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Abstract

This paper analyzes the second order bias of instrumental variables estimators for a dynamic

panel model with fixed effects. Three different methods of second order bias correction are

considered. Simulation experiments show that these methods perform well if the model does

not have a root near unity but break down near the unit circle. To remedy the problem near

the unit root a weak instrument approximation is used. We show that an estimator based on

long differencing the model is approximately achieving the minimal bias in a certain class of

instrumental variables (IV) estimators. Simulation experiments document the performance of

the proposed procedure in finite samples.

Keywords: dynamic panel, bias correction, second order, unit root, weak instrument
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reduces the finite sample bias and also decreases the MSE of the estimator. To increeise further

the explanatory power of the instruments, we use the technique of using estimated residuals as

additional instruments a technique introduced in the simultaneous equations model by Hausman,

Newey, and Taylor (1987) and used in the dynamic panel data context by Ahn and Schmidt

(1995). Monte Carlo results demonstrate that the long difference estimator performs quite well,

even for high positive values of the lagged variable coefficient where previous estimators are

badly biased.

However, the second order bias calculations do not predict well the performance of the estima-

tor for these high values of the coefficient. Simulation evidence shows that our approximations

do not work well near the unit circle where the model suffers from a near non-identification

problem. In order to analyze the bias of standard GMM procedures under these circumstances

we consider a local to non-identification asymptotic approximation.

The alternative asymptotic approximation of Staiger and Stock (1997) and Stock and Wright

(2000) is based on letting the correlation between instruments and regressors decrease at a

prescribed rate of the sample size. In their work, it is assumed that the number of instruments

is held fixed as the sample size increases. Their limit distribution is nonstandard and in special

cases corresponds to exact small sample distributions such as the one obtained by Richardson

(1968) for the bivariate simultaneous equations model. This approach is related to the work

by Phillips (1989) and Choi and Philfips (1992) on the asymptotics of 2SLS in the partially

identified case. Dufour (1997), Wang and Zivot (1998) and Nelson, Startz and Zivot (1998)

analyze valid inference and tests in the presence of weak instruments. The associated bias and

mean squared error of 2SLS under weak instrument assumptions was obtained by Chao and

Swanson (2000).

In this paper we use the weak instrument asymptotic approximations to analyze 2SLS for the

dynamic panel model. We analyze the impact of stationarity assumptions on the nonstandard

limit distribution. Here we let the autoregressive parameter tend to unity in a similar way as in

the near unit root literature. Nevertheless we are not considering time series cases since in our

approximation the number of time periods T is held constant while the number of cross-sectional

observations n tends to infinity.

Our limiting distribution for the GMM estimator shows that only moment conditions in-

volving initial conditions are asymptotically relevant. We define a class of estimators based on

linear combinations of asymptotically relevant moment conditions and show that a bias minimal

estimator within this class can approximately be based on taking long differences of the dynamic

panel model. In general, it turns out that under near non-identification asymptotics the optimal

procedures of Alvarez and Arellano (1998), Arellano and Bond (1991) , Ahn and Schmidt (1995.

1997) are suboptiraal from a bias point of view and inference optimally should be based on a

smaller than the full set of moment conditions. We show that a bias minimal estimator can be

obtained by using a particular linear combination of the original moment conditions. We are

using the weak instrument asymptotic approximation to the distribution of tlic IV estimator to



1 Introduction

We are concerned with estimation of the dynamic panel model with fixed effects. Under large

n, fixed T asymptotics it is well known from Nickell (1981) that the standard maximum hkeli-

hood estimator suffers from an incidental parameter problem leading to inconsistency. In order

to avoid this problem the hterature has focused on instrumental variables estimation (GMM)

applied to first differences. Examples include Anderson and Hsiao (1982), Holtz-Eakin, Newey,

and Rosen (1988), and Arellano and Bond (1991). Ahn and Schmidt (1995), Hahn (1997), and

Blundell and Bond (1998) considered further moment restrictions. Comparisons of information

contents of varieties of moment restrictions made by Ahn and Schmidt (1995) and Hahn (1999)

suggest that, unless stationarity of the initial level y^o is somehow exploited as in Blundell and

Bond (1998), the orthogonality of lagged levels with first differences provide the largest source

of information.

Unfortunately, the standard GMM estimator obtained after first differencing has been found

to suffer from substantial finite sample biases. See Alonso-Borrego and Arellano (1996). Mo-

tivated by this problem, modifications of likelihood based estimators emerged in the literature.

See Kiviet (1995), Lancaster (1997), Hahn and Kuersteiner (2000). The likelihood based esti-

mators do reduce finite sample bias compared to the standard maximum likelihood estimator,

but the remaining bias is still substantial for T relatively small.

In this paper, we attempt to eliminate the finite sample bias of the standard GMM estimator

obtained after first differencing. We view the standard GMM estimator as a minimum distance

estimator that combines T— 1 instrumental variable estimators (2SLS) applied to first differences.

This view has been adopted by Chamberlain (1984) and Grihches and Hausman (1986). It has

been noted for quite a while that IV estimators can be quite biased in finite sample. See Nagar

(1959), Mariano and Sawa (1972), Rothenberg (1983), Bekker (1994), Donald and Newey (1998)

and Kuersteiner (2000). If the ingredients of the minimum distance estimator are all biased,

it is natural to expect such bias in the resultant minimum distance estimator, or equivalently,

GMM. We propose to eliminate the bias of the GMM estimator by replacing all the ingredients

with Nagar type bias corrected instrumental variable estimators. To our knowledge, the idea of

applying a minimum distance estimator to bias corrected instrumental variables estimators is

new in the literature.

We consider a second order approach to the bias of the GMM estimator using the formula

contained in Hahn and Hausman (2000). We find that the standard GMM estimator suffers

from significant bias. The bias arises from two primary sources: the correlation of the structural

equation error with the reduced form error and the low explanatory power of the instruments.

We attempt to solve these problems by using the "long difference technique" of Griliches and

Hausman (1986). Griliches and Hausman noted that bias is reduced when long differences are

used in tlie errors in variable problem, and a similar result works here with the second order

bias. Long differences also increases the explanatory power of the instruments which further

1



derive the form of the optimal hnear combination.

2 Review of the Bias of GMM Estimator

Consider the usual dynamic panel model with fixed effects:

y^t = ai + f3yi^t-i + eu, i = l,...,n; t = l,...,T (1)

It has been common in the literature to consider the case where n is large and T is small. The

usual GMM estimator is based on the first difference form of the model

Vit - yi,t-\ = (3 {yi,t-i - yi,t-2) + {en - ^t,t-i)

where the instruments are based on the orthogonality

E [yi,5 {^it - et,t-i)] = s = 0, . . . , i - 2.

Instead, we consider a version of the GMM estimator developed by Arellano and Bover (1995),

which simplifies the characterization of the "weight matrix" in GMM estimation. We define

the innovation ua = Qi + en- Arellano and Bover (1995) eliminate the fixed effect aj in (1) by

applying Helmert's transformation

T -t
ul Utt - ^7—7 ("j.t+i H 1- Uix) t = i r-1T-t+l

instead of first differencing.^ The transformation produces

Vu = P^zt + e*t> < = 1, . .
. ,
T - 1

where Xj = y*t-\- Let z^t = (j/io, - - ,yit-i) Our moment restriction is summarized by

E[zite*n]=0 < = l,...,r-l

It can be shown that, with the homoscedasticity assumption on en, the optimal "weight ma-

trix" is proportional to a block-diagonal matrix, with typical diagonal block equal to E[zitz[^.

Therefore, the optimal GMM estimator is equal to

ET— 1 ^f ry *

1=1 ^t Ptyt
^GMM (2)

where x^ = {^ur ,<;)', Vt = iVur ^Vnt)'-- ^i = {zu,--- ,Znt)\ and Pt = Zt{Z\Zt)~^ Z[

Now, let b2sis,t denote the 2SLS of y* on x*:

^VPiVl
^2SLS,t t = 1,... ,r- 1

'Arellano and Bover (1995) notes that the cfficienc)' of the resultant CMM estimator is not afTcrted whether

or not Helmert's transformation is used instead of first differencing.



If Eit are i.i.d. across t, then under the standard (first order) asymptotics where T is fixed and

n grows to infinity, it can be shown that

V^ (b2SLS,l -/?,-•• MSLS^T-I -/?)-> AA (0, *) ,

where ^ is a diagonal matrix with the t-th diagonal elements equal to Var {en)/ (plim n~^x*'Ptx*)

.

Therefore, we may consider a minimum distance estimator, which solves

-1

mm
b

\ b2SLS,T-l ~^ )

(xrPixj)
-1

(x5,'_ jPr-l 2:^-1

)'

b2SLS,\ -b \

\ hsLS,T-l ~b J

The resultant minimum distance estimator is numerically identical to the GMM estimator in

(2):

Tj='<Ptx;,-'b2SLS,i
boMM =

Z^t=l ^f -^t^t

(3)

Therefore, the GMM estimator bcMM n:iay be understood as a linear combination of the 2SLS

estimators b2SLS,i-,--- 7^25LS,r-i- It has long been known that the 2SLS may be subject to

substantial finite sample bias. See Nagar (1959), Rothenberg (1983), Bekker (1994), and Donald

and Newey (1998) for related discussion. It is therefore natural to conjecture that a linear

combination of the 2SLS may be subject to quite substantial finite sample bias.

3 Bias Correction using Alternative Asymptotics

In this section, we consider the usual dynamic panel model with fixed effects (1) using the

alternative asymptotics where n and T grow to infinity at the same rate. Such approximation

was originally developed by Bekker (1994), and was adopted by Alvarez and Arellano (1998)

and Hahn and Kuersteiner (2000) in the dynamic panel context. We assume

Condition 1 en ~ A/^(0, a^) over i andt.

We also assume stationarity on yifi and normality on a,^:

Condition 2 y,o| «: ~ A/" (^,^) and Or ^ N {0,al).

In order to guarantee that Z'tZt is nonsingular. we will assume that

^This condition allows us to use lots of intermediate results in Alvarez and Arellano (1998). Our results are

expected to be robust to violation of this condition.



Condition 3 ^ ^ p. where < p <l.^

Al\'arez and Arellano (1998) show that, under Conditions 1-3,

v^ (bGM^f -(3-^{l+ ,3)]^ - .'V (0. 1 - 0') , (4)

where bcMM is defined in (2) and (3). By examining the asjTnptotic distribution (4) under such

alternative asjTnptotic approximation where n and T grow to infinity' at the same rate, we can

develop a bias-corrected estimator. This bias-corrected estimator is given by

1

'GA/M -bcMM +

Combining (4) and (5). we can easily obtain:

Theorem 1 Suppose that Conditions 1-3 are satisfied. Then, y/nT [hcMM — !3)

(5)

.V(0,l-/32).

Hahn and Kuersteiner (2000) establish by a Hajek-type convolution theorem that ^^Z" (0, 1 — /3^)

is the minimal asymptotic distribution. As such, the bias corrected GMM is efficient. Although

the bias corrected GMM estimator bcMM does have a desirable property under the alternative

asjTnptotics, it would not be easy to generalize the development leading to (5) to the model

invohang other strictly exogenous \'ariables. Such a generalization would require the charac-

terization of the asjTiiptotic distribution of the standard GMM estimator under the alternative

as^Tnptotics, which may not be trivial. We therefore consider ehminating biases in b^sis.t in-

stead. An estimator that removes the higher order bias of b2SLS,t is the Nagar type estimator.

&JV,agar.t
x'/PfX^ — Xtx'/Mtx^

'

where Alt = i — Pt: ^t ^ n-K* - ^^'^ ^* denotes the number of instruments for the t-ih equation.

For example, we may use At = ^^'j^^2 ^^ ^° Donald and Newey (1998). We may also use LIML

for the f-th equation, in which case At would be estimated by the usual minimum eigenvalue

search.

We now examine properties of the corresponding minimum distance estimator. One possible

weight matrix for this problem is given by

{xl'Prxl-Xix\'Mrxl)
-1

{^T-l^T-l^T-l ~ ^T-l^T-l-^^T-i^T-l)

'.Alvarez and Arellano (1998) only require < p < oo. We require p < 1 to guarantee that Z'lZt is singular for

everv t.



With this weight matrix, it can be shown that the minimum distance estimator is given by

One possible way to examine the finite sample property of the new estimator is to use the

alternative asymptotics:

Theorem 2 Suppose that Conditions 1-3 are satisfied. Also suppose that n and T grow to

infinity at the same rate. Then, \/nT {bj^agar — P) —* N (0,1 — /3 )

.

Proof. Lemmas 10, and 11 in Appendix A along with Lemma 2 of Alvarez and Arellano

(1998) establish that

7 <Pte*t '-^^t'Mts: -> AT 0,VnT^K ' '' n-Kt ' ^ V V
'
1 - /3^

and

a^
-^y (x'Ptxt - -^i-x/Mtx;

, i2'

from which the conclusion follows.

In Table 1, we summarized finite sample properties of h^agar and buML approximated by

10000 Monte Carlo runs.^ Here, buML is the estimator where As in (6) are replaced by the

corresponding "eigenvalues". In general, we find that bj^agar and buj^i successfully remove

bias unless /? is close to one and the sample size is small.

4 Bias Correction using Higher Order Expansions

In the previous section, we explained the bias of the GMM estimator as a result of the biases

of the 2SLS estimators. In this section, we consider elimination of the bias by adopting the

second order Taylor type approximation. This perspective has been adopted by Nagar (1959),

and Rothenberg (1983).

For this purpose we first analyze the second order bias of a general minimization estimator

6 of a single parameter (3 &R defined by

b = argmin Qn (c) (7)

for some C C M. The score for the minimization problem is denoted by Sn (c) = dQn (c) /dc.

The criterion function is assumed to be of the form Q„ (c) = g (c)' G {c)~^ g (c) where g (c) and

G(c) are defined in Condition 7. The criterion function depends on primitive functions 8 {wi,c)

and V(tt;,,c) mapping M^ x M into R"^ for d > 1, where Wi are i.i.d. observations. We assume

that E [6 {xL\, p)] = 0. We impose the following additional conditions on w^,6, and ip.

"in our Monte Carlo experiment, we let e,t ~ A^ (0, 1), a, ~ N (0, 1), and y,o ~ N (yrfS' irW)



Condition 4 The random variables wi are i.i.d.

Condition 5 The functions 6 {w, c) and tj; {w, c) are three times dijferentiable in c for c £ C
where C CM is a compact set such that (3 E int C. Assume that 6 {wi, c) and tp {iVi, c) satisfy a

Lipschitz condition \\6 {wi, ci) — 6 {wi, C2)|| < Ms (wi) |ci — C2I for some function Ms{.) : IR'^ —> R
and ci,C2 G C with the same statement holding for ip. The functions M5{.) and M^(.) satisfy

E [Me {wi)] < 00 and E |M^ (wi)P < 00.

Condition 6 Let Sj{wi,c) = d^6 {wi,c) /dc^ , '^ {wi,c) = ip {wi,c)il) {wi,c)' and '^j{wi,c) =

d^^ {wi,c) jdcK Then, Xj (c) = E [6j {wi,c)], and Aj (c) = E [^j (fOi, c)] all exist and are finite

for j = 0, ..., 3. For simplicity, we use the notation Xj = Xj (/3), Aj = Aj (/?), A (c) = Xq (c) and

A(c) = Ao(c).

Condition 7 Letg{c) = -Yl'l^iS {wi,c), Qj {c) = ^ Er=i ^j (""^^.c), G (c) = ^ E"=i ^ (^^i>c) VK-,c)'

andGj{c) = ^Er=i^iK,c). Theng{c) ^ E[6iw„c)], g,{c) -^ E[6,{w„c)], G(c)

E ['^ {wi,c)], and Gj (c) ^ E [i>-j {wi, c)] for all ceC.

Our asymptotic approximation of the second order bias of b is based on an approximate

estimator b such that b — b = Op (^~^) - The approximate bias of b is then defined as E b — (3

while the original estimator h need not necessarily possess moments of any order. In order to

justify our approximation we need to establish that b is i/n-consistent and that Sn (b) = with

probability tending to one. For this purpose we introduce the following additional conditions.

Condition 8 (i) There exists some finite < M < 00 such that the eigenvalues ofE [^ (zt;,-, c)]

are contained in the compact interval [M^-',M] for all c G C; (ii) the vector E[8 {w^,c)\ = if

and only if c = (3; (Hi) X\ 7^ 0.

Condition 9 There exists some r/ > such that E Ms {w^) ^

suPcecll^K'C)
|2+T7 < 00, and E suPcGcllV'(^«i,c)f+''

< 00, E M^ (u'i)
^2+7, < 00,

< 00.

Condition 8 is an identification condition that guarantees the existence of a unique inte-

rior minimum of the limiting criterion function. Condition 9 corresponds to Assumption B of

Andrews (1994) and is used to establish a stochastic equicontinuity property of the criterion

function.

Lemma 1 Under conditions 4 - 9, b defined in (7) satisfies y/n{b — (3) = Op(l) and Sn (6) =

with probability tending to 1.

Proof. See Appendix B.

Based on Lemma 1 the first order condition for (7) can be characterized by

Q = 2gi{b)'G{br'g{b)-g{b)'G{h)-^Gx[b)G{h)'g[h) wp - 1. (8)



A second order Taylor expansion of (8) around /3 leads to a representation oi b — (3 up to terms

of order Op{n~'^). In Appendix B, it is shown that

VS(6 -
ffl
= -i* + -L (-ir + i*= - i;*') + Op (-1=) (9)

(See Definition 2 in Appendix B for the definition of *,T,$,H, and F.) Ignoring the Op (A^j

term in (9), and taking expectations, we obtain the "approximate mean" of ^/n{b — (3). We

present the second order bias of b in the next Theorem.

Theorem 3 Under Conditions 4-9, the second order bias ofb is equal to

(10)

where

E[T] = 2tTace{A''E

and

E[^=] = SX[A-^E

E[^] = 0,

f\cf "1 \

6i^ j
- 2X[A-^E [^p^i>',A-H^] - trace (A-^AjA-^i? [6i6'^) ,

A-^Ai - 4XjA'^E [6^X\A-'^^P,^'^ A^^Ai

and

-SX'^A-^E [6i6'^ A-^AiA-^Ai + AX'^A'^E [<5,<5',] A^^Aa,

E[<l>^]=iX[A-^E[6^6'^A-'X^,

Proof. See Appendix B.

Remark 1 For the particular case where ip, = 6i, i.e. when b is a CUE, the bias formula (10)

exactly coincides with Newsy and Smith's (2000).

We now apply these general results to the GMM estimator of the dynamic panel model. The

GMM estimator bcMM can be understood to be a solution to the minimization problem

mm
c \ n

m, (c)

for c G C where C is some closed interval on the real line containing the true parameter value

and

m, (c)

V ^^.T-\ [vIt-i C X. :T-a J

T7 ^-^
2=1

Zi\Zii

Zx,T~\Z, 7-_j

We now characterize the finite sample bias of the GMM estimator bemm of the dynamic

panel model using Theorem 4. It can be shown that:



Theorem 4 Under Conditions 1-3 the second order bias of bcMM is equal to

B1+B2 + B3 f 1
+ -

n \n (11)

where

zx
s

Bi = Tr^ ELY trace ((rr)'' T-")

B2 = -2Tf zti EL7 rr' (rr)-' r-- (rf
)-i r

^3 = Tr^ ^^j-/ ^fr^i rr' (rr)-' -B3.1 (t, s) (rf
)-i rr

.

andTi = Er=i'rr'(rfr^rr.

Proof. See Appendix C.

In Table 2, we compare the actual performance oihcMM and the prediction of its bias based

on Theorem 4. Table 2 tabulates the actual bias of the estimator approximated by 10000 Monte

Carlo runs, and compares it with the second order bias based on the formula (11). It is clear

that the second order theory does a reasonably good job except when p is close to the unit circle

and n is small.

Theorem 4 suggests a natural way of eliminating the bias. Suppose that Bi/B2,Bz are

>/n-consistent estimators of B-[,B2, B3. Then it is easy to see that

t>BCi — t>GMM {B-i + B2 + Bsj (12)

is first order equivalent to bcMM, and has second order bias equal to zero. Define Tf^ =

n-' HU ^rt^tM"" = ri-^ EIli ^rtKv ^\T = «"' ELi <t^l^u^is and

n

i=l

where e*j = y*^ — x*^bGMM Let Bi,B2 and .63 be defined by replacing rj^,rf^,r"^^ and

53,1 (f,s) by ff,fr,%" and 53,i(i,s) in Bi,B2 and S3-

Then the Bs will satisfy the -yn-consistency requirement, and hence, the estimator (12) will

be first order equivalent to bcMM and will have zero second order bias. Because the summand

E [z^tx*i]' E \z,t,z\^
"

6*iZu\'^K^^ Zisz[^E [z,sz[,]
~ E [zisX*,]

in the numerator of i?3 is equal to zero for s < i, we may instead consider

bBC2 = bcMM [ Bi + B2 + B3
n

;i3)



where

lis = tr^ eL"/ eI=' fr' (ff
)
"'

^3,1 (*, s) (fr
)
'' fr-

Second order asymptotic theory predicts approximately that 6j3C2 would be relatively free

of bias. We examined whether such prediction is reasonably accurate in finite sample by 5000

Monte Carlo runs.^ Table 3 summarizes the properties of 6bc2- We have seen in Table 2 that

the second order theory is reasonably accurate unless /3 is close to one. It is therefore sensible

to conjecture that bBC2 would have a reasonable finite sample bias property as long as /3 is not

too close to one. Such a conjecture is verified in Table 3.

5 Long Difference Specification: Finite Iteration

In previous sections, we noted that even the second order asymptotics "fails" to be a good

approximation around /? ~ 1. This phenomenon can be explained by the 'Sveak instrument"

problem. See Staiger and Stock (1997). Blundell and Bond (1998) argued that the weak instru-

ment problem can be alleviated by assuming stationarity on the initial observation yjo- Such

stationarity condition may or" may not be appropriate for particular applications. Further, sta-

tionarity assumption turns out to be a predominant source of information around /? « 1 as noted

by Hahn (1999). We therefore turn to some other method to overcome the weak instrument

problem around the unit circle avoiding the stationarity assumption. We argue that some of the

difficulties of inference around the unit circle would be alleviated by taking a long difference.

To be specific, we focus on a single equation based on the long difference

VtT - yn = P iViT-i - Vio) + {£iT - £n) (14)

It is easy to see that the initial observation y,o would serve as a valid instrument. Using

similar intuition as in Hausman and Taylor (1983) or Ahn and Schmidt (1995), we can see that

2/iT-i - l3yiT-2, , yi2 — Pyn would be valid instruments as well.

5.1 Intuition

In Hahn-Hausman (HH) (1999) we found that the bias of 2SLS (GMM) depends on 4 fac-

tors: "Explained" variance of the first stage reduced form equation, covariance between the

stochastic disturbance of the structural equation and the reduced form equation, the number of

instruments, and sample size:

„,:_, _ m ~ 1 (number of instruments) x ("covariance")

n "Explained" variance of the first stage reduced form equation

"The difTcrence of Monte Carlo runs here induced some minor numerical difference (in properties of bcMM)
across Tables I - 3.

10



Similarly, the Donald-Newey (DN) (1999) MSE formula depends on the same 4 factors. We now

consider first differences (FD) and long differences (LD) to see why LD does so much better in

our Monte-Carlo experiments.

Assume that T — A. The first difference set up is:

2/4 - Z/3 = /? (ya - y2) + £4 - £3 (15)

For the RHS variables it uses the instrument equation:

ys - y2 = (/? - 1) 2/2 + a + £3

Now calculate the R^ for equation (15) using the Ahn-Schmidt (AS) moments under "ideal con-

ditions" where you know (3 in the sense that the nonlinear restrictions become linear restrictions:

We would then use (y2, yi , yo, cv -f- ei , a -I- £2) as instruments. Assuming stationarity for symbols,

but not using it as additional moment information, we can write

yo = Yzrp + ^0'

where ^0 ^ ( 0' -iln^ ) • ^^ ^^^ t>e shown that the covariance between the structure error and

the first stage error is — o"^, and the "explained variance" in the first stage is equal to cr'^-^r^-

Therefore,the ratio that determines the bias of 2SLS is equal to

-a2 l + p
2^±1 1-/3'

which is equal to —19 for /? — .9. For n = 100, this implies the percentage bias of

Number of Instruments —19 ,„„ 5 —19 ,„„ ,^^ ^^
:^

;

—

7; TT- X 100 = —— -—r x 100 = -105.56
Sample Size p 100 0.9

We now turn to the LD setup:

y4-yi = P (ys - yo) + £4-£i

It can be shown that the covariance between the first stage and second stage errors is —/3^(T^,

and the "explained variance" in the first stage is given by

—a
(2/3^ - 4/3'' - 2/3^ + 4/32 + 4p-2p^ + 6)a^ + P^ -p^ + 2- 2/3^

(-2/3-3 + /?2)a2-l+/32

2

where a^ = %. Therefore, the ratio that determines the bias is equal to

2
{-2p-3 + p^)a^-\+p^

(2/3^ - 4/3^ - 2/3'^ + 4/32 + 4/3 - 2/3^ + 6) a'^ + /?^ - p'^ + 2 - 2p^
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which is equal to

2.570 3x10-''
-.374 08 +

a2 + 4.8306x IO-2

for /? = .9. Note that the maximum value that this ratio can take in absolute terms is

-.37408

which is much smaller than —19. We therefore conclude that the long difference increases i?^ but

decreases the covariance. Further, the number of instruments is smaller in the long difference

specification so we should expect even smaller bias. Thus, all of the factors in the HH equation,

except sample size, cause the LD estimator to have smaller bias.

5.2 Monte Carlo

For the long difference specification, we can use y^o as well as the "residuals" yir-i — l3yiT-2-, - • -

,

yi2—f3yii as valid instruments.^ We may estimate p by applying 2SLS to the long difference equa-

tion (14) using yio as instrument. Wemaythenuse (yio,yiT-i -b2SLsyiT-2, ,yi2 -hsLsyn)^

instrument to the long difference equation (14) to estimate p. Call the estimator b2SLS,i- By

iterating this procedure, we can define 62SL5,2, i>2SLS,Si Similarly, we may first estimate /?

by the Arellano and Bover approach, and use (yio,yiT-i -bGMMyiT-2, -- ,yi2 -bcMMynj as

instrument to the long difference equation (14) to estimate p. Call the estimator 6251,5,1 • By

iterating this procedure, we can define bGMM,2, ^GMM.s, - - Likewise, we may first estimate

P by huML, and use [yio,yiT-i - buMLyiT-2, ,yi2- buMLynj as instrument to the long

difference equation (14) to estimate p. Call the estimator bijML^- By iterating this procedure,

we can define bLiML,2, bLiML,3, - - We found that such iteration of the long difference esti-

mator works quite well. We implemented these procedures for T = 5, n = 100, p = 0.9 and

(j^ = o"^ = 1. Our finding with 5000 monte carlo runs is summarized in Table 4. In general, we

found that the iteration of the long difference estimator works quite well.^

We compared the performance of our estimator with Blundell and Bond's (1998) estimator,

which uses additional information, i.e., stationarity. We compared four versions of their estima-

tors bsBi, , bsBi with the long difference estimators bumlATbumL,2,bum l,2,- For the exact

definition of 6bbi, , 6bb4, see Appendix E. Of the four versions, 6bb3 and bsBi are the ones

reported in their Monte Carlo section. In our Monte Carlo exercise, we set p = 0.9, a^ = \,

Q.i
r^ N {0,1). Our finding based on 5000 Monte Carlo runs is contained in Table 5. In terms of

bias, we find that Blundell and Bond's estimators 6bb3 and 6^54 have similar properties as the

long difference estimator(s), although the former dominates the latter in terms of variability.

We acknowledge that the residual instruments are irrelevant under the near unity asymptotics.

^Second order theory does not seem to explain the behavior of the long difference estimator. In Table 7, we

compare the actual performance of the long difference based estimators with the second order theory developed

in Appendix F.
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(We note, however, that 6bbi and 6bs2 are seriously biased. This indicates that the choice

of weight matrix matters in implementing Blundell and Bond's procedure.) This result is not

surprising because the long difference estimator does not use the information contained in the

initial condition. See Hahn (1999) for a related discussion. We also wanted to examine the

sensitivity of Blundell and Bond's estimator to misspecification, i.e., nonstationary distribution

of yio- For this situation the estimator will be inconsistent. In order to assess the finite sample

sensitivity, we considered the cases where yio ~ f j3k~ ' j^L ) Our Monte Carlo results based

on 5000 runs are contained in Table 6, which contains results for (3p — .5 and ^p = 0. We
find that the long difference estimator is quite robust, whereas 6^53 and 6bb4 become quite

biased as predicted by the first order theory. (We note that hBB\ and 6bb2 are less sensitive

to misspecification. Such robustness consideration suggests that choice of weight matrix is not

straightforward in implementing Blundell and Bond's procedure.) We conclude that the long

difference estimator works quite well even compared to Blundell and Bond's (1998) estimator.^

6 Near Unit Root Approximation

Our Monte Carlo simulation results summarized in Tables 1, 2, and 3 indicate that the previously

discussed approximations and the bias corrections that are based on them do not work well near

the unit circle. This is because the identification of the model becomes "weak" near the unit

circle. See Blundell and Bond (1998), who related the problem to the analysis by Staiger and

Stock (1997). In this Section, we formally adopt approximations local to the points in the

parameter space that are not identified. To be specific, we consider model (1) for T fixed and

n —> 00 when also /?„ tends to unity. We analyze the bias of the associated weak instrument

limit distribution. We analyze the class of GMM estimators that exploit Ahn and Schmidt's

(1997) moment conditions and show that a strict subset of the full set of moment restrictions

should be used in estimation in order to minimize bias. We argue that this subset of moment

restrictions leads to the inference based on the "long difference" specification.

Following Ahn and Schmidt we exploit the moment conditions

E[uiu[] = {al + cTl)l + alll'

E [uiyiQ] cr.ayo-

with 1 = [1, .-., 1]' a vector of dimension T and Uj = [u,i, •j^^zt]

be written more compactly as

The moment conditions can

chE[uiu'^\ 2 vech / 9 vech(7 + ll')

E [uiyio]

= <^e + ^a + O'oyo
1

(16)

^We did try to compare the sensitivity of the two moment restrictions by implementing CUE. but we experi-

enced some numerical problem. Numerical problem seems to be an issue with CUE in general. Windmeijer (2000)

reports similar problems with CUE.
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where the redundant moment conditions have been eHminated by use of the vech operator which

extracts the upper diagonal elements from a symmetric matrix. Representation (16) makes it

clear that the vector b E R^(^+^)/2+^ is contained in a 3 dimensional subspace which is another

way of stating that there are G = T{T +l)/2 + T — 3 restrictions imposed on b. This statement

is equivalent to Ahn and Schmidt's (1997) analysis of the number of moment conditions.

GMM estimators are obtained from the moment conditions by eliminating the unknown

parameters (T^,<y1, and Oay^. The set of all GMM estimators leading to consistent estimates of/?

can therefore be described by a {T{T + l)/2 + T) x G matrix A which contains all the vectors

spanning the orthogonal complement of 6. This matrix A satisfies

b'A = 0.

For our purposes it will be convenient to choose A such that

b'A = [EuitAuis,E {uiT^Uij) , EuiAuik, EAu'^yio]
,

s = 2,...,T;i = l,...s-2;j = 2,...,r-l;A; = 2,...,T

where Aui = [ui2 — un, ...,Uix — UiT-i] It becomes transparent that any other representation of

the moment conditions can be obtained by applying a corresponding nonsingular linear operator

C to the matrix A. It can be checked that there exists a nonsingular matrix C such that b'AC =

is identical to the moment conditions (4a)-(4c) in Ahn and Schmidt (1997).

We investigate the properties of (infeasible) GMM estimators based on

E [u^tAuis (/?)] = 0, S [u^T^Uij (/?)] = 0, £; [u,Au,k (/?)] = 0, S [Vro^u.t (/?)] =

obtained by setting Auu {(3) = Ayu - PAyu-i- Here, we assume that the instruments uu are

observable. Let gn {(3) denote a column vector consisting oiuuAuis (/3) , UixAuij (/?) ,UiAuik (/?).

Also let g,2{(3) = [y^oAu,{f3)]. Finally, let gn{P) = n-^^j:^^, [g^l (P)' , 9^2 {P)']' with the

optimal weight matrix fin = E [gi (/?„) gi (/?„)'] . The infeasible GMM estimator of a possibly

transformed set of moment conditions C'gn (/?) then solves

P2SLS = argmin g„ (/3)' C (C'C!„C)+ C'gn {(3) (17)

where C is a G x r matrix for 1 < r < G such that C'C = U and rank (c{C'Q,C)'^ C'\ > 1.

We use [C'Q.C)'^ to denote the Moore-Penrose inverse. We thus allow the use of a singular

weight matrix. Choosing r less than G allows to exclude certain moment conditions. Let

ki = -dgii{0)/dp, /,,2 = -%2(/?)/a/?, and /„ = n-^^Z^^i [fuJ^]'- The infeasible

2SLS estimator can be written as

P2SLS -Pn= (fnC (G'fi„G)+ CfX' f^C (C'fi„G)+ C'gn iPn) (18)

We are now analyzing the behavior of /?2sl5 - Pn under local to unity asymptotics. We make

the following additional assumptions.^

'Kruiniger (2000) considers similar local-to-unity asymptotics.
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Condition 10 Let yu = Oi + PnVit-i + ^it with en ~ A'' (0,cr^), ai ^ N (0,a^) and y^o ~

A'' ( ^% , j^^ ] , where /?„ = exp(—c/n) for some c > 0.

Also note that Ayu = Pl^^Vio + ^it + ^ El=i Pn'^^u-s + Op (n-^) where

r?,o~iv(0,(^„-l)y (1-/32)).

Under the generating mechanism described in the previous definition the following Lemma can

be established. '

Lemma 2 Assume /?„ = exp(—c/n) for some c > 0. For T fixed and as n -^ oo

i=l i=l

and

where[!i'^,i'y] ~ iV(0,E) with E
Ell Ei2

E21 E22
and Ell = ^I, E12 = SMi E22 = SM2, where

2 2

Ml =

-1 1

and S12 = E21 . We also have

1

-1

M2

2

-1

•- -1

-1 2

1 ^ \
^

E22
+ o(l)

Proof. See Appendix D.

Using Lemma (2) the limiting distribution of P2SLS ~ Pn is stated in the next corollary.

For this purpose we define the augmented vectors ^f = [O, ...,0,^^] and ^* = [O, ...,0,^^] and

partition C = [C'qjC{]' such that C'^f = C[^^. Let rj denote the rank of Ci.

Corollary 1 Let P2SLS " Pn ^^ given by (IS). If Condition 10 is satisfied then

d SiCl (C1S22C1) C{^y
P:2SLS - 1

c;ci(C5E22Circ;e
= ^V(C,S22) (19)
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Unlike the limiting distribution for the standard weak instrument problem, X(C, E22), as

defined in (19), is based on normal vectors that have zero mean. This degeneracy is generated

by the presence of the fixed effect in the initial condition, scaled up appropriately to satisfy

the stationarity requirement^'' for the process yu- Inspection of the proof shows that the usual

concentration parameter appearing in the limit distribution is dominated by a stochastic com-

ponent related to the fixed effect. This situation seems to be similar to time series models where

deterministic trends can dominate the asymptotic distribution.

Based on Corollary 1 , we define the following class of 2SLS estimators for the dynamic panel

model. The class contains estimators that only use a nonredundant set of moment conditions

involving the initial conditions yiQ.

Definition 1 Let P2SLS ^^ defined as P^gj^g = argmin^ ^2,n (/?)' Ci lC{QCi) C[g2,n{0), where

92,71 (0) = Ti~^' ^ Yl^=\ 9i2 {P)r ^ is a symmetric positive definite (T — 1) x (T — 1) matrix of con-

stants and C\ is a [T — \) X r\ matrix of full column rank rj < T — 1 such that C[Ci = I.

Next we turn to the analysis of the asymptotic bias for the estimator P2SLS ^^ the dynamic

panel model. Since the limit only depends on zero mean normal random vectors we can apply

the results of Smith (1993).

Theorem 5 Let X* (Ci,QJ be the limiting distribution of P2SLS ~ 1 i''^ Definition 1 under

Condition 10. Let D = [D + D') /2, where D = (c{QCi] C[M[Ci. Then

[x (c„n)] = A- f;
<MWc» (fl,/n - A- {c[acX')

fc=0 \2)\+k'^- V ^ ^ /

E

'"An alternative way to parametrize the stationarity condition is to set yu = (!—/?„) Qi + (B^yu-i + en,

£it ~ N (O.CTj)
, Qi ~ N {0,al) andy.o ~ N i Oi, y^^ j

with /3„ = exp(-c/n) .It can be shown that an estimator

soley based on the moment condition E[uii^Uik (Po)] = is consistent. Restricting attention to estimators that

are ba.sed on all moment conditions except the condition E[uiAu,k (/3o)] = 0, one can show that

where fi = It- i cry/2. Estimators in the class /Jjs^s defined in Definition 1 can be analyzed by the same methods as

under the stationarity assumptions discussed in the paper. Their limiting distributions are denoted by X' (Ci , )

.

Moments oi X* are intractably complicated unless Q, = It-\- Then the mean of ^* (Ci,/t-i) is given by

^i'D^J „,r-l r-l ^l'n n'D^i_,_ ^,r-l r-1
r+1 '^'(^-•^ + i'^)-7TT^"^^^^~^'^- + '>~-

with D = [D + D ) /2, D = C[MiC-i and /i = C\ij.. While finding an exact analytical minimum of the above bias

expression as a function of the weight matrix is probably infeasible due to the complexity of the formula, one

sees relatively easily that for large T the minimum must approximately be achieved for C = lr~i, thus leading

approximately to the long difference estimator.
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where n = rank(Ci), (a)j, is the Pochammer symbol r{a + b) /r{b), C^^{.,.) is a top order

invariant polynomial defined by Davis (1980) and A is the largest eigenvalue of (c[ClC]\ .

The mean E X [Ci,^) exists for r\ >\.

Proof. See Appendix D.

The Theorem shows that the bias of /?2sl5 both depends on the choice of C\ and the weight

matrix ^. Note fore example that E[X{C\,It-\)] = txD/r\.

The problem of minimizing the bias by choosing optimal matrices C\ and Vt does not seem

to lead to an analytical solution but could in principle be carried out numerically for a given

number of time periods T. For our purpose we are not interested in such an exact minimum. We
show however that for two particular choices of Q. where Q, = It-\ ox Q. = II22 and subsequent

minimization over C\ an analytical solution for the bias minimal estimator can be found. It

turns out that the optimum is the same for both weight matrices. The theorem also shows

that the optimum can be reasonably well approximated by a procedure that is very easy to

implement.

Theorem 6 Let X (Ci,Qj be as defined in Definition 1. Let D = {D + D') /2 where D =

{C[ncX^ C[M[ Ci . Then

c st'i'^c I
\E{^(CuIt^,)]\= min \E [X {Cu^22)]\ -

Oi 5.1. OjL-i= J7-j Ci s.i. GjGi=irj
ri=l,..,r-l Ti = l,..,T-l

Moreover,

E[X{CiJT-i)] = tTD/r^.

Let CI = argmin^^j \E [X{CiJt-\)]\ subject to C[Ci = Ir^,ri = 1, ..,T- 1. Then C^ = Pi where

/9j is the eigenvector corresponding to the smallest eigenvalue li of D. Thus, mincitx D/ri =

min/,/2. As T -^ 00 the smallest eigenvalue of D, minli —> 0. Let 1 = [1, ..., 1]' be a T—1 vector.

Then for Ci = l/(l'l)^/^ it follows that tr D -^ as T -^ 00.

Theorem 6 shows that the estimator that minimizes the bias is based only on a single moment

condition which is a linear combination of the moment conditions involving j/jQ as instrument

where the weights are the elements of the eigenvector p^ corresponding to the smallest eigenvalue

of (Ml + Mj) /2. This eigenvalue can be easily computed for any given T. The Theorem also

shows that at least for large T a heuristic method which puts equal weight on all moment

conditions leads to essentially the same bias reduction as the optimal procedure. The heuristic

procedure turns out be equal to the moment condition E {{uiT — "n) yio] which can be motivated

by taking "long difTerences" of the model equation yu = cti + /?„yit_] + en i.e. by considering

It can also be shown that a 2SLS estimator that uses all moment conditions involving ?/,o remains

biased even as T —> 00.
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7 Long Difference Specification: Infinite Iteration

We found that the iteration of the long difference estimator works quite well. In the {i + l)-th

iteration, our iterated estimator estimates the model

ViT - yn = PiViT-i - Uio) + £iT - ea

based on 2SLS using instruments Zi {^(^e)) — {yi0,yi2 - P{e)yn,--- ,yiT-i -%)?/ir-2J, where

P,(\ is the estimator obtained in the previous iteration. We might want to examine properties

of an estimator based on an infinite iteration, and see if it improves the bias property. If we

continue the iteration and it converges^ \ the estimator is a fixed point to the minimization

problem

where ^i{b) = Zi (b) {{yiT — yii) — b {yir-i —yio))- Call the minimizer the infinitely iterated

2SLS and denote it I3j2Sls- Another estimator which resembles Pj2sls i^ CUE, which solves

(N \' / '^ \~^ / ^
{b)

Their actual performance approximated by 5000 Monte Carlo runs along with the biases pre-

dicted by second order theory in Theorem 4 are summarized in Tables 8 and 9. We find that

the long difference based estimators have quite reasonable finite sample properties even when /?

is close to 1. Similar to the finite iteration in the previous section, the second order theory seem

to be next to irrelevant for /3 close to 1.

We compared performances of our estimators with Ahn and Schmidt's (1995) estimator as

well as Blundell and Bond's (1998) estimator. Both estimators are defined in two-step GMM
procedures. In order to make a accurate comparison with our long difference strategy, for which

there is no ambiguity of weight matrix, we decided to apply the continuous updating estimator to

their moment restrictions. We had difficulty of finding global minimum for Ahn and Schmidt's

(1995) moment restrictions. We therefore used a Rothenberg type two step iteration, which

would have the same second order property as the CUE itself. (See Appendix I.) Again, in order

to make a accurate comparison, we applied the two step iteration idea to our long difi"erence and

Blundell and Bond (1998) as well. We call these estimators Pcue2 aSj PcuE2 ld^ ^^^ 0cuE2 BB-

We set n = 100 and T = 5. Again the number of monte carlo runs was set equal to 5000. Our

results are reported in Tables 10 and 11. We can see that the long difference estimator has a

comparable property to Ahn and Schmidt's estimator. We do not know why Pcue2LD ^^^ such

a large median bias at /3 = .95 whereas P^y^ iq does not have such problem.

"There is no a priori reason to believe that the iterations converge to the fixed point. To show that, one would

have to prove that the iterations are a contraction mapping.
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8 Conclusion

We have investigated the bias of the dynamic panel effects estimators using second order approx-

imations and Monte Carlo simulations. The second order approximations confirm the presence

of significant bias as the parameter becomes large, as has previously been found in Monte Carlo

investigations. Use of the second order asymptotics to define a second order unbiased estimator

using the Nagar approach improve matters, but unfortunately does not solve the problem. Thus,

we propose and investigate a new estimator, the long difference estimator of GriUches and Haus-

man (1986). We find in Monte Carlo experiments that this estimator works quite well, removing

most of the bias even for quite high values of the parameter. Indeed, the long differences esti-

mator does considerably better than "standard" second order asymptotics would predict. Thus,

we consider alternative asymptotics with a near unit circle approximation. These asymptotics

indicate that the previously proposed estimators for the dynamic fixed effects problem suffer

from larger biases. The calculations also demonstrate that the long difference estimator should

work in eliminating the finite sample bias previously foimd. Thus, the alternative asymptotics

explain our Monte Carlo finding of the excellent performance of the long differences estimator.
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Technical Appendix

A Technical Details for Section 3

Lemma 3

E E{<^'-:-^/.'«":)

Proof. We have

E xl'Ptel - ^xl'Mte: E{tTa.ce{PtEt[e:x;'])]
Kt

0.

-E [trace {MtEtlelx*/])],n-Kt

where Et [] denotes the conditional expectation given Zt- Because Et [el] = 0, Et [e^xl'] is the conditional

covariance between e^ and yl'-i, which does not depend on Zt due to joint normality. Moreover, by cross-

sectional independence, we have

Et [e;xr] = Et [eltxlt] /„.

Hence, using the fact that trace (Pj) = Kt and trace (Mj) = n — Kt, we have

xl'Pte; - —x'Mtc
n

Et [eltxU {Kt - ^^^ [n - Kt)^ = 0,

from which the conclusion follows.

Lemma 4

Var {xl'Mte;) = {n - t) a^E [v*^] + [n - t) {E [<,e*J)' ,

Cov [xl'h'Itel , x'/Msel ) = {n - s) E [vie*,] E [<,£*,]

,

s<t

where v*, = x*, - E[x\,\zn].

Proof. Follows by modifying the developments from (A23) to (A30) and from (A31) to A(34) in

Alvarez and Arellano (1998).

Lemma 5 Suppose that s < t. We have

E \v^] = T -t / 1 0-0T-t+l

^2 T-t 1

" T-t + l(T-tf{l-pf

X \{T-t) +
r-1

E[vy*,] = -o^

+ fT^

/ T
-0"-

)

\JT- i + 1 (T -

i

t){\

1

~0)

T~t

T-i + l{T-tf{l-0)
[T-t]

0-0
1 -
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E[vle*^] = -a

+ a'

.^/
' -s i} -P^-

J
' Vr-- s + 1 (T -

- s

-5)(1

1

-P)

\It-s + \{T-i )(r-

1

t){\--P)

1
T--t

E Kel] ^ Y T - f + 1 (T - 5) (r - t) (1 - /?)

(T-t)

T-t

\-pT-t

1-/? ;'

1-/3

Proof. We first characterize v*j. We have

Xi,t = J/i.t-i

Xi,t+i = Vi.t = Qi + Pyi,t-\ + £i,t

i,r = yi,r-i = —i ^-Qi + P'^ *yi,t-i + ff i,T-i + Pei,T-2 + + P"^ ' ^e^.t)
1 — p \ /

and hence

T-f + l , 1 ,

P-PT-f+l
yi,t-i

/?-/?
T-t+l

^
(T-i)(l-/3)y^"'-^ \l-/3 (r-i)(l-/3)V

(1 - P) £i,T-i + (1 - /3^) ei,T-2 + + (l - Z?"^-*) ei,t

(T-i)(l-/?)

It follows that

1 /?-/?
T-t+l

T-t

from which we obtain

T-t

{T-t){l-p)
J

''•'-' yi-P (T-t) (1-/3)2^
E[ai\zit],

1
(ai -£'[Qi|2,i])T-t + l yi-p {T-t){l-pf J

T-t (1 - /3)^..T-i + (1 - /?') £i,r-2 + •••+(!- P'^-')

{T-t){\-P)T-t + l
(20)

We now compute E Var [q;! Zit]. It can be shown that(Qj - E\ai\zit\y

2 2

Cov(Q„(y,o,-..,y.(-i)') = Y^^>
and Var ((y,o, - ,2/zt-i)') = —^^^^' + Q

where £ is a i-dimensioanl column vector of ones, and

Q
I- p'

t-2
1 P P'

P 1 P
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Therefore, the conditional variance is given by

••l - "It U'+^^^Q

Because

. ,

[i-py
+ Q

-1

(i-/?r
-1

Q

i+^'(^q)"A ^
a-/?)^g a' ^-^Q

^ ^cc Q-\ i Q^g
\0Din,-^Q-'KQ

we obtain

„ ,
(i-/?r

+ Q

and hence,

2 2/7/ .f+(i^c?
1+(T^^'Q-^^

Now, it can be shown that^^

i'Q-H = ^ (2 (1 -/?) + (<- 2) (1 - /?)')

from which we obtain

£;[(Qi-£;[a,|z,t])^j =
7|-Y—
I^T^ + >(^-2)

(21)

We now characterize E \y\t\- Using (20), and the independence of the first and second term there,

we can see that

E \v^ = T-t 1 /?-/?
T-i+l

T-t + 1 \ 1-/3 {T-t){l-pf
E ^{ai - E[ai\z^t]f

T-t
T-t + l{^T-ty{l-py

{T-t) +

With (21), we obtain the first conclusion.

As for E [t'*,£*t]' w-6 note that

^it — ^u T-t (£jT H h £i:t+lj

"See Amemiya (1985, p. 164), for example.
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Combining with (20) , we obtain

£K4] = - ^2 +
-T~^(l-^) + ---+(l-/3^''"0

T-t + \{T~t){\~P) 'Vr-t+1 (T-i)2(i_/?)

from which follows the second conclusion.

As for E K*se*t] and E [v*^e*^\ s <t, we note that

and

E[vle*^ = - T-s (l - /?^-')

a

+
(T-s)(T-t)(l-/3)T-s+1

Bb^eL]
-y—^(1 -/?) + (! -^")+---+ (1-/3^-^)

T-f + l (T-s)(r-i)(l-/3)

Lemma 6

Proof. Write

^E;;^^K1-(i)nT •'^-^ n — i
t

T-t P-PT-t+l

T-t + iyi-P ^T-t){l-pyj i +^^ + ^(«-2)

2 r-i 1

r - « + 1 (T -

2 ^-* 1

-Pf
{T-t) + r + 2/3

/?2-l

.2/J^-t+2 ^ Q2(T-t)+2 _ 2rt^-*+l
"

T-i + l(T-i)^(l-/3)^ V
-^^"1

Sum of the first two terms on the right can be bounded above by

rr2

c-

and the third term can be bounded above in absolute value by

1

C-
{T-t)

where C is a generic constant. Therefore, we have

;^E~^Ka C V- '^
< — >

Z / T) —
+
C

nT^n-M + ^^ + ^(i-2) nT -^ n - < (TnT
Y^ i^ 1_
^n-t(T-t]

2 C ^ T^ 1
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It can be shown that

y -,
^21^ =0(logr), y ^ = 0(1)

Using the assumption that T/n = O (1), we obtain the desired conclusion.

Lemma 7

t

Proof. We can bound (E [u*j£:*j]) by jfc^' where C is a generic constant. Conclusion easily follows

by adopting the same proof as in Lemma 6.

Lemma 8

s<t

Proof. We can bound |E [v*^^*^] ^Iv'^e*^]! by ^337- Therefore, we have

;tE;^^1<^'^'')^(<*^-
s<t

But because

C v-^ v-^ st 1 C ^—\ t I X—^ s

nT ^^ '^ n-t(T- sf ~ nT ^—' n-tZ^ T7 _ / \ 2^
t=l \{T-sY

1 T
<

{T-sY {T-sY T-s-(T-sY

we can bound ^ E.<t -^t^ K^*t] E \v*tel further by

O ^—V t ^—

>

1

n ^ n — t ^ (T -

Because

t'AT-sf \Jt s'

^AT-sY

.^^\=o'j~;

we have

c"^ i (I n c^-'
n ^ n —

:t \t T

O

T-l
C ^-^ 1 c -^-^ t

n ^ n- t nT ^ n~t

Conclusion follows from

T-l

;lE;;^'^|.C.-,I^K.Cl=o£x:;r^Ho(^SZl^ !=»(>)
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Lemma 9

Var (;^E;7^«>w)=o(i)

Proof. Note that

Var i^E ^^>'-i) - ^E (;r^)'
V" i^'M.^:)

2 v-^

nT ^—' \n — t J \n — s
s<t

Cov(i;'M,E;,<M,t;

t

s<t

Here, the second equahty is based on Lemma 4. Lemmas 6, 7, and 8 estabhsh that variances of the three

terms on the far right are all of order o (1).

Lemma 10 '

^E(<«e.--;^^>.^0-"(°T^)

Proof. Follows easily by combining Lemma 9 and the proof of Theorem 2 in Alvarez and Arellano

(1998).

Lemma 11

t

Proof. First, note that x^ Mtx^ — vl'AItv^ by normahty. We therefore have

v^'MiVi
t

By conditioning, it can be shown that

nT^n-Kt * W nT^ n - t

Therefore,

vl'Mtv; ={n-t)E[v:^]

—y -^x;'MxA = ^ytE \v]f]

Modifying the proof of Lemma 6, we can establish that the right is o{l]

We now show that

-'^E "
nT ^^ n - K

t

-x'/Mix; ]
=o{}).
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We have

Var

+ ^E;r^W^cov(«;'M..:.„.-'M,.;)

Modifying the development from (A53) to (A58) in Alvarez and Arellano (1998) and using normality, we

can show that

Var (vl'Mtv^) =2{n-t)E [v*^] =Q{n-t){E [v*^]f ,

Gov {v:'Msv:,vl'Mtvt) =2{n-t){E [v*,vl]f .

Using (20), we can show that

iT-f+lT-t
I
T-s I 1 0-13

1 /?-/?^-^+' \ al

\l-P [T-s)[\-PY) i +^^ + 2.(i_2)

2 / T-t
I
T-s

1

^ '^
\ T-t + l\T-s + l{T-t){T-s){l-pf

(
0" - 2ff-'^^ + /3^(^-')+2 _ 20^-'+' + 2(i

'

x|(T t)+
^2_j

Adopting the same argument as in the proofs for Lemmas 6 - 8, we can show that the variance is o(l).

B Technical Details for Section 4

Definition 2

* = 3A'iA-^A2 - 3A'iA~^AiA-^Ai,

T = 2AiA-iAi, -^^ = 2\\K-'g,
Jn

1 „^

1

-^E = A{g^ -Ai)'A-VAi - 2A'jA-^ (G - A) A-^Aj - 4A'iA-^AiA-^5 + 2A' A-^5,

n
T = 2{g,- A,)' ^-'g - 2A; A-i (G - A) h^'g - g'A-' A,A-' g.

Proof of Lemma 1. By Lemma 2 (a) and Theorem 1(a) of Andrews (1992) and Conditions

4-7 it follows that sup^g^. |(5„ (c) - Q {c)\ = Op(l), where Q {c) = A (c)' A (c)"^ A(c). Let B{P,e) be an

open interval of length e centered at p. By Condition 8 it follows that infcgB(/3,o *?('^) ^ Q (/^) — ^

for all e > 0. It then follows from standard arguments that b - P = Op(l). It therefore follows that

Pr (5„ (6) ^ 0) < Pr (6 e aC) = 1 - Pr {b G int C) < 1 - Pr (6 e B{p, e)) ^ for any f > where dC
denotes the boundary of C.
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Using similar arguments as in Pakes and Pollard (1989) we write

<

<

where

\Q{b)\ = \x{byA{b)-'\{b)

g {by G (b)-' g{b)-\ {by A (6)-^ \{b) - g (/?)' G (6)"^ g {f3)

+ \g{byG{br'g{b)\ + \g{(3yG{b)-'g{(3)

g {by G {b)-' g{b)-X {by G (6)"^ X{b)-g (^)' G {by' g (/?)

+ A {by G (6)-^ A (6) - A {by A (b)"' A (6)

+ \g{byG{b)-'g{b)\ + \g{0yG{b)-'g{l3)

g {by G {b)"'^ g{b) < g (/?)' G (/3)"^ g (/?) = Op (n-^) by the definition of b and Condition 9. We

have G {b)~ = Op (1) by consistency of b and the uniform law of large numbers, from which we obtain

g {py G (6)"^ g {P) =Op{n-^). We also have

g {by G {by' g{b)-\ {by G {by' X{b)-g {py G {by' g (/3)

= g {by G {by' {g (6) -g{P)-X {b)) + {g (6) -g{p)-X (6))' G {by' X (6)

+2g (/?)' G {by' X (6) + {g {b) -g{P)-X {b)y G {by' g{P).

Therefore, we obtain

\Q{b)\ < \x{byG{by'x{b)-x{byK{by'x{b)

+ \g{hyG{by'{g{b)-g{P)-X{b))

+ \{9{h)~9{P)-\{b)yG{by'X{b)

+2\g{pyG{by'X{b)\ + \{g{b)-g{P)-X{b)yG{by'g{P)

+Op (n-i)
.

The terms G{py', and A(6)~ are Op(l) by consistency of b and the uniform law of large numbers.

Also, the terms g {b) and A (6) are Op (1) by consistency of b and the uniform law of large numbers. From

Theorems 1 and 2 in Andrews (1994) and Conditions 4-9 it follows that g {b) - A (6) - g {P) = Op (n"'''^).

From a standard CLT and consistency of b it follows that {g {b) — g{p) — X {b)y G {by g (/?) = Op (n~^),

and g{pyG {by' = Op {n''^'^). These results show that

\Q{b)\ < \\G{by'-A{by'\\\\X{b)f + Op{n-'/')\\X{b)\\+Op{n-')

= Op (1) ||A(?>)f + Op (n-i/2)
IIA (6)11 + Op {n-') .

Because \Q {b)\ = X {by A {by' A (6)1 > ^ \\X{b)f, we conclude that

M-^''^^^:

or

-Op(n-i/2)||A(6)||<Op(n-^)

||A(6)||=Op(n-^/2),
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which imphes that h- (3 = Op{n ^/^).

Proof of Theorem 3. Note that we have

9i {h) = gi + -^32 • v^ (6 - /?) + —33 • (%/H (& - /3))^ + Op f-V

and

+ i^ {2G-'GiG-'GiG-' - G~'G2G-') {V^{b - /3))' + Op f^"j ,

Gi (&) = Gi + -^G2 v^ (6 - /3) + i-Gs (^/^(& - ^))' + o^ (-)

where g,gj,G,Gj and y^C* ~ /3) are Op(l) by Conditions 6 and 7 and Lemma 1. Therefore, we have

g,{byG{br'g{b)=g{G-'g + -^h^-^{b-(3) + -h2-{V^{b-P)f + oJ-),

and

where

and

g {b)' G (b)-' Gi (&) G (6)-^ 5 (6) = ^'G-^GiG-i^ + 4='*3 v^ (6 - /?)

+ ^/^4 -(nA^ (6 -/?))' + Op (1),

/m = g'^G-'g - g[G-'GiG-'g + g{G-'gi,

= Ig'sG-'g + \g\ {2G-'G,G-'G,G-'

- g'^G-'GiG-'g - g\G-^G,G-^gi + g'^G'^gi

= \g'zG-^g + g[G-'G,G-^G^G-^g

- g'^G-'G^G-'g - g[G-'G,G-'gu

h2 = \g'zG-'g + \g\ {2G-'G,G-'G,G-' - G-'G2G-') g + \g[G-'g2

\9zG-'g + 5;G-^GiG-'GiG-^5 - ^s'lG-^GzG-^p + \9[G-'g2

h3 = g[G-'G,G-'g-g'G-'G^G-'G,G-'g + g'G-'G2G-'g

- g'G-'G,G-'G,G-'g + g'G-^G,G-^g,

= 2g\G-'G,G-'g - 2g'G~'G^G-'G,G-'g + g'G-'G2G-'g,
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hi = \g'2G-^GrG-^g + \g' [2G-'G^G-^G,G-^ - G-^G^G-^) G^G'^g

+ \g'G-'G:,G-'g + \g'G-^G^ {2G-'G^G-'G,G-' - G-^G2G-')g

+ \9'G-^G,G-'g2

- g[G-'GiG-'GiG-'g + g'^G-'G^Cg - g\G-'G,G-'G,G-^g

+ g[G-^GiG-^gi - gVGiG-'G2G-'g

+ g'G''GiG-^GiG-^GiG~^g - g'G'^G^G'^GiG-'^gi - g'G-^G2G-^GiG-^g

+ g'G-'G2G-'g^ - g'G-'GiG-'GiG-'gi

We may therefore rewrite the score Sn {b) as

5„ (b) = {2g[G-'g - g'G-'G^G-'g) + 4= (2/ii - ^3) ^^(^' - P)

+ - (2/12 - ^4) (V^ {b - /?))' + Op f-) .

n \^/
(22)

Next note that F(|5„ (6)| > e) = P{\S.a{b)\ > e/n.-'^) for any e > because of Lemma 1. Thus

Sn (b) — Op{n~^) and we can subsume this error into the Op{Ti~^) term of 22. Using these arguments and

Lemmas 12, 13, and 14 below, we may rewrite the first order condition (22) as

or

based on which we obtain (9). Noting that

E[^] =2^X\A~^E{g]=0, (23)

E[T] = 2nE[{gi-Xi)'A-^g]-2nX[A-^E[{G-A)A'^g]-nE[g'A-^A^A-^g]

= 2trace('A-i£; 6^^ ^ - 2X[A-''E [7P,i>',A-'6^] - trace {A~' A^A''E [6^S'i\) , (24)

and

E[^E] 8nX[A-'^E [g{g^ - A,)'] A'^Aj - 4nE [A'lA-^gA'jA-^ (G - A) A'^Aj]

-8nA',A-^£;[5£f']A-'AiA-Ui+4nA',A-'E[g5']A-^A2

06'
SX'A-^E 6^

dp
A-'Ai - 4A'jA-^£; [5,A',A-VzV'i] A"'Ai

-8A'iA-^£;[6i<5^] A-^AiA-'Ai+4A'jA-'£;[<5,<5-]A-'A2,

E[^^] =4A'iA-'£[('i,,5;]A-'Ai,

we obtain the desired conclusion.

(25)

(26)
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Lemma 12 Under Conditions 6 and 1

h2 = |a'iA-^A2 - A'lA-iAiA-^Ai + Op (1)

,

/i4 = A'lA-^AiA-Ui + Op (1)

Proof. Follows from plimg = 0.

Lemma 13 Under Conditions 6 and 7

Proof. Because

2hi-h3 = T + -== + Op ( -7= ) .

g[G-^G^G-^g = X\^-'^^l^-^g + Op[ ^

and

g\G-^g, = (Ai + [g^ - M))' U"' - h'^ {G - A) A'^ + Op (A^)) ih + i9i " Ai))

= Ai A-^ Ai + 2 (51 - Ai)' A-^Ai - Aj A'^ (G - A) A"^ Aj + Op (^^ ,

we obtain

/ii=A'2A-iy-A'iA-iAiA-i5

+ AiA-^Ai + 2 (51 - Ai)' A-Ui - AjA"' (G - A) A'^Ai + Op (-^^ .

Similarly, we obtain

/i3 = 2A'i A-^Ai A-i(7 + Op (^^ .

The conclusion follows.

Lemma 14 Under Conditions 6 and 7

2g[G-'g - g'G-^G^G'^g = -^$ + -F + Op (-\ .

y/n n \n J

Proof. We have

g\G-'g = (Ai + {g, - \,))' U'^ - A"^ (G - A) A"^ + Op (-^\ g

= X[A-^g + (g, - XiYA-'g - A'jA"' (G - A) A-'^; + Op ("1

and

g'G-^GiG-^g = g'A-'A,A-'g + Op Q
from which the conclusion follows.
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C Proof of Theorem 4

The second order bias is computed using Theorem 4. Because the "weight matrix" here does not involve

the parameter of interest, we have Ai = 0, which renders the third, sixth, and last terms in Theorem

4 equal to zero. Also, because the moment restriction is linear in the parameter of interest, we have

A2 = 0, which renders the seventh and eight terms in Theorem 4 equal to zero. Furthermore, because

Zitz'^f.E [zitzl^]" Zite*^ = under conditional symmetry of e*j, the numerator in the second term

X[A-'E [,Pii>'iA-'6i] = - EJ=i E[zitx*J E[zitzl^}-^ E [zuz'^^E [zitz'^]'' zue*^^ should be equal to zero,

and therefore, the second term should be equal to zero. We obtain the desired conclusion by noting that

T-l

AiA-^Ai = Y^^i'^i^'^it]' E[zuz[,]-' E[zux*t]

,

trace ( A-'E S,-^
)
= ~E *^^^^ (^ h*4]"' E [e*,x*,zuz'i,])

,

^•^'"l

A-'M=-Y,f2^ [zux'.yElzuzl,]-' E [4^*.^it4] E \zuz[^Y' E [z^x^J ,
\\A-'E

dp
t=\ s=\

and

A'jA-'£[(5,A'iA-V'.V'-]A-iAi

T-l T-l

= - XI X^ -^ [2it<t]' E [zitz'uV^ E SitZuE [zisx*^]' E h^z-J"' Zi^z'-^ E [zis^L]"^ E [z^.x^J

t=l s=l

D Proofs for Section 6

Proof of Lemma 2. Note that

E[\uu^y,s-i\] < jE[ul]JE (Ay„_i)

V<^e + <
\

s-2

/?r' (/?„ - 1)^,0 +^i.-i + (/?„ - 1) E^""'^'
r=l

^fo

By independence of uu^yis-\ across i, it therefore follows that W^/'^YJi^i'^it^yis-i =

the same reasoning, we obtain n''^/'^Yl'i=i^iT^yii-\ = Op(l). and n^^^^ ^"^, UiAyifc_i =

therefore obtain n"^/^ ^^^^ y. ^ = ^^ (j) We can similarly obtain n"^/^ YJi=i 9i.i = Op (!)•

Next we consider n^^/^ ^^;^j /,,2 andn^^/^ ^"^j 5^,2- Note that

Op(l). By

Op(l). We

E [Ayuyio] = E
s-2

.0 /3^-' (/?. - 1) .^0 + ^"-1 + (/?„ - 1) E,= i

AC'e=s-l-r

A--?f^-o(')

31



and

E
,s-2

,(/?„- if a2 al ,,,2it-2)4iPn-l?

1-/3^ (1-/?J^^
^"

(l-/3^r

2^2
cr'CTe'^a„2n^ + 0(n).

such that Var (n"^/^ X]"=i ^VitVio) = 0(1). For n"^/^ 5Z"=] 5^,2 (/^o) ^^ have from the moment conditions

that E [5,,2 (/3o)] = and

2^2_2
Var (Au,(/3o)y,o) = 2^2^^ (1 - /JJ-^ + 0(n) - -^n' + 0{n).

The joint Hmiting distribution of n~^/^ 52"=! [/i,2
""

-^/i,2'^i,2(/5o)'] c^" "ow be obtained from a trian-

gular array CUT. By previous arguments

E[n,2^gi.2{M] =
[
m' ••

with ji = cr^/2(, + 0{n~^) where l is the T — 1 dimensional vector with elements 1. Then

(//,2 - E [fl^] ,m,2{W (/;,2 - E [/;.2] ,5.,2(/3o)') = E„

where

^n
S21,n ^22,71

By previous calculations we have found the diagonal elements of Sii „ and S22 n to be ^^^v? and
2 2

* ' C

-^^-^n?. The off-diagonal elements of En „ are found to be

^s-2
E[/^yu^y,,yl] = E y?o [^/3r2 (/?„ - lK,o +^»-i + (^„ - 1) E.., ^^'^i.-i-r

V' (/?„ - 1) e,0 + eu-l + {Pn - 1) I]^~ J
^r'£x*-l-r

3'„-^/3r'
(/3„-l)2/ a2

-f-3-
(l-/?2) \(1-/?J2 (1-/32)

+ 0(l) = ^n + 0(l)

which is of lower order of magnitude while n~^ (£'[Ayity,o])^ = 0(1). Thus ti"^Sii,„ -^ diag(^
The off-diagonal elements of E22,n are obtained from

c '

E [Aw,(A?t,syfo] =

For E]2,7i. we consider

a\ai (1 - /3„) -=
-I- 0(n) < = s -f- 1 or t = s - 1

otherwise

^n2 + 0(n) ifi = s

E [Ay,, AH,,y2j =
<[ -^n^ + 0(n) if i = s - 1

otherwise
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It then follows that for I G Mr(T+i)/+2r-6
gy^,}^ ^j^^^^ i'i = 1 n-3/2 ^^^^ (.'H'^l'^

[/?_2
-

£:/,,2, 5i,2(/?o)']' ^
N (0, 1) by the Lindeberg-Feller CLT for triangular arrays. It then follows from a straightforward applica-

tion of the Cramer-Wold theorem and the continuous mapping theorem that n~^/'^ Yl7=i [/i 2>5t,2(/9o)']' ~*

[C^'y]' where [C, Q' - N (0, E) . Note that n-3/2 ^^^^ i'E [f,^^] = 0(n-i/2) and thus'does not affect

the limit distribution.

Finally note that E [gi,ig'i^i] = O (1). Also note that

Var (Au,(/3o)yio) = 2a^,al (1 - /JJ-^ + Oin) = M^.2

The off-diagonal elements of E [^1,25^,2] ^^e obtained from

E [AititAui^y.^o] =

It therefore follows that

-a2c72 (1 0n -H 0(n) t

n^ + Oin).

5+lori = s—

1

otherwise

;E [gig'il
E22

+ o(l).

Proof of Theorem 5. Use the transformation z = L ^C[^^ with CjSnC'i = LV . Note that we

can take L = V^/^,. Define W = (c{ncA . Then X (Ci,n\ = z'L'WC{(,y/ z'L'WLz. Next use

the fact that E [C{^ CiQ = FC{^^ = FLz with F = CjEziC (C;E„Ci)-^ = CjA'/^Ci, where the

second equality is based on (CJS]iCi)~^ = 6~^Ir, Using a conditioning argument it then follows that

x{ci,nj' = E
z'L'WFLz

z'L'WLz

'Dz

z'Wz

Note that z'Dz = z'D'z = z'Dz where D = | (£> + D') is symmetric. Also, W is symmetric positive

definite. The result then follows from Smith (1993, Eq. 2.4, p. 273).

Proof of Theorem 6. We first analyze E \X (Cj, £22)]- Note that in this case W = {C[T,22Ci)~^ =

5"^(CiM2Ci)"^ such that

E\X{C,,^22)\ = E
z'SDz

z'{C[M2C,]

and 6ixD = i5/2trlVCi (M[ + Mi)Ci = -ri/2 since M[ + hh = -M2. Let Ti be an orthogonal

matrix of eigenvectors of {C[M2C\)~ with corresponding diagonal matrix of eigenvalues A] such that

(CJM2C1
\-i

FiAiFj and zj = T\z. Let A be the largest element of A]. Then it follows from Smith

(1993, p. 273 and Appendix A)

E
z'Dz

'Wz
= 6E

z{T',DT,z,

z'jAjZj

where for any two real symmetric matrices ¥^,¥2

^^"E^^^#Tf^m-(r^'.^r„/., -A-A,)
to (^)a..^-!

CI:A¥u¥2)
2(1), A^tk-iV.

tr(y,K;)r,^,(y2)
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and

Ck{Y2) = -j^dk{Y2)
\2)k

fc-1

j=0

do{Y2) = 1.

Since all elements A A^ in A Ai satisfy < A A^ < 1 it follows that /^j — A Aj is positive semidefinite

implying that Cjt I in — A Ai
J

> 0, which holds with equahty only if all eigenvalues A^ are the same.

Also note that if 12,^3 are diagonal matrices and Yi symmetric then trY3YiY2 = tryiy3y2* such that

trr'i£>ri(/^, - A~^A])'' = trr'i {WC[M[Ci+C[MiCiW)ri (ir, - A'ViV

= 6-HT{A,r\C{M[CiT^+r\C{M,CiTiA,)(^Ir,-r^Aiy

= (5-^trr'jC;(A/i'+Mi)Cir]Ai (z^, - A'^AiV

= -S-^ trTiAiT'iC^lMzCi (z^, - A'^AjV

= -^-4r(7^, -A^'Ai)'.

This shows that all the terms tr f T\DTi (l-r^ - A~ Aj
j

| Ck-i (/r, - A~ Ai j have the same sign and

therefore all the terms Cj^j. ( FjiTi,/,., — A Ai j
have the same sign. Therefore, we have

|£[X(Ci,S22)]|>

For fc = 0, we have

^^"E ?^#^^.';'. (r'r£>r,, 7, - A- A,
fc=0 V 2 Ji + k'^-

and (l)o(i)i/(¥)i = Vn- This shows that \E[X {C1,^22)]] > A'"V2 for all d such that CJd = U,

and allri 6 {l,2,..,T - 1} . Then

min \E[X{C,,E22)]\> min ^ > ^, ' (28)

rj6{l,2,..,T-l} 7-,e{l,2,..,r-l}

where min Ij is the smallest eigenvalue of A/2 and the last inequality follows from Magnus and Neudecker

(1988, Theorem 10, p. 209). Now let rj = 1 and C] = p,, where p, is the eigenvector corresponding to

mmlj. Then Ir, - rVi = 1-1 = such that |£: [X (d, E22)]| = A"' |trr',£)r,| = (1/min/,)"V2 =
min/j/2. Inequality (28) therefore holds with equality.

Next consider E [a: (Ci,/t-i)] = trCjMiCi/r, with M, = {M{ + Ah) /2. We analyze

min |trC;A7]Ci/ri|.

ri6{l,2,..,r-l}
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It can be checked easily that Mj is negative definite symmetric. We can therefore minimize — tr (CJMi Ci )

.

It is now useful to choose an orthogonal matrix R with j-th row pj such that R'R = RR' = I and

—Ml = RLR' where L is the diagonal matrix of eigenvalues of -Mi = X!j=i hPjPj- Then it follows that

— tr(CiMiCi) = YljZi ^jP'jCiC\Pj- Next note that all the eigenvalues of CiC[ are either zero or one

such that < p'jC\C[pj < 1. The minimum of — tr(CiMiCi) is then found by choosing ri = 1 and

Ci such that C[pj = except for the eigenvector p- corresponding to minlj. To show that tr [D/ri) is

also minimized for ri = 1 and Ci — Pi, where tr {D/ri) = minZj, consider augmenting C\ by a column

vector X such that x'x = 1 and p'^x = 0. Then C[Ci = h, t2 = 2 and trC^MjCi =h + T.]^i h {p'j^f

By Parseval's equality X^j^i [p'i^)
~ 1- Since Ij > li we can bound tr(CjMiCi) > 2li but then

tr (D/i) > li- This argument can be repeated to more than one orthogonal additions x. It now fol-

lows that E[X {C\,It-\)\ = tr {p/r\) is minimized for ri = 1 and C = Pi, where p^ is the eigenvector

corresponding to the smallest eigenvalue.

Next note that from x'x = 1 such that minli < —x'M-^x < ma.xli it follows that

min/j < -l'Mil/(l'l) =(T-1)"^

for 1 =[1,...,1] which shows that the smallest eigenvalue is bounded by a monotonically decreasing

function of the number of moment conditions.

The last part of the result follows from l'M]l/(l'l) ^0.

E Blundell and Bond's (1998) Estimator and Weight Matrix

Bludell and Bond (1998) suggest a new set of moment restrictions. If T = 5, they can be written as

E[qi{P)] =

where

Qiib)

Vio {{yi2 -Vii)- bivri - y^o))

ViO {{yi3 - yi2) - b {yr2 - yn))

yn {{yi3 - yi2) -b{yi2 - yzi))

ViO {{yi4 - yis) -b{y^3 - y^2))

yn ((j/i4 - yis) - b (j/i3 - yi2))

yi2 ((j/i4 - yis) - b {yiz - yi2))

yio • {{yib - yn) - b {yz4 - yis))

yn {{yi5 - yi4) - b {y^i - y,3))

yi2 {{yi5 - yi4) -b{yz4 - j/zs))

yi3 {{yr5 - yii) - b{yi4 - Vzs))

{yn -ym)- {yi2 -byii)

{yz2 -yn) • (yt3 -^a)
(yz3 -yi2)- {yi4 -by,3)

{yi4 -yis) {yi5 - ^24)

They suggest a GMM estimation:

mm
b

E^'W E '''('•

^i=l
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We examine properties of Blundell and Bond's moment restriction for P near unity. We consider four

methods of computing A, which in principle is a consistent estimator of E [qi (/3) qi (/?)]:

1. We can use h^jML as our consistent estimator and use

j4i = -^ gi {bLIMLj qi [buMLJ
t=l

This gives us a GMM estimator that minimizes {Ya=\ 1i (^)) ^r' (Z^"=i ^i (^))- We call it 6bbi-

2. We can compute

2= 1

and obtain a GMM estimator that minimizes iYl7=i ^i i^)) ^2 '
(Z!r=i 9^ (^))- ^'^ ^^ '* ^bb2-

3. We can compute

n ^-^
1=1

where

Zi =

Vifi

yi,o ViA

Vifi 2/2,1 •• yi,r-2

Ayn

Ayi!,2

Ay,, T-l

and obtain a GMM estimator that minimizes
(J^"=i gi (&)) ^3 ^

(Xl"=i 9i C*))- We call it 6bb3-

This is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

4. We can compute

1 " '

^4 = -^ gi f ^BB3j qi f f'SBS
j

i=l

and obtain a GMM estimator that minimizes (5Il"=i 9i (^)) ^4 iY^-iqii^))- We call it 6bb4-

Again, this is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

F Second Order Theory for Finitely Iterated Long Difference

Estimator

We examine second order bias of finitely iterated 2SLS. For this purpose, we consider 2SLS

1

Y^x,?A[Y^%%\ [Y^z^x, (E^i^j (z^'^j f
I]%i (29)

36



applied to the single equation

I3xi + Si (30)

Weusing instrument Zi = Zi - -j^^Wi, where ? = y/nC^- Pj. Here, Zi is the "proper" instrument

assume that

^ = ;^|:/^ + ;^Q" + -p(;^) (31)

where fi is i.i.d. and has mean zero, and Q„ = Op (1). It can be seen that ^^^ is equal to the second

order bias of /3 under our assumption (31). If Ci in (30) is symmetrically distributed given Zi, then the

second order biets of b is equal to - times

iK-2)aue A^A-y
, X'A-'E[fiWie,]

A'A-iA A'A-U^^"J A'A-iA

E[f,ZiXi]'A-\ 4>'A-'E\fiZ,6i]

A'A-U A'A-iA

X'A-^E[fiZ,z'^A-^^ X'A-^AA-^E[fiZie,] _ „ r .21 A^A'^AA'V
A'A-U

^
A'A-iA ^-^'J A'A-iA

+ 2-^/^^E[fiZ,x,]'A-'X
(A'A-iA)

(A'A-U)' ^ ^ (A'A-iA)'

where A = £J [ziXi], A = E [ziz'^, (p = E [wiXi], A = E [wizl + Ziiu'^, and <p = E [wi£i].

Using (32), we can characterize the second order bias of iterated 2SLS applied to the long difference

equation using a LIML like estimator as the initial estimator. For this purpose, we need to have the

second order bias of the LIML like estimator. In Appendix G, we present a second order bias of the

LIML like estimator. In fact, based on 5000 runs, we found in our Monte Carlo experiments that the

biases of &l/ml,i and bLjML,2 are smaller than predicted by the second order theory. In Table 7, we

compare the actual performance of the long difference based estimators with the second order theory.

It is sometimes of interest to construct a consistent estimator for the asymptotic variance. Although

such exercise may appear to be related only to first order asymptotics, a consistent estimator of the

asymptotic variance could be useful in practice for refinement of confidence interval as well: Pivoted

bootstrap as considered by Hall and Horowitz (1996) require such consistent estimator for second order

refinement. In Appendix H, we present a first order asymptotic result as well as a consistent estimator

for the asymptotic variance.

Proof of (32). We first present an expansion for 2SLS using instrument 7^ = Zi—j=Ow,. We have

In [b- p) = ; —j—. i- (33)

(iEr=]?,-Ti) (^E?=iS-,?j) (;^Er=i?-Trj
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Write

Recalling that

we can derive that

-y Ziz\ = A + -^ f^V {ziz'i - A)
I

-

and

;^U^S^OUS^"^"'~^^r''^(;^
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Here,
(f>
and A are defined in Theorem 32. Using arguments similar to the derivation of (27), we obtain

("S'-") i^^tr) (TnP")

-'->{;l:|:-)-(;^|:/.)^'A-v

and

l"S""J l"S'"v l^S""J

Therefore, we may conclude that
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where

and

A'A-U

A'A-^ {-j^ Zti {-i< - A)) A-^ {^ T.U ^i^^)

A'A-iA

_2 k.^^fl!^JLV 1 y-(z.x.-A) A-^A
(A'A-U)^ VV^£t 7

L:Af;!^^yA-M-i=V(3,z,'-A) A-iA,

(A'A-u)^ V^tr 7

^2 - "yX^^" " \> ^^7 VA^^A

(;^E:^^(^i^i-A))'A-V

,^S^' A'A-iA

\v^£t 7 ^'^-^^ V^£t7^'A-'^

^ 1 ^^^^ A-A-^(^E^^l(^.^^-A))A-v

2=1

,

<" 1 V-f^
A'A-^AA-^(^Er=i^.-^0

( 1 f^,V vA-^AA-V

VV^^^7 A'A-u \v^k ) ^'A-^A

V^/^fe7(A'A-A)^ V^ir 7

_ f^y /.
'--^

, ^-A-^AA-'A

,vA^tt'7 (A'A-U)
+ (-^r/.l -^^^^A'A-AA-^A.2'

The first two terms on the right side of (34) capture the standard first order asymptotics of the plug in

estimator, which estabhshes Lemma 15. Obviously, they have mean equal to zero. The third term -y^Bi

is the standard second order expansion term when = 0. i.e.. when the proper instrument is known
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exactly. Therefore, under conditional symmetry of £,-, it can be shown that

The third term ^.^2 is the correction to the second order expansion to accommodate the plug-in nature

of the estimation. It is not difficult to see that

FIR]- ^'^"V prn 1
yA-'ElfiWiSi]

E[/,ZjX,]^A-V 4,'A-^E[f,ZiCi]

A'A-iA A'A-iA

X'A-^E[fiZiz'^A-'^ X'A-'AA-'E\fa,e,] _ „ r .21 VA-^AA'V
A'A-U

^
A'A-iA ^-^'J A'A-iA

(A'A-iA)' '

^

+ 2 t^^-^0'A-^A - 2E Iff] ^0'A-^A
(A'A-iA)' ^^^(A'A-U)'

-^^^^^X'A-'E\f,z,z'^A-'X
{x'A-^xy

(A'A-U)'
^^^

(A'A-U)' ^
'

Using (34), (35), and (36), we can obtain the desired conclusion.

G Second Order Bias of huML

Our b^jML modifies Arellano and Dover's estimator. It is given by

^{b-l3)= f 7-; -^^, (37)

where

We make the second order expansion of -/n [h — /?). We make a digression to the discussion of single

equation model. '^

G.l Characterization of Second Order Bias of LIML

Consider a simple simultaneous equations model

iji = (3xi + £i, Xi = z[n + Ui

''The digression mostly confirms the usual higher order analysis of LIML readily available in the literature.

The only reason we consider such analysis is because all the analysis we found in the literature arc conditional

analysis given instruments: They all assume that the instruments are nonstochastic. Our purpose is to make a

marginal second order analysis, which is more natmal in the dynamic panel model context.
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and examine LIML b that solves

.-1

. ejcypejc) . (^ Er^i ^^ jy^ - ^ic))' (^ Er^i ^i-0 a e7=i -j fa - ^^^))
iin . — mill ' '

"

o
c e (c) e (c) c

^ Ei=i fa - 2^^c)

where

e (c) = y — xc

Here, the first order condition is given by

-2x'Pe{b) e{h)' Pe{h)

or

where

Note that

e{h)'e{h) {e{h)'e{b)y

Gn (b) = 0,

{-2x'e{b)) =

G„{b)= (^x'Peib)) (J-e{b)'e{b)) - (^^'eib)] Qe(6)'Pe(6)

dGn jb)

db

e{b)
]
{-2-x'Pe{b)

and

a2G„(6) ^ /'_l^,p \ / 2l:r'e(6)^ + f--x'Px^ (-2-x'e{b)) + (-x'Peib)] (2-x'x
dh^ \ n J \ n J \ n J \ n /\'^ J \ ^

We now expand Gn (/3),
—

'gb-' ^^^ —db^ using >yn-consistency of b:

First, note that

C„(«=(;-'f0(H-(^'''=)O'
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Because

i|:.i«.=A+^(^-i=g(.iX.-A)j,

1 "
1 / 1 " \

where X = E [z^Xi], and A = E {ziz[]. Therefore, we have

G„(/3) = 4=* + -r + Opf-) (39)

where

and

Now, note that

^Gn(/?)_ /i.'p.VV.V fi-VVp.

whert

= ^+7^= + ''''(;^)' ^-^'^

T= -(7^A'A-^\
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and

Finally, note that

2 ( -x'Px^ fix'e^ - 2 ("-x'Pe^ f-x'x

= 2* + Op (1)

.

(41)

where

* = cr^^A'A-^A.

Combining (38), (39), (40), and (41), we obtain

from which we obtain

Note that $ has a mean equal to zero. Therefore, under symmetry, the second order bias of b is given by

E
n\ T T2 T3 A'A-iA'

which is qualitatively of the same form as Rothenberg's mean.

G.2 Higher Order Analysis of the "Eigenvalue'

Let

_ e (6)' Pe [b)

e{b)'e{b)

Getting back to the first order condition

= x'Pe {b) - ^^t\r^i?^ x'e (6) = x'Py - nx'y - {x'Px - kx'x) 6,
e(6)'e(6)

we can write

b =
x'Py — Kx'y

x'Px — kx'x'

the usual expression.

Note that

le'Pc - 21 (6 - p) e'Px +^{b- (3)' x'Px

le'e - 2l{b - i3)e'x + ^{b - pf x'x
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The numerator and the denominator may be rewritten as

1 '

^

n

and

n n n

We may therefore write

^ e'e - 2^ (6 - /?) e'x + ^ (6 - /3)^ rr'x = a^ + o^ (1)

.

G.3 Application to Dynamic Panel Model

We now adopt obvious notations, and make a second order analysis of the right side of (37). First, note

that

J_ {x*'Ptel - K,xre*)

Cue.l

, (AiAr-(j,E^..^..^;.))\ J,^-^^. AJAf'^
""'''' "

and

- (xj PtX^ - KlX^ X.
)n

= [iP'''^j (^|j'''''V
(n§'""") "''

("S^"''^'
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It therefore follows that

V^(6-/3)

+
1 ELY {^ Er=i i^itxu - At))^ Ar^ (;^ EILi ^it<.)

/^ EL-i^a^a-a,

1 ELY A^Ar^ (;^ Er^i {-n-'it - At)) Ar^ (;^ E^^i ^j^^t)

/^ Er=YA;A,-'A,

/^ ^

ELY a;A,- A,

1 '^t=i <x?, a;a.-'a.
^ ... AJAr'A,

/n Er=YA;Ar^A,

2 ELYA;Ar^(;feEr=.^.^r.) /^-Yi ^. , .A'._,^

^ (eLYa;a-a.)^ %\^^}'^''^'-'n
'^ ''

+
1 ELYA;Ar^(^Er=a^..<0 /^\,,_,/ 1 ^, , ,\,_,,

(E(=i A,At Utj \«=i V^ i=i /

Therefore, under symmetry, the second order bias of the LIML like estimator is given by

1 l^t= \ ^ue,t

"ELYA^Ar'A,

2 ELY ELY A;Ar^g [{zusd {z.^x*, - k)'] k^k
(eLYaja^-a,)'

,

1 ELY ELY A^Ar^g [{zHcD a;aji {z^^z',, - a,)] a.-'a^

(eLYa;a-a.)'

^''^Tn

H First Order Asymptotic Theory for Finitely Iterated Long

Difference Estimator

Lemma 15 Let b denote the 2SLS in (29). We have

nu m 1 ^ i A'A-^ A'A-V,\ ,,. ^J^ X'A-'EA-'x\

where

E = £ [(Zif, - f.ifi) {z,€, - f^^py]
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Proof. See Appendix F.

Lemma 15 can be used to establish the influence function of iterated 2SLS estimators ^i,/A^/,,i , .

.

appHed to the long diff'erence. We first note that the influence function of b^iML is given by

^LIMLA

-T-1 w.-l
fhlML,-

EJ — i \' A —

1

«

where Xt = E [ziiX-j], and At = E \zitz[^]. We also note that yi = yix - yn, xi = yir-i - yio, and Wi =

(0,j/iT-2,--- ,yii)'- This is because we use the instrument of the form (yio,yiT-i - PyiT-2,--- ,yi2 -Pyn)

at each iteration, where /? is some preliminary estimator of /?. By Lemma 15, the influence function of

buMLA is equal to

A'A-^ VA-y
A'A-iA^'^'~ A'A-iA-^"^'""'

Using Lemma 15 again, we can see that the influence function of 62 is equal to

'A-lA'A
-ZiCz

A'A-y / A'A-1 A'A-y
\'\-l\'''^' \'\-l\^'^"^^-'A'A-iA"'^' A'A-iA Va'A-U "" A'A-^A'

Likewise, we can see that the influence functions of 63 and 64 are equal to

(42)

(43)

A'A-i

A'A-U^^^^

A'A-y
A'A-iA

r A'A-i

[A'A-iA^'^'

A'A-y / A'A-1

A'A-iA U'A-^A^^^'

A'A-y \i

A'A-U^^"^^'VJ
(44)

and

A'A-^

A'A-iA
z,e

A'A-y
' A'A-iA

'
f
A'A-i A'A-y

{X'A-'X"'^' A'A-iA

" A'A-i A'A-y
A'A-iA^^'^ A'A-iA

/ A'A-i A'A-y Y
U'A-iA^'^^ A'A-iA^'-'^'^'V

(45)

Using (42) - (45), we can easily construct consistent estimators of asymptotic variances of i/n (6l/ml,i ~ 0)i

s/n (&L/ML,2 ~ f^]- V^ [bLiML,3 ~ P) : aid y/n [b^jMLA " P)- Suppose that A, A, and <^ are consistent

estimators of A, A, and ip. Likewise, let At, and Aj denote some consistent estimators of At, and A<. For

example,

A
i=l

= -'S^Ziz'i, X = -y^ZiXi, ^= -y^Wiiyi-bxi

H = {yio,yiT-i - PyiT-2, ,3/^2 - Pynj ,

„ 1 " -- 1 "

A( = - Y] zitz'it, A( = - V" zux*n.

1=1

where (3 is any y^-consistent estimator of (3. Also, let

ft =yi - Pxi, iLIML.i

Er=VA;Ar'A(
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Prom (42) - (45), it then follows that

1

-En ^-^
i=\

1 "

-E

1

AA-

' A A-^

,a'a-ia

AA- ^
,

,AA-iA

' A A-i

AA-iA

^^ a'a-1(^ /^ AA-i ^„ AA-V? ^

^i^i — zzr:z
—^ I xtt:::

—::-2i£'i - 7:7^:

—

—Jlimla
AA-U y

A A-i^ / A A-i

A A-iA \a'a-ia

iZiSi

AA-i(?

iZiSi

AA-U

A A-i^ I A A-i

A A-

AA-iA AA-iA VAA-iA
:^i£i :Zi£,-

AA-^i^
LIML,i

ZiSi
XA-^^ A A-

~ ZiCi

AA-iA

AA-^^ / A A-i
:2i£i :jLIML,i

E" i=l

1 "

-E"^V'^A-U AA-iA [AA-U AA-U [AA-U AA-UVAA-U XA-^X

are consistent estimators of asymptotic variances of -v/n ( &l/ml,i ~ 0}^ V" (''l/a^l,2 ~ /^J! V^ (^l/ml,3 — /?),

and ^/n {hhiMLA - Pj

I Approximation of CUE
We examine an easier method of calculating an estimator that is equivalent to CUE up to the second

order adapting Rothenberg's (1984) argument, who was concerned about properties of linearized version

of MLE. We basically argue that two Newton iterations suffice for second order bias removal. The CUE

bcuE solves

where

mini, (c) = min5(c) G {c) 5(c),

n '—

'

n ^—

'

i=l 1=1

Let b denote the minimizer, and let Lj (c) = gj' . We consider an iterated version of CUE. Suppose that

we have a y'n-consistent estimator 60. Such estimator can be easily found by the usual GMM estimation

method. Note that we would have 60 ~ bcuE = Op I -y= ) . Assume that

L2 (b) = Op (1) , L3 (b) = Op (1)

for any -^71— consistent estimator 6. (This condition is expected to be satisfied for most estimators.) Let

Ll (br)
br+l =br -

L2{br)'
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Expanding around hcuE, and noting that L\ {bcus) = 0, we can obtain

Ol - OCUE = OQ- OcUE -
J ,, ^

^2 (Oo)

= 6o - hcVE

L2 (bcuE) {i>o - bcuE) + IL3 (bcuE) [bo - bcus) + Op Ubo - bcus) )

L2 {bcus) + L3 [bcus) {bo - bcus) + Op [bo - bcuE)

= 60 - bcuE

- ( 1/2 (bcuE) {bo - bcus) + 2^3 {bcuE) {bo - bcus)

I
1 L3 jbcuE) {bp - bcus) \

"" \L2 {bcus) L2 {bcuE? )

+ Op ({bo - bcus)
j

= nr lu^^ \
(^0 - bcusf + Op

( (&o - bcuB)]
2L2 [bcUE) ^ '

- {bo- OcUE) + Op [-
2L2{bcuE) '" ^''^'

' ^\n

It follows that

^1 - bcuE = Op\ -

We can similarly show that

i-s {bcuE)
b2 - bcvE =

2L2 {bcuE)
{bx - bcuB? + Op ((61 - bcuB?) = Op (^\

or

^/^{b2-bcuE) = Op(n-'"^^

This implies that 62 has very similar properties as bcuE- Its (approximate) mean and variance up to

O {n'^) coincide with those of bcuE-
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Table 1: Performance of bi^aqar and buML

T n /? boMM

%bias

b^agar bhlML bcMM

RMSE
buagar bllML

5 100 0.1 -16 3 -3 0.081 0.084 0.082

10 100 0.1 -14 1 -1 0.046 0.046 0.045

5 500 0.1 -4 -1 0.036 0.036 0.036

10 500 0.1 -3 -1 0.020 0.020 0.020

5 100 0.3 -9 1 -3 0.099 0.103 0.099

10 100 0.3 -7 -1 0.053 0.051 0.050

5 500 0.3 -2 -1 0.044 0.044 0.044

10 500 0.3 -2 0.023 0.023 0.023

5 100 0.5 -10 1 -3 0.132 0.140 0.130

10 100 0.5 -7 -1 0.064 0.059 0.058

5 500 0.5 -2 -1 0.057 0.057 0.057

10 500 0.5 -2 0.027 0.026 0.026

5 100 0.8 -28 -129 -15 0.321 102.156 0.327

10 100 0.8 -14 -5 0.136 0.128 0.109

5 500 0.8 -7 1 -3 0.130 0.141 0.127

10 500 0.8 -3 -1 0.050 0.044 0.044

5 100 0.9 -51 -70 -41 0.555 26.984 0.604

10 100 0.9 -24 -4 -15 0.250 4.712 0.229

5 500 0.9 -20 -41 -10 0.278 46.933 0.277

10 500 0.9 -9 -2 0.102 0.087 0.080
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Table 2: Performance of Second Order Theory in Predicting Properties of Pgmm

T n P Actual Bias Actual %Bias Second Order Bias Second Order %Bias

5 100 0.1 -0.016 -16.00 -0.018 -17.71

10 100 0.1 -0.014 -14.26 -0.016 -15.78

5 500 0.1 -0.004 -3.72 -0.004 -3.54

10 500' 0.1 -0.003 -3.20 -0.003 -3.16

5 100 0.3 -0.028 -9.23 -0.032 -10.60

10 100 0.3 -0.021 -7.11 -0.024 -8.13

5 500 0.3 -0.006 -2.08 -0.006 -2.12

10 500 0.3 -0.005 -1.58 -0.005 -1.63

5 100 0.5 -0.052 -10.32 -0.060 -12.09

10 100 0.5 -0.034 -6.78 -0.040 -8.00

5 500 0.5 -0.011 -2.29 -0.012 -2.42

10 500 0.5 -0.008 -1.51 -0.008 -1.60

5 100 0.8 -0.224 -28.06 -0.302 -37.81

10 100 0.8 -0.108 -13.53 -0.152 -18.98

5 500 0.8 -0.056 -7.02 -0.060 -7.56

10 500 0.8 -0.027 -3.44 -0.030 -3.80

5 100 0.9 -0.455 -50.56 -1.068 -118.64

10 100 0.9 -0.220 -24.47 -0.474 -52.66

5 500 0.9 -0.184 -20.48 -0.214 -23.73

10 500 0.9 -0.078 -8.64 -0.095 -10.53
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Table 3: Performance of 6bc2

T n /? %hias\bGMMJ %h\as\bBC2) RMSe(6ga^a/]^ RMSEpBC2J
5 100 0.1 -14.96 0.25 0.08 0.08

10 100 0.1 -14.06 -0.77 0.05 0.05

5 500 0.1 -3.68 -0.38 0.04 0.04

10 500 0.1 -3.15 -0.16 0.02 0.02

5 100 0.3 -8.86 -0.47 0.10 0.10

10 100 0.3 -7.06 -0.66 0.05 0.05

5 500 0.3 -2.03 -0.16 0.04 0.04

10 500 0.3 -1.58 -0.10 0.02 0.02

5 100 0.5 -10.05 -1.14 0.13 0.13

10 100 0.5 -6.76 -0.93 0.06 0.06

5 500 0.5 -2.25 -0.15 0.06 0.06

10 500 0.5 -1.53 -0.11 0.03 0.03

5 100 0.8 -27.65 -11.33 0.32 0.34

10 100 0.8 -13.45 -4.55 0.14 0.11

5 500 0.8 -6.98 -0.72 0.13 0.13

10 500 0.8 -3.48 -0.37 0.05 0.04

5 100 0.9 -50.22 -42.10 0.55 0.78

10 100 0.9 -24.27 -15.82 0.25 0.23

5 500 0.9 -20.50 -6.23 0.28 0.30

10 500 0.9 -8.74 -2.02 0.10 0.08

Table 4: Performance of Iterated Long Difference Estimator

1:^;

hsLSA b2SLS,2 i>2SLS,Z b2SLS,4

Bias -0.0813 -0.0471 -0.0235 -0.0033

%Bias -9.0316 -5.2316 -2.6072 -0.3644

RMSE 0.3802 0.2863 0.2479 0.2536

bcMMA bGMM,2 t>GMM,3 i>GMM,4

Bias -0.0770 -0.0374 0.0006 0.0104

%Bias -8.5505 -4.1599 0.0622 1.1570

RMSE 0.1699 0.1954 0.2545 0.2851

bllML.l btniL:! bllAtL.S bllMLA

Bias -0.0878 -0.0475 -0.0186 0.0074

%Bias -9.7571 -5.2756 -2.0698 0.8251

RMSE 0.2458 0.2391 0.2292 0.2638
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Table 5: Comparison with Blundell and Bond's (1998) Estimator: 13= .9,T = 5, N = 100

bBBl bBB2
-in;

bBB3
^^

bsBi btlML,! buMLa bLIML,3

Mean % Bias -33.8148 -29.4131 4.7432 4.2551 -9.7571 -5.2755 -2.0697

Median % Bias -31.1881 -25.9085 5.9111 5.6280 -15.3878 -9.0639 -6.9573

RMSE 0.4796 0.4257 0.0823 0.0882 0.2458 0.2391 0.2292

Table 6: Sensitivity of Blundell and Bond's (1998) Estimator: (3= .9,T = 5, N = 100

/3f = -5 bBBl bBB2 bBB3 bBB4 blJML,!

—::":^

bLlML,2 bLlML,3

Mean % Bias 8.9525 14.4790 20.9971 21.5154 0.0252 0.1691 0.2334

Median % Bias 9.5207 15.4609 21.1202 21.6144 -0.2163 -0.2214 -0.2469

RMSE 0.0994 0.1400 0.1899 0.1944 0.0570 0.0611 0.0630

Pf = bBBi bBB2 bBB3 bBB4 bLIML,\

—_,_

bLIML,2 bLIML,3

Mean % Bias 10.8819 17.3840 24.8534 25.4517 0.0429 0.1455 0.1860

Median % Bias 11.4178 18.2542 24.9990 25.5079 -0.1621 -0.1890 -0.2168

RMSE 0.1156 0.1654 0.2246 0.2299 0.0521 0.0543 0.0555
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Table 7: Performance of Iterated Long Difference Estimator for T = 5

N ^ 100 i>LIML,\ bhlMLfl i>LIML,Z

7^

/? = .75 Actual Mean % bias 1.2977 4.6584 5.3703 7.6702

Actual Median % bias -3.0867 -0.4467 -0.0800 -0.4800

2nd order Mean % bias -.1358 2.8043 4.6720 6.5872

RMSE 0.1806 0.2278 0.2465 0.2857

P = .80 Actual Mean %bias -0.1119 2.5878 4.2732 6.3443

Actual Median % bias -5.7250 -2.3438 -1.4188 -1.4000

2nd order Mean % bias -.4020 4.6019 7.3205 9.8596

RMSE 0.2128 0.2452 0.2523 0.3032

13 = .85 Actual Mean %bias -3.8994 -0.5921 1.6201 3.6981

Actual Median % bias -10.1176 -5.4235 -4.0059 -3.5471

2nd order Mean % bias -8477 9.2416 14.3129 18.0912

RMSE 0.2333 0.2494 0.2532 0.2848

/? = .90 Actual Mean %bias -9.7571 -5.2756 -2.0698 0.8251

Actual Median % bias -15.3889 -9.0667 -6.9556 -5.6444

2nd order Mean % bias -1.7413 25.3502 40.2274 49.3254

RMSE 0.2458 0.2391 0.2292 0.2638

/? = .95 Actual Mean %bias -15.2028 -9.5738 -6.0855 -2.8321

Actual Median % bias -19.6368 -12.4895 -9.6105 -8.0684

2nd order Mean % bias -4.4189 132.5028 229.9208 298.9023

RMSE 0.2518 0.2191 0.2124 0.2397

TV = 200 &L/ML,1 bLIML,2 ^L/ML,3 bblMLA

/?
= .75 Actual Mean %bias 1.2054 3.0110 3.8420 5.1421

Actual Median % bias -1.6533 -0.2333 -0.1000 -0.4733

2nd order Mean % bias -.0679 1,4022 2.3360 3.2936

RMSE 0.1336 0.1630 0.1906 0.2189

(3
= .80 Actual Mean %bias 1.4085 3.7041 4.3488 4.8453

Actual Median % bias -3.3125 -1.1813 -0.5938 -1.1500

2nd order Mean % bias -.2010 2.3010 3.6602 4.9210

RMSE 0.1740 0.2071 0.2245 0.2435

13 = .85 Actual Mean %bias 0.0299 1.7783 1.7835 3.6882

Actual Median % bias -6.8412 -3.7059 -2.8588 -2.6000

2nd order Mean % bias -.4238 4.6208 7.1565 9.0456

RMSE 0.2239 0.2363 0.2288 0.2513

P = .90 Actual Mean %bias -5.8274 -2.7803 -1.3073 0.1639

Actual Median % bias -13.1000 -7.9111 -5.9278 -5.2333

2nd order Mean % bias -.8706 12.6751 20.1137 24.6627

RMSE 0.2406 0.2257 0.2252 0.2396

= .95 Actual Mean %bias -13.3638 -8.7034 -6.2646 -4.1416

Actual Median % bias -19.3737 -12.3211 -9,5579 -8.0526

2nd order Mean % bias -2.2094 66.25 11 111.9604 149.1511

RMSE 0.2515 0.2156 0.1991 0.2020
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Table 8: Performance of I3j2sls ^^^ PcuE for T = 5

N--= 100

—:^

Pl2SLS,LD PcUE,LD

P == 0.75 Actual Mean % Bias 5.5331 11.5527

Second Order Mean % Bias 5.4224 7.6105

Actual Median %Bias 1.3811 7.4700

RMSE 0.1761 0.2132

InterQuartile Range 0.2434 0.3067

P--= 0.8 Actual Mean % Bias 4.3037 10.4126

Second Order Mean % Bias 9.6240 13.0702

Actual Median % Bias 1.4569 8.6510.

RMSE 0.1727 0.2048

InterQuartile Range 0.2422 0.3031

/?
== 0.85 Actual Mean % Bias 1.9659 7.9833

Second Order Mean % Bias 20.9080 27.0025

Actual Median % Bias 0.0656 7.5588

RMSE 0.1604 0.1947

InterQuartile Range 0.2270 0.2900

P--= 0.9 Actual Mean % Bias -0.7710 6.1387

Second Order Mean % Bias 65.0609 78.5269

Actual Median % Bias -2.3467 6.1147

RMSE 0.1534 0.1803

InterQuartile Range 0.2115 0.2668

P == 0.95 Actual Mean % Bias -3.3676 3.1244

Second Order Mean % Bias 481.1993 533.4268

Actual Median % Bias -4.7764 3.1365

RMSE 0.1494 0.1655

InterQuartile Range 0.2002 0.2512
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Table 9: Performance of P12SLS ^^^ 0CUE for T = 5

N == 200 Pl2SLS,LD 0CUE,LD

= 0.75 Actual Mean % Bias 5.9078 8.8638

Second Order Mean % Bias 2.7112 3.8052

Actual Median %Bias 1.5982 4.2172

RMSE 0.1519 0.1704

InterQuartile Range 0.1896 0.2297

P--= 0.8 Actual Mean % Bias 4.9410 8.3701

Second Order Mean % Bias 4.8120 6.5351

Actual Median % Bias 1.8273 5.4765

RMSE 0.1447 0.1674

InterQuartile Range 0.1997 0.2468

(3 = 0.85 Actual Mean % Bias 2.7966 7.3021

Second Order Mean % Bias 10.4540 13.5012

Actual Median % Bias 1.0718 5.8672

RMSE 0.1373 0.1585

InterQuartile Range 0.1909 0.2341

P--= 0.9 Actual Mean % Bias 0.8948 5.4221

Second Order Mean % Bias 32.5304 39.2635

Actual Median % Bias -0.0204 5.3657

RMSE 0.1271 0.1448

InterQuartile Range 0.1750 0.2101

P == 0.95 Actual Mean % Bias -2.0943 2.8482

Second Order Mean % Bias 240.5997 266.7134

Actual Median % Bias -2.5881 2.8984

RMSE 0.1216 0.1331

InterQuartile Range 0.1594 0.1915
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Table 10: Performance oipcuE,LD^ Pcue2,as^ Pcue2,ld, and Pcue2,bb for T = 5

A^ = 100

—tk:

PcUB,LD

—-^

(^CUE,BB

_-,_

0CUE2,AS
^;

0CUE2,LD

—_n-

PcUE2,BB

/? = .75 Median % Bias 7.4700 1.2705 6.6814 4.2643 2.0471

Interquartile Range 0.3067 0.1480 0.2864 0.2911 0.2456

Mean % Bias 11.5527 0.4852 -296.6631 1250.1149 -136.4730

RMSE 0.2132 0.1050 152.2249 676.8912 117.9397

/?
= .8 Median % Bias 8.6510 1.2629 4.7391 1.6364 0.6595

Interquartile Range 0.3031 0.1540 0.3206 0.3410 0.3676

Mean % Bias 10.4126 -0.0913 33.6498 -15.0393 -125.6554

RMSE 0.2048 0.1092 29.2436 12.6828 74.6934

/? = .85 Median % Bias 7.5588 1.9808 0.9468 -2.2980 -1.0482

Interquartile Range 0.2900 0.1645 0.4253 1.2817 0.4902

Mean % Bias 7.9833 0.3824 -100.7981 -161.9267 6.4686

RMSE 0.1947 0.1225 28.4546 25.6932 23.8489

P = .9 Median % Bias 6.1147 3.0423 -4.2248 -16.4693 -6.9530

Interquartile Range 0.2668 0.1637 2.3282 1.5503 2.3169

Mean % Bias 6.1387 1.2087 -30.2898 -177.0842 495.0171

RMSE 0.1803 0.1344 24.6733 131.8341 193.9465

P = .95 Median % Bias 3.1365 3.4897 -17.7102 -129.4765 -21.5058

Interquartile Range 0.2512 0.1452 2.5936 1.6277 2.5714

Mean % Bias 3.1244 1.0877 -290.6542 -42.6293 -32.0973

RMSE 0.1655 0.1347 166.1415 67.0635 98.0361
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Table 11: Performance oi f3cuE,LD^ Pcue2,as^ Pcue2,ld^ and Pcue2,bb for T = 5

N = 200
~-^

PcUE,LD PcUE,BB PcUE2,AS

—:^

0CUE2,LD PcUE2,BB

P = .75 Median % Bias 4.2172 0.4242 3.4952 4.0943 1.2644

Interquartile Range 0.2297 0.1032 0.1855 0.2034 0.1195

Mean % Bias 8.8638 0.1604 116.0861 29.5421 4.4327

RMSE 0.1704 0.0719 85.9117 10.6641 4.5595

(3 = .8 Median % Bias 5.4765 0.5388 5.8182 5.3421 0.8893

Interquartile Range 0.2468 0.1063 0.2105 0.2132 0.1472

Mean % Bias 8.3701 -0.1898 16.9181 -233.6177 -21.1440

RMSE 0.1674 0.0736 13.7393 127.6513 9.5825

P = .85 Median % Bias 5.8672 0.6441 5.1660 3.7226 1.0708

Interquartile Range 0.2341 0.1143 0.2295 0.2347 0.2619

Mean % Bias 7.3021 -0.7076 688.7913 -50.0828 59.6610

RMSE 0.1585 0.0779 455.6137 19.8972 66.8390

P =:.9 Median % Bias 5.3657 0.9204 0.9958 -2.8551 -1.0774

Interquartile Range 0.2101 0.1152 0.3766 1.3425 0.5870

Mean % Bias 5.4221 -0.3893 479.7193 31.6093 -29.9555

RMSE 0.1448 0.0913 381.8271 23.2206 42.2422

P = .95 Median % Bias 2.8984 2.5208 -11.2026 -125.6884 -12.6677

Interquartile Range 0.1915 0.1099 2.5978 1.5877 2.6203

Mean % Bias 2.8482 0.9733 -82.2370 -6464.7709 -177.6883

RMSE 0.1331 0.1044 39.5396 4315.6181 116.8096
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