29.4 to 58.6 , while the U.S. ratio increased by 218 , from 15.4 to 18.7 . There also are large differences between the recent Japanese and American cividend/price ratios. The dividend yields are comparable in 1970, with values o£ 3.9 in Japan and 3.3% in the U.S. The U.S. divicend yield exhibits no pa=eicular trend over the 1970-85 period. In conzzast, the Japanese cividend yield declines systematically. The dividend yields at the end of 1988 are 3.08 in

[^3]the U．S．and 0.6 in Japan．
Turnover rates，measured as the value of shares traded as a fraction of market capitalization，are similar on the NYSE and the TSE．Turnover rates for $1986-88$ are $.672, .806$ ，and .687 in Tokyo and $.624, .852$ ，and .582 in New York．（See the 1988 ISE Fact Book and the 1988 MSE Fact Book．）Thus，in two of the last three years of our sample，the turnover rate is higner in Tokyo than in New York
 rapid price appreciation．Foreign equizy omership of U．S．stocks increased during both the 1970 s and the 1980 s ，from 3.7 of of the market in 1970 to 7.2% in 1988．Foreign holdings of japanese stock also increased between the mid． 1970 s and the early 1980 s，growing from less than 2.7% in 1978 ＝0 8.8% in 1984．Since then，foreigners have been net sellezs of Japanese equities．By 1988 foreign holdings of Japanese equiこies（4．8£）were only 55 of their previous peak value．This may reElect the percepzion outside japan that Japanese equities have been overpriced th＝ougnout the mid－1980s．This sentiment may also be reミlected in the heary tracing activizy in recenにly－ introduced put options on the Japanese चaziee fiozzis（1090）］，which doubled in value during their firs few weeks of ことaíng cespite relatively small changes in the value oz the uncieviy゚ing inciex．

Some have argued that ine Large $s=0 \mathrm{C}_{\mathrm{i}}$ zeこurns and high P／E razios in Japan are the＝esulた o sistent with the debこ－equity raたios reporzed in Táble 4．These ratios are book debt divided by the marke＝value oE equizy．In Japan，where most debた is
 The divergence could be larger for the Unized Stazes．The fmezican debt－ equiたy raこios exhioi no parこicular＝renc，važing between ． 48 （1972）and 1.04
(1974). In contrast, Japanese debt-equity ratios decline during the sample period, from 1.63 in 1970 and 2.23 in 1972, to .36 in 1988. While Japanese debt-equity ratios are substantially higher than their U.S. counterparts during the 1970 s, they are significantly below U.S. debt-equity ratios during the critical 1986-88 period.

2. Japanese Share Prices and Land Values

Although the price-earnings ratio for Japanese shares exceeds that for equities traded on other markezs, several recent studies [Daiwa (1989), Hayashi and Inoue (1990), Hoshi and Kayshap (1990), and Japan Securieies Research Institute (1989)] have reported that Tobin's (1969) "q", the ratio of the market value of Japanese firms to the replacement cost of their assets, is less than or equal to unity. The recent increase in Japanese equity values coincides with a rapid increase in Japanese land prices. Table 5 presents diãa on the composition of physical assets for U.S. and Japanese nonfinancial corpozations at the end of 1984 and the end of 1987. Land accounts for more than half of the tangible assezs of Japanese fims, compazed with juse ove: thelve percent for U.S. corporations. Moreover, the value of Japanese corporate land holdings nearly doubled between 1984 and 1987 , and prices have increased Eurtiner since then.

The observation that land prices have risen in Eancem with stock: prices does not explain why assets trace at higher multiples of their earnings in Japan than in other places, or why this multiple increased during the mic1080s. Recent data on office space rents and land prices in major mezropoliこan areas display the pateern of high price-earnings multiples that one observes in the Japanese stock market. For example, although the price of residential land in Tokyo is 150 =imes that in New York City, the monenly rent
on new commercial office space in Tokyo is only four times that in New York ［Boone and Sachs（1989）］．Rationalizing these patterns requires either differences in discount rates，or investor expectations that at some future Cate rents in Tokyo will rise substantially relative to those in New york．

The ：ime series movernents of value－rent raミios and price－earnings ratios are similar．Although land prices have increased significantly in the las fer yeazs，rents have not．As with equiこies，the zecent chanses in land prices are more cifíicuit oo expiain than tine rign ieve of prices．Ito （1988）identifies several zeasons why lanc pzices in japan shoulc be hign relative to those in other nations：the tex system places vezy low burcens on land，especially in agriculvural uses；higher population density makes the marginal procuct of land higher than that in many other developed nations；and the archaic system of land use preclucies space－eEミicien＝cevelopment of high－ rise ofince builciings anc similar structures．None of these Eactozs，however seems to have changed curing the last ciecacie．

Rathe：than analyze land ralues，theze dãa on cash flous and zentals aze dififult to ob＝ain，we focus on the valuation of ectities．A successeul

Many explanations o三 the ciEEezence between japanese and imerican price． earnings zatios focus on cizEerences bezieen japanese and fmezican accounzing conventions．Even if accounting consiceraこions can explain the historical cifierence bezween U．S．and Japanese Z／三 こaさios，Iwo Eačors make them unlikely to explain the čamatic growth of inis citEfezence curing recent Yeãs．Eiミsに，recenz changes in Genezally focepzec Arcouñing Ezacたices
(GAAP) in Japan have reduced the accounting disparities between Japanese and American firms [Aron (1981, 1988)]. Second, as Figure l shows, the growth in the Japanese P/E ratio from 29.4 in 1985 to 54.3 in 1988 was dominated by rising stock prices, rather than by falling earnings. The real price per share tracks the price-earnings ratio reasonably well: it was roughly constant from 1970 to 1980, grew gradually during the next five years, and increased more rapidly in the last three years, with capital gains of 44% in 1986 , 9 in 1987, and 418 in 2988 . In contrast, real earnings per share were roughiy constant over the $1970-88$ period. A 288 decline in earnings per share in 1986 contributed to doubling the P / E ratio during that year, but the P / E remeined above 50.0 in 1987 and 1988 despite annual earnings growth of 268 and 30%.

Even if differences in accounting conventions cannot explain the recent divergence between Japanese and American P / E ratios, they may explain the smaller historical disparity in these ratios. Tnree accounting practices are particularly important: (i) differences in reporting consoliciated versus parent-company earnings; (ii) differences in "reserve accounzs" that permi= Japanese firms to deduce significant amounts from zeported earnings as advance funding for future expenses; and (iii) differences in dep=eciation pračices. This section discusses each of these differences in turn, and concludes with a brief analysis of the civergence between accounting and economic profits in Japan and the United States.

3.1 Consolidation and Intercorporate Ownersinip

Consolicated earnings, wich include the net income of subsiciaries and of firms in which the parent holds more than 20 q of the outstancing equity, are the cominant measure of earnings in tine Unized Sこaこes. In convase, unconsolicated earnings are the dominant measure in Japan. Unconsolicazed
earnings are the basis for most Japanese market analyses，and they are used in the denominator of most common Japanese P / E ratios ．．including the NRI index reported here．Since unconsolidated earnings reflect the dividends received from subsidiaries but not their undistributed profits，this leads to a systematic upward bias in P／E ratios for Japan relative to those in the U．S． For Toyota Mozor Company，the cross－holding example presented in Table 2 ，the firm＇s consolidazed earnings exceed its unconsoliciazed（parent）earnings by an

These differential practices can be viewed in two ways．One holds that Japanese earnings are under－reported because they fail to include the un－ distributed earnings of subsiciaries．This perspective leacis to a correction based on the ratio of consoliciated to unconsolidated earnings，as in fron （1988）．The principal duawback of inis staategy is that Japanese firms have substantial discreaion regareing theiz consolidazed eaznings yeporas，so some earnings may escape consoliciation．${ }^{6}$

A second approach to this problem，in the spirit oミour earizer acjuus：－ ment for double－counzimg o三 eçuzy holcings，esこimazes pzice－eazning こaこios under the assumpzion of no cross－hozcing．Veviants of inis appzoach aze used by Anco and Auerdach（1090）anc liecia（1900）．The premise of this approach is
 cividend receipts，but p＝ices aze overstated by even moze because they

[^4]of subsidiaries.

We follow the second approach, which suggests that two adjustments are needed to correct P / E ratios for consolidation. First, we adjust prices to remove that part of value derived from intercorporate equity holdings. Since we are interested in P / E ratios for nonfinancial corporations (NFCs), the adjusted price is $P *=\left(1-\mu s^{\prime}\right) P$, where $\mu=$ (value of all traded shares)/ (value of NFCs eraded shares) and s^{\prime} is the share of the total market owned
 cial corporations as the value of outstancing equity less the value of shares held on corporate account. Second, we remove intercorporate dividends from the reported earnings of parent firms. If the fraction of earnings paid out as dividends by both financial and nonEinancial corporations is d, then the relevant earnings measure is $E *=\left(1-s^{\prime} \mu\right.$ d) E. The adjusted price-earnings ratio is therefore
$(P / E) *=\left[\left(I-s^{\prime} \mu\right) /\left(1-s^{\prime} \mu d\right)\right] *(D / E)$.
Table 6 shows the impact of tine cross-hoiding adjustment on Japanese P / E raこios between 1975 and 1988. The Eirst column presents the unadjusted P / E ratio for the NRI 350.7 The second column shows the adjustment factor, $\left(1-s^{\prime} \mu\right) /\left(1-s^{\prime} \mu d\right)$, and the third column reports the value of (P/E)*. In 1988 , winen tine Japanese payout raこio (c) mas. 28 and μs^{\prime} equalled. 407 , the adjus ment Eactor was .660. The cross-nolcing aijustment therefore reduces the reported P/E ratio Erom 54.3 =0 36.3. The impact o cross-holdings on the P / E

[^5]ratio grows through time．This largely reflects an increase in the degree of cross－holding during the last decade

3．2 Accounting for Special Reserves

The Japanese tax code allows firms to set aside funds each year in reserves against future contingencies inclucing produce returns，repairs， payments on guarantees，losses cue to doubtful accounts，and payment of reこirement benefics．Japanese workers rezire when they are roughly sixty years oid，and their employer zypicaily provicies a iarge one－time recirement payment．This payment can equal several times the employee＇s annual salary． Japanese tax law permizs Eirms to create a reserve equal to 40% of the amount workers would receive if the firm were liquidazed，and all workers reこired，at the close of the fiscal year．

Japanese accounting practices requize conEormizy between tax returns and Einancial statements．Thus，when Japanese Eims use special reserves to
 The neteffect of contributing before－tax income to these resezves is a recuction in reported earnings relative to whet they would be in the U．S

Aron（1988）suggests a proceciure Eor uncioing the effect of reserve contributions on reported earnings．\＃e calculazes the netconさribuたion Eirms
 eernings would increase

$$
\begin{equation*}
E_{\text {acj }}-E_{\text {report }}=(1-T) *(\text { Ne: Reserve Consribution) } \tag{3}
\end{equation*}
$$

where t is the corporace tax rate．Shoven anc Tachibanaki（1987）and fron
（1988）esこimaこe the combined marginal こax とaこe E＝ou naこional corporaこe income こax，enterprise むax，and iocal inhabiたants こax at between 50 and j5s．We use a value oft $=.52$ for log8，with lower levels in earlier periocis coresponc．
ing to lower statutory rates on corporate income．We use Aron＇s estimate that reserve contributions average approximately four percent of net income for large Japanese firms over the entire $1975-88$ period．The resulting adjustment factor，shown in the fourth column of Table 6，has a small effect on the reported price－earnings ratio．

3．3 Depreciation Accounting

The last major difference between the accounting practices of U．S．and japanese firms concerns deprecia＝ion．In the u．S．，the possibility of using one set of accounting rules for tax purposes and another for financial reporting leads most firms－－75\％accoriing to Scnieneman＇s（I086）citation of the American Institute of Certified Public Accountants－－to choose accelerat． ed depreciation for the former and straight－line depreciation for the latter． This reduces current taxable income relative to reported earnings．

Japanese Eirms，winch must use the same depreciãion policy for tax and financial reporこing purposes，Eypically choose tax minimizazion over the maximization of reported earnings．Virtually ail firms use couble－declining balance cepreciãion．Since the ごpical Japanese Eirm cieprecミães ís asseこs more quickly than the Eypical American Eirm，Japanese depreciation charges are higher when assezs are relatively new and lower when they are old．Since mose Japanese firms are growing rapicly，they will have a preponderance of young assets witn depreciaこion deductions in excess oE those of comparabie U．S． firms．Reported earnings will therefore be lower for Japanese firms．

Several stucies，including Aron（1988），have tried to correct reported earnings for different deprecietion rules by assuming thac the ravio of depreciation to cash earnings should be identical for U．S．and Japanese firms． Since cifferent cepreciation retes are not ine only reason for differences in
the amount of depreciation claimed by U．S．and Japanese firms，however，this assumption is likely to correct more than just accounting practices．For example，Japanese firms are more capital－intensive than U．S．firms，so this adjustment is likely to overstate the true earnings of Japanese firms．

Exact comparison of the depreciation claims of U．S．and Japanese firms would requize detailed information on the asset mix and investment histozy of Eirms in both nations，information winich is not reacizly available．ne Therefore employ two aiternative proceciures for generaこing comparà̀ve éeprevi－ ǎion claims for U．S．and Japanese Eiras．The firse provices an upper bound on the possible cifferences between firms in the two countries，while the second is a more reasonable estimate of the depreciation－induced earnings differenこial．

Our upper bound procedure，which we label Method I，computes the staaight line depreciation which Japanese firms hould have reported iE all their assets had been placed in service during the last wear．Uncier the japanese Eax coce， the annual couble－ceclining balance（DDJ）cepzeciaさion zate is given by

$$
\delta=1-.1 / 2
$$

where I is tine asset life in years．${ }^{8}$ Fins zate is approximazely equal＝0
2／L．Eor example，if L is eight，the DDB cepreciation race is $25 s ;$ if L is
 times the orifinal cepreciáble value．İ an asseた＇s esこミmazed salvage value is zero，the initial depreciable basis is the same Eoz accelezazed and straigh＝－line depreciation．Thus，the DDS depreciation is approwimately thice

[^6]the straight－line depreciation when an asset is first placed in service．Our upper bound estimate of excess depreciation is therefore half of the reported DDB depreciation charge，$D / 2$ ．If this adjustment were correct，then during periods when accounting depreciation was below tax depreciation，there would be an increase in the deferred tax account of $7 *(D / 2)$ ．The resulting Method I adjustment to earnings is therefore an increase of（1－r）＊D／2．This adjustment is about the same magnituce as Aron＇s（1988）adjustment using the rãio of depreciation to cash flow．

To estimate the imporance of the depreciation correction we use the parent－company accounting reports in the Diawa Anelvsts Guide，which presents information on the financial accounts and balance sheets for virtually all nonfinancial firms listed on the First Section of the TSE．For these firms， the ratio of（Erepor＝$+(1-52) \times D / 2) / E_{\text {report }}$ is 1.52 in 1987 ，Earnings would therefore be 52% higher uncer this extreme assumption about the size of the depreaiation adjustment．We use this ratio $=0$ correct each year＇s earnings for the NRI 350．The resulaing adjusted P / E ratio is shown in colum six of Table 6．For example，in 1988 the Japanese P／E declines Erom 36.3 after the cross－holding correction to 23．2，sこill well above the U．S．？／ミ raこio．

The foregoing method of converting acceleraこed to straighz－line deprecia－ tion is appropriate if all Japanese assets weze placec in service during the previous year．Uncer more realistic assumptions，however，tis estimate oversこazes the actucl difference between DDS and straight－line depreciãion because if ignores the fact that，while the depreciable basis for the straight line calculation remains constant，the basis for the DDS aalculãion declines as the asset ages．

Our second method of estimating the depzeciation－induced understatement of income，Method II，aこtempts a more sophisこicated cozrection for the
difference in depreciable basis between double－declining balance and straght－ line depreciacion．he assume that firms have homogeneous assets with identi． cal economic depreciation rates（ δ ），and that their time path of investment is described by exponential growth at rate g，which we estimate from the ten－year growth rate of nominal business investment in the national income accounts． For such firms，the current DDB depreciation charge per dollar of current investment is $2 \delta \sqrt{0} e^{-\xi s} e^{-2 \delta s}$ cs $=2 \delta /(2 \delta+\xi)$ ．üe estimate δ as one－haly
 since for Japanese firms using double declining balance methods the instan－ たaneous depreciaこion raさe nill be approximaこely twice the econoric rate． $\mathfrak{n e}$
 rate δ ．We assume I^{\prime} is the age at which one－half of the asset will be eroced ［I＇（ $\delta)=(\ln 2) / \delta]$ ．IE depreciation consists of random Eailures，this assump＝ion implies that halミoE all assezs live beyond their s＝azed lifetimes．

 Our correction factor for the uncer－reporこing of cepreciaこion is therefore given by $(1-T) \times\left[1-\left(1-e^{-I^{\prime}}\right) \times(2 \delta+\xi) / 2 \delta g^{\prime}\right.$ ？
 seventh colum oミ＝adie b．Fire zesules sügses＝more moces changes than finose

 each of the years we examine．Inis acjustment procecure，wich is more plausible than simply hal⿻ing the depzeciation cnazges，yielcs geiusted P／E こatios of more than thizEy Eo the las＝こnこee yeazs．

The price－to－cash－earnings（E／CE）ratios reporiec by MSCI provice adidiたional perspecive on the impac： 0 E the cizEEerent depreciation methocis
used by U.S. and Japanese firms. Since cash earnings are defined as the sum of reported earnings plus depreciation, they are unaffected by a company's choice of depreciation method. The U.S. P/CE ratio (not reported) exhibits no particular trend during 1973-88 and equals 6.5 at the end of 1988. Similarly, the Japanese price-to-cash-earnings ratio follows no particular pattern between 1973 and 1982, varying between 5.0 (1974) and 7.7 (1976). It grows systematically, however, during the last six years of the sample. The ratio
 adjusted price-earnings ratios in Table 6, recent Japanese price-to-cashearnings ratios are unusually high.

3.4 Acjusted American P/E Ratios

The adjustments for depreciation and reserves described above attempt to make reported earnings of Japanese firms comparable to those of U.S. Eirms. The adjustment for intercorporate holdings, however, converts Japanese earnings to a base case with no intercozpoza=e omnership. Thus, we must also acijust the P/E ratio of the Sap Industrials to remove the effects of U.S. intercozporate holciings. The last two columns of Iable 6 present the unaijusted $S \& P$ P/E ratio and the adjusted series using the procedure we applied to the Japanese daこa. Since invercorporate holdings in the U.S. are smaller inan those in Japar, the adjustec p/E ratio (11.7 in 1988) is much closer to the unacijusted value (12.9).

Although accounting acjustments reduce the differences between Japanese and American P / E rãios, they do not eliminate them, pariicularly during the critical 1986-88 perioc. For example, the adjustedu. S. P/E ratio is 11.7 E= the end of 1988. The comparable estimates for Japan are 23.2 using deprecia-Eion-ačjustment Methoc 1 and 32.1 using Method 2. Moreover, both of the
adjusted ratios almost double during 1986．Accounting－based hypotheses can explain much of the difference between U．S．and Japanese $P /$ Es before 19S6，but they cannot explain the doubling of Japanese ratios in 1986 nor the high levels since then．

3．5 Accounting versus Economic Earnings

The foregoing discussion focused on the compazabilizy of accounting earnings in the U．S．and Japan．Accounting earnings may not reflect the true economic earnings thez unceriie fizm vaiue．jeviazions bezween economic anc accounting profits cause reported price－earnings retios in different nations to diverge，and changes through time in inis cieviazion couid iead to civergent movements in P / E ratios across nations．

Inflation is the principal source oミdiEEerences between accounting and economic earnings．Eirse，because cepreciazion is calculatec using the hiscorical cose of physical assezs，ことue depzeciãion cosis aze uncersこaよeç and profits are oversこaこed in high inミlaこion ミミごoćs．Second，the Eailure to
 during peziocis oミhigh iñiazion．flinough ine econozic cose of boz＝oning is measured by the zeal intezest raこe，repozこec earnings zeflece nominal interest charges．The higner ċebこ－equity ratios oミ Japanese than U．S．Eizms ciuring much of our sampie period rakes this ovezsたeさement more imporさañ Eor japanese Enan for U．S．earnings．Inizc，inflaこion incuces spurious proミizs Eor goocs helc in inventozy or for assezs ünich are solc．Nominal appreciation of inventories is recorcied as a proミit，even though the firm receives no real gains．Similar problems arise if the firm sells appreciazed assezs，since accounting profics will snow the nominal rainer than tine real capizal gain．

Ando and Auerbach（1988）study the differences between accounting and economic earnings in Japan and the United States due to the distortions described above．For the high－inflation period 1967－83，the average reported earnings／price ratio for their sample of Japanese firms was .065 ，while that for their U．S．sample was ．094．After correcting earnings for inflation－ induced errors，they find a＂corrected＂E／P ratio of .092 in Japan and .085 in the United States．Secause of differences in leverage between U．S．and japanese firms aná íifífences in cepreciation rates，infiation lé to overstatement of U．S．earnings but understatement of economic earnings for Japanese £irms．

Inflation during the decades before 1985 caused Japanese P／E ratios to be higher than they would have been if accountanes measured economic earnings， and had the opposite effect in the United States．Winile this may further explain the historical disparity in the level of P / E ratios across countries， iた makes iEmore diEEicult to explain the changes since 1985．The slowing of inflazion，which reduced the disparity between accounこing and economic earnings，snould have reduced measured Japanese P / E ravios and raised cheir U．S．counterparts．This effect is strengthened by the fact こhat Japanese inflation rates declined faster than U．S．inElation rates during the period after 1984．Rather tian explaining recent events，the iisparity between economic and accounting earnings therefore magnifies the P／E puazle．

4．Recuired Recurns and Expected Grouth：Japan and the U．S．
The apparent inabilizy of accounting factors to explain why adjusted Japanese price－earnings ratios are high in relation to historical values and in relation to current U．S．P／Es leads us to consicer two alternative explana－ tions．Firse，growih opportunities in Japan may account for a larger fraction
of firm value than they did in the past and than they do in the U．S．Second， the required return on equity in Japan may be low relative to its historical value and relative to the current U．S．rate．This section examines these explanations for the Japanese stock market boom of the mid－1980＇s．

4．1 Growth and Required Returns in InEinize and Finize－horizon Models
Miller and Modigliani（1961），in their classic paper on share valuazion， offer a convenient framework for considering the effect of expected growth and required returns on price－earnings ratios．In tineir mociei，tine ciiscount vaze r is constant and Eirms can invest a Erackion k of each period＇s earnings in projects that have a perpetwal supernormal return of z＊．If the Eirms pay out their remaining earnings as dividends，earnings grow at the rãe $g=k r x$ while the supernormal investment opportunizies are available．

Under the extreme assumpeion that the supernormal opporiunizies aze available forever，Killer and Mociginani show that the value of the price－ earnings＝aニio is §ミven by゙

$$
\begin{equation*}
P / E=(I-k) P / D=(2-k) /\left(=-k n^{*}\right)=(i-k) /(z-g) . \tag{4}
\end{equation*}
$$

 opportunities are only available for the next T years，they aporoximate the p＝ice－earninss とニこご as

In Table 7 we use these relaこions，along with the 1085 and 1085 acjustec
 r．Under the exzreme assumption that Japanese firms will always be able to invest ineir retained earnings in supernormal investment oppor＝unizies （infinite T ），the estimated value of $r-g$ in the firs panel of Table 7 falls from 2.25 in 1985 ＝0 1.375 in 1986．Tnis implied change，coupled with the
large increase in Japanese asset values and $P / E s$ that nccurred over this period，illustrates the non－linearity of equation（4）．When the P／E ratio is large，the implied value of $r-g$ is small and subject to large percentage changes with relatively small absolute changes．Thus，if we are willing to assume that supernormal investment opportunities will always be available in Japan，the doubling of $P / E s$ in 1986 can be explained by a less than one percentage point decline in the required return or by a similar increase in

The results for ten and twenty－five years of supernormal growth oppor－ tunizies illustrate that the foregoing calculations are sensitive to the assumption that new opportunities are available forever．Using a long－term growith forecast of about 4.58 per year（winch is comparable to the reported expectations of Japanese growth for 1985 ciscussed below）and a horizon of 10 years，the estimates in the lower panel of Iable 7 imply that the reguired reこurn on Japanese equity was about six percent at the end of 1985．If the reçured return remained at six percent，the coubling of the aciusted P／E エニこio F＝om 1085 ＝0 1086 implies a zen percertage point inczease in the expected annual growth rate， 2014.48 per year＝or the nex：こen yeazs． Alternazively，one can hold the expected growin rate Eixed at $4 . j 5$ ．In inis case，equation（5）implies that the zequirec zeturn in japan feil from about six percent in 1985 to 3.55% in 1986.

If the supernormal growth opportunities in Japan were expected to persis for twenty－five years，the implied changes in $=$ and g Erom 1985 to 1986 are smaller，but they aze siill substantial．For example，iE ine expected growin rate is assumed to be 4.5% in both 1985 and 1986 ，the implied requized rezurn Ealls from 6．5\％to 4．5ء．This decline is more than twice the change implied by the perpezual growth model．

With the assumpion that supernormal profits are not available forever． the doubling of Japanese $P / E s$ in 1986 requires a substantial reduction in required returns，a substantial reduction in expected growth rates，or both Neither growth expectations nor required returns can be measured explicitly， but in the next two subsections we provide some suggestive evidence on the movements in these variables during the mid－1980s．

4．2 Evicence on Cnanging Growth Expectations Long－term gronth forecaszs máe by econometzic Eozecasting firms provice some guidance regaiding inveszors＇growth expečaこions．Table δ presents long－term forecasts of growth made by Daこa Resources，Inc．，a major U．S． forecasting firm．Although these forecasts are for real GNP，not corporaze earnings，they provide evidence on the paこtern of growth expectations during The 1980s．There Es a small decline in the zen－Year Eorecasts Eor the U．S．
 Japan are surpzisingly consニanえ，vazying betweer 4.35 in 1085 and 3 ．eq in

 1088．Eive－year Eorecaszs Erom ine Japan Center Eor Economic Reseazch（4．6z

These growth forecasts co not suppore the view thet accelerating growth expecたãions in japan aze zesponsiole for the 1986 rise in snare values．IE anything，the expected growth rate for the nex：decace declined．hnile some might argue shat ecuizy ralues depend on growth forecasts over periods longer than a ciecade，revisions in longer－こerm growin prospects are not likely to explain the obsezvec pzice changes．Ls the hozizon grows，forecases of
significantly more rapid growith in one economy than in another become less reliable and less plausible．Recent empirical findings［see Barro（1989）］ suggest that national growth rates exhibit mean reversion．It is also difficult to imagine the type of news which investors could have received which would affect growth prospects more than a decade into the future withou： changing near－term growth forecasts．Thus，there is little reason to believe that changes in expected growth can explain the recent increase in Japanese sこock pさices．

4．3 Required Returns

The framework presented above demonstrates that P / E razios depend on both required equity returns and expected growth rates．Unforzunately，measuring required returns is even more difficult than calibrating growth expectations． Ex ante expected returns are not observabie，and neither the risk premium on equiたies nor the required return on riskless assezs can be es＝imated precisely Erom historical dãa on asseこ reこurns［see Merこon（1980）］．

Before considering the recent changes in some proxies for required returns，it is usefil to consider the theorezical issue of whether differences between required returns in the U．S．and Japanese equity markeis are consis－
 world Einancial markets，required returns in each mazkez aze linked to those in other markets．The linkage between U．S．and Japanese financial markets has grown significantly during the last decade．Prior to 1980 ，and 50 a lesser extent between 1980 and 1986，Japanese investors Eaced capizal controls which limitec their ability to invest in other markets．Since 1986，however， explicit barriers to capital mobility into and out of Japan have been minimal． Recent studies［see Ito（1990）for a survey］suggest that shorこ－term riskless
interest rates in Japan are now deternined by world market conditions．Whe the markets for long－term assets such as corporate equities are equally well integrated remains an open issue．

Required equity returns in the U．S．and Japan could differ for at least three reasons．First，investors may expect systematic long－term changes in real exchange rates．Frankel（1989）presents evicience of＂country effects＂in real interest rates，and argues that these are the resule of experted curaency
 revurns which are lower in Japan than in the U．S．would be consis＝en＝wi＝h expectations that，after acjusting for inElazion，the yen will appreciate against the collar．

There is litile evidence，howeve，that inveszors expected real yen appreciation in the late l980s．There aze two compeこing interpreこaこions o三 the behavior of zeal exchange razes．One view，suppozeed by evidence in Rogalski and Vinso（1077），Roll（1979），and Acilez ane Lehmann（1093），sayy

 Yiew would have precicted the yen to eppreciate in the io86． 88 period．
\therefore seconc possioilizy is こhã perceirec zisks associaneé inith cross－bozéez
 diEミerent markets．Despite large cross－border capizal Elows duzing the 1980s， most corporate equity is still held in the country of issue［see French and Poterba（1090）］．In 1988，Eozeign investozs held only 6．jf of tine U．S．stock market and 4.3 f of the Japanese market．The cross－border equizy flows to daze may＝herefore be insufficient to equate expected returns．This ergument is
consistent with frequent claims that Japan's high saving rate has reduced required returns on Japanese assets relative to similar assets in the U.S.

Third, taxation could lead to differences in required returns demanded by U.S. and Japanese investors. If capital markets are not perfectly integrated, differences in local tax rates can cause differences in the pretax returns demanded by investors in each market. In addition, some investors face different tax burdens on foreign and domestic securities which make them imperfect substitutes. For exampie, ü. S. pension funcs cannot reciaim ine 20 \% dividend withholding tax which Japan levies on dividend payments to foreign investors. Similar problems may affect some Japanese investors since the U.S. also requires 208 withholding on dividends remitted abroad.

The foregoing considerations make it impossible to determine on apriori grounds whether there are differences between the expected returns on longterm assets in Japanese and U.S. capital markets. We therefore consider the available empirical evidence on long-term real interest rates in the two nations in an effort to evaluate zeçized retuzns on riskless assezs: we co not attempt to measure the equity risk premium.

Nominal interest rates in both Japan and the United States declined significantly between 1985 and 1988. Table 8 reporis the nominal rates on both U.S. and Japanese ten-year government boncis during i980-88. Japanese longterm rates declined by 150 basis points from 1985 to 1088 , a factor winich is often cited [for example by Takagi (1989)] as influential in the rise in equity and land prices. However, the significant increase in Japanese prices and price/earnings ratios (or price/rent ratios) during this period must be explained by changes in real, not nominal interest rates.

Macroeconomic forecasts of long-term Japanese inflation rães suggest that real interest rates also declined in the mid-l980s. The sixth and
seventh columns of Table 8 report estimates of real yields calculated by subtracting Data Resources＇long－term forecast of annual inflation from the contemporaneous nominal yield on government bonds．These estimates suggest that the real Japanese interest rate declined from 4.1 if in 1085 to 2.9 in 1986．Similar estimates based on the five－year inflation forecast of the Japan Center for Economic Research suggest a real interest rate of 4.4% in 1985 and 3.18 in 1986，a decline of ajout 125 basis points during the year When シ位 ratios cioubled．

There is an even larger decline in real interest rates in the U．S．DRI＇s ten－year inflazion fozecasts imply that the zeal yield on U．S．government bonds fell from 4.4 in 1985 ＝0 2.6% in 1986，a crop of 280 basis points．
 capizal controls in the mic－1980s，esこimãed real long－verm interest zates in Japan were more than 150 basis points lower than those in the U．S．

The substantial changes in crude measures of requized zeturns on long．
 declined，both in Japan anc the ünzzed S Eezes，during the $1985-85$ period．The
 much smaller increase in U．S．Enan Japanese paices and P／E yãos given the substantially largez decline in the ü．S．こaこe，and ưnether she decline in zequized zezurns in Japar is large enough＝0 explain the japanese p／E rise．

Several faczors migh explain wing U．S．pzices anc paice／earnings＝azios increased less than their japanese counterparts．First，the relation linking prices to required returns anc expected growin rates is not lineaz．Since the U．S．P／Es began at a lower level，the same absoluze change in required returns should have a larger effect in Japan than in the U．S．

Second, the rise in U.S. P/E ratios may have been blunted by tax changes in 1986. These changes lowered marginal tax rates on interest and dividend income for top-bracket individual investors from 70% to 28%. Part of the reduction in the tax burden on dividends, however, was offset by an increase in capital gains tax rates. For individual investors the net effect of the tax changes should have been a substitution toward debt and away from equity.

In contrast, for an important class of Japanese investors, tax changes
 common stock. Before 1987, Japanese individual investors were able to avoid texterion on interest through a system of Maruyu accounts. Each incividual could receive tax-exempe interest on up to 14 million yen in assets, or roughly $\$ 112,000$ ($\$ 448,000$ for a family of four). These limits did not affect the many households who evaded taxation by establishing multiple accounts [see Nagano (1988)], and by the mid-1980's, nearly 70% of Japan's personal savings were exemp= Ezorn taxazion [Japan Securiこies Research Instizute (1988)].

The Maruiu system was largely eliminated by the 1987 Japanese $=a x$ reform. Prime Minister Nakasone appointed an Advisory Iax Comnission in September 1085. In April 1986 the commission made an interim repore suggesting aboli. tion of Maruyu accounts, and legislation was introducec so the Japanese parliament in early 1987 and passed in September. Since the abolition of these accounts for most investors on April l, 1988 , householcis face a 20% tax on all interest income. These Japanese $=a x$ changes should have induced a substitution from debt to equity among some Japanese investors, possibly raising stock prices. ${ }^{9}$

[^7]Although these factors might explain why Japanese stock prices and P/Es increased by more than their U.S. counterparts, movements in required returns seem unable to explain why Japanese P/Es doubled in 1986. The behavior of long-term government bonds yields suggests that real riskless rates fell by about 1.25 percentage points during 1985-86. he are unaware of any evidence to suggest that equity risk premiums also fell during this period. In the Miller-Modigliani growth mocel, if supernormal investment opportunities here
 per year, a 1.25 decline in the required return implies that the adjustec P / E should have increased Erom 18.2 in 1085 to 27.7 in 1986 . This implied value is much lower than our actual acijusted estimate of 35.7 Eor 1986 .

The behavior of Japanese real interesa rates in early 1990 also suggests that movements in reçured rezuzns were not the only factor driving up Japanese stock p=ices anc p=ice/earnings raこios in 1985-86. Real inveres rates increased by approximãely 1.0 in Januazy 2000 . If the argument that movements of inis magnizuce were central in pushing up share prices is correce, prices should have Ealien more snarply in the 1000 episocie inan iney nave at this wrizing.

5. Conclusions

 United States anc japan is not as puzziing as it appears at Eizs glance. Roughly half of the ciscrepancy is caused by cifeerences in the accounting practices of the two countries. If Japanese Eirms used U.S. accounting pračices, we estimate that the P/E raこio for the Tokyo Stock Exchange would have dropped from its reporied value of 34.3 to 32.1 at the end of 1988. Accounting cifferences explain much of the pezsistenz disparity between U.S.
and Japanese price-earnings ratios, but they appear unable to explain the doubling of Japanese P / E ratios in 1986, from 29.4 to 58.6.

Because Japanese stocks traded at high earnings multiples prior to the recent run-up, relatively small changes in either discount rates or growth expectations could lead to large changes in prices. We find no evidence of upward revisions in expected growth rates for the Japanese economy during this period. There is evidence of a substantial drop in required riskless returns
 movements as large as the actual changes.

References

Adler，Michael，and Bruce Lehmann，1983，Deviations from purchasing power parity in the long run，Journal of Finance 38，1471－87．

Ando，Albert and Alan J．Auerbach，1988，The cost of capital in the United States and Japan：A comparison，Journal of the Japanese and International Economies 2 （June 1988），134－158．

Ando，Albert，and Alan J．Auerbach， 2090 ，The cost of capital in Japan：Recent evidence and further results．Mimeo，University of Pennsylvania．

Aron，Paul；1981，Are Japanese P／E multiples 00 high？，Daina Securizies America，New York．

Aron，Paul，le88，Japanese P／E milipies：The shaping of a＝racizion，Daime Securizies America，New York．

Berro，Robert，1989，Economic growth in a cross seciion of countries， Rochester Center Eor Ecomomic Reseazch üorking Papez 201.

Boone，Pezer，and Jeffrey Sachs，1980，Is Tokvo worth four irillion dollars？ An explanation for high Japanese land prices，unpublished manuscripe， Harrard Universizy，Canbridge Mt．

Cutler，David，James Poterba，and Law＝ence Summers，1090，Speculazive cymamics，：IBER グorking Papez，Jen：uevy．

Daika Secuzieies Company Iimized，1980，2984，1987，1988，Analvisis Guice，

 （November），IT－60．

Frankel，Jefirey，1989，Ouanzifying international capital mobilizy in the 1980s，NBER Working Papez 2856，Camiviage MA．

Ezench，Kennezin R．，anc James K．Poこeごoa，こoco，japanese and ü．S．czoss－jozče＝ common s＝ock investmerts，Ünジversミご oミChミcago，mizeo．

Hayashi，Fumio and Tohzu Inoue，log0，The relation becween Einm E＝0：－h and Q with mulziple capizal inpues：Fneozy and evicience，Unミvezsizy o三 Pennsylvanie，mimeo．

Hoshi，Takeo，and Aril Kashyap，1000，Evidence on Q and investment Eor Japanese fizms，Joumnal oミ Japanese and In＝emational Econozies （forthoming）．

Hoshi，Takeo，Anil Kashyap，and David Scharfszein，1090，Corporaze structure， liquidizy，and invesimen：Evidence Erom Japanese indusirial groups， Que＝terly Journel oE Economics（Eorincoming）．

Ito, Takatoshi, 1988, Japan's structural adjustment: The land/housing problem and extcrnal balances, unpuilished manuscript, Hitsosubashi University.

Ito, Takatoshi, 1990, The Japanese Economy (Cambridge: MIT Press, forthcoming).

Japan Security Research Institute, 1988, Report on Japan's Stock Price Level, Tokyo.

McDonald, Jack, 1989, The mochiai \in ffect: Japanese corporate cross-holcings, Journal of Portfolio Management (Fall), 90-94.

Merton, Robert, 1980, On estimating the return on the market, Journal of Financial Economics 8 (December), 323-361.

Miller, Merton, and Eranco Modigijani, 1961, Dividend policy, growin, and the valuation of shares, Journal of business 34, 411-33.

Nagano, Atsushi, 1988, Japan, in Joseph Pechman (ed.), Worli Tax Reform: A Progress Report, hashington: Brookings institurion, 155-161.

Norris, Floyd, 1990, Investors relish bet against Japan, New York Times January 15, page D4.

Rogalski, Richard J., and Joseph D. Vinso, 1977, Price level variations as precičors of flexible exchange razes, Joumal of International Business Stucies, 71-81.

Roll, Richard, 1979, Violations of purchasing power parity and their implications for efficient interrational commodizy markets, in M. Sarnet and G. Szego (eds.), Intemational Finance and T=ade, vol. l, Cambridge MA: Sallinger.

Schieneman, Gazy S., 1985, Undezstancines Japanese Einancial starements: A guice for the U.S. investor, Arthur Young, New york.

Shoven, John B. and Toshiaki Tachibanaki, 1987, The こaxãion of income from capiたal in japan, unpublished mineo, StanEord Universizy.

Takagi, Keizo, 1989, The rise of land prices in Japan: The determination mechanism and the effect of vaxazion system, Sank of Japan Monezazy and Economic Studies 7 (August), 93-139.

Tobin, James, 1969, A general ecuilibrium approach to mone=azy theory, Journal of Money, Credit, and Banking 1 (February), 15-29.

Tri, Anthony, 1971, Market value of outstanding corporate stock in the U.S. 1964-70, U.S. Secuxities and Exchange Comission Statistical Eulletin 30.

Ueda, Kazuo, 1990, Are Japanese Stock Prices Too High?, mimeo, University of Tokyo.

Table 1: Onnership of Common Stock, Japan and the United States

Ownership Group	Japan	U.S.
Individuals	20.18	48.18
Non-Einancial Corporations	30.1 \%	14.18
Eoreigners	5.3 ¢	6.68
Securiこies Companies	2.18	0.4%
Government	0. $\%$ \&	6.6%
Eariris	29.3x	- 3 \%
Insurance Companies	26.88	23.98
Othe:	5.48	0.0%

Source: Tokyo Stock Exchange, 1988 Eact Book; Federal Reserve Board, Flow of Funcs (1987). Foz こhe U.S., mutual Euncis are incluced in indivicual noldings. Insurance company noldings are the sum of Iife, properay \& casualyy, and pension fund assets.

Company Name	Toyota Ownership Share	Net Income（ Y mil）
Kanto Auto Works	49.0 \％	2，500
Toyota Auto Body	41．7\％＊	2，300
Chiyoda Fire \＆Marine Insurance	41.48	6，100
Toyoda Gosei（steering wheels \＆hoses）	40.08	2，400
Kyowa Leather	32.4 Ex	1，600
Tokai Rika（Switches \＆Seat Belts）	27.8 \％	1，500
Toyota Automatic Loom Horks	24.98	10，100
Toyoda Machine Works	24．7\％	1，600
Toyota Tsusho（Trading）	23．2\％＊	5，400
	22．5年\％	28，000
Yoyo Seiko（Searings）	22.3%	3，300
Aichi Steel	21.85	3，150
Aisin Seiki（Autoparts）	21．3\＆＊	7，500
Chuo Spring	20．5\％	1，070
Koizo Manfacturing（Auzo lights）	19．85	2，900
Daihatsu	15.0%	4，000
Akebono Brake	15.08	1，250
Futaba Industrial（Mufflers）	14.38	2，350
Siniroki（Auto Interiors）	11.6%	1，000
Hino Motors（Irucks）	11.0%	4，300
Toyocia Spinning \＆heaving	8．9§＊	400
Kayaba Industrial（Hydraulics）	8.48	1，200
Nippon Piston Ring	8．6s	580
Ichikoh Industries（Auto lights）	7.58	1，400
Nachi－Fujikoshi（Bearings）	5.98	1，100
Toyo Raciacor	5.8%	1，100

Toyota Motors is Onmed By：

Sanwa Eank	4.98
Tokai Bank	4.9 \％
Miさsui Bank	4.08
Toyota Automavic Ioom	4.48
Nippon Li̇e	3．78
Long－Term Credia Bank	3.28
Deima Sank	2．5\％

Source：Authors＇tabulations from Japan Company Handbook，Spring 1988. Starred entries incicate substantial ownership by other firms ȧミiliated with Toyota Motors，usually Toyota Automatic Loom．

Table 3：Market Value of Japanese and U．S．Equity Markets，1970－88

Year	Total Market Value （Billions of Dollars） Japan U．S		Adjusted Market Value （Billions of Dollars）\qquad		$\begin{gathered} \text { Fraction of Total } \\ \text { horld Equities } \\ \text { Japan U.S } \\ \hline \end{gathered}$	
1970	42.5	636.4	25.2	671.8	2.8	74.1
1971	67.2	741.8	39.8	784.7	3.7	72.3
1972	152.3	871.5	81.6	890.3	6.2	68.1
1973	128.6	721.0	69.2	668.2	6.6	63.7
1974	115.8	510.4	63.7	436.1	8.1	55.8
1975	135.1	683.6	75.9	660.8	6.9	60.3
1976	179.3	856.4	100.0	786.2	8.2	64.4
2977	205.1	7 73．9	216.1	7－2．2	0.3	59.5
1078	227．3	¢16．7	2£3．0	？¢？．E	22．6	54．0
1979	274.0	960.2	153.2	923.5	9.1	55.1
1980	356.6	1240.0	200.8	1179．9	9.5	56.0
1981	402.7	1145.4	225.1	1106.7	11.2	54.9
1982	410.2	2308.3	232.2	1281．5	20.8	59.7
1983	510.2	1578．3	286.6	1506.3	11.2	59.0
1984	616.8	1593.2	327.5	1477.6	12.9	58.2
1985	909.1	1955.4	480.0	1845.7	13.7	52.7
1986	1746.2	2203.2	883.6	2187.2	28.5	45.9
1987	2978.2	2216.1	1489.1	2173.8	26.5	38.7
1988	3840.2	2480.9	2020.1	2397.1	28.7	35.9

Note：The total equizy value for Japan is Erom Tokyo Sack Exchange，Montinlu Statistical Repozt，and the value Eor the U．S．is Erom NVSE，NASDAO，and SEC sources cesczibed in the text．The acjustec market vaiues exclucie intercoz－ pozate equizy holcings．Ouz estimates of each countzy＇s weight in the wozld equity porむまolio ignore all cross－nolcings excepた inose in japan and fie U．S．

Table 4：Price－Earnings Ratios，Dividend－Price Ratios（in Percent），
Foreign Equiev Holdings（in Percent），and Debt－Equiry Ratios．
Japan and the United States，1970－1988

Year	Price／Earninss		Dividend／Price		Foreign Holdines		Debt／Equity	
	Japan	U．S．	Japan	U．S	Japan	U.S.	Japan	U．S．
1970	9.0	18.6	3.9	3.3	4.9	3.7	1.63	． 54
1971	13.5	18.7	3.9	2.9	5.2	3.6	2.13	50
1972	23.3	19.3	2.4	2.5	4.5	4.0	2.23	． 48
1973	13.9	12.3	2.1	3.4	4.0	4.3	1.38	． 69
1974	16.5	7.9	2.7	5.0	3.2	4.5	1.44	1.04
1975	25.2	11.8	2.5	3.8	3.6	4.8	2.13	． 78
1976	22.0	11.2	2.1	3.7	3.7	4.7	1.88	． 72
2977	10．3	O． 9	2.0	5.0	3.0	4.5	7． 52	¢5
1978	21.5	8.2	1.7	5.2	2.7	4.7	1.62	01
1979	16.6	7.5	1.8	5.3	3.0	4.6	1.78	． 83
1980	17.9	9.6	1.6	4.4	5.8	4.8	1.59	． 64
1981	24.9	8.2	1.5	5.3	6.4	5.1	1.64	． 76
1982	23.7	11.0	1.4	4.6	7.6	5.3	1.44	． 70
1983	29.4	12.6	1.2	3.7	8.3	5.6	1.03	． 62
1984	26.3	10.4	1.2	4.1	8.8	5.6	． 93	． 74
1985	29.4	15.4	1.2	3.4	7.4	5.9	． 71	． 66
1986	58.6	18.7	0.8	3.0	7.0	6.7	． 45	． 65
1987	50.4	14.1	0.8	3.2	5.3	7.0	． 43	． 71
1988	54.3	12.9	0.6	3.0	4.8	7.2	． $36 *$	．71＊

Source：Entries reミleč values on lase こracing day of each year．Fozeign holdings of U．S．equizy aze From the Feceral Reserve Soard Flow of Funcs tables．Fozeign holeings of Japanese equizy are Erom the Tokyo Stock Ex－ change，with 1988 value estimatec Erom monthly net sales ciãa in Monthly Statistics Repori．The dedt－equity zaこio is deEined as the book vaiue oz deje civicied by the markeた value oミ Equizy．The debこーecuizy＝aこios for the U．S． are from the Feceral Reserve Soard，Saiance Sheess of the i．S．Economy，is88． The debえ－equiこy raこios for Japan for 1970－75 are from Anco and Auerbach （1988）．Ratios for 1976－87 are based on the cata for＂All Incustries＂in Daina（1980，1984，1987，and 2988）．Sこarred values Eor 1988 are the authors＇ esこimães．

Table 5: Asse: Composition of U.S. and Japanese Firms

	Lnited States		Japan (Billions of Dollars)	
Land	(Trillions of Yen)			

Source: U.S. Eecieral Reserve Soard, Eaiance Sheets of the U.S. Economy, and Japan Economic Planning Agency, Annual Report on Nazional Accounts. The Japanese Eirms consis: of nonEinancial cozpoza=e enterp=ises exciucing public enterprises, whose asset holiings are computec as the ciEEerence between closing asset stocks of the general government and those of public insEiEutions, the sum of government plus public enterprises.
'rable 6: Adjusted Price-Eamings Ratios, Japan and United States, 1975-1988

Japxan									Unjted States	
	Cross-Holding				Depreciation Adjustment					
	Unadjusted		Interim	Rescrves	Metho		Metho		Unadjusted	Adjusted
Year	P / E	Factor	P / E	Factor	ractor	L/E	Factor	P / E	P/E	P/E
1975	25.2	0.784	19.8	0.98	. 599	11.5	. 905	17.2	11.8	11.0
1976	22.0	0.824	18.1	0.97	. 655	11.6	. 920	16.1	11.2	10.1
1977	19.3	0.797	15.4	0.97	. 684	10.2	. 926	13.7	9.1	8.1
1978	21.5	0.792	17.0	0.97	. 704	11.7	. 931	15.3	8.2	7.5
1979	1.6 .6	0.778	12.9	0.97	.717	9.0	. 935	11.7	7.5	6.8
1980	17.9	0.770	13.8	0.97	. 755	10.1.	. 947	12.6	9.6	8.7
1981.	24.9	0.764	19.0	0.97	. 702	1.3 .0	. 932	17.1	8.2	7.6
1982	23.7	0.769	18.2	0.97	. 700	12.4	. 931	16.3	11.9	11.1
1983	29.4	0.795	23.4	0.97	. 692	15.8	. 936	21.1	12.6	11.9
1984	26.3	0.734	19.3	0.97	. 711.	1.3 .3	.943	17.5	10.4	9.4
1985	29.4	0.694	20.4	0.97	. 668	13.3	. 924	18.2	15.4	14.2
1986	58.6	0.695	40.7	0.98	. 624	24.8	. 908	35.7	18.7	17.5
1987	50.4	0.665	33.5	0.97	. 660	21.5	. 920	29.8	14.1	12.9
1988	54.3	0.669	36.3	0.97 *	. 660 *	23.2	. 920^{\star}	32.1	12.9	11.7

Source: Authors calculations described in the text. 'Ihe unadjusted P / E ratios correspond to the NRI 350 index and the S\&P Industrials index. starned values for 1988 are estimated using 1987

Table 7: The Implied Difference between the Required Return r and the Growth Rate g with Perpetual Growth Opportunities (Panel A) and the Implied Growth Rate with Supernormal Investment Opportunities of Various Durations, T (Panel B), Japan and U.S., 1985 and 1986

Panel A: The Implied Difference between the
Japanese Required Return r and the Growth Rate g Fssuming Perpetual Growth Opportunities

	$r-a$	P / E	k
Japan:1985	2.25	18.2	0.59
Japan:1986	1.37	35.7	0.51
U.S.: 2985	$3 . E 9$	24.2	0.49
U.S.:1985	3.20	27.5	0.45

Panel 3: The Implied Growth Rate with Supernormal Investment Opportunities of Various Durations, T

Source: The estimaこes in Panel A and the infinite horizon estimares in Pa are calculated using equation (4) in the text, $P / E=(1-k) /(r-g)$. The timates for 10 - and 25 -year horizons are calculated using equation (5) $P / E=[1+T(g-k r)] / \Sigma$.

Table 8: Expected Annual Growth Rates and Nominal and Real Yields on Long-Term Government Bonds, the United States and Japan, 1980-88

	Expected Lons-Term Grouth			Fefore-Tax: Yields			
	U.S.	Japan		Nominal		"Real"	
	10-Year	5-Year	10-Year	U.S	Japan	U.S	Japan
1982	3.2	4.6		10.32	7.81	4.0	2.4
1983	3.2		3.8	11.43	7.42	5.6	4.2
1984	2.9	3.7	4.0	11.51	6.85	6.1	4.4
1985	2.9	4.0	4.3	9.05	6.32	4.4	4.1
1986	2.6	3.6		7.26	5.51	2.6	2.9
1987	2.3	3.3		8.91	5.15	3.9	3.3
1988	2.3	3.9	3.9	9.18	4.80	4.1	3.0

Notes: The U.S. long-term growth forecasts are from the winter issues of Data Resources, Inc.'s Lons Term Review. For example, the 1980 forecast is from the winter 1980-81 issue. Japanese g=owth forecasts are from various issues of the Data Resources/Nikkei Japanese Review. Nominal yielcis are for the likikei Long-Term Government Bond Index and the Moody's lo-year Govermment Bond Index. The "real" yields are calculated by subtracting DRI's long-term inflation forecast from the contemporaneous nominal yield.

FGGURE 1 - REAI PNCE AND EARNTNGS PER SHARE FOR TRENR 350 1970-SS

i"

3 9080005830820

[^0]: wihle the value of equity listed on the Amezican Saock Exchange and other regional exchanges was $\$ 68.6$ billion. Shares of comesこic corporãions (exclucing mutual funds) traded in the NASDAQ over-the-counter market were valued at $\$ 325.5$ billion [U.S. Securi=ies and Exchange Commission Statistical Sulleこin (1088) and National Association of Securities Dealers Yearbook (1988)]. The over-the-counter market is less important in Japan. For example, in 1986 the volume of shares iraded on the firs Section of the Tokyo Soock Exchange was 772 Eimes the volume in tine Iokyo OTC market [Japan Securities Research Institute (1988)].
 ${ }^{2}$ MacDonald (1989) illustrates this point with calculations for a set of paraicuiar Japanese companies.

[^1]: ${ }^{3}$ The weights for tine U.S. in Table 2 differ from the equity ownership weights in the Flow of Funds for two reasons. First, intercorporate shareholdings are "netted ouv" of the Flow of Funds, so nonミinancial firms appear with no equity holcings except a smail stake in mutual funcis. Following Iri (1971), we use IRS data on the rãio of cividencs paid by U.S. corpora=ions $=0$ domestic dividencs receivec by U.S. corporations to estimate intercorporate holdings. Second, the Flow of Funds data on equity incluce stock in closely held corporations, worth $\$ 600$ billion in 1987 . Since we are concerned with marketable securities, we exclude this component. We assume that all closely held corporations are omned directly by individuals in removing this class of equity from the Flou of Funcs aggregates.

[^2]: 4hosini, kashyap, anc SchazEstein (io89) ciscuss the linkages among Eizms in these groups anc how í affects ineir Einancial behavioz.

[^3]: 5he use the NRI 350 because other majoz indices of the Japanese market nave limitations for our purposes. The aggregate P / E ratio for the Eirs Section of the TSE includes financial firms, for which accounting issues are more complex than they are for nonfinancials. The MSCI indices also include financials. In addition they include consolidated earnings for some firms, and unconsolidated earnings for others. The average P / E ratio reporeec in the Daiwa Analysts Guice is the ratio of the average price and average earnings based on number of shares outstanding, not value, so it is less representative of the value-weighted market than the NRI measure. The TSE, MSCI, and Daiwa P/E ratios were 58.3, 52.7, and 82.4 at the end of 1987 . The comparable raaio for the NRI 350 was 50.4 . Wrile some measures of aggregate Japanese P/Es were affected when the Nippon Telephone and Telegraph Company went puilic in 1987 with a price/earnings ratio of 285 , this Eirm is not included in the NRI 350 index.

[^4]: solidated income that incluces the earnings of subsiciaries in which the parent own moze than 20 of the outstanding equizy．Subsiciaries in which the parent holes a smallez stake，as well as those wioich sum to less than lof of consolicazec nez income，saies，or asseこs，way s＝ill be exciuciec．Alzhough firms repore consoliciãed eaznings，parent company eaznings are used in mos jepanese P／E calculaこions．

[^5]: The study the P/E ratios for the NRI 350 and Sop industrials at tine end of each calendar year. The S\&P ratio divides earnings for each calencar year by year-end prices. For the 1 RI 350 , the Nomura Research Institute forecasts what earnings will be in ine curreñ Eiscal year, winich eypically ends in March, and divides these forecasts by December prices. This biases the Japanese P / E ratio ciommaxd relative to the U.S. ravio when earnings are rising.

[^6]: ${ }^{8}$ If this cepreciation rate were used over the life of the asset，the cepreci－ ated value would be ten percent of the oziginal value ázer i years．However， since the couble－declining balance raze is appliec to the asseこ＇s current book value，at some point the annual deducこion from s＝こaighe－inne ciepreciation on the assea＇s remaining book value will exceec the DDS deciuction．The firm ray swizch to sこraight－line cepreciaこion $=$ ごhaこ こime．

[^7]: These tax changes did not affect the institutional shareholders who consこizu:e a significant part of japanese equity noldings.

