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1. Introduction

Consider a seller who wishes to sell a service to a buyer. If the

seller doesn't know the buyer's willingness to pay for the service, he will

set a price-quantity schedule in such a way as to screen for the buyer's

valuation. An optimal price-quantity schedule will generally have the

property that a buyer with a low willingness to pay will consume an

inefficiently low amount of the service and may be shut out of the market

altogether, even in cases where it is common knowledge that there are gains

from trade.

This one period nonlinear pricing or principal-agent problem has been

the subject of much analysis and its solution is by now well understood (see,

e.g., Guesnerie-Laf font (1984) for a unified treatment and references). Much

less attention, however, has been paid to dynamic extensions of the model,

where trade is repeated over time. This paper is concerned with such an

extension.

The main new issue that arises in the multiperiod case concerns

commitment. If the seller can commit himself at the first date to a

particular price-quantity schedule that will rule for all periods, it is easy

to show that the multiperiod solution is simply the one period solution

repeated in each period (under the assumption that the buyer's valuation is

constant over time). In the absence of commitment, however, this solution

will be infeasible. The reason is that as trades with the buyer are

consummated, information about her type is revealed, and the seller will find

it in his interest to modify the price-quantity schedule in light of this

information. The buyer, recognizing this, will alter her early trading

behavior accordingly.

Noncommitment has been analyzed in two ways in the literature. The

first approach is to suppose that the seller and buyer can agree on a price-



quantity schedules which rules in the first period, but cannot in any way bind

themselves to future price-quantity schedules. In other words, the parties

can write binding short-term contracts, but not long-term contracts. It has

been shown that the consequence of this is a "ratcheting" effect (Laffont and

Tirole (1985)). If the buyer's valuation is identified early on, the seller

(assuming that he has all the bargaining power) can use this to price

discriminate perfectly and capture all the buyer's consumer surplus in later

periods. As a result the noncommitment equilibrium will involve very little

information being revealed in early stages of the game, i.e. it will be

characterized by extensive pooling.

The assumption that long-term contracts are infeasible is a strong one

unless the parameters of trade are a priori ill-defined or too complex to be

written down (or the identities of the parties change over time) . It is

therefore interesting to consider how the possibility of long-term contracts

affects the analysis. At first sight it might appear that binding long-term

contracts would allow the commitment solution to be implemented. This is not

correct, however, as is shown in an interesting recent paper by Dewatripont

(1985). To see why, consider the following simple example. Suppose the

buyer's willingness to pay for the service is known to be either $10 per

period or $5 per period. The commitment solution might involve the seller

offering the price of 10 in each period, with the low valuation buyer buying

2
in none of them. Let the seller try to implement this by offering a long

See also Baron-Besanko (1986), Freixas-Guesnerie-Tirole (1985), Hosios-
Peters (1985) and Skillman (1986).

2
The reader may wonder why the buyer would accept such a contract. Suppose
however that the seller offers a lump-sum z if the contract is accepted.
The low valuation buyer, knowing that she will not have a surplus in the
future if she refuses the contract, accepts it. The high valuation buyer
therefore also accepts it, because if she did not, she would reveal her type

and get a zero surplus in the future.



term contract at date 1 which says that if he ever reduces the price below 10,

he will pay a large penalty to the buyer. Then a high valuation buyer who

believes that this penalty makes it credible that future prices will not fall

will be prepared to purchase at date 1. Consider the situation at date 2,

however. The seller will now know that any remaining buyer has a low

valuation, which means that he has an incentive to go to such a buyer and

propose that they tear up the old contract and agree to a new one in which the

buyer releases the seller from the penalty and purchases the good for a rental

equivalent of b. The buyer may as well accept this since he will never get

the penalty specified by the original contract. For this reason, the

commitment not to lower prices is not credible after all.

This logic suggests (and it can be verified) that the commitment

solution cannot be sustained via a long-term contract unless the parties can

bind themselves not to renegotiate the contract at a later date. In practice

it may be difficult for the parties to bind themselves in this way and it is

therefore interesting to ask what form an optimal long-term contract will take

given that renegotiation (by mutual consent) is always possible. The purpose

of this paper is to provide an answer to this question.

Our analysis will be concerned with a situation where the seller can

supply zero or one unit of the service and the buyer's valuation can take on

just two values (high or low). Ve consider two cases. In the first, there is
i.

a physical constraint that if the seller has supplied the service once he must

supply it in all future periods. This corresponds to a sale of a durable

3
Note that having the seller pay the penalty to a third party in the above
example will not work as a bonding device if the third party can be included
in the renegotiation. The third party knows that he will not get the
penalty under the initial contract and, so, if approached by the seller and
buyer, will be willing to tear up the original contract for even an
infinitesimal reward. For more. on this, see Hart-Holmstrom [1987].
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good. In the second case, no such constraint is present; that is, supply

today has no implications for supply tomorrow. This corresponds to the rental

of a durable good or of a service (for example, the seller might be a worker

and the buyer a user of labor services)

.

These cases can possess very different features. For example, in the

absence of any form of commitment (i.e. in the absence of long-term

contracts) , the equilibrium in the sale model exhibits a declining price path

along lines familiar from the work of Coase (1972). In contrast, as we have

noted, the noncommitment solution in the rental model exhibits a form of

ratcheting. Indeed we show that the equilibrium converges to a no-

discrimination equilibrium (in which the seller always charges the lowest

valuation each period) , as the horizon tends to infinity. One implication of

our analysis is that the seller's profits are lower in the rental model

without any form of commitment than in the sale model. This is in striking

contrast to the traditional conclusion that the seller always prefers leasing

to selling. (Indeed the usual result is that he can achieve the commitment

solution by renting.) The reason for the difference is that in the

traditional durable good model, there are many buyers and the seller is unable

to discriminate among them at any given point of time. Here, by contrast,

there is one buyer whose behavior in one period has an important effect on the

seller's offers in future periods.

We will find, however, that the two models become much closer once long-

term contracts are allowed. Ve will establish two main results (under the

assumption that renegotiation of a long-term contract cannot be prevented)

.

First, the introduction of long-term contracts has no effect on the

equilibrium in the sale model. Second, in the rental model, long-term

contracts do have an impact and in fact cause the equilibrium of the rental

model to coincide with the equilibrium of the sale model. That is, the rental



model with long-term contracts is equivalent to the sale model with or without

long-term contracts, i.e. the optimal contract is "Coasian" in nature.

The assumptions that supply is zero or one and that there are only two

types of buyers are quite restrictive. Even in this case, as the reader will

see, the analysis turns out to be surprisingly involved. In future work, it

would be desirable to generalize the analysis. At this stage we do not know

whether the techniques presented here will be useful for such a

generalization.

The paper is organized as follows. The model is introduced in Section

2. In Section 3, we consider the case of full commitment, and in Section 4

the case of no commitment at all (between periods) . Sections 5-7 constitute

the main part of the paper; here we analyze the optimal long-term contract in

the presence of renegotiation. Section 8 summarizes the results. Finally in

Section 9 we show that our results have implications for dynamic versions of

the standard hidden information moral hazard model, where the parties sign an

initial contract before the buyer knows her valuation (i.e. there is symmetric

information at the initial contract date)

.



2. The Model

We suppose two parties, a buyer and a seller. The buyer consumes per

period 1 or unit of the good manufactured by the seller. She has per-period

valuation b for the good (which is constant over time) . This valuation can

take two values b < b (where b > 0) . The valuation is known to the buyer from

the start of the game; the seller does not know b, but has prior beliefs u.

that the valuation is b (and (1-w.) that the valuation is b) . We will denote

by u the posterior probability at the beginning of date t that the seller

assigns to the buyer's being of type b. We assume without loss of generality

that the seller's production cost is equal to zero.

There are T periods: t=l,.., T (where T < «>) . After T periods, the

good becomes obsolete. The two parties have common discount factor 5. We let

x be equal to 1 if the buyer consumes the good at date t, and if she

doesn't. (We will actually allow mixed strategies, or random consumption, in

which case x is a number between and 1.) The (present discounted) number

T (s-t)
of consumption periods from t on can be written X. = £, 5 x . Let a =

T (s-t)
s, s denote the (present discounted) number of periods from t on.

s=t

As mentioned in the introduction we consider two models. The "sale" or

"durable good" model assumes that the good is sold once and for all: x = 1

imnlies x = 1 for s e{t, , T}."
1

The "rental" or "non-durable good" model
s

imposes no such constraint. The seller is free not to rent the good at date

(t+1) even if he has rented it at date t. (In a labor context, the seller is

the worker, and the good is labor. The appropriate model is then the rental

model.

)

Both parties are risk-neutral. Let p denote the present discounted

4
In the case of a random sale, the same is true if the realization of the
random variable at t is equal to 1.



value of payments from the buyer to the seller. The buyer's utility (U) and

the seller's utility (ir) are:

U = E(-p + Xjb)

and

ir = Ep ,

where the latter expectation is taken over the buyer's valuations.

In the rest of the paper, we will study the trades which will take place

between the buyer and seller. We will distinguish between three cases: (A)

where the parties can commit themselves to a mechanism or contract once and

for all (Section 3); (B) where the parties can write short-term contracts

which rule within a period, but cannot commit themselves at all between

periods (Section 4); (C) where the parties can write a long-term contract

which rules across periods, but cannot commit themselves not to renegotiate

this contract by mutual agreement (Sections 5-7) . We will analyze each of

these cases for the sale model and for the rental model. Throughout we shall

assume that the seller makes all the offers and the buyer simply accepts or

declines these, i.e. we give all the bargaining power to the seller. The

purpose of doing this is twofold. First, this assumption is consistent with

the rest of the literature, which allows useful comparisons. Second, we want

to abstract from the issues of renegotiation of a contract by an informed

party.

3. Commitment

Suppose that the seller can commit himself at date 1 to a mechanism.

From the revelation principle, we know that he can content himself with asking

for the buyer's valuation at date 1.



The commitment solution is the same in the sale and rental models, and,

as is well known, involves a constant consumption over time for the buyer: x.

= .. = x = or 1. The solution is the one-period one replicated T times.

Suppose that the seller charges p for the right to consume; let b = p/a

T-l
(where a=1+s+..+6 ) denote the rental equivalent of p. Clearly the

optimal pricing policy for the seller is to charge a rental equivalent equal

to b or b. If he charges b, then both types consume; if he charges b, only

the high valuation buyer consumes. So the seller's decision depends on

whether b u. b. To make things interesting, we will assume that the seller

prefers to run the risk of not selling. Define w = (b/b) . Then:

Assumption 1 : b < u b, i.e. jh > ju .

This assumption will be maintained throughout the paper. (If it is violated,

no price discrimination occurs in any of our models; the rental equivalent is

always equal to b.)

Proposition 1 : Under commitment, the rental and sale models yield the

same solution. Only the high valuation buyer consumes.

That is, U(b) = U(b) = and ir = ju b a

4. Noncommitment

We now make the polar opposite assumption that the parties cannot commit

at all between periods. In each period, the seller makes an offer. In the

sale model, he offers to sell the good (and will not buy it back later on if

the buyer accepts the offer). In the rental model, he offers to rent the good

for the period.

Because the sale and rental solutions differ in the absence of



commitment, we study the two models sequentially.

4a. Sale Model Under Noncommitment

The model here is the familiar durable-good monopolist one, pioneered by

5
Coase (1972) . Our version differs from most studies of the model in that the

horizon is finite. But this is an inessential difference; our finite-horizon

equilibrium converges to the infinite-horizon one.

Because what follows is well-known, we only sketch the main features.

The seller's strategy is a sequence of price offers p , .., p (the offer at

date t of course is relevant only if the buyer has not purchased prior to date

t) . The buyer's strategy consists in accepting or rejecting the seller's

offers. Last the seller's date t beliefs about the buyer's valuation is a

number u that depends on previous offers (and the buyer's having rejected

them) . These strategies and beliefs are required to form a perfect Bayesian

equilibrium: strategies are sequentially optimal given beliefs (perfection)

and beliefs are derived from equilibrium strategies and observed actions using

Bayes rule (Bayesian updating)

.

Proposition 2 . Under noncommitment and in the sale model, the equilibrium

path is (generically) unique and takes the following form:

There exists a sequence of numbers:

= u n < n. < .. < u. < .. <jj„<1, such that:
1 l T

(i) If the current posterior beliefs ju at date t belong to

5
And studied by Bulow [1982] , Stokey [1982] , Sobel-Takahashi [1983]

,

Fudenberg-Levine-Tirole [1985] , Gul-Sonnenschein-Wilson [1986] , and Ausubel-
Deneckere [1986] among others.

6
Which we know is unique from Fudenberg-Levine-Tirole [1985]' and Gul-
Sonnenschein-Wilson [1986]

.
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the interval [«.., n.) for i s T-t+1, bargaining will end

with probability one exactly at or before date t + (i-1)

(i.e., the process will take i more periods including the

current one). Posterior beliefs are w. at t + 1, w_ at t

+ 2 and so on. The sequence of prices charged by the seller

is given inductively by p = s p ,
, + b, with p.

,
, . , . =

s s+1 t+(i-l)

b a, ,._.,. The buyer's utility from date t on (discounted

from that date on) , U (b) , is given by:

U
t

(b) = 0,

and

U
t
(b)=(b-b)6

1_1
A
t+(

._
l)

=(b-b) («'
1-1

+..+«
Trt

)

.

(ii) If current beliefs are such that u 2 w
t

, the seller

charges b a for each s 2 t. The buyer's utility from date t

on is

U
fc

(b) = U (b) = 0.

Remark 1 . To find the equilibrium starting from date 1, one simply sets t = 1

in the above; i.e. if ju £ {u . , jli .) for i s T, bargaining ends with

probability one at date i, while if u 2 n , bargaining continues through date

Remark 2 . For a given n , case (ii) becomes irrelevant when the horizon is

large enough (because lim u. = 1)

.

k->-
X

Remark 3 . The equilibrium thus exhibited has the Markov property on the

equilibrium path , in that the strategies depend only on current beliefs and on

the length of the remaining horizon. It is known that of f-the-equilibrium-

path strategies cannot be Markov with a finite number of buyer valuations
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(see, e.g., Fudenberg-Tirole [1983]).

Remark 4 . Because of the finite horizon, the pricing strategy cannot be

stationary (i.e., depend only on current beliefs on the equilibrium path). It

must also depend on time. A remarkable fact however is that the "cut-off

beliefs" u. are time-invariant.

An informal proof that the behavior described in Proposition 2 is an

equilibrium path is given in the Appendix.

The following trivial corollary will prove useful later on:

Corollary : Under noncommitment and for the sale model, given two posterior

beliefs u and n ' at time t such that both ju and ju ' belong to

[ju-i, V-) for some i, the equilibrium path and the buyer's

utility are the same. Furthermore, they are identical to those for

beliefs equal to any convex combination of ju and jli *
_

Coasian dynamics

A physical constraint in the sale model is that if the buyer consumes

the good at date t, she does so at dates t+1, t+2, .., T. Such a constraint

does not exist for the rental model. However one of our main concerns in this

paper will be to analyze whether the actual dynamics look like the sale ones.

This motivates the following two definitions:

TDefinition : A sequence of trades {x ] . where x £{0,1) exhibits durable-

good dynamics if x - 1 => x = .. = x = 1.
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T
Definition : An equilibrium (consisting of a sequence of trades {x (b) I .

where x (b) e 10,1}, with associated payments) exhibits Coasian

dynamics if

(i) for all b, |x (b) ) exhibits durable good dynamics

(ii) 1Mb) =

(iii) U(b)=X
1
(b) (b-b)=

t |1
s
t
x
t
(b) (b-b)

.

From Proposition 2, the durable good equilibrium exhibits Coasian

dynamics.

4b. Rental Model Under Noncommitment

We now assume that, at each period t, the seller makes a rental offer r

for that period. This offer, if accepted, is binding for the current period,

but it is supposed that the seller cannot, at date t, commit himself to

particular rentals in future periods (this assumption is relaxed in the next

section). The seller's strategy is thus a sequence of offers ir. , r„, .., r I

where r is contingent on the history up to time t. Posterior beliefs about

the buyer's valuation are again denoted by u . The buyer's strategy consists

in accepting or rejecting the offers. The strategies and beliefs are again

required to form a perfect Bayesian equilibrium.

The dynamics of the rental model differ considerably from those of the

sale model under noncommitment. The following lemma provides a first

intuition about why this is the case

2
Lemma 1 ; Suppose 5+6 si. Then u 2 u for all t s T-l.
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Proof : Note first that if u. < u., the seller charges r. = r . = .. = r_= b

(which is accepted by both types) . This follows from the fact that if

v < « , the commitment solution from time t on is to charge b

forever. That is, the seller can get exactly his commitment payoff

even in the absence of commitment. Trying to price discriminate would

only yield a strictly lower payoff.

Now consider an offer r . If r s b, r is accepted by both: it

is accepted by b because, from time (t+1) on, the seller will never

charge strictly less than b (this is trivially shown by backward

induction) . It is also accepted by type b: if it were not accepted

by type b, the latter would lose (b - r ) > at date t and

furthermore would reveal her type, which would lead to a price

sequence r = r . = .. = r = b, and a zero surplus. Thus the

posterior beliefs do not change: ju = w ,

.

Suppose next that r > b and n. . < n. if the offer is rejected.

Then P t+1
= Pt.o = •• = PT

= k from our previous observation. When

accepting the offer type b reveals her identity and obtains exactly

utility b - r < b - b from time t on. By rejecting the offer, type b

T-t
obtains (b - b) [s + .. + 5 ). Now for t s T-2, T-t 2 2 and so the

2
condition s + 5 2 1 implies that the gain from rejecting

.automatically exceeds that from accepting. So r > b cannot yield

^
t+1

< »
1

if it is rejected. Ve conclude that beliefs always stay

above jj until at least (T-l) (recall our assumption that u. > jO .

Q.E.D.

Lemma 1 must be contrasted with the results for the sale model. There,

for Ji slightly above u for instance, one had jj = (the high valuation
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buyer accepted the first-period offer) . The reason for the difference is that

in the durable good case, the seller has more leeway to price discriminate.

He can get the high valuation buyer to buy the good at a rental equivalent

just above b, say. But this may not be possible in the rental case. Because

the high valuation buyer gets a zero surplus forever after having revealed her

type, she must be given a rental price that is low enough to offset this

future loss of surplus. However such a rental price may fall below b with

more than 2 periods to go, in which case the low valuation buyer accepts the

rental price as well so that no information is revealed.

We will not need to give a full characterization of the equilibrium of

the rental model. We will, however, consider the limiting behavior of

equilibrium when the horizon becomes large. With an infinite horizon, there

exists a very large number of equilibria. Technically the game is a supergame

and some form of the Folk theorem applies. We now show that the limit of the

finite horizon equilibrium is an infinite horizon equilibrium with a simple

form.

Consider the following strategies. "Regardless of the previous history

of the game, 1) the seller charges b and 2) the buyer, whatever her type,

accepts any offer at or under b and rejects offers above b". These strategies

form an equilibrium of the infinite horizon game if the discount factor

exceeds one-half: The seller's strategy is clearly optimal given the buyer's.

The high valuation buyer ought to reject any offer r above b because:

b - r s (b - b) (s + s
2

+ ..) = - s- (b - b)

.

16.

We call this equilibrium the no-discrimination equilibrium . The seller always

7
charges the low price and does not try to price discriminate.

7
Hosios and Peters [1985] only consider the infinite-horizon game and derive
the no-discrimination equilibrium. They also show that for small discount
factors, there exists an equilibrium that exhibits Coasian dynamics. (Their
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2
Proposition 3 . Assume that 6 + s 2 1. Then the finite horizon equilibrium

converges to the no discrimination equilibrium when the horizon tends to

infinity (i.e. for any prior beliefs a. , there exists k such that for all T

and t s I - k, r = b)

.

2
Remark 5 : We conjecture that the assumption 6+5 2 1 can be relaxed to 6 2

1

r

Proposition 3 (which is proved in the Appendix) exhibits the striking

result that for long, but finite, horizons, the seller is unable to price

discriminate in the no commitment rental case, whatever his beliefs about the

buyer's type. That is, the seller charges b and rents to both types until

close to the end of the horizon. Clearly the seller has a lower profit and

the buyer a higher utility than in the sale case where discrimination is

possible. [In Section 8 below, we show that this result holds for any T, and

not only for long horizons] . Note that this conclusion is at odds with the

traditional conclusion that the seller always prefers leasing to selling .

(Indeed the usual result is that he can achieve the commitment solution by

renting.) The difference is that in the traditional durable good model, there

are many anonymous buyers and the seller is unable to discriminate among them

at a given point of time. Here, by contrast, we assume that there is only one

buyer or equivalently a group of non-anonymous buyers, whose consumption the

seller is able to keep track of. One buyer's behavior has no effect on the

future offers in the traditional model (because she is atomistic) , while it

set-up is more complex than the one considered here. They also allow for
the possibility of directly monitoring the buyer's type.)
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has an important effect in the current model. Note that by contrast, whether

buyers are anonymous or not does not make any difference for the outcome in

the sale model .

Proposition 3 has the interesting implication that the noncommitment

rental equilibrium will not exhibit Coasian dynamics when T is large. The

Proposition tells us that the seller will charge b for many periods. However,

he will not charge b in all periods. The reason is that this would imply ^JT_ 1

= n > n and it is easy to show that the seller would then prefer to

discriminate in the last two periods by offering r , = b (1-s) + s b followed

by r„ = b if the buyer buys in period (T-l) and r_ = b if she doesn't.

Since r rises above b sometime during the last few periods, it follows

that a low valuation buyer will buy early on, but not in some later periods.

Hence we have:

Proposition 4 : In the noncommitment rental model with a > w and T > 2, the

finite horizon equilibrium dynamics are not Coasian.
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5. Commitment and Renegotiation

5a. Introduction :

The previous two sections highlighted the following features:

- The commitment model is characterized by the absence of price or allocation

dynamics. It does not distinguish between the sale and the rental cases.

- Selling under non-commitment yields downward adjustments in the price. The

seller ends up learning the buyer's information in finite time. The dynamics

are Coasian: (i) from the technology, consumption today implies consumption

tomorrow, (ii) the low valuation buyer has no surplus from the relationship,

(iii) the high valuation buyer's surplus is equal to (b - b) times the present

discounted consumption of the low valuation buyer. Renting under non-

commitment yields different dynamics. The seller does not learn the buyer's

information perfectly before the last period (never learns it if the horizon

is infinite) . The dynamics satisfy (ii) and (iii) . But they do not generally

satisfy (i) if the horizon is finite and therefore are not Coasian. We

explained this in terms of the difficulty for the seller to make an offer that

is attractive to the high valuation buyer, but not to the low valuation one.

The scope for discrimination is even more limited than in the sale case.

When the seller sells or rents to a single buyer, the assumption of non-

commitment is strong (unless the parameters of trade are a priori ill-defined

or too complex to put into a long-term contract) . The seller and the buyer

might sign a long-term contract. In the case of a durable good, the contract

might for instance specify that the buyer will have the right to buy at date 3

at some fixed price p . In the case of a non-durable good, the contract might

specify future trades between the parties and their prices. For instance it

could specify that trade (or employment) today implies trade (or employment)

tomorrow (durable good dynamics)

.
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As we noted in the introduction, some long-term contracts are not

"credible" because the parties will agree to renegotiate them in the future.

In the rest of the paper, we will assume that the buyer and seller can write a

(possibly complete) contract, which is enforced if either of the parties wants

it to be. However, if, at any point of time, both parties agree to replace

the old contract by a new one (or by no contract) , they are free to do so.

We will assume that the seller offers the original contract as well as

renegotiated ones. (So we continue to give all the bargaining power to the

seller.) We will find that the possibility of signing long-term contracts

does not have any force in the durable good model, i.e. the equilibrium is

unchanged. However, long-term contracts do have a significant role in the

rental model. In fact the rental equilibrium with long-term contracts turns

out to be the same as the durable good equilibrium with or without long-term

contracts.

5b. The renegotiation game :

Before defining the renegotiation game, we need the following

definitions:

b s
A contract or mechanism C is a sequence of message spaces M , K for the

buyer and the seller; a sequence of probabilities that the buyer consumes the

t t
good at date t: x (m") , where x depends on all messages up to time t: m =

t t

b s
(m. , .., m,) and m = (m , m ) , and x, belongs to [0, 1]; and a transfer from

1 t T T T t

T
the buyer to the seller p(m ), where p denotes the present discounted value of

t T
the transfer at date 1. So a contract takes the form C = fx (m ), p(m )).

A truncated contract or mechanism C from date t on, given previous messages

m , is the contract or mechanism C. = {x. , (m , m. , ..,m., ), p(m ,

t t+T t t+T

m
t
,..,m ) , t=0, ...,T-t)

.
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Note that we allow the seller to send messages after the contract is

signed. The various messages at date t can be simultaneous or sequential (as

usual, a date t equilibrium with sequential messages is also an equilibrium

for the date t normal form)

.

Suppose that renegotiation is impossible. Then one can define contract

allocations that are obtained for some perfect Bayesian equilibrium of the

corresponding message game. And one can also associate posterior

t-1
probabilities u (m ) that go together with the messages.

Note that there is no loss of generality in assuming that the parties

t T
are always bound by a contract. The null-contract lx (m ) = 0, p(m ) = 0] for

any message space is indeed the legal status-quo. There is no loss of

generality either in assuming that the seller offers a contract accepted by

the buyer. For any current truncated contract C and any new truncated

contract C that the seller wants to offer, the seller can offer the larger

contract in which the buyer has the choice between C and C just after

signing it.

We now define the renegotiation game between the buyer and the seller.

At date t, the parties are bound by a previous (truncated) contract C (where

C is the null contract). The seller offers a new (truncated) contract C ,

~ ~ ~t-T ~ ~T
with messages m. , £ X.

,
and allocations x,_ , (m ) and p(m ), for all t = 0,

c—T I+T t+T

.. , T-t. If the buyer accepts, the previous contract becomes obsolete and

the new contract is in force. If she rejects the contract, the previous

contract is still valid (at least until the date (t+1) renegotiation) . Date t

renegotiation occurs before date t messages. The strategy space for the

seller includes not only messages, but also contract proposals; similarly the

buyer's strategy space includes contract acceptance or refusal at each period.

We denote by u the seller's beliefs about the buyer's valuation at the
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beginning of date t (before renegotiating) . We will require strategies and

beliefs to form a perfect Bayesian equilibrium.

Next we define the set of renegotiation-proof contracts by backward

induction. Suppose that at date t < T, the seller has beliefs u and the

incumbent contract is C . Consider a continuation equilibrium [m , .., m )

from date t on for contract C , assuming that C will never be renegotiated .

That is, a continuation equilibrium is a perfect Bayesian equilibrium for the

(truncated) game defined by C . This continuation equilibrium in particular,

yields beliefs ju.
,

. (m ) at date t+1. We will say that C,., associated with
t+1 t

the continuation equilibrium, is renegotiation proof at date t for beliefs ju

if (i) for all equilibrium beliefs ju (m ) at date t+1, the truncation C .

of C (associated with the truncated continuation equilibrium from t+1 on) is

renegotiation proof at t+1, and (ii) there does not exist C and an associated

continuation equilibrium {m , .., ml that both types of buyer weakly prefer

to C and (m , .., m ), which yields a strictly higher expected profit to the

seller and such that for all beliefs W .. (m ) at date t+1, the truncation

C of C (associated with the new continuation equilibrium) is

renegotiation-proof at date t+1. (As noted earlier, assuming that the

contract is accepted by both types of buyer involves no loss of generality.)

Renegotiation-proofness of C^ at date t given beliefs ii t means that the

seller's offering contract C = C is (part of) an equilibrium behavior. Note

that our definition allows the seller to "pick" among equilibria if he

deviates and offers C. That is, we do not want renegotiation proofness to

depend on the particular choice of an equilibrium.

We can now enunciate the renegotiation-proofness principle : For the

sake of the analysis one can restrict contract proposals to belong to the

class of renegotiation-proof contracts. For consider an equilibrium of the

full game with both contract proposals (together with acceptances or refusals)



21

and messages; one can always design an alternative game with bigger message

spaces, but no renegotiation. It suffices to include the contract proposal in

the seller's message and the contract acceptance or refusal in the buyer's

message. Clearly the corresponding contract, which leads to the same

allocation (allocations, if there are multiple equilibria) , is renegotiation-

proof. Furthermore one can always ignore the seller's message at date t. As

is well-known, any equilibrium of the message game at date t is also an

equilibrium of a game in which both parties announce simultaneously; and the

seller's message can be subsumed into the allocation (so that for instance a

mixed strategy by the seller amounts to a random allocation for a given

message by the buyer)

.

An equilibrium allocation of the renegotiation game is thus identical to

an equilibrium allocation in some renegotiation-proof contract C. We now look

at renegotiation-proof contracts in the sale and rental models.

6) Renegotiation in the Rental Model

6a. Branching processes: some definitions .

Because of the possibility of renegotiation, the exact amount of

information revealed by a buyer at a given date matters: the seller cannot

commit not to use the information to offer a mutually advantageous contract in

the future. In particular the revelation principle in general does not hold.

For instance suppose that the buyer announces her true type at date 1.

Renegotiation at date 2 takes place under symmetric information, and therefore

only an efficient contract from that date on (x, = .. = x_ = 1) is

renegotiation-proof. Hence the seller loses almost any ability to

discriminate between the two types.

In the following, we will demonstrate the crucial role played by
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branching processes .

• A deterministic branching process is a contract C. in which the seller's

message space at each date is empty, the buyer's message at date t is a choice

between (does not consume at t) and 1 (consumes). In other words, the buyer

decides sequentially on whether to consume. The total transfer p depends only

on the consumption path, but not on "payoff irrelevant" messages. An example

of a branching process is given in Figure 1:

pltej)

p(br
2

)

P(br
3

)

P(br
4

)

Date 1 Date 2 Date 3

Figure 1

The branching process depicted in Figure 1 has four branches (where a

branch starts at date 1). The transfer corresponding to branch br. is p(br.).

So, for instance, if the buyer chooses not to consume at date 1, then chooses

not to consume at date 2 either and finally consumes at date 3, the transfer

to the seller is p(br_). Note that in a branching process the buyer does not

commit to future consumptions in advance.

Remark 6 . In Figure 1, all potential branches could have been represented (it

suffices to assign a very high transfer to other branches so as to discourage



23

the buyer from selecting them) . Our convention will be to depict only

relevant branches, i.e., those which are chosen with positive probability on

the equilibrium path.

• A branching process is a contract C. in which the seller's message space

at each date is empty, and the buyer's message at date t is selected from a

set of (distinct) probabilities {x . J ._- in [0,1]. A stochastic branching

process is a non-deterministic one. In short, branching processes generalize

deterministic ones, in which the buyer decides sequentially on the probability

to consume at each date. A branch is a sequence of t probabilities. The

total transfer p depends only on the sequence of selected probabilities

(because of risk neutrality, it will become clear that there is no need to

consider transfers that depend also on the realizations of the random

consumptions)

.

• A durable-good branching process is a deterministic branching process

such that (i) on all branches, x. = 1 implies x.
,
=1 for t in 11, .., T-t}.

t t+T

The branching process depicted in Figure 1 is not a durable-good one because

of the first branch. Figure 2 exhibits a durable-good process:

p(br,)

P(br
2

)

P(br
3
)

Date 1 Date 2 Date 3

Figure 2
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• A Coasian branching process (CBP) is a durable-good one that satisfies

(ii) Let I denote the set of branches i that are optimal for the low

valuation buyer (i.e., yield U(b)). Then

U(b) = maxf

(

t|1
«
t ~ 1

x (br^)) b - p(br.) 1= maxl (2 s
t 1

x (br.)) (b - b) )+U(b)
i

'

'' iel

(The high-valuation buyer's surplus does not strictly exceed the highest

payoff that she would get by following a branch that is optimal for the low-

valuation buyer.) And

(iii) x = 1 is an available option (or the only available one) at each

date t.

In words, (ii) says that the rent accruing from having the high

valuation rather than the low one is minimal. That is, it is equal to the

valuation differential (b - b) times the highest expected present discounted

consumption by the low valuation buyer (we know that this number is a lower

bound on the high valuation buyer's rent, because she can always mimic the low

valuation buyer. So there is no extra rent )

.

Finally, a Generalized Coasian Branching Process (GCBP) from date t on is a

(tight) Coasian branching process, except that at date t, the buyer is offered

the choice between 1 and a probability y in [0,1] of buying (instead of a

choice between 1 and 0) .

A GCBP is depicted in Figure 3.
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Figure 3

The following simple lemma applies to all branching processes:

Lemma 2 ("Incentive Compatibility", "Monotonicity") . Let i and j denote two

branches of a branching process. Suppose that i is optimal for buyer b

(belongs to I) and j is optimal for buyer b (belongs to I) . Then

T t-1 ., . T t-1 ,, ,

til
5 x

t
(br

i
} * til

S x
t
{b?

j
K

Proof : Write the two incentive constraints (buyer b prefers branch i to

branch j and buyer b prefers branch j to branch i) and add them up. Q.E.D.

Note that in a durable-good branching process , discounted consumptions

X.(br.) s £ 5 x (br.) are ordered by their terminal point (discounted

consumption decreases from top to bottom in Figure 2). Lemma 2 implies that,

because all the branches represented in a tree are by definition relevant

(optimal for some type of buyer) , the upper branches are followed by the high-
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valuation buyer and the lower branches by the low-valuation buyer, with at

most one common intermediate branch. See remark 7 below for a further

characterization in the case of a renegotiation-proof durable good branching

process.

Let us define the length of a durable-good branching process to be the

highest number of zeros in a branch. For instance the durable-good branching

process depicted in Figure 2 has length 2. This means that the consumption

pattern is uniformly efficient from date 3 on. Also we define the length of a

Generalized Coasian branching process in the same way except that we include

the y component as part of the length (even if y=l) . So the length of the

GCBP in Figure 3 is 3.

Remark 7 : Note that a renegotiation-proof durable-good branching process has

the properties that every branch but the last is followed only by a b buyer

and that the last is followed only by a b buyer. To demonstrate the first

property, observe that if this were not so, Lemma 2 implies that the

penultimate branch must be followed by a b buyer; however, when date k arrives

(so that there are two branches left) , the buyer and seller will agree on a

new contract where each buyer type follows branch k (see, e.g., Figure 2).

That is, at date k, the seller could offer the penultimate (efficient) branch

to both types instead of discriminating for one more period. Both types'

utilities would remain unchanged; and the low type's consumption is increased

while the high type's consumption is unchanged. This increase in efficiency

raises the seller's profit from date k on, contradicting renegotiation-

proofness of the original contract. The second property stems from the fact

that if buyer b follows the last branch, having him follow the penultimate

branch at date k with (conditional) probability one instead would increase the

seller's profit without affecting the buyer's utility (alternatively, the

seller could offer a new contract at date k that lowers the price associated
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with the penultimate branch by e; this would break the high valuation buyer's

indifference between the last two branches, without affecting the low

valuation buyer)

.

Remark 8 : From now on, we will abridge "branching process" by using "BP".

6b. A roadmap.

In the next subsection, we show that when we allow for general contracts

and renegotiation, (1) the equilibrium is generically unique, (2) its outcome

is a Coasian BP and coincides with the noncommitment equilibrium of the

durable good model described in Proposition 2. To prove this, we will

demonstrate (not quite in this order) that:

i) there is no need for the buyer to send payoff-irrelevant messages (like

announcing the weather ). Furthermore the buyer does not announce her

future consumption, only her current one. That is, the buyer's message at

date t is in a sense minimal; it is just sufficient to determine the date-t

allocation. The optimal path is thus a BP.

As a benchmark, it is useful to recall that, under full commitment (that

is, when renegotiation is prohibited) , the optimal incentive scheme for the

seller can be implemented through a single announcement of the buyer's type at

date 1 (revelation principle) ; equivalently, it can be implemented through a

choice of a whole consumption path (branch) at date 1 (see, e.g., Hammond

(1979) and Guesnerie (1981)). Here, because of the possibility of

renegotiation, only current consumption should be announced at each date, as

we will show. That payoff-irrelevant messages (beyond current consumption)

are useless is not nearly as obvious as in the commitment case. In

particular, for a given level of date -t consumption chosen by the buyer, the

seller might want to split the "populations" of buyers who choose this level

of consumption into two subpopulations by using payoff-irrelevant messages on
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top of the choice of consumption in order to relax the renegotiation-proof ness

constraint at date t+1.

ii) stochastic mechanisms are suboptimal. This property, linked to risk

o

neutrality, is well-known under commitment. As in the case of payoff-

irrelevant messages, it is much less trivial under renegotiation, because, for

instance, using stochastic BP increases the number of branches, which might

give more leeway concerning posterior beliefs and help relax the

renegotiation-proofness constraint at future dates.

iii) branching processes that are not tight are not renegotiation-proof.

This follows directly from the fact that starting from a branching process

which gives the high valuation buyer extra rent, the seller can increase the

consumption of the low valuation buyer and raise the price she pays without

disturbing the incentive compatibility constraint for the high valuation

buyer. The resulting new process will be acceptable to both buyer types and

will increase the seller's profit, which implies that the original process was

not renegotiation-proof.

iv) Any optimal renegotiation-proof branching processes which guarantees both

types of buyer particular utility levels (U for the high valuation buyer, U

for the low valuation buyer) is equivalent to a Generalized Coasian branching

process. We prove this by backward induction. To understand the intuition,

note that the seller's desire to price discriminate is best accomplished by

separating the two types and "frontloading" the inefficient consumption of the

low type, just as in the usual Coasian model. This suggests that an optimal

branching process should be a CBP. However, such a CBP may not provide the

high valuation buyer with the required U. In order to meet this constraint,

the low valuation buyer's consumption will be increased along the lines of

It stems from the bang-bang nature of the incentive problem.
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(iii) above. It turns out that the cheapest way for the seller to do this,

consistent with renegotiation-proofness being preserved in later periods , is

to increase the minimum probability of consumption at date 1 from zero to y.

(Putting this y later will make it more difficult to resist renegotiation.)

v) At date 1, U = U = and so the reason for including a non-zero y in the

first period disappears. That is, the optimal renegotiation-proof branching

process at date 1 is simply a Coasian branching process. (Note that while we

can ignore the U constraint at the first date, we cannot ignore it at later

dates since it is then a restriction imposed by the date 1 contract.)

6c. The main result

Theorem 1 : The outcome of the rental model with commitment and renegotiation

coincides with that of the durable good model without commitment.

Proof of Theorem 1 : The building block for Theorem 1 will be Proposition 5,

stated below. First, we derive two simple lemmas.
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Lemma 3 ; Let n. < n.. Then the only renegotiation-proof contract at date

t is the efficient one (CBP of length 0)

.

Proof of Lemma 3 : Let U and U denote the utilities in the renegotiation proof

contract at date t (where U and U do not include past consumption). Note

that, because a type can always mimic the other type's behavior from date t

T-t
on, and because each type's consumption lies between and 1 + .. + s ,

£ U - U £ (1 + .. + «
T t

) (b - b) .

Now consider the fictitious (commitment) program:

Max I
ju

t
(X*b - U*) + (l-w

t
) (X*b - U*) }

st

(IC) U* :> U* + X* (b - b)

(IR1) U* 2 U

The choice variables in this program are the new utilities U*, U* (again these

do not include past consumptions) and present discounted consumptions from

-* *
date t on, X and X. for the two types. As the reader will easily check, the

unique solution of this program for u < u is:

X* = X* = (1 + .. + £
T t

) , U* = U and U* = U + (1 + .. + 5
T t

) (b - b) .

Note that U* 2 U.

Note also that the maximand is the seller's profit, and that (IC) and

(IR1) are satisfied by the initial allocation {X, X, U, U! . If the initial

contract is not the solution to the program, the seller can offer the

efficient contract (X*, X*, U*, U*). He makes strictly more profit; the two
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types of buyer are willing to accept this contract (as U* 2 U and U* 2 U) ; and

the new contract is renegotiation-proof because it is efficient. This

contradicts renegotiation proofness of the original contract.

Q.E.D.

Lemma 4 : A GCBP of length 1 with first probability y < 1 starting at date t

is renegotiation-proof if and only if n 2 u~. Furthermore if jj 2

u. , the CBP of length 1 yields the highest profit among GCBP's of

length 1 (for a given utility for the low valuation buyer)

.

Proof of Lemma 4 : Let us check that a GCBP of length 1 with arbitrary first

probability y and current beliefs n is renegotiation proof if and only if the

beliefs u exceed ju . Note that the consumption of the b type is efficient.

So renegotiation (which, since it makes everyone better off, must strictly

increase efficiency and therefore consumption of at least one type) must

strictly increase the consumption of the low type. But we know that any

increase e of the consumption of the low type raises efficiency by £ b (1-u )

and raises rent by e(b - b)n . Hence the GCBP of length 1 is renegotiation-

proof if and only if (b - b)y 2 b (1-ju.) or ju 2 y . The same argument shows

that for ju 2 u , and given U, the CBP yields the highest profit to the seller

among GCBP's of length 1. Q.E.D.

We now prove the following proposition:

Proposition 5 : (1) For a given date t and posterior beliefs jj , consider a

renegotiation-proof contract (with an associated perfect Bayesian

equilibrium) . Let U, U and ir denote the utilities and profit from t on (that

is, U and U do not include consumption prior to t; but they include payments,

which, wlog, can be made at the end). Then there exists a renegotiation-proof

GCBP starting at date t that yields utilities U and U to the two types of
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buyer and profit w to the seller.

(2) A Coasian branching process of length k starting at date t with

posterior beliefs u is renegotiation-proof if and only if n 2 n, (where w
t t K K

is as in Proposition 2)

.

Proof : As mentioned above, we proceed by backward induction. Our induction

hypothesis are items 1) and 2) of the proposition. Without loss of

generality, we ignore the seller's messages and random contracts (but we allow

mixed strategies for the buyer) . Because of risk neutrality, the same proof

goes trivially through by taking expectations in the case of random contracts.

In this proof we will repeatedly replace the current contract by another

contract. In these substitutions we will always keep the utility of the b

type constant; furthermore all the contracts will be tight. These two

properties imply that the b type's change in utility from one contract to

another is equal to the change in the b type's consumption times (b - b)

.

This means that to know whether the b type accepts the new contract (assuming

the new contract is renegotiation-proof itself) , it suffices to look at the

change in the b type's consumption.

First consider date T . Suppose that the current renegotiation-proof

contract yields utility U and U to the two types, where the utilities are

taken net of past consumption (note that by incentive compatibility,

s U - U sb - b).

Because T is the last-date, the revelation principle holds at that date.

The renegotiation-proof allocation must then be a solution to:

Max i^
T

(b x* - U*) + (1 - u ) (b x* - U*)

)

{x*, x*, U*, U*!

st
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(*) (IC) U* - U* 2 x* (b - b)

(iri) u* 2 y

(IR2) U* 2 U

The maximand denotes the expected profit at date T. The probabilities

of buying at date T are x and x for the two types. And the two types'

utilities are U* and U*. As is now usual, we write expected profit as the

difference between expected aggregate welfare/efficiency (u bx* + (1-JJ )b x*)

and expected buyer utility (u U* + (1-jj ) U*) . The first (incentive

compatibility) constraint expresses the fact that the high type can mimic the

low type's behavior. There is actually another incentive compatibility

constraint, but this constraint turns out to be non-binding at the optimum.

(IRI) and (IR2) express the fact that the two types will renegotiate only if

they get at least as much utility as in the original contract.

It is clear that the solution of the program has x* = 1, and that (IC)

is binding. These two facts imply that the allocation is equivalent to a

GCBP. Hence induction hypothesis (1) is satisfied at date T.

To establish induction hypothesis (2) at date T, suppose that we are

given a Coasian branching process at date T of length k. Clearly k = or 1

(if k = 0, x = x = 1, while if k = 1, x = 1, x = 0) . If k = 0, the allocation

is efficient and therefore obviously renegotiation proof. Kence, recalling

that jj

q
= 0, we may conclude that a date-T Coasian BP of length is

renegotiation-proof if and only if n 2 u
n

.

Suppose next that k = 1. Since a Coasian branching process is by

definition tight, U = U. Hence, a Coasian process of length 1 is

renegotiation-proof if and only if x = 1, x = 0, U* = U, U* = U = U is a

solution to the program (*) . But it is easy to check that x = 1, x = 0, U* =
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U, U* = = U is a solution to (*) if u 2 n (in fact it's a solution to the

program (*) deleting (IR2)), while it is not a solution if n < n (x = x = 1,

U* = U and U* = U + (b - b) gives the seller higher profit). Hence we may

conclude that a date-T Coasian BP of length 1 is renegotiation proof if and

only if »_ 2 v. . This confirms induction hypothesis (2) at date T.

Next suppose that the induction hypothesis (1) and (2) hold at date t+1.

Let us show that they hold at date t. Without loss of generality, let us take

t = 1. Consider a date 1 renegotiation-proof contract, with associated

utilities and profit U, U and ir.

Let us consider two messages m. and m„ that can be sent at date 1 by the

buyer. Let x. and x„ denote the associated probabilities of purchasing the

good at date 1. (Without risk of confusion, we ignore the time subscript for

messages and probabilities, which all refer to date 1.) Wlog, suppose that x.

2 x_. Let us also assume that both types are willing to send messages m. and

m_ (the case in which some message m. is optimal for only one type is actually

easier and will be handled later) .

From our induction hypothesis (1) , we can replace what happens following

message m. (i = 1,2) by a GCBP starting at date 2. Let y. denote the date 2

probability in the GCBP following message m. , and k. the length of the GCBP.
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Figure 4

First note that without loss of generality, X- can be taken equal to 1:

Assume that x.. < 1. Raise both x. and x« by (1-x.). Raise all prices by

(1-x. )b. The low type's utility is unchanged. The high type's utility

increases by (l-x.)b - (1-x. )b = (1-x. ) (b - b) . Efficiency increases by

u. (1-x )b + {1-u ) (l-x.)b. So profits increase by

uAl-xAb + {1-u. ) (1-x.}b - u (1-x ) (b - b) 2 because u 2 u (from Lemma

3) . The new allocation is still incentive compatible because payments have

been uniformly translated and the new allocation in each of the subtrees

starting in period 2 is renegotiation-proof for the same reason that the

original allocation is.

So, taking x. = 1, we consider two cases:
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Case 1: x„ < 1.

First we claim that y- = 0. In order to show this, we make use of the

following lemma, which is proved in the Appendix.

Lemma 5 . If for given t 2 2, w and U, a GCBP of length k > 1 with first

period probability y > is renegotiation proof, then any GCBP of the same

length but first probability y' < y is also renegotiation proof unless k = 2

and y = 1. Furthermore, it yields higher profit for the seller. [For a

renegotiation-proof GCBP of length 2 with y = 1, there exists a renegotiation-

proof GCBP of length 1 that yields the same utilities to the two types and the

same profit to the seller.]

Suppose that y„ > 0. Consider increasing x. by e and reducing y by e/s

(so that x„ + sy„ remains constant). The consumption of the low type

following message m„ is unchanged, while the consumption of the high type

increases by e for those who follow the top branch of the lower subtree and is

unchanged for the others. Thus increase the payment of this top branch of the

lower subtree by e b. This, together with the change in the consumption

pattern, leaves the high type indifferent between all branches. Again the two

types of buyer are left indifferent and profit is increased. The new

allocation is incentive compatible, and furthermore is renegotiation-proof

from date 2 from Lemma 5 (together with Lemma 4 if k. = 1) . So, in order for

the date 1 contract to be renegotiation proof, either y = or x = 1. The

case x = 1 is examined later.

Next note that for both types to be willing to send both messages and

from the tightness of the two GCBP's we have:
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V 1 V2
T-t V 1 V 2

T-t
(1) 1 + &Y

1
+ S +5 +, .. + fi = X- + 8 +5 + .. + S

This, together with 1 > x„, implies that k. > k_.

Let us show that the seller can offer a better contract that eliminates

all the branches of the upper subtree but the efficient one. We have got to

relocate the types of buyer that were following these branches.

The buyers of type b who previously followed branches 2,3, .., k. - k„

of the upper subtree are allocated to the efficient branch of the same upper

subtree (there are no such branches in Figure 5 below) . The types of buyer

who previously followed branches k. - k_ + 1, .., k. + 1 of the upper subtree

are allocated to the branches 1, . . , k„ + 1 of the lower subtree respectively.

Thus we fold part of the upper subtree onto the lower subtree:

Figure 5



38

This "displacement of populations" raises three questions:

1) Is the new configuration incentive compatible for the various types of

buyer?

2) Is the new configuration renegotiation-proof?

3) Does the new configuration yield a higher profit to the seller?

The answers to questions 1) and 3) are straightforward. Note first that

we are eliminating branches and leaving the others unchanged. Hence each type

has less choice, and therefore the allocation remains incentive compatible.

(Note also that the allocation for other messages is left unchanged, because

the utilities in the subset fm. , m„) of messages remain the same.) Second,

the utility of each type of buyer is unchanged, because announcing m. was an

optimal strategy for both. So, to show that the seller's profit is increased,

it suffices to show that efficiency increases.

Consider the types who previously followed branches k. - k, + j of the

upper subtree for j = .1, . . , k« + 1. Their present discounted consumption

increases by:

i i+1 T-l W j Wj+1
T-lU

2
+ s

3
+ s

3+l
+ .. + 8

1 i
}

- U + sy + 6
i A

+ s
L A

+ .. + s
1 1

!

= (6
J

+ .. + 5 ) (1 - S
± A

) 2 .

The efficiency of branches 2,3, .., k - k. of the upper subtree is trivially
JL A

increased (because the consumption of the types that followed these branches

is efficient)

.

Next let us show that the new lower subtree is renegotiation proof from

date 2 on (the new upper subtree is efficient from date 2 on and is therefore

renegotiation-proof). Notice that the Coasian process in the upper subtree
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starting at date k. - k_ + j + 1 (j = 1, .., k„ + 1) is folded onto a Coasian

u k
process in the lower subtree starting at date j + 1. Let Ji, , ,,. and W.* k -k

2
+j+l j+1

denote the posterior beliefs in the old contract at date k - k„ + j + 1 in

the upper subtree and date j + 1 in the lower subtree. From induction

hypothesis (2), and renegotiation-proof ness in the old contract, we have

w,
, .

. L . 2 ju, ,. and v . lA 2 u, ,.
1~ 2

3
2 -

1

-
1

2
2

Because the beliefs at date j + 1 in the new lower subtree (u . .) are

U R.
-

a convex combination of ju . and U. . , one has: u. . s u, . . ,

which, together with induction hypothesis (2) , means that the new lower

subtree is renegotiation proof from date (j+1) on (for j 2 1)

.

We conclude that there exists a GCBP which yields the same utility to

both types, a profit at least as big as the original one and which is

renegotiation proof from date 2 on.

Case 2: X- = 1

Ve consider two subcases.

Either y = y„ and then k
1

= k_: the two subtrees are identical.

Merging them (i.e. superimposing one onto the other) does not affect utilities

and profits. We then obtain a BP starting with both types consuming at date 1

and followed by a GCBP with first probability y = y„. Note that this is

equivalent to the following BP (in which no type of buyer takes the first

efficient branch)

:
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Figure 6

Note further that the Figure 6 GCBP with probability y- starting at date

2 is renegotiation proof. If it were not, the seller would offer a new

contract at date 2. Because the current contract at date 2 is renegotiation

proof from date 3 on, [this results from the convexity argument above and the

induction hypothesis. At date 3 the two Coasian B? are merged. For both,

beliefs at date 3 exceed u
v

. Hence, by convexity, the new beliefs also

1

exceed u, _,-], the new contract necessarily strictly increases the seller's

profit (and does not lower the utilities) . Thus the seller could offer a new

(renegotiation proof) contract at date 2 that makes him better off and the two

types at least as well off. But this would mean that the same contract, with

consumption 1 with certainty at date 1 would also upset the date 1 original

contract, which contradicts renegotiation proofness at date 1.
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If y. * y», we can assume wlog that y. > y». Because of (1) , we also

have k. > k„.

Suppose first that k. 2 3 or y. ( 1. We claim that the upper tree

starting at date 2 is not renegotiation-proof after all. To show this, note

that both types are indifferent between the two date 1 messages, which yields:

k
l

+1
T-l V 1

T-ll+sy.+s +..+5 =1+ sy» +6 + .. + 6

k k -1

Thus: y = y + 6 + . . + s

Following message m. , the seller could offer the contract corresponding to the

lower subtree. This would leave both types of buyers indifferent from the

last equation. Furthermore, by a now standard reasoning, efficiency is

increased and the new upper subtree is renegotiation proof from date 3 on.

Furthermore efficiency increases strictly. So the original upper subtree is

not renegotiation proof at date 2.

So let k.= 2 and y. = 1. Consider date 2 following message m
1

. The

upper subtree is a GCBP of length 2. Note that beliefs at date 3 exceed n

for this GCBP to be renegotiation proof. Replace this GCBP by the GCBP of

length 1 and first probability y (we know that y
?

+ 5 = y ) . This GCBP of

length 1 is identical (except possibly for the beliefs) to the one in the

lower subtree. So we can merge the two messages without affecting utilities

and profits. Last the new contract is renegotiation proof at date 2 from

Lemma 4. We ignore this trivial case which satisfies induction hypothesis

(1).

We thus conclude that for y. > y», either the original GCBP is not

renegotiation proof, or it can be replaced by a BP similar to Figure 6, which

yields the same profit and utilities and is renegotiation proof from date 2

on.
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Both subcases (y. = y. and y. > y„) yield a new BP that gives the same

utilities to the buyer, at least as much profit to the seller, is

renegotiation proof from date 2 on, and is depicted in Figure 6.

The BP depicted in Figure 6 is a GCBP if y» = 0. If y > 0,. define an

integer k by:

s
k+1

+ .. + s
T_1

< 1 + 5y
2

+ 6
2

+ 6
2

+ .. + s
T_1

and

1 4- XT,

2

k_+l k.+2 , ,

+1
_ ,

l+5y o +5 + 6 ^ + .. + 5 £ 1 + 5
K X

+ .. + S
l X

Such a k < k„ exists

since for k = k„, one has

k
2
+1

T-l V 1
T-ll+5y

2
+5 +..+6>l+6 + .. + 5

and for k =

k +1
2 T-l T-l

1 + Sy^ +5 +..+6 £ 1 + 6 + . . + 6

Let y be defined by:

v +1

(2) y + s
K,i

+ .. + s
1 l = 1 + sy„ + s * + .. + s

1 L

Li

V J-1
2

'

T- 1 k+1 T~l
(Note that 1 + ay +5 + .. + s ' > 5

k

+ .. + & , so that such a y

exists.)

Consider the GCBP with initial probability y (at date 1) and length k

and giving the same utility to the low type as the BP of Figure 6. From

equation (2) , the consumption of the low type is the same as in the BP

depicted in Figure 6. Hence the utility of the high type is also the same

(because both processes are tight) . We claim that efficiency, and thus
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profit, is increased:

Figure 7 represents the displacement of populations. The last branch's

efficiency is unchanged. The penultimate branch's efficiency is raised by:

v Y

(y + 6^ + .. + s
l L

) - (1 + sy
2

+ s
A

+ .. + s
l n = 6 - 5 2

using (2) and kiL. And similarly for the other branches. Last we must

prove that the new lower subtree is renegotiation proof from date 2 on.

Because it is. a Coasian process, and from the induction hypothesis, we must

show that jj 2 wv_i' where u are the date 2 beliefs in the GCBP. But in the

renegotiation proof subtree of Figure 6 at date k« - k + 2, one had
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u. _v+ y ^ ji. , . Because n^ = jj, _k+ «, the new lower subtree is renegotiation-

proof (the same reasoning applies to date k„ - k + 2 + j for j = l,..,k - 1).

So again we could find a GCBP that gives the same utilities to the buyer,

increases profit and is renegotiation proof from date 2 on.

Iterating this operation we are left with a unique GCBP (after

considering messages that are optimal for both types) , as well as messages

that are optimal for only one type of buyer. Suppose that message m is sent

by b only. Then, because of symmetric information at date 2, the contract is

efficient from date 2 on. Now suppose that m is optimal for b only, and let x

denote the first period probability of trading given m. We can take x = 1

wlog, because one can raise this probability by (1-x) and raise the payment on

this now totally efficient branch by (l-x)b. This raises profit and does not

affect utilities. Now this efficient branch can be merged with the efficient

branch of the GCBP without affecting utilities and profit. So m can be

deleted. Suppose last that m is optimal for buyer b only. Raise the

corresponding probability by x' s 1-x and increase payment by x 1 b until

message m becomes optimal for b (such a x' exists because x' = 1 - x yields

the efficient branch, which would violate the monotonicity lemma ) . Because m

is now optimal for both types, the previous analysis applies and message m can

be gotten rid of.

So far we have shown that induction hypothesis (1) holds at date 1. We

now show that induction hypothesis (2) also holds at date 1.

Consider a date 1 renegotiation-proof Coasian process of length k

starting at date 1. Because n 2 jj._ , n 2 ^.., .. , u. 2 u , the highest

profit that the seller can make is when u. = a, , , w, = u,_
7

, .. , n. = n .

This consists in having the high type accept as fast as is consistent with

renegotiation proofness later on (it raises efficiency without affecting
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utilities). And indeed, one must have w_ = al, ' ••' w
v

= wv Otherwise the

seller could offer the same Coasian BP with the perfect Bayesian equilibrium

that satisfies ju = ju , . ., u = ju (from the induction hypothesis (2), we

still have renegotiation proof ness from date 2 on) . So the seller gets

exactly this payoff under non-commitment in the durable good case when he

chooses to discriminate for t periods.

So consider the Coasian process of length k. Suppose that ju < n . For

the Coasian process to be renegotiation proof from date 2 on, one must have

u. 2 ju (because by monotonicity ju 2 jj and by the induction hypothesis

(2), JJ- 2 JJ y_i)- Now we know from Proposition 2 that, in the durable-good

non-commitment case, the seller prefers the Coasian process of length k - 1 to

that of length k (both are feasible if ju s ju < ju ) . Furthermore the b

buyer prefers the shorter Coasian process because the type b's consumption is

higher. So the Coasian process of length k - 1 would yield a strictly higher

profit, be accepted (and is renegotiation proof from date 2 on, using the

induction hypothesis (2)). We conclude that a. 2 ju .

Suppose that the Coasian process of length k is not renegotiation proof.

The seller then offers at date 1 a renegotiation proof contract that both

types of buyer accept. Let us assume that the low type's utility is unchanged

(the following reasoning holds a fortiori when it is increased) . From the

induction hypothesis (1) (which we just checked for date 1) , this new contract

can be taken to be a GCBP wlog.

Let us first show that this dominating GCBP has length at most k.

Suppose it has length k' > k and that the first probability is y in this GCBP.

We know that, because type b accepts the new contract:

y + s
k '

+ .. + 5
T X

2 s
k

+ .. + s
T-1
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Thus there exists y' in [0,1)

such that

k' T-l , J ,k . T-ly+6 + . . + s = y + s +..+s

Again replacing the GCBP of length k' with probability y by the

renegotiation-proof GCBP of length k < k' with probability y
1 leaves both

types of buyer indifferent, and raises efficiency, and thus profit, if either

k
1

2 3 or y < 1, contradicting renegotiation proofness of the GCBP of length

k' with probability y. If k' = 2 and y = 1, then this contract is equivalent

to the GCBP of length 1 and probability y' = 1 - 5 (which, from Lemma 4 and n

2 u. , is renegotiation-proof). But we know that the CBP of length 1 yields

higher profit than any GCBP of length 1 (because ju 2 u ). Hence a CBP of

length 1 cannot be renegotiated to yield a renegotiation proof GCBP of length

2. (And of course a CBP of length is renegotiation-proof.)

9
Next the dominating GCBP cannot be of length k from Lemma 5. Suppose

9
that it has length k" < k. Then, also from Lemma 5, we know that the

seller's new profit is bounded above by that in the Coasian process of length

k". But we know that the seller makes strictly less profit with the Coasian

process of length k' than with that of length k from Proposition 2.

Last, the Coasian process of length k (with u. 2 jj, ) is renegotiation

proof from date 2 on by the induction hypothesis (2) . Because no

renegotiation proof contract dominates it at date 1, it is thus renegotiation

proof at date 1. This concludes the proof of Proposition 5. Q.E.D.

9
We are here using only the part of Lemma 5 which states that a

renegotiation-proof GCBP cannot yield more profit than the CBP of the same
length. This does not require induction hypothesis (2) to be satisfied at

the first date.
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Theorem 1 is a trivial corollary of Proposition 5 and Lemma 5. We have

proved that, to obtain the best renegotiation proof contract for the seller at

date 1, we can restrict attention to Coasian branching processes of length k

such that n. 2 n. . The one that maximizes profit in this set has length k*

given by J^*,-, > v. 2. n. ^. Last U is optimally chosen equal to (choosing U

> raises utilities uniformly by U and lowers profit by U) .

It remains to prove existence. There are two ways of doing so. The

first transforms the game into a finite one by presuming a finite number of

messages, probabilities of trade and prices, and applies standard theorems of

existence of a perfect Bayesian Equilibrium (Selten (1975) or Kreps-Wilson

[1982]). The uniqueness proof is then the same as in the continuous case,

except that we obtain approximate results: when the size of the grid tends to

zero, the equilibrium allocation is arbitrarily close to the durable-good

Coasian allocation. While conceptually identical, the discrete framework is

less elegant than the continuous one. Another way of proving existence is to

stick to the continuous framework, but require that the seller only offer

contracts such that a continuation equilibrium exists. This completes the

proof of the theorem. Q.E.D.

10
This method requires a brief discussion. Roughly, the set of contracts
such that there exists an equilibrium is defined by backward induction.

The definition takes into account the possibility of renegotiation. Note
that the Coasian contract belongs to this class (from the uniqueness proof,

it cannot be profitably renegotiated, and therefore the continuation
equilibrium consists in the buyer following the Coase path and the seller's
never renegotiating)

.
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7) Renegotiation in the durable good model

Due to the technological constraint, the set of contracts that can be

offered by the seller in the durable good model is a subset of that in the

rental model. For instance, a BP is automatically a durable good one. The

following result is therefore not surprising.

Theorem 2 : The outcome of the durable good model under commitment and

renegotiation coincides with that of the same model without

commitment.

In short, commitment is useless in the durable good model because of the

possibility of renegotiation.

Proof of Theorem 2 : We do not give a complete proof. It is very similar to

that of Theorem 1. It is actually simpler because once somebody has consumed

the good in one period, they must consume it in all remaining periods.

Q.E.D.

8) Summary

The following tables summarize our findings for the nonanonymous buyer

case, and also what is known from prior work about the anonymous buyer case.

Define

f = seller's expected profit under commitment (ir = y a b) ,

•rr = seller's expected profit under non-commitment in the sale model

(tt
2

is the Coase profit)

t, = seller's expected profit under non-commitment in the rental model.

We know that ir > ir . We also know from Proposition 3 that, for T
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large, ir„ > ir,. It turns out that the latter property holds more generally.

Proposition 6 ; ir

2
;> ir .

The proof of Proposition 6 is available upon request from the authors. From

Theorem 1, it suffices to show that the equilibrium of the rental model yields

less profit under non-commitment than under commitment and renegotiation. The

proof of Proposition 6 relies on a backwards induction argument. The

induction hypothesis is that for any period t, posterior beliefs at that date,

and continuation equilibrium in the rental non-commitment model, there exists

a renegotiation-proof GCBP that yields the same utilities to both types of

buyer and at least as high a profit to the seller.

We will say that the buyer is nonanonymous if the seller can keep track

of her past consumption and price discriminate on the basis of this record.

The following tables yield the seller's expected profit in the various

circumstances.

Commitment Non-commitment

Sale *1 '2

Rental *1 *1

Table 1: Anonymous buyers
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Commitment Non-commitment Commitment and
Renegotiation

Sale *1 *2 *2

Rental *1 ff

3 "2

Table 2: Nonanonymous buyers

9. Contracts Written Before b is Known

So far we have assumed that the buyer knows his valuation b at the

initial contract date. We now briefly consider the case where there is

symmetric information at the initial contract date (0, say) and the buyer

learns b between this date and date 1 when trade first becomes possible. The

model then becomes a dynamic version of the hidden information principal-agent

model.

It is well known that if the buyer is risk neutral the first-best can

now be achieved by a long-term contract which obligates the buyer to rent the

good each period at a fixed total price of p (discounted from date 1) . (In

this section we will confine attention to the rental model; all our results

apply to the sale model too, however.) Such a contract achieves efficiency

without sacrificing any risk-sharing benefits (the buyer, who is risk neutral,

bears all the risk) . If we continue to give the seller all the bargaining

power, p will be such that the buyer's expected profit is zero:

{u
1

b + (1-ju )b) a = p.
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The situation becomes more interesting when the buyer is risk averse.

Now there is a tradeoff between efficiency and risk-sharing, and in the static

or one period case the optimal contract will generally involve some

inefficiency (see, e.g., Hart-Holmstrom (1987)). We now show how the results

of previous sections can be used to characterize the optimal contract in the

dynamic case.

T
t-1

We will represent the buyer's preferences by V( e s x b - p) ,

t=l

where V is an increasing, concave von Neumann-Morgenstern utility function.

For simplicity we suppose that the seller is risk neutral (the generalization

to seller risk aversion is straightforward) . As in previous sections we give

all the bargaining power to the seller. We assume that the buyer accepts a

contract at date as long as it gives her an expected utility greater than or

equal to V(0)

.

A long-term contract at date is defined in exactly the same way as in

Section 5. Now, however, we will restrict attention to contracts which are

deterministic branching processes . That is, the seller's message space at

each date is empty, and the buyer's message at date t is a choice of current

consumption level. (Furthermore, the total price paid by the buyer, p,

depends only on the consumption path and not on "payoff irrelevant" messages.)

Such a restriction was unimportant previously when both parties were risk

neutral. When the buyer is risk averse, however, random schemes can be used

to screen a high valuation buyer from a low valuation one. An analysis of

optimal stochastic schemes is unfortunately very complicated under risk

aversion, and we shall not attempt such an analysis here (but see Maskin

(1981) and Moore (1984))

.

Although we rule out stochastic consumption, we will keep things

"smooth" by supposing that the good is divisible. Hence in this section per
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period consumption can be any number x in [0,1], with corresponding benefits

bx.

It is useful to begin with the commitment solution. For this case it is

well known that an optimal contract consists of a choice of consumption levels

X (selected by a b buyer) and X (selected by a b buyer) , and a pair of utility

levels U, U for the two types, where X = a is efficient; X is such that a b

buyer is indifferent between choosing X and X, i.e.

U = X (b - b) + U;

and

X, U, U solve: Max ju (iH(b-i)-D) + (1-J^) (Xb-U)

s.t. ju V(U) + (l-w
1
)V(U)2V(0).

Furthermore, it is easy to see that this commitment solution corresponds to a

GCBP (where y now stands for the level, rather than the probability, of first

period consumption) . Simply find k such that

k
, , T-l „ . k-1

, ,
T-l

5 +...+5 £ X < 5 +...+5

Such a k exists since when k = the left-hand side exceeds X, and when k = T

the left-hand side falls short of X. Now let y satisfy

k T—

1

y+s +..+*= X .

The commitment solution is then equivalent to a GCBP of length k with minimum

first period consumption equal to y, where any b buyer chooses the efficient

branch for sure (i.e., consumes every period), and any b buyer chooses the
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most inefficient branch for sure.

We turn next to the case where, as in Sections 5-7, long-term contracts

are feasible, but the parties cannot commit not to renegotiate them. Let the

seller offer a contract C at date 0, which is accepted by the buyer. As in

our previous analysis, we can suppose without loss of generality that C is

renegotiation-proof. Now consider the position at date 1. At this stage, the

buyer knows her type and so the situation is as in Section 5 (specifically,

all the analysis of that section applies with y interpreted as a consumption

level rather than a probability). In particular, C must be renegotiation-

proof in the sense of that section. Therefore we may apply Proposition 5 to

conclude that C is a Generalized Coasian branching process . Let U(b) , U(b) be

the (maximized) utilities of a high valuation buyer and a low valuation buyer

respectively from following this process. Since the buyer accepts the

contract we know that u. V(U(b)) + (1-juJ V(U(b)) :> V(0).

We now consider how the length k of this process is determined. Suppose

that ^
k *+1

2 JJ , > JJj,^ i.e. k* periods of bargaining are optimal in the

durable good model without commitment (see Proposition 2) . Then we know from

Lemma 5 that no GCBP of length greater than k* is renegotiation-proof. Hence

k £ k*. Consider a GCBP of length k s k* with minimum first consumption level

y. Such a GCBP is illustrated in Figure 8 (in the Appendix) . The prices

corresponding to branches i = 1, ..., k + 1 are given by:

P
1

= A^b " U(b),

p
1

= (y + s
1-1

+ ... + 5
T_1

)b - U(b), i = 2, ..., k,

p
k+1

= (y + s
k

+ ... + 5
T_1

)b - U(b).

Let u denote the probability that the buyer follows branch i (i=l,..,k+l)

It follows from renegotiation-proofness from date 2 onwards, profit
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maximization by the seller and Bayes rule that a = (u. - w, , ) / (1 - w, ,)

,

(;u - jj - ju -
. . - u

1
) I (1 - ju - ju - .. - ji

1
) = jui. , for i=2, .., k, and

1 K 1

k+1
n = 1 - jli (where w,_. is as in Proposition 2). Therefore the seller's

expected profit is given by

k

(3) e ;a

x
p
1

+ (1 - u ) p
k+1

.

i=l

An optimal date contract is one that maximizes this last expression over all

GCBP ' s which are renegotiation-proof from date 1 onwards, subject to the

constraint ju V(U(b)) + (1-ju ) V(U(b)) 2 V(0).

The trade-offs facing the seller are as follows. On the one hand, a

reduction in k or an increase in y raises efficiency and hence total expected

surplus. On the other hand, because consumption of a b buyer increases, so

does U(b) - U(b) = X(b - b) , i.e. the buyer is exposed to more uncertainty.

An optimal contract balances these two effects. Of course, if the buyer is

risk neutral, the second effect is unimportant, and so k = is optimal under

these conditions (it is optimal to have no inefficiency at all) . At the other

extreme, if the buyer is infinitely risk averse, U(b) = 0, which means that

(3) coincides with the formula for seller profits in the durable-good model

without commitment. Hence Theorem 1 implies that k = k* and y = are optimal

in this case (recall that in a Coasian path, the seller can always shorten the

process, which implies ir(k) £ w(k*) for k <: k*) . For levels of buyer risk

aversion between these extremes, k will lie between and k*.

We may summarize the above results as follows.

Theorem 3 : Suppose the parties can sign a long-term contract before b is

known to the buyer, and the good is divisible. Then an optimal
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(deterministic) contract is a Generalized Coasian branching process of length

k, where £ k s k*. Here k*, which satisfies w, 2 n > »,
it

, gives the

length of bargaining in the corresponding durable-good model without

commitment. In addition: (a) k = if the buyer is risk neutral; (b) if V(I)

= -e~
Xl

, k = k* and y = for sufficiently large values of x.

Actually so far we've only established that k = k* and y = in the

limit x = ». But the stronger result that k = k* and y = for large values

of x follows from the argument in the proof of Lemma 5. (Since (k,y) ->

(k*,0) as x -> », k = k* and y < 1 for large x. Suppose y > 0. The proof of

Lemma 5 shows that u b > b since otherwise increasing y and reducing U(b)

slightly would yield a strictly superior contract at date 0. It follows that

a reduction of y to zero increases seller profit by (w b - b) y > and

decreases U(b) by y(b - b) . Increase U(b) by ey where £ is small. Then for

sufficiently large x, the change from the initial contract with y > to a new

contract with y = 0, U = U(b) - y(b - b) and U = U(b) + ey can easily be seen

to be a Pareto improvement at date 0. Contradiction.)

It is interesting to contrast our results with those of Dewatripont

(1985). Dewatripont 's model, like that of this section, deals with a

situation where the initial contract is written before the buyer knows her

valuation. Dewatripont in fact allows for a more general specification than

ours in that the quantity traded is a continuous variable and the buyer's

valuation can take on more than two values. However, Dewatripont analyzes

renegotiation in an axiomatic way rather than as a formal game. Moreover, he

obtains different results: for our model he finds that, depending on buyer

risk aversion, the optimal contract is a GCBP of length zero or one.

Since Dewatripont 's approach is axiomatic, it is difficult to provide

detailed comparisons with ours. Naturally, we do not feel that Dewatripont '

s
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characterization of renegotiation corresponds to the case where the seller

makes the offers since our results suggest that longer GCBP's are feasible in

this case. However, Dewatripont 's treatment of renegotiation may apply to the

case where the buyer makes the offers. In particular, suppose the date

contract specifies a GCBP of length k 2 2. Then if the buyer finds that she

has valuation b at date 1, she can propose a new contract in which she

consumes one unit at every date for a price slightly below p (this makes her

better off) . This is acceptable to the seller since in the original contract

a high valuation buyer with positive probability follows branches 2, , . , , k

and pays less than p . Hence with the buyer making the offers, only GCBP's of

length k s 1 are "renegotiation proof" — which is precisely Dewatripont '

s

result. The proof of this, which uses the Cho-Kreps (1987) refinement of

perfect Bayesian equilibrium, is available upon request from the authors.

These ideas are still quite tentative, and more work needs to be done on

the relationship between Dewatripont ' s approach and ours. At this stage,

however, it Ic-cks as if the result- - - this ar~-=. a « in asay others involving

asymmetric information, will be sensitive to whether it is the seller or the

buyer who proposes new contracts.
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APPENDIX

Proof of Proposition 2 : Let n denote the seller's posterior beliefs at date

t. Suppose that t = T (we are in the last period). The seller's optimal

price is obviously either b or b. His optimal strategy then depends on

whether u u where n s b/b.

Next consider t = T - 1. The seller can sell for sure at price b a =

b(l+s) . Or he can try to price discriminate. If the price at t induces

posterior beliefs jj < v., the buyer -expects price b in the last period. The

high valuation buyer accepts if and only if b a - p 2 i(b - b) or p , £

sb + b = sp + b. Clearly the best such price for the seller is sb + b, which

yields profit ju (sb + b) + (1-ju ) sb = n , b + fib. On the other hand,

suppose that the seller charges a price between sp + b and bA ; the high

valuation buyer must then reject the offer with some probability. If the last

period beliefs are below ju
, p^ = b and the high valuation buyer should reject

the offer with probability 1 because b(l+«) - p . < s(b - b) . If they are

above u , p = b and the high valuation buyer should accept the offer with

probability 1. In both cases, we obtain a contradiction, and therefore a =

ii
1

. This means that the acceptance probability is independent of the price

charged at (T-l) (in this price range) . So the seller is best off charging b

a in this range. (For more detail on the two-period model, see Fudenberg-

Tirole [1983].)

Now the cut-off belief jj such that the seller is indifferent between

charging b a and sb + b is given by:

b(l+s) = w
T_ 1

b + sb < = > b = ^
T_ x

b <=> ^
T _ 1

= is y

Let us derive the other cut-off belief *"'„.,, such that the seller is
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indifferent between charging b + «b and charging b (1+6) . If he charges the

latter price, the higher valuation buyer accepts with probability x such that

\ = W
T-1

(1 "x)/(w
T _ 1

< 1_x )
+ (1~JJ

T_ 1
) ) - So JJ'

T_ 1
is given by:

u ' - u 1 - tt'
T-l 1 - T-l

(
_i_i_ i) b (1+6) + (

i_±)
fib = Ai' b + 5b ,

1 - li

1
1 - »

1

where use is made of the fact that, if the seller charges b (1+s) at (T-l),

posterior beliefs at T are w and the seller is indifferent between charging b

and b.

Now it is easy to see that W . = v* where n is such that for t < T-l,

the seller is indifferent between "going to time (t+2)" and "going to time

(t+1)" ("going to (t+2)" means that he will charge price bA at t+2). This

is because n^ is defined by:

H — U 1 - JLl

(--
=-) (b + sb + s

2
b) + 5 ( z-) b(l + 5)

1 - Ai 1 - n
1

= »
2

(b + b (6+6
2
)) + 5(1 - n

2
) b (1 + 5) ,

or

b [(1+s) {n
2

- «
1

)
- ja (1 - ujl = b s (w

2
- uj

This yields i*

2
= J^,,.

The rest of the nroof for t < T-l is similar.

Proof of Proposition 3 : First it is trivial to show by backward induction

from the horizon T that the seller never makes an offer under b. So b is
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accepted by the low valuation buyer; it is also accepted by the high valuation

buyer who would lose some current surplus and reveal her type (and therefore

have a zero surplus in the future) , were she to reject the offer. Hence the

T-l
seller can guarantee himself b a = b (1 + s + . . + s ) by always charging

Second suppose that the seller offers a price r. > b in the first

period, that is accepted with some probability by the high valuation buyer (if

it is not accepted, the seller might as well charge b) . It must be the case

that:

b - v
1

2 s X
2

(b) (b - b),

T t-2
where X„ (b) = |„ 5 x (b) is the expected present discounted consumption

of the low valuation buyer from date 2 on given that r, has been rejected.

Using the fact that r. > b, we get s X
?

(b) s 1.

Third we use Lemma 1 in the text. We know that posterior beliefs never

fall under ju before time (T-l) . Hence if T is large, there exists E (with

lim £ = 0) such that the profit from offering r. in the first period is

bounded above by:

1 - jU JU - JU

s X
2

(b ) b [i - u. + I. { z=)] + b a (-- --) + e.

1 - \ . 1 - \
The first term in this expression comes from the fact that a fraction

-
1 "

"l
exceeding a ( — ) of high valuation buyers will not accept any offer

other than b before T-l and therefore yield the same profit (up to e) to the

seller as the low valuation buyer. The second term is an upper bound on what

the seller can get from the high valuation buyers who reveal before T-l.

Now suppose that r. is optimal for the seller. We get:
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1 - U U - u
1 - 1 1

b a s ( -=) b + b a (-- -) + e .

Using the facts that u. 2 ji , and that a ~ 1 / (1 - s) for T sufficiently

large, we obtain

n - ii

s b / b £ -±~--i + e> (with lim £' =0).
1 — H T~>«

We conclude that, there exists T. and n > ju such that for all T 2 T
n

and w

£ jj„, the seller charges b in the first period.

The idea of the rest of the proof is to iterate this reasoning to show

that above jj„, the seller also charges b if the horizon is sufficiently long.

(The only thing we have really got to check is that the "increments in

beliefs" (ju, - u, , , where u, = u.) do not become so small that lim ju < 1.)
k k-1 1 1 K-7» k

Fix £ small and positive; and consider a multiple of T_, K T-, such that

(K— 1) T -
s b £ e (everything that happens after (K-1) T is "negligible"). Now,

from the previous result, the seller charges b until at least (K-1)T
Q

if

beliefs are under u . Hence beliefs cannot fall under jj„ until at least (K-

l)T n . Suppose that the seller offers r, > b at date 1 and that this offer is
i -

accepted with positive probability. Again we get 5 X„ (b) £ 1. And

similarly:

1 - u
b a s b s X

2
(b) (1 - ji + I ( -))

1 " \

M
l

" n
2

+ b A ("- -) + £ ,

1 " Z
2
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so

u - u
1 2

6 b / b a + e'

1 " *2

with lim e' = 0.

KT
Q
->-

Thus there exists T. and ju > ju such that for T 2 T. and w. s ju the

seller charges b in the first period. (Note that there exists a > such that

one can choose w, 2 a + (1-a) n . Hence, when one iterates this reasoning,

one necessarily has lim u. = 1.)

We thus conclude that whatever the beliefs the seller charges b in the

first period for a sufficiently large horizon. This, combined with the fact

that beliefs ju cannot increase with t, implies that the finite horizon

equilibrium converges to the infinite horizon non-discriminatory equilibrium.

Q.E.D.

Proof of Lemma 5 : We establish the second part first: that is, we show that

if we replace y by in the renegotiation proof GCBP starting at date t in

Figure 5, the seller's profit rises.
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y

f

r

?**./.*-*

Ficrure

In Figure 8, u. is the number of buyers following branch i = 1, ..., k+1

1 k k+1
(where jj +..+ju = jj , ^ ' = (l-w

1
)). When we reduce y to zero (the same

reasoning will. hold more generally when y is reduced to y' < y, by linearity)

we keep these numbers the same. Note that this preserves renegotiation

proofness from date 2 onwards.

The reduction in y reduces the high valuation buyer's rent by y(b - b)

.

It also reduces efficiency by yb for each high valuation buyer except those

following the first branch. Finally it reduces efficiency by yb for low

valuation buyers. Hence the change in the seller's profit is given by:

(4) u
1

[y(b - b)] + (u
2

+ . + u) (y(b - b) -yb) (1-JJ )yb = (w b - b)y.

Suppose first that ju b < b. Then if y < 1 it follows from the



63

expression in (4) that an increase in y raises the seller's profit.

Furthermore since the consumption of a b buyer increases, U rises. It follows

that a contract with y raised would be accepted by both types of buyers and is

preferred by the seller, which contradicts renegotiation proofness of the

original Figure 8 contract. Therefore in the case u b < b, we must have

y = 1.

But now consider replacing the Figure 8 contract (with y = 1) by the

following which is of length (k-1)

.

Fiaure 9

That is, we combine the first two branches. Note that this preserves

renegotiation proofness from date 2 onwards.

The consumption of a b buyer is given by
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k
_,

k+1 , T-ly'+5 +s +..+5

in the new contract as opposed to

k+1 J T-l
1 + 5 + . . + 6

in the old. Hence if we choose y' + s' = 1, we keep this consumption, and

hence U, constant. However overall efficiency rises since the consumption of

b buyers following branch i, i = 3, .., k, in the old contract increases from

i ,
i_1 _ T_1 i < ,

i_ 2
_, ,

T-l . , i-2 k _. .1+6 +..+6 toy+s +..+5 , a net gain of s - 5 . This

net gain is strictly positive as long as k 2 3. Therefore if k 2 3 the Figure

9 contract gives the seller strictly higher profit and is accepted by both

types of buyer. This contradicts renegotiation proofness of the original

Figure 8 contract. Hence if k 2 3, jut b < b is impossible in (4).

Suppose now jj b < b and k = 2. Then y = 1. But with y = 1, the GCBP of

length 2 is equivalent to the GCBP of length 1 and first probability y' such

that 1 s y
1 + s. Now because the GCBP of length 2 is renegotiation proof from

date t + 1 on, one has jj 2 jli 2 u (because the truncated GCBP is a CB? of

length 1) so that the equivalent GCBP of length 1 is renegotiation proof.

This establishes the parenthetical part of the Lemma.

Next suppose that jj b 2 b. Hence replacing y by increases profit,

which proves the second part of the Lemma. Let us next show that the CBP of

length k is renegotiation-proof. For this, notice that u 2 jj., , . This is

because monotonicity implies that jj 2 ju and renegotiation-proof ness at

date t+1 of the corresponding CBP together with induction hypothesis (2)

applied at date t+1 imply that n¥ ,. 2 ^v_i • Now t^ere are two cases? either
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v 2 ju, and then, by the induction hypothesis (2) applied at date t, the CBP
t K

of length k is renegotiation-proof. Or w._ s » < w . Then we know from

Proposition 2 (on the durable-good non-commitment case) that the seller

prefers the (k-1) period CBP to the k period one. Hence profits are higher in

the (k-1) period CBP than in the original GCBP. Furthermore u 2 «._. implies

that the (k-1) period CBP is renegotiation-proof. If the high-valuation buyer

prefers the (k-1) - period CBP to the original GCBP, then the original GCBP

was not renegotiation proof, a contradiction. Suppose that the high valuation

buyer strictly prefers the original GCBP to the (k-1) period CBP. This means

that:

. k+1 . T-l
v

k J k+1 J T-ly+5 +..+5 >6+S +..+5

Hence there exists y' such that y' + 5 = y. Again replacing the original

GCBP by the GCBP of length k-1 and first probability y' yields strictly higher

profit to the seller and the same utilities for both types of buyer (and the

new GCBP is renegotiation proof from date 2 on) as long as k > 2 or y < 1. If

k = 2 and y = 1, we know from a previous reasoning that the GCBP of length 2

and first period probability y is equivalent (in terms of utilities and

profit) to a renegotiation proof GCB? of length 1 with probability y
1 = 1 - 5.

So far we have shown that if the GCBP of length k > 2 with probability y

(which yields profit v ,say) is renegotiation proof, the CBP of length k

(which yields profit w ) also is. We must show that the GCBP of length k with

probability y" in (0,y) (which yields profit ir ,) is also renegotiation proof.

Suppose it is not. Then it is dominated by a renegotiation proof GCBP by

induction hypothesis (1). Let y" and k' denote the first probability and its

length and w* denote the associated profit. Because the GCBP of length k with

probability y' is renegotiation proof from date t + 1 on, renegotiation can
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only benefit the seller: ir* > ir , . Now recall that
y

n ,
- v = (w b - b) (y - y') and ir. - ir ,

= (jj b - b) y'. Furthermore for

the b buyer to accept the new GCBP, one must have:

V ' T— fr V T-t
y" + 5 + .. + « a y" +«+..+«

Now since s y s 1, y" - y' < implies y+(y"-y') si 1. Hence either y" + (y

- y') i 1 or y" - y
1 2 0. Suppose for instance that y" - y' 2 0. Consider

the GCBP of length k' and with probability y" - y" . It is renegotiation-proof

from date t + 1 on (because the GCBP of length k' and probability y" is). The

low type's consumption is:

, k' T-t k J T-ty'+s +..+S 25 +..+5

Thus starting from the CBP of length k the high type is willing to accept the

GCBP of length k' with probability y" - y'. The seller's profit starting from

the same CBP increases by:

[r* + {n
1

b - b) y'] - [w
,
+ (u

1
b - b) y'] >

if ju 2 n , where n" denote the probability that the buyer chooses the

. .
~1

emcient branch in the GCBP of length k'. Now it is easy to show that u~ 2

1

W~. [First note that k 1

< k. If k' 2 k, starting from the GC3? [y' , k} and

k' T_ t k T-t
increasing y' until y" + 6 " + .. + 5 = y' + 6 ' + . . + 5 reduces profit

under ir ,. But for a given utility for type b, the process is more efficient

than the !y",k'l process since it is shorter, by the now usual reasoning.

This contradicts ir* > ir
, . So k' < k. But Bayes rule implies that u =..(ju

4.
-
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ju ) / (1 - u^^ and ju = (^
t

- Ju
k ._

1
) / (1 - ^i-j^* Finally k' < k

- - ~1 1
implies that n. , , < w. , and thus n 2 w .] Hence starting from the CBP of

length k the GCBP of length k' with probability y" - y' is accepted by both

types, yields a strictly higher profit and is renegotiation proof from date t

+ 1 on, which contradicts renegotiation proofness of the CBP of length k. The

case y" + (y - y') si is similar (it contradicts renegotiation proofness of

the GCBP of length k with probability y) . This concludes the proof of Lemma

5. Q.E.D.
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