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Abstract

This paper considers whether infinite horizon economies have determinate

perfect foresight equilibria. ¥e consider stationary pure exchange economies

with both finite and infinite numbers of agents. When there is a finite number

of infinitely lived agents, we argue that equilibria are generically determinate.

This is because the number of equations determining the equilibria is not

infinite, but is equal to the number of agents minus one and must determine the

marginal utility of income for all but one agent. In an overlapping generations

model with infinitely many finitely lived agents, this reasoning breaks down. ¥e

ask whether the initial conditions together with the requirement of convergence

to a steady state locally determine an equilibrium price path. In this framework

there are many economies with isolated equilibria, many with continue of

equilibria, and many with no equilibria at all. With two or more goods in every

period not only can the price level be indeterminate but relative prices as well.

Furthermore, such indeterminacy can occur whether or not there is fiat money in

the economy. Equilibria may be pareto efficient or inefficient regardless of

whether they are determinate or not.





Comparative Statics and Perfect Foresight

in Infinite Horizon Economies

by

Timothy J. Kehoe and David K. Levine*

1 . INTRODUCTION

Finite economies have the same number of equations as unknowns. Imposing

assumptions of differentiability on such economies allows us to do regularity

analysis. Almost all economies have equations that are locally independent at

equilibria. This is important because it enables us to do comparative statics:

First, equilibria are locally determinate. Second, small perturbations in the

underlying parameters of the economy displace an equilibrium only slightly, and

the displacement can be approximately computed by inverting a matrix of partial

derivatives.

This paper considers whether infinite horizon economies have determinate

perfect foresight equilibria. This question is of crucial importance. If

instead equilibria are locally indeterminate, not only are we unable to make

comparative static predictions, but the agents in the model are unable to

determine the consequences of unanticipated shocks. The idea underlying perfect

foresight is that agents' expectations should be the actual future sequence

predicted by the model; if the model does not make determinate predictions, the

concept of perfect foresight is meaningless

.

* We are grateful to David Backus, Drew Fudenberg, J.S. Jordan, Andreu
Kas-Colell, Herbert Scarf, and participants in seminars at M.I.T.,
U.C. Berkeley, U.C San Diego, U.C.L.A., McMaster University, the Federal Reserve
Bank of Minneapolis, the NBER General Equilibrium Conference, Northwestern
University, March 1982, and the Latin American Econometric Society Meetings,
Mexico City, July 1982, for helpful comments and suggestions.
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We restrict our attention to stationary pure exchange economies. No

production, including the storage of goods between periods, can occur. These

models are unrealistic, hut are the easiest to study. ¥e consider economies with

both infinitely lived traders and with overlapping generations.

When there is a finite number of infinitely-lived trades, we argue that

equilibria are generically determinate. This is because the effective number of

equations determining equilibria is not infinite, but equal to the number of

agents minus one and must determine the marginal utility of income for all but

one agent. Generically, near an equilibrium, these equations are independent and

exactly determine the unknowns.

When there are infinitely many overlapping generations, this reasoning

breaks down: An infinite number of equations is not necessarily sufficient to

determine an infinite number of unknowns. ¥e consider whether the initial

conditions together with the requirement of convergence to a nearby steady state

locally determine an equilibrium price path. Examples in which they do and

examples in which they do not have been constructed by Calvo (1978) in a related

model.

We consider two alternative types of initial conditions. In the first the

old generation in the initial period has nominal claims on the endowment of the

young generation. In the second the old generation has real claims. In the

terminology of Samuelson (1958), the first situation is one with fiat money and

the second is one without. In both cases there are many economies with isolated

equilibria, many with continua of equilibria, and many with no equilibria at all.

With two or more goods in every period not only can the price level be

indeterminate but relative prices can be as well. Interestingly,

indeterminacy has little to do with pareto efficiency: Equilibria may be pareto
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efficient or inefficient regardless of whether they are determinant or not.

Ve also consider an alternative conceptual experiment in which agents use a

forecast rule that depends only on current prices to predict next period prices.

If the steady state is stable, and if we rule out a certain pecixliar case,

a perfect foresight forecast rule exists. If there is a continuum of equilibria,

there may be a continuxim of forecast rules. Even so, the derivative of such a

rule, evaluated at the steady state prices, is locally determinate. This makes

it possible to do comparative statics in a neighborhood of the steady state

despite the local non-uniqueness of equilibrium.

2. THE FINITE AGENT MODEL

We begin by analyzing a pure exchange economy with a finite number of agents

who consume over an infinite ntmiber of time periods. In each period there are n

goods. Each of the m different consumers is specified by a utility function of

the form J" ^ y.u. (x, ) and a vector of initial endowments w"^ that is the same in
^ t=0 ' 1 1 t

every period. Here 1 > y > is a discount factor. We make the following

assumptions on u. and w :

(a.l) (Differentiability) u. : E^^ -^ R is C .

(a. 2) (strict concavity) D u.(x) is negative definite for all x e E .

(a. 3) (Monotonicity) Du^(z) > for all x e E^+--

(a.4) (strictly positive endowments) w^ e E^ , i =
1 , . .

. ,m.
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(a.5) (Boundary)
|
|l)u.(x ) | |

-»• » as x -ox where some i .
- 0. Du.(x)i is

bounded, however, for all i in any bounded subset of E

It should be possible to extend our analysis to the more general types of

preferences that do not require additive separability described by Koopmans,

Diamond, and Villiamson (1964)' We do not attempt to do so here.

Let p. = (p. ,.«.,p. ) denote the vector of prices prevailing in period t.

When faced with a sequence {pp>» p. ,...} of strictly positive price vectors, agent

i chooses a sequence of consumption vectors {x^, x.,...} that solves the problem

(2.1) max r^^ ,J
u. (xi)

subject to l1^^ p;x^ < r;^Q p^w^

x\> 0.

The purpose of assumptions a.1 - a. 5 is to ensure that, for any price sequence,

this problem has a solution that is strictly positive and satisfies the budget

constraint with equality, a. 5 ensures that consumers' indifference curves become

parallel to the coordinate hyperplane as we move towards the boundary of the

positive orthant. It is this assumption that rules out corner solutions. The

necessary and sufficient conditions for {x^, x , ...} to solve 2.1 are

(2.2) y. Du.(x.) = p,.p' for some p.. > 0, t = 0,1,.XXX XX X

(2.3) r,.o p;4 - r^o p;»';
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A (perfect foresight) equilibrium of this economy is defined to be a price

sequence {p_, p^,«««} and a sequence of consumption vectors {i^, i.,...} for each

agent, i = 1,»«'.ni, that satisfies the following conditions:

(e.l) For each agent i (x^, x. ,...} solves 2.1

(e.2) ll^, A'lU ^'' •^ = °' ''

To find the equilibria of this economy we utilize an approach developed by

Negishi (196O) and Mantel (1971 ) for a model with a finite number of goods.

Letting \., i =
1 , . . . ,m, be some strictly positive welfare weights, we set up the

welfare maximization problem

max 11^^ X. r^^ yl
u. (x^)

(2.4)

subject to l^^^ x^ < l'^^^ v] t = 0, 1,

Again a.1 - a. 5 guarantee that this problem has a solution that is strictly

positive and satisfies the feasibility constraint with equality. The necessary

and sufficient conditions for a solution are

(2.5) X. y. Ihi.(x.) = p! , i = 1,...,m, for some p. > 0, t = 0, 1 , . . .

(2.6)
11^^ 4=^?=1 ^"^

' *= 0' 1"--
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An allocation sequence is pareto optimal if and only if it solves 2.4. Notice

that e.2 and 2.6 are the same and, furthermore, if we set \. = — , that 2.2 and
^i

2.5 are equivalent. In other words, a pareto optimal allocation and associated

lagrange multipliers (Pq, P^ »•••} satisfy all of our equilibrium conditions

except, possibly, 2.3- The problem of finding an equilibrium therefore becomes

one of finding the right welfare weights \., i = 1 , . .
. ,m, so that 2.3 is

satisfied.

Let Pi.(x) and z.(\) be the solutions to 2.5 and 2.6. The strict concavity

of u. ensures that p and x are uniquely defined and continuous. For each agent

we define the excess savings function

(2.7) 8.(X) =
11^^ p^U)'(w^ - xj(x)),

If s.(x) is to be well-defined, we must show that the infinite sum in (2.?)

converges for X > 0. If we can show in addition that the sum converges uniformly

on compact subsets of E , it will follow that s. is continuous on R .

Suppose that y^ > y-, i = 2,...,m, so that the first agent exhibits the

greatest degree of patience. The consumption of any agent for whom y. < y

asymptotically approaches zero in every commodity. The boundary assumption a.

5

guarantees that an agent for whom y- = y^ must asymptotically consume positive

amounts of all commodities. The sequence {x., x, ,...} involved in the solution

to 2.4 cannot converge to any point on the boundary of E_^. Furthermore, for any

X > the vector x,(X.) is bounded: < x, < y? . w . Since Du, is continuous
t t ^1=1 1

and X. remains in a compact subset of E , |
JDu. (x. )| | is also bounded.
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Since < y. < 1, this implies that the sum

(2.8) r^oi-i-N ^-o>S(4(^»

,m
converges uniformly on compact subsets of R, .• Since x. is bounded, this enables

us to conclude that s.(\) is well-defined and continuous.

It is easy to verify that the functions s.(X.) are homogeneous of degree one

and sum to zero. In fact, the functions t— s.(x) have mathematical properties
A. . 3.

1

identical to the excess demand functions of a pure exchange with m goods.

Standard arguments imply the existence of a vector of welfare weights \ such that

(2.9) s(x) = 0.

We call this vector \ an equilibrium since our above arguments ensure that when

we solve the welfare maximization problem 2.4 using X for welfare weights the

solution is an equilibrium allocation. Conversely, any equilibrium is associated

with such a vector X.

To illustrate some of these concepts, we can consider a simple example of an

1 2
economy with two agents, and one good in every period. Suppose that w = w = 1

and u. (x) = UpCx) = log x. The only difference between the two consumers is in

their discount rates, 1 > y. > y. > 0. In this example the welfare maximization

problem 2.4 is

(2.11) - max X^i;^Q y^ log x| + X^ T^^ yl
log x^

1 2
subject to X, + X, < 2, t = 0,1 , . .

.

x\> 0.
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Solving conditions 2.5 and 2.6, we obtain

2X^Yi
1/ \ 11

(2.12) x^U)=-—t——

T

2, >
' V2

(2.13) ^t^^^ " : t~~ t
X,Y^ + V2

(2.14) Pt = l ^'^1^1 * VP

The savings functions are

(2.15) s/x) = ll^Q P,(x)(i - x:[(x)) = T^ -
1=77

(2.16) s (X) =
X^ ^2

2^ '
1-Tl I-Y2

As promised, the savings functions are continuous, are homogeneous of degree one,

and sum to zero. Imposing the restriction X^ = 1 , we can solve 2.16 to find the

equilibrixm welfare weights

I-Y2

(2.17) >^1 = 1. ^2 '^ T^

Ve can substitute back into 2.12 - 2.14 to find the equilibrium values of

1^2
p^, z^, and x^.
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5. REGULARITY ANALYSIS

We have reduced the equilibrium conditions for the model with a finite

nvimber of consumers to a finite number of equations in the same finite number of

unknowns: The homogeneity of s implies that one of the variables X. is

redundant. That the s.(\) sum to zero, however, implies that we can ignore one

of the equations s.(x) = 0. To do regularity analysis we must be able to ensure

that s is continuously differentiable. To do this as simply as possible, we

impose the following restriction on u.:

(a. 6) Du.D u.~ is bounded on bounded subsets of R .

Suppose, for example that u. is homogeneous of degree < a. < 1. Then a. 6 is

satisfied since Du.D u~ = (a. - 2)x,. Notice, however, that a. 6 allowslilt '

substantially more general preferences

.

PROPOSITION 3-1: If the economy ((u., y., w ), i =
1 , . .

. ,m) satisfies a.1 - a. 6,

then s is continuously differentiable for all \ > 0.

PROOF: Differentiating 2.7 implies that

(3.1) Ds.(x) = iT^^ (p^(X)'Dx^(X) + (w^ - zJ(x))'Dp^(x)).

Using the implicit function theorem, and 2.5 and 2.6, to compute De^ and Dp.

period by period, we can write
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i

-X.y'^Du.)D^uT''du!
I'l 111

for all i, j = 1,...,m, j^i« Here all partial derivatives are evaluated at the

appropriate x, (\). To demonstrate the proposition we must demonstrate that the

sums on the right converge iiniformly for all \ in any compact subset of R

Since x, is bounded, < x. < I, _^ w , a. 6 implies that we can prove that the

infinite sums in 3-2 and 5«3 converge uniformly if we can prove that

(3.5) 1,^0 (^k=1 ^Vk^ \^ ^ = ^=0 ^I^Vl (^77^ ^ V )

converges uniformly and absolutely. (Once again we suppose that

Y^ > Y-» ^ ~ 2,...,m.)' To do this, we show the existence of a bound b > such

that
I I( I, _^(X, (—) D u, ) )| I

< b. Since the matrix in question is sjrmmetric

and negative definite, we need only show that

Ti
(3.6) -1> sup r{il.AxA^)h\)'\.

^ llyll=1
^^ ^h ^

This, however, would follow immediately from
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(5.7) -4> BUT, y'(X^D%(x;))-V
I lyl hi

since the other matrices in the sum are also negative definite. But z. remains

in a compact subset of E and D u, is continuous. Since D u. is strictly-

negative definite, this implies 3.6.

Q.E.D.

A regular economy ( (u . , y ., w ) , i = 1 , . .
. ,m) is defined to be one that

satisfies a.1 - a. 6 and the additional restriction

(r) Ds(\) has rank m - 1 at every equilibrium \.

This concept of regular economy is analogous to that developed by Debreu (1970)

for pure exchange economies with a finite number of goods. If an economy is

regular, then the inverse function theorem implies that it has a finite number of

isolated equilibria. The implicit function theorem implies that these equilibria

vary continuously with the parameters of the economy.

Furthermore, the topological indez theorem introduced into economies by

Dierker (1972) provides a valuable tool for counting the number of equilibria of

such economies: Let J be the (m - l) z (m - l) matrix formed by deleting any row

and corresponding column from Ds(\). Define index (x) = sgn (det[-7]). The

index theorem says that Eindex (x) = +1, where the sum is over all the

equilibria. This implies that there exists an equilibrium, that the number of

equilibria is odd, and that the equilibrium is unique if and only if det[-j] >
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at every equilibrium.

The appeal of the concept of regularity is enhanced by its genericity:

Almost all economies are regular. Suppose we parameterize the space of economies

((u., Y-» * )» ^ ~ 1 , . . . ,m) by allowing the endowments to vary while keeping

their sum, w = i;._. w , constant, but fixing the utility functions and discount

factors.

PROPOSITION 3.2: Regular economies form an open dense set of full measure in the

space of economies parameterized by endowments.

PROOF: Fix w and let v e R , i = 1 , • . . ,m - 1 , be vectors that satisfy

w +v >0, i = l,...,m-1, and w - Z._. v > 0. We can think of an economy

as an element of R , v = (v ,...,v ). The advantage of keeping the sum of

endowments fixed is that the solution to welfare maximization problem 2.4 does

not vary as we vary endowments, but the derived savings functions do.

(3.8) s^(X, v) = Z°^Q p^(x)'(w^ + v^ - x^(\)), i = 1,...,m - 1.

(3.9) bJk, v) = E-^Q p^(X)'(w^ -
ill] v^ - x^M).

The transversality theorem of differential topology says that regularity

conditions such as r are satisfied by any function s(?^, v) for a set of v of

full measure if we can vary s in a sufficient number of directions using v.



-13-

In this case the requirement is that the m x n(ni - 1) matrix of partial

derivatives D s(\, v) must have rank m - 1 (see Guillemin and Pollack (1974, pp.

67 - 69)). Differentiating 3'8 and 3'9 we obtain

(3.10) \b(\, v) =

Zp;
^ Ep!

-zp; -Ep;

sp;

-Epl

Since the first m - 1 rows of this matrix are obviously linearly independent, the

set of regular economies has full measure, which implies it is also dense.

Openness follows immediately from the continuity of the derivatives of s.

Q.E.D.

This proof can easily be extended to a proof that regular economies form an open

dense subset of the space of economies where the only restrictions are a.1 - a.

6

if we are careful about giving this space a topological structure.

4. THE OVERLAPPING GENERATIONS MODEL

We now analyze an economy with an infinite number of finitely lived agents,

a stationary overlapping generations model that generalizes that introduced by

Samuelson (1958). Again there are n goods in each time period. Each generation

< t < o> is identical and consumes in periods t and t + 1 . The consumption and

savings decisions of the (possibly many different types of) consumers in

generation t are aggregated into excess demand functions y(p,, Pj.+ <) in period t

and z(p., Pj.+ <,) iJi period t + 1. The vector p. = (p.,..., p.) denotes the prices
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prevailing in period t. We focus our attention on strictly positive price pairs

that lie in a set Q formed by deleting the origin from a closed convex cone in

On
R . Q is assumed to have a non-empty interior and a boundary that is smooth

(that is, C ) except at the origin. Ve assume that excess demands satisfy the

following assumptions:

(A.1) (Differentiability) y, z : Q -> E are smooth functions.

(A. 2) (Walras's law) P^y(p^, P^+^) +
pj.+

^z(p^, P^+^) = 0.

(A. 3) (Homogeneity) y and z are homogeneous of degree zero.

A.1 has been shown by Debreu (1972) and Mas-Colell (1974) to entail

relatively little loss of generality. A. 2 implies that there is some means of

contracting between generations so that each consumer faces an ordinary budget

constraint in the two periods of his life. As we show later, this means the

economy is one with a constant (possibly zero or negative) stock of fiat money.

In addition to A.1 - A. 3, which are familiar from the finite model, we make

two boundary assumptions.

(a. 4) The vector (y, z), viewed as a tangent vector to Q at q, points into Q

on its boundary.

(A. 5) If, for fixed p e e'^ , (p, Jp) e Q but (p, Pp) ^ Q for any p < p"

,

then p'y(p, pp) < 0. Similarly, if (p, Pp) ^ Q for any p > pT*

then p'y(p, "pp) > 0.
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Aa4 ensures that if the price of a good falls low enough then there is excess

demand for that good. A. 5 ensures, for example, that if prices in the second

period fall low enough savings, -p'y(p, Pp) , become positive. A. 4 and A. 5 are

used to guarantee the existence of interior steady states. Although the theory

can he extended to analyze free goods, we do not attempt to do so here.

Note that we consider only pure exchange economies and two period lived

consumers. We do, however, allow many goods and types of consumers, and the

multi-period consumption case can easily be reduced to the case we consider: If

consumers live m periods, we simply redefine generations so that consumers born

in periods 1, 2,..., m - 1 are generation 1, consumers born in periods

m, m+ 1,..., 2m- 2 are generation 2, and so on. In this reformulation each

generation overlaps only with the next generation. Notice that the number of

goods in each newly defined period, and the number of consumers in each newly

defined generation, increase by a factor of m - 1.

The economy begins in period 1 . The excess demand of old people (generation

O) in period 1 is z^{&, p.) where a is a vector of parameters representing the

past history of the economy. A (perfect foresight) equilibrium of an economy

(z-^, y, z) starting at a is defined to be a price sequence {p., ?«,•.} that

satisfies the following conditions:

(E.I) Zq{&, p^) + y(p^, p^) = 0.

(E.2) z(p^_^, p^) + y(p^, p^^p =0, t > 1.

Once p. and p^ are determined E.2 acts as a non-linear difference equation
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determining all future prices. Our major focus is on the extent to which E.1

determines initial prices p. and Pp. Subsequent sections study the role of

initial conditions z and a. Let us now ignore E.1, however, and focus

attention on the difference equation E.2.

We define a steady state of E.2 to be a price vector (p, pp) e Q that

satisfies

(4.1) z(p, pp) + y(Pp, P^p) = z(p, Pp) + y(p, pp) = 0.

In other words, if the prices p prevail forever and the price level grows by p

each period, markets would always clear. Here 1/p - 1 is the steady state rate

of interest. In the generic case Kehoe and Levine (1982c) show that up to price

level indeterminacy there are finitely many steady states.

Our interest in this paper is in what happens near a steady state. Let

(p, Pp) be a steady state, and let U Q be an open cone that contains (p, pp).

It is convenient to define q. = (p., Pj.j..i) and view E.2 as the first order

difference equation

(4.2) z(q^_p + y(q^) = 0, t > 1

¥e call a path {q., q^,-..} that satisfies E.1 and E.2 locally stable with

respect to q = (p, Pp) and U if q e U and lim q./||q.Il = q/llqll.

The question we are trying to answer is whether or not there is a determinate

price path that satisfies E.1 and E.2 and is locally stable.
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One reason for this restriction is that it is the easiest case to study.

Stable price paths are also the most plausible perfect foresight equilibria. If

prices are converging to a nearby steady state, then traders can compute future

prices by using only local information. If prices are not going to the steady

state, then traders need global information and very large computers to compute

future prices.

Note that, if equilibrium is indeterminate in our restricted sense so that a

continuum of equilibria converge to the steady state from a single initial

condition, it is indeterminate in the broader sense as well. On the other hand,

even if equilibrium is determinate in the restricted sense there may be a

continuum of equilibria which leave the neighborhood of the steady state.

We can linearize E.2 aroimd a steady state (p, pp) as

(4.3) i)iz(p^_^- p*-''p) + (D^z + p"^Diy)(Pt- pS) + p'"'v^Pt+r P^^^p^ = °-

Here all derivatives are evaluated at (p, pp) and we use the fact that the

derivatives of excess demand are homogeneous of degree minus one. Our

homogeneity assumption A. 2 allows us to rewrite 4.3 as

(4.4) J^iZP^j.i + (^22 + p'^I5iy)Pt + P'^V^t+l " °'

If the following regularity condition is satisfied, then 4.4 defines a second

order linear difference equation.

(E.1) D2y(p» Pp) is non-singular at all steady states (p, Pp).
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Again letting q. = (p., p^^^ ) , we can write out 4.4 as the first order equation

(4.5) G =
-?l)^'h^z -T)^'\^-D^z + D^y)

Homogeneity implies that Gq = Pq where q = (p, pp); in other words,

G has an eigenvalue equal to p. Walras's law implies that

p'[-pD,z I'pyJG = p'[-pD.z I'py] > in other words, G has an eigenvalue equal to

unity. Let us assume that G also satisfies the following regularity

condition:

(R.2) G is non-singular and has distinct eigenvalues; furthermore,

eigenvalues have the same modulus if and only if they are complex

conjugates.

Consider the difference equation q = (l/p)Gq, .. Let n be the number of

eigenvalues of (l/p)G that lie inside the unit circle, that is, whose moduli are

less than unity. These correspond to eigenvalues of G that lie inside the circle

of radius p. A standard theorem on linear difference equations implies that the

set of initial conditions q. such that q. = Gq, , has lim q./IIq, ll = q/l|qll is
t-xo

an n + 1 dimensional subspace V of E (see Irwin (1980, pp. 151 - 154) and
s

Kehoe and Levine (l982c)). The extra dimension shows up because of homogeneity:

If q,is such that lim q /| |q |
|
= q/| |ql 1

, then so is 9q for any 6^0. The

subspace V is spanned by the n^ eigenvectors of G associated with the
s
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eigenvalues that lie inside the circle of radius p and the eigenvector q

associated with the eigenvalue p.

The implicit function theorem implies that, if R.1 is satisfied, then we can

solve E.2 to find a non-linear difference equation q, = g(q._.) defined for an

open cone U that contains q. Naturally, Dg(q) = G. Let W be the subset of
s

initial conditions q. e U such that lim q./IIq.|| = q/||qll' In other words,
t-H«>

given (p. , p^) we can find a path in U that converges to the ray proportional

to (p, Pp) if and only if (p. , p^) e ¥ . The relationship between V and \I is

given in the following theorem:

g
PROPOSITION 4« 1 : W is an n +1 dimensional manifold with tangent space at q

s

equal to V .

This result is proven by Kehoe and Levine (I982c). That V is the tangent space
s

of V at q justifies our intuition about 4*4 as a linear approximation to E.2: It

says that the best linear approzimation to V at q is affine set V + {q}.
s s

To establish Proposition 4.1 we need the regularity conditions R.I - R.2.

These can be justified by shovring that they hold for almost all economies, in

other words, that they hold for an open dense subset of the space of economies.

This is done by Kehoe and Levine ( 1982c). This means that any regular economy

can be approximated by one that satisfies R.1 - R.2 and that any slight

perturbation of an economy that satisfies R.I - R.2 still satisfies them.

¥e have remarked that G has one root equal to p and one unit root. Are

we justified in assuming it satisfies no other restrictions? Might it not be the

case, as for example in optimal control, that half the eigenvalues of G lie

inside the unit circle and half lie outside? Calvo (1978) has constructed
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examples in a related model for which this is not the case. More strongly, Kehoe

and Levine (1982c) show that for any n satisfying 2n - 1 > n > 0, there exists

g
an open set of economies that have a steady state with n roots inside the circle

of radius p and 2n - n - 1 outside the circle with radius p. Purthermore, the

work of Mantel (1974) and Debreu (1974) shows that for any excess demands (y, z)

we can find consumers with well behaved preferences whose aggregate excess

demands are exactly (y, z)

.

5. DETERMINACY OF EQUILIBRIUM

The excess demand of generation in period 1 is Zj^(a, p.). The vector a

represents the history of the system. This is our conceptual experiment: Prior

to t = 1 the economy is on some price path. Suddenly, after generation has

made its savings decisions, but before p. is determined, an unanticipated shock

occurs. No further shocks occur, and hereafter expectations are fulfilled,

although there is no reason why generation O's expectations of p. should be. Do

the equilibrium conditions E.I and E.2 determine a unique path to the new steady

state, at least locally? If so, we can do comparative statics, evaluating the

impact of the unanticipated shock. If not, it is questionable that traders can

deduce which of the many perfect foresight paths they would be on.

Note that this is not the only question we could ask. We might enquire

whether given a perfect foresight path stretching back to minus infinity there is

a unique extension to plus infinity. We believe that the answer to this question

is in general yes. Or we might ask whether the price paths

{•••>P <» P(-v» ?<»•••} that are perfect foresight are locally unique. We

believe that there is a large set of economies for which the answer to this

question is yes, and an equally large set for which it is no. We feel that the
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question we have posed is the most interesting one, however, and, of these

questions, the only one relevant for applied work. Another relevant question is,

of course, how to handle price paths that are not near steady states. As we have

mentioned, however, it is not clear that perfect foresight is a good hypothesis

in such cases.

With this conceptual experiment in mind, we can now see the role played by

the vector a: It represents the claims on current consumption owed to old people

based on their savings decisions made in period 0. Define the money supply

\x = p^z^(a, p.) to be the nominal claims of old people. Observe that in

equilibrium p'y(p. , Pp) = -\i, by Valras's law p'z(p , p ) = \x, in equilibrium

p'y(p„, p_) = -\i, and so forth. Consquently, |j, is the fixed nominal net savings

of the economy for all time; that is, we assume that there is no government

intervention in money markets.

In the steady state we have p p'z(p, pp) = \i and p p'y(p» Pp) ~ -^' There

are two cases of interest. The nominal case has p. # 0. In this case it must be

that p = 1. Gale (1975) calls steady states of this type golden rule steady

states. This is because for excess demand functions derived from utility

maximization nominal steady states maximize a weighted sum of individual

utilities subject to the constraint of stationary consumption over time.

Alternatively in the real case ^ = 0. Gale refers to steady states of this type

as balanced steady states. In this case if p = 1 then y(p, p) + z(p, p) = and

P'y(Pf p) ~ Of which are typically n equations in the n - 1 unknowns p, and p = 1

is merely coincidental. Thus, when ji = the most interesting case is p ^ 1.

Using an index theorem, Kehoe and Levine (1982c) prove that there is generically

an odd number of steady states of each t3rpe, which, of course, implies the

existence of a steady state of each ty^se.
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We suppose first that claims are denoted in nominal terms. Thus we cannot

assime that excess demand by the old ZQ(a, p.) is homogeneous of degree zero in

p . ¥e do assume, however, that a is an element of an open subset A of a

finite dimensional vector space and that

(1.1) (Differentiability) z', A x E_^ -• R is a smooth function.

(1.2) (Homogeneity) z_ is homogeneous of degree zero in a and p..

Let q.
= (p» pp) be the steady state after the shock. ¥e assime

(1.5) (Steady state) Zq(0, p) + y(p, pp) = 0.

That is, when a = we are at a steady state. Our goal is to analyze what

happens when I|a|| is small. Various interpretations of this assumption are

possible: Previous to t = the economy was at or near a steady state and a

temporary shock displaced it. Alternatively, a permanent shock occurred and the

steady state itself was slightly displaced. All that is necessary is that there

be some steady state nearby.

To analyze the impact of the shock, observe that prices (p. , Pp) are

determined by E.I. Using the homogeneity of z^, we can linearize E.I around the

steady state to find

(5.1) (D^Zq +
^iy)Pi

^ ^i^^a + D^^^ = 0.
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R.1 implies that we can solve 5.1 for p- as

-1 -1.
(5.2) P2 = V"^^1^0 " ^l^^^l * V" Vo^

or, introducing, as before, q> = (p., p»),
1 ^-^r ^2^

(5-3) q^ = L

a

Pi

I a

Pi

Let U, C E denote the natural projection of U onto its first n

coordinates. The implicit fiinction theorem implies that in a neighborhood of the

steady state we get a corresponding solution of the non-linear equation E.I,

q. = A (a, p.), defined for p. e U. , a e A with DJlCO, p) = L. We ask whether for

given a e A, is there a unique initial q = (p. , Pp) that satisfies E.1 and has an

extension to a price path {q., qp,-..} in U that satisfies E.2 and converges to

some point on the steady state ray. The results of the last section imply that

the corresponding mathematical question is whether, for given a, is there a

unique p. such that Jl(a, p.) e V .

Let us consider the linear problem first. For fixed a e A 5.3 defines an n

dimensional affine subspace of E . The linearized version of ¥ is V , which is
s s

n + 1 dimensional. Ve would expect, in general, that these spaces intersect in

/ S \ sann+(n +1)-2n=n +1-n dimensional linear space. Suppose, in fact,

that L satisfies

(IE.1) L has rank 2n.

Bote that this requires that A be at least n dimensional, in other words, that
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there are at least n independent ways to shock the economy. The transversal! ty

theorem of differential topology can be translated into the following result:

PROPOSITION 5-1: Let S denote the set of p. z U. such that Jl(a, p.) e V . For
a. 11 IS

Q
almost all a e A the set S , if it is non-empty, has dimension n + 1 - n.

In other words, what we expect in general of the linear system is almost always

true of the non-linear system. Here we use almost all to mean an open dense

subset of A whose complement has measure zero. If n + 1 - n < 0, this means

there is no p. e U, with A(a, p. ) e V . If n + 1 - n > 0, however, S can^11 -^1 s a

either have this dimension or be the empty set. 1.2 implies that S-. is non-

empty. If we can ensure that Jl is transversal to W at q, then the structural

stability of transversality would imply that S is non-empty for all a close

enough to 0. We assume

(IR.2) The 2n z (n + 1 + n ) matrix

full row rank.

I '

s
n

has

The first n columns of this matrix span the tangent space of the manifold of

vectors q. that satisfy q. = A(a, p.). The final n + 1 columns span V , which

is the tangent space V . For n + 1 - n > this says that Jl is transversal to

V at Q.
s ^

Like our previous regularity conditions, IR.1 and IR.2 are generic: Given a

y that satisfies R.I, the condition can easily be shown to hold for almost all
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z . Under IR.1 and IE. 2, we can distinguish three cases:

I. n^ < n - 1 • In this case, for almost all a, S is empty. In other words,

there are no stable paths locally. We call such a (p, Pp) an unstable steady

state. For most initial conditions the as3nnptotic behavior of the system is to

not reach the steady state. Such steady states are not very interesting; they

are unreachable

.

g
II. n = n - 1. In this case, locally stable equilibrium paths are locally

unique and, in a small enough neighborhood actually unique. This is the case

where we can do comparative statics and in which perfect foresight is a plausible

description of behavior. This is called the determinate case.

g
III. n > n - 1. In this case there is a continuiun of locally stable paths.

Equilibrium is indeterminate . Comparative statics is impossible and perfect

foresight implausible.

There are large sets of economies (non-empty open sets of economies) that have

steady states of any desired type: unstable, determinate or indeterminate.

Thus, none of these possibilities is in any way degenerate.

Let us consider the argument that we get indeterminacy because we ask too

much: Because z^ is not homogeneous we demand that the price level be determined

by initial conditions. Is it possible that this is the only possible form of

indeterminacy? No. If n + 1 - n > 1, S has two or more dimensions implying

that there is relative price indeterminacy.

Now we turn to the case of real initial conditions. The change in
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conceptual experiment lies in ZqI It is homogeneous of degree zero in p. and

satisfies Walras's law p'z^Ca, p.) = 0. Since ^ = 0, the initial price vector

must satisfy pW(p^ » Pp) '^ 0* This restriction defines a 2n - 1 dimensional

manifold in some neighborhood of the steady state (p, Pp) if (p, pp) is a regular

point of p!y(p., Pp)! ^^ other words, if (y' + p'D y, J>"D^) does not vanish at

(p, pp). This, however, follows immediately from R.1. We call this manifold the

real manifold and denote it . Its tangent space at (p, Pp) is made up of the

vectors (p., p_) that satisfy (y' + p'Il.y)p. + p'D yp = 0. Differentiating

Walras's law with respect to p., we establish that y' + p'D.y + Pp'D.z = at

(p, Pp). Consequently, the condition defining the tangent space of Q can be

expressed

(5.4) p'[-pD^z D2y]

^2

= 0.

The stability of the system is determined by the roots of (l/p)G. Recall

that Walras's law implies that p'[-pD. z DpyJG = p'[pD. z p'Dpy]. In other

words, (1/P)G has an eigenvalue 1/p associated with a (left) eigenvector that is

orthogonal to the tangent space of Q . Consequently, the root 1/p has no effect

on the behavior of the system on Q . Outside of Q , however, the root 1/p

determines the behavior of the system. If p < 1 , no path with initial conditions

that do not satisfy p<y(p^ , Pp) = can ever approach the real steady state.

We let n be the number of roots of (l/p)G, excluding the root 1/p, that lie

inside the unit circle. Because of homogeneity, including that of z_, the price

level is indeterminate and we can reduce everything by one dimension by a price

normalization. In this reduced space Q has 2n - 2 dimensions, while the



-27-

initial condition z (a, p.) + y(p. , Pp) = generically determines an n - 1

dimensional submanifold. The intersection of stable manifold ¥ with Q has

dimension n . Consequently, the intersection of the initial condition

submanifold and V has dimension (n - 1 ) + n - (2n-2). Thus, there are the same

three possibilities in the real case as in the nominal case, although in the real

^ s
case < n < 2n - 2 while in the nominal case < n < 2n -1

.

So far we have_ assumed that Dpy_iS:.non-singular at every steady state.

Suppose instead that D^ has rank < k < n on an open neighborhood of the steady

state (p, pp). In this situation linearizing E.2 produces an n + k, rather than

a 2n, dimensional first order difference equation to replace 4.5« Otherwise our

analysis stays the same. In the nominal case, the determinacy condition remains

a g
n = n - 1 where now 0<n <n + k-1. In the real case, the determinacy

condition remains n = n - 1 where now 0<n <n + k-2. In particular, if

k = 1, only a one dimensional indeterminacy is possible in the nominal case, and

no indeterminacy is possible in the real case. That Dpy has rank one at a steady

state where n > 2 is true only for a closed, nowhere dense set of economies; it

is a degenerate situation. Yet it is possible to think of conditions that imply

it: Suppose each generation consists of one, two period lived consumer who has

an intertemporally separable utility function. Then both D-y and D. z have at

most rank one. That D.z has rank one implies that n - 1 of the n + k = n + 1

eigenvalues are zero. The determinacy conditions for an economy of this type are

therefore the same as for an econonQT with only one good in every period. In the

case where the single, two period lived consumer has a Cobb-Douglas utility

function, Balasko and Shell (1981) prove that with real initial conditions
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equilibria are determinant and. vith nominal initial conditions there is a one

dimensional indeterminacy- Their model is more general than that used here in

that their demand functions are not necessarily stationary nor do they require

convergence to a steady state. Yet, their result is not surprising given that

I^oy+Cp+t Pf+1 ) ^^^ ^^z. (p. ., p.) generically have rank one even in a non-

stationary environment. Kehoe and Levine (1982b) demonstrate that these

determinacy results hold for small perturbations in excess demand, that is, when

consumers are "almost" identical and when when preferences are "almost"

intertemporally separable. Unfortunately, this result depends crucially on the

assumption of two period-lived consumers. Kehoe and Levine (I982a) have

constructed robust examples of economies with a single, three period lived

consumer with intertemporally separable utility and one good in every period with

all of the general indeterminacy and instability possibilities.

It might be conjectured that in the case where excess demand is derived from

consumer optimization over well-behaved preferences that the pareto inefficiency

of paths is related to the indeterminacy of equilibrium. A moment's reflection

on the real case shows this is not true. If p < 1, prices along paths converging

to the steady state decline exponentially in the limit; this means that the

value of every agent's endowment is finite and, by the standard arguement for

finite economies in Arrow (1951), all these paths are efficient. But p < 1

implies only that no path with n it ever approaches the real steady state; it

places no restriction on n . Thus if n > 1 indeterminacy is possible.

Conversely, if p > 1, all convergent paths are easily shown to be inefficient,

but there is still no restriction on the possible types of steady states.

Perhaps the case p < 1 is the most puzzling of all: Here if n > 2 we can



-29-

have indeterminacy among equilibria converging to the steady state, yet all these

paths are pareto efficient and all mimic the i'inite dimensional case in that

Walras's law is satisfied even by the initial generation.

We conclude this section by noting that there are six possible types of

steady states: real or nominal, each of which may be unstable, determinate or

indeterminate. If there are two or more goods each period then there are open

sets of economies with each possible combination. The case with one good each

period, which has been studied most extensively, is exceptional however:

Instability is impossible and, in the real case, indeterminacy is also

impossible.

6. FORECASTING

In this section we examine the case of nominal initial conditions in more

detail. We again focus on the neighborhood of a steady stable state (p, pp)

g
with n > n - 1, and we assume that all regularity conditions are satisfied. Our

focus is on how agents forecast future prices. One possibility is that they use

the dynamic equation E.2; equivalently, they forecast q,^. = gCq^). Note that

unless n = 2n - 1 this is actually an unstable dynamical system: Small

perturbations can cause the path to depart from the steady state.

We now investigate the alternative possibility that traders forecast future

prices solely as a function of current prices. This type of closed-loop

forecasting leads to convergence to the steady state. Surprisingly, it also is

locally determinate: This restriction on forecasting rules is sufficient to

eliminate much of the indeterminacy we found in the previous section, making

local comparative statics possible. Not surprisingly, such forecasting is

impossible when the steady state is unstable. Here we only examine nominal
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initial conditions to keep the presentation as simple as possible; an analogous

finalysis can be done for real initial conditions.

A closed-loop forecast rule is a function p.^. = f(p^) that gives prices

next period as a function of current prices. Ve assume that f satisfies the

following assumptions:

(F.1) (Differentiability) f is a smooth function defined on am open cone U

that contains the steady state relative prices p.

(F.2) f(p) = p.

(r.3) (Homogeneity) f is homogeneous of degree one.

(F.4) (Perfect foresight) z(p, f(p)) + y(f(p), f^(p)) = 0.

(F.5) (Convergence) lim f^(p)/| If'^(p) | 1
= p/I Ip]

t*«=

Here, for example, f (p) denotes f(f(p)). F.2 insists that at the steady state

the forecast rule pick out the steady state. F.4 is the perfect foresight

assumption: If forecasts are realized, markets indeed clear. F.5 says we are

interested only in forecast rules that permit convergence to the steady state, in

other words, are stable.

g
We begin by asking whether, for n > n - 1, there actually exists a forecast

rule that satisfies F.I - F.5- As usual, we consider the linearized problem

first. To construct a forecast rule we choose v ,v .,q to be independent
1 n-1

eigenvectors in V , the stable subspace of the linearized system. It is
s
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important that we be able to choose v. ,...,v . so that complex vectors appear in

conjugate pairs. This can always be done if n° is even. It can also always be

g
done if n = n - 1 since v. , . . . ,v . includes all of the eigenvectors

corresponding to eigenvalues inside the circle of radius p and such eigenvectors

g
necessarily show up in complex conjugates. In the peculiar case where n is odd

and there are no real eigenvalues inside the circle of radius p, and hence no

real eigenvectors in V , we cannot make this choice of v.,...,v ,. This is no

accident: In this case there are no stable perfect foresight forecasting rules.

Let Y^ be the real vector space spanned by v, ,...,v , ,q; because complex

vectors come in conjugate pairs, it is n dimensional. What we suggest is, for

given p., to choose p,^. so that (p. - p p, p,^, - p p) is an element of V^.

From the structure of g there exists a unique choice of p , provided

(PR) v. ,...,v . ,p are independent vectors

where v. , i = 1 , . . . ,n - 1, are the first n components of the v. . If FR holds, we

can find a unique matrix F, which depends on v, , . . . ,v ,, so that

(6.1) (p^^^ - p*''^) = F(p^ - pS)

is our linear forecast rule.

First we check that the linearized system 6.1 satisfies the linearized

versions of F.2 - F.5. Since q e V^,., (p, pp) e Y^ and, consequently, Fp = pp.

Since v , . . . ,v ,q are eigenvectors of G, V. is invariant under the dynamical
1 n—

1

system G, which implies that if q, e V^ then Gq. e V^^. Finally, since Y^CY
X b S

and (p^, P^+P e V#, we must have lim p^/| |p^| |
= p/||p||.

t-x»
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^•' It is natural to conjecture that we can thus find an f with Df(p) = F that

satisfies F.1 - F.5; this follows from Hartmann's smooth linearization theorem in

Irwin (1980, p. 117)' Because g is homogeneous of degree one, f may also be

chosen to be homogeneous of degree one. If n = n - 1, then f is unique. This

is well known when f is linear (see, for example, Blanchard and Kahn (1980)).

If, however, n > n - 1, f may not be unique nor even locally unique.

Furthermore, in the case where n - 1 is odd and all the eigenvalues of G that

lie inside the circle of radius p are complex, f does not even exist. The

derivative Df(p) = F at the steady state is locally unique, however, there are

only finitely many possibilities. To see this write F.4 as (f(p,), f (p.)) =

g(p , f(p.)). Differentiating this at p we see that

(6.2)

Writing F in Jordan canonical form as F = HAH , we see that

(6.3)
HA

HA'

H

HA

R.2 implies that A is diagonal with diagonal entries equal to eigenvalues of G

and that the columns of
H
HA

are the corresponding eigenvectors of G. Since

G has only finitely many eigenvalues, there are only finitely many choices of

F; indeed, our original construction is the only way to get solutions that

satisfy the stability requirement F.5.
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Notice that, if n > n + 1 , there are in general many possible choices of

v^ , . . . ,v , and, consequently, of I. The important fact is that there are only
1 n-

1

a finite number of choices. Furthermore, under our regularity assumptions, F

varies smoothly with small changes in the
.

parameters of (y, z). When doing

comparative statics faced with a choice of finitely many forecast rules, we

choose the unique F that corresponds to the forecast rule being used before the

shock.

Finally, let us check on the initial condition; it is now

(6.4) z^Ca, p^) + y(p^, f(p^)) = 0.

We can locally solve for p> as

-1.
(6.5) Pi = - [Vo * ^1^ ^ V^^'^1^0^

7. CONCLUSION

We conclude by summarizing our results and indicating some possible

directions for future research. When there are finitely many infinitely lived

consumers we have shown equilibria are generically determinate. We have

considered only a pure exchange economy, however, and assumed that preferences

are additively separable between time periods. We conjecture that these results

continue to hold with production and with the more general stationary impatient

preferences described by Koopmans, Diamond and Williamson (1964). It would be

worthwhile to verify this.

In the overlapping generations case we have shown that determinacy,

indeterminacy, and instability are all possible for a wide range of economies.

Again it would be worthwhile to extend this to economies with production. We
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also have considered only two period lived consumers. Although we have shown how

to reduce the n period life case to the two period case by redefining generations

our genericity results do not carry over to the n period case. This is because

we have not verified that the perturbations needed to get non-degenericity can

actually be generated by the n period lived consumers. The n period life case is

also important because cyclical behavior can be reduced to studying steady states

in an economy in which generations have been redefined: A cycle of k periods can

be viewed as a steady state of a model where each newly defined generation

includes k of the original generations and each newly defined time period

includes k of the original time periods

.

It would also be useful to know that indeterminacy can arise not only for an

open set of economies, but for economies with reasonable preferences. One step

in this direction is in Kehoe and Levine (l982a), which illustrates all

possibilities with a single three period lived consumer with a constant-

elasticity-of-substitution utility. A more general characterization of the

eigenvalues in terms of assumptions on preferences would also be worthwhile.

Our results for the overlapping generations model raises other questions:

We have studied the behavior of equilibrium price paths near steady states. Is

it possible to say much about their behavior away from steady states? Throughout

the paper we have assumed perfect foresight expectations. ¥hat theoretically

attractive alternatives exist? How far do we have to depart from the perfect

foresight assumption to get determinacy?

Still more interesting questions arise when we contrast the results for the

two different models: Does the determinacy versus indeterminacy result depend on

the finite versus infinite number of agents or on the infinite versus finite

lifetimes? ¥hat mathematical properties do models with an infinite number of

infinitely lived agents possess? It is well known that a bequest motive can



-55-

transform a family of finitely lived agents into a single infinitely lived agent.

What properties does an overlapping generations model in which some agents leave

positive bequests, and some do not, possess? In other words, what are the

properties of a model with a finite number of agents in any time period, some of

whom are finitely lived and some are infinitely lived?
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