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Abstract

We study the formation of a ruling coalition in political environments. Each individual is

endowed with a level of political power. The ruling coalition consists of a subset of the individuals

in the society and decides the distribution of resources. A ruling coalition needs to contain enough

powerful members to win against any alternative coalition that may challenge it, and it needs to

be self- enforcing, in the sense that none of its subcoalitions should be able to secede and become

the new ruling coalition. We first present an axiomatic approach that captures these notions and

determines a (generically) unique ruling coalition. We then construct a simple dynamic game

that encompasses these ideas and prove that the sequentially weakly dominant equilibria (and the

Markovian trembling hand perfect equilibria) of this game coincide with the set of ruling coalitions

of the axiomatic approach. We also show the equivalence of these notions to the core of a related

non-transferable utility cooperative game.

In all cases, the nature of the ruling coalition is determined by the power constraint, which

requires that the ruling coalition be powerful enough, and by the enforcement constraint, which

imposes that no subcoalition of the ruling coalition that commands a majority is self-enforcing.

The key insight that emerges from this characterization is that the coalition is made self-enforcing

precisely by the failure of its winning subcoalitions to be self-enforcing. This is most simply

illustrated by the following simple finding: with simple majority rule, while three-person (or larger)

coalitions can be self-enforcing, two-person coalitions are generically not self-enforcing. Therefore,

the reasoning in this paper suggests that three-person juntas or councils should be more common
than two-person ones. In addition, we provide conditions under which the grand coalition will be

the ruling coalition and conditions under which the most powerful individuals will not be included

in the ruling coalition. We also use this framework to discuss endogenous party formation.

Keywords: coalition formation, collective choice, cooperative game theory, political economy,

self-enforcing coalitions, stability.
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1 Introduction

Consider a society in which each individual possesses some amount of military power ( "guns" ) and

can form a "coalition" with other individuals to fight against the remaining individuals. A group

(coalition) that has sufficient power becomes the "ruling coalition" ; it determines the allocation of

resources in the society, e.g., how a pie of size 1 will be distributed. A group with more guns can

eliminate (win against) a group with less guns. However, once the elimination has taken place, a

subgroup within the winning group can engage in further rounds of eliminations in order to reduce

the size of the ruling coalition and receive more for each of its members. What types of ruling

coalitions do we expect to form? Will there generally be multiple "equilibrium" or "stable" ruling

coalitions? Will more powerful individuals necessarily obtain more of the resources?

Consider an alternative scenario in which a group of individuals needs to form a committee to

reach a decision. A group that has a (power-weighted) majority can impose the selection of a par-

ticular committee, thus potentially influencing the collective choice. However, once the committee

forms, a subgroup within the committee may sideline some of the members and impose its own

rule. What types of committees do we expect to emerge?

The key feature in both of these examples is that the structure and nature of the ruling coalition

depends not only the power of different groups (coalitions), but also whether, once formed, a

particular group will be stable, i.e., self-enforcing. This tension between the power and the stability

of a group is a common feature in many situations where coalitions have to form in order to make

collective choices or determine the allocation of resources.

To investigate these questions systematically, we consider a society consisting of a finite number

of individuals, each with an exogenously given level of political power. 1 A group's power is the sum

of the power of its members. The society has a fixed resource, e.g., a pie of size 1. The distribution

of this resource among the individuals is determined by a (self-enforcing) ruling coalition. For

concreteness, let us suppose that a ruling coalition distributes this resource among its members

according to their political power. A ruling coalition needs to satisfy two requirements. First, it

needs to have total power more than a £ [1/2, 1) times the power of all the individuals in society,

so that it is a winning coalition. This is captured by the power constraint. Second, it should have

no subcoalition that would be willing to secede and become the new ruling coalition, so that it is

self-enforcing or stable. This second requirement is captured by the enforcement constraint.

We show that a subcoalition will be self-enforcing if its own winning subcoalitions are not self-

1 Throughout, we will work with a society consisting of individuals. Groups that have solved their internal collective

action problem and have well-defined preferences can be considered as equivalent to individuals in this game.



enforcing. Intuitively, any subcoalition that is both winning and self-enforcing will secede from the

original coalition and obtain more for its members. Subcoalitions that are not self-enforcing will

prefer not to secede because some of their members will realize that they will be left out of the

ultimate ruling coalition at the next round of secession (elimination)

.

One of the simple but interesting implications of these interactions is that under majority rule,

ruling coalitions are generically (in a sense to be made precise below) not two-person coalitions,

duumvirates, but can be three-person coalitions, triumvirates.
2

Example 1 Consider two agents A and B with powers 7^ > and ~fB > and assume that the

decision-making rule requires power-weighted majority (i.e., a = 1/2). If 7^ > jB , then starting

with a coalition of agents A and B, the agent A will form a majority by himself. Conversely, if

7.4 <1bi then agent B will form a majority. Thus, "generically" (i.e., as long as 7^ ^ 7S ), one of

the members of the two-person coalition can secede and form a subcoalition that is powerful enough

within the original coalition. Since each agent will receive a higher share of the scarce resources in a

coalition that consists of only himself than in a two-person coalition, such a coalition, a duumvirate,

is generically not self-enforcing.

Now, consider a coalition consisting of three agents, A, B and C with powers 7^, jB and jc ,

and suppose that -yA < 7b < 7c < lA + 7s- Clearly no two-person coalition is self-enforcing.

The lack of self-enforcing subcoalitions of (A, B,C), in turn, implies that (A, B,C) is itself self-

enforcing. To see this, suppose, for example, that a subcoalition of (A, B, C), (A, B) considers

seceding from the original coalition. They can do so since jA + jB > ~yc . However, we know

from the previous paragraph that the subcoalition (^4, B) is itself not self-enforcing, since after

this coalition is established, agent B would secede or "eliminate" A. Anticipating this, agent A

would not support the subcoalition (A, B). A similar argument applies for all other subcoalitions.

Moreover, since agent C is not powerful enough to secede from the original coalition by himself,

the three-person coalition (A,B,C) is self-enforcing. Consequently, a triumvirate can be self-

enforcing and become the ruling coalition. This example also shows that contrary to approaches

with unrestricted side-payments (e.g., Riker, 1962), the ruling coalition will not generally be the

minimal winning coalition (which is (A, B) in this example).

Next, consider a society consisting of four individuals. To illustrate the main ideas, suppose

that we have -fA — 3,7# = 4,7^ = 5 as well as an additional individual, D, with power jD = 10.

D's power is insufficient to eliminate the coalition (A, B, C) starting from the initial coalition

2 Duumvirate and triumvirate are, respectively, the terms given to two-man and three-man executive bodies in

Ancient Rome.



(A,B,C,D). Nevertheless, D is stronger than any two of A, B, C. This implies that any three-

person coalition that includes D would not be self-enforcing. Anticipating this, any two of (A, B, C)

would resist D's offer to secede and eliminate the third. However, (A, B, C) is self-enforcing, thus

the three agents would be happy to eliminate D. Therefore, in this example, the ruling coalition

again consists of three individuals, but interestingly excludes the most powerful individual D.

The most powerful individual is not always eliminated. Consider the society with -yA — 2,

7

S =

4,7C = 7 and ^D = 10. In this case, among the three-person coalitions only (B,C,D) is self-

enforcing, thus B, C and D will eliminate the weakest individual, A, and become the ruling coalition.

This example highlights the central roles of the power and the enforcement constraints, which

are illustrated diagrammatically in Figure 1 for a society with three members, (A, B,C). The

two dimensional simplex in the figure represents the powers of the three players (with their sum

normalized to 1 without loss of generality). The shaded area in the first panel is the set of all

coalitions where the subcoalition (A, B) is winning and shows the power constraint, which is parallel

to the AB facet of the simplex. 3

,C AC

The Power Constraint The Enforcement Constraint

Figure 1

The enforcement constraint (for a subcoalition), on the other hand, defines the area, where, if

other players are eliminated, the subcoalition still remains self-enforcing. The second panel depicts

the enforcement constraint for the subcoalition (A, B) when player C is eliminated for a game with

a > 1/2. When |JV| = 3, the enforcement constraint defines a cone. 4 In the case where a — 1/2,

this cone becomes a straight line perpendicular to the AB facet.

3 More generally, if X is a coalition in a society N, then its power constraint corresponds to a hyperplane in a

(\N\ — l)-dimensional simplex, which is parallel to a {\X\ — l)-dimensional facet that contains all vertices from A',

and to a (\N\ — \X\ — l)-dimensional facet containing all other vertices.
4 More generally, for N > 3 and a proper coalition X, the enforcement constraint defines a quasi-cone, that is, a

union of all segments that connect any point from the (\N\ — \X\ — l)-dimensional facet containing all vertices from

N \ X to the set of self-enforcing points on the (\X\ — l)-dimensional facet containing all vertices from X.



Using this figure, we can determine the distributions of powers for which the subcoalition (A, B)

can emerge as the ruling coalition within (A, B,C). First, it needs to be powerful enough, i.e., lie

in the shaded area in the first panel. Second, it needs to be self-enforcing, i.e., lie in the cone of

enforcement in the second panel. Clearly, when a — 1/2, only a segment of the line where the

powers of A and B are equal can satisfy these constraints, which captures the result in Example

1 that, generically, a two-person coalition cannot become a ruling coalition under majority rule.

More generally, a coalition X can threaten the stability of the grand coalition only if both the

power and the enforcement constraints are satisfied.

Our first major result is that an axiomatic approach to the determination of the ruling coalition

using these two notions, together with two other technical axioms, is sufficient to single out a unique

ruling coalition in generic games. We achieve this by defining a mapping from the set of coalitions

of the society into itself that satisfies the above-mentioned axioms. When applied to the entire

society, this mapping gives the ruling coalition.

That this axiomatic approach and the notion of ruling coalition capture important aspects of the

process of coalition formation in political games is reinforced by our analysis of a simple dynamic

game of coalition formation. In particular, we consider a dynamic game where at each stage a

subset of the agents forms a coalition and "eliminates" those outside the coalition. The game ends

when an ultimate ruling coalition, which does not wish to engage in further elimination, emerges.

This ultimate ruling coalition divides the resources among its members according to their power.

The important assumptions here are as follows. First, a player who is eliminated at any point

cannot join future coalitions. This is in line with the motivating examples given above. Second,

there is no possibility of commitment to the division of the resources once the ruling coalition is

established. This no-commitment assumption is natural in political games, since it is impossible to

make commitments or write contracts on future political decisions. 5 We establish the existence and

generic uniqueness of sequentially weakly dominant and Markov trembling hand perfect equilibria

of this dynamic game. 6 We also show that these equilibrium outcomes coincide with the ruling

coalition derived from the axiomatic approach.

5
See Acemoglu and Robinson (2006) for a discussion. Browne and Franklin (1973), Browne and Frendreis (1980),

Schoffield and Laver (1985), and Warwick and Druckman (2001) provide empirical evidence consistent with the notion

that ruling coalitions share resources according to the powers of their members. For example, these papers find a

linear relationship between parties' shares of parliamentary seats (a proxy for their political power) and their shares

of cabinet positions ("their share of the pie"). Ansolabehere et al. (2005) find a similar relationship between cabinet

positions and voting weights (which are even more closely related to political power in our model) and note that:

"The relationship is so strong and robust that some researchers call it 'Gamson's Law' (after Gamson, 1961, who was

the first to predict such a relationship)."
6
In fact, we establish the more general result that all agenda-setting games (as defined below) have a sequentially

weakly dominant equilibrium and a Markov trembling hand perfect equilibrium.



Finally, we show that the same solution emerges when we model the process of coalition forma-

tion as a non-transferable utility cooperative game incorporating the notion that only self-enforcing

coalitions can implement allocations that give high payoffs to their members.

At some level, it may not be surprising that all these approaches lead to the same result,

since they capture the same salient features of the process of collective decision-making—the power

and the enforcement constraints. Nevertheless, the three approaches model these features in very

different ways. We therefore find it reassuring that they all lead to the same conclusions.

Our substantive results relate to the structure of ruling coalitions in this environment:

1. There always exists a ruling coalition and it can be computed by induction on the number of

players.

2. Despite the simplicity of the environment, the ruling coalition can consist of any number of

players, and may include or exclude the most powerful individuals in the society. Conse-

quently, the equilibrium payoff of an individual is not monotonic in his power. 7

3. Relatedly, the most powerful individual will be excluded from the ruling coalition, unless he

is powerful enough to win by himself or weak enough so as to be part of smaller self-enforcing

coalitions.

4. Again somewhat paradoxically, an increase in a, i.e., an increase in the degree of superma-

jority, does not necessarily lead to larger ruling coalitions, because it stabilizes otherwise

non-self-enforcing subcoalitions, and as a result, destroys larger coalitions that would have

been self-enforcing for lower values of a.

5. Self-enforcing coalitions are generally "fragile." For example, under majority rule, i.e.,

a = 1/2, adding or subtracting one player from a self-enforcing coalition makes it non-

self-enforcing.

6. Nevertheless, ruling coalitions are (generically) continuous in the distribution of power across

individuals in the sense that a ruling coalition remains so when the powers of the players are

perturbed by a small amount.

7. Coalitions of certain sizes are more likely to emerge as the ruling coalition. For example, with

majority rule, the ruling coalition cannot (generically) consist of two individuals. Moreover,

7
In terms of our first motivating example, this implies that individuals may wish to "give up their guns" voluntarily

as a "commitment" not to overpower members of certain coalitions and thus be accepted as part of these coalitions.



again under majority rule, coalitions where members have relatively equal powers are self-

enforcing only when the coalition's size is 2 fc — 1 where k is an integer.

Our paper is related to a number of different literatures. The first is the social choice litera-

ture. The difficulty of determining the social welfare function of a society highlighted by Arrow's

(im)possibility theorem is related to the fact that the core of the game defined over the allocation of

resources is empty (Arrow, 1951, Austen-Smith and Banks, 1999). Our approach therefore focuses

on a weaker notion than the core, whereby only "self-enforcing" coalitions are allowed to form. Our

paper therefore contributes to the collective choice literature by considering a different notion of

aggregating individual preferences and establishes that such aggregation is possible.
8

Our work is also related to models of bargaining over resources, both generally and in the

context of political decision-making. In political economy (collective choice) context, two different

approaches are worth noting. The first is given by the legislative bargaining models (e.g., Baron

and Ferejohn, 1989, Calvert and Dietz, 1996, Jackson and Boaz, 2002), which characterize the

outcomes of bargaining among a set of players by assuming specific game-forms approximating the

legislative bargaining process in practice. Our approach differs from this strand of the literature,

since we do not impose any specific bargaining structure. The second strand includes Shapley and

Shubik (1954) on power struggles in committees and the paper by Aumann and Kurz (1977), which

looks at the Shapley value of a bargaining game to determine the distribution of resources in the

society.9 Our approach is different since we focus on the endogenously-emerging ruling coalition

rather than bargaining among the entire set of agents in a society or in an exogenously-formed

committee.

At a more abstract level, our approach is a contribution to the literature on equilibrium coalition

formation, which combines elements from both cooperative and noncooperative game theory (e.g.,

Peleg, 1980, Hart and Kurz, 1983, Aumann and Myerson, 1988, Greenberg and Weber, 1993,

Chwe, 1994, Bloch, 1996, Ray and Vohra, 1997, 1999, 2001, Seidmann and Winter, 1998, Konishi

and Ray, 2001, Maskin, 2003).
10 The most important difference between our approach and the

8
In this respect, our paper is also related to work on "coalition-proof Nash equilibrium or rationalizability,

e.g., Bernheim, Peleg and Whinston (1987), Moldovanu (1992), Ambrus (2006). These papers allow deviations by

coalitions in non-cooperative games, but impose that only stable coalitions can form. The main difference is that

our basic approach is axiomatic or cooperative. We then provide a non-cooperative foundation for our approach,

but do not explicitly use coalition-proofness as a refinement in the non-cooperative game. Another difference is

that coalition-proof Nash equilibria typically fail to exist (though coalitionally rationalizable outcomes do exist, see

Ambrus, 2006), while we show existence and generic uniqueness of our equilibrium concept in all three approaches

we adopt.
9
See also the literature on weighted majority cooperative games, which also model situations in which different

individuals have different "weights" or "powers," e.g., Isbell (1956), Peleg (1968), Peleg and Rosenmuller (1992).
10
Like some of these papers, our approach can be situated within the "Nash program" since our axiomatic approach



previous literature on coalition formation is that, motivated by political settings, we assume that

the majority (or supermajority) of the members of the society can impose their will on those

players who are not a part of the majority 11 This feature both changes the nature of the game

and also introduces "negative externalities" as opposed to the positive externalities and free-rider

problems upon which the previous literature focuses (see, for example, Ray and Vohra, 1999, and

Maskin, 2003). A second important difference is that most of these works assume the possibility

of binding commitments (see again Ray and Vohra, 1997, 1999), while we suppose that players

have no commitment power. In addition, many previous approaches have proposed equilibrium

concepts for cooperative games by restricting the set of coalitions that can block an allocation.

Myerson (1991, ch. 9) and Osborne and Rubinstein (1994, ch. 14) give comprehensive discussions

of many of these approaches. Our paper is also a contribution to this literature, since we propose a

different axiomatic solution concept. To the best of our knowledge, neither the axiomatic approach

nor the specific cooperative game form nor the dynamic game we analyze in this paper have been

considered in the previous literatures on cooperative game theory or coalition formation.

The rest of the paper is organized as follows. Section 2 introduces the basic political game and

contains a brief discussion of why it captures certain salient features of political decision-making.

Section 3 provides our axiomatic treatment of this game. It introduces the concept of ruling

coalition and proves its existence and generic uniqueness. Section 4 considers a dynamic game of

coalition formation and a number of equilibrium concepts for this type of extensive-form games. It

then establishes the equivalence between the ruling coalition of Section 3 and the equilibria of this

extensive-form game. Section 5 introduces the cooperative game and establishes the equivalence

between the core allocations of this game and the ruling coalitions. Section 6 contains our main

results on the nature and structure of ruling coalitions in political games. Section 7 considers a

number of extensions such as endogenous party formation and voluntary redistribution of power

within a coalition. Section 8 concludes, and the Appendices contain the proofs not provided in the

text as well as a number of examples to further motivate some of our equilibrium concepts.

is supported by an explicit extensive form game (Nash, 1953). See Serrano (2005) for a recent survey of work on the

Nash program.
11 This is a distinctive and general feature of political games. In presidential systems, the political contest is winner-

take-all by design, while in parliamentary systems, parties left out of the governing coalition typically have limited

say over political decisions. The same is a fortiori true in dictatorships.



2 The Political Game

We are interested in coalition-formation among a finite set of individuals. Let Ibea collection

of individuals. We refer to a finite subset N of X as a society.
12 The society has some resource

to be distributed among these individuals. Each individual has strictly increasing preferences over

his share of the resource and does not care about how the rest of the resource is distributed. The

distribution of this scarce resource is the key political/collective decision. This abstract formula-

tion is general enough to nest collective decisions over taxes, transfers, public goods or any other

collective decisions.

Our focus is on how differences in the powers of individuals map into political decisions. We

define a power mapping,

which determines the power of each individual in X (here 1K++ = E+ \ {0}). In particular, we refer

to 7j = 7 (i) as the political power of individual iel. In addition, we denote the set of all possible

power mappings by I* and a power mapping 7 restricted to some society N C 1 by 7^. For every

set Y denote the set of its non-empty subsets by P (Y). For any society N G P (X), any X £ P {N)

is called a coalition within N, or, for short, a coalition. Throughout, \X\ denotes the number of

individuals in the set X £ P (N), which is finite in view of the fact that a society N is always finite.

The value

iex

is called the power of coalition X (it is well-defined since X is finite). We define 7 = 0.

We assume that collective decisions require a (super)majority in terms of power. In particular,

let a 6 [1/2, 1) be a number characterizing the degree of supermajority necessary for a coalition to

implement any decision. The link between a and supermajority or majority rules is based on the

following definition.

Definition 1 Suppose X and Y are coalitions such that Y € P {X). Coalition Y is winning within

Xii

lY > alX-

Coalition Y C N is called winning if it is winning within the society N.

12 The reason for distinguishing between X and a society N is that, for some of our results, we imagine different

subsets of a given collection I as distinct societies and make predictions for the ruling coalitions of these societies.



Clearly, -yY > ocyx is equivalent to 7y > a-yX\y/ (
l ~ a )- Tnis illustrates that when a = 1/2

a coalition Y to be winning within X needs to have a majority (within X) and when a > 1/2, it

needs to have a supermajority. Trivially, if Y\ and Y2 are winning within X, then Y\ Q Y2 ^ 0.

Given this description, for any society N we define an abstract political game as a triple T =

T(N, ry\N,a). We refer to T as an abstract game to distinguish it from the extensive-form and

cooperative games to be introduced below. In particular, for game T, we do not specify a specific

extensive form or strategic interactions, but proceed axiomatically.

We assume that in any political game, the decision regarding the division of the resource will

be made by some ruling coalition. In particular, we postulate that the payoff to each player i is

entirely determined by the ruling coalition X £ P (N); we denote this payoff by wi (X). We impose

the following natural restrictions on Wi (X).

Payoffs The payoff function wi (X) : P (N) —> K for any i £ N satisfies the following:

1. Vi <E TV, VX, Y £ P (TV) , if i £ X and i £ Y, then wz (X) > w t (Y). [This means that

each player prefers to be part of a ruling coalition.]

2. Vi € N, VX, Y e P (N) , if i 6 X and i G Y then v)t (X) > w{ (Y) ^^ 7»/7a' > lillv

( $=> ~fx < 7y). [This means that each player prefers to be in a ruling coalition where

his relative weight is higher.]

3. Vt 6 N, VX, Y £ P (JV) , if i£ X and i <£ Y then w{ (X) = Wi (Y) = Wr
. [This means

that each player is indifferent between two ruling coalitions which he is not part of, while

the last equality defines w~ as the payoff of individual i when he is not a member of the

ruling coalition for future reference.]

The restrictions on Wi (X) are quite natural and capture the idea that the player's payoffs depend

positively on the player's relative strength in the ruling coalition. The most important assumption

introduced so far is that a coalition cannot commit to an arbitrary distribution of resources among

its members. Instead, the allocation of resources is determined by the payoff functions {wi (-)} ie j^-

For example, a coalition consisting of two individuals with powers 1 and 10 cannot commit to share

the resource equally if it becomes the ruling coalition. This assumption will play an important

role in our analysis. We view this as the essence of political-economic decision-making: political

decisions are made by whichever group has political power at the time, and ex ante commitments

to future political decisions are generally not possible (see the discussion and references in footnote

5).

9



A specific example of payoff function tOj (•) that satisfies the requirements 1-3 results from the

division of a fixed resource between members of the ruling coalition proportional to their power. In

particular, for any X G P (N) let the share obtained by individual i E~N of this fixed resource be

Evidently, for any X G P (N), Y^ieN wt (X) = 1.

Since restrictions 1-3 define the division of the resource given the ruling coalition uniquely, the

outcome of any game can be represented by its ruling coalition alone. More formally, fix a society

N £ P (1) and let Q be the set of all possible games of the form F = F (N, j\n, a), i.e.,

g = {(N, 1 \
N,a)\NeP(l), 1 er,ae[l/2,l)}.

The outcome mapping, <&, is a correspondence determining one or several subsets of TV G P (X) as

potential ruling coalitions for any game F G G, i.e.,

$-.g=iP(i).

Our main focus is to characterize the properties of this outcome correspondence. We wish to

understand what types of ruling coalitions will emerge from different games, what the size of the

ruling coalition will be, when it will include the more powerful agents, when it will be large relative

to the size of the society (i.e., when it will be "dictatorial," and when it will be "inclusive").

We will sometimes impose the following assumption to obtain sharper results (though this

assumption is not necessary for most of our results; see below).

Assumption 1 The power mapping 7 € I* is generic in the sense that for any X, Y G P(X),

jx — 1y implies X = Y. Similarly, we say that coalition N is generic or that numbers {"fi} ie^ are

generic if mapping 7

1

at is generic.

Intuitively, this assumption rules out distributions of powers among individuals such that two

different coalitions have exactly the same total power. Notice that this assumption is without

much loss of generality since for any society N the set of vectors {fi}i&N G M+^i that fail to satisfy

Assumption 1 is a set of Lebesgue measure (in fact, it is a union of a finite number of hyperplanes

in K^). For this reason, when a property holds under Assumption 1, we will say that it holds

generically.

10



3 Axiomatic Analysis

We begin with an axiomatic analysis. Our approach is to impose some natural restrictions on the

outcome mapping $ that capture the salient features related to the formation of ruling coalitions.

In particular, we would like the outcome mapping to determine the ruling coalitions for an arbitrary

society. Such a ruling coalition must be winning (according to Definition 1) and self-enforcing, i.e.

must be able to withstand challenges from its subcoalitions that satisfy the enforcement constraint

(i.e., from subcoalitions that are self-enforcing).

Let us fix an abstract game T (N, j\n, a), that is, a power mapping 7 : X —* M++ , a parameter

a E [1/2, 1), and a society N E P (1). Define the correspondence

4>:P{1)^P{1)

by 4> (N) = $ (r (N, 7|jv, &)) for any N E P (X). We will use cfi instead of <& whenever this causes

no confusion.

Fix an abstract game T = (N, 7, a). Then in the spirit of the power and the enforcement

constraints, we adopt the following axioms on <j>.

Axiom 1 (Inclusion) For any X E P (N), 4>{X)^0 and if Y E
'<f>
(X) then Y cX.

Axiom 2 (Power) For any X E P (N) and Y E 4> (X), jY > alx-

Axiom 3 (Enforcement) For any X E P (JV) and Y E <j> (X), Y E <f>
(Y).

Axiom 4 (Group Rationality) For any X E P(N), for any Y E <j>{X) and any Z C X such

that 7^ > a~iX and Z E
<f>

(Z), we have that Z £ <j> (X) 4=>- jY < 7z-

Motivated by Axiom 3, we define the notion of a self-enforcing coalition as a coalition that

"selects itself . This notion will be used repeatedly in the rest of the paper.

Definition 2 Coalition X E P
(
J) is self- enforcing if X E <j> (X).

All four axioms are natural. Axiom 1, inclusion, implies that
(f>
maps into subcoalitions of the

coalition it operates upon and that it is defined, i.e., <j){X) ^ 0. (Note that this does not rule

out (j>{X) = {0}, which is instead ruled out by Axiom 2.) Intuitively, this axiom implies that

new players cannot join a coalition, which is the key feature of the political game we study in

this paper. Axiom 2, the power axiom, requires that the winning coalition lies within X and has

sufficient power according to Definition 1. Axiom 3, the enforcement axiom, simply requires that
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any coalition Y G 4>{X) (for some X G P
'

(N)) should be self-enforcing according to Definition 2.

Axiom 4 requires that if two coalitions Y,ZcX are winning and self-enforcing and all players in

Y H Z strictly prefer Y to Z, then Z £ <p(X) (i.e., Z cannot be the selected coalition). This is

an individual rationality or "group rationality" type axiom: since a > 1/2, any two winning self-

enforcing coalitions intersect, and we merely require players from such intersection to have rational

preferences between these two coalitions (recall that u>i (•) is such that player i prefers a coalition

where his relative power is greater).

The main result of the axiomatic analysis is the following theorem.

Theorem 1 Fix a collection of players X, a power mapping 7, and a G [1/2, 1). Then:

1. There exists a unique mapping
<f>

that satisfies Axioms 1-4. Moreover, when Assumption 1

holds, <p is single-valued.

2. This mapping
<fi
may be obtained by the following inductive procedure:

For any k G N, let Pk (X) = {X G P {!) : \X\ = k}. Clearly, P (J) = UkeNPk {!). If X G

Pi {!), then let <f>{X) = {X}. If'
<j>{Z) has been defined for all Z G Py (2") and for all k' < k,

then define (ft
(X) for X G Pk {T) as

<t>(X)= argmin jA , (3)
AeM(X)u{x}

where

M(X) = {ZeP(X)\{X}: lz >a7x and Z G <f>
(Z)} . (4)

Proceeding inductively defines <j> (X) for all X G P (X).

Proof. We begin with properties of the set M. (X) defined in (4) and the mapping 4> (X) defined in

(3) (Step 1). We then prove that this mapping 4>{X) satisfies Axioms 1-4 (Step 2). We next prove

that this is the unique mapping satisfying Axioms 1-4 (Step 3). Finally, we establish that when 1

holds, is a single valued (Step 4). These four steps together prove both parts of the theorem.

Step 1: Note that at each step of the induction procedure, M. (X) is well-defined because Z in

(4) satisfies \Z\ < \X\ and thus
<f>
has already been defined for Z. The argmin set in (3) is also well

defined, because it selects the minimum of a finite number of elements (this number is less than

2^1; X is a subset of TV, which is finite). Non-emptiness follows, since the choice set includes X.

This implies that this procedure uniquely defines some mapping
<f>

(which is uniquely defined, but

not necessarily single-valued)

.
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• Step 2: Take any X £ P{T). Axiom 1 is satisfied, because either <j>(X) — {X} (if \X\ = 1)

or is given by (3), so
(f>
(X) contains only subsets of X and

<f)
(X) ^ 0. Furthermore, in both cases

cp (X) contains only winning (within X) coalitions, and thus Axiom 2 is satisfied.

To verify that Axiom 3 is satisfied, take any Y £ (j> {X). Either Y = X or Y £ M (X). In the

first case, Y £ $ (X) =
<f>
(Y), while in the latter, Y € </> (Y) by (4).

Finally, Axiom 4 holds trivially when |A| = 1, since there is only one winning coalition. If

\X\ > 1, take Y £ 4>{X) and Z C X, such that jz > ajx and Z £ 4>{Z). By construction of

<f>(X), we have that

Y £ argmin jA .

A£M(X)U{X}

Note also that Z £ M {X) U {X} from (4). Then, since

Z $. argmin jA ,

AeM(X)u{x}

we must have 7^ > 7y, completing the proof that Axiom 4 holds.

Step 3: Now let us prove that Axioms 1-4 define a unique mapping </>. Suppose that there

are two such mappings:
(f>
and

<fr' ^ (f>.
Axioms 1 and 2 immediately imply that if \X\ — 1, then

cf>(X) — cf)' (X) — {X}. This is because Axiom 2 implies that 4>{X) ^ and Axiom 1 implies

that <fi(X) is non-empty; the same applies to </>' (X). Therefore, there must exist k > 1 such

that for any A with \A\ < /c, we have 4>{A) = <j>' (A), and there exists X £ P(I), \X\ = k,

such that (j> (X) ^ <j>' (X). Without loss of generality, suppose Y £ </> (X) and Y £ <f>'
(X). Take

any Z £ (/>' (X) (such Z exists by Axiom 1 and Z 7^ Y by hypothesis). We will now derive a

contradiction by showing that Y
fi (f>

(X).

We first prove that 7z < 7y- li Y — X, then jz < ~fY follows immediately from the fact

that Z 7^ Y and Z C X (by Axiom 1). Now, consider the case Y ^ X, which implies \Y\ < k (since

Y C X). By Axioms 2 and 3, Y £ 4>(X) implies that -yY > crfx an<^ Y £ </>(Y); however, since

\Y\ < k, we have </> (Y) = 0' (Y) (by the hypothesis that for any A with \A\ < k,
<f>
(A) = $ {A))

and thus Y £ <j>' (Y). Next, since Z £
(f>'

(X), 7y > a-yx , Y £ ft (Y) and Y g <f>'
(X), Axiom 4

implies that 7^ < 7y.

Note also that Z £ 4>' (X) implies (from Axioms 2 and 3) that -yz > a~fX and Z £ <f>' (Z).

Moreover, since "fz < 7y, we have Z j^ X and therefore |Z| < k (since Z C X). This again yields

Z £ cp (Z) by hypothesis. Since Y £ </> (A") ,
Z E 4> {%) , lz > a7A"i 7z > 7y> Axiom 4 implies

that Z £ (/>(X). Now, since Z £ 0(A) , Y £ $(Y)
, 7y > ory^i 7z < 7r> Axiom 4 implies that

Y ^ <j) (X), yielding a contradiction. This completes the proof that Axioms 1-4 define at most one

mapping.
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Step 4: Suppose Assumption 1 holds. If \X\ = 1, then 4> (X) = {X} and the conclusion follows!

If \X\ > 1, then (j> (X) is given by (3); since under Assumption 1 there does not exist Y, Z e P (N)

such that 7y = *yz ,

argmin fA
AeM{X)u{x}

must be a singleton. Consequently, for any \X\, 4>{X) is a singleton and
<f>

is single-valued. This

completes the proof of Step 4 and of Theorem 1.

At the first glance, Axioms 1-4 may appear relatively mild. Nevertheless, they are strong enough

to pin down a unique mapping
<f>.

This reflects the fact that the requirement of self-enforcement

places considerable structure on the problem.

Theorem 1 establishes not only that
<fi

is uniquely defined, but also that when Assumption 1

holds, it is single-valued. In this case, with a slight abuse of notation, we write
<fi
(X) = Y instead

of^>(X) = {Y}.

The fact that (j> is determined uniquely implies the following corollary.

Corollary 1 Take any collection of players 1, a e [1/2, 1), and a power mapping "/El*. Let
<f>

be the unique mapping satisfying Axioms 1^4. Coalition N is self- enforcing, that is, N G <p (N), if

and only if there exists no coalition X C N, X ^ N, which is winning within N and self- enforcing.

Moreover, if N is self- enforcing, then (f>(N) = {N}.

Proof. If |7V| = 1, this trivially follows from the inductive procedure described in Theorem 1. If

|iV| > 1, (j>(N) is given by (3). Note that for any Y £ M (N), we have -yY < In- Therefore,

AT € <)> (AT) if and only if M (N) = 0. The definition of M (N), (4), implies that M (A) = if

and only if there does not exist X c N, X ^ N, such that jx > a^N and X G <f>
(X). It follows

from (3) that in this case 4> (A7 ) = {N}, proving both claims in Corollary 1.

While Theorem 1 proves the existence and uniqueness of a mapping 4> satisfying Axioms 1-4 and

describes the inductive procedure for constructing such mapping, Corollary 1 provides a recursive

method of checking whether a particular coalition is self-enforcing. In particular, the result of

Corollary 1 justifies our geometric representation in the Introduction: a coalition that includes a

winning and self-enforcing subcoalition cannot be self-enforcing, and thus to determine the set of

self-enforcing coalitions, we need to depict the power and enforcement constraints of all proper

subcoalitions.

To illustrate the results of Theorem 1 and Corollary 1, let us now return to Example 1.

Example 1 (continued) Again, consider three players A, B and C and suppose that a — 1/2.

For any 7^ < 7b < 7c < 7/1 + 7s> Assumption 1 is satisfied and 4>({A, B,C}) = {A,B,C}.
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Indeed, in this case, any two-person coalition is stronger than any single person and no coalitions

containing the same number of members have equal power. Furthermore, under Assumption 1,

4>({A,B}) ^ {A,B}, 4>({A,C}) + {A,C} and <P({B,C}) + {B,C}. Therefore, <f>({A,B,C})

cannot be a doubleton, since there exists no two-person coalition X that can satisfy Axiom 3.

Moreover,
<f>
({A, B, C}) could not be a singleton, since, in view of the fact that 7,4 + 75 > 7c> no

singleton could satisfy Axiom 2. The only possible value for 4>({A,B, C}) that does not violate

Axioms 2 and 3 is {A,B, C}; it is straightforward to check that Axiom 4 is satisfied, too. We can

also see that cj> would not be single valued if Assumption 1 were not satisfied. Suppose, for example,

that lA = lB = 7c . In this case,
<f>
({A, B, C}) = {{A, B}

,
{B, C}

,
{A, C}}.

Our next task is to characterize the mapping
<f>
and determine the structure and properties of

ruling coalitions. Before doing this, however, we will present a dynamic game and then a cooperative

game, which will further justify our axiomatic approach.

4 A Dynamic Game of Coalition Formation

In this section, we introduce a dynamic game of coalition formation. We then discuss several

equilibrium concepts for dynamic games of this kind, and show that for reasonable equilibrium

concepts, when Assumption 1 holds there will exist a unique equilibrium coalition, coinciding with

the ruling coalition defined in the previous section.

4.1 The Basic Game Form

Consider an abstract game T (N, j\n, a), that is, a society N e P (I) consisting of a finite number

of individuals, a distribution of power {7j}ieAr, and an institutional rule a 6 [1/2, 1). We will now

describe a related extensive-form game by T — T (JV, 7^, a). This game T is different from T, since

it refers to a particular extensive form game (described next).

Let {wi (Oligjv be as described in the previous section. Moreover, let e > be an arbitrarily

small number such that for any i G N and any X,Y e P (N), if W{ (X) > Wi (Y), then wi (X) >

Wi (Y) + £. (Such e > exists, since TV" is a finite set.) In particular, for any X G P (N) such that

i £ X, we have:

Wi (X) - wT > e. (5)

Then the extensive form of the game T (N, -yjjv", a) is as follows.

1. At each stage, j = 0, 1, . . ., the game starts with an intermediary coalitions by Nj C N (with

No - N).
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2. Nature randomly picks agenda setter ij
<q
E Nj for q = 1 (i.e., a member of the coalition Nj).

3. Agenda setter ij
<q

proposes a coalition X^
q G P {Nj).

4. All players in Xj
iQ

vote over this proposal; let Vj
tq (i,Xo^q ) £ {y,n} be the vote of player

i £ Xj,
q

. Let Yes {Xj,
q } be the subset of Xj

iq
voting in favor of this proposal, i.e.,

Yes {X
J!q }

= {i£ Xj
>g

: vj>q (i, X0>q ) = y) .

Then, if

i.e., if Xj
)9

is winning within iVj (according to Definition 1), then we proceed to step 5;

otherwise we proceed to step 6.

5. If Xj^q = Nj, then we proceed to step 7 and the game ends. Otherwise players from Nj \ Xjtq

are eliminated, players from Xj
<q

add —e to their payoff, and the game proceeds to step 1

with Nj+i = Xj
tQ

(and j increases by 1).

6. If g < |JVj|, then next agenda setter ij
<q+i & Nj is randomly picked by nature such that

ij
iq+i ^ ij>T for 1 < r < q (i.e., it is picked among those who have not made a proposal at

stage j) and the game proceeds to step 3 (with q increased by 1). Otherwise, we proceed to

step 7.

7. Nj becomes the ultimate ruling coalition (URC) of this terminal node, and each player i e A^-

adds Wi (Nj) to his payoff.

This game form implies that coalitions that emerge during the game form a sequence A^o D

Ni D . . . D Nj where j is the number of coalitions (excluding the initial one) that emerges during

the game. Summing over the payoffs at each node, the payoff of each player i in game T is given

by

Ui = wi (Nj) - e J^ In, (0 , (6)

1<7<7

where Ix (•) is the indicator (characteristic) function of set X. This payoff function captures the

idea that individuals' overall utility in the game is related to their share Wi and to the number of

rounds of elimination in which the individual is involved in (the second term in (6)). The number

of players eliminated equals \N\ — \Nj\, and there is a total of j rounds of elimination.

16



With a slight abuse of terminology, we refer to j above as "the round of elimination." Without

loss of generality, we assume that this is a game of perfect information, in particular after each

time voting takes place each player's vote become common knowledge; this is convenient because

the players would then share the same information sets.

The arbitrarily small cost e can be interpreted as a cost of eliminating some of the players

from the coalition or as an organizational cost that individuals have to pay each time a new (even

temporary) coalition is formed. Its role for us is to rule out some "unreasonable" equilibria that

arise in dynamic voting games. Example 5 in Appendix B illustrates that when e — 0, there exist

equilibria in which the outcome may depend on the behavior of players that will be eliminated for

sure or on the order of moves chosen by Nature.

Note that F is a finite, game; it ends after no more than \N\ (|iV| + l)/2 iterations because

the size of a coalition as a function of the voting stage j defines a decreasing sequence bounded

from below by 0. The coalition that forms after the last elimination is the URC. Consequently,

the extensive-form game F necessarily has a subgame perfect Nash equilibrium (SPNE, see below).

However, as the next example shows, there may be many SPNEs and some of those are highly

unintuitive because they involve clear inefficiencies in voting (Appendix B presents a more striking

example, Example 4, with multiple Markovian SPNEs).

Example 2 Consider N = {A, B, C, D}, with jA — 3,7B = 4, jc — 5 and ^D = 10 (as in Example

1 above), and suppose that a — 1/2. From Theorem 1, it can be seen that <f>({A,B,C,D}) =

{A, B, C}. As we will show later (Theorem 2), there is a Sequentially Weakly Dominant Equilibrium

(which is also a SPNE) in which A, B, or C proposes this coalition, A, B and C vote for in favor of

this coalition, and if D is the first to make a proposal, he proposes {A, B, C, D} which is rejected

by the rest. However, there exists another equilibrium, where all players make random proposals

and everybody votes against any proposal. This is indeed an equilibrium, because no deviation

by a single player can lead to acceptance of any proposal. Consequently, both {A, B, C} and

{A, B,C, D} can emerge as subgame perfect equilibrium URCs, even though the former is not a

reasonable outcome, since A,B, and C have enough votes to eliminate D.

In voting games, equilibria like the one involving {A, B, C, D} as the URC in this example are

typically eliminated by focusing on weakly dominant (or weakly undominated) strategies. However,

this refinement loses its power in dynamic games, since even unreasonable actions are typically

undominated because they may give relatively high payoffs when other players choose unreasonable

actions in the future.
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Because these standard equilibrium concepts do not give a satisfactory refinement, in the next

section, we introduce the concept of sequentially weakly dominant equilibrium, which combines the

ideas of backward induction and equilibrium in weakly dominant strategies.
13 We then demonstrate

the existence of such equilibria for a broad class of agenda-setting games (defined below)

.

4.2 Sequentially Weakly Dominant Equilibria

In this subsection, we introduce the notion of Sequential Weakly Dominant Equilibrium (SWDE)

inductively for finite extensive-form games. Consider a general n-person T-stage game, where each

individual can take an action at every stage. Let the action profile of each individual be

a1 — (a\, . .
.

, a%

T ) for i — 1, ,n.

with a\ e A\ and a1 £ A1 = flt=i A\- Let ht — (a\, . .

.

, at) be the history of play up to stage t (not

including stage t), where as — (a*, . .
.

, a"), so ho is the history at the beginning of the game, and

let Ht be the set of histories ht for t : < t < T — 1. We denote the set of all potential histories up

to date t by H* = Us=qHs . Let i-continuation action profiles be

,*.*

K> at+i' • • • >
ar) fori = l,....,n,

with the set of continuation action profiles for player i denoted by Ax,t
. Symmetrically, define

t-truncated action profiles as

a
{

' *= (ai,4,...,aj_i) fori- 1, , n,

with the set of t-truncated action profiles for player i denoted by A %
~ 1

. We also use the standard

notation a1 and a^ % to denote the action profiles for player i and the action profiles of all other

players (similarly, A 1 and A~ l
). The payoff functions for the players depend only on actions, i.e.,

player i's payoff is given by

ui
(a

1
,...,o

B
).

We also define the restriction of the payoff function ul to a continuation play (a
1
'*, . .

.
, an,t

) as

u 1

I a 1
'

-
', . .

.
, a",_t

: a\ , . .
.

, a" : a 1,t+1
, . .

.
, a"'

t+1
J

. In words, this function specifies the utility

of player i if players played action profile (a
1,_f

, . .
.

, an,~*) up to and including time t — 1, played

the action profile [a\ , . .

.

, a
n
) at time t and are restricted to the action profile a 1

'*,
. .

.
, a

n,t from

13 An alternative would have been to modify the game, so that all voting is sequential. It can be proved that the

same results as here apply in this case irrespective of the order in which voting takes place. We prefer the notion

of sequentially weakly dominant equilibrium, since it is more intuitive, creates greater continuity with static voting

games and has applications in a broad class of agenda-setting games (see Appendix B).
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t onwards. Symmetrically, this payoff function can also be read as the utility from continuation

action profile (a
1

'
4
"

1

" 1
, . .

.
, an,t+1

)
given that up to time t, the play has consisted of the action profile

a1'-*,...,^.-*
! c4,...,a?).

A (possibly mixed) strategy for player i is

a{
: HT~ 1 -> A {A*)

,

where A (X) denotes the set of probability distributions defined over the set X, and for any h G HT

actions in the support of a 1
(ft) are feasible.

Denote the set of strategies for player i by £\ A t-truncated strategy for player i (corresponding

to strategy a1

) specifies plays only until time t (including time t), i.e.,

ai-t . Ht-i _> A
^
Ai,-tj

The set of truncated strategies is denoted by E 1
'
-4

. A t-continuation strategy for player i (corre-

sponding to strategy a1
) specifies plays only after time t (including time t), i.e.,

ai,t . HT-1
\ Rt-2 ^ A

(
Ai^

j

where HT~ l
\ Ht

~'1
is the set of histories starting at time i.

With a slight abuse of notation, we will also use the same utility function defined over strategies

(as actions) and write

a I a '

, a '
] ft

J

to denote the continuation payoff to player i after history ft
t_1 when he uses the

continuation strategy al,t and other players use a~x,t
. We also use the notation

u{
( cr

1
'*,

. .
.

, a"-' : ct
1 '*4" 1

, . .
.

, cr
n

<
t+l

\
ft
4-1

) as the payoff from strategy profile (ct
m

, . .
.

, a"-
4

) at

time t restricted to the continuation strategy profile (a
1

'
4"1

" 1
, . .

.
, an '

t+1
) from t + 1 onwards, given

history ft
4-1

. Similarly, we use the notation

^(a^a-
*-*

|

ft
4-1

)

for the payoff to player z when he chooses the continuation action profile a1
'
4 and others choose a_t,t

given history ft
4-1

. We start by providing the standard definitions of Nash equilibria and subgame

perfect Nash equilibria.

Definition 3 A strategy profile (a
1

, . .

.

, <7
n
) is. a Nash Equilibrium if and only if

u 1

(<r\ a~ l

) > u1 (a\ u~ l

) for all a1 G T,
1 and for alii = 1, . .

.
, n.
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Definition 4 A strategy profile (a
1

, ...,a ) is a Subgame Perfect Nash Equilibrium if and only if

ui fii,t^-i,t
|
ht-lj > ui

(
ai,t

t&
-i,t

|

/jt-1)
for all tf-l G

#t-l
;

for all t, for all ct~
t

G XT 1 and for all i = 1, . .
.

, n.

Towards introducing weakly dominant strategies, let us take a small digression and consider a

one stage game with actions (a
1

, ..., a").

Definition 5 We say that (<r , . . . ,<7
n
) is a weakly dominant equilibrium if

u l
(ct\ a

-
*) > v} (ct\ a"*) for all o x

G T,\ for all a _i
G S _i and for all i = 1, . .

.
, n.

Naturally, such an equilibrium will often fail to exist. However, when it does exist, it is arguably

a more compelling strategy profile than a strategy profile that is only a Nash equilibrium. Let us

now return to the general T-stage game. A weakly dominant strategy equilibrium in this last stage

of the game is denned similar to Definition 5.

Definition 6 Take any t : 1 < t < T+ 1. Strategy profile (a
,

. .
.

, <r
n
) is a ht~ l

-sequentially weakly

dominant equilibrium if (a
1

, . .
.

, <r
n
) is a /^-sequentially weakly dominant equilibrium for any h l

that may occur after /i
t_1 and

„A ( A-iJ „-i,t : -1,4+1 z.N.t+1 I l*-1 1 -^ „,i ( i,t ~-i,t \ 'l,t+l -JV,t+l
I ut-1 |

for all a 1
'
4

G S***, for all &-*•* G S"*'
4

, and for alH = 1, . .
.

, N.

Definition 6 is inductive, but this induction is finite. Indeed, if history ft
t_1 leads to a terminal

node, then the first condition is satisfied automatically, because the history will not be recorded any

further. Put differently, we first hypothesize that there exists a /^-sequentially weakly dominant

equilibrium, impose that it will be played from time t + 1 onwards and then look for a weakly

dominant strategy profile at stage t of the game.

Definition 7 Strategy profile (a
1

,
. .

.
, an ) of a finite extensive-form game is a Sequentially Weakly

Dominant Equilibrium (SWDE) if it is a ft°-sequentially weakly dominant equilibrium.

4.3 Characterization of Sequentially Weakly Dominant Equilibria

In this section, we characterize the SWDE of Y. Before doing this, recall that for any extensive-

form game Y — Y (AT, 7^, a), there is a corresponding abstract game Y = Y (N, 7^,0). Recall

that Q denotes the set of all such abstract games; we will interchangeably use it to denote the
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set of all extensive form games as described in this section. Theorem 1 established that there is

a unique mapping
<f>

: P (T) =t P (X) that satisfies Axioms 1-4 for any power mapping 7 and any

a G [1/2, 1), and moreover, this mapping is single valued when Assumption 1 holds Now, for any

extensive-form game F = F (N, j\n; a) and any equilibrium a there is a probability distribution

over terminal nodes (because players or Nature may randomize), which gives rise to a probability

distribution of ultimate ruling coalitions (URC) ; denote the (essential) support of this probability

distribution by 3>
CT (t (N,j\N,a)j or, for short, by <j>a (TV). Thus we use the notation Y G <j>a (N)

to designate that coalition Y arises as URC with positive probability.

The main result in this section is that under Assumption 1 if a is any SWDE, then
CT

(TV) is

entirely concentrated in <f>(N). If Assumption 1 does not hold, then for any cp satisfying Axioms

1-4, there exists an SWDE a such that
<f>a (N) is entirely concentrated in <f>(N).

The next theorem establishes both the existence of a pure strategy SWDE and the above

equivalence result.

Theorem 2 For an extensive-form game T(N,-y\ff,a), denote the corresponding abstract game by

r (N, 7|yv,a) and let M G </>(./V), where <j> is the mapping defined in Theorem 1. Then:

1. There exists a pure strategy SWDE where the ultimate ruling coalition (URC) is M and is

reached after at most one stage of elimination with probability 1. The payoff to each i G N
in this SWDE is given by

Ui (N) = Wi (X) - eIM (t) I{M^N) (7)

2. If Assumption 1 holds, then in any SWDE (in pure or mixed strategies) the only possible

URC is M (i.e., Pr {<j>a (TV) = {M}) = 1), it is necessarily reached after at most one stage of

elimination, and payoffs are given by (7).

Proof. See Appendix C.

This theorem establishes two important results. First, a pure strategy SWDE exists for any

game T (TV, 7^, &) and the URC is reached in the first stage of elimination (unless N is itself the

URC). The existence of a pure strategy SWDE for this class of games is a noteworthy fact by

itself, since SWDE is a demanding equilibrium concept and many games will not have such an

equilibrium (see, e.g., Theorem 6). Second, the SWDE URC coincides with <j> (N), that is, with the

ruling coalition of F (N,j\N,a), which was derived axiomatically in Section 3. This equivalence

allows us to use the inductive algorithm to determine the URC of the dynamic game. Finally, when

Assumption 1 holds, the URC is the same in all SWDEs.
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While the equivalence between pure strategy SWDE and our axiomatic approach is reassur-

ing, in Appendix A, we introduce the concept of Markov Trembling-Hand Perfect Equilibrium

(MTHPE), which is a slight refinement of the standard Trembling-Hand Perfect Equilibrium. We

then prove that the same results apply with MTHPE as well. In this process, we also establish a

number of more general results about the existence and structure of MTHPE in a broad class of

agenda-setting games, which are of independent interest.

5 A Cooperative Game

In this section, we present a non-transferable utility cooperative game and establish that the

(strong) core of this game coincides with the ruling coalition derived in Section 3.
14 This ex-

ercise is useful both because it links our equilibrium concept to those in the cooperative game

theory literature and also because it provides another justification for our axiomatic approach. It

is noteworthy that while the cooperative game theory approach is related to the axiomatic approach

in Section 3, there are also crucial differences. First, the axiomatic approach involves no. strategic

interactions; in contrast (and similar to our noncooperative approach in Section 4), the emphasis

here will be on strategic interactions among players and how there emerges a coalition structure

implementing a payoff allocation such that no other coalition can implement an alternative feasible

allocation making all of its members better off. Second, the cooperative approach incorporates the

dynamic interactions that were also present in the previous section.

A non-transferable utility cooperative game is represented by T^ = T (N, j\n, a, v^ (•)), where

vN : P (N) =t R^ 1

is a mapping from the set of coalitions to the set of allocations this coalition can enforce. Notice

that the range of the mapping is not M.+ , but P (

W

+ J
, since typically a given coalition can

enforce more than a single vector of utilities.

We define the mapping v^ inductively. To do this, we first introduce the concept of strong core

(taking as given the definition of a feasible allocation). We then formally define the set of feasible

allocations. Throughout this section, we assume, without loss of generality, that w^ = for any

i € N (this can always be achieved by a linear transformation).

We denote the core allocations for a non-transferable utility game P/v = P (TV, 7|jv, &, vn (•)) by

C (fjv) C R+ . Moreover, for any vector x 6 W+ ', we denote its ith component by X{. Then:

14 By "strong core" we refer to an allocation that cannot be strictly improved upon for all members of a blocking

coalition; see Definition 8. To reduce terminology, refer to this as the "core."
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Definition 8 A vector x G R+ is in the (strong) core for the game fjv = (N,j\n,ol,vn ()), i.e.,

x £ C (fjv) j if and only if it is a feasible allocation and there exists no Z G P (AT) for which there

is z £ i>;v (Z) such that z, > X, for all i E Z.

Given this definition, we define feasible allocations as follows:

Definition 9 A vector x G R< is a feasible allocation if either

i. Xi — for all i e N, ot

2. Xi = Wi (N) for all i £ N, or

5. there exists a subcoalition 7 C JV, 7 / JV, such that x|y 6 CfTyj, where fy =

f (Y, 7|y, a, vy (•)), while x, = for all i <£ Y.

This definition states that feasible allocations include those where all individuals receive zero

payoff; those in which all individuals in the society share the resource according to their powers

(which could be referred to as the "status quo" allocation); and those where a coalition Y distributes

the resource among its members (according to the payoff functions {wi (OlieTV introduced above).

In this latter case, however, not all coalitions are feasible. A coalition Y can only distribute the

resource among its members if it is in the core of the same game restricted to a society identical to

Y. Therefore, this definition is "recursive" in nature; it makes reference to core allocations, defined

in Definition 8.

For a feasible allocation x, let x+ — {i £ N : Xj > 0}, and x° = {i G N : Xj = 0}. Then define

the mapping vjy as follows:.

•j x G R+ : x is feasible > if jx > a7Ar

if (1 - a) 7W < 7A- < ajN . (8)vN {X) =
{

jx G R!f
I

: Xi = V i G n\ U

{x G R ]

+ '

: a* = tOi'(JV) V i G TV
J

{xGM^ 1

:xi = 0VtG n} if 7a- < (1 - a) 7^

Notice that vn (X) is a subset of Mi,. , meaning that coalition X may enforce multiple allocations.

To motivate Definition 9 and the payoff vector in (8), we can reason as follows. Let us suppose

that the allocation that gives Xi = u>i (N) to each i G N is the "status quo" allocation. Then, an

a-majority is needed to overrule this allocation, but 1 — a votes are sufficient to keep the status quo.

That every coalition may enforce allocation Xj = for all i G N is a requirement of the standard
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definition of non-transferable utility cooperative games. Another requirement is that when X cY,

we should have v^ (X) C vn (Y). It is straightforward to check that (8) satisfies both requirements.

The most important feature of this non-transferable utility cooperative game is that even a

winning coalition does not have complete discretion over the allocation; instead, it may only choose

a core allocation for some smaller coalition Y, which is in some sense equivalent to excluding

the players in N \ Y from "sharing the pie" and making players in Y play the cooperative game

f (Y, 7|y,a, vy ()). If an allocation is not in the core of this reduced game, then it cannot be

imposed, since coalition Y would rather choose a different allocation. This feature introduces the

dynamic aspect mentioned above in the context of the cooperative game approach.

Example 3 To illustrate how this game works, consider a society consisting of three individuals

A,B,C with powers (ja ,7b,1c) = (3,4,5), let a = 1/2. Allocation (3/12,4/12,5/12) is a feasible

allocation; to see that it is in the core we need to check whether any coalition that has a majority

of votes can improve for all its members. Take, for instance, coalition {B, C}; it is winning and

therefore can implement any feasible allocation. Both B and C would be better off if they could

give A nothing and share the resource between themselves. However, allocation (0,4/9, 5/9) is not

feasible because the core of the game T ({B,C}
, 7|{b,c}> Q!

>
u{B,C} (')) *s a singleton with xb =

and xq = 1 (C constitutes a majority alone and can implement this allocation). Allocation (0, 0, 1)

is feasible and may be enforced by coalition {B
:
C}. But, naturally it makes player B worse off

than he would have been with the allocation (3/12, 4/12,. 5/12). Likewise we can show that no

other coalition can improve for all its members. Therefore, (3/12,4/12,5/12) is in the core, and it

is easy to verify that no other feasible vector lies in the core.

Our main result in this section is:

Theorem 3 1. For any f"V = f (N, 7|^,a,uyv (•)) with ujv defined by (8), the core C {^n) is

nonempty.

2. Take abstract game T (N, 7|/v, a) and the outcome set
<f>
(N) corresponding to it (characterized

in Theorem 1). Then, for any x £ C (fw ), x+ G 4>{N), and for i G x+ , Xi (i) — Wi {x+ ); vice

versa, for any M € (j) (N) there exists a unique x G C (Fn )
such that x+ G 4> (N) (so there

is a one-to-one correspondence between core allocations and equilibrium ruling coalitions).

Moreover, when Assumption 1 holds, the core C [^n) is a singleton and x+ = 4>(N), where

x the unique element of the core.

Proof. See Appendix C.
_,
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This theorem therefore establishes the equivalence between the axiomatic approach in Section

3, the dynamic game in the previous section, and the cooperative game in this section, even though

each of these three different approaches models the determination of the ruling coalition in a

very different manner. The main idea underlying this result is that only self-enforcing and winning

coalitions can implement payoff vectors that are attractive for their own members. In the framework

of non-transferable utility cooperative games, this is captured by two features: first, only winning

coalitions can implement feasible payoff vectors (Definition 8); second, in addition to zero payoffs

and status quo allocation, only payoff vectors that correspond to core allocations for a smaller game

are feasible (Definition 9). These two features introduce the power and enforcement constraints that

were also essential in the axiomatic and the dynamic game approaches. In view of this, the finding

that the set of core allocations here correspond to the ruling coalitions is perhaps not surprising,

though still reassuring.

6 The Structure of Ruling Coalitions

In this section, we present several results on the structure of ruling coalitions. Given the equivalence

results in the previous two sections, without loss of generality we focus on ruling coalitions of

abstract games T — T (N,j\n,o). In addition to Assumption 1, consider:

Assumption 2 For no X, Y G P (I) such that X cY the equality 7y = a-yx is satisfied.

Essentially, Assumption 2 guarantees that a small perturbation of a non-winning coalition Y

does not make it winning. Similar to Assumption 1 , this assumption fails only in a set of Lebesgue

measure 0. Together, Assumptions 1 and 2 simplify the analysis in this section, and we assume

that they both hold throughout the section, without explicitly stating this in every proposition.

6.1 Robustness

We start with the result that the set of self-enforcing coalitions is open (in the standard topology);

this is not only interesting per se but will facilitate further proofs. Fix a society N and a G [1/2, 1)

and consider the set of power mappings restricted to society N, j\n. Clearly, each mapping is

given by a |JV| -dimensional vector {7;}j 6 jv c ^++- Denote the subset of vectors {7i} iejv ^nat satisfy

Assumptions 1 and 2 by 21 (JV), the subset of 21 (JV) for which $ (JV, {7i} ieAr ,oc) = N (i.e., the subset

of power distributions for which coalition JV is stable) by 6 (JV) and let 9t (JV) = 21 (N) \ 6 (JV).
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Theorem 4 1. The set of power allocations that satisfy Assumptions 1 and 2, 21 (N), its subsets

for which coalition TV is self-enforcing, S (TV), and its subsets for which coalition TV is not

self-enforcing, 71 (N), are open sets in K++- The set 21 (TV) is also dense in m

2. Each connected component o/2l(TV) lies entirely within either 6 (TV) or VI (N).

Proof. (Part 1) The set 21 (TV) may be obtained from M.+ _l
by subtracting a finite number of

hyperplanes given by equations 7^ = jy for all X, Y £ P (TV) such that 1/7 and by equations

jY = ajx f°r aU X,Y E P (TV) such that X c Y. These hyperplanes are closed sets (in the

standard topology of R+_/), hence, a small perturbation of powers of a generic point preserves this

property (genericity). This ensures that 21 (TV) is an open set; it is dense because hyperplanes have

dimension lower than |TV|. The proofs for S (TV) and OT(TV) are by induction. The base follows

immediately since S (TV) = M++ and 71 (TV) = are open sets. Now suppose that we have proved

this result for all k < \N\. For any distribution of powers {7;}ze;v> ^ *s self-enforcing if and

only if there are no proper winning self-enforcing coalitions within TV. Now take some small (in

sup-metric) perturbation of powers {7i}ieN - If this perturbation is small, then the set of winning

coalitions is the same, and, by induction, the set of proper self-enforcing coalitions is the same as

well. Therefore, the perturbed coalition {7^} is self-enforcing if and only if the initial coalition with

powers {7j} is self-enforcing; which completes the induction step.

(Part 2) Take any connected component A C 21 (TV). Both 6 (TV) n A and 71 (TV) n A are open

in A in the topology induced by 21 (TV) (and, in turn, by K++) by definition of induced topology.

Also, (6 (TV) n A) n (71 (TV) n A) = and (6 (TV) n A) U {71 (TV) n A) = A, which, given that A

is connected, implies that either S (TV) n A or 91 (TV) n A is empty. Hence, A lies either entirely

within 6 (TV) or 71 (N). This completes the proof.

An immediate corollary of Theorem 4 is that if the distribution of powers in two different

games are "close," then these two games will have the same ruling coalition. To state and prove

this proposition, endow the set of mappings 7, X*, with the sup-metric, with distance given by

p(7) 7') = suPieJ* \li
~

Til- Define a ^-neighborhood of 7 as {7' € I* : p (7, 7') < 5}.

Proposition 1 Fix a society TV, a e [1/2, 1) and a power mapping 7 : TV —> K++. Then:

1. There exists 5 > such that if 7' : TV —> M++ lies within 8-neighborhood of 7, then

$(TV,7,q) = cE>(TV,y,a).

2. There exists 5' > such that if a' 6 [1/2,1) satisfies \a' — a\ < 5', then $ (TV, 7, a) =

$(TV, 7 ,a').
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Proof. We prove this Proposition by induction. IfN = 1, it is trivial: for any 7 and a, $ (TV, 7, a) =

{N}. Now assume that we have proved this result for all societies with \N\ < n; take any society

N with \N\ — n. We take advantage of the inductive procedure for determining <fr (A", 7, a), which

is described in Theorem 1. Indeed, since we assume that Assumptions 1 and 2 hold, then the set

M (N), as defined by (4), is the same for r(A", 7, a), r (A", 7', a), and T(A/', 7, a'), provided that

5 is sufficiently small (we use induction to get that self-enforcing coalitions remain self-enforcing

after perturbation). Moreover, if 5 is small, then jx > jY is equivalent to 7^. > 7y. Therefore,

(3) implies that $ (N, 7, a) = $ (N, 7', a) = $ (N, 7, a')- This completes the proof.

In addition, we prove that the mapping 4> is "robust" in the sense that the inclusion of sufficiently

weak player (s) does not change the ruling coalition in a society.

Proposition 2 Consider a game Y — Y (N U M, 7\num,&) with arbitrary disjoint finite sets M
and N. Then exists 5 > such that for all M such that -yM < 5, (p (N) = <j> [N U M).

Proof. The proof is by induction. Let |7V| = n. For n — 1 the result follows straightforwardly.

Suppose next that the result is true for n. If 5 is small enough, then (A'') is winning within M UN;

we also know that it is self-enforcing. Thus we only need to verify that there exists no X C N UM
such that 4>(X) = X, i.e., X that is self-enforcing, winning in N U M and has jx < l<t>(N); To

obtain a contradiction, assume the contrary, i.e. that the minimal winning self-enforcing coalition

X e P{MUN) does not coincide with <j> (N). Consider its part that lies within N, X (IN. By

definition, 7^ > 7^^) > lx ^ 7xnJV> where the strict inequality follows by hypothesis. This string

of inequalities implies that X n N is a proper subset of AT, thus must have fewer elements than

n. Then, by induction, for small enough 5, 4>(XC\N) = <f>(X) — X (since X is self-enforcing).

However, <f>(X Pi N) C N, and thus X C N. Therefore, X is self-enforcing and winning within

N (since it is winning within M U N) . This implies that 7^(7v) < Jx (since
<f>
(N) is the minimal

self-enforcing coalition that is winning within N). But this contradicts the inequality "i^tm > 7x

and implies that the hypothesis is true for n + 1. This completes the proof.

Essentially, Proposition 2 says that mapping <p is "continuous at zero" , in the sense that adding

a group of agents with limited powers to the society (which is equivalent to changing their power

from to small positive values) does not change the ruling coalition. Indeed, while we did not

define
<f>

f°r societies where some of the members have power, it is natural to think that they do

not have an impact in votings or in resource allocation. Here, we prove that agents (or groups of

agents) with sufficiently small power have no impact either.
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6.2 Size of Ruling Coalitions

The next question we address is how many players may be included in the ruling coalition. We

start with the case of majority rule and then consider supermajority rules. These result implies

that relatively little can be said about the structure of ruling coalitions without putting some more

structure.

Proposition 3 If a — 1/2, the following statements are true.

1. For any n and m such that 1 < m < n, m ^ 2, there exists a set of players N, \N\ = n, and

a generic mapping of powers 7^ such that \4>(N)\ — m. In particular, for any m/2 there

exists a self- enforcing coalition of size m.

2. There is no self-enforcing coalition of size 2.

Proof. (Part 1) Given Proposition 2, it is sufficient to show that there is a self-enforcing coalition

M of size m (then adding n — m players with negligible powers to form coalition N would yield

4> (N) = (/> (M) = M). Let i e. M = {1, . .
.

, m} be the set of players. If m — 1, the statement is

trivial. Fix m > 2 and construct the following sequence recursively: 7 X
= 2, y

k > X^-a lj f°r au
"

k = 2, 3, . .
. ,m — 1, 7m = YlT=i lj ~ 1- It is straightforward to check that numbers {7;}jg^ are

generic.

Let us check that no proper winning coalition within M is self-enforcing. Take any proper

winning coalition X\ it is straightforward to check that \X\ > 2, for no single player forms a

winning coalition. Coalition X either includes jm or not. If it includes 7m and is not proper, it

excludes some player k with k < m; his power 7 fc
> 2 by construction. Hence, jm — YlT=i lj ~ * >

isYlT=i lj ~ Ik ^ 7x\{m}> which means that -fm is stronger than the rest, and thus coalition M
non-self-enforcing. If it does not include 7TO , then take the strongest player in X; suppose it is fc,

k < m — 1. However, by construction he is stronger than all other players in X, and thus X is not

self-enforcing. This proves that M is self-enforcing.

(Part 2) If |X| = 2 and Assumption 1 holds, then one of the players (denote him i) is stronger

than the other one, and thus {i} is a winning self-enforcing coalition. But then, by Corollary 1, X
cannot be self-enforcing.

The first part of Proposition 3 may be generalized for a > 1/2. Moreover, in that case, any size

(including 2) of self-enforcing coalitions is possible.
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Proposition 4 Take any collection of players T, any power mapping 7 : I —
> R++, and suppose

that a > 1/2. Then for any n and any m such that 1 < m < n there exists a set of players

N, \N\ = n, with powers 7^ such that \<fr(N)\ — m. In particular, there exists a self- enforcing

coalition of size m.

Proof. The proof is identical to that of Part 1 of Proposition 3. The recursive sequence should be

constructed as follows: r

y 1
— 2, 7 fc

> a J2jZi 7j for all fc = 2, 3, . .
. , m — 1, 7m = a Sjll Ij — 1-

These results show that one can say relatively little about the size and composition of the

equilibrium ruling coalition without taking the specifics of the distribution of powers among the

individuals into consideration. For the case when power distribution is nearly uniform, we have the

following sequence of results.

Proposition 5 Fix a society N, a 6 [1/2, 1) and a power mapping 7 : N —
> R++. Then:

1. Let a — 1/2 and suppose that for any two coalitions X, Y £ P(N) such that \X\ > \Y\ we

have 7A- > jY (i- e -> larger coalitions have greater power). Then c/)(N) — N if and only if

\N\ = km where km = 2
m - 1, m € Z.

2. Let a = 1/2. Consider set of players T = N and define

2
n - 1

7n = 7 (n) = —^- (9)

for each n E N. Let Nn — {1, .... ,n} G P{Z)- Then in the game

r (ATn ,7|jvn ,a) the equilibrium ruling coalition has size m (i.e. \<j)(Nk)\ — m) where m =

max {zeiVn |2 = 2': -l/orfceN}.

3. For the condition VX, Y G P (N) : \X\ > \Y\ => -yx > yy to hold, it is sufficient to require

that there exists some A > such that

E|a~ 1
I

<1: (10)

4. More generally, suppose a 6 [1/2, 1) and suppose that 7 is such that for any two coalitions

X C Y C N such that \X\ > a\Y\ (\X\ < a \Y\ , resp.) we have jx > alY (lx < alYi

resp.). Then <p(N) = N if and only if \N\ — fcm>a where k\ >a = 1 and kmtC

for m > 1, where [z] denotes the integer part of z

fc-m— 1 + 1

5. For any mapping 7|jv that satisfies Assumptions 1 and 2 there exists 5 > such that

maxjjgAr^1 < 1 + 5 implies that \X\ > a\Y\ (\X\ < a\Y\, resp.) whenever ^x > ajY
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(Jx < aly-> resp.). In particular, coalition X € P (N) is self- enforcing if and only if

l-X" |

= fcm,a for some m (where km
,
a is defined in Part 3).

Proof. (Part 1) Let us check that the condition in Part 4 is satisfied. Take any X C Y c N.

Obviously, \X\ ^ \ \Y\ <=> \X\ ^\Y\X\ =» 7A- ^ ^Y\x <s=^ Ix ^ \lY- Now let us check

that /cm 's in Part 1 and in Part 4 are equal. Indeed, k\ — 2
1 — 1 = 1 and if fcm_i = 2m_1 — 1 then

fcm = 2
m — 1 = [2/cm_i] + 1. By induction, we get that Part 1 follows as a special case of Part 4.

(Part 2) The statement follows immediately from Part 1.

(Part 3) Assume the contrary, i.e., that for some X, Y C N such that \X\ > \Y\ we have

lx < lY- Tnen the same inequalities hold for X' = X \ {X D Y) and Y' = Y \ (X n Y), which do

not intersect. Mathematically,

This implies

and thus

E^Ef

Efif-'H^Efif-O +M

i<W-|r|<E(^-0-E(|-^ E |?-i

Rearranging, we have

E^-O-Eff-^ E |7i

However, .X
7 and V do not intersect, and therefore this violates (10). This contradiction completes

the proof of Part 3.

(Part 4) The proof is by induction. The base is trivial: a one-player coalition is self-enforcing,

and | AT |
= k\ — 1. Now assume the claim has been proved for all q < \N\, let us prove it for

q = |AT|. If \N\ = km for some m, then any winning (within N) coalition X must have size at

least a (
m~ 1 + l) > a m ~ l = /cm_i (if it has smaller size then jx < Q7w)- By induction, all

such coalitions are not self-enforcing, and this means that the grand coalition is self-enforcing. If

|Af| 7^ km for any m, then take m such that fcm_i < \N\ < km . Now take the coalition of the

strongest A:m_i individuals. This coalition is self-enforcing by induction. It is also winning (this

follows since k771—1 = cn(km — l) > a
|

AT |, which means that this coalition

would have at least a share of power if all individuals had equal power, but since this is the

strongest km-\ individuals, the inequality will be strict). Therefore, there exists a self-enforcing
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winning coalition, different from the grand coalition. This implies that the grand coalition is not

self-enforcing, completing the proof.

(Part 5) This follows immediately from Part 4 and Proposition 4.

Consequently, while it is impossible to make any general claims about the size of coalitions

without specifying more details about the distribution of power within the society, we are able

to provide a tight characterization of the structure of the ruling coalition when individuals are

relatively similar in terms of their power.

6.3 Fragility of Self-Enforcing Coalitions

Here, we show that while the structure of ruling coalitions is robust to small changes in the dis-

tribution of power within the society, it may be fragile to more sizeable shocks, such as adding or

losing a member of the ruling coalition. The next proposition establishes that under simple ma-

jority rule, self-enforcing coalitions are fragile in the sense that addition or subtraction of a single

agent from these coalitions or, more generally, a union of two disjoint self-enforcing coalitions leads

to a non-self enforcing coalition.

Proposition 6 Suppose a — 1/2 and fix a power mapping 7 : X —> M++. Then:

1. If coalitions X and Y such that X D Y — are both self- enforcing, then coalition X U Y is

not.

2. If X is a self-enforcing coalition, then X U {i} for i ^ X and X \ {i} for i & X are not

self- enforcing.

Proof. (Part 1) Either X is stronger than Y or vice versa. The stronger of the two is a winning

self-enforcing coalition that is not equal to X UY. This implies that X U Y is not the minimal

winning self-enforcing coalition, and so it is not the ruling coalition in X UY.

(Part 2) For the case of adding, it follows directly from Part 1, since coalition of one player is

always self-enforcing. For the case of deleting: suppose that it is wrong, and the coalition is self-

enforcing. Then, by Part 1, adding this person back will result in an non-self-enforcing coalition.

This is a contradiction which completes the proof of Part 2.

6.4 Power and the Structure of Ruling Coalitions

One might expect that an increase in a—the supermajority requirement—may increase the size

of the ruling coalition and also turn otherwise non-self-enforcing coalitions into self-enforcing ones
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(e.g., coalition (3, 4) is not self-enforcing when a = 1/2, but becomes self-enforcing when a > 4/7).

Nevertheless, this is generally not the case.

Proposition 7 An increase in a may reduce the size of the ruling coalition. That is, there exists

a society N, a power mapping 7 and a, a' G [1/2, 1), such that a' > a but for all X G 3> (TV, 7, a)

and X' G $ (N, 7, a'), \X\ > \X'\ and jx > -yx ,

.

Proof. The following example is sufficient to establish this result: coalition (3, 4, 5) is self-enforcing

when a = 1/2, but is not self-enforcing when 4/7 < a < 7/12, because (3, 4) is now a self-enforcing

and winning subcoalition.

Intuitively, higher a turns certain coalitions that were otherwise non-self-enforcing into self-

enforcing coalitions as expected, but this implies that larger coalitions are now less likely to be

self-enforcing and less likely to emerge as the ruling coalition. This, in turn, makes larger coalitions

more stable. This proposition therefore establishes that greater power or "agreement" requirements

in the form of supermajority rules do not necessarily lead to larger ruling coalitions.

The next proposition establishes the complementary result that an increase in the power of an

individual can remove him out of the ruling coalition. To state this result, let us use the notation

jG# (N, 7, a) to denote a situation in which X G $ (N, 7, a) such that j G X.

Proposition 8 There exist a society N, a G [1/2,1), two mappings 7,
7'

: N —
> K++ satisfying

li —
l'i for aM i ¥" j> lj < l'j such that j G $(N, 7, a), but j G' $ {N, 7', a). Moreover, this

remains correct if we require j to be the strongest individual in both cases, i. e. Ji — Ji < lj < l\

for all i 7^ j.

Proof. Take a = 1/2, five players A, B, C, D, E with 7^ = j'A — 2, jB = 7^ = 10, 7^ = 7^ = 15,

lD = 7
'

D = 20, 7£ = 21, and -y'E = 40. Then $(#,7, a) = {A,D,E}, while $(N,j',a) =

{B, C,D}, so player E, who is the most powerful player in both cases, belongs to $ (iV, 7, a) but

not to $ (AT, 7', a), m

Proposition 8 shows that being more powerful may be a disadvantage, even for the most powerful

player. This raises the question of when the most powerful player will be part of the ruling coalition.

This question is addressed in the next proposition.

Proposition 9 Suppose that N = {1, .. ., \N\}, a G [1/2, 1), and 7^ is such that r

y 1 , . . . ,1\n\ is an

increasing sequence. Consider the game T (AT,7|jv, oi). If 1^ G ( -5-^X^=2 7j) J^E Sj'=i T?')>

then either coalition N is self-enforcing or the most powerful individual, \N\, is not a part of the

ruling coalition.
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Proof. Inequality 71^1 > y^ S?=2 1j implies that any coalition that includes |N|, but excludes

even the weakest player will not be self-enforcing. The inequality 7^ < j^ Sj=2 7j implies that

player \N\ does not form a winning coalition by himself. Therefore, either N is self-enforcing or

cf) (N) does not include the strongest player. This completes the proof.

6.5 Self-Enforcing Coalitions When N = 3

In this subsection, we illustrate the structure of equilibrium ruling coalitions more explicitly for the

case N = 3. This representation also shows that even in this most simple environment, an increase

in a might make it less likely that larger coalitions emerge as the ruling coalition.

We use the geometric representation already introduced in the Introduction. Generally, the

geometric representation of an N player game uses the (N — l)-dimensional simplex to depict all

potential power allocations, which are represented by points (7^ ...,7jv) with 7; > and ^7; = 1

(where this last equality is without loss of generality). As discussed in the Introduction, there

are two kinds of constraints that define the set of all self-enforcing coalitions: "power constraints"

1 ^2jeK lj — a \ which are always parallel to be respective (K — l)-dimensional facet, and "enforce-

ment constraints," which correspond to (quasi-)cones.

Figure 2 shows the evolution of the set of self-enforcing coalitions as a changes from 1/2 (simple

majority) to 1 (unanimous voting rule) for the case with TV = 3. The set of power configurations

such that the grand coalition is the ruling coalition is shaded. The first panel corresponds to the

case a — 1/2. For any point (71,72,73) outside the shaded triangle, there is some member % who

has power 7^ > 1/2. The second panel corresponds to the case when a becomes larger than 1/2; it

demonstrates that the set of self-enforcing coalitions, while remaining a union of a finite number of

convex sets, may have non-convex connected components. Interestingly, the "central coalitions",

i.e. those close to (1/3, 1/3, 1/3), which were self-enforcing when a — 1/2, cease to be self-enforcing

when a increases. The reason is that with a > 1/2, there is a range of 2-person self-enforcing

coalitions; the fact that they are self-enforcing makes 3-person coalitions containing them non-

self-enforcing (Figure 2). When a is large enough, but still less than 2/3, the set of self-enforcing

coalitions coalition set becomes a union of a finite number of convex connected components (namely,

of three trapezoids). When a = 2/3, the trapezoids become triangles.
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Figure 2

The third panel shows that when a > 2/3 (and this generalizes straightforwardly to a >

(N — 1) /N for an arbitrary TV), there is a new part to the self-enforcing coalition set around. This

demonstrates that the self-enforcing coalition set is non-monotonic in a: the coalitions close to

(1/3, 1/3, 1/3) are self-enforcing again. This new set of self-enforcing coalitions increases with a

and eventually grows to cover all points when a approaches 1, but for all a such that 2/3 < a < 1,

it is a joint of four triangles as shown in the third panel. Obviously, points in the "middle" set

of self-enforcing coalitions are more stable than other self-enforcing coalitions: even if there is a

random shock that eliminates some players, the remainder is a self-enforcing coalition.

7 Extensions

In this section, we discuss two extensions of our basic framework. First, we show how this framework

can be applied for thinking about endogenous party formation, and second we show how reallocation

of power within a group can be beneficial for all group members (which is a form of "giving up the

guns" mentioned in footnote 7).

7.1 Party Formation

If there were no enforcement constraints, the minimal winning coalition would always emerge as

the ruling coalition.
15 However, we have seen that the ultimate ruling coalition is not necessarily

the minimal winning coalition. This is because the minimal winning coalition might not be self-

enforcing (e.g., as is coalition (3,4) in (3,4,5)), and thus cannot form a ruling coalition. What

prevents the formation of this coalition is the fact that its members do not to trust each other. If

somehow they could enter into binding agreements, the minimum winning coalition could emerge

ISX e P (N) is a minimal winning coalition within TV if jx > cryN and 7X < 7Z for any Z e P (N) such that

~1z > QTn-
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as the ultimate willing coalition. In this subsection, we think of party formation as a way of forming

binding agreements among a subset of agents. In particular, we allow some of the players to form

permanent alliances, effectively merging into a single member with combined power. Another way

is to allow members of a coalition freely transfer (shares of) their power to each other to make the

coalition self-enforcing, which is explored in the next subsection.

More specifically, consider the party-formation game T', which is identical to the game T in

Section 4, except that there is now a first stage before T is played, in which a subset of agents can

form a binding coalition, a "party," and this party plays the game as a single agent. The result

of this party-formation game will be that the minimal winning coalition will form a party and will

guarantee power for its members.

Proposition 10 Suppose Assumption 1 holds and let X be the minimal winning coalition, i.e.,

X — {Z £ P (X) : 7Z > a-yN and $Y with jY € (
alNilz)}- Then, in the party-formation game

r'(N,j\N ,a), the URCisX.

Proof. The proof follows the steps of the proof of Theorem 2 and is omitted.

7.2 Power Exchange

We have seen that individuals can be made worse off by having more power. This naturally raises

the question of whether individuals would like to relinquish their power (for example, give up their

guns in the context of fighting preceding political decision-making) . We now investigate this issue

under the assumption that a — 1/2. Our main result is that any minimal winning coalition X can

redistribute power in such a way that it becomes self-enforcing, and each member of X is better

off than he would have been without power redistribution.

The next result demonstrates that when the size of the minimal winning coalition exceeds 2

(i.e., if \X\ > 3), X can redistribute power to become self-enforcing, with each member becoming

strictly better off than they would have been in the initial allocation.

Theorem 5 Suppose that a = 1/2, the grand coalition N is ruling, and X is a minimal winning

coalition in N. Then, provided that \X\ > 3, there exists a redistribution of power among the

members ofX such that X becomes the ruling coalition and implements a payoff Wi for each i E N,

such that Wi > wi (N) for all i 6 X.

Proof. We will make our argument in terms of agents' power (7i,..-,7at) and then use our as-

sumptions about payoff functions to prove the claim. Without loss of generality, assume that

12ieN "fi
~ 1' and denote W = X^eivvx 7i- We will prove the claim in the theorem in two steps.
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(Step 1) Suppose that there exists k £ X such that coalition X \ {k} is not self-enforcing.

Consider the parametrized family (7? );Gx of distributions of power in coalition X : ~fk
=

7fc
+ WP and

7f = 7. +—_I< W(l-P).
2^,iex\{k} li

When = 1, k alone forms a winning coalition, since

iex\{fc}

(Otherwise, coalition X \ {A;} is winning which contradicts the minimality of X.) We claim that

there exists some ft such that with
( jf ) X becomes a self-enforcing coalition and since it is the

minimal winning coalition, it becomes the ruling coalition.

Let p be determined by

i£X\{k}

(Such /3 exists since 7 fc
< J2ieN\{k} 7i by assumption). Since < /3 < 1, 7,

° > 7, for any i £ X.

Now let C be a positive number such that

tJ'-c < £ f-yf
-—

^

1x1-1
iSA'\{fc}

v
'

'

*e*\{fcj} x
' '

for any j £ X \ {fc}. Then coalition I 7 fc
= 7 fc

° — C> (7i
= 7, ° + |xf-i ) )

is a ruling coalition,

implementing a payoff vector with higher payoffs for each member of the minimal winning coalition.

(Step 2) Now suppose that for any k £ X, coalition X \ {k} is self-enforcing. Then any

coalition X \ {k,j} is not self-enforcing (adding one player to a self-enforcing coalition makes it

non-self-enforcing). Assume without loss of generality that 7} = max,ex7i, and *yM — minjex7j-

Coalition X \ {1, M} is not self-enforcing. Therefore, there exists a coalition i'Cl\{l
l
M} such

that Y is self-enforcing and

1 (Y)> 7 ((X\{1,M})\Y).

Since 7 (X \ {1}) — 7 (X \ {1, M}) = jMt if we divide jM proportionally between the members of

Y coalition, the resulting new coalition Y' will make coalition X \ {1,M} not self-enforcing and

7j > 7j for all i £ X.
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there exists a unique mapping, which is generically single-valued, that satisfies these axioms. This

provides an axiomatic way of characterizing the ruling coalitions for any game.

We support this notion by showing that the result of our axiomatic analysis also follows from

the "reasonable equilibria" of a dynamic game of coalition formation and also as the unique core

allocation of a related non-transferable cooperative game. In particular, we construct a simple

dynamic game that captures the same notions that a ruling coalition should have a certain amount

of power and should be self-enforcing (stable). As with other dynamic voting games, this game

possesses many subgame perfect equilibria. We propose the notion of sequentially weakly dominant

equilibrium as an equilibrium concept for this and related games (which referred to as agenda-

setting games). We prove that agenda-setting games always have sequentially weakly dominant

equilibria and Markov trembling and perfect equilibria. Moreover, in our dynamic game, both

concepts generically yield a unique equilibrium allocation.

After establishing these results on the existence of equilibria and ruling coalitions in related

axiomatic, noncooperative and cooperative games, we present a series of results on the structure of

ruling coalitions. In particular, we establish the following results:

• Despite the simplicity of the environment, the ruling coalition can be of any size relative to the

society, and may include or exclude more powerful individuals in the society. Consequently,

the equilibrium payoff of an individual is not monotone in his power.

• Self-enforcing coalitions are generally "fragile," especially under majority rule. For example,

under majority rule, adding or subtracting one player from a self-enforcing coalition makes

it non-self-enforcing. Despite this type of fragility of self-enforcing coalitions, we also show

that the ruling coalition is "continuous," in the sense that two games where the powers of the

players are sufficiently close will have the same ruling coalition.

• Somewhat paradoxically, an increase in a—that is an increase in the degree of supermajority

necessary to make decisions—does not necessarily lead to larger ruling coalitions. Also, the

most powerful individual will be often excluded from the ruling coalition, unless he is powerful

enough to win by himself or weak enough so as to be part of smaller self-enforcing coalitions.

• Coalitions of certain sizes are more likely to emerge as the ruling coalition. For example, with

majority rule, i.e., a = 1/2, the ruling coalition cannot (generically) consist of two individuals.

Moreover, again when a — 1/2, coalitions where members have roughly the same power exist

only when the coalition's size is 2
k — 1 where k is an integer.
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There axe a number of natural areas for future study. A similar approach blending axiomatic

foundations and dynamic games can be adopted to analyze the structure of ruling coalitions in

a more general class of political games, where there are multiple resources to be distributed (or

multiple policies over which individuals disagree). Our results on general agenda-setting games

suggest that the approach here might be extended to this more general setting. Another interesting

area for future research would be to investigate what types of coalitions will form when there is some

randomness in the environment, for example, if the powers or preferences of different individuals

may change by a small amount after the coalition is formed. Such an approach would allow us to

determine the extent to which a coalition is "robust" and also to quantify what "price" the coalition

is willing to pay for robustness by including individuals that may not be necessary for obtaining a

majority.

39



Appendix A: Markov Trembling-Hand Perfect Equilibria

We now introduce the notion of Markov Trembling-Hand Perfect Equilibria (MTHPE) and establish both a

number of general results about MTHPE and also prove that the results in Section 4 apply with MTHPE
in the same way as they do with SWDE. With the terminology in subsection 4.2, we have:

Definition 10 A continuation strategy u1 '* is Markovian if

J* (ft'
-1

) = a^ (A'" 1

)

for all ft'
-1

, ft'
-1

e .H"'
-1 such that for any a1

'', a*'* € Ai
<
t and any a

-!
'' 6 A" 1

'
1 we have

u* (a*-*,^*
|

ft'
-1

) > u 1

(a
l
-',a

-i ''
|

ft'
-1

)

implies that

u* (V'',a
-i ''

|
ft'

-1
)
> u* (a

i
*',a-

t
'
t

|
ft'

-1
) .

Definition 11 We say that a strategy profile (a
1

, ..., a
n

) of an extensive-form game in agent-strategic form is

Markov Trembling-Hand Perfect Equilibrium (MTHPE) if there exists a sequence of totally mixed Markovian

strategy profiles
{
[a

1
(m) , . .

.
, <x

n
(m)) } „ (meaning that continuation strategy al, ° (m) is Markovian for

all i = 1, ... ,n and all m £ TV) such that (a
1

(771) ,... ,a
n
(m)) —> (a

1
,

. .
.

,

an ) as m — 00 and

u 1

(a
1

, a~
l

(m)) > ul
(a*, <r

-t
(m)) for all <t' 6 E', for all m 6 M and for all i = 1, . .

.
, n.

We say that a strategy profile (a , ..., <r
n

) of an extensive-form game in strategic form is Markov Trembling-

Hand Perfect Equilibrium (MTHPE) if it is MTHPE is corresponding agent-strategic form game.

Note that MTHPE is defined directly in the agent-strategic form in order to avoid standard problems

that arise when trembling hand perfection is defined on the strategic form (e.g., Selten, 1975, Osborne and

Rubinstein, 1994). After characterizing the SWDEs of our game, we will also characterize the MTHPEs for

game T and show their equivalence.

We next show that for our extensive form game the MTHPE refinement leads to the same equilibrium

URC and payoffs as the SWDE. Our main results are contained Theorem 7, which is the equivalent of

Theorem 2 for MTHPE under Assumption 1. In addition, we will establish that an MTHPE exists in a

more general class of political games, which we refer to as agenda-setting games. 16 We will also show that

in this class of games, every MTHPE is an SWDE, so an SWDE exists. Nevertheless, these two equilibrium

concepts do not always coincide. First, a MTHPE always exists, while SWDE may not. Second, there may
exist SWDEs that are not MTHPE (see Theorem 6 and Appendix B).

Let us first define general agenda-setting games, which include most voting games as a special case, and

establish the existence of MTHPE and SWDE for these games.

Definition 12 A finite perfect-information game T in extensive form with a set of players TV U {Nature} is

called an agenda-setting game if and only if at each stage £ either

1. only one player (possibly Nature) moves, or

2. there is voting among .the players in X C TV. Voting means that

(a) each player i e X has two actions, say a\ (£) and a™ (£);

(b) those in TV \ X have no action or only one action at this stage;

16 Another trembling hand refinement used in the literature, truly perfect equilibrium, is stronger than our notion of

MTHPE. A truly perfect equilibrium requires strategies from a to be best responses to all fully mixed profiles in some
neighborhood of a rather than to one sequence of profiles in the standard case and to one sequence of Markovian

profiles in the case of MTHPE. However, this equilibrium concept fails to exist in many games, including our dynamic

game of coalition formation (except in some special cases).
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(c) there are only two equivalence classes of subgames following node £ (where equivalence classes

of subgames include subgames that are continuation payoff identical), say y (£) and n (£);

(d) for each player t el and for any other players' actions held fixed, the action a\ (£) does not

decrease the probability of moving into the equivalence classes of subgames y (£).

This definition states that any game in which one of the agents makes a proposal and others vote in

favor or against this proposal is an agenda-setting game. Moreover, any perfect-information game where

players move sequentially is an agenda-setting game, as is any game with consecutive votings over pairs of

alternatives. Clearly, our dynamic game here is an agenda-setting game. We prove the following general

result about equilibria in agenda-setting games.

Theorem 6 1. Any finite extensive-form game has a MTHPE (possibly in mixed strategies).

2. Any agenda-setting game has a MTHPE and a SWDE in pure strategies.

3. In an agenda-setting game, any MTHPE is a SWDE.

4- There exist games where a MTHPE is not a SWDE.

5. There exist agenda-setting games where a SWDE is not a MTHPE.

Proof. (Part 1) Consider a perturbed game where each player i 6 N is confined to play each action

at each stage with probability rfk t
> n > 0, where r\ is a small number, to each of its finite number of

actions in each stage. By the standard fixed point theorem argument, this perturbed game has a Nash
equilibrium; moreover, the fixed point theorem applies if we restrict our attention to Markovian strategies

only. Therefore, the perturbed game has a Markov Perfect Equilibria (a
1

(77) , . . . ,a" (77)). Because the

action space has finite dimensions and is thus compact, we can choose a sequence 77
1

,
n2

, . . . which converges

to such that (a
1
(rf) , . .

.
, an (rj

k
)) has a limit. This limit would be a trembling-hand perfect equilibrium

in Markovian strategies, i.e. an MTHPE.
(Part 2) Let us prove that an agenda-setting game has a MTHPE in pure strategies, then the result for

SWDE will immediately follow from Part 3. We do this by induction on the number of stages. The base is

trivial; indeed, consider a one-shot agenda-setting game. If this stage is one-player move, then, evidently, the

action which maximizes his utility constitutes a pure strategy MTHPE, since it is Markovian and trembling-

hand perfect. If the single stage is voting, then each player i weakly prefers one of the outcomes to another.

It is trivial to check that voting for a weakly preferred outcome is an MTHPE.
Now proceed with the induction step. Suppose that we have proved the existence of pure strategy

MTHPE in all agenda-setting games with number of stages less than T; take an agenda-setting game with

T stages. Consider its first stage. Suppose that there is one player i making a choice between k actions

ai, . . . ,afc. In each of k corresponding subgames there exists (by induction) a pure strategy MTHPE; we
can choose the same MTHPE for isomorphic subgames. Therefore, there exist sequences of strategy profiles

crj,cr^,. .. for each j G {1, ...,k} which converge to a pure strategy MTHPE for each such j and which

are Nash equilibria in constrained game; moreover, we can require that if two subgames (for j = j±,J2 are

isomorphic, then a^ = o™
2

for any n. Now, consider player i at first stage. For any n, there is jn such that

aj n is weakly better than other actions. Since there are a finite number of actions, there is action j such that

aj is weakly better than other actions for infinitely many values of n. It is now straightforward to prove that

aj , along with the chosen MTHPE, forms a pure strategy MTHPE of the whole game. Now suppose that

the initial stage is a voting. Then there are two subgames; take a pure strategy MTHPE in each (if they

are isomorphic, take the same MTHPE) , and we can similarly construct two sequences of strategy profiles

ay ,o~y ,. . . and cr^,<7^, . . . Each player i has two actions, y and n, in stage 1. Consider one of players (i)

and take any m. If in the subgames strategies o™ and a™ are played, respectively, then player i weakly

prefers to choose one of the actions, y or n, to another one. There is an action a (i) which is weakly preferred

for infinite number of m's. Now consider two subsequences of sequences cr
y , ay , .

.

. and u\, a\, . . . which

are formed by values of m for which a(i) is weakly better for player i. Take another player, j, and repeat

the procedure; then we will get action a (j) and two subsequences of the previous subsequences. Since the

number of players is finite, we can proceed in this way, and for any player i find action a (i). It is now evident
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that the MTHPEs chosen for the stages starting from the second one and actions a (i) for each player i at

the first stage, form a pure strategy MTHPE.
(Part 3) Next take any strategy profile a that forms a MTHPE. This is proved by backward induction

on the number of stages in the game. Suppose that the Lemma has been proved for games with q' < q stages.

Consider an agenda-setting game with q stages and take any MTHPE in it. By induction, this MTHPE,
when truncated to any of the game's proper subgames, forms a SWDE. Consider its first stage.

Suppose that only one player i moves at this stage and denote his expected utility (in this MTHPE)
from making action a at first stage by uf. If action a* is an action played with a non-zero probability in

equilibrium then uf > uf for any other feasible action a (otherwise there would exist a payoff-improving

deviation). Hence, all actions played in a MTHPE with a non-zero probability yield the same expected

utility for player i , and this utility is maximum possible over the set of feasible actions. Hence, this MTHPE
is a SWDE.

Now consider the other situation where the first stage is a voting stage. Consider a profile a' consisting of

fully mixed strategies and suppose that it is 77-close to a for a small 77. Depending on how other players vote,

three mutually exclusive situations are possible: proposal is accepted regardless of how player i votes, it is

rejected regardless of how he votes, and player i is pivotal; let fi
+

, fj,~ , and fi
p be the respective probabilities

of these events. By definition, /i
+ + fi~ + yP = 1, and by assumption fi

p > 0. Voting for the proposal

yields (y
+ +

fj,

p
) uf + [iTu~' in expectation, voting against it yields n

+uf + (/jT + /j
p

) uf where uf and

uf are i's utilities from acceptance and rejection of the proposal if profile a' is played. Thus, if uf > uf
then player i's sole best response is voting for the proposal, and if uf < uf it is voting against it. If r\ is

sufficiently small then uf > uj implies uf > u^' , and thus by definition of MTHPE player i must support

the proposal in equilibrium with probability one. Similar reasoning applies to the case uf < u~

.

Now take any player i who participates in voting. If uf > u
t
~, then he votes for the proposal in this

MTHPE. This is a weakly dominant strategy for him (given continuation strategies of himself and other

players). Similarly, if uf < u[~ then the strategy he plays in this MTHPE is weakly dominant. If, uf = u~
or the player is never pivotal, any strategy is weakly dominant. Therefore, for any player, the strategy he

plays in this MTHPE is weakly dominant, and thus this MTHPE is a SWDE. This completes the induction

step.

(Part 4) Consider a one-stage game with two players making simultaneous moves with payoff matrix

I r

L (1,1) (0,0) .

R (0,0) (1,1)

This game does not have SWDE, because it is one-stage and in that only stage neither of the players has a

weakly dominant strategy. It is straightforward to check, however, that both (L, I) and (R, r) are MTHPEs
of this game.

(Part 5) This follows from Example 7 in Appendix B.

In addition to the existence results, which are of interest in and of themselves, Theorem 6 establishes

that while MTHPE and SWDE are not subsets of one another in general, but for agenda-setting games an

MTHPE is always a SWDE (so within this class of games SWDE is a stronger concept). This implies, in

particular, existence of a SWDE in an agenda-setting game, which then follows from existence of an MTHPE.

Theorem 7 Any extensive-form game T(N, 7|jv,q) has at least one pure strategy MTHPE. Moreover, sup-

pose that Assumption 1 holds. Then any MTHPE (in pure or mixed strategies) is a SWDE, and, in particular,

the only ultimate ruling coalition (URC) is given by <j>(N) as defined in Theorem 1. The URC is reached

after one stage of elimination, and the payoff of each i £ N is given by (7).

Proof. For any N, game T (N, 7^, a) is an agenda-setting game as it satisfies Definition 12. By Theorem
6 a pure strategy MTHPE always exists and, moreover, any MTHPE is a SWDE. The rest of the Theorem
7 follows immediately from the characterization of SWDEs in Theorem 2.
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9 Appendix B: Examples

SPNE and MPE in the Dynamic Game

Example 4 Let a = 1/2, |TV| = 4, TV = {,4, B, C, D], players' powers be given by -yA = 4, -yB = 5, jc = 6,

-yD = 8, and players' utilities from coalitions be given by (2). Take some MTHPE a* of the dynamic game
f (TV, -y\iv,a) and consider the following modification ax, where X is one of the six three-player coalitions

of players from TV. Before any elimination, if X is proposed, player i votes y if i 6 X and votes n if i ^ X;
if any proposal other than X is made, all players vote n. If player i € X is the agenda-setter, he proposes

coalition X, while if i ^ X is the agenda-setter, the proposal is TV. After the first elimination has taken

place, the corresponding part of a* is played.

Using the fact that a* is MTHPE, it is easy to see that strategies from ax are Markovian, it is also

straightforward to check that ax forms a SPNE. Before any elimination occurred, it is not profitable to

deviate at the stage of voting. Indeed, if the proposal is X, a deviation by player i £ X does not change the

outcome of voting, while if player i £ X makes a one-shot deviation, the URC will be either X or TV; the

latter outcome being worse for such i than X, because u>i (X) > u>i (TV). If the proposal under consideration

is some other proposal Y ^ X, then none of the players is pivotal, and a deviation will not change the

outcome of the voting or the subsequent equilibrium strategies (because strategies are Markovian). It is also

straightforward to check that any deviation is not profitable at the stage where proposals are made (mainly

because no proposal other than X may be accepted in the subsequent voting). After the first elimination,

strategies from a* are played. Given all this, ax is both a SPNE and a MPE. Evidently, the URC in ax is

X with probability 1.

So, for any of the six three-player coalitions, we have constructed a strategy profile which is a SPNE
and, moreover, a MPE. Therefore, none of these refinements help us get a unique prediction of the outcome

of the dynamic game (even though Assumption 1) is satisfied.

Dynamic Game Without e

Example 5 Let a = 1/2, |TV| = 4, TV = {A, B, C, D}, players' powers be given by 7^ = 2, ~/B = 4, jc = 7,

7D = 10, and players' utilities from coalitions be given by (2). Theorem 2 establishes that if e > 0, the only

possible URC that may emerge in SWDE is {73, C, D} (it is straightforward to check that any other winning

coalition is not self-enforcing) . Denote the pure strategy SWDE profile constructed in the proof of Theorem
2 by a*; note that it does not depend on e. Because all utilities are continuous in e, we immediately get

that even if e = 0, a* forms a SWDE.
Consider strategy profile a' which coincides with a* for all players and histories except the following.

If the first proposer i Qj e {A,D}, then he proposes Ao,i = {A,D}. If the first proposal is Xo,i = {A,D},

then players A and D cast vote y, while players B and C cast vote n. Let us show that this strategy profile

forms a SWDE.
Suppose the first proposal is Xq,i = {A,D}. If it is accepted, then B and C are eliminated, and

subsequently D eliminates A. Therefore, uA = uB = Uq = 0, u^ = 1 (because e = 0), while if it is rejected,

then, as follows from the construction of a*
,
{B, C,D} will be the URC, resulting in u~A = 0, uB = 4/21,

Uq = 1/3, Up = 10/21. It is evident that voting y is weakly dominant for A and D, and voting h is weakly

dominant for B and C. Now suppose that A or D is the first to make proposal. If he makes proposal [A, D}
then, as we have just proved, it will be the URC. If he makes any other proposal, then, as again follows from

construction of a*, {B,C,D} will be the URC. Therefore, proposing {A,D} is weakly dominant for A and

strictly dominant for D. Finally, in any other node players' behavior is optimal because a* coincides with

a' in the subsequent subgame. Therefore, a' is indeed a SWDE.
In SWDE a', the URC is {B,C,D} if the first proposer (chosen by Nature) is B or C, and {D} if the

first proposer is A or D (indeed, once proposal {A, D} is accepted, player A will be eliminated). Hence,

this equilibrium, a' , features at least two unappealing properties. First, the outcome may depend on the

order of proposals. Second, players that will be eliminated anyway (^4 in this example) may have have a

non-trivial effect on the outcome, depending on how they vote when they are indifferent. Introducing small

organizational costs e > allows us to get rid of these effects and get equilibria where the ultimate ruling

coalition that emerges in equilibrium is uniquely determined.
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(5,5,5) (0,0,0) (5,5,5) (0,0,0) (5,5,5) (0,0,0) (7,7,7)

Figure 3: A Game With Herding in Trembling-Hand Perfect Equilibrium.

It may seem at first glance that a' is not a MTHPE, because player A will not vote for proposal {A, D)
but it actually is one. Without going into much detail, A will vote for {A, D} if it is much more likely that

D will make a mistake and not propose {D} after elimination of B and C than that B, C, and D will make

a mistake and fail to eliminate A if proposal {^4, D} is not accepted.

THPE vs. MTHPE
Example 6 Consider a game of three players with extensive form and payoffs as shown on Figure 3. The

first two players vote, and if both vote for the 'right', all three players receive first-best; if one of them votes

for the 'left' then the third player chooses between 'moderate' and 'bad'. All players receive the same in all

terminal nodes, so there is no strategic conflict between them.

Equilibrium (R, r, (01,02,03)) is trembling-hand perfect, but so is (L,l, (01,02,03)) where efficiency is

not achieved because of 'herding' in voting (note that neither L not I are dominated strategies: for instance,

L is best response to second player playing / and third player playing (oi, 62, b^)). Indeed, take some 77 and

consider

an = ((1 - t?
3
) L + rfR, (l - V

3
) I + rfr, ((l - t?

2
) a x + 7]%, (1 - 77) o2 + 7763, (1 - 77) o3 + 7763))

Evidently, player 3 (and all his agents in agent-strategic form) are better off choosing ai over 61, 02 over

2>2) and 03 over 63. Now consider payoffs of player 1 choosing L or R. If he chooses L, he gets ul =
5 ((1 - t?

3
)

(1 - rj
2
) + rf (1 - 77)) = 5 - 5t?

2 - 5r?
4 + 5n 5

. If he chooses R, he gets uR - 5 ((l - n3
) (1 - 77)) +

7?7
3 = 5— 577+277

3
+577

4
. Hence, For small 77, player 1 should put all weight to L, and a similar argument would

show that player 2 should put all weight to I. This proves that (L,Z, (01,02,03)) is also a trembling-hand

perfect equilibrium.

The effect that Example 6 emphasizes would not be the case if fully mixed profiles an were required

to be Markovian, which is what our definition of MTHPE imposes. Indeed, it is a natural restriction to

require that in the three subgames where player 3 moves and payoffs are identical, his mixed action profile

cr
n should lead to identical place. In that case, the increase of utility of player 1 due to the possibility of

player 2 playing r instead of I would be not be offset by worse development in the subgame if he still plays I.

SWDE vs. MTHPE
Example 7 Consider a game of two players with extensive form depicted on Figure 4. This is an agenda-

setting game, because at each stage only one player has a (non-trivial) move. It game has exactly one

MTHPE {R,r). However, there are two SWDEs: (R,r) and (L,r). The latter is not MTHPE, because if

there is a non-zero chance that player 2 will play /
,
player 1 is better off putting all weight to R.
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(0,0) (1,1) (1,1)

Figure 4: A Game With SWDE which is not MTHPE

Appendix C: Proofs of Theorems 2 and 3

Proof of Theorem 2.

(Part 1 of Theorem) The first part of the Theorem (existence of pure strategy SWDE with in the

required properties) is proved by induction on the size of coalition |JV|.

The base of the induction is straightforward. If \N\ = 1, then from Theorem 1, 4>(N) — {TV}. It is also

straightforward that in the unique SWDE, the single player i will propose coalition Xo,i = TV and then vote

in favor of it, i.e., t>o,i {i) = V- Therefore, when \N\ = 1, there exists a pure strategy SWDE, with the URC
reached after at most one stage elimination and coincides with an element of 4>{N).

Suppose next that we have proved this result for all coalition sizes less than n, and we will prove it for

any coalition TV with |TV| = n.

First, we introduce the following notation. Let v be a one-to-one map between P (TV) and the set

{ 1, . .
.

,
21-^1 — 1} ; let ux denote the number corresponding to X C TV, and assume that the setM corresponds

to 1 (i.e., vm = !)• Define a single-valued mapping 4>*
: P (TV) —> P (TV) by

4>* (X) = axgmmva- (13)
Ae<t>(X)

Then, vm = 1 implies that 4>* (TV) = M, since M 6 4> (X). Also, Corollary 1 implies that </>* [X) = X if and

only if X is self-enforcing, i.e., if and only if X 6 (X).

Consider j = 0, i.e., the stage of the game before any elimination has taken place. Suppose that the

first q (0 < q < |TV| — 1) proposals made by players io,i, • ,io,q were rejected, and Nature has picked player

io, 9+i as the next agenda-setter. Denote A
q
= TV \ {io,i, . • , io,q} for 1 < g < |TV| and A-\ = TV. For any

player i, let us define the set of minimal self-enforcing coalitions including this player:

Xi= argmin -yA , (14)
Ae{X:XcN,-fx >cyN ,()>' (X)=X,XBi}U{N)

and a selection from the set,

X* = argmin^. (15)
A€Xi

Similarly, for any X C TV, let as define the corresponding sets

argmin 7A if X ^ 0;

\X-x"i=A}

{TV} otherwise,

^ =
{A^x^A]

(16)

and

X*x = argmin vA . (17)
AeXx

Notice that for any i G TV, \\ either equals TV or is a winning coalition that satisfies (p* (x*) = Xi (
or both).

The same is true for x*x f°r any X C N. Moreover, if Y C X C TV, then 7X - < 7X . .
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Next, for a non-empty X C N, let

f
0*(X) HX^N;

Tp(X)=\ (18)

[ A'' otherwise.

With ijj (X) denned this way, for any X C N, ip (x*x) = X*x-

We now construct a pure strategy SWDE profile.

Consider the following profile: if j = 0, then player io, 9 (i.e., the gth proposer, for 1 < q < \N\), offers

Xo,q = Xi For any proposal X made by the gth proposer, player i £ X casts the following vote:

vo,q {i,X) = <

if i £ V [X) or
11 ^XA

q
,li,(X)>lx

-

Aq ,^dX^xX- 1

'

(19)

j/ otherwise.

This voting rule implies that a player votes against a proposal that leaves him out of the URC along the

continuation equilibrium path and also against a proposal that is not better than a proposal that will be

made if the current one is rejected (unless the current proposal is x*a )

After the first elimination has taken place, the subgame coincides with T (Ni,-y\N1
,a), where |JVi| <

\N\. By the induction hypothesis, it has a pure strategy SWDE that satisfies the necessary conditions, in

particular, it has a pure strategy SWDE that leads to <fi*
(N\) (after at most one round of elimination).

Now denote the pure strategy profile for the entire game described above by a*N +. . We will show that

it forms a SWDE. The first step is the following lemma.

Lemma 1 Suppose that the current history h is such that there has been no eliminations (i.e., j = 0), the

first q proposals (0 < q < \N\) were made by players io
t
i, . .

.
, io, 9 and rejected, and h terminates in the node

after the qth rejection (if q = 0, h = {0}). Then:

1. Profile o-tfj,. is an h-SWDE.

2. The play of o*N +, after history h will result in coalition x*a _i
(where recall that Aq

= N \

{io.ii •
i io,q}) as the URC with probability 1.

3. Continuation utility of player i £ N is given by

«* K,*- \h)= Wi (xa^) ~ eh^_
x
W I{

x
. ^Ny

(20)

Proof. (Part 1 of Lemma) This part of the lemma is also proved by induction. If q = |JV|, then the game
has reached a terminal node, and the URC is N. Player i receives (20), because x& — N. Moreover, since

there are no more actions left, profile o*N4> . is h-SWDE.
The induction step goes as follows. Suppose that we have proved the Lemma for the number of rejections

greater than or equal to q. Given this, we will establish it for q — 1 (1 < q < \N\).

Consider qih voting over proposal X made by player io i9
and suppose that it is accepted. If X =£ N and

is accepted, player i E X will receive payoff

uf = wt (ip (X)) - eI{x^N} (l + I{4>'{X)?x)I<i>'(X) (i)) (21)

This follows from the induction hypothesis of Theorem 2, which implies that when X / N, ip {X) =
<f>* {X),

and the continuation payoff of player i in the game T (X, j\x , a) is given by u>i (X) — e/^. (x) (i) I{$» (x)jtx}>

and we also subtract e when coalition X is not the ultimate one, because igX. If X = N, the game ends

immediately and (21) again applies.

If proposal X is rejected, player i receives, by induction of this Lemma, payoff given by (20), so

ur= Wi (x*Ag)-eIx.
Aq

(i)I
{x .

A^Ny
(22)
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Notice that both (21) and (22) hold regardless of the distribution of votes.

Ifi<£ip{X),then

u+< Wi (iP(X))=w-.

If, in addition, i ^ \*a >
then

u~ =Wi [X*A
q )

= WT>

and if i € x\ >
then

«r >Wi{x*Aq ) ~£>wi

(this follows because, by construction, e is small and satisfies (5)). These expressions imply that in both

cases uf < u^ , and voting n is weakly dominant for player i.

Next, consider the case i € ip{X). If all three conditions i e x*a ^ 7v»(*) — 7** >
anc^ ^ ^ X*a are

satisfied, then

«T = Wi(xA
q
)-sIx

-

Aq
(i)I^N

}

> Wi (tp (X)) - eI{x^n}

> u+,

because X ^ N implies ip (X) ^ N', which together with 1mx) > 7X * implies ^ j^JV (and 7X - (i) = 1).

This yields that for player i it is weakly dominant to vote n.

Now assume that at least one of these three conditions (i.e., i £ x*a > fMX) — 7X * ' anc^ ^ ^ Xa _ )

does not hold. If i ^ x*a >
then u>j (ip (X)) > u>$

( x*a ) i
an^ (again, since e satisfies (5))

u+ > Wi (iP(X))-e

> w7
= u7-

If * e X/i,> but lip(x) < 7X^ ,
then again Wi(i>{X)) > w'i [XaJ and u? > ^- Finally, if i € ^,.

7^(X) > 7X^ ,
but X = x\_v we have

Furthermore, since A
q C j4,j-i,

7^(A')=7xVi <7
xif ,

and therefore 7,/,(x) = 7X -
i
so w' (V' (-X

-

)) = wi (xa ) If X = N, then V (X) = N and 7X - = N, so

u+ = ur. If X £ N and X = ;&,_.,., then <£* (X) = X, and

u+ = wl (ip (X)) -e = Wi \xAq )
- e = u7-

In all these cases we have uf ~>u^, and therefore voting y is weakly dominant.

Now denote the precursor history to history h by h! . The above argument has established that profile

a*N q. is a /i'-SWDE, because both in the case the proposal is accepted and in the case it is rejected, this

profile is an SWDE for the corresponding history (by induction of Theorem 2 or by induction of this Lemma).

Next consider history h", after which player £o,g makes a proposal. Denote player i's utility if io iQ
makes

proposal X at this stage by Ui (X). Similarly, denote his utility if proposal X is made and is accepted by

uf (X). We next prove that Ui
q (x\ ) > u i

, q
(-^0 f°r anv X € P (N). First, notice that regardless of io, 9

's

proposal, the continuation equilibrium play will lead to some URC, Y, satisfying ip (Y) = Y (if proposal Y
is rejected, then the URC will be Xa > as we nave Just proved, and if it is accepted it will be either N if
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Y = N or 4>* (N) ifYy^N, which follows from the induction hypothesis in Theorem 2). By definition of

*&;,* «v, (x*o„) ^ "V, 00 f°r any such y -

Consider the following cases.

(i) Xi is accepted if proposed. Then x* becomes the URC after at most one round of elimination.

This implies that player io l9
receives

u > (4,,,) = ut (*«,.,)
= VH (x* „) - el^^y

since ioi9
€ xt and the analysis above has established that he cannot receive higher utility if he proposes

some X + Xi
, q

"-

(ii) xt is rejected if proposed. Then consider io i9
proposing some X 6 P(N). If X is also rejected

when proposed, then uioq (xi )
= u

i
= ui

, q (^0- ^ X is accepted, then the URC is ip{X). However,

for X to be accepted given profile a*N ,.
, at least one member of coalition x*a must vote y (because x*a ^s

a winning coalition). Then (19) suggests, either "/mx) < 7** or ^ =
Xyt _j (

or both). In the first case, we

obtain

This implies that io, ? $ ip{X) (otherwise x* ^ Xi because ip(X) has lower total power, see (14)). But

then

< Wi0„(^(X)).

However, we also have

= ™io.q (x*Aq)-£lx'Aq (io,g)I{x
.
A^Ny

Consequently,

ul0
, q
(X) < ul0

, q (x*
, q ) (23)

In the second case, if X = x*a _[> we bave X = x* for some z S Aq_i. However, i ^ io j(j
(otherwise X could

not be accepted when x* is rejected), and thus i £ Aq . Then, (16) and (17) imply x*a _i
= Xa (because

v reaches its minimum on the same coalition both for xa _i
and Xa )> so X =

X*a Then,

ui0
, q
(X) = u+JX)

= w io, q (
X

)
~ eIX (io,q) I{XyLN}

= Wio,{xA
q
)-eIx

-

Aq
(i

, q
)I

{x
.

A^
— U l0, q [Xi

, q J
>

as implied by (22).

Consequently, in both cases (i) and (ii), (23) holds, and therefore proposing x* is weakly dominant for

player i 0:9 . This establishes that the profile a*N $. is h"-SWDE.
To prove that a*N ,. is /i-SWDE we need to go one more step back, before Nature chooses the gth

proposer. This is straightforward, since for Nature all moves are weakly dominant. This completes the

induction step and the proof of Part 1.

(Part 2 of Lemma) We need to prove that after history h, x*a _ w^ be chosen along the equilibrium

path, and this is regardless of the gth proposer i§A that Nature chooses (provided that io, g
€ Aq -\, as

required). In equilibrium, x* is proposed by player io i9
(irrespective of the identity of this player is).
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Consider two cases.

(i) Xi is accepted (which this happens with probability 1, because strategies are pure), then there is

at least one player i £ x*a wn0 has v°ted y (x\ is a winning coalition, and if all its members vote n, the

proposal cannot be accepted). For i € x*a to v°te 2A either 7^. < 7 . or x* = X*a _i (
or both) must

hold (see (19)), and note that ip
( Xi J

=
Xi In the first case, Xa _i

is clearly a singleton consisting of x*

only (because the other sets in argmin in (16) have total power greater than x* ), and thus xA — Xi
In the latter case, this equality holds automatically. In both cases the URC is x* — X*a _ 1 and there is

are no more than one round of elimination (because either x* = N or
<f>* (x* )

— Xi )

(ii) xl is rejected. In this case, there is at least one player i 6 x*a wno has v°ted n (otherwise it

would be accepted because x*a *s winning within TV), which implies 7X - > 7 . and x* 7^ Xa (recall

(19)). The first inequality implies that 7 . > 7X - (indeed, Xa _i
either belongs to Xa or eciuals xl )>

and Aq C Aq-\ implies -y
x

. < -y
x

. , so 7^. = 7^. . Consequently, Xa c Xa,.,- The inequality

Xi „ ^ X*Aq -i imPlies that

therefore,

X*0a ^ argmin vA ,

XAq . 1
= argmin uA £ xAq

But then Xa C Xa _, implies x^i _ 2
= Xa Since x*„ is rejected, induction of Lemma 1 yields that x"a

is the URC with probability 1, but then the same is true for x*a _ • Moreover, this URC is achieved after at

most one round of elimination, since the gth proposal x* is rejected.

The previous two steps have proved the second part of the lemma both for the case where x* is accepted

in equilibrium and where it is rejected and completes the proof of Part 2.

(Part 3 of Lemma) Since there is at most one round of elimination (one if Xi 7^ N and zero

otherwise), the continuation utility of player i is given by (20) by definition, and this completes the proof of

Lemma 1.

We now return to complete the induction step in the proof that a*N +. forms an SWDE, leading to

M e<j){N) as the URC with probability 1.

We first use Lemma 1 for q = 0, i.e. at the initial node of the game T (N,j\N,a). Lemma 1 implies

that a*N j,. is an /i-SWDE where h is empty history, so a*N j, is an SWDE. The URC is X*a^ ~ X*n with

probability 1, and it is achieved after at most one round of elimination.

To prove that X/v = M, take any i 6 M . The fact that vm — 1 immediately yields to results: first,

<P* (TV) = 4>* (M) = M; second M e Xi (this is true both if M =' JV and if M ^ N) as M e <f>(N).

Consequently, there exists no coalition Y that is winning within N and satisfies Y G <j> (Y) such that

1y < 7m-
Moreover, by definition M = x*> M £ X/v> and> finally, M = x*n- So, M is the URC with probability 1

and is reached after at most one round of elimination, and players' utilities are indeed given by (7). Hence,

this completes the induction proof about for |7V| = n and thus establishes that there exists a pure strategy

SWDE leading to M 6 <p{N) as the URC with probability 1, with payoff specified in (7), completing the

proof of the first part.

(Part 2 of Theorem) First suppose that Assumption 1 holds. We will establish that in any SWDE,
the URC M = 4> {N) is achieved with probability 1 after at most one stage of elimination. (Here we use

(X) to denote the single element of 4> (X) for any X 6 P (N) whenever it does not cause confusion.)

The proof is again by induction on |7V|. The base, |7V| = 1, follows immediately, since the only possible

URC in any terminal node is 4> (N) = N, and therefore in any SWDE it is achieved with certainty (and

without elimination).

Now suppose that we have proved that the URC is M = 4> {N) and is achieved with probability 1 after

at most one stage of elimination for all coalition sizes strictly less than n. We will then prove it for any

coalition TV with \N\ = n. Take any strategy profile a* that forms an SWDE.
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Consider any node (on or off equilibrium path) before the first elimination took place (i.e., at j = 0).

Denote the corresponding history by h. Part 1 of the Theorem implies that any URC X that may emerge

with a non-zero probability in a SWDE (i.e., any X £ 4>a . (N)) starting from this history must satisfy

i/>(X)=X (where, like in (18), V (X) = <j> {X) if X ± N and ip {X) = X = N otherwise). In particular, if

no elimination ever occurs, then the URC is N which, by definition, satisfies ip (X) = X. If an elimination

occurs (i.e., some proposal Y ^ N is accepted), then by induction,
<fi
(Y) becomes the URC. But we have

that

4>{4>(Y))=4>Qr) and cf>(Y)^N,

so in this case the URC <j> (Y) must satisfy

Next, as an intermediate result, we prove that if Y € <j>a , (N), then <j> (Y) must be winning within N, i.e.,

1my\ > a~fN- Suppose, to obtain a contradiction, that this is not the case for coalition Y, i.e., 1$(y) ^ Q7/v-

Take the maximum possible number of voting stages, q, where this may happen. Such a maximum exists in

view of the fact that we have a finite game. Then by hypothesis the proposal Y =£ N is being accepted with

positive probability at the <jth voting stage (if all previous proposals are rejected), so -yY > q7at- Also by

hypothesis Imy) ^ a7jv- Moreover, since q is the maximum voting stage where this can happen, if 4>(Y) is

rejected, then the URC will be a winning coalition with probability 1. Since "yY > alN and 1<j>vy) fs alNi
there exists some player i £ Y \4> (Y) voting y in response to the proposal of Y with a positive probability

and who is pivotal for at least one configuration of votes (otherwise the proposal Y could never be accepted).

For the configuration of votes where i is pivotal, his vote of y gives him utility

Wi {4> (Y)) - £ = W~ - £

(in that case, i gets — £ because he is a member oiYy^N, and then he is eliminated). A vote of n would,

on the other hand, give at least least w~ in expectation. To see this, let <p tJ
. (N) = {Z}. Ifi£Z,i receives

Wi (Z) - 2e > w~ — £.

If i £ Z, that he receives w~ > wj — e. Therefore, n can lead to strictly higher payoff than y. This implies

that at the qth. voting stage, i cannot vote y with a positive probability in SWDE a*. Since i eY \cf> (Y)

was arbitrary, this yields a contradiction and implies that Y with 1$<y) — alN cannot emerge as the URC
after any history h. This yields a contradiction and establishes the intermediate result. Consequently, any

X e 4>a . (TV) must satisfy ip (X) = X. This also implies that for any coalition Y with 7y < 7^,(^), we have

Y £ 4>a . (N) (and Assumption 1 implies that there are no coalitions with 7y = Jm^))-
The next step is to prove that ifM = 4> (N) is proposed (before any elimination), then M will necessarily

be the URC. Suppose not. Then there exists some history h and player i e M who casts vote n with a

positive probability (and who may be pivotal for some distribution of votes) at history h. For the equilibrium

distribution of other player's votes, the vote of n yields a payoff

uf < Wi (M) - £l{MltN)

for player i. This inequality follows because either M is not the URC, and from the previous paragraph, the

URC Z must have

7z > 1m — 7^(jv)>

and thus yielding lower payoff to player i than Wi (M) — sI{m^ln} — £kh, or because M is the URC but will

will be reached with more than one round of elimination. Since n is chosen with a positive probability as

part of SWDE a* , voting y must yield no more than uf, and therefore, even if i voted y, M would not have

been reached after at most one round of elimination.

Suppose next that i switches to voting y, but there is some other player i' £ M who also casts vote n
with a positive probability. With a similar reasoning, voting h yields a payoff of

uf, < Wi, (M) - £l{M^N}

to player i'. Again since voting n to M for %' € M in SWDE a* must be no worse than voting y. This implies

that even if i' were to switch to y, M will still have a positive chance of not being reached, or reached after
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more than one round of elimination. Now proceeding in the same manner through all the players in M, we
can conclude that, since a* is a SWDE, even if alH 6 M vote y, M should not be reached after no more than

one round of elimination with probability 1. This last observation yields a contradiction, however, because

of the following facts: (i) M is a winning coalition, so if all %' 6 M vote y to the proposal of M, M will

emerge as the URC after at most one round of elimination with probability 1; (ii) when M is reached after

at most one round of elimination, each i £ M will obtain

Wi (M) - eI{M^N] > uf,

implying that voting n to the proposal of M could not be part of any SWDE a* . Consequently, we have

established that when M = <j>(N) is proposed at j = (before any elimination), then M will be the URC
with probability 1 under a*

.

An identical argument applies for any stage j > 0, where all i € M have not been eliminated. Therefore,

whenever M = </> (TV) is proposed, M will be the URC with probability 1, and there cannot be any other

URC.
To complete the proof, it remains to show that M will be offered with probability 1 before any elimination

has occurred (i.e., at j = 0). Suppose that at j = Nature has picked player ieifas the proposer. It is

straightforward to see that in this case M will emerge as the URC after at most one round of elimination.

Suppose not. Since we know from the previous paragraph that once M is proposed, it will be accepted

with probability 1 after at most one round of elimination, giving payoff u>i (M) — eI{m^n} to player i, it

must be that i makes a proposal Xi ¥ M with a non-zero probability, and receives at least this payoff in

expectation. However, since M will be the URC with probability 1 under a* and it is not reached in one

round of elimination, when the proposal Xi IS accepted, it must be that the payoff to player i must take a

value less than or equal to Wi (M) — cI^m^n) ~ e < w i (-W) ~~ eI{M^N}- Therefore, Xi / M (not proposing

M) for i £ M cannot be part of any SWDE a* . This argument establishes that whenever i £ Mis picked

by Nature at j = 0, the proposal of M will be made and will be accepted with probability 1. Now suppose

that Nature picks io tq ^ Af as the proposer before any i S M . Note that at stage j = 0, such io, q £ M
can be picked as the proposer at most \N\ — \M\ times. Thus, after at most \N\ — \M\ votes against the

proposals, some i' 6 M will be picked as the proposer. Then the same argument as above establishes that

in any SWDE a* alH € M must vote n with probability 1 to the proposal by any io i9 ^ M. This follows

since voting y will lead to some payoff uf < Wi (M) — eI{m^n] f°r * G M. knowing that ultimately Nature

will pick some i' € M at stage j = 0, and in any SWDE a* , i' will propose M and alii £ M will vote y with

probability 1 to this proposal, voting n to the proposal by io iq ^ M has a payoff to, (M) — sI^m^n) to each

i € M. Therefore, in any SWDE a*, all proposals by io )9 ^ M at stage j = are rejected with probability

1 and M is proposed and emerges as the URC with probability 1, yielding each player z's a payoff given by

(7). This completes the proof of the induction step and proves that under Assumption 1, any SWDE a* has

M = 4>(N) as the URC with probability 1, it is reached after at most one round of elimination, and players'

payoffs are given by (7). This completes the proof of Theorem 2.

Proof of Theorem 3.

The proof is by induction on \N\. The base, |JV| = 1, is trivial: in this case, <f>(N) = 1, whereas the

two feasible allocations are X{ = and Xj = 1, where % is the only player. Evidently, the latter is the core

allocation, because both may be enforced by coalition TV. This proves the base of the induction; now suppose

that we have proved Theorem 3 for all coalition sizes less than n; let us prove it for any coalition TV with

|TV|=n.

For any X C TV, let xx be the allocation given by

Xi =
Wi (X) ifieX;

otherwise.

(Note that such allocation xx may well be not feasible.)

First, take any core allocation x, then x+ C TV is the set of players receiving positive payoff. Clearly,

x+ 7^ 0, for otherwise coalition TV would deviate to xN (it is feasible because of Definition 9), and all members

of TV would be better off. Moreover, x+ is a winning coalition (7X+ > oryN ), for otherwise 7^0 > (1 — a) 7^,
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and then non-empty coalition x° would be able to deviate to the same allocation xN ,
making each member

of x° better off.

Given this, Definition 9 implies that either x, = Wi (TV) for all i 6 TV, or, by the induction hypothesis,

x+ e 4> (Y) for some Y C TV, Y ^ TV (so x+ is self-enforcing), and x, = w, (x+ ).

Now suppose, to obtain a contradiction, that x+ £ <f>(N). Take coalition X 6 4>(N). We have that

7X+ > 7X , because x+ is winning within TV and is either self-enforcing or equal to TV. But then the winning

coalition X can make all its members better off by choosing xx , which is feasible because either X = TV, or

X + TV and

xec(r(xn \
x ,a,vx (-)))

by induction. In particular, in this case, player i £ X Dx+ would obtain Wi (X) > Wi {x+ ), since yx+ > yx ,

while player ieX\x+ =XC\x° would receive Wi(X) > = w~ . Therefore, coalition X has a feasible

deviation that makes all its members better off, contradicting the hypothesis that x+ £ <J>
(TV) may be a

core allocation. This contradiction establishes that a; is a core allocation. Moreover, if x+ = TV, Definition

9 implies that x = xN , and Xi = u>; (TV). If, on the other hand, x+
=fi

TV, then x\y is a core allocation in

the game F (Y, j\y, a, vx (•)) f°r some Y e P (TV) such that x+ C Y. But then by induction for any i 6 x+
,

we have Xi = Wi {x+ ). We have therefore proved that in any core allocation, the set of players receiving a

positive payoff must constitute a coalition belonging to </>(TV).

To complete the induction step, take any M € <A(TV). Both if M = TV and if M ^ TV, :c
M (satisfying

z
t

M = ioj (M) for i € M and xf^ = for i ^ M) is feasible (if M / TV this follows from the induction

hypothesis). We will now prove that this is a core allocation. Suppose not. Then there exists coalition X
and allocation x' enforced by coalition X that makes all members of X better off. This implies that x\ >
for alH e X (if x[ = 0, then xf

4 > = x\ and would contradict the fact that i is better off). So, X C (a;^)
4'.

If (2:9 = TV, then it 7X > (1 — a)~/N (otherwise, X would not be able to enforce x'), then MnI/0.
Take any player i e M C\X, and note that for such a player i, we have

xf = 10* (AO

> Wi(N)

= A-

This contradicts the fact that all members of coalition X are strictly better off by switching to x' . Now
consider the case (:r<)

+
=fc

TV. Since (xj)"
1" ^ 0, there exists F C TV, Y / TV, such that x' C V and x'\ Y is

the core allocation for tY = f (Y,^\y,a,VY (•))• By induction, xj = Wi ((a;')
+
) if * G (^O"

1"- For x' to be

enforceable, X must be a winning (within TV) coalition. But since all members of X are better off, we have

that X C (x')
+

, so (x')
+

is also winning within TV. By induction, (x')
+

6 4>{Y), so (x')
+

£ 4> ((x')
+Y In

other words, (x')
+

is winning and self-enforcing, therefore, jix^+ > 7M (because M e <^(Y)). Both X and

M are winning, therefore, there exists ieMfll, and we have

xf = Wi(M)

> m((x')
+

)

= A-

This implies that i E X does not prefer to switch to x', yielding a contradiction. Therefore, xM is a core

allocation.

We next prove that it is the only core allocation satisfying x+ = M. Suppose, to obtain a contradiction,

that there is another allocation x. This allocation, x, must satisfy Xi = iuj (x+ ) if i £ x+ , and x, = if

i £ x+
,
which means x = xM . Therefore, the specified core allocation is unique.

This completes the proof of the induction step, which proves the one-to-one correspondence between

core allocations and coalitions from <j>(N). If Assumption 1 holds, then tj>(N) is a singleton by Theorem 1.

If
<fi

(TV) = {M }, then, as we have proved, xM is a core allocation, moreover, any core allocation is xM , and

(xM ) = M is unique. This completes the proof of Theorem 3.
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