Massachusetts Institute of Technology
Department of Economics
Working Paper Series

Complexity and Financial Panics

Ricardo J. Caballero
Alp Simsek

Working Paper 09-17
May 15, 2009

Room E52-251
50 Memorial Drive
Cambridge, MA 02142

This paper can be downloaded without charge from the
Social Science Research Network Paper Collection at
https://ssrn.com/abstract=1414382
Complexity and Financial Panics

Ricardo J. Caballero and Alp Simsek*

May 15, 2009

Abstract

During extreme financial crises, all of a sudden, the financial world that was once rife with profit opportunities for financial institutions (banks, for short) becomes exceedingly complex. Confusion and uncertainty follow, ravaging financial markets and triggering massive flight-to-quality episodes. In this paper we propose a model of this phenomenon. In our model, banks normally collect information about their trading partners which assures them of the soundness of these relationships. However, when acute financial distress emerges in parts of the financial network, it is not enough to be informed about these partners, as it also becomes important to learn about the health of their trading partners. As conditions continue to deteriorate, banks must learn about the health of the trading partners of the trading partners of the trading partners, and so on. At some point, the cost of information gathering becomes too unmanageable for banks, uncertainty spikes, and they have no option but to withdraw from loan commitments and illiquid positions. A flight-to-quality ensues, and the financial crisis spreads.

JEL Codes: E0, G1, D8, E5

Keywords: Financial network, complexity, uncertainty, flight to quality, cascades, crises, information cost, financial panic, credit crunch.

*MIT and NBER, and MIT, respectively. Contact information: caball@mit.edu and alpstein@mit.edu. We thank Mathias Dewatripont, Pablo Kurlat, Guido Lorenzoni, Juan Ocampo and seminar participants at Cornell and MIT for their comments, and the NSF for financial support. First draft: April 30, 2009.
1 Introduction

The dramatic rise in investors’ and banks’ perceived uncertainty is at the core of the 2007-2009 U.S. financial crisis. All of a sudden, a financial world that was once rife with profit opportunities for financial institutions (banks, for short), was perceived to be exceedingly complex. Although the subprime shock was small relative to the financial institutions’ capital, banks acted as if most of their counterparties were severely exposed to the shock. Confusion and uncertainty followed, triggering the worst case of flight-to-quality that we have seen in the U.S. since the Great Depression.

In this paper we present a model of the sudden rise in complexity, followed by widespread panic in the financial sector. In the model, banks normally collect information about their direct trading partners which serves to assure them of the soundness of these relationships. However, when acute financial distress emerges in parts of the financial network, it is not enough to be informed about these partners, but it also becomes important for the banks to learn about the health of their trading partners. And as conditions continue to deteriorate, banks must learn about the health of the trading partners of the trading partners, of their trading partners, and so on. At some point, the cost of information gathering becomes too large and banks, now facing enormous uncertainty, have no option but to withdraw from loan commitments and illiquid positions. A flight-to-quality ensues, and the financial crisis spreads.

The starting point of our framework is a standard liquidity model where banks (representing financial institutions more broadly) have bilateral linkages in order to insure against local liquidity shocks. The whole financial system is a complex network of linkages which functions smoothly in the environments that it is designed to handle, even though no bank knows with certainty all the many possible connections within the network (that is, each bank knows the identities of the other banks but not their exposures). However, these linkages may also be the source of contagion when an unexpected event of financial distress arises somewhere in the network. Our point of departure with the literature is that we use this contagion mechanism not as the main object of study but as the source of confusion and financial panic. During normal times, banks only need to understand the financial health of their neighbors, which they can learn at low cost. In contrast, when a significant problem arises in parts of the network and the possibility of cascades arises, the number of nodes to be audited by each bank rises since it is possible that the shock may spread to the bank’s counterparties. Eventually the problem becomes too complex for them to fully figure out, which means that banks now face significant uncertainty and they react to it by retrenching into liquidity-conservation mode.
This paper is related to several strands of literature. There is an extensive literature that highlights the possibility of network failures and contagion in financial markets. An incomplete list includes Allen and Gale (2000), Lagunoff and Schreft (2000), Rochet and Tirole (1996), Freixas, Parigi and Rochet (2000), Leitner (2005), Eisenberg and Noe (2001), Cifuentes, Ferucci and Shin (2005) (see Allen and Babus (2008) for a recent survey). These papers focus mainly on the mechanisms by which solvency and liquidity shocks may cascade through the financial network. In contrast, we take these phenomena as the reason for the rise in the complexity of the environment in which banks make their decisions, and focus on the effect of this complexity on banks’ prudential actions. In this sense, our paper is related to the literature on flight-to-quality and Knightian uncertainty in financial markets, as in Caballero and Krishnamurthy (2008), Routledge and Zin (2004) and Easley and O’Hara (2005); and also to the related literature that investigates the effect of new events and innovations in financial markets, e.g. Liu, Pan, and Wang (2005), Brock and Manski (2008) and Simsek (2009). Our contribution relative to this literature is in endogenizing the rise in uncertainty from the behavior of the financial network itself. More broadly, this paper belongs to an extensive literature on flight-to-quality and financial crises that highlights the connection between panics and a decline in the financial system’s ability to channel resources to the real economy (see, e.g., Caballero and Kurlat (2008), for a survey).

We build our argument in several steps. In Section 2 we describe the normal environment, characterize the financial network, and describe a rare event as a perturbation to the structure of banks’ shocks. Specifically, one bank suffers an unfamiliar liquidity shock for which it was unprepared. In Section 3, we show that if banks can costlessly gather information about the network structure, the spreading of this shock into precautionary responses by other banks is typically contained. This scenario with no network uncertainty is the benchmark for our main results.

In Section 4 we make information gathering costly. In this context, if the cascade is small, either because the liquidity shock is limited or because banks’ buffers are significant, banks are able to gather the information they need about their indirect exposure to the liquidity shock and we are back to the full information results of Section 3. However, once cascades are large enough, banks are unable to collect the information they need to rule out a severe indirect hit. Their response to this uncertainty is to retrench on their lending, which triggers a credit crunch. In Section 5 we show that under certain conditions, the response in Section 4 can be so extreme, that the entire financial system can collapse as a result of the flight to quality. Somewhat paradoxically, this extreme response is more likely to take place in a developed financial market than in one with
limited precautionary options for banks. The paper concludes with a final remarks section and several appendices.

2 The Environment

In this section we introduce the environment and the characteristics of the financial network. We first describe the normal scenario in which the financial network facilitates liquidity insurance. We then introduce a perturbation to this environment: A shock which was unanticipated at the network formation stage (i.e. the financial network was not designed to deal with this shock).

2.1 The Normal Environment

There are four dates \{-1,0,1,2\}. There is a single good (one dollar) that serves as numeraire, which can be kept in liquid reserves or it can be loaned to production firms. If kept in liquid reserves, a unit of the good yields one unit in the next date. Instead, if a unit is loaned to firms at date \(-1\), it then yields \(R > 1\) units at date \(2\) if it is not recalled or unloaded before this date. The loans have a recall option at date \(0\) but at date \(1\) they lose this option and become illiquid: One unit of loan recalled at date \(0\) yields one unit to the lender. At date \(1\), the loan cannot be recalled, but the lender can unload the loan (e.g. by settling it with the borrower at a discount) and receive \(r < 1\) units. To simplify the notation, we assume \(r \approx 0\) throughout this paper.

The economy has \(2n\) continuums of banks denoted by \(\{b^j\}_{j=1}^{2n}\). Each of these continuums is composed of identical banks and, for simplicity, we refer to each continuum \(b^j\) as bank \(b^j\), which is our unit of analysis.\(^1\) At the beginning of date \(-1\), each bank \(b^j\) has assets which consist of \(y\) units of liquid reserves and \(1 - y\) units of loans, and liabilities which consist of a measure one of demand deposit contracts. A demand deposit contract pays \(l_1 > 1\) if the depositor is hit by a liquidity shock and \(l_2 > l_1\) if the depositor is not hit by a liquidity shock. Let \(\omega^j \in [0,1]\) be the measure of liquidity-driven depositors of bank \(b^j\) (i.e. the size of the liquidity shock experienced by the bank), which takes one of the three values in \(\{\bar{\omega}, \omega_L, \omega_H\}\) with \(\omega_H > \omega_L\) and \(\bar{\omega} \equiv (\omega_H + \omega_L)/2\), and suppose

\[
\tilde{y} = l_1 \bar{\omega} \quad \text{and} \quad (1 - \tilde{y}) R = l_2 \bar{\omega}
\]

so that the bank has assets just enough to pay \(l_1\) (resp. \(l_2\)) to early (resp. late) depositors

\(^1\)The only reason for the continuum is for banks to take other banks' decisions as given.
if the size of the shock is $\bar{\omega}$.

However, the liquidity needs at date 1 may not be evenly distributed among banks. There are three aggregate states of the world, denoted by $s(0), s(\tau)$ and $s(g)$, revealed at date 0. In state $s(0)$ all banks expect to receive at date 1 the same liquidity shock $\bar{\omega}$. The states $s(\tau)$ and $s(g)$ are realized with equal probability and the liquidity shocks in these states are heterogeneous across banks. More specifically, the banks in this economy are divided half and half between two types: red and green. In state $s(\tau)$ (resp. $s(g)$), the banks with red type (resp. green type) expect to receive a high liquidity shock, ω_H, and the other banks expect to receive a low liquidity shock, ω_L. This means that in states $s(\tau)$ and $s(g)$ there is enough aggregate liquidity but there is a need to transfer liquidity across banks, which highlights one of the (many) reasons for an interlinked financial network.

Given the financial network, banks make arrangements to transfer liquidity in states $s(\tau)$ and $s(g)$ through bilateral demand deposit contracts signed at date -1. In particular, let $i \in \{1, \ldots, 2n\}$ denote slots in a financial network and consider a permutation $\rho : \{1, \ldots, 2n\} \rightarrow \{1, \ldots, 2n\}$ that assigns bank $b^{\rho(i)}$ to slot i. We consider a financial network denoted by:

$$b(\rho) = \left(b^{\rho(1)} \rightarrow b^{\rho(2)} \rightarrow b^{\rho(3)} \rightarrow \ldots \rightarrow b^{\rho(2n)} \rightarrow b^{\rho(1)} \right),$$

(1)

where the arc \rightarrow denotes that the bank in slot i (i.e., bank $b^{\rho(i)}$) has a demand deposit in the bank in the subsequent slot $i + 1$ (i.e., bank $b^{\rho(i+1)}$) equal to

$$z = (\bar{\omega} - \omega_L),$$

(2)

where we use modulo $2n$ arithmetic for the slot index i.\footnote{In particular, i represents the slot with index $i' \in \{1, \ldots, 2n\}$ that is the modulo $2n$ equivalent of integer i. For example, $i = 2n + 1$ represents the slot with index 1.} We refer to bank $b^{\rho(i+1)}$ as the forward neighbor of bank $b^{\rho(i)}$ (and similarly, to bank $b^{\rho(i)}$ as the backward neighbor of bank $b^{\rho(i+1)}$).

We say that the financial network is consistent if all odd slots (resp. all even slots) contain banks of the same type, which means that red and green type banks alternate around the financial circle. For analytical simplicity, we restrict the set of feasible networks to consistent ones (as opposed to, for example, any circular network in which banks may be arbitrarily ordered around the circle), since these networks ensure that each bank that needs liquidity has deposits on a bank with excess liquidity, facilitating bilateral liquidity insurance (see below) with the minimally required level of cross-deposits z.

Next we introduce three features—network uncertainty, auditing, and loan recall—
that play no role in the normal environment but that will prove central during a rare event (defined as a perturbation to the normal environment).

Network uncertainty

Banks' types and the financial network are realized at date -1 as follows: First the types of banks are realized at random (half of the banks become red type and the other half green type); then a particular consistent financial network $b_1(\rho)$ (with respect to these types) is realized. We define

$$\mathcal{B} = \{ b(\rho) \mid \rho : \{1, \ldots, 2n\} \rightarrow \{1, \ldots, 2n\} \text{ is a permutation} \},$$

as the set of consistent financial networks from an ex-ante point of view (i.e. before the types of the banks are realized) and we suppose:

Assumption (FS). Each bank has a prior belief $f_1(.)$ over \mathcal{B} with full support.

Once the types are realized and a consistent financial network forms, each bank b^j observes its slot $i = \rho^{-1}(j)$ and the identities (and types) of the banks in its neighboring slots $i-1$ and $i+1$. This information narrows down the potential networks to the set:

$$\mathcal{B}^j(\rho) = \left\{ b(\rho) \in \mathcal{B} \mid \begin{bmatrix} \tilde{\rho}(i-1) = \rho(i-1) \\ \tilde{\rho}(i) = \rho(i) \\ \tilde{\rho}(i+1) = \rho(i+1) \end{bmatrix}, \text{ where } i = \rho^{-1}(j) \right\}. $$

Note that the bank b^j does not know the types of the remaining banks $(b^j)^{i\neq\rho(i-1),\rho(i),\rho(i+1)}$, nor does it know how these banks are assigned to the remaining slots (see Figure 1). The latter means, and this is critical, that banks do not know how these banks are connected to all other banks in the network.

Auditing Technology

Each bank b^j can acquire more information about the financial network through an auditing technology. At the beginning of date 0 and after the realization of the aggregate state in $\{s(0), s(r), s(g)\}$, a bank b^j in slot i (i.e. with $j = \rho(i)$) can exert effort to audit its forward neighbor $b^{\rho(i+1)}$ in order to learn the identity of this bank's forward neighbor $b^{\rho(i+2)}$. Continuing this way, a bank b^j that audits a number, a^j, of balance sheets learns the identity of its $a^j + 1$ forward neighbors and narrows the set of potential
Figure 1: The financial network and uncertainty. The bottom-left box displays the actual financial network. Each circle corresponds to a slot in the financial network, and in this realization of the network, each slot i contains bank b^i (i.e. $\rho(i) = i$). The remaining boxes show the other networks that bank b^i finds plausible after observing its neighbors (i.e. the set $B^i(\rho)$). Bank b^i cannot tell the types of banks b^3, b^4, b^5, nor can it tell how they are ordered in slots $i \in \{3, 4, 5\}$.
financial networks to:

\[
\mathcal{B}^j (\rho | a^j) = \left\{ b (\bar{\rho}) \in \mathcal{B} \mid \begin{align*}
\bar{\rho} (i - 1) &= \rho (i - 1) \\
\bar{\rho} (i + a^j + 1) &= \rho (i + a^j + 1)
\end{align*}, \text{ where } i = \rho^{-1} (j) \right\}.
\]

We denote the posterior beliefs of bank \(b^j\) with \(f^j (\cdot | \rho, a^j)\) which has support equal to \(\mathcal{B}^j (\rho, a^j)\) given assumption (FS). In the example illustrated in Figure 1, if bank \(b^3\) audits one balance sheet, then it would learn that bank \(b^3\) is assigned to slot 3 and it would narrow down the set of networks to the two boxes at the left hand side of the bottom row in Figure 1.

Loan Recalls

After learning about the aggregate state and narrowing the financial network to \(\mathcal{B}^j (\rho | a^j)\), each bank \(b^j\) has updated information about its liquidity needs at date 1. The bank can rearrange its portfolio by recalling a portion of its loans \(y_0^j \in [0, \bar{y}_0]\) and by keeping these units in liquid reserves. After this portfolio reallocation, each bank has \(y + y_0^j \in [y, y + \bar{y}_0]\) invested in liquid reserves and \(1 - y - y_0^j\) in loans. The parameter \(\bar{y}_0 \in [0, 1 - y]\) captures the flexibility of the banks in portfolio rearrangement. If \(\bar{y}_0 = 0\), the banks cannot recall any loans, while if \(\bar{y}_0 = 1 - y\), the banks can recall all of the loans they made at date \(-1\).

Bank Preferences

Consider a bank \(b^j\) and denote the bank’s actual payments to early and late depositors by \(q_1^j\) and \(q_2^j\) (which may in principle be different than the contracted values \(l_1\) and \(l_2\)). Because banks are infinitesimal, they make decisions taking the payments of the other banks as given. The bank makes the audit and loan recall decisions, \(a^j \in \{0, 1, \ldots, 2n - 3\}\) and \(y_0^j \in [0, \bar{y}_0]\), at date 0. At date 1, the bank chooses to withdraw some of its deposits on the neighbor bank, which we denote by \(z^j \in [0, z]\), and it may also unload some of its outstanding loans. The bank makes these decisions to maximize \(q_1^j\) until it can meet its liquidity obligations to depositors, that is, until \(q_1^j = l_1\). Increasing \(q_1^j\) beyond \(l_1\) has no benefit for the bank, thus once it satisfies its liquidity obligations, it then tries to maximize the return to the late depositors \(q_2^j\).

We capture this behavior with the following objective function

\[
v \left(1 \{q_1^j \leq l_1\} q_1^j + 1 \{q_1^j \geq l_1\} q_2^j \right) - d (a^j), \quad (3)
\]
where \(v: \mathbb{R}_+ \to \mathbb{R}_{++} \) is a strictly concave and strictly increasing function and \(d(\cdot) \) is an increasing and convex function which captures the bank's non-monetary disutility from auditing. When the bank \(b^j \) is making a decision that would lead to an uncertain outcome for \((q_1^j, q_2^j) \) (which will be the case in Section 4), then it maximizes the expectation of the expression in (3) given its posterior beliefs \(f^j (\cdot | \rho, a^j) \).

Suppose that the depositors' early/late liquidity shocks are observable, and a bank which is able to pay its late depositors at least \(l_1 \) at date 2 can refuse to pay the late depositors if they arrive early.\(^3\) With this assumption, the continuation equilibrium for bank \(b^j \) at date 1 takes one of two forms. Either there is a no-liquidation equilibrium in which the bank is solvent and pays

\[
q_1^j = l_1, \quad q_2^j \geq l_1, \tag{4}
\]

while the late depositors withdraw at date 2; or there is a liquidation equilibrium in which the bank is insolvent, unloads all outstanding loans, and pays

\[
q_1^j < l_1, \quad q_2^j = 0, \tag{5}
\]

while all depositors (including the late depositors) draw their deposits at date 1.

This completes the description of the normal environment with an uncertain financial network. Figure 2 recaps the timeline of events in this economy. It can be checked, as we do in the Appendix, that in equilibrium each bank \(b^j \) is solvent and pays its depositors the contracted values, \(q_1 = l_1 \) and \(q_2 = l_2 \), in each state of the world \(s(0), s(r) \) and \(s(g) \). In states \(s(r) \) and \(s(g) \), the banks in need of liquidity meet their liquidity demands by withdrawing their deposits in their forward neighbor banks, and the banks with excess liquidity do not withdraw their deposits in order to receive higher returns at date 2. Moreover, the banks do not audit or recall any loans at date 0. The financial network facilitates liquidity insurance and enables liquidity to flow across banks even though the banks are uncertain about the network structure. In the next sections we show how things change dramatically in the presence of a perturbation to this environment, especially when banks face uncertainty about the financial network.

\(^3\)Without this assumption, there could be multiple equilibria for late depositors' early/late withdrawal decisions. In cases with multiple equilibria, this assumption selects the equilibrium in which no late depositor withdraws.
2.2 A Rare Event

Henceforth we consider the equilibrium following an unanticipated change in the structure of shocks: At date 0 the banks learn that the actual state is $s^0(0)$, which is just like $s(0)$ except for the fact that one bank, b^j, becomes distressed and loses $\theta \leq y$ of its liquid assets. Figure 2 describes the timeline in the perturbed environment. We formally define the equilibrium in this economy as follows.

Definition 1. The equilibrium is a collection of bank auditing, loan recall, deposit withdrawal, and payment decisions $\left\{ a^j(\rho), y^j_0(\rho), z^j(\rho), q^j_1(\rho), q^j_2(\rho) \right\}_{j, b(\rho) \in B}$ such that, for each consistent realization of the financial network $b(\rho)$ at date -1 and the realization of the unanticipated aggregate state $s^j(0)$ at date 0, each bank b^j maximizes expected utility in (3) given its prior belief $f^j(.)$ over B, the insolvent banks (with $q^j_1(\rho) < l_1$) unload all of their outstanding loans at date 1 and the late depositors withdraw deposits early if and only if $q^j_2(\rho) < l_1$ (cf. Eqs. (4) and (5)).

As we will see in the subsequent sections, the loan recall and auditing options become useful in this scenario. The distressed bank b^j does not have enough liquid reserves to meet the liquidity demand at date 1. This bank tries but cannot obtain liquidity from cross-deposits (since the other banks do not have excess liquidity either), thus it benefits from
recalling some of its loans at date 0. If the distressed bank is insolvent despite recalling
loans, it will pay less than \(l_1 \) to its depositors, including its backward neighbor bank, and
the crisis will spread in this fashion to the other banks in the network. Anticipating this,
banks \(\{b_i^j \}_{j \neq j} \) may also want to recall some loans. These banks may acquire additional
information about the financial network to make more accurate loan recall decisions. Note
that each bank \(b_i^j \neq b_j^j \) knows that the bank \(b_j^j \) is distressed, but it does not necessarily
know the slot

\[
\tilde{i} = \rho^{-1}(\tilde{j})
\]

de the distressed bank. This is key, since it means that a bank \(b_i^j \neq b_j^j \) does not necessarily
know how far removed it is from the distressed bank.

More specifically, note that for each financial network \(b(\rho) \) and for each bank \(b_i^j \), there
exists a unique \(k \in \{0, \ldots, 2n - 1\} \) such that

\[
j = \rho(\tilde{i} - k),
\]

which we define as the distance of bank \(b_i^j \) from the distressed bank. As we will see, the
distance \(k \) will be the payoff relevant information for a bank \(b_i^j \) that decides how many of
the loans to recall since it will determine whether or not the crisis that originates at the
distressed bank \(b_j^j \) will cascade to bank \(b_i^j \).

The banks \(b^{\rho(\tilde{i}-1)}, b^{\rho(\tilde{i})}, b^{\rho(\tilde{i}+1)} \), respectively with distances 1, 0 and 2\(n - 1 \), know their
distances, but the remaining banks (with distances \(k \in \{2, \ldots, 2n - 2\} \)) do not have this
information a priori and they assign a positive probability to each \(\tilde{k} \in \{2, \ldots, 2n - 2\} \) (they
rule out \(\tilde{k} \in \{1, 2n - 1\} \) by observing their forward and backwards neighbors). Note,
however, that the bank \(b_i^j \) can use the auditing technology to learn about the financial
network and, in particular, about its distance from the distressed bank. A bank \(b^{\rho(\tilde{i}-k)} \)
(with distance \(k \)) that audits \(a_i^j \geq 1 \) banks either learns its distance \(k \) (if \(k \leq a_i^j + 1 \)) or
it learns that \(k \geq a_i^j + 2 \).

We next turn to the characterization of equilibrium in the perturbed environment.

3 Free-Information Benchmark

We first study a benchmark case in which auditing is free so each bank \(b^{\rho(\tilde{i}-k)} \) chooses full
auditing \(a^{\rho(\tilde{i}-k)} = 2n - 3 \). In this context banks learn the whole financial network \(b(\rho) \)
and, in particular, their distances \(k \).

All banks receive a liquidity shock, \(\bar{\omega} \), and have liquid reserves equal to \(y = \bar{\omega} l_1 \), except
for bank $b^J = b^{\rho(t)}$ which has liquid reserves $y - \theta$. At date 1, the distressed bank $b^{\rho(t)}$ withdraws its deposits from the forward neighbor bank. As we show in the Appendix, this triggers further withdrawals until, in equilibrium, all cross deposits are withdrawn. That is

$$z^j = z \quad \forall j \in \{1, .., 2n\}.$$

In particular, bank $b^{\rho(t)}$ tries, but cannot, obtain any net liquidity through cross withdrawals. The bank also cannot obtain any liquidity by unloading the loans at date 1, since each unit of unloaded loan yields $r \approx 0$. Anticipating that it will not be able to obtain additional liquidity at date 1, the distressed bank $b^{\rho(t)}$ tries to obtain liquidity by recalling some of its loans at date 0.

In order to promise late depositors at least l_1, a bank with no liquid reserves left at the end of date 1 must have at least

$$1 - y - \bar{y}_0^n = \frac{(1 - \bar{\omega}) l_1}{R}$$

units of loans. The level \bar{y}_0^n is a natural limit on a bank’s loan recalls (which plans to deplete all of its liquidity at date 1) since any choice above this would make the bank necessarily insolvent. If the actual limit on loan recalls \bar{y}_0 is greater than \bar{y}_0^n, then the bank can recall at most \bar{y}_0^n loans while remaining solvent; or else it can recall \bar{y}_0 loans.

Combining the two cases, a bank’s buffer is given by

$$\beta = \min\{\bar{y}_0, \bar{y}_0^n\}.$$

A bank can accommodate losses in liquid reserves up to the buffer β, but becomes insolvent when losses are beyond β. It follows that the distressed bank $b^{\rho(t)}$ will be insolvent whenever

$$\theta > \beta,$$

that is, whenever its losses in liquid reserves are greater than its buffer. Suppose this is the case so bank $b^{\rho(t)}$ is insolvent. Anticipating insolvency, this bank will recall as many of its loans as it can $y_0^{\rho(t)} = \bar{y}_0$ (since it maximizes $q_1^{\rho(t)}$) and unloads all remaining loans at date 1. Since the bank is insolvent, all depositors (including late depositors) arrive early and the bank pays

$$q_1^{\rho(t)} = \frac{y + \bar{y}_0 - \theta + z q_1^{\rho(t+1)}}{1 + z} < l_1,$$
where recall that \(q_1^{(r+1)} \) denotes bank \(b^{(r+1)} \)'s payment to early depositors (which is equal to \(l_1 \) if bank \(b^{(r+1)} \) is solvent).

Partial Cascades. Since bank \(b^{(r)} \) is insolvent, its backward neighbor bank \(b^{(r-1)} \) will experience losses in its cross deposit holdings, which, if severe enough, may cause bank \(b^{(r-1)} \)'s insolvency. Once the crisis cascades to bank \(b^{(r-1)} \), it may then similarly cascade to bank \(b^{(r-2)} \), continuing its cascade through the network in this fashion.

We conjecture that, under appropriate parametric conditions, there exists a threshold \(K \in \{1, \ldots, 2n - 2\} \) such that all banks with distance \(k \leq K - 1 \) are insolvent (there are \(K \) such banks) while the banks with distance \(k \geq K \) remain solvent. In other words, the crisis will partially cascade through the network but will be contained after \(K \leq 2n - 2 \) banks have failed. We refer to \(K \) as the *cascade size.*

Under this conjecture, bank \(b^{(r+1)} \), which has a distance \(2n - 1 \), is solvent. Therefore \(q_1^{(r+1)} = l_1 \) and \(q_1^{(r)} \) in Eq. (9) can be calculated explicitly. Consider now the bank \(b^{(r-1)} \) with distance 1 from the distressed bank. To remain solvent, this bank needs to pay \(l_1 \) on its deposits to bank \(b^{(r-2)} \) but it receives only \(q_1^{(r)} \) on its deposits from the distressed bank \(b^{(r)} \), so it loses \(z(l_1 - q_1^{(r)}) \) in cross-deposits. Hence, bank \(b^{(r-1)} \) will also go bankrupt if and only if its losses from cross-deposits are greater than its buffer, \(z(l_1 - q_1^{(r)}) > \beta \), which can be rewritten as

\[
q_1^{(r)} < l_1 - \frac{\beta}{z}.
\]

If this condition fails, then the only insolvent bank is the original distressed bank and the cascade size is \(K = 1 \). If this condition holds, then bank \(b^{(r-1)} \) anticipates insolvency, it will recall as many loans as it can, i.e. \(y_0^{(r-1)} = \bar{y}_0 \) and it will pay all depositors

\[
q_1^{(r-1)} = f(q_1^{(r)}) = \frac{y + \bar{y}_0 + zq_1^{(r)}}{1 + z}.
\]

From this point onwards, a pattern emerges. The payment by an insolvent bank \(b^{(r-k)} \) (with \(k \geq 1 \)) is given by

\[
q_1^{(r-k)} = f(q_1^{(r-(k-1))})
\]

and this bank's backward neighbor \(b^{(r-(k+1))} \) is also insolvent if and only if \(q_1^{(r-k)} < l_1 - \frac{\beta}{z} \). Hence, the payments of the insolvent banks converge to the fixed point of the function
given by \(y + \tilde{y}_0 \), and if

\[
y + \tilde{y}_0 > l_1 - \frac{\beta}{z},
\]

then (under Eq. (10)) there exists a unique \(K \geq 2 \) such that

\[
q_1^{r(\tau-k)} < l_1 - \frac{\beta}{z} \text{ for each } k \in \{0, \ldots, K - 2\}
\]

and \(q_1^{r(\tau-(K-1))} \geq l_1 - \frac{\beta}{z} \).

If \(2n - 2 \) is greater than the solution, \(K \), to this equation, i.e. if

\[
2n - 2 \geq K,
\]

then, Eq. (13) shows that (in addition to the trigger-distressed bank \(b^{r(\tau)} \)) all banks \(b^{r(\tau-k)} \) with distance \(k \in \{1, \ldots, K - 1\} \) are insolvent since their losses from cross deposits are greater than their corresponding buffers. In contrast, bank \(b^{r(\tau-K)} \) (that receives \(q_1^{r(\tau-(K-1))} \) from its forward neighbor) is solvent, since it can meet its losses from cross deposits by recalling loans while still promising the late depositors at least \(l_1 \) (i.e. \(q_2^{r(\tau-K)} \geq l_1 \)). Since bank \(b^{r(\tau-K)} \) is solvent, all banks \(b^{r(\tau-k)} \) with distance \(k \in \{K + 1, \ldots, 2n - 1\} \) are also solvent since they do not incur losses in cross-deposits. Hence these banks do not recall any loans \(y_0^{r(\tau-k)} = 0 \) and pay \((q_1^{r(\tau-k)} = l_1, q_2^{r(\tau-k)} = l_2)\), verifying our conjecture for a partial cascade of size \(K \) under conditions (12) and (14).

Since our goal is to study the role of network uncertainty in generating a credit crunch, we take the partial cascades as the benchmark. The next proposition summarizes the above discussion and also characterizes the aggregate level of recalled loans, which we use as a benchmark in subsequent sections.

Proposition 1. Suppose the financial network is realized as \(b(\rho) \), auditing is free, and conditions (8), (12) and (14) hold. Let \(\tau = \rho^{-1}(\bar{j}) \) denote the slot of the distressed bank. Then, the banks’ equilibrium payments \((q_1^{r(\tau-k)}, q_2^{r(\tau-k)}) \) are (weakly) increasing with respect to their distance \(k \) from the distressed bank, and there is a partial cascade of size \(K \leq 2n - 2 \) where \(K \) is defined by Eq. (13). Banks \(\{b^{r(\tau-k)}\}_{k=0}^{K-1} \) (with distance from the distressed bank \(k \leq K - 1 \)) are insolvent while the remaining banks \(\{b^{r(\tau-k)}\}_{k=K}^{2n-1} \) (with distance \(k \geq K \)) are solvent. Banks \(\{b^{r(\tau-k)}\}_{k=0}^{K-1} \) recall all of the loans they can and unload all of the remaining loans at date 1, while banks \(\{b^{r(\tau-k)}\}_{k=K+1}^{2n-1} \) do not recall or unload any loans. Bank \(b^{r(\tau-K)} \) recalls a level of loans \(y_0^{r(\tau-K)} = z \left(l_1 - q_1^{r(\tau-(K-1))}\right) \)

If condition (12) fails, then the sequence \((q_1^{r(\tau-k)} = f \left(q_1^{r(\tau-(k-1))}\right)) \) always remains below \(l_1 - \frac{\beta}{z} \), and it can be checked that there is a full cascade, i.e. all banks are insolvent.
Figure 3: The free-information benchmark. The top figure plots the cascade size K as a function of the losses in the originating bank θ, for different levels of the flexibility parameter \bar{y}_0. The bottom figure plots the aggregate level of loan recalls, \mathcal{F}, for the same set of $\{\bar{y}_0\}$.

which is just enough to meet its losses from cross deposits (and does not unload any loans). This bank pays $\left(q_1^{\rho(\tau-K)} = l_1, q_2^{\rho(\tau-K)} \leq l_2\right)$ while all other solvent banks pay $\left(q_1^{\rho(\tau-k)} = l_1, q_2^{\rho(\tau-k)} = l_2\right)$. The payments of the insolvent banks are determined by the sequence $\left(q_1^{\rho(\tau-k)} = f\left(q_1^{\rho(\tau-(k-1))}\right)\right)_{k=0}^{K-1}$, where the initial value $q_1^{\rho(\tau)}$ is solved from Eq. (9) after substituting $q_1^{\rho(\tau+1)} = l_1$.

The aggregate level of recalled loans is:

$$\mathcal{F} \equiv \sum_j y_j^i = K \bar{y}_0 + y_0^{\rho(\tau-K)}.$$ (15)

Discussion. Proposition 1 shows that the loan recall decisions and the payments of a bank $b^j = b^{\rho(\tau-k)}$ only depends on its distance k, and that the aggregate level of recalled loans, \mathcal{F}, is roughly linear in the size of the cascade K (and is roughly continuous in θ) for any given level of \bar{y}_0. Figure 3 demonstrates this result for particular parameterization of the model.

The top panel of the figure plots the cascade size K as a function of the losses in the originating bank θ for different levels of the flexibility parameter \bar{y}_0. This plot shows that the cascade size is increasing in the level of losses θ and decreasing in the level of flexibility \bar{y}_0. Intuitively, with a higher θ and a lower flexibility parameter \bar{y}_0, there are more losses...
to be contained and the banks have less emergency reserves to counter these losses, thus increasing the spread of insolvency.

The bottom panel plots the aggregate level of loan recalls F, which is a measure of the severity of the credit crunch, as a function of θ. This plot shows that F also increases with θ and falls with \tilde{y}_0. This is an intuitive result: In the free-information benchmark only the insolvent banks (and one transition bank) recall loans, thus the more banks are insolvent (i.e. the greater K) the more loans are recalled in the aggregate. Note also that F increases “smoothly” with θ.

These results offer a benchmark for the next sections. There we show that once auditing becomes costly, both K and F may be non-monotonic in \tilde{y}_0 and can jump with small increases in θ.

4 Endogenous Complexity and the Credit Crunch

We have now laid out the foundation for our main result. In this section we add the realistic assumption that auditing is costly and demonstrate that a massive credit crunch can arise in response to an endogenous increase in complexity once a bank in the network is sufficiently distressed. In other words, when K is large, it becomes too costly for banks to figure out their indirect exposure. This means that their perceived uncertainty rises and they eventually respond by recalling their loans as a precautionary measure (i.e., F spikes).

Note that, unlike in Section 3, we cannot simplify the analysis by solving the equilibrium for a particular financial network $b(\rho)$ in isolation, since, even when the realization of the financial network is $b(\rho)$, each bank also assigns a positive probability to other financial networks $b(\hat{\rho}) \in B$. As such, for a consistent analysis we must describe the equilibrium for any realization of the financial network $b(\rho) \in B$ (cf. Definition 1).

Solving this problem in full generality is cumbersome but we make assumptions on the form of the adjustment cost function, the banks’ objective function, and on the flexibility of the loan-recall limit, that help simplify the exposition. First, we consider a convex and increasing cost function $d(.)$ that satisfies

$$d(1) = 0 \quad \text{and} \quad d(2) > v(l_1 + l_2) - v(0). \quad (16)$$

This means that banks can audit one balance sheet for free but it is very costly to audit the second balance sheet. In particular, given the bank’s preferences in (3), the bank will never choose to audit the second balance sheet and thus each bank audits exactly one
balance sheet, \[\{\alpha_l^j (\rho) = 1\}_j\}_{b(\rho) \in B}.\] Given these audit decisions and the actual financial network \(b(\rho)\), a bank \(b^j\) has a posterior belief \(f^j(\cdot; \rho, 1)\) with support \(B^j(\rho, 1)\), which is the set of financial networks in which the bank \(j\) knows the identities of its neighbors and its second forward neighbor. In particular, the bank \(b^{\rho(t-2)}\) learns its distance from the distressed bank \(b^{\rho(t)}\) (in addition to banks \(b^{\rho(t-1)}, b^{\rho(t)}, b^{\rho(t+1)}\) which already have this information from the outset of date 0). We denote the set of banks that know the slot of the distressed bank (and thus their distance from this bank) by

\[B^{\text{know}}(\rho) = \{b^{\rho(t-2)}, b^{\rho(t-1)}, b^{\rho(t)}, b^{\rho(t+1)}\}.\]

On the other hand, each bank \(b^{\rho(t-k)}\) with \(k \in \{3, \ldots, 2n - 2\}\) learns that its distance is at least 3 (i.e. \(\hat{k} \geq 3\)), but otherwise assigns a probability in \((0, 1)\) to all distances \(\hat{k} \in \{3, \ldots, 2n - 2\}\). We denote the set of banks that are uncertain about their distance by

\[B^{\text{uncertain}}(\rho) = \{b^{\rho(t-3)}, b^{\rho(t-4)}, \ldots, b^{\rho(t-(2n-2))}\}.\]

Second, we assume that the preference function \(v(\cdot)\) in (3) is Leontieff \(v(x) = \frac{x^{1-\sigma}}{1-\sigma}\) with \(\sigma \to \infty\), so that the bank’s objective is:

\[
\min_{b(\rho) \in B^j(\rho, 1)} \left(1 \left\{q^1_l (\bar{\rho}) \leq l_1 \right\} q^1_l (\bar{\rho}) + 1 \left\{q^2_l (\bar{\rho}) \geq l_1 \right\} q^2_l (\bar{\rho}) - d (\alpha_l^j (\rho)) \right). \tag{17}
\]

This means that banks evaluate their decisions according to the worst possible network realization, \(b(\bar{\rho})\), which they find plausible.

The third and last assumption is that

\[\bar{y}_0 \leq \bar{y}_0^n. \tag{18}\]

That is, the actual limit on loan recalls is below the natural limit defined in Eq. (7) (which also implies that the buffer is given by \(\beta = \bar{y}_0\)). This condition ensures that, in the continuation equilibrium at date 1, the banks that have enough liquidity are also solvent (since they have enough loans to pay the late depositors at least \(l_1\) at date 2). We drop this condition in the next section.

We next turn to the characterization of the equilibrium under these simplifying assumptions. The banks make their loan recall decision at date 0 and deposit withdrawal decision at date 1 under uncertainty (before their date 1 losses from cross-deposits are realized). At date 1 the distressed bank \(b^{\rho(r)}\) withdraws its deposits from the forward neighbor which leads to the withdrawal of all cross deposits (see Eq. (6) and the Appen-
dix) as in the free-information benchmark. Thus, for any distressed bank, the only way to obtain additional liquidity at date 1 is through ex-ante (date 0) loan recalls, which we characterize next.

A Sufficient Statistic for Loan Recalls. Consider a bank \(b^{(r-k)} \) other than the original distressed bank (i.e. suppose \(k > 0 \)). A sufficient statistic for this bank to make the loan recall decision is \(q_1^{(r-(k-1))}(\bar{\rho}) \leq l_1 \), which is the amount it receives in equilibrium from its forward neighbor. In other words, to decide how many of its loans to recall, this bank only needs to know whether (and how much) it will lose in cross-deposits. For example, if it knows with certainty that \(q_1^{(r-(k-1))}(\bar{\rho}) = l_1 \) (i.e. its forward neighbor is solvent), then it recalls no loans \(y_0^{(r-k)} = 0 \). If it knows with certainty that \(q_1^{(r-(k-1))}(\bar{\rho}) < l_1 - \beta/z \) (i.e. its forward neighbor will pay so little that this bank will also be insolvent), then it recalls as many loans as it can \(y_0^{(r-k)} = \bar{y}_0 \). More generally, if the bank \(b^{(r-k)} \) chooses some \(y_0' \in [0, \bar{y}_0] \) at date 0 and its forward neighbor pays \(x = q_1^{(r-(k-1))}(\bar{\rho}) \) at date 1, then this bank’s payment can be written as

\[
q_1^{(r-k)}(\bar{\rho}) = q_1[y'_0, x] \quad \text{and} \quad q_2^{(r-k)}(\bar{\rho}) = q_2[y'_0, x],
\]

where the functions \(q_1[y'_0, x] \) and \(q_2[y'_0, x] \) are characterized in Eqs. (25) and (26) in the Appendix. At date 0, the bank does not necessarily know \(x = q_1^{(r-(k-1))}(\bar{\rho}) \) and it has to choose the level of loan recalls under uncertainty.

The characterization in the Appendix also shows that \(q_1[y'_0, x] \) and \(q_2[y'_0, x] \) are (weakly) increasing in \(x \) for any given \(y'_0 \). That is, the bank’s payment is increasing in the amount it receives from its forward neighbor regardless of the ex-ante loan recall decision. Using this observation along with Eq. (19), the bank’s objective value in (17) can be simplified and its optimization problem can be written as

\[
\max_{y'_0 \in [0, \bar{y}_0]} \left(\mathbb{1} \{ q_1[y'_0, x^m] \geq l_1 \} q_1[y'_0, x^m] + \mathbb{1} \{ q_1[y'_0, x^m] \geq l_1 \} q_2[y'_0, x^m] \right),
\]

s.t. \(x^m = \min \left\{ x \mid x = q_1^{(r-(k-1))}(\bar{\rho}), \ b(\bar{\rho}) \in \mathcal{B}(\rho, 1) \right\} \).

In words, a bank \(b^{(r-k)} \) (with \(k > 0 \)) recalls loans as if it will receive from its forward neighbor the lowest possible payment \(x^m \).

Distance Based and Monotonic Equilibrium. Next we define two equilibrium allocation notions that are useful for further characterization. First, we say that the equilibrium allocation is distance based if the bank’s equilibrium payment can be written only
as a function of its distance k from the distressed bank, that is, if there exists payment functions $Q_1, Q_2 : \{0, \ldots, 2n - 1\} \to \mathbb{R}$ such that

$$
\left(q_1^{\rho(i-k)}(\rho), q_2^{\rho(i-k)}(\rho) \right) = \left(Q_1[k], Q_2[k] \right)
$$

for all $b(\rho) \in B$ and $k \in \{0, \ldots, 2n - 1\}$. Second, we say that a distance based equilibrium is monotonic if the payment functions $Q_1[k], Q_2[k]$ are (weakly) increasing in k. In words, in a distance based and monotonic equilibrium, the banks that are further away from the distressed bank yield (weakly) higher payments.

We next conjecture that the equilibrium is distance based and monotonic (which we verify below). Then, a bank $b^{\rho(i-k)}$'s uncertainty about the forward neighbor’s payment $x = q_1^{\rho(i-(k-1))}((\hat{\rho}) = Q_1[k-1]$ reduces to its uncertainty about the forward neighbor’s distance $k - 1$, which is equal to one less than its own distance k. Hence, the problem in (20) can further be simplified by substituting $q_1^{\rho(i-(k-1))}((\hat{\rho}) = Q_1[k-1]$. In particular, since a bank $b^{\rho(i-k)} \in B^{know}(\rho)$ (for $k > 0$) knows its distance k, it solves problem (20) with $x^m = Q_1[k-1]$. On the other hand, a bank $b^{\rho(i-k)} \in B^{uncertain}(\rho)$ assigns a positive probability to all distances $\hat{k} \in \{3, \ldots, 2n-2\}$. Moreover, since the equilibrium is monotonic, its forward neighbor’s payment $Q_1[\hat{k}-1]$ is minimal for the distance $\hat{k} = 3$, hence a bank $b^{\rho(i)} \in B^{uncertain}(\rho)$ solves problem (20) with $x^m = Q_1[2]$.

We are now in a position to state the main result of this section, which shows that all banks that are uncertain about their distances to the distressed bank recall loans as if they are closer to the distressed bank than they actually are.

More specifically, all banks in $B^{uncertain}(\rho)$ recall the level of loans that the bank with distance $\hat{k} = 3$ would recall in the free-information benchmark. When the cascade size is sufficiently large (i.e. $K \geq 3$) so that the bank with distance $\hat{k} = 3$ in the free-information benchmark would recall many of its loans, all banks in $B^{uncertain}(\rho)$ with actual distances $k > K$ also recall many of their loans, even though ex-post they end up not needing liquidity.

To state the result, we let $(y_{0,free}(\rho), q_{1,free}(\rho), q_{2,free}(\rho))_j$ denote the loan recall decisions and payments of banks in the free-information benchmark for each financial network $b(\rho) \in B$ (characterized in Proposition 1).

Proposition 2. Suppose assumptions (FS), (16), and (17) are satisfied and conditions (8), (12), (14), and (18) hold. For a given financial network $b(\rho)$, let $\bar{\imath} = \rho^{-1}(j)$ denote the slot of the distressed bank.

(i) For the continuation equilibrium (at date 1): The equilibrium allocation
is distance based and monotonic. The cascade size in the continuation equilibrium is the same as in the free-information benchmark, that is, at date 1, banks \(\{ b^{(k)} \}_{k=0}^{K-1} \) are insolvent while banks \(\{ b^{(k)} \}_{k=K}^{2n-1} \) are solvent where \(K \) is defined in Eq. (13).

(ii) For the ex-ante equilibrium (at date 0): Each bank \(b^j \in B^{\text{know}}(\rho) \) recalls the same level of loans \(y^j_0(\rho) = y^j_{0,\text{free}}(\rho) \) as in the free-information benchmark, while each bank \(b^j \in B^{\text{uncertain}}(\rho) \) recalls \(y^j_0(\rho) = y^j_{0,\text{free}}(\rho) \) of its loans, which is what bank \(b^{(r-3)} \) would choose in the free-information benchmark.

For the aggregate level of recalled loans, there are three cases depending on the cascade size \(K \):

If \(K \leq 2 \), then the crisis in the free-information benchmark would not cascade to bank \(b^{(r-3)} \), which would recall no loans \(y^j_{0,\text{free}}(\rho) = 0 \). Thus, each bank \(b^j \in B^{\text{uncertain}}(\rho) \) recalls no loans and the aggregate level of recalled loans is equal to the benchmark Eq. (15).

If \(K = 3 \), then the crisis in the free-information benchmark would cascade to and stop at bank \(b^{(r-3)} \), which would recall an intermediate level of loans \(y^j_{0,\text{free}}(\rho) \in [0, \bar{y}_0] \). Thus, each bank \(b^j \in B^{\text{uncertain}}(\rho) \) recalls \(y^j_{0,\text{free}}(\rho) \) of its loans and the aggregate level of recalled loans is:

\[
F = \sum_j y^j_0 = 3\bar{y}_0 + (2n - 4) y^j_{0,\text{free}}.
\]

(21)

If \(K \geq 4 \), then in the free-information benchmark bank \(b^{(r-3)} \) would be insolvent and would recall as many of its loans as it can \(y^j_{0,\text{free}} = \bar{y}_0 \). Thus, each bank \(b^j \in B^{\text{uncertain}}(\rho) \) recalls as many of their loans as they can and the aggregate level of recalled loans is:

\[
F = \sum_j y^j_0 = (2n - 1) \bar{y}_0.
\]

(22)

The proof of this result is relegated to the appendix since most of the intuition is provided in the discussion preceding the proposition. Among other features, the proof verifies that the equilibrium allocation at date 1 is distance based and monotonic, and that the cascade size is the same as in the free-information benchmark. The date 0 loan recall decisions are characterized as in part (ii) since the payments \(Q_1[k-1] \) for \(k \in \{1, 2n - 1\} \) (that a bank \(b^{(k)} \in B^{\text{know}}(\rho) \) with \(k > 0 \) expects to receive) and the payment \(Q_1[2] \) (that the banks in \(B^{\text{uncertain}}(\rho) \) effectively expect to receive) are the same as their counterparts in the free-information benchmark.
Figure 4: The costly-audit equilibrium. The top panel plots the cascade size K as a function of the losses in the originating bank θ for different levels of the flexibility parameter \bar{y}_0. The bottom panel plots aggregate level of loan recalls F for the same set of $\{\bar{y}_0\}$. The dashed lines in the bottom panel reproduce the free-information benchmark in Figure 3 for comparison.

Discussion. The plots in Figure 4 are the equivalent to those in the free-information case portrayed in Figure 3. The top panel plots the cascade size K as a function of the losses in the originating bank θ. The parameters satisfy condition (18) so that the cascade size in this case is the same as the cascade size in the free-information benchmark characterized in Proposition 1, and both figures coincide.

The key differences are in the bottom panel, which plots the aggregate level of loan recalls F as a function of θ. The solid lines correspond to the costly audit equilibrium characterized in Proposition 2, while the dashed lines reproduce the free-information benchmark also plotted in Figure 3. These plots demonstrate that, for low levels of K (i.e. for $K < 3$), the aggregate level of loan recalls with costly-auditing is the same as the free-information benchmark, in particular, it increases roughly continuously with θ. As K switches from below 3 to above 3, the loan recalls in the costly audit equilibrium make a very large and discontinuous jump. That is, when the losses (measuring the severity of the initial shock) are beyond a threshold, the cascade size becomes so large that banks are unable to tell whether they are connected to the distressed bank. All uncertain banks act as if they are closer to the distressed bank than they actually are, recalling many more loans than in the free-information benchmark and leading to a severe credit crunch episode. This is our main result.
Note also that the aggregate level of loan recalls (and the severity of the credit crunch) is not necessarily monotonic in the level of flexibility in loan recalls \(y_0 \). For example, when \(\theta = 0.5 \), Figure 4 shows that providing more flexibility to the banks by increasing \(y_0 \) actually increases the level of aggregate loan recalls. That is, at low levels of \(\theta \), an increase in flexibility stabilizes the system but the opposite may take place when the shock is sufficiently large. Intuitively, if the increase in flexibility is not sufficient enough to contain the financial panic (by reducing the cascade size to manageable levels), more flexibility backfires since it enables banks to recall more loans and therefore exacerbate the credit crunch.

5 The Collapse of the Financial System

Until now, the uncertainty that arises from endogenous complexity affects the extent of the credit crunch but not the number of banks that are insolvent, \(K \). In this section we show that if banks have “too much” flexibility, in the sense that condition (18) no longer holds and

\[
y_0 \in (\bar{y}_0^n, 1 - y]
\]

(which also implies \(\beta = \bar{y}_0 \)), then the rise in uncertainty itself can increase the number of insolvent banks.

The reason is that a large precautionary loan-recall compromises banks’ long run profitability by swapping high return \(R \) for low return 1. In this context, even if the worst outcome anticipated by a bank does not materialize, it may still become insolvent if sufficiently close (but farther than \(K \)) from the distressed bank. In other words, a bank’s large precautionary reaction improves its liquidation outcome when very close to the distressed bank but it does so at the cost of raising its vulnerability with respect to more benign scenarios. Since ex-post a large number of banks may find themselves in the latter situation, there can be a significant rise in the number of insolvencies as a result of the additional flexibility.

The analysis is very similar to that in the previous section. In particular, a bank’s payment still depends on its choice \(y'_0 \in [0, \bar{y}_0] \) at date 0 and its forward neighbor’s payment \(x \equiv q_i^{(r - (k - 1))} (\tilde{\rho}) \) at date 1. That is:

\[
q_1^{(r - k)} (\tilde{\rho}) = q_1 [y'_0, x] \text{ and } q_2^{(r - k)} (\tilde{\rho}) = q_2 [y'_0, x]
\]

for some functions \(q_1 [y'_0, x] \) and \(q_2 [y'_0, x] \). However, the characterization of the piecewise
functions $q_1(y_0, x)$ and $q_2(y_0, x)$ changes a little when condition (18) is not satisfied. In particular, these functions are identical to those in (25) and (26) in the Appendix (as in Section 4) but now there is an additional insolvency region:

$$y_0 > y_0^u [(l_1 - x) z].$$

The critical new element is the bound $y_0^u [(l_1 - x) z]$. This is a function of the losses from cross-deposits and is calculated as the level of loan recalls above which the bank’s remaining loans and liquid reserves (net of losses) would not be sufficient to pay the late depositors at least l_1. That is, $y_0^u [(l_1 - x) z]$ is the solution to

$$R (1 - y - y_0^u [(l_1 - x) z]) + y_0^u [(l_1 - x) z] - (l_1 - x) z = l_1 (1 - \omega).$$

We refer to scenarios where $y_0 > y_0^u [(l_1 - x) z]$ as, for lack of a better jargon, scenarios of precautionary insolvency.

The functions $q_1(y_0, x)$ and $q_2(y_0, x)$ remain (weakly) increasing in x. Moreover, we conjecture as before that the equilibrium is monotonic and distance based (which we verify below), so the banks’ loan recall decisions still solve problem (20). It can be verified that all banks (except potentially bank $b^e(t+1)$) recall the level of loans as characterized in part (ii) of Proposition 2. In particular, all banks $b^j \in B_{uncertain}(\rho)$ choose the level of insurance the bank with distance $k = 3$ would choose in the free-information benchmark. However, part (i) of the proposition, which characterizes the equilibrium at date 1, changes once \bar{y}_0 exceeds y_0^u.

We divide the cases by the cascade size: $K \leq 2, K = 3,$ and $K \geq 4$. In the first two of these cases there is no additional panic relative to the case where banks’ flexibility is limited. If $K \leq 2$, each bank $b^j \in B_{uncertain}(\rho)$ recalls $y_0 = 0$. The date 1 equilibrium in this case is as described in part (i) of Proposition 2, in particular, there are no precautionary insolvencies and the cascade size is equal to K. Similarly, if $K = 3$, each bank $b^j \in B_{uncertain}(\rho)$ recalls $y_0^j = y_0^{(t=3)} = y_0^{free} \leq \bar{y}_0$, where the inequality follows since the transition bank $b^{e(t-3)}$ is solvent in the free-information benchmark. Since $y_0^j \leq \bar{y}_0^u$, it can be seen that $y_0^j \leq y_0^u [(l_1 - x) z]$, so the banks in $B_{uncertain}(\rho)$ are solvent. It follows that there are no precautionary insolvencies and the equilibrium is again as described in part (i) of Proposition 2, with a cascade size equal to $K = 3$.

5To see this, first note that $y_0^j \leq \bar{y}_0$, which implies

$$(R - 1) y_0^j \leq R \bar{y}_0^u - y_0^j = (1 - y) R - (1 - \omega) l_1 - y_0^j,$$

where the equality follows from Eq. (7). Combining this inequality with the inequality $y_0^j \geq (l_1 - x) z$
The new scenarios arise when $K \geq 4$. In this case, each bank $b^i \in B_{\text{uncertain}}(\rho)$ recalls $y_0^i = \bar{y}_0 > \bar{y}_0^\rho$ loans, and may experience a precautionary insolvency depending on its losses from cross-deposits. Note also that, in this case, all banks $b^i \in \{b^{q(1)}, ..., b^{q(1-(2n-2))}\}$ recall \bar{y}_0 while bank $b^{q(T+1)}$ (which is the only informed bank far away from the distressed bank) may recall a smaller amount.

To analyze this case, first note that the bound $y_0^\rho [(l_1 - x)z]$ is decreasing in $(l_1 - x)z$, and thus increasing in x. That is, the more a bank receives from its forward neighbor, the higher the bound above which it will experience a precautionary insolvency. Second, note the inequality, $y_0^\rho [0] < 1 - y$, which follows from some algebra and using $l_2/l_1 < R$. Then, there are two subcases to consider depending on whether or not the flexibility parameter \bar{y}_0 is greater than $y_0^\rho [0]$ (which is the highest value of the bound $y_0^\rho [(l_1 - x)z]$).

Subcase 1. If \bar{y}_0 is in the interval $(y_0^\rho [0], 1 - y)$, then \bar{y}_0 is always greater than the upper bound $y_0^\rho [(l_1 - x)z]$ and a bank b^i experiences a precautionary insolvency regardless of the amount x it receives from its forward neighbor. In particular, all banks in \(\{b^{q(1)}, ..., b^{q(1-(2n-2))}\}\) are insolvent. It can be verified that the informed bank $b^{q(T+1)}$ averts insolvency by choosing some $y_0^{q(T+1)} \leq y_0^\rho$ (see the Appendix).

Subcase 2. If $\bar{y}_0 \in (y_0^\rho [0], y_0^\rho [0])$, then there exists a unique $x [\bar{y}_0] \in (l_1 - l_00/z, l_1)$ that solves

$$y_0^\rho [(l_1 - x [\bar{y}_0]) z] = \bar{y}_0.$$

(24)

In this case, a bank b^i that has recalled \bar{y}_0 loans is insolvent if and only if it receives from its forward neighbor $x < x [\bar{y}_0]$ (so that its upper bound $y_0^\rho [(l_1 - x)z]$ is below its loan recalls \bar{y}_0). By a similar analysis to that in Section 3 for the partial cascades (which we carry out in the Appendix), it can be checked that there exists $K \in [K', 2n - 1]$ such that the banks \(\{b^{q(1)}, ..., b^{q(1-(K-1))}\}\) are insolvent while the banks \(\{b^{q(1-K)}, ..., b^{q(1-(2n-1))}\}\) are solvent. In other words, there is a partial cascade which is at least as large as (and potentially greater than) the partial cascade in the free-information benchmark.

We summarize our findings in the following proposition.6

(since $K \leq 3$, the banks in $B_{\text{uncertain}}(\rho)$ have sufficient liquid reserves at date 1) leads to

$$y_0^\rho \leq \frac{(1 - y) R - (1 - \bar{y}) l_1 - (l_1 - x) z}{R - 1} = y_0^\rho [(l_1 - x) z].$$

Note also that condition (18) implies $y_0^\rho \leq \bar{y}_0 \leq \bar{y}_0^\rho$ and thus rules out precautionary insolvencies by the above steps.

6Given the possibility of precautionary insolvencies, one may also wonder whether there could be multiple equilibria due to banks’ coordination failures. Suppose, for example, $K = 3$, so that the crisis is contained after 3 banks fail. Could there also be a bad equilibrium in which all banks recall the maximum level of loans, and their recall decisions are justified since their forward neighbors also recall the maximum level of loans and experience a precautionary insolvency (thus paying a small q^1_0)?
Proposition 3. Suppose assumptions (FS), (16) and (17) are satisfied and conditions (8), (12), (14) hold. Suppose also that condition (23) (which is the opposite of condition (18)) holds. For a given financial network \(b(\rho) \), let \(\bar{\tau} = \rho^{-1} (j) \) denote the slot of the distressed bank.

(i) For the ex-ante equilibrium (at date 0): Each bank \(b^j \in \{ b^0(\tau), b^0(\tau-1), b^0(\tau-2) \} \subset B^{\text{know}} (\rho) \) recalls the same level of loans \(y_{0}^j (\rho) = y_{0, \text{free}}^j (\rho) \) as it would recall in the free-information benchmark, while each bank \(b^j \in B^{\text{uncertain}} (\rho) \) recalls \(y_{0}^j (\rho) = y_{0, \text{free}}^j (\rho) \), which is what the bank \(b^0(\tau-3) \) would recall in the free-information benchmark. The bank \(b^j \in b^0(\tau+1) \) recalls \(y_{0}^{\rho(\tau+1)} (\rho) \leq y_{0}^{\rho} \) just enough to avert insolvency.

(ii) For the continuation equilibrium (at date 1): The equilibrium allocation \(\left[\{ q_1^j (\rho), q_2^j (\rho) \} \right]_{b(\rho) \in B} \) is distance based and monotonic. There exists a unique \(\hat{K} \in [K, 2n - 1] \) such that banks \(\{ b^0(\tau), \ldots, b^0(\tau-(\hat{K}-1)) \} \) are insolvent while banks \(\{ b^0(\tau-\hat{K}), \ldots, b^0(\tau-(2n-1)) \} \) are solvent. The cascade size \(\hat{K} \) is potentially larger than the cascade size \(K \) in the free-information benchmark. In particular, there are two cases:

If \(K \leq 3 \), then each bank \(b^j \in B^{\text{uncertain}} (\rho) \) chooses some \(y_{0}^j (\rho) \leq y_{0}^{\rho} \), and avoids a precautionary insolvency. The cascade size in this case is identical to the free-information benchmark, i.e. \(\hat{K} = K \).

If \(K \geq 4 \), then each bank \(b^j \in B^{\text{uncertain}} (\rho) \) chooses \(y_{0}^j (\rho) = y_{0}^{\rho} \), which may lead to a precautionary insolvency. There are two sub-cases:

If \(y_{0} \in \{ y_{0}^0 [0], 1 - y_{0} \} \), all banks \(b^j \in B^{\text{uncertain}} (\rho) \) are insolvent and the cascade size is given by \(\hat{K} = 2n - 1 > K \geq 4 \).

If \(y_{0} \in \{ y_{0}^0 [0], y_{0}^0 [0] \} \), there exists a unique \(x \) \([y_{0}] \in (l_1 - \bar{y}_{0}^{\rho} / \beta, l_1) \) characterized by Eq. (24) such that bank \(b^j \in B^{\text{uncertain}} (\rho) \) is insolvent if and only if its forward neighbor’s payment is below \(x \) \([y_{0}] \). The cascade size is an intermediate level \(\hat{K} \in [K, 2n - 1] \).

Discussion. Figure 5 plots the cascade size \(\hat{K} \) as a function of \(\theta \), for different levels of the flexibility parameter \(y_{0} \). For comparison, the dashed lines plot the cascade size \(K \) in the free-information benchmark for the same parameters. The top panel corresponds to the case in which \(y_{0} \leq y_{0}^{\rho} \), i.e. when condition (18) holds. By Proposition 2, in this case

This kind of coordination failure is not possible in our setup, precisely because of conditions (12) and (14). These conditions ensure that bank \(b^{0(\tau+1)} \) is always solvent, even if all other banks choose the maximum level of loans and experience precautionary insolvencies. To see this, note that the losses from cross-deposits decrease as we move away from the distressed bank and eventually \(d^{0(\tau+2)} \geq l_1 - \bar{y}_{0} / z \). Since bank \(b^{0(\tau+1)} \) expects to receive at least \(l_1 - \bar{y}_{0} / z \) from its forward neighbor, it can avoid insolvency by choosing an intermediate level of loan recall. Hence, it is never optimal for bank \(b^{0(\tau+1)} \) to undergo a precautionary insolvency. But once we fix \(d^{0(\tau+1)} = c_1 \), the rest of the equilibrium is uniquely determined as described above, that is, there is no coordination failure among banks.
Figure 5: The costly-audit equilibrium with self-inflicted bank runs. Each one of the four panels plots the cascade size \hat{K} as a function of θ for a different level of the flexibility parameter \bar{y}_0 (in increasing order of \bar{y}_0 from top to bottom). The dashed lines plot the cascade size K in the free-information benchmark.

There are no precautionary insolvencies and the cascade size is the same as the cascade size in the free-information benchmark. The second panel corresponds to a higher level of \bar{y}_0 that satisfies $\bar{y}_0 > \bar{y}_0^n$. In this case, precautionary insolvencies are possible, and for sufficiently large θ more banks are insolvent in the costly audit benchmark than in the free-information benchmark, i.e. $\hat{K} > K$. The third panel shows that, as we increase \bar{y}_0, a sufficiently large shock θ may trigger a collapse of the whole financial system (i.e., $\hat{K} = 2n - 1$).

The bottom panel in Figure 5 shows that as \bar{y}_0 continues to rise, then at some point the amplification disappears and again $\hat{K} = K$. That is, the effect of the flexibility parameter \bar{y}_0 on the size of the cascade \hat{K} is non-monotonic: The whole financial system collapses with an intermediate level of \bar{y}_0, but the health of the financial system is restored (and, in fact, is stronger) with sufficiently high levels of \bar{y}_0. The intuition for this non-monotonicity is the same as the intuition for the non-monotonic effect of \bar{y}_0 on \mathcal{F}. Increasing the flexibility parameter \bar{y}_0 reduces the cascade size K in the free-information benchmark. If this increase in flexibility is not sufficiently large, \hat{K} does not fall to manageable levels and the financial panic remains. As long as there is a financial panic, the increase in \bar{y}_0 backfires and, in the current case, it also amplifies the cascade by generating more precautionary insolvencies. However, if the increase in \bar{y}_0 is sufficiently large, it may end the financial panic and restore the health of the financial system.
6 Final Remarks

Our model captures what appears to be a central feature of financial panics: During severe financial crises the complexity of the environment rises dramatically, and this in itself causes confusion and financial retrenchment. The perception of counterparty risk arises even in transactions among apparently sound financial institutions engaged in long term relationships. All of the sudden, economic agents are faced with massive uncertainty as things are no longer business-as-usual. The collapse of Lehman Brothers during the current financial crisis is one such instance, which froze essentially all private credit markets and triggered massive run downs of credit lines and withdrawals even from the safest money market funds.

In the model we capture the complexity of the environment with the size of the partial cascades. When these cascades are small, banks only need to understand the financial health of their immediate neighbors to make their decisions. In contrast, when financial conditions worsen and cascades grow, banks need to understand and be informed about a larger share of the network. At some point, this is simply too costly and banks withdraw from intermediation rather than risk exposure to enormous uncertainty, which triggers a flight to quality.

We also showed that banks’ flexibility, defined as their ability to terminate long term loans or sell illiquid assets while in distress, makes it harder for large cascades to develop, but if they do develop they can trigger more severe credit crunches and even a collapse in the financial system. Intuitively, a gain in flexibility is very useful if it succeeds in containing panic, but it can be counterproductive if it does not as it facilitates banks’ withdrawal from intermediation.

An aspect we did not explore in this paper but one which we are currently pursuing in a related work, is that of secondary markets for loans at date 0. Our preliminary findings point to yet another amplification aspect of the mechanism we highlight in this paper: With full information, the distant banks (i.e., the banks with $k > K$) are the natural buyers of the loans sold by the distressed banks. However, once distant banks face uncertainty and become worried that they may be too close to the distressed bank, they cease to buy loans from these banks as they would rather hoard their liquidity, which exacerbates the network’s distress.

There are some obvious policy conclusions that emerge from our framework. For example, there is clearly scope for having banks hold a larger buffer than they would be privately inclined to do. Also, transparency measures, by reducing the cost of gathering information, increase the resilience of the system to a lengthening in potential cascades.
There is even an argument to limit banks’ flexibility to undo their financial positions. However, we are interested in going beyond these observations, and in particular in exploring the impact of policies that modify the structure of the network. For example, there is an emerging consensus that the prevalence of bilateral OTC markets for CDS transactions compounded the confusion and complexity of the current financial crisis, and that it is imperative to organize these transactions in well capitalized exchanges to prevent a recurrence. Our framework can help with the formal analysis of this type of policy considerations. We leave this analysis for future research.

7 Appendix

Equilibrium in the Normal Environment. We claim that, in the normal environment described in Section 2.1, the equilibrium with the uncertain financial network facilitates liquidity flow and enables each bank b^j to pay the contracted values $(q_1^j = l_1, q_2^j = l_2)$ in each state of the world. Suppose that a consistent financial network, $b(\rho)$, is realized at date -1 and state $s(r)$ is realized at date 0, and suppose without loss of generality that red type banks are assigned to odd slots (the case in which red type banks are assigned to even slots is symmetric). It suffices to prove the statement for this case since the case in which $s(g)$ is realized is symmetric to the $s(r)$ case, and the case in which $s(0)$ is realized is trivial.

We conjecture (and verify below) that each bank b^j chooses not to audit (for any positive audit costs $d(\cdot) > 0$) and not to recall any loans, i.e. $a^j = 0$ and $y_0^j = 0$. Consider the equilibrium at date 1. A red type bank, $b^{\rho(2i-1)}$, (which is assigned to an odd slot by assumption) needs liquidity so it draws its deposits from the forward neighbor bank, i.e. chooses $z^{\rho(2i-1)} = z$. For each green type bank, $b^{\rho(2i)}$, regardless of the financial network in $B^{\rho(2i)}(\rho)$, drawing $z^{\rho(2i)} \in [0, z]$ deposits leads to the payments $q^{\rho(2i)} = l_1$ and

$$q_2^{\rho(2i)} = \frac{(1 - y) R + z^{\rho(2i)} l_1 + (z - z^{\rho(2i)}) l_2}{1 - \omega_L}.$$

Since $l_2 > l_1$ and the preferences are given by (3), the green type banks do not draw their deposits regardless of their beliefs $f^{\rho(2i)}(\cdot | \rho)$, i.e. they choose $z^{\rho(2i)} = 0$. It follows that liquidity flows through the network at date 1 even though each bank is uncertain about the network structure. In particular, for each bank b^j, there is a no-liquidation equilibrium at date 1 (cf. Eq. (4)) and the bank pays $(q_1^j = l_1, q_2^j = l_2)$.

We next consider the equilibrium at date 0 and verify our conjecture that the banks
choose not to audit and not to recall any loans. First note that a bank $b^{\rho(i)}$ in need of liquidity at date 1 is able to obtain it by withdrawing its deposits in the forward neighbor at a cost of l_2/l_1 units at date 2 for each unit of liquidity. The bank could also obtain liquidity by recalling loans at date 0 but this would cost $R > l_2/l_1$ units for each unit of liquidity (since $R > l_2 > l_1 > 1$). Therefore, each bank $b^{\rho(i)}$ optimally chooses not to recall any loans at date 0. Second note that a bank's, $b^{\rho(i)}$, optimal actions (for loan recall at date 0 and deposit withdrawal at date 1) only depend on its slot i (and only on its parity), and in particular, it is independent of the financial network in $B^{\rho(i)}(\rho)$. Thus the bank does not benefit from auditing and optimally chooses not to audit, $a^{\rho(i)} = 0$ (whenever $d(.) > 0$), thus verifying our conjecture. This completes the proof of our claim that, in the normal environment, the financial network facilitates liquidity flow across banks and enables each bank b^i to pay the contracted values ($q_1^j = l_1, q_2^j = l_2$) in each aggregate state.

Proof of Eq. (6) for Sections 3 and 4. We claim that all cross-deposits are fully withdrawn, i.e. Eq. (6) holds, in both the free-information benchmark analyzed in Section 3 and the costly audit model analyzed in Section 4. By condition (8), the original distressed bank, $b^{\rho(\overline{0})}$, is insolvent thus it withdraws all of its deposits, i.e. $z^{\rho(\overline{0})} = z$. Suppose that, for some $k \in \{0, \ldots, 2n - 1\}$, bank $b^{\rho(i-k+1)}$ withdraws all of its deposits in bank $b^{\rho(i-k)}$. We claim that bank $b^{\rho(i-k)}$ also withdraws deposits, i.e. $z^{\rho(i-k)} = z$, which proves Eq. (6) by induction.

To prove the claim, we first consider the free-information benchmark and analyze two cases in turn. As the first case, suppose that the forward neighbor of bank $b^{\rho(i-k)}$ is insolvent (i.e. it pays $q_1^{\rho(i-(k-1))} < l_1$ and $q_2^{\rho(i-(k-1))} = 0$). Recall that bank $b^{\rho(i-k)}$ is small and takes the payment of its forward neighbor as given (see footnote 1), in particular, it cannot potentially bail out its forward neighbor by withdrawing less than z. This further implies that the bank withdraws all of its deposits from its forward neighbor, i.e. $z^{\rho(i-k)} = z$. As the second case, suppose that the forward neighbor bank, $b^{\rho(i-(k-1))}$, is solvent, i.e. $q_1^{\rho(i-(k-1))} = l_1$. In this case, bank $b^{\rho(i-k)}$ needs liquidity z (to pay its backward neighbor) and it can obtain this liquidity either by withdrawing its deposits, which costs l_2/l_1 units at date 2 per unit of liquidity, or by recalling loans, which costs $R > l_2/l_1$ units per unit of liquidity. Since the former is a cheaper way to obtain liquidity, bank $b^{\rho(i-k)}$ withdraws all of its deposits from its forward neighbor, proving our claim that $z^{\rho(i-k)} = z$.

Next consider the costly audit model of Section 4. Recall that bank $b^{\rho(i-k)}$ makes the deposit withdrawal decision before the resolution of uncertainty for cross-deposits (see Figure 2). As the first case, suppose that bank $b^{\rho(i-k)}$ assigns a positive probability
to a network structure $b(\tilde{\rho})$ such that $q_1^{p(i-(k-1))}(\tilde{\rho}) < l_1$ (that is, suppose the bank assigns a positive probability that its forward neighbor will be insolvent). Since the bank takes the payment of its forward neighbor as given and its preferences are given by the Leontief form in (17), in this case the bank necessarily withdraws all of its deposits, i.e. $z^{p(i-k)} = z$. Next suppose bank $b^{p(i-k)}$ believes that $q_1^{p(i-(k-1))}(\tilde{\rho}) = l_1$ with probability 1 (that is, the bank knows that its forward neighbor is solvent). In this case, as in the free-information benchmark, the bank withdraws $z^{p(i-k)} = z$ to meet its liquidity obligations to its backward neighbor. This completes the proof of the claim and proves Eq. (6) by induction.

Proof of Proposition 1. Contained in the discussion preceding the proposition.

Characterization of Banks’ Payment Functions $q_1[y_0, x]$ and $q_2[y_0, x]$ in Section 4. If bank $b^{p(i-k)}$ chooses some $y_0' \in [0, \bar{y}_0]$ at date 0, and its forward neighbor pays $x = q_1^{p(i-(k-1))}(\tilde{\rho})$ at date 1 (and if condition (18) holds), then this bank’s payment is given by functions $q_1[y_0', x]$ and $q_2[y_0', x]$ which are characterized as follows:

Case 1. If $x \in [l_1 - \beta/z, l_1]$ and $y_0 \geq (l_1 - x)z$, then

$$q_1 = l_1 \text{ and } q_2 = \frac{y_0' - (l_1 - x)z + (1 - y_0') R}{1 - \bar{\omega}} \geq l_1. \tag{25}$$

Case 2. If $x < l_1 - \beta/z$ or $y_0' < (l_1 - x)z$, then

$$q_1 = \frac{y + y_0' + zx}{1 + z} \leq l_1 \text{ and } q_2 = 0. \tag{26}$$

The first case characterizes the payment when the bank’s losses from cross-deposits do not exceed its buffer and the bank has recalled enough loans to counter these losses. In this case, the bank is solvent and pays according to (25). The second case characterizes the payment when the bank’s losses from cross-deposits exceed its buffer, or when the losses do not exceed the buffer but the bank has not recalled enough loans to counter these losses. In this case, the bank is insolvent and pays according to (26).

Proof of Proposition 2. First consider part (i) taking as given the characterization of the loan recall decisions in part (ii). Note that the loan recall decision of each bank depends only on its distance from the distressed bank, which implies that the payments of banks in the continuation equilibrium can be written as a function of their distances, i.e. that the equilibrium is distance based. The characterization in part (ii) shows that each
bank \(b^{\rho(T-k)} \in \{ b^{\rho(T)}, b^{\rho(T-1)}, ..., b^{\rho(T-(K-1))} \} \) that would be insolvent in the free-information benchmark chooses \(y''_0 = \tilde{y}_0 \), and thus it pays the same allocation it would pay in the free-information benchmark:

\[
Q_1 [k] \equiv q^{\rho(T-k)}_1 (\rho) \leq l_1 \quad \text{and} \quad Q_2 [k] \equiv q^{\rho(T-k)}_2 (\rho) = 0 \quad \text{for} \ k \in \{0, ..., K - 1\}. \tag{27}
\]

The bank \(b^{\rho(T-K)} \) recalls at least as many loans as it would recall in the free-information benchmark, thus it is solvent given condition (18) (which ensures that recalling too many loans does not cause insolvency) and pays (cf. Eq. (25)):

\[
Q_1 [K] = l_1 \quad \text{and} \quad Q_2 [K] \geq l_1. \tag{28}
\]

The banks \(b^{\rho(T-k)} \in \{ b^{\rho(T-(K+1))}, b^{\rho(T-(K+2))}, ..., b^{\rho(T-(2n-1))} \} \) are solvent and thus pay (cf. Eq. (25)):

\[
Q_1 [k] = l_1 \quad \text{and} \quad Q_2 [k] = \frac{y''_0^{\rho(T-k)} + \left(1 - y - y''_0^{\rho(T-k)} \right) R}{1 - \tilde{\omega}} \geq l_1, \quad \text{for} \ k \in \{K + 1, ..., 2n - 1\}. \tag{29}
\]

In particular, the size of the cascade is \(K \) as it is in the free-information benchmark. Since \(q^{\rho(i-k)}_{\text{free}} (\rho) \) is increasing in \(k \) (see Proposition 1), the characterization in (27) through (29) also implies that the payments, \(Q_1 [k] \) and \(Q_2 [k] \), are increasing in \(k \) and proves that the distance based equilibrium is monotonic.

We next turn to loan recall decisions at date 0 and prove that the choices prescribed in part (ii) are optimal. Consider first the banks in \(B^{\text{know}} (\rho) \). Comparing the characterization of the continuation equilibrium in (27) through (29) to the characterization in Proposition 1, each bank \(b^j \in B^{\text{know}} (\rho) \) expects to receive the same payment from its forward neighbor compared to what it would receive in the free-information benchmark (i.e. each bank \(b^j \in B^{\text{know}} (\rho) \) solves problem (20) with \(x^m = q^{\rho(i-k-1)}_{1, \text{free}} \)). Thus it also recalls the same level of loans that it would recall in the free-information benchmark.

Next we consider a bank \(b^j \in B^{\text{uncertain}} (\rho) \) which solves problem (20) with \(x^m = Q_1 [2] \). We claim that \(Q_1 [2] \) characterized in Eqs. (27) through (29) is equal to \(q^{\rho(2)}_{1, \text{free}} \) (the payment of the forward neighbor of bank \(b^{\rho(T-3)} \) in the free-information benchmark), which in turn proves that the bank \(b^j \) recalls the same level of loans \(y''_0^{\rho(T-3)} \) that \(b^{\rho(T-3)} \) would recall in the free-information benchmark. To prove the claim that \(Q_1 [2] = q^{\rho(2)}_{1, \text{free}} \), first suppose that \(K \leq 2 \). Note that in this case \(Q_1 [2] \) is given by Eq. (28) or Eq. (29) and in either case \(Q_1 [2] = l_1 \). Note that by Proposition 1, \(q^{\rho(2)}_{1, \text{free}} = l_1 \) when \(K \leq 2 \), proving the claim in this case. Next suppose \(K \geq 3 \) and note that in this case \(Q_1 [2] \) is given by Eq.
(27) which shows $Q_1 [2] = q_{1, \text{free}}^{(r-2)} (\rho)$, completing the proof of part (ii).

The characterization for the aggregate level of recalled loans for the cases $K \leq 2$, $K = 3$ and $K \geq 4$ then trivially follow from part (ii) and Proposition 1, thus completing the proof.

Proof of Proposition 3. Most of the proof is contained in the discussion preceding the proposition. Here, we consider in turn the subcases 1 and 2 (for case $K \geq 4$) and we verify the claims in the main text. We also verify the conjecture that the equilibrium is distance based and monotonic.

Subcase 1. If $\bar{y}_0 \in (y^u_0 [0], 1 - y]$, then

$$\bar{y}_0 > y^u_0 [0] \geq y^u_0 [(l_1 - x) z]$$

for any $x \in [0, l_1]$. This implies that all banks in $\{b^{(r)}, \ldots, b^{(r-(2n-2))}\}$ are insolvent since they recall loans greater than their corresponding upper limits. These banks’ payments are characterized by the system of equations

$$q_1^{(r-k)} = f \left(q_1^{(r-(k-1))}\right) \text{ for each } k \in \{1, \ldots, 2n - 2\},$$

where $f (.)$ is defined in Eq. (11) and the initial condition $q_1^{(r)}$ is given by Eq. (9) (after plugging in $q_1^{(r+1)} = l_1$).

By condition (12), the solution to the above system is increasing (and converges to the fixed point $y + \bar{y}_0 \leq 1 < l_1$), verifying our conjecture that the equilibrium is distance based and monotonic. By condition (14), we have $K \leq 2n - 2$, which implies $q_1^{(r-(2n-2))} > q_1^{(r-(K-1))} = q_{1, \text{free}}^{(r-(K-1))}$. Then, since bank $b^{(r-K)}$ in the free-information benchmark is able to avert insolvency by choosing some $y_{0, \text{free}}^{(r-K)} \leq \bar{y}_0^n$, the informed bank $b^{(r+1)}$ in this case can also avert insolvency by choosing some $y_{0}^{(r+1)} \leq \bar{y}_0^n$. It follows that the cascade size is $\hat{K} = 2n - 1$, which is greater than the free-information cascade size K (under condition (14)), completing the characterization of the date 1 equilibrium in this case.

Subcase 2. If $\bar{y}_0 \in (\bar{y}_0^n, y^u_0 [0])$, there exists a unique $x \in [\bar{y}_0] \in (l_1 - \bar{y}_0^n / z, l_1)$, characterized in Eq. (24) and increasing in \bar{y}_0, such that a bank $b^j \in B^{\text{uncertain}} (\rho)$ is insolvent if and only if receives from its forward neighbor $x < x [\bar{y}_0]$. Using the conjecture that the equilibrium is distance based and monotonic, we further conjecture that the banks $\{b^{(r)}, \ldots, b^{(r-(K-1))}\}$ are insolvent while the banks $\{b^{(r-K)}, \ldots, b^{(r-(2n-1))}\}$ are solvent. The payments of the banks in $\{b^{(r)}, \ldots, b^{(r-(K-1))}\}$ are characterized by

$$q_1^{(r-k)} = f \left(q_1^{(r-(k-1))}\right) \text{ for each } k \in \{1, \ldots, \hat{K} - 1\},$$

31
which is an increasing sequence (by condition (12)). Then, either
\[q_1^{(\tau-(2n-2))} < x [\bar{y}_0] \]
and we are back to subcase 1 (i.e. \(\hat{K} = 2n - 1 \)), or there exists a unique \(\hat{K} \in [K, 2n - 1] \) such that
\[q_1^{(\tau-(\hat{K}-2))} < x [\bar{y}_0] \leq q_1^{(\tau-(\hat{K}-1))}. \]

(32)

In the latter case, the banks in \(\{ b^{(\tau-K)}, ..., b^{(\tau-(K-1))} \} \subset B^{uncertain}(\rho) \) are insolvent (since they receive less than \(x [\bar{y}_0] \) from their forward neighbor) but the bank \(b^{(\tau-K)} \)
is solvent since it receives at least \(x [\bar{y}_0] \) from its forward neighbor. The banks in
\(\{ b^{(\tau-(\hat{K}+1))}, ..., b^{(\tau-(2n-2))} \} \)
are also solvent since they receive \(l_1 \geq x [\bar{y}_0] \) from their forward neighbors. The informed bank \(b^{(T+1)} \) is also solvent as in subcase 1. Finally, this analysis implies that the equilibrium is distance based and monotonic, completing the characterization of the date 1 equilibrium in this case.
References

