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Abstract

A central feature of dynamic collective decision-making is that the rules that govern the procedures

for future decision-making and the distribution of political power across players are determined by current

decisions. For example, current constitutional change must take into account how the new constitution

may pave the way for further changes in laws and regulations. We develop a general framework for the

analysis of this class of dynamic problems. Under relatively natural acyclicity assumptions, we provide

a complete characterization of dynamically stable states as functions of the initial state and determine

conditions for their uniqueness. We show how this framework can be applied in political economy,

coalition formation, and the analysis of the dynamics of clubs. The explicit characterization we provide

highlights two intuitive features of dynamic collective decision-making: (1) a social arrangement is made
stable by the instability of alternative arrangements that are preferred by sufficiently many members of

the society; (2) efficiency-enhancing changes are often resisted because of further social changes that they

will engender.
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1 Introduction

Consider the problem of a society choosing its constitution. Naturally, the current rewards

from adopting a specific constitution will influence this decision. But, as long as the members

of the society are forward-looking and patient, the future implications of the constitution may

be even more important. For example, a constitution that encourages economic activity and

benefits the majority of the population may nonetheless create future instability or leave room

for a minority to seize political control. If so, the society—or the majority of its members—may
rationally shy away from adopting such a constitution. Many problems in political economy,

club theory, coalition formation, organizational economics, and industrial organization have a

structure resembling this example of constitutional choice.

We develop a general framework for the analysis of dynamic group-decision-making over

constitutions, coalitions, and clubs. Formally, we consider a society consisting of a finite number

of infinitely-lived individuals. The society starts in a particular state, which can be thought of

as the constitution of the society, regulating how economic and political decisions are made. It

determines stage payoffs and also how the society can determine its future states (constitutions),

for example, which subsets of individuals can change the constitution. Our focus is on (Markov

perfect) equilibria of this dynamic game when individuals are sufficiently forward-looking. Under

natural acyclicity assumptions, which rule out Condorcet-type cycles, we prove the existence and

characterize the structure of [dynanucally) stable states, which are defined as states that arise

and persist. An equihbrium is represented by a mapping (f),
which designates the dynamically

stable state </>(so) as a function of the initial state sq. We show that the set of dynamically

stable states is largely independent of the details of agenda-setting and voting protocols.

Although our main focus is the analysis of the noncooperative game outlined in the previous

paragraph, we first start with an axiomatic characterization of stable states. This character-

ization relies on the observation that sufficiently forward-looking individuals will not wish to

support change towards a state (constitution) that might ultimately lead to another, less pre-

ferred state. This observation is encapsulated in a simple stability axiom. We also introduce two

other natural axioms ensuring that individuals do not support changes that will give them lower

utihty. We characterize the set of mappings, <I>, that are consistent with these three axioms and

provide conditions under which there exists a unique </> € $ (Theorem 1). Even when <& is not

a singleton, the sets of stable states according to any two c^ij, 02 € $ are identical.

Our main results are given in Theorem 2. This theorem shows that for any agenda-setting and

voting protocol the equilibria of the dynamic game we outline can be represented by some <^ g $

and that for any ^ G $, there exists a protocol such that the equilibrium will be represented



by 4>.^ This means that starting with initial state sq, any equihbrium leads to a dynamically

stable state cp (sq) for some (^ £ $. Naturally, when such is unique, all equilibria result in the

uniquely-defined dynamically stable 0(so).

An attractive feature of this analysis is that the set of dynamically stable states can be

characterized recursively. This characterization is not only simple (the set of dynamically stable

states can be computed using induction), but it also emphasizes a fundamental insight: a par-

ticular state is dynamically stable only if there does not exist another state that is dynamically

stable and is preferred by a set of players that form a winning coalition within the current state.

At the center of our approach is the natural lack of commitment in dynamic decision-making

problems—those that gain additional decision-making power as a result of a reform cannot

commit to refraining from further choices that would hurt the initial set of decision-makers.

This lack of commitment, together with forward-looking behavior, is at the root of the general

characterization result provided in these theorems. It also leads to two simple intuitive results:

1. A particular social arrangement (constitution, coalition, or club) is made stable not by

the absence of a powerful set of players that prefer another alternative, but because of the

absence of an alternative stable arrangement that is preferred by a sufficiently powerful

constituency. To understand why certain social arrangements are stable, we must thus

study the instabilities that changes away from these arrangements would unleash.^

2. Dynamically stable states can be inefficient—in the sense that they may be Pareto domi-

nated by the payoffs in another state. '
-

. -

•

'

-.

Our final general result, Theorem 3, provides sufficient conditions for the acyclicity assump-

tions in Theorems 1 and 2 to hold when states belong to an ordered set (e.g., when they are a

subset of M). In particular, it shows that these results apply when (static) preferences satisfy a

single-crossing property or are single peaked (and some minimal assumptions on the structure

of winning coalitions are satisfied). This theorem makes our main results easy to apply in a

variety of environments. We also show that Theorems 1 and 2 apply in a range of situations in

which states do not belong to an ordered set.

The next two examples provide simple illustrations of the dynamic trade-offs emphasized by

our approach.

An additional assumption in the analysis of this game is that there is a transaction cost incurred by all

individuals every time there is a change in the state. This assumption is used to prove the existence of a

pure-strategy equihbrium and to rule out cycles without imposing stronger assumptions on preferences (see also

Examples 3 and 4 in Appendix C).

'This result also shows that, in contrast to Riker's (1962) emphasis in the context of political coalition formation

games, the equilibrium will typically not involve a "minimum winning coalition," because the state corresponding

to this coalition is generally unstable.



Example 1 (Inefficient Inertia) Consider a society consisting of two individuals, E and M.

E represents the elite and initially holds power, and M corresponds to the middle class. There

are three states: (1) absolutist monarchy a, in which E rules, with no checks and no political

rights for M; (2) constitutional monarchy c, in which M has greater security and is willing to

invest; (3) democracy d, where M becomes more influential and the privileges of E disappear.

Suppose that stage payoffs satisfy -
^

We {d) < We (a) < We (c) , and w^.j (a) < wm (c) < w^ {d)

.

In particular, we (a) < we (c) means that E has higher payoff under constitutional monarchy

than under absolutist monarchy, for example, because greater investments by M increase tax

revenues. M clearly prefers democracy to constitutional monarchy and is least well-off under

absolutist monarchy. Both parties discount the stage payoffs with discount factor /3 G (0, 1). As

described above, "states" not only determine payoffs but also specify decision rules. In absolutist

monarchy, E decides which regime will prevail tomorrow. To simplify the discussion, suppose

that starting in both regimes c and d, M decides next period's regime. In terms of the notation

introduced above, this implies that d is a dynamically stable state, and cp (d) = d. In contrast, c

is not a dynamically stable state, since starting from c, there will be a transition to d and thus

4>{c) = d. Therefore, if, starting in regime a, E chooses a reform towards c, this will lead to d

in the following period, and thus give E a discounted payoff of

t/E (reform) = u;£ (c) + /3^^^.

In contrast, if E decides to stay in a forever, its payoff is Ue (no reform) = we (a) / (1 — /3). If

/3 is sufficiently small, then Ue (no reform) < Ue (reform), and reform will take place. However,

when players are forward looking and /? is large, then (/f; (no reform) > C/g (reform). In this

case, the unique dynamically stable state starting with a is a—that is, 4> (a) = a.

This example, when players are sufficiently forward-looking, illustrates both of the intuitive

results mentioned above. First, state a is made stable by the instability of another state, c, that

is preferred by those who are powerful in a. Second, both E and M would be strictly better off

in c than in a, so the stable state starting from a is Pareto inefficient. It also illustrates another

general insight: the set of stable states is larger when players are forward-looking (when (3 is

small, only d is stable, whereas when j3 is large, both a and d are stable).

A similar game can be used to model the implications of concessions in wars. For example, a

concession that increases the payoffs to both warring parties may not take place because it will

change the future balance of power. It could also be used to illustrate how organizations might

act "conservatively" and resist efficiency-enhancing restructuring. For instance, the appointment



of a CEO who would increase the value of the firm may not be favored by the board of directors

if they forecast that the CEO would then become powerful and reduce their privileges.'^

Example 2 (Voting in Clubs) Consider the problem of voting in clubs. The society consisting

of A'' individuals. A club is a subset of the society. Each individual i receives a stage payoff

Wi (st), which is as a function of the current club st, and current club members decide (according

to some voting rule) tomorrow's club st+i. The seminal unpublished paper by Roberts (1999)

studies a special case of this environment, where individuals are ordered, i = 1,2,..., A^, any

club St must take the form Xk = {!,... ,/c} for some k = l,2,..,N, and decisions are made by

majoritarian voting. Under a range of additional assumptions Roberts estabhshes the existence

of mixed-strategy (Markovian) equilibria and characterizes some of their properties. Our model

nests a more general version of this environment and enables us to establish the existence of

a unique dynamically stable club (and a pure-strategy equilibrium) under weaker conditions.

In addition, our approach allows a complete characterization of dynamically stable states and

clarifies the reasons for potential Pareto inefficiency. • -

These examples illustrate some of the possible applications of our approach. We view the

rich set of environments that are covered by our model and the relative simplicity of the resulting

dynamic stable states as its major advantages. Both our specific results and the general ideas can

be applied to a range of problems in political economy, organizational economics, club theory,

and other areas. Some of these additional examples are discussed in Section 6.

On the theoretical side, Roberts (1999) and Barbera, Maschler, and Shalev (2001) can be

viewed as the most important precursors to our paper. Barbera, Maschler, and Shalev (2001)

study a dynamic game of club formation in which any member of the club can unilaterally admit

a new agent. The recent ambitious paper by Lagunoff (2006), which constructs a general model

of political reform and relates reform to the time-inconsistency of induced social rules, is another

precm-sor. Acemoglu and Robinson's (2000, 2006a) and Lizzeri and Persico's (2004) analyses of

franchise extension and Barbera and Jackson's (2004) model of constitutional stability are on

related themes as well. How these papers can be viewed as applications of our general framework

is discussed in Section 6.
'

The two papers most closely related to our work are Chwe (1994) and Gomes and Jehiel

' Ideas related to this example have been discussed in a number of different contexts. Robinson (1997) and

Bourguignon and Verdier (2000) discuss how a dictator or an oligarchy may refrain from providing productive

public goods or from educational investments, because they may be afraid of losing power. Rajan and Zingales

(2000) also emphasize similar ideas and apply them in the context of organizations. Acemoglu and Robinson

(2006a) construct a dynamic model in which the elite may block technological improvements or institutional

reforms, because they will destabilize the existing regime. Fearon (1996, 2004) and Powell (1998) discuss similar

ideas in the context of civil wars and international wars, respectively.



(2005). Chwe studies a model where payoffs are determined by states and there are exogenous

rules governing transitions from one state to another. Chwe demonstrates the relationship

between two distinct notions from cooperative game theory, the consistent and stable sets.

However, in Chwe's setup, neither a noncooperative analysis nor characterization results are

possible, while such results are at the heart of our paper. The link between Chwe's consistent

sets and our dynamically stable states is discussed further below. Gomes and Jehiel study a

related environment with side payments. They show that a player may sacrifice his instantaneous

payoff to improve his' bargaining position for the future, which is related to the unwillingness

of winning coalitions to make transitions to non-stable states in our paper. They also show

that equilibrium may be inefficient when the discount factor is small. In contrast, in our game

Pareto dominated outcomes are not only possible in general, but they may emerge as unique

equilibria and are more Hkely when discount factors are large (as illustrated by Example 1).

More generally, we also provide a full set of characterization (and uniqueness) results, which are

not present in Gomes and Jehiel (and in fact, with side payments, we suspect that such restilts

are not possible). Finally, in our paper a dynamically stable state depends on the initial state,

while in Gomes and Jehiel, as the discount factor tends to 1, there is "ergodicity" in the sense

that the ultimate distribution of states does not depend on the initial state.

Finally, our work is also related to the literature on club theory (see, for example, Buchanan,

1956, Ellickson et al., 1999, Scotchmer, 2001). While early work in this area was static, a number

of recent papers have investigated the dynamics of club formation. In addition to Roberts

(1999) and Barbera, Maschler, and Shalev (2001), which were discussed above, some of the

important papers in this area include Burkart and Wallner (2000), who develop an incomplete

contracts theory of club enlargement, and Jehiel and Scotchmer (2001), who show that the

requirement of a majority consent for admission to a jurisdiction may not be more restrictive

than an unrestricted right to migrate. Alesina, Angeloni, and Etro (2005) apply a simplified

version of Roberts's model to the enlargement of the EU and Bordignon and Brusco (2003)

study the role of "enhanced cooperation agreements" in the dynamics of EU enlargement.

The rest of the paper is organized as follows. Section 2 introduces the general environment.

Section 3 motivates and presents our axiomatic analysis, which also acts as a preparation for

our noncooperative analysis. In Section 4, we prove the existence of a (pure-strategy) Markov

perfect equilibrium of the dynamic game for any agenda setting and voting protocol and estab-

lish the equivalence between these equilibria and the axiomatic characterization in Section 3.

Section 5 shows how the results of Sections 3-4 can be applied when states belong to an ordered

set. Section 6 discusses a range of applications of our framework, including the two examples

presented above. Section 7 concludes. Appendix A presents the main proofs omitted from the



text. Appendix B and C, which are not for publication, contain a number of generalizations,

additional results, examples, and some omitted proofs.

2 Environment

There is a finite set of players X. Time is discrete and infinite, indexed by i (i > 1). Tliere

is a finite set of states which we denote by S. Throughout the paper, |X| denotes the number

of elements of set X, so \J\ and |<5| denote the number of individuals and states, respectively.

States represent both different institutions affecting players' payoffs and procedures for decision-

making (e.g., the identity of the ruling coalition in power, the degree of supermajority, or the

weights or powers of different agents). Although our game is one of non-transferable utility, a

limited amount of transfers can also be incorporated by allowing multiple (but a finite set of)

states that have the same procedure for decision-making but different payoffs across players.

The initial state is denoted by sq G iS. This state can be thought of as being determined

as part of the description of the game or as chosen by Nature according to a given probability

distribution. For any t > 1, the state st & S is determined endogenously. A nonempty set X c I

is called coalition, and we denote the set of coalitions by C (that is, C is the set of nonempty

subsets of I). Each state s E S is characterized by a pair ({lo, (s)}j£j , Ws) Here, for each state

s G S,Wi (s) is a (strictly) positive stage payoff assigned to each individual i G I. The restriction

that Wj (s) > is a normalization, making zero payoff the worst outcome. W^ is a (possibly

empty) subset of C representing the set of winning coalitions in state s. We use Ws to model

pohtical institutions in state s. This allows us to summarize different political procedures, such

as weighted majority or supermajority rules, in an economical fashion. For example, if in state

s a majority is required for decision-making, Ws includes all subsets of I that form a majority;

if in state s individual i is a dictator, Ws includes all coalitions that include i^ Since Ws is a

function of the state, the procedure for decision-making can vary across states. ;

Throughout the paper, we maintain the following assumption. .

• ,

Assumption 1 (Winning Coalitions) For any state s G S, Ws C C satisfies:

(a) If X,Y e C, X c y, and X eWs then Y e Ws. , : •

(b) IfX,Ye Ws, then X r\Y =^ 0.

Part (a) simply states that if some coalition X is winning in state s, then increasing the size

of the coalition will not reverse this. This is a natural assmuption for almost any decision rule.

Notice that Ws or the pohtical rules do not specify certain institutional details, such as who makes proposals,

how voting takes place and so on. These are specified by the agenda-setting and voting protocols of our dynamic

game. We will show that these only have a limited effect on equilibrium outcomes, justifying our focus on W,, as

a representation of "political rules"

.



Part (b) rules out the possibility that two disjoint coalitions are winning in the same state, thus

imposing a form of (possibly weighted) majority or supermajority rule. If Ws = 0, then state s

is exogenously stable. None of our existence or characterization results depend on whether tliere

exist exogenously stable states.

The following binary relations on the set of states S will be useful for the rest of our analysis.

For x,y E S, we write

X ^y <==^ Vi e I : itij {x) = w, {y) . (1)

In this case we call states x and y payoff- equivalent, or simply equivalent. More important for

our purposes is the binary relation >^2. For any ^ € 5, ^^ is defined by

yhz^r <=> {iel .w^{y) >Wi{x)} eWz- (2)

Intuitively, y >Zz x means that there exists a coalition of players that is winning (in z) ^vith

each of its members weakly preferring y to x. Note three important features about ^z- First, it

only contains information about stage payoffs. In particular, Wi (y) > w^ (x) does not mean that

individual i will prefer a switch to state y rather than x. Whether or not he does so depends

on the continuation payoffs following such a switch. Second, the relation ^, does not presume

any type of coordination or collective decision-making among the members of the coalition in

question. It simply records the existence of such a coalition. Third, the relation ^, is conditioned

on z since whether the coalition of players weakly preferring y to x is winning depends on the

set of winning coalitions, which is state dependent. With a slight abuse of terminology, if (2)

holds, we say that y is weakly preferred to x in z. In light of the preceding comments, this

neither means that all individuals prefer y to x nor that there will be a change from state x to y

in the dynamic game—it simply designates that there exists a winning coalition of players, each

obtaining a greater stage payoffs in y than in x. Relation )^; is defined similarly by

y>zX ^=> {i el .w,[y)> w^[x)] i^Wz- '

(3)

If (3) holds, we say that y is strictly preferred to x in z.

Relation ~ clearly defines equivalence classes; if a; ~ y and y ~ z, then x ^ z. In contrast,

the binary relations ^~ and >-, need not even be transitive. Nevertheless, for any x,z E S, we

have .X ^^ x, and whenever Wj is nonempty, we also have x ^^ x. Finally, from Assumption 1

we have that for any x,y, z G S, y y^ x implies x ^, y, and similarly y hz -f^ implies x )f. y.

The following assumption introduces some basic properties of payoff functions and places

some joint restrictions on payoff functions and winning coalitions.

Assumption 2 (Payoffs) Payoffs {wt (s)} ^i-j ^^^ satisfy the following properties:

7



(a) For any sequence of states si, S2, , Sk in S,

Sj+i >-Sj Sj for all I < j < k - 1 => si ^^^ Sfc.

(b) For any sequence of states s,si, . . . ,Sk in S with Sj ^-s s for each 1 < j < k,

Sj+i ^s Sj for all 1 < j < k - I =4> si ^^ Sk-

Assumption 2 plays a major role in our analysis and ensures "acyclicity" (but is considerably

weaker than "transitivity"). Part (a) of Assumption 2 rules out cycles of the form yyxX,z>-yy,

X y, z—that is, a cycle of states (x, y, z) such that in each, a winning coalition of players strictly

prefer the next state. Part (b) of Assumption 2 rules out cycles of the form y >-s x, z >^ ^ U,

X ^s z.° Assumptions 1 and 2 are natural given our focus. Throughout the paper we suppose

that they hold. In addition, we sometimes impose the following (stronger) requirement.

Assumption 3 (Comparability) For x,y,s G S such that x >-s s, y yg s, and x 00 y^ either

y ^s X or xy-sV- \ '

'

.

Assumption 3 means that if two states x and y are weakly preferred to s (in s), then y and

z are ;^s-comparable. It turns out to be sufficient to guarantee uniqueness of equilibria.^ This

assumption is not necessary for the majority of our results, including the general characterization.

Our main results are stated without this assumption and are then strengthened by imposing it.

In each period, each individual maximizes his discounted expected utility:

U,[t) = {\-l3)Yr ,^^^dr), ,, •.,,
.

':-
(4)

where /3 e (0, 1) is a common discount factor and we can think of u, [t) as given by the payoff

function Wi (s) introduced in Assumption 2 (see, in particular, equation (9) in Section 4). We

consider situations in which /3 is greater than some threshold /Sg € (0, 1) (this threshold is

derived as an explicit function of payoffs in Appendix A) . We will then characterize the Markov

perfect equilibrium (MPE) of this dynamic game and investigate the existence and structure

of dynamically stable states. As defined more formally in Definition 2, a state s is dynamically

stable if there exists a MPE and a finite time T such that this equilibrium involves Sf = s for

all t > T—that is, a dynamically stable state persists in equilibrium. '

'

"Neither part of Assumption 2 is implied by the other. Examples 5 and 6 in Appendix C illustrate the types

of cycles that can arise when either 2(a) or 2(b) fails.

It is also "necessary" in the sense that if this assumption is dispensed with, it is easy to construct examples

with multiple equilibria. Example 7 in Appendix C illustrates this.



3 Axiomatic Characterization ^
Before specifying the details of agenda-setting and voting protocols, we provide a more abstract

(axiomatic) characterization of stable states. This axiomatic analysis has two purposes. First, it

illustrates that the key economic forces that arise in the context of dynamic collective decision-

making aie largely independent of the details of the agenda-setting and voting protocols. Second,

the results in this section are a preparation for the characterization of the equilibrium of the

dynamic game introduced in the previous section; in particular, our main result, Theorem 2,

will make use of this axiomatic characterization.

The key economic insight enabling an axiomatic characterization is that with sufficiently

forward-looking behavior, an individual should not wish to transit to a state that will ultimately

lead to another state that gives her lower utility. This basic insight enables a tight character-

ization of {axiornatically) stable states. Theorem 2 in the next section shows the equivalence

between the notions of axiornatically and dynamically stable states.

More formally, our axiomatic characterization determines a set of mappings $ such that for

any
(f> G ^, (j) : S ^ S assigns an axiomatically stable state s°° t S to each initial state sq g S.

We impose the following three axioms on (j).

Axiom 1 (Desirability) If x,y (E S are such that y = (p{x), then- either y = x or y ^x x.

Axiom 2 (Stability) If x,y £ S are such that y = <p [x), then y = 4){y).

Axiom 3 (Rationality) If x,y,z £ S are such that 2 >-2. x, ; = '/'(-), (ind z ^x y, then

y^dix).

All three axioms are natural in hght of what we have discussed above. Axiom 1 requires

that the society should not (permanently) move from state x to another state y unless there

is a winning coahtion that supports this transition. Axiom 2 encapsulates the stability notion

discussed above; if some state is not dynamically stable, it cannot be the (ultimate) stable state

for any initial state, because there will eventually be a transition away from this state (and thus

if mapping 4> picks state y starting from state x, then it should also pick y starting from y).

Aiciom 3 imposes the rea.sonable requirement that if there exists a stable state z preferred to

both X and y by winning coalitions in state x, then 4> should not pick y in x.

All three axioms refer to properties of 0, but they are closely related to underlying indi-

vidual preferences. Because collective decision-making aggregates individual preferences, they

indirectly apply to the mapping 4' that summarizes these collective preferences (for example.



one might think that
(f)
aggregates individual preferences according to majority rule or weighted

supermajority rule, and so on).

We next define the set $ formally and state the relationship between axiomatically stable

states and the mapping
(f).

Definition 1 (Axiomatically Stable States) Let 4> = {0 : 5 —> iS; (p satisfies Axioms 1-3}.

A state s £ S is (axiomatically) stable if (f>{s) = s for some cp e ^. The set of stable states

(fixed points) for mapping (p E ^ is V^ = {s € S: 4){s) = s for (^ G $} and the set of all stable

states is V = {s £ S: (p (s) = s for some G $}.

The next theorem establishes the existence of stable states and provides a recursive char-

acterization of such states. It also paves the way for Theorem 2, which shows the equivalence

between the equilibrium of the dynamic game in the previous section and the mappings e $.

Theorem 1 (Axiomatic Characterization of Stable States) Suppose Assumptions 1 and

2 hold. Then: , \ '-' '.' ;'-;,;i,, '•

1. The set $ is non-empty. That is, there exists a mapping 4> satisfying Axioms 1-3.

2. Any (p & ^ can be recursively constructed as follows. Order the states as < /Xj, ..., (Ui^j >

such that for any I < j < I < \S\, fii ^^ //, (this is feasible given Assumption 2(a)). Let

0(Mi) = Mi- For each k ~ 2, ...,\S\, define ,
•

'"
.

':.. Mk = {s e {iJ,i,...,iJ,k-i} s>~f,^ fif, and(p{s) = s} . (5)

Then
/ .

^^'^'''
\ seMk-- heMk withzy^^s ifMk^fZ '

^'

(If there exist more than one s € Mk- $z £ -Mk '^'ith. z >-^^ s, we pick any of these; this

corresponds to multiple (p functions).

3. The set of stable states of any two mappings (pj and 02 ^^ ^ coincide. That is, V^ =

4. If, in addition, Assumption 3 holds, then any (p £ (^ is "payoff-unique" in the sense that

for any two mappings 0j and 4>2 m ^, <P\ (s) ~ 02 {^) /''^ "^^^ s £ S

.

Proof. (Part 1) To prove existence, we first construct the sequence of states < /i^, ..., /ii^i >

such that

if 1 <j- </ < |>Si, tlienA^i/,.^. Mr
•'

{^)

10



The construction is by induction. Assumption 2(a) implies that foFany nonempty collection of

states Q C S, there exists z e Q such that for any x e Q, x )/-, z. Applying this results to S,

we obtain /ij. Now, suppose we have defined /i, for all j < k— I, where /c < |.S|. Then, applying

the same result to the collection of states S \ {/Uj, . .
. , y^^-.j }, we conclude that there exists

/j,f.

satisfying (7) for each k.

The second step is to construct a candidate mapping cp : S —^ S. This is again by induction.

For /c = 1, let (/ij.) = /i^. Suppose we have defined ii^ for all j < /c — 1 where k < \S\. Define

the collection of states Mk as in (5). This is the subset of states where cp has already been

defined, which satisfy (j){s) = s and are preferred to /if. within /i;.. If A4k is empty, then, we

define (p (/Li^,) = ^/.. If Mk is nonempty, then take (p {fij^) = z G Mk such that

s i^^ z for any s & Mk (8).

(such state z exists because we can apply Assumption 2(b) to Mk)- Proceeding inductively for

all 2 < A; < |iSj, we obtain (p as in (6).

To complete the proof, we need to verify that mapping cp in (6) satisfies Axioms 1-3. This is

straightforward for Axioms 1 and 2. In particular, by construction, either <p{Hk) = /^/c
(in that

case these axioms trivially hold), or (p (/i/.) is an element of Mk- In the latter case, cp (fi/;) >~^^ ii^.

and (p{(p{iij.)) = <p{^k) by (5). To check Axiom 3, suppose that for some state fif. there exists

;: such that z J-^,^ /j.^., z = (p(z), and z ;^^^ (Pil^-k)- Then z y^^ fif., combined with condition

(7), implies that z G {/xj, . .
. , ^J-k-i]- But the last condition, z y^^^ (p (fik), now contradicts (8).

This means that such z does not exist, and therefore Axiom 3 is satisfied.

(Part 2) This statement is equivalent to the following: if, given sequence < /j.j, ..., /ji^i >

with the property (7), (p{fJ.k) is not given by (6) for some k, then (p does not satisfy Axioms

1-3. Suppose, to obtain a contradiction, that (p{^k) is not given by (6) at fc = 1. Then by

the contradiction hypothesis (pil^ij) ^ Mii so (pij-i-i) = /t; for I > I. In this case, (p does not

satisfy Axiom 1, because /.t; ^^^ i^ij by (7), yielding a contradiction. Next, again to obtain a

contradiction, suppose that (p {jj./,) is not given by (6) for the first time at k > 1. Then Mk in (5)

is well-defined, so either Mk = or Mk 7^ 0- If Mk = 0, the contradiction hypothesis implies

that (pifj-k) 7^ fJ-k- Then, Axioms 1 and 2 imply 4>{l^k) ^A^t Mfc and (p{(p{ni^)) = (j){^ii.). Since

Mk = 0, we must have that (pij^k) = M/ for / > /c, but in this case (pil^k)
"^

ij.^ f^k contradicts

(7). This contradiction implies that <p violates either Axiom 1 or 2 (or both). If Mk ^

and (p{fJ.f-) = ^i for / > fc, then Axiom 1 is violated. If Mk 7^ and (pihk) — l^k^ then (p

violates Axiom 3 (to see this, take any z £ Mk 7^ and observe that z y^^ ^^. and <p{z) = z).

Therefore, when Mk 7^ 0, we have (pil^k) £ -^k- Finahy, (pil-^-k) "^iH not be given by (6) if

there exists some s G Mk such that s )^^^ (p{Pk)- But in this case (p violates Axiom 3 (since
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5
y^f. (f> (Mfc), s )^^^ fii^, and (p (s) = s). This shows that any mapping

(f)
that is not given by (6)

violates one of Axioms 1-3. and completes the proof of part 2.

(Part 3) Suppose, to obtain a contradiction, that V^^ ^ P^^.^. Then 3/c : 1 < A; < |iS| such

that
fj.j

e P^j <^
fj.j e P02 ^°^ ^^1 •? < '^i ^^* either fij. G P^^ and ^;, ^ P^^ or Mfc ^ T^<j>^ and

/Jfc 6 P,/,^- Without loss of generality, assume that ^/. G P<pj and ^;. ^ P^^- Then (6) implies

that 02 (Mfc)
"= ("( for some I < k. Applying Axioms 1 and 2 to mapping 02, we obtain jj.^ ^f^ fij.

and 02 (M/) = M(- The latter implies that jii G P^^. Since, by hypothesis, fij G P^^ <=> /u G P^,

for aU j < k, we have ^, G P^,. Therefore, /U; >-^^ fi^, m, )-^^ 0i (/x^) (because 0i (/.ifc)
=

p.f^),

and 01 (^;) = i-Li, but this violates Axiom 3 for mapping 0j and establishes the desired result.

(Part 4) Suppose Assumption 3 holds. Suppose, to obtain a contradiction, that 0j and 02

are two non-equivalent mappings that satisfy Axioms 1-3, that is, there exists some state s such

that 0j (s) Ti 02 (s). Part 3 of this Theorem (that P^^ = Vij,^) implies that 0j (s) = s if and only

if 02 (s) = 5; since 0j {s) oo 02 (s), we must have that 0^ (s) 7^ s 7^ 02 (s). Axiom 1 then imphes

01 (s) >"5 s, 02 (s) >-s s, and Assumption 3 implies that either 0i (s) >~s 02 (s) or 02 (s) )-5 0i (s).

Without loss of generality suppose that the former is the case. Then for y = 02 (s) there exists

01 (s) such that 0i (s) ^s V, <Pi (s) ^.s s, and 02 (0i (s)) = 0i (s) (the latter equahty holds

because 0i (s) is a 0i-stable state by Axiom 2, and by part 3 of this Theorem, it is also a

02-stable state). This implies that we can apply Axioni 3 to 02 and derive the conclusion that

4'2 i^) 7^ y- This contradiction completes the proof. '

Theorem 1 shows that a mapping that satisfies Axioms 1-3 necessarily exists and provides

a sufficient condition for its uniqueness. Even when the uniqueness condition. Assumption 3,

does not hold, we know that axiomatically stable states coincide for any two mappings 0i and

02 that satisfy Axioms 1-3.

Theorem 1 also provides a simple recursive characterization of the set of mappings $ that

satisfy Axioms 1-3. Intuitively, Assumption 2(a) ensures that there exists some state fi-^ G S,

such that there does not exist another s G iS with s y^_^ /Ltj. Taking fi^ as base, we order the states

as < fii, ..., /2|5| > so that (7) is satisfied and then recursively construct the set of states A4fc C S,

k = 2, ..., \S\, that includes stable states that are preferred to state
fj.^.

(that is, states s such

that (p{s) = s and s >-^^ /i^). When the set Mk is empty, then there exists no stable state that

is preferred to //;, (in fij.) by members of a winning coalition. In this case, we have (/i;.) = fij..

When Alfc is nonempty, there exists such a stable state and thus (/x^.) — s for some such s.

In addition to its recursive (and thus easy-to-construct) nature, this characterization is useful

because it highlights the fundamental property of stable states emphasized in the Introduction:

a state fij. is made stable precisely by the absence of winning coalitions in /x^. favoring a transition

to another stable state (i.e., by the fact that Ai^ = 0)- We will see that this insight plays an
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important role in the applications in Section 6.

Part 3 of Theorem 1 shows that the set of stable states T> does not depend on the specific (j)

chosen from $. For different 0's in $ (when $ is not a singleton), the stable state corresponding

to the same initial state may differ, but the ranges of these mappings are the same. Tliese

ranges and the set of stable states V are uniquely determined by preferences and the structure

of winning coalitions.^ Finally, part 4 shows that when Assumption 3 holds, any stable states

resulting from an initial state must be equivalent. In other words, if 5] = (/ij (sq) and S2 = <p (so),

then S] and S2 might differ in terms of the structure of winning coalitions, but they must give

the same payoff to all individuals.

We have motivated the analysis leading up to Theorem 1 with the argument that, when

agents are sufficiently forward-looking, only axiomatically stable states should be observed (at

least in the "long run", i.e., for t > T for some finite T). The analysis of the dynamic gan:ie in

the next section substantiates this interpretation.

4 Noncooperative Foundations of Dynamically Stable States

We now describe the extensive-form game capturing dynamic interactions in the environment of

Section 2 and characterize the MPE of this game. The main result is the equivalence between

the MPE of this game and the axiomatic characterization in Theorem 1.

This game specifies: (1) a protocol for a sequence of agenda-setters and proposals in each

state; and (2) a protocol for voting over proposals. Voting is sequential and is described below

(the exact sequence in which votes are cast will not matter). We represent the protocol for

agenda-setting using a sequence of mappings, {'iTslsg^, and refer to it simply as a protocol. Let

Ks be a natural number for each s £ 5. Then, tt^ is defined as a mapping

7r,:{l,...,K,}^IU5

for each state s G 5. Thus each tt^ specifies a finite sequence of elements from TUiS, where Ks is

the length of sequence for state s and determines the sequence of agenda-setters and proposals.

In particular, if tTj (/c) e I, then it denotes an agenda-setter who will make a proposal from

the set of states S. Alternatively, if tTj (fc) £ S, then it directly corresponds to an exogenously-

specified proposal over which individuals vote. Therefore, the extensive-form game is general

' In Appendix C, we relate the set T) to two concepts from cooperative game theory, von Neumann-
Morgenstern's stable set and Chwe's largest consistent set. Even though these concepts generally differ, we

show that under Assumptions 1 and 2, both sets coincide with V. This is an intriguing result, though it does

not obviate the need for our axiomatic characterization in this section or the noncooperative analysis in the next

section, since our main focus is on the mappings (p, which determine the axiomatically or dynamically stable

states as a function of the initial state. Von Neumann-Morgenstern's stable set and Chwe's largest consistent set

are silent on this relationship.
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enough to include both proposals for a change to a new state initiated by agenda-setters or

exogenous proposals. We make the following assumption on (TTslgg^:

Assumption 4 (Protocols) For every state s G S, one (or both) of the following two conditions

is satisfied:

(a) For any state z E S \ {s} , there is an element k : 1 < k < Kg of sequence Wg such that

TTs (k) = z.

(b) For any player i £ I there is an element k : \ < k < Kg of sequence Tig such that

TTs [k) = i.

This assumption implies that either sequence tTj contains all possible states (other than

the "status quo" s) as proposals or it allows all possible agenda-setters to eventually make a

proposal. It ensures that either all alternatives will be considered or all players will have a

chance to propose (unless a proposal is accepted earlier).

At t = 0, state sq ^ S \s taken as given (as noted above, it might be determined as part

of the description of the environment or determined by Nature according to some probability

distribution). Subsequently (for t > 1), the timing of events is as follows:

1. Period t begins with state St_i inherited from the previous period.

2. For k = 1, . .
.

, Kst-i i
the /cth proposal P^^t is determined as follows. If /T5,_j (/c) G S, then

Pk,t = "'st-i (^)- If ""st-i (k) £ I, then player iTs^_^ (k) chooses P^^t G S.

3. If Pk^t 7^ st-i, then there is a sequential voting between Pi;t and st~\ (we will show that

the sequence in which voting takes place has no effect on the equilibrium and we do not

specify it here). Each player votes yes (for Pfc,(.) or no (for S(_i). Let Yk^t denote the

set of players who voted yes. If Y^t e Wsi-n then alternative P^^t is accepted, otherwise

(that is, if Ykt ^ VVs,_j), it is rejected. If P^t = Sf_i, there is no voting and we adopt the

convention that in this case Pk^t is rejected.

4. If P/; t is accepted, then we transition to state st = Pfc,t, and the period ends. If Pi^^t is

rejected or if there is no voting because P^^t = st-i and k < Ks^_^, then the game moves

to step 2 with k increased by 1; if fc = Ks^-_^, the next state is St = st-i, and the period

ends.

5. In the end of the period, each player receives instantaneous utility u^ (t). '

Payoffs in this dynamic game are given by (4), with
,

u,(i) = |^'i^*) !^^' = ^*-^
.,

"
(9)^ ^ 1 liSty^St-l ..,

.

^ '
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for each i G J. In other words, in the period in which a transition occurs, each individual receives

zero payoff. In all other periods, each individual i receives the payoff w^ (st) as a function of

the current state Sj. The period of zero payoff can be interpreted as representing a "transaction

cost" associated with the change in the state and is introduced to guarantee the existence of a

piue-strategy MPE. Since the game is infinitely-repeated and we will take j3 to be large, this

one-period "transaction cost" has little effect on discounted payoffs. In particular, once (and if)

a dynamically stable state s is reached, individuals will receive w^ (s) at each date thereafter.^

Examples 3 and 4 in Appendix C demonstrate that if the transaction cost is removed from (9),

a (pure-strategy) equilibrium may fail to exist or may induce cycles along the equilibrium path.

A MPE is defined in the standard fashion as a subgame perfect equihbrium (SPE) where

strategies are only functions of "payoff-relevant states." Here payoff-relevant states are different

from the states s G S described above, since the order in which proposals have been made within

a given period are also payoff relevant for the continuation game. Since the notion of MPE is

familiar, we do not provide a formal definition. For completeness, such a definition is provided

in Appendix C. In what follows, we will use the terms MPE and equilibrium interchangeably.

We next define dynamically stable states.

Definition 2 (Dynamically Stable States) State s°° (£ S is a dynamically stable state

if there exist an initial state s G S, a set of protocols {'^s}seS' '^ MPE strategy profile a, and

T < oo such that along the equilibrium path we have St = 5°° for all t > T.

Put differently, s°° is a dynamically stable state if it is reached by some finite time T and

is repeated thereafter. Our objective is to determine whether dynamically stable states exist

in the dynamic game described above and to characterize them as a function of the initial

state So E S. We also estabUsh the equivalence between dynamically and axiomatically stable

states characterized in the previous section. We first introduce a slightly stronger version of

Assumption 2(b).

Assumption 2(b)* For any sequence of states s,si, . . . ,Sk in S with Sj yg s for I < j < k

and Sj o^ si for I < j < I < k,

Sj+i '^s Sj for all 1 < j < k - 1 => si ^s Sfc.

Moreover, if for x,y, s e S we have x yg s and y ^^ s, then y )/-s ^

Various different alternative game forms also lead to the same results. We chose to present this one because

it appears to be the simplest one to describe and encompasses the most natural protocols for agenda setting and
voting. In particular, it allows votes to take place over all possible proposals (or all possible agenda-setters to

have a move), which is a desirable feature, since otherwise some transitions would be ruled out by the game form.
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In addition to cycles of the form y^-^a;, 2>-s2/,a:>-sZ (which are ruled out by Assumption

2(b)), this assumption rules out cycles of the form y hs x, ^ hs y, ^ hs ~, unless the states a;,

y, and z are payoff-equivalent. It also imposes the technical requirement that when x x^ s and

y ^5 s, then y )/-s x. Both requirements of this assumption are relatively mild.

The main result of the paper is summarized in the following theorem.

Theorem 2 (Characterization of Dynamically Stable States) Suppose that Assumptions

1, 2(a,b) and 4 hold. Then there exists j3q G (0, 1) such if for all j3 > (3q, we have the following

results.

1. For any ^ £ $ there exists a set of protocols {'n's}ssS "^^"^ '^ pure-strategy MPE a of the

game such that St = 0(so) for any t > 1; that is, the game reaches 0(so) after one period

and stays in this state thereafter. Therefore, s = (j){so) is a dynamically stable state.

Moreover, suppose that Assumption 2(h)* holds. Then:

2. For any set of protocols {tTs}^^^ there exists a pure-strategy MPE. Any such MPE a has

the property that for any initial state sq G iS, Sj = s°° for all t > 1. Moreover, there exists

4> E (^ such that s°° = 4>{so). Therefore, all dynamically stable states are axiomatically

stable. .•:
';;.

. ,,
' ..; , ;c'---''-, .-.,',„. ',';:''

v •- - .^ '
-

.

\:'\'^'-^.

3. If, in addition, Assumption 3 holds, then the MPE is essentially unique in the sense that

for any set of protocols {t^sJ^^S' '^'"2^ pure-strategy MPE a induces St '^ 4> (sq) for all t > 1,

where G $. • -
,

Proof. See Appendix A.

Parts 1 and 2 of Theorem 2 state that the set of dynamically stable states and the set of

stable states P defined by axiomatic characterization in Theorem 1 coincide; any mapping (/> £ $

(satisfying Axioms 1-3) is the outcome of a pure-strategy MPE and any such MPE implements

the outcome of some £ $. This theorem therefore establishes the equivalence of axiomatic

and dynamic characterizations. An important imphcation is that the recursive characterization

of axiomatically stable states in (6) applies exactly to dynamically stable states.

The equivalence of the results of Theorems 1 and 2 is intuitive. Had the players been short-

sighted (impatient), they would care mostly about the payoffs in the next state or the next few

states that would arise along the equihbrium path (as in the concept of myopic stability intro-

duced next). However, when players are sufficiently patient, in particular, when /? > [Hq, they

care more about payoffs in the ultimate state than the payoffs along the transitional states. Con-

sequently, winning coalitions are not wilhng to move to a state that is not (axiomatically) stable
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according to Theorem 1 ; this leads to the equivalence between the concepts of axiomatically and

dynamically stable states.

To highhght some of the implications of our analysis so far and to emphasize the difference

between dynamically stable states and states that may arise when individuals are shortsiglited,

we next introduce a number of corollaries of Theorems 1 and 2. We start with a simple definition.

Definition 3 (Myopic Stability) A state s^ € S is myopically stable if there does not exist

s G iS with s )^5m s™.

Myopic stability would apply if individuals made choices only considering their implications

in the next period. Clearly, a myopicaUy stable state is (axiomatically and dynamically) stable,

but the converse is not true. This is stated in the next corollary, which emphasizes that a state

is made stable not by the absence of a powerful group preferring change, but by the absence of

an alternative stable state that is preferred by a powerful group. This corollary is an immediate

implication of Theorems 1 and 2, in particular, of equation (5). Its proof is omitted.

Corollary 1 1. State s°° G S is a (dynamically and axiomatically) stable state only if for

any s G S with s )-5~ s°°, and any 4> satisfying Axioms 1-3, s ^ ^(s).

2. The set of myopicaUy stable states is a subset ofD (the set of axiomatically and dynamically

stable states). In particular, a myopically stable state s™ is a stable state, but a stable state

s°° is not necessarily myopicaUy stable.

The final part of the corollary imphes that s°° may be stable even if it is not myopically

stable (recall Example 1). In particular, there may exist a state .s such that s >-soo s°°; but s°°

may still be stable because s ^ (^{s) and leads to some other state s', which is not preferred by

a winning coahtion in 5°° (if we had s' = (p (s) ^s"^ s°° , then s°^ would not be a stable state).

Another direct implication of this corollary is that forward-looking behavior enlarges the set of

stable states.

For the next corollary, we first introduce an additional definition.

Definition 4 (Inefficiency) State s € S is (strictly) Pareto inefficient if Ws ^ and

there exists a state s' G S such that w, (s') > Wi (s) for all i G T.

State s € S is (strictly) winning coalition inefficient if there exists state s' G S such

that s' '^s s.

Clearly, if a state s is Pareto inefficient, it is winning coalition inefficient, but not vice versa.
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Corollary 2 1. A stable state s°° £ S can be winning coalition inefficient and Pareto inef-

ficient.

2. Whenever s°° is not myopically stable, it is winning coalition inefficient.

Proof. The first part again follows from Example 1 in the Introduction. The second part

follows from the fact that if s°° is not myopically stable, then there must exist 5 G «S such that

s ^5~ s~.

5 Ordered States

Theorems 1 and 2 provide a complete characterization of axiomatically and dynamically stable

states as a function of the initial state sq S 5 provided that Assumptions 1 and 2 are satisfied.

While the former is a very natural assumption and easy to check, Assumption 2 may be somewhat

more difficult to verify. In this section, we show that when the set of states S admits a (linear)

order according to which individual (stage) paj^offs satisfy single-crossing or single-peakedness

properties (and the set of winning coalitions {W^j^g^ satisfies some natural additional condi-

tions). Assumption 2 is satisfied. This result enables more straightforward appUcation of our

main theorems in a wide variety of circumstances. • .,
. , .

• .

In a number of applications, the set of states S has a natural order, so that any two states

X and y can be ranked (e.g., either x is "greater than" or "less than" y). When such an order

exists, we can take, without loss of any generality, S to be a subset of R. Similarly, let I c M,

which is also without loss of any generality. Given these orders on the set of states and the set

of individuals, we introduce certain well-known restrictions on preferences.^ All of the following

restrictions and definitions refer to stage payoffs and are thus easy to verify. .^
,

.

,

Definition 5 (Single-Crossing) Given T C M, 5 C R, and {^i {s)} ^^j ^^^ , the single-

crossing condition (SC) holds if, for any i,j £ I and x,y E S such that i < j and x < y,

Wi {y) > Wi (x) implies Wj (y) > Wj {x) and Wj {y) < Wj [x) implies Wi {y) < Wi {x).

Definition 6 (Single-Peakedness) GivenI C R, <S C R, and {wi (s)}jgjs£5, preferences are

single-peaked (SP) if for any i E T there exists state x such that for any y,zES,y<z<x
or X > z > y implies Wi {y) < Wi [z).

We next introduce a generalization of the notion of the "median voter" to more general

political institutions (e.g., those involving supermajority rules within the society or a club).

See Barbera and Moreno (2008) for the connection between these notions.
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Definition 7 (Quasi-Median Voter) Given I C K, vS C IR, and {Ws}s^S' P^o.yer i G I is

a quasi-median voter (in state s) if for any X G Ws such that X = [j &T : a < j <by for

some a, 6 e R we have i G X.

Denote the set of quasi-median voters in state s by M^. Theorem 3 shows that it is nonenapty

(provided that Assumption 1 is satisfied).

Definition 8 (Monotonic Median Voter Property) Given T C K and S C M, the sets

of winning coalitions {yVs}seS ^'^^ monotonic median voter property if for each x,y ^ S

satisfying x < y there exist i e Mx, j S My such that i < j.

The last definition is general enough to encompass majority and supermajority voting as well

as these voting rules that apply for a subset of players (such as club members or those that are

part of a limited franchise). Finally, we also impose the following weak genericity assumption.

Assumption 5 (Weak Genericity) Preferences {wiz (s)},gi sg^ and the set of winning coali-

tions {yVsjgcs "^^^ such that for any x,y,z G S, x y^ y implies x y^ y or x ^ y.

Assumption 5 is satisfied if no player is indifferent between any two states (though it does

not rule out such indifferences). The main results of this section are presented in the following

theorem.

Theorem 3 (Characterization with Ordered States) For any I c K, 5 C R, preferences

{wi (s)}jgj5g5, and winning coalition {WaJsPS satisfying Assumption 1, we have that:

1. If single-crossing condition and monotonic median voter property hold, then Assumption

2(a, b) is satisfied and thus Theorem 1 applies.

2. If preferences are single-peaked and for any x,y € S and any X £ Wx, Y G Wy we have

X (lY j^ 0, then Assumption 2(a,b) is satisfied and thus Theorem 1 applies.

3. If in either part 1 or 2, Assumption 5 also holds, then Assumption 2(b)* is also satisfi.ed

and thus Theorem 2 applies.

Proof. See Appendix A.

The conditions of Theorem 3 are relatively straightforward to verify and can be applied in a

wide variety of applications and examples. Notice that part 2 of Theorem 3 requires a stronger

condition than the monotonic median voter property. It can be verified that this condition

imphes the monotonic median voter property, so part 1 of the theorem continues to be true

under the hypothesis of part 2. However, the converse is not true.^*^

In particular, consider the following environment: there are two states, x < y, and two voters, i < j.
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/'2 if A; is odd or A'/'J and A:/'2 | I if A' is even are needed), 'i'liese l,wo votiii)', rules lead I.

o

corri'sponiliii)', e(|iiililii iiini iml inns, wliieli Uolierl.s calls Markov VoUii|', I'liiiiililirinni and Me(liaii

V'olei I'iiiuililii inin, respecl i\'ely. Me esl al ilislies llie exisl.eiiee nl' inixeil sl.iale(',y cciuilil nia, wil.ll

liol.li mil, ions and shows Uial, Ihey Imlh lead In I, lie same sel, of sta.lile chilis.

It i,s s( i'iU||,litroi'wa,rd to verily that UnliertsV; nindel and his two votini', rules are spec.iaJ cases

of the R<''i''i'''il voliii)'. rules allowed in oin riainework. In particular, lei lis lirst weaken Uoberts's

•strid iiK'i'easinji diU'crenci's jiropeity to siiii;,li'crossini:,, in pa.i ticiila.i
,
let us assume l.lmt

for all / ^-
A: and / > i, ni; (si) > v/i, (.s'^.) ; idj (s/) > vij (.s^.)

, a.iul (11)

,, "'lis,,) >-w.j{si) -=>•((;,, (.s^.) > w, (.s;)

.

.
,

.

('learly, (Id) implies (II) (hut iml \'ic(i versa.). In additinii, Uoberts's two votiiiji, rules can he

i'ei)resenled hy the Inllowini', sets of wiimiii|!, coa.litioiis:

W

WUr - {'^ f- (': |.Vl'l.^A.| > A:/2), and

f
|.V t (.

; (A- |-;i)/2 t .VI it A- is odd;

\ |.\' c C' : {k/2,k/2-\- 1] t. X] if A: is (>veii.

I'rcriM'ciu'HM iirii siicli Ilinl. ic, (.r) < uu (;/), bill, Wj {x) > uij (y). ',l'li<;so prel'orniic.os uro .siuglo-poiiUed (so are any

l)rol'(>rtMU'(\s wiUi two .sl.al.os). SiiiipiiHo, in addition, that W,„ --- {{»'}
,
{i,j}], and Wy - {{j} ,

{»',,?'}}. In Uiat, cnsd,

i and ,/ urc (iiia.si-ini'diaii voU>i-k in .st.ato.s :i: and ;(/, I'ospoctivoly, and tluia nionolonic iiicdiun voter pri)|>cily holds.

liowovoi'i AssuinpUon 'J(a) iw violal.i'd lor {x,y} (wo liavo •;/ y.^, x and x >-,; y).
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Clearly, hoUi < VV,'""' > and {y^l'l } i—i WftliHly A.ssnin|)l imi I as well as I, lie iiKiiiorniiic iiie< linn

vol:or properl.y in Di'linilion iS. IjcI, lis also aSHiiiiir iJial Assiinipl.idn T) lioMs. In I, his c.a.sc, Uiis

can he gnai'anl.ecHJ by a.ssuniinj', l.liai ii), (.s) / 7/); (,s') for a.riy i ( J. and any .v, ,s' G S (lliou; 'Ji a,

wnakt^r eondil.ion would aJscj he siilliiieiil). Then, it is e,le.a,i' iJial, 'rh<H)reni .'! Ironi llie previous

seclion applies l.o Uohinls's model a.n<l (wiahlishes l.lii^ exisl;enee of a, pnre sl.raie)',y MI'M and

characterizes the stincl. ore of si aJile cliilis. "
; ,

,

It can also be verified Ihai 'I'lieorein .'i applies witli fionsidtirably more ('ciieral votin/^ nikjs.

For example, we eoilld allow a dillereiil- degret' of silpermajoiil.y rule in ea.eli eliili. 'i'hi' lollowiijc;

set of wiiininp, coalitions nests various majority and siipeiiiiajoi ity iiil<:s: for each /;;, let thr;

degree of supermajority in elnb .h/,. be /;,;
where k/2 < //c

< A: ajid define the s(!t a, wiiiiiini',

coalitions as:

Wil = {XeC:\Xns,\>n

Then, a relatively straiglitforwa,rd a,|)pliea,tion of 'riieorein .'i estaJilish(!s the followiiij', proposition

(for completeness, th(! ]))oof is provided in Appendi;-; (J).

Proposition 1 //( //le voLmfj i/ii. chiha model, iinUi wrinmu/ cixdil.iov.s f/iv<"ii. by I'iUi.cr VV,™'''',

Wl'l"'', or Wl'l, vilicrv. k/2 < k < >• I'>r "I I I-, '/"' .follomviuj ivsulls liold.

(i) 'Jlic. rnoTU)l,o'm.i- mc.dum voters 'i>roj)("rl,y in. Dcjin/i.l/urn. 8 in sdJ/isJicd.

(it) Suppose iJi.aJ. ji'i-c.fn-nif.cs sal/isfy (llj (i:ii.d, Assu'iiipiioii Fi. 'I'lirii Assv.rn'pldons fl(a,h) and

2b'' hold (ui.d iJi.v.s Ui.r cli,(i:r(i,c.L("riz(iJ.io'ii oj MI'I', a/n.d :il.(iblc HldicH vn, 'Ilic.oTcms I (i/ii.d !'i (vp'jilicH.

(ill) MoTV.n'UCT, tj only odd-Hizc.d ciiiJis avf (dloinrd, l.li.cv. w. Lhc cose of iii.ajoTtly ot iii.i:(hii.'ii.

voter rules Ass'iimptuyii .'I olso li.olds (i/ii.d tli/ns tlir dy'ii.d/nncidly st(d}le state (did)) 'is v:n,i(/'aj'ly

d,eA.e:nu.iv,eA as a fimctiov. of th.e imtttd stide (ebdi).

This proposition shows thai a, sharp clia,rac,teri/,a,t,ioii of dynajiiics of clubs and the se(, of

stable clubs can be obtajned easily by a|))}lyin(r Thc'orem '.'> to Itoberts's oii)MiiaJ model or to

various geiierali/atioiis. Another' generalization, not sta.l,ed in I'ropositioii I, i;; tcj aJlow for a

richer set of clubs, l-br example, the fea,sible set rif ehibs <:a,n also be taj'.en to \ti: ol the Irjiin of

{k — n, ...,/:,.,,,/,; |- n} Dl foi' a fixed n (and dideient value's of k). It is also noteworthy tha,t

the approach in H.oljerts's pafx^r is consideraJdy more dillieiilt a,nd restiictive (th()U(di Koberts

also establishes the existence of mix(!(l-stj'ate|.',y MPIO for a,ny //). Therefore, this application

illustrates the usefulness of the jfeneral characterizati<jn results fMcsented in this pa.piii'.

G.2 The Structure c^f Elite CIuIjs

In this subsection, we briefly discuss anothei examjile of dyna,mic club lorma,tion, which alKjws

a simple explicit characterization. Sujjjjose there ai-e A' individuals 1,2, ...,A/ and A^ slates
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Si, S2, •
1 SN, where Sfc = {1, 2, . .

.
, /c}. Preferences are such that for any no = ni < j < n2 < n^,

Wk (Sno) = Wk (s„i) < Wk (s„3) < Wk (SnJ • (12)

These preferences imply that each player k wants to be part of the club, but conditional on being

in the club, he prefers to be in a smaller (more "elite") one. In addition, a player is indifferent

between two clubs he is not part of. Suppose that decisions are made by a simple majority rule

of the club members, so that winning coalitions are given by

Ws, = {XeC:\Xnsk\>k/2}. (13)

It is straightforward to verify that this environment satisfies Assumptions 1, 2(a,b), 2b*, and

3.^^ Hence, we can use Theorems 1 and 2 to characterize the set of stable states and the unique

outcome mapping. First, notice that state si is stable. This club only includes player 1, who is

thus the dictator, and who likes this state best, and thus by Axiom 1 we must have (l>(si) = sj.

In state S2, a consensus of players 1 and 2 is needed for a change. But S2 is the best state for

player 2, so (f>{s2) = S2- In state S3, the situation is different: state S2 is stable and is preferred

to S3 by both 1 and 2 (and is the only such state), so 4>is3) = S2. Proceeding inductively, we

can show that club Sj is stable if and only if j = 2" for n G Z+, and the unique mapping
(f)
that

satisfies Axioms 1-3 is ,....''.,
i

• '; ' v •

where [xj denotes the greatest integer less than or equal to i- e R. ;• .' /• .

'

The following proposition summarizes the above discussion. '

/ '-
'

, ,,
.

'

Proposition 2 In the elite club example considered above with preferences given by (12) and

set of winning coalitions given by (13), the following results hold.

1. Assumptions 1, 2(a,b), 2b*, and 3 hold.
'

'
'

-'
•
''-,•

2. If, instead of (12), for uq < ni < k < n2 < n^, we have Wk (Sno) < ''^k (sm) < i^k (Sns) <

'>JJk (sns)) then single- crossing condition is satisfied (and monotonic median voter property

is always satisfied in this example).

3. Club Sk is stable if and only if k = 2^ for n ^Jj'^ . '• '

.
;

•

"This is formally siiown in Appendix C. Alternatively, one could consider a slight variation where a player

who does not belong to either of any two clubs prefers the larger of the two. In this case, Theorem 3 can also be

applied. In particular, with this variation, the single-crossing condition is satisfied (if to, {sy) > wt (si) for y > x

and j > i, then i ^ x and thus, j ^ x, and Wj {sy) > Wj (si); conversely, Wj {sy) < Wj {s^) means j e Sy, thus

i € Sy, and therefore lu, (sy) < tUi (sx)). The monotonic median voter condition holds as well (one can choose

quasi-median voter in state Sj to be [(j -I- 1) /2| £ Ms^; this sequence is weakly increasing in j).
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4- The unique mapping ip that satisfies Axioms 1-3 is given by (14). ^

Proof. See Appendix C. .

'

-

6.3 Stable Voting Rules cind Constitutions

Another interesting model that can be analyzed using Theorem 3 is Barbera and Jackson's

(2004) model of self-stable constitutions. In addition, our analysis shows how more farsighted

decision-makers can be easily incorporated into Barbera and Jackson's model.

Motivated by Barbera and Jackson's model, let us introduce a somewhat more general frame-

work. The society takes the form of J = {1, . . . , A''} and each state now directly corresponds to

a "constitution" represented by a pair (a, b), where a and 6 are integers between 1 and A^. The

utility from being in state (a, b) is fully determined by a, so that each player i receives utility

.

' Wr{{a,b)] = w, (a). . (15)

In contrast, the set of winning coalitions needed to change the state is determined by 6 G Z^:

W(„.6) = {X G C : |X| > 6} (16)

(so b may be interpreted as the degree of supermajority).

In Barbera and Jackson's model, individuals chffer according to the probability with which

they will support a proposal for a specific reform away from the status cjuo. The parameter a

determines the (super)majority necessary for implementing the reform. The parameter 6, on

the other hand, is the (super)majority necessary (before individual preferences are realized) for

changing the voting rule a. Expected utility is calculated before these preferences are realized

and defines Vj\ [{a,b)]. Ranking individuals according to the probability with which they will

support the reform, Barbera and Jackson show that individual preferences satisfy (strict) single-

crossing and are (weakly) single-peaked.

For our analysis here, let us consider any situation in which preferences and winning coalitions

satisfy (15) and (16). It turns out to be convenient to reorder all pairs (a, 6) on the real line

as follows: if (a, 6) and (a', 6') satisfy a < a', then (a, 6) is located on the left of {a',b'), and

we write (a, 6) < (a', 6'); the ordering of states with the same a is unimportant. Suppose that

Wi (a), and thus w^ [(a, 6)], satisfies the single-crossing condition in Definition 5. This enables

us to apply Theorem 3 to any problem that can be cast in these terms, including the original

Barbera and Jackson model.

Let us next follow Barbera and Jackson in distinguishing between two cases. In the case of

constitutions, any combination (a, 6) is allowed, while in the case of voting rules, only the subset
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of states where a = 6 is considered (then a = 6 is the voting rule); in both cases it is natural

to assume b > N/2. Barbera and Jackson call a voting rule or a constitution (a, b) self-stable if

there is no alternative voting rule {a',b') with a' = b' (or, respectively, constitution (a', 6')) such

that {a',b') is preferred to (a, 5) by at least b players. Clearly, this stability notion is equivalent

to our notion of myopic stability. Given Corollary 1, it is not surprising that when we allow

players to be farsighted, the set of stable states may be enlarged.'^

The following proposition shows summarizes this discussion.

Proposition 3 Consider the above- described environment and assume that preferences satisfy

single-crossing condition and Assumption 5 holds. Then:

1. Assumptions 1, 2(a,b) and 2b* are satisfied.

2. There exist mappings (f)^ for the case of voting rules (a = b) and (p^ for the case of consti-

tutions that satisfy Axioms 1-3.
.

..'• ' -.
,

•

3. In the case of voting rules, the set of self-stable voting rules (in the sense of Barbera and

Jackson) coincides with the set of myopically stable states. In particular, any such state

(a, 6), where a = b, satisfies (j)y\{a,b)] = (a, 6). The set of self-stable voting rules is a

subset of set of dynamically stable staies. - '

•'

. .

4. In the case of constitutions, the set of self-stable constitutions (in the sense of Barbera

and Jackson), the set of myopically stable states and the set of dynamically stable states

coincide.

Proof. See Appendix C. .
•; -

'!::' ,!.. \ '. :,.:,.;: i^,:^ :i

6.4 Cocdition Formation in Nondemocracies

As mentioned above. Theorems 1 and 2 can be directly applied in situations where the set of

states does not admit a (linear) order. We now illustrate one such example using a modification

of the game of dynamic coalition formation in Acemoglu, Egorov, and Sonin (2008).

'"Ill particular, the set of stable states is enlarged in 'the case of voting rules, but remains the same in the

case of constitutions. This can be seen as follows: suppose constitution {a'.b') is preferred to (a, b) by at least b

players; without loss of generality, we may assume that (a, 6) is Pareto-efficient (otherwise we could pick {a",b")

which Pareto dominates (a',fc') and thus is preferred to (a, 6) by these b players). Then these b players also

prefer constitution [a , N) to (a, 6), since the payoffs are the same. But constitution (a , N) is stable by A.xiom

1. Moreover, it is impossible that all A^ players prefer some other constitution (a", 6") because (a',b'), and thus

{a',N), are Pareto efficient. Hence, if state (a, 6) is not myopically stable, it is also not dynamically stable, for

the players may move to constitution {a',N), which is dynamically stable and preferred to (a,b) by at least N
players.
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Suppose that each state determines the ruhng coahtion in a society and thus the set of

states S coincides with the set of coahtions C. Members of the ruhng coahtion determine the

composition of the ruhng coahtion in the next period. A transition to any coahtion in C is

aDowed, which highhghts that the set of states does not admit a complete order (one could

define a partial order over states, though this is not particular useful for the analysis here).-'''

Each agent t e I is assigned a positive number 7,, which we interpret as "political influence"

or "political power." For any coalition A' G C, let

jex

Suppose that payoffs are given by

for any z G X and any X E C = S}'^ The restriction to (17) here is just for simplicity. Also,

take any a € [1/2, 1) as a measure of the extent of supermajority requirement. Define the set of

winning coahtions as

Clearly, this corresponds to weighted ck-majority voting among members of the incimibent coali-

tion X (with a = 1/2 corresponding to simple majority). In addition, suppose that the following

simple genericity assumption holds:

7a- = 7r only if X = y. • (19)

The following proposition can now be established.

Proposition 4 Consider the environment in Acemoghi, Egorov, and Sonin (2008). Then:

1. Assumptions 1. 2(a,b), 3 are satisfied, so that Theorem 1 applies and characterizes the

axiomatically stable states.

''In Acemoglu, Egorov and Sonin (2008), not all transitions were allowed. In particular, there we focused

on a game of "eliminations" from ruling coalitions in nondemocracies, so that once a particular individual was

eliminated, he could no longer be part of future ruling coalitions (either because he is "killed," permanently exiled,

or is permanently excluded from politics by other means). Moreover, we assumed that payoffs were realized at

the end of the game. Appendix B discusses how the current framework can be generalized so that there are limits

on the feasible set of transitions.

'''This is a special case of the payoff structure in Acemoglu, Egorov and Sonin (2008), where we allowed for any

payoff function satisfying the following three properties: (1) if i e A' and i f Y, then lu, (X) > u), {Y)\ (2) if i S X
and i e y ,

then ui, (AT) > Wi {¥) if and only if 7,/7x > 1,/1y'i ^'^'^ (3) i ^ X and i ^ Y, then w, (X) = w, (Y).

The form in (17) is adopted to simplify the discussion here.
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2. Moreover, there exists an arbitrarily small perturbation of payoffs such that Assumption

2(b)* also holds. In this case, Theorem 2 also applies and characterizes the dynamically

stable states.

Proof. See Appendix C.

In Appendix B we introduce the possibility of restrictions on feasible transitions and sliow

how Proposition 4 can be generalized to cover the case of political eliminations considered in

Acemoglu, Egorov, and Sonin (2008). We also illustrate how not allowing previously-eliminated

players to be part of the ruling coalition affects the results and the structure of stable coalitions.

6.5 Coalition Formation in Democracy

We next briefly discuss how similar issues arise in the context of coalition formation in democ-

racies, for example, in coalition formation in in legislative bargaining. ^^

Suppose that there are three parties in the parliament, 1, 2, 3, and any two of them would be

sufficient to form a government. Suppose that party 1 has more seats than party 2, which

in turn has more seats than party 3. The initial state is 0, and all coalitions are possi-

ble states. Since any two parties are sufficient to form a government, we have W0 = W^ =

{{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} for all 5. First, suppose that all governments are equally strong

and a party with a greater share of seats in the parliament will be more influential in the coali-

tion government. Consequently, UI3 (0) < w^ ({1, 2)) < 1^3 ({1, 2, 3}) < ^3 ({1,3}) < w^ ({2, 3});

other payoffs are defined similarly. In this case, it can be verified that 0(0) = {2,3}: indeed,

neither party 2 nor party 3 wishes to form a coalition with party 1, because party I's influence

in the coalition government would be too strong. The equilibrium in this example then coincides

with the minimum winning coalition. .

However, as emphasized in the Introduction (recall footnote 2), the dynamics of coalition

formation does not necessarily lead to minimum winning coalitions. To illustrate this, suppose

that governments that have a greater number of seats in the parliament are stronger, so that

u;2(0) < u;2({l,3}) < t(;2 ({1,2,3}) < u;2({2,3}) < u;2({l,2}). That is, party 2 receives a

higher payoff even though it is a junior partner in the coahtion {1,2}, because this coaUtion

is sufficiently powerful. We might then expect that {1,2} may indeed arise as the equilibrium

coalition, that is, 4>{0) = {1,2}. Nevertheless, whether this will be the case depends on the

continuation game after coalition {1,2} is formed. Suppose, for example, that after the coalition

''See, for example. Baron and Ferejohn (1986), Austen-Smith and Banks (1988), Baron (1991), Jackson and

Moselle (2002), and Norman (2002) for models of legislative bargaining. The recent paper by Diermeier and Fong

(2008) that studies legislative bargaining as a dynamic game without commitment also raises a range of issues

related to our general framework here.
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{1,2} forms, party 1, by virtue of its greater number of seats, can sideline party 2 and rule

by itself. Let us introduced the shorthand symbol "i—" to denote such a feasible transition,

so that we have {1,2} i—» {1} (which naturally presumes that W{i_2} = [^ G C : 1 € K]).

Similarly, starting from the coalition {2,3}, party 2 can also do the same, so that W{2,3} =

{X e C : 2 e X] and {2,3} i—> {2}. However, it is also reasonable to suppose that once party 2

starts ruling by itself, then party 1 can regain power by virtue of its greater seat share, that is,

^{2} = {C' e C ; 1 e Cj and thus {2} i-^ {1}. In this case, the analysis in this paper immediately

shows that (f){0) = {2,3}, that is, the coalition {2,3} emerges as the dynamicaUy stable state.

What makes {2,3} dynamically stable in this case is the fact that {2} is not dynamically

stable itself. This example therefore reiterates, in the context of coalition formation in democ-

racies, the insight (discussed after Theorem 1 and in Corollary 1) that the instability of states

that can be reached from a state s contributes to the stability of state s.

6.6 Inefficient Inertia and Lack of Reform

We now provide a more detailed example capturing the main trade-offs emphasized in Example 1

in the Introduction. Consider a society consisting of A'^ individuals and a set of finite states S. We

start with sq = a corresponding to absolutist monarchy, where individual E holds power. More

formally, YVa = {X & C : E e X] . Suppose that for all a; G 5 \ {a}, we have that I\ {£} e W^,

that is, all players except E together form a winning coalition. Moreover, there exists a state,

"democracy," d ^ S such that ip {x) == d for all x G 5 \ {a}. In other words, starting with any

regime other that absolutist monarchy, we will eventually end up with democracy. Suppose also

that there exists y € S such that Wi {y) > w, (a), meaning that all individuals are better off in

state y than in absolutist monarchy, a. In fact, the gap between the payoffs in state y and those

in a could be arbitrarily large. It is then straightforward to verify that Assumptions 1-3 are

satisfied in this game.

To understand economic interactions in the most straightforward manner, consider the

extensive-form game described in Section 4. It is then clear that for P sufficiently large, E

will not accept any reforms away from a, since these will lead to state d and thus (a) = a.

This example illustrates the potential (and potentially large) inefficiencies that can arise in

games of dynamic collective decision-making and emphasizes that commitment problems are at

the heart of these inefficiencies. If the society could collectively commit to stay in some state

y ^ d, then these inefficiencies could be partially avoided. And yet such a commitment is not

possible, since once state y is reached, E can no longer block the transition to d.
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6.7 Middle Class and Democratization

Let us next consider a variation of the environment discussed in the previous subsection. Suppose

again that the initial state is sq = a, where Wa = {X E C : E £ X}. To start with, suppose that

there is only one other agent, P, representing the poor, and two other states, dl, democracy

with hmited redistribution, and d2, democracy with extensive redistribution. Suppose that

Wdi = yVd2= {X GC:PeX}. Suppose

WE (d2) < WE (a) < WE {dl) and wp (a) < wp (dl) < wp {d2)
,

so that P prefers "extensive" redistribution. Given the fact that Wdi = W(i2 = {P}^ once

democracy is established, the poor can implement extensive redistribution. Anticipating this,

E will resist democratization.

Now consider an additional social group, M, representing the middle class, and suppose that

the middle class is sufficiently numerous so that

--• Wdi^Wd2 = {{M,P},{E,M,P}].

The middle class is also opposed to extensive redistribution, so ,, ' ,,
'

,
'

'"'
'

''

' WM{a) <WM{d2) <WM {di)
.

'
' ,"'.. / '

This implies that once state dl emerges, there no longer exists a winning coalition to force

extensive redistribution. Now anticipating this, E will be happy to establish democracy (extend

the franchise). Thus, this example illustrates how the presence of an additional powerful player,

such as the middle class, can have a moderating effect on political conflict and enable institutional

reform that might otherwise be impossible (see Acemoglu and Robinson, 2006a, for examples in

which the middle class may have played such a role in the process of democratization).

6.8 Concessions in Civil War

Let us briefly consider an application of the ideas in this paper to the analysis of civil wars. Tliis

example can also be used to illustrate how similar issues arise in the context of international

wars (see, e.g., Fearon, 1996, 2004, Powell, 1998). Suppose that a government, G, is engaged

in a civil war with a rebel group, R. The civil war state is denoted by c. The government can

initiate peace and transition to state p, so that Wc = {C £ C : G £ C} . However, using the

shorthand "i—>" introduced in subsection 6.5, we now have p i--» r, where r denotes a state in

which the rebel group becomes strong and sufficiently influential in domestic politics. Moreover,

Wp — {X £ C : R £ X}, and naturahy, wr (r) > wr (p). If wq (r) < wq (c), there will be no
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peace and (f>{c) = c despite the fact that we may also have wq (p) > wg (c)- The reasoning for

why civil war may continue in this case is similar to that for inefficient inertia discussed above.

As an interesting modification, suppose next that the rebel group R can first disarm partially,

in particular, c i-> d, where d denotes the state of partial disarmament. Moreover, d i—> d-p,

where the state dp involves peace with the rebels that have partially disarmed. Suppose that

y^dp = {{C, i?}}, meaning that once they have partially disarmed, the rebels can no longer

become dominant in domestic politics. In this case, provided that vug (dp) > wg W) we have

(p (c) = dp. Therefore, the ability of the rebel group to make a concession changes the set of

dynamically stable states. This example therefore shows how the role of concessions can also be

introduced into this framework in a natural way.

6.9 Taxation and Public Good Provision

In many apphcations preferences are defined over economic allocations, which are themselves

determined endogenously as a function of political rules. Our main results can also be applied

in such environments. Here we illustrate this by providing an example of taxation and public

good provision. -

Suppose there are N individuals 1,2, ...,A'' and A'' states si, S2, . .
.

, s;v, where s^ =

{1,2,. .

.

, k}. We assume that decisions on transitions are made by an absolute majority rule of

individuals who are enfranchised, so that winning coalitions take the form

Ws, = {XeC:\Xnsk\>k/2}.

We also assume that the payoff of individual i is given by

m,(5j)=E[(l-r,J^+G,J, (20)

where Ai is individual i's productivity (we assume A^ > A-j for i < j, so that lower-ranked

individuals are more productive), E denotes the expectations operator, and Tj is the tax rate

determined when the voting franchises Sj. When an odd number of individuals are allowed to

vote, the tax rate is determined by the median. When there is an even number of voters, each

of two median voters gets to set the tax rate with equal probability. The expectations in (20)

is included because of the uncertainty of the identity of the median voter in this case. Finally,

^sj = h { 5Z;^2 Tsj Ai j
is the public good provided through taxation, where h is an increasing

concave function.

For the single-crossing property, we require that for any i < j € 2 and for any s/, sj+i £ <S,

Wj (si+i) > Wj {si) => Wi (s;+i) > Wi (S;) and Wi (s;+ i) < Wi {si) =4> Wj {Sl+ i) < lUj (s/)

.
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Denoting the equilibrium taxes in states s; and s;+i by Ts^,^^ and t^,
,
the following condition is

sufficient (but not necessary) to ensure this:

E (1 - r,,^J Aj - E (1 - T,,) Aj > E (1 - t,,^J ^ - E (1 - r,,) ^i,

since the equihbrium levels of public goods, Gg, and G^,^, , cancel out from both sides. Therefore,

<jt
«i+i > Er,, (21)

is sufficient for single-crossing. Notes that individual i, when determining the tax rate in si,

would maximize

(l-r)A, + ^(t V' Ar,

This implies that individual i would choose Tj such that

Ai ~ h I Ti y Am / Am-
\ ^-^m=l / ^-^m= l

From the concavity of h it follows that for i < j, Ti > Tj. Now consider a switch from s; to

Si+i. Then, with probability 1/2, the tax is set by the same individual (then the tax rate is

the same in s/+i as in s;), and with probability 1/2, by a less productive individual (then the

tax rate is greater in Sj+i than in s;). Therefore, (21) holds and we can apply Theorem 3 to

characterize the dynamically stable states in this society. More interestingly, these results can

also be extended to situations where public goods [taxes] are made available differentially to

[imposed on] those who have voting rights (club members).
.

.

7 Conclusion

A central feature of collective decision-making in many social situations, such as societies choos-

ing their constitutions or political institutions, or political coalitions, international unions, or

private clubs choosing their membership, is that the rules that govern the regulations and proce-

dures procedures for future decision-making, and inclusion and exclusion of members are made

by the current members and under the current regulations. This feature implies that dynamic

collective decisions must recognize the implications of current decisions on future choices. For

example, current constitutional change must recognize how the new constitution will open the

way for further changes in laws and regulations and how these further changes might affect the

long-run payoffs of different players.

We developed a general framework for a systematic study of this class of problems. We

provided both an axiomatic and a noncooperative characterization of stable states and showed
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that the set of (dynamically) stable states can be computed recursively. This recursive cliar-

acterization highhghts that a particular state s is stable if there does not exist another stable

state that makes a winning coalition (in s) better off. An implication of this reasoning is that

stable states need not be Pareto efficient; there may exist a state that provides higher payoffs

to all individuals, but is itself not stable.

We also showed that our framework is general enough to nest various different models that

have been used in the literature to analyze specific problems in which current collective decisions

affect future decision-making procedures. These include models of inefficient inertia (lacl: of

reform) because of fear of changes in the future balance of political power, models of institutional

change and enfranchisement (such as Acemoglu and Robinson, 2001, 2006a, Lizzeri and Persico,

2004, and Jack and Lagunoff, 2006), models of voting in clubs (such as Roberts, 1999, and

Barbera, Maschler, and Shalev, 2001), models of the stabihty of constitutions (such as Barbera

in Jackson, 2004), and models of coalition formation in democracies and nondemocracies. In

these cases and in a number of others, we illustrated how models previously studied in the

literature are special cases of our framework and how our approach highlights the main economic

insights in these diverse environments -

Although our framework is fairly general, our analysis still relies on a number of important

assumptions. Some of those are necessary for our general approach (for example, a minimum

amoimt of acyclicity is essential). Others are adopted for convenience and can be relaxed, though

often at the cost of further complication. Among possible extensions, we believe that most

interesting would be to introduce stochastic elements, so that the set of feasible transitions or

the distribution of powers stochastically vary over time, and to include capital-like state variables

so that some subcomponents of the state have autonomous dynamics. Such extensions would

allow us to incorporate an even larger set of dynamic political games within this framework. We

view the analysis of such dynamics as an interesting area for future research.
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Appendix A

7.1 Proof of Theorem 2

We start with a lemma about the structure of MPE and SPE in voting games. This lemma plays

an important role in the proof of Theorem 2 and is of independent interest in the contex:t of

dynamic political economy models. It establishes that there always exists a pure-strategy MPE
(and SPE) in which each individual votes for the outcome that he or she strictly prefers and

that in any (mixed- or pure-strategy) equilibrium the outcome that is preferred by sufficiently

many players (a "winning coalition") will be implemented.

Lemma 1 Consider the following I-player extensive-form game G/v with perfect information

and N stages. In each stage k, one player if; (this player may be the same for different k 's) takes

action a^ e {y,n}. The payoff vector is given by the mapping v : {y,n} —
> {y,n}, where y,

ft gW are the two possible vectors of payoffs. Suppose that if for some k, v (a^ = n,a^k) = V,

then we also have v [a^ = y, a-fc) = y (i.e., if for any profile of actions other than that at stage

k, a-k, ihe vote a^ = n leads to y, then so does a^ = y; this ensures that action y does not make

outcome y less likely). Then the following results hold. .

'
, r-. ,

'

(i) There exists a pure-strategy MPE (and SPE) in Gyv where a^ = y if Vi^ [y) > v^^, (n) and

ah = n if v^^, [y) < v,^ (h) (where vi (y) and fj (tI) denote the payoffs of player i under the payoff

vectors y and n, respectively). •,
.

,
: ,

•, '

(ii) Suppose that the set of players y = {i : vi (y) > vi (n)} is large enough, in the sense that

V {ai, . .
.

, a^) = y whenever ai^ — y for all i^ G 3^. Then in any SPE of G/v, the equilibrium

payoff vector will be y with probability 1. Similarly, if the set of playersM = {i : Vi {y) < Vi (n)}

is large enough, so that v (aj, . .
.

, a/v) = fi whenever a^ = n for all if. G Af, then in any SPE of

Gjv, the equilibrium payoff vector will be h with probability 1.

(Hi) Suppose that the first N stages of a finite or infinite extensive-form game Gj\!' with

perfect information satisfy the requirements above, except that instead of payments at terminal

nodes taking two values only, we have that there are two classes of isomorphic subgames, Sy and

Sfi, with payoff vectors y and fi respectively. Take any MPE a and let y = {i : v^ (Sy) > v, {Sn)}

and Af = {i : Vi (Sg) < Vi {Sn)}, where f, (Sy) and v^ (Sn) ire continuation payoffs of player i.

If V (ai, . . . , a/v) = y whenever a^ = y for all i^ € y, then the equilibrium continuation game

reached after N stages is Sy and the expected utility players receive m this MPE is v (Sy). Con-

versely, if V [ai, . .

.
, ai\f) = n whenever a^ = n for all if. G J\f, then the equilibrium continuation

game reached after N stages is Sn and the expected utility players receive m this MPE is v (Sn).
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Proof of Lemma 1 (Part 1) We need to show that for the profile of strategies in which

ttk = y if v^i^ (y) > Vif^ (n) and a^ = n if v^^ (y) < Vi^ (n) (and a^ is either j/ or n if v^^ [y) =

Vif. (n)), there is no profitable deviation for any player at any stage (this will establish the

existence of a pure-strategy MPE and SPE). Consider player ij- such that v,^ {y) > v^^ (n) and

suppose that he plays ai^ = y. If he switches to a'^. = 7Z, this would not change the action of

any of the subsequent voters, and therefore this either would not change the outcome of the

voting (i.e., the payoff vector) or will change it from y to n. In both cases this deviation is not

profitable. Similarly, for player ik with f,,. (y) < Vi^ (n), deviation from a;; = n to a'f.
= y can

change the payoff vector from n to y only, which is not profitable for such player. Finally, if for

player ik, Vi^. {y) = Vi^ (n), then any outcome yields the same payoff and thus this player does

not have a profitable deviation, which completes the proof of part 1.

(Part 2) We prove this by induction on the number of stages k.

Base: take /c = 1. Suppose that set 3^ is large enough, so that player ii choosing action

0.1 = y is sufficient for the payoff vector to be y. To obtain a contradiction, suppose that in a

SPE the equilibrium payoff vector may be different from y with a positive probability, in which

case the payoff vector is h. But then player ij is better off if he chooses action aj = y with

probabihty 1, since he would then receive Vi-^ {y), which cannot be the case in an equilibrium.

We can similarly consider the case where set J\f is large enough. We have thus proved the base.

Step from k ~ 1 to k: suppose that we have proved the result for alH < fc — 1; consider the

game with k stages. Suppose that set 3^ is large enough. Consider two cases.

Case 1: suppose that Vi^ (y) > Vi-^ (n). In this case, if player ?'i in stage 1 takes action

aj = y, then in the subgame starting at stage 2 the following is true: if all players for whom

Vi^ [y) > Vi_^ [h) for all 2 < j < k choose aj =^ y, then the payoff vector will be y. By induction,

any SPE in this subgame will lead to y with probability 1. Now if for some SPE of the entire

game the payoff vector were n with positive probability, then player i\ could ensure that the

payoff vector is y with probability 1 by choosing ai = y and would thus have a profitable

deviation. Therefore, in this case, the payoff vector must be y with probability 1.

Case 2: suppose that v^^ [y) < v^^ (n). Then, by assumption, if in the subgame starting at

stage 2 all players for whom v, [y) > v, (n) for all 2 < j < k choose aj = y, then the paj'off

vector will be y. By induction, for any SPE in any subgame starting at stage 1, the payoff vector

is y with probability 1. But this implies that the same holds for the entire /c-stage game.

The two cases together complete the induction step for the case where 3^ is large enough.

The case where M is large enough is analogous. This argument completes the proof of part 2.

(Part 3) This immediately foUows from part 2, since a MPE induces a SPE in the truncated

game of first k stages with payoffs given by continuation payoffs of the original game.
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7.2 Proof of Theorem 2

Proof of Theorem 2 (Part 1) First, suppose that /3 satisfies the following conditions:

for any i 6 J and s, s' G iS, (-A-1)

/ /\ / N . ,. ^i<?i Wi (s') , 1 - /? Wj (s) — 1(;, (s')
w^ (s') < w^ (s) imphes 0^^^ > \

' and -—- < -^-^ -^.

There is a finite number (not more than \I\ x \S\ x {\S\ — 1)) of conditions in (Al). It is

straightforward to verify that there exists Pq S (0, 1) such that for all /? > /Jq, (Al) holds.

We construct a MPE of the game with the following property: for each period i > 1,

St = (j) (s(-i)- We introduce the following notation: for i G J and s,q e S, let

/'^'''^-j if.^,ri^V(<^(g)) if^(g)7^9r
^^'^

(This means that Vj (5, q) is given by one of the four expressions in (A2) depending on whether

s = q and (f>{q) = q). In the equilibrium we construct below, Vt {s,q) will be the continuation

payoff of player z as a function of the current state s and accepted proposal is q. Given the focus

on MPE, we drop the time indices. ,
,

..

'
. .,

..• - •. / f •, .

•

For each s E S, take A's > |5| — 1. Take tt^ () such that tt^ (A's) = (f){s) if (f>(s) 7^ s;

otherwise, take tTj (k) arbitrarily (making sure that Assumption 4 is satisfied). Consider the

strategy profile a* constructed as follows: , , ,

Each player player i £ X votes for proposal P^ (says yes) if and only if:

(i) either k = Kg (we are at the last stage of voting), P^'s = 4> (*) and V, (s, cp (s)) > Vi (s, s);

(ii)orK(5,Pfc)>K(5,0(5)).

In addition, if tt^ (/c) e T for some /c, this player chooses proposal P^ arbitrarily.

The strategy profile a* is Markovian. We will show that it is an MPE in three steps.

First, we will show that under the strategy profile a* , there is a transition to (p (s) if 4>{s) ^ s

and no transition if (j)[s) = s. If 4>[s) ^ s, then Axiom 1 implies that the set of players for

whom Vi {s, (j) (s)) > Vi (s, s) is a winning coahtion in s, that is,

Xs = {i:wi{(f){s))> Wi{s)] gWs-

To see this, observe that (Al) and the fact that ^ > (5q imply that fiwi {<p (s)) > Wi (s) for all

i G Xs- Therefore, for all i G Xs, we have •

'

Viis,cP{s))=Pw,{(P{s))>il-P)w,{s)+p''w,{<P{s)) = Vis,s).

Next, we can similarly show that there exists no X'^ G Ws such that Vi (s, Pk) > V, (s, (p i^)) for

all i G ATj, that is, the set of players for whom V, (5, P/^) > Vj (s, cp (s)) does not form a winning

34



coalition in s. To obtain a contradiction, suppose there exists such a X'^. Then since Pj^ ^ s

and (j){<p{s)) = (p{s), we would have that
,

. ,,, ,,,,,,

Pw,{cp{Pk))>V\{s,Pk)>V,{s,<P{s))>pwUi>{s))ioial\ieX'^, -

and thus

wU(l>{Pk))>w,{(l){s)) foralHeX^

Then the fact that .Y^ £ Wj implies 4>{Pk) >~s 4>{s), which, given that (p{s) >~s s, yields

4>{Pk) >-s s by Assumption 2(b)*. But 4>{Pk) ^s 0(s), <t>{Pk) ^s s, and 4>(Pk) = Pk contradicts

Axiom 3 and yields a contradiction to our hypothesis that X'^ G Wj. Therefore, the set of

players with Vj (s, P^) > K (5, (j> (s)) does not form a winning coalition in s. We have therefore

established that under a*, P^^ = 4>{s) if 4'{s) 7^ s is accepted and all other proposals are

rejected.

Second, we verify that given a*, continuation payoffs after acceptance of proposal q are given

by (A2). If proposal g 7^ s is accepted, then there is an immediate transition, and there is

another transition next period in case (q) 7^ q. If no proposal is accepted, so that q = s, then

there is no transition in the current period, and each player i receives stage utility (1 — /3) w^ (s);

in addition, if 4>{s) = 4>{q) ^ q = s, then there is a transition next period. In either case, the

continuation payoffs are given by (A2).

Third, we show that there are no profitable deviations from a* at any stage. For an agenda-

setter this holds because no proposal that an agenda-setter makes is accepted. For a voter

this follows from Lemma 1(a): the continuation strategies are Markovian, and therefore each

voting stage constitutes a finite game with two possible outcomes. Lemma 1(a) then establishes

that it is always a best response for a voter to vote for the option that he (weakly) prefers. If

(f>{s) 7^ s, then in the last voting stage, each player i compares continuation payoff V, {s, (s))

if the proposal is accepted and Vi (s, s) if it is rejected. In all other voting stages, player i

receives I', (s, Pk) if proposal P^ is accepted and V, (s, (s)) if it is rejected (because (p (s) will be

eventually accepted if (s) 7^ s and no proposal will be accepted, in which case each player will

receive V^ (s, (p (s)) = Vt {s, s) if (s) = s). Therefore, there are no profitable deviations from a*

given the continuation payoffs in (7). This argument establishes that the strategy profile a* is

a best response to itself for any 5 G <S in the truncated game given the continuation payoffs in

(7). Since we have already established that under a*, the continuation payoffs starting in state

s are given by V, {s, q) in (A2), a* is a MPE of the entire game, which completes the proof of

the first part of the Theorem.

(Part 2) We first prove that a MPE exists. We then show that it has the properties stated

in part 2 of the Theorem.
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Let us first construct a specific niapping (j) satisfying Axioms 1-3. Take a sequence of states

j /ixj, ..., /i|_5| > satisfying (7). Then, follow the procedure described in Theorem 1. First, we set

(j){Hi)
=

fj.-^.
If for /c > 2 we have Mk — 0, then cp (fif.) = /j-i.;

otherwise, let Zk C Mk be defined

as

The set Zk is nonempty by Assumption 2(b)*, and according to the procedure, any element of

Zk may be chosen as 0(m/c)- Proceeding inductively, a specific mapping
(f)

is obtained.

We construct an equilibrium in which continuation payoff of player i if the current state is s

and proposal q is accepted, Vi (s, q), is given by (A2) (in particular, if no alternative is accepted

at a given period, each player i receives Vj (s, s)). Given these continuation payoffs, each period

can be viewed as a finite (truncated) game with terminal payoffs given by Vj (s, q). By backward

induction, we can construct a SPE a' of this truncated game as follows: let k* be such that

TTs{k*) = (j){s) if such k* exists; otherwise, let k* be the first stage where vr^ (/c*) = i G X

where tOj (<^(s)) > Wi (s) (such i exists, because (p satisfies Axiom 1). We require that (j){s) is

proposed and accepted at stage k* , and that no proposal is accepted at any stage I < k* . Given

the continuation paj'offs in (A2), it is straightforward to verify that there are no profitable

deviations from a' and thus a' is indeed a SPE. Since actions in a' only depend on proposals

and on the stage of this finite truncated game, we can choose a' to be Markovian (the only

requirement is to choose an SPE ct', where each player votes no when indifferent; clearly, such

an SPE exists). Therefore, we have established the existence of an MPE.

We now establish the properties that any MPE satisfies. Take any set of sequences {ttj ()}sg5

and any pure-strategy MPE u. For any state s, the proposal q that is accepted along the

equilibrium path is well-defined (let q = s \i all proposals are rejected) and let us denote it by

x{s) = q. First, note that x : 5 —
» 5 has "no cycles," in the sense that if x (s) ¥^ ^ then for

any n > 1, x" (s) 7^ s (where x^ (s) = X (x (*')) etc.). This can be established by contradiction.

Suppose there exists n such that x" (•?) = s, but x (s) 7^ s- Denote by Jj C {!,..., Ks] the

set of voting stages in state s where a proposal Pk made along the equilibrium path is accepted

(this proposal and whether it is accepted do not depend on the play before current stage /c, since

strategies are Markovian). By the definition of the mapping x, the first voting stage in J^ leads

to X (s). Now it suffices to consider two cases.

Case (i): all voting stages in Js lead to cycles. Suppose this is the case and consider the

last voting stage k' . Here each player knows that he will receive zero utility if Pk' is accepted,

and that he will receive (1 — /3) it's (i) > if PkJ is accepted. Then Lemma 1(c) implies that Pk'

cannot be accepted in any MPE, thus yielding the desired contradiction.
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Case (ii): not all voting stages in Jj lead to cycles. In this case, denote the voting stages

that do not lead to cycles by J^ C Jj. Consider the last voting stage k in Jg that precedes the

first voting stage in J^. Accepting the proposal made at fc', Pfc', leads to zero utility to each

player, while rejecting it leads to a positive payoff. Therefore, proposal Pk/ cannot be accepted

in any MPE, again yielding a contradiction and establishing the "no cycle" result.

This ''no cycle" result in turn implies that x" (s) = X ~ 1 (•s) for all n > |5j — 1. Then,

define !/) (s) = x''^'"'' (s), and '

?^^(s) = min{nG NU{0} :x"(5) = ^(5)}, (A3)

(with \'° (s) = s). Evidently, < m (s) < \S\ — 1, and m (s) = if and only if i/' (s) = x{s) = s.

Moreover,

< ' ij{i^{s)) = x{^P{s)) = i'{x{s))=i^{s) . (A4)

for any state 5, as follows from the definition of mapping ip). Finally, let us also define

.
• K(.,.) = {('-^^"''(^^

;[:;j}+/3'"(')-V(^(.)). (A5)

Clearly, V^ (s, a) gives the continuation paj'off of player i if in state s alternative q is implemented,

and subsequently equilibrium play (according to the MPE a) follows. The rest of the proof

involves showing that (1) V' (s) satisfies Axioms 1-3, and then (2) a.'(s) = '0 (s) (this second

statement is equivalent to showing that \ (s) is the dynamically stable state reached with zero

or one transition, so that in the MPE ct, st = x (so) for all t > 1). We start with an intermediate

result. Then we prove that il' (s) satisfies Axioms 1-2. Then we prove that x (s) — 4' (•s)- Finally,

we prove that 1/' satisfies Axiom 3. (This order makes the proof simpler).

Proof that if proposals Pf; and Pk, are proposed and accepted in state s, then tp (P^. ") ~

ip{Pki)- To establish tliis, for each state s consider again the set of voting stages J such that

for each k e J, the proposal P^. is accepted. Let J = {/ci, . . .
,
fciji}, where kj < ki for j < I (we

drop index s for convenience), and suppose that J j^ (this implies x (s) 7^ s and m{s) > 1).

In equilibrium, proposal P^j is accepted, so tl' {Pk-^) — i'is) and m{Pk-^) = m..{s) — 1 (which

implies that ip {s) 7^ s). Since each P/,., for 1 < / < |J| is accepted in this equilibrium, we must

have, again by Lemma 1(c), that

V^(Pfc,)^. 0(Pfc,+J for 1 </< |J|-1

(in particular, only players who weakly prefer V'(P/,-, ) to 4' {-^ki^i) could vote for acceptance,

since Wi {ip (Pt,)) < Wi (?/' (Pfc,^J) is sufficient to imply Vj (s, P^,) < VJ (s, Pfc,+i) in view of the

fact that /3 > /3o).
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In addition, we also have

This can be seen as follows. If P^. is accepted, each player i will receive Vi (s,Pic.j. ]
=

p V '"i-'i/ Wi (ip (P^.j.)], while if it is rejected, each player will receive Vi(s,s) =

(1 - p)w^ {s)+P"'^'^+^w,{i>iPkJ). Now iiw, (V [Pk^j^)) < w^i^iPkJ), then we would have

l3H''^wl)+'uj, (v (Pfc,,,)) < P^'^'^+'w^ [i' (PfcJ), and hence V, (5, P,,,,) < t7, (s, s). Since P,,,^,

is accepted, the set of players for whom Wiiipi Pk,j,
) )

< ui, (0 (Pfej )) must be sufficiently small,

and, more precisely, we must have

This estabhshes that tp iPi-.j.] >:s '4'{Pki)- Now, since Assumption 2(b)* holds, we ha,ve

i^ {Pkj) ~ 4>{Pki) for all 1 < j < Z < \J\. In addition, we prove that m{Pk,) < ''^{Pki^-^)

for all 1 < I <
I

J| — 1. Indeed, if this were not the case, each player would receive a strictly

higher payoff if Pk^ was rejected at stage /c/, so P^, could not be accepted in the equilibrium.

Proof that ip satisfies Axiom 1. Consider the set J introduced above and consider stage /ciji,

i.e., the last stage where acceptance is possible. If P/,. . is accepted, each player receives

If Pfc.j. is rejected, each player receives

-: V-(5,s) = (1-/3)«;,(s)+/?-(^)+1iz;,(t^(5)). \-
, ,

-'
•

We have established, however, that u;,- f V-'
(
Pku, )) = Wi{il} (s)) and that m (s) — m (Pk^) + 1 <

Pk.j: +1. Since P/c is accepted in equilibrium, by Lemma 1(c) we must have that V, ( s, P^.
j
>

Ki (s, s) for a winning coalition of players in s, that is, . , ,. .
•

,,

-; Xs = {iei:K(s,Pfc|,|) > v;(s,s)}e w.. .

Then for alH e Xs, we must have ,

' '

/3™(^)«;, (V' (s)) > ;9"(^'|'l) + 'u;^ (1/' (s)) > (1 - /3) tu, (s) + /3"'(^)+iu;, (i^ (5))

.

This implies that '
,

/S'^f'^ty,
{i> (s)) > w, (s) for all i £ X^,
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which, in view of the fact that P > Pq, imphes that w, {ip (s)) > w, (s) for all i £ Xg. However,

if for some i e Xs, Wi{ip{s)) = Wi{s), then we would have (3'^^^'w^{ip{s)) < Wi{s), because

m{s) > 1 and ip {s) "/= s. Consequently, Wi (0 (s)) > w^ (s) for all i G Xs, which imphes that

{iel .UH{i>{s))>w^(s)} eW,,
.

thus establishing that

0 (s) ^s s for any s G S with ip (s) 7^ s,

and therefore Axiom 1 holds. ,-
'

,

',
: .

Proof that ip satisfies Axiom 2. This is straightforward in view of the fact that ip [ip (s)) =

i>{s).

'

.

_

Proof that x (s) = 4' (?)• Let us prove that if (s) 7^ s, then transition to state -i' (*) takes

place in one step, i.e., that 0 (s) = X (s) (or, equivalently, in (A3) in (s) = 1 whenever x {s) 7^ s).

Consider two cases.

Case (i): 0(5) = Pk for some j : 1 < j < |J|. In this case, m [Pk )
= since Axiom 2

is proven to hold. But we proved that m{Pk^) is weakly increasing in /, therefore, m{x{s')) =

m [Pk-i) = 0, and therefore in (s) = 1.

Case (ii): 0' (s) = P^ does not hold for any j. This implies that m{Pk^) > 1 and ^0 (s) 7^

X (s). First observe that in this case, if for some /c ^ J we have P^ = (s) (regardless of whether

this happens on or off equilibrium path), then P/^ should be accepted. This can be established

with the following argument: take any player i. If P/,. = (5) is accepted, this player will receive

Vi (s, (s)) = /3wi {ip (s)), while if it is rejected, he will receive

V- (s, Pk,) = /?™(^'=')+^u;, (0. (s)) < /3\;, (V (s))

for some / if /c < /ciji and •

V, (5, s) = (1 - (3) w, (s) + /?"^(^''i)+i«;,
(0 (s)) < (1 - /3) «;, (s) + /^^u', (0' (s))

if /c > /c|j|. In the first case, all players prefer to have Pfc accepted, while in the second case,

each player with w^ (0 (s)) > Wj (s) will have /3ui, (0 (s)) > w, (s) since /? > ,/3q, and therefore

Vj (s, (s)) > Vj (s, s). Since such players form a winning coalition, we conclude that Pt = 0' (s)

will necessarily be accepted. Since we know that this k ^ J, it must be the case that proposal

0 (s) is never considered on equiUbrium path. By Assumption 4, it must be that each player

become agenda-setter for some k. But then take any player i such that Wj (0 (s)) > Wi (s) and

suppose that he is agenda-setter at stage k. This player's equilibrium proposal will give him

utility V, (s. Pi;,) for some I if k < k\ji and V^ (.s, s) if /c > fciji. However, proposing (s) will give
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him a strictly higher utility Vi{s,4>{s)), as shown above. Therefore, player i has a profitable

deviation. This contradiction shows that the case where ip (s) = Pk does not hold for any j is

impossible, and thus finishes the proof that transition to state ip (s) takes place in one step, so

that Ip {s) = X (s).

Proof that ip satisfies Axiom 3. Suppose, to obtain a contradiction, that Axiom 3 does not

hold. This implies that there exists state s,z G S such that i) (z) = z, z ^g s (which implies

z ^ s), and z ^s 4' {s) (which imphes ip i^) ^ ''/'(s))- As before, we can prove that if Pk = z

for some fc, then proposal Pk must be accepted. In particular, accepting proposal z will lead to

utility Vi (s, z) = /3wi (s) for any player i, while rejecting can lead to one of two possible payoffs.

These possible payoffs are:

Case (i); Vi (s, Pk,) < pwi {ip (s)) for some I ii J j^ and k < /ciji;

Case (ii): V, (s, s) = (1 - /3) w^ (s) + /S'^^'^+^w, {4> (s)) < ( 1 - /3) «;« (s) + pw, {-p [s]) if J =
or /c > /cij|.

The fact that (by hypothesis) z y^ ip (s) implies that {i : Wi (^) > Wi [ip (s))} S Ws (that is,

players that obtain higher stage payoff from z than from ip (s) form a winning coalition in s).

In case (i), from (A5), we have -
i,

,_.., . V, (5, z) = pw^ {z) > Pwi {iP (s)) > V (S, Pk,).

In case (ii), because /3 > /3q (recall (Al)), we have '

,

''•

Pw,{z)>{l-P)w,{s)+Pw,{iP{s)),
:

.,

and therefore Vi (s, c) > V', (s, s).

We have therefore established that in both cases Lemma 1(c) applies and implies that pro-

posal Pk = z must be accepted. However, we have already shown that any proposals that are

proposed and accepted is mapped (by ip)to equivalent states. Hence, if z is ever proposed, we

must have ^' {z) ~ ip (s). Since ip[z) no ip (s), it must be the case that z is not proposed.

Assumption 4 now imphes that either each state is proposed or that each player becomes

agenda-setter for some k. The former clearly cannot be the case, so suppose the latter applies.

Consider player i for whom Wi [z) > Wi {ip {s)) arid suppose that he is the agenda-setter at some

stage /c. If he makes his equilibrium proposal, he receives either .:

V{s,Pk,)<(iw,{iP{s)),
_

.

where 1 < / < 1J|, or '
' ; .

'

'
•

.
'

K {s, 5) = (1 - P) w, is) + r^'^+'w, [iP [s)) < (1 - /3) w, (s) +M {ip is)) ,
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depending on fc < /c|j| or k > kpy Instead, if he proposes Pk = z, he will receive

V^ {s, z) = pw^{z)> max {Pwi{iP{s)), {I -P)w^(s) + pw,{ij{s))},

where the inequality follows from Wj {z) > wi {ip (s)) and /3 > (Sq. This implies that player i has

a profitable deviation, yielding a contradiction. This establishes that 0 satisfies Axiom 3, and

thus completes the proof of part 2 of the Theorem.

(Part 3) This result immediately follows from Theorem 1 and part 2 of this Theorem.

7.3 Proof of Theorem 3

The first step is again a key lemma, which is of potential independent interest. This lemma

characterizes properties of quasi-median voters under more general political institutions (parallel

to the properties of median voters in majoritarian elections). For this lemma, recall that Ms

denotes the set of quasi-median voters in state s.

Lemma 2 Given J C R, <S C ffi, payoff functions {wi{s)]-^j^^^, and winning coalition

{^s] s^S satisfying Assumption 1, the following are true.

1. For each s, the set Ms is nonempty.

2. If the single-crossing property (SC) in Definition 5 holds, then for any states x,y, z G <S,

X >, y <^ Wi [x) > ujj (y) for all i € M^, and

X hz y <^ Wi (x) > Wi [y) for all i G M^.

3. If monotonic median voter condition in Definition 8 holds, then there exists a sequence

{"T's}sg5 of players such that rus £ Ms for all s ^ S and whenever states x,y £ S satisfy

X < y, rux < TUy.

Proof. (Part 1) Let b be such that B = {j e I : -oo < j < b) e Ws and

{j 6 I :
— oc < j < 6} ^ Ws- Intuitively, such B is the "leftmost" winning coalition. Simi-

larly, let a be such that A = {j £ I : a < j < oo} S Ws and {j e I : a < j < oo} ^ Ws, so that

A is the "rightmost" winning coalition. Assumption 1 implies that Z = A f) B j^ 0. Since

all quasi-median voters must be both in A and B, we also have Ms C Z. Next, we show that

Z C Ms is also true. To obtain a contradiction, assume the opposite. Then for some "con-

nected" coahtion X ~ {j G I : x < j < y} e Ws the inclusion Z C A' does not hold. Then,

evidently, either the lowest or the highest quasi-median voter is not in A'. Suppose, without loss

of generality, the latter is the case. Since A' is winning, coalition Y = {j G I : — oo < J < y]
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(where y is the highest player in X) is winning, and therefore Z c Y . But this implies that

the highest quasi-median voter is neither in X nor in Y , which is impossible and thus yields a

contradiction. This proves that Ms = Z ^ 0.

(Part 2) Consider the ca^e x > y (the case x < y \s treated similarly). Suppose x y- , y.

Then {i E I : Wx {i) > Wy (i)} G Wz (is winning in z). But by SC, this coalition is connected,

and therefore includes all players from Mj. Conversely, suppose that Wi {x) > Wi [y) for all

i S Mz- Now SC implies that the same inequality holds for player j whenever j > i G Mz-

Part 1 of the Lemma implies that {j G 1 : 3i G Mz such that j > i} G W,. This establishes

that Wi (x) > iDj {y) for all i G M, implies x >-, y, and completes the proof for this case. The

proof of the results for the ^ relation is analogous.

(Part 3) By part 1 of this Lemma, the set Ms is nonempty for each s G 5. Let

rus = max min m. (A6)

Evidently, ii x < y, then m^ < my. Moreover, vis G Mg. To prove this last statement, assume

the opposite; then m^ = min^gMi for some x < s. Since we assumed nig ^ Mg, then either

vis S Mx is less than all elements in Mg or greater than all elements in Ms. In the first case,

m.s < minnie_;\/j m, which violates the definition of m^ in (A6). In the second case, we find that

Ms lies to the left of Mx, violating the monotonic median voter property. This contradiction

proves that vis G Ms for all s G 5. Since the sequence (A6) is increasing, part 3 follows.

Proof of Theorem 3 (Part 1) We start with Assumption 2(a). Suppose that it does not

hold, and there is a cycle si, . . . ,si such that Sfc+i ^s^ Sk for 1 < A; < / — 1 and s\ y-si s;-

Take a monotonic sequence of median voters {"^s}sg5- Recall that vis is part of any connected

'winning coalition in s, therefore, if for some x and z, x )^z z, then Wx {viz) > Wz {vriz). Now

for each s ^ S consider an alternative set of winning coalitions where m^ is the dictator, i.e.,

W's = {X G C : lUg G X}. Denoting the induced relation between states by >-', we have that

if x >~z z, then x ^^'^ z. Consequently, if there was a cycle si,. . . ,s; such that Sfc+i )~s^. s^

ioi 1 < k < I — 1 and sj ^si s;, then we have s^+i y'g^ s^ ioi 1 < k < I — I and sj >-(. s;;

therefore, a cycle for >-' exists. Now take the shortest cycle for y' (this need not be a cycle

for >-). Without loss of generality, suppose that S2 is the lowest state (so S2 < si and S2 < S3;

then ms2 < m^j and msn < rvs^. Since S3 y'^^ S2 and S2 y-'g^ sj, we have Wm,^ (S3) > Wm^^ (§2)

and w^^^ (S2) > Wm,^ (si). But S2 < S3 and tUs^ < vis^, hence, Wm,^ (S3) - Wm.,^ (S2) >

implies Wm^^ (ss) - Wm,^ (S2) > 0, i.e., Wm,^ (ss) > Wm.j (52). Combining this with Wm,^ (S2) >

Wms (•Si); we conclude that Wm, (ss) > 'Wm, (si). But then S3 y' si, since lUs^ is the dictator

in si. This impUes that the hnk S2 may be skipped in the cycle, which contradicts the assumption
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that the cycle {sfc}fc=i was the shortest one. This contradiction establishes that Assumption

2(a) holds.

To show that Assumption 2(b) holds, take any s G S and some 771^ € Ms- From Lemma 2

it follows that if for some x,y we have x >~s y, then 7J7,„^ (x) > w-m^ (y)- Suppose, to obtain a

contradiction, that there is a cycle si, . .
.

, s/ such that Sk+i >~ s Sk ioi 1 < k < I — I and Si >- 5 s;.

Without loss of generality, we may assume that state s; maximizes the payoff of to^ among st ates

si, . . . , Sj. This means that Wms (s/) > Wms (si), which implies si )fg si and thus contradicts the

existence of a cycle. This shows that Assumption 2(b) holds and completes the proof of part 1.

(Part 2) Note that if preferences of player i are single-peaked, then his preferences' restricted

to any subset Q of 5 are also single-peaked. For any nonempty subset Q C S and i € I, let

bi{Q) € axgm&x Wi{s) (A7)

(in case this maximum is achieved at multiple states, we pick any of these).

We start with Assumption 2(a). Suppose there is a cycle 5i, . .
.

, s/ such that s^+i ^s^ Sfc

for 1 < /c < / — 1 and si yg^ s;. Let us re-enumerate players in I as i-i,...,iij\ so that

6,^ ({si, . .
.

, s/}) is nondecreasing in k. It is straightforward to use the assumption that any two

winning coalitions, even for different states, intersect, and prove that for this order there exists

a quasi-median voter im such that im G X for any X G C that satisfies A' G Wj^ for some

1 < fc < Z and X = {ij £ I : ip < ij < iq] for some i.p, iq g J. Let z = 6,^ ({si, . .
.

, 5;}) be the

favorite state of quasi-median voter i-m- Then there exists s^ such that s^ y, z. Without loss

of generality, assume s^ > ~. Because preferences are single-peaked, all players i^ with p < m,

including i^, (weakly) prefer z to s/.. By the choice of i^, players who strictly prefer Sk to z

do not form a winning coalition, which is a contradiction proving that Assumption 2(a) holds

in this case.

Now, suppose that Assumption 2(b) is violated, i.e., there exist s £ S and a cycle Sj, . . . , s;

such that s'^._|_j ^s Sfc for I < k < I — 1 and S] ^s s/- Again, we re-enumerate players in I,

so that bii_ ({si, . .
.

, s/}) is nondecreasing for this new cycle si, . . . ,si and choose i,„ such that

im G AT for any X G Ws such that X = {ij & I : ip < ij < iq} for some ip, iq G X. Now take

z = 6j^ ({si, . .
.

, s;}); then there exists Sk such that Sk >s - Without loss of generality, assume

s/; > r. But then s^ >-s :: is impossible, since all players ip with p < rn (weakly) prefer z to x.

This proves that Assumption 2(a,b) holds.

(Part 3) The case of part 1: The first part of Assumption 2(b)* is shown similarly to

Assumption 2(b), making use of Assumption 5 to rule out indifferences between x and y when

^ hz y- Finally, if x,j/ G S are such that x >-s s and y >-s x, then for any i G Ms we have

Wi (y) > Wi {x) > li), (s), which, in turn, implies y ^g s.
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The case of part 2: The first part of Assumption 2(b)* is proved with an argument analogous

to part 2, but also making use of Assumption 5. To prove the last part, take states x,y, s such

that x >-s s and y ys ^', this implies that these three states are different. Take the median

voter rris G Ms- We must have 6,„^ ({x,y, s}) = y (with 6 defined by (A7)). To see this mote

that if bm^{{x,y,s]) = s, then x ^s s would be impossible, and if 6„i^ {{x,y,s}) = s, then

y )"s I would not hold. Now consider two cases. First, suppose that either x,s > y or x,s < y.

Without loss of generality assume x,s > y, in which case x ^s s implies y < x < s. Now, we

have that Wi (y) > Wi {x) if and only if 6, {{x, y, s}) = y, so such players form a winning coalition

in s. This implies y ^s s. Second, suppose that either x<y<soTS<y<x. Without loss of

generality assume the former. Now, if a player prefers x to s, he must also prefer y to s; given

that X >"s s, we must therefore have y ^g s. In both cases, we have y ^s s, which completes the

proof. .•,'.
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Appendix B: Limited Transitions (Not for Publication)

7.4 Modeling Limited Transitions

In the main body of the paper we assumed that any transition (from any state to any other st ate)

is possible. In certain apphcations, not all transitions across states may be possible. For example,

in Example 1 discussed in the Introduction, it may be that a transition to democracy is only

possible from constitutional monarchy (and not directly from absolutist monarchy). Another

more substantial example highlighting the importance of limited transitions is the model in

Acemoglu, Egorov, and Sonin (2008), also discussed in subsection 6.4. In that model, only

current members of the ruhng coalition can be part of future ruling coalitions and thus transitions

to states that include individuals previously eliminated are ruled out. Here in Appendix B we

show that our analysis, after proper reformulation of the Assumptions and the Axioms of Section

3, is applicable to the case where only certain state transitions are allowed and generalize the

results in Theorems 1 and 2.

The key to the analysis in this section is the binary relation -^ on the set of states S. For

any x,y G S, we write x -^ y to denote that a transition from x to y is possible and x -^ Q for

some Q c <5 to denote that the transition to any state ; in Q is possible, provided that these

positions are supported by a winning coalition in x (similarly, Qi -^ Q2). The analysis in the

main body of the paper thus corresponds to the special case where S ~^ S ior any x G S. We

adopt the following natural assumption on the transition relation.

Assumption 6 (Feasible Transitions) Relation -^ satisfies the following properties:

(a) (reflexivity) \/x e S : x -^ x;

(h) (transitivity) \/x, y,z £ S : x -^ y and y -^ z imply x -^ z. .

Part (b) Assumption 6 requires that if some indirect transition from x to 2 is feasible, so is

a direct transition between the states. Without requiring transitivity, there would be additional

technical details to take care of, because, for instance, if transition from x to z is possible through

y onl}', then it is only possible if both a winning coalition in x prefers z to x and a winning

coalition in y prefers z to y}^ Nevertheless, this assumption can be dispensed with, and we

could assume instead that whenever x -^ y and y -^ z but x -/^ z, then Wx = VVy (or a weaker

version of this assumption). ^^

' See Chwe (1994) for another model where different transitions require different winning coahtions,

'^One set of economically interesting cases in which Assumption 6 fails to hold includes economic games in

which there is a capital-stock-like variable, such as capital, that is determined as a result of the actions in the

current state (for example, capital accumulation, which might depend on the current enforcement of property

rights). Since our game does not involve such dynamic linkages. Assumption 6 is natural here. In particular,
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We next consider slightly weaker versions of Assumption 2 and Assumption 3, incorporating

the fact that only certain transitions are feasible (since when some transitions are not feasible,

it becomes easier to rule out cycles).

Assumption 2' (Payoffs with Limited Transitions) Payoff functions {^'Ji (s)},gisg5 sat-

isfy the following properties:

(a) For any sequence of states 5i, . .
.

, s/j in S with Sj ^^ Sj^i for all 1 < j < k — 1 and

Sk -^ 51,

Sj+i ysj Sj for all 1 < j <k-l =^ S] ^^^^ Sfc.

(b) For any sequence of states s, si, . .
.

, Sfc in S with s ~-> Sj for all 1 < J < /c, s^ ~~+ si,

and Sj >~s s for all I < j < k,

Sj-|_i >-s Sj for all I < j < k ~ 1 ==> si ^s Sfc.

(b)* For any sequence of states s, Sj, . . . , s/j in S with s ~~> Sj for all I < j < k, Sj r^ si

for some I < j < I < k, and Sj >-s s for all 1 < j < k,
,

,'

Sj+i hs Sj for all 1 < j < k — 1 ==> si ^^ Sfc. ; ;,,.,, ,.,, -.•
.

Moreover, if for x,y, s £ S we have s -^ x, s -^ y, x >~s s and y ^s s, then y )fs x.

Assumption 3' (Comparability with Limited Transitions) For x,y,s & S such that s -^

X, s -^ y, X >~s s, y >-s s, and x oo y, either y^sXarx^s y. _ . ,,

Finally, let us reformulate Axioms 1-3 for this slightly modified set up (note that Axiom 3

is unchanged, though we state it again for completeness)

.

\ - ;

Axiom 1' (Desirability) If x,y G S are such that y = (p{x), then either y = x or x -^ y and

y ^x X. - . - " : .; -
..

-;
- - I

. _ ,
- -\„

., .

'

Axiom 2' (Stability) If x,y € S are such that y = 4>{3:), then y = (f){y).

Axiom 3' (Rationality) If x,y,z £ S are such, that x -^ z, z ^x x, z = (p{z), and z y^ y,

then y ^ (p{x). . -,.,;,,,.

With this new set of Axioms, a slightly modified version of Theorem 1 holds:

there is no reason for a sufficiently powerful coalition not to be able to implement a change that is feasible in

the continuation game. An interesting model of a gradual dynamic enfranchisement where capital accumulation

changes agents' preferences over time is provided in Jack and Lagunoff (2006).
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Theorem 4 (Dynamically Stable States with Limited Transitions) Suppose that binary

relation ~~» satisfies Assumption 6, and that Assumptions 1 and 2' hold. Then:

1. There exists mapping 4> satisfying Axioms l'-3'.

2. Any mapping cf) that satisfies Axioms l'-3' can be recursively constructed as follows. Con-

struct sequence < yUj, ..., ^i^i > with the property that for any I < j < I < \S\, either jjl^ -/^ /j,;

or/j,i^^ IJ-j.Let 4>{iJ.i) = fi.i. For each k = 2, . . . ,\S\, let

Mk = {s e {/Zj,...,/Xfc_i} : iJ.1,-^ s, s y^^ ^fc, and (/)(s) = s}

and define .

'

^^^1^'
\ s e Mk :$~ e Mk with /i^. -^ z and z >-^^ s if Mk 7^ '

3. For any two mappings
(pi

and <j)2 that satisfy Axioms l'-3' the stable states of these map-

pings coincide. .

4. If, in addition, Assumption 3' holds, then the m.apping that satisfies Axioms l'-3' is

"payoff-unique" in the sense that for any two mappings 4>-^ and (po that satisfy Axioms

l'-3' and for any s G iS, </ij (s) ~ cj)2 {s).

Proof. The proof is an extension of that of Theorem 1. The idea of the proof is to construct a

mapping (sequence) jj, : {I, . . . ,\S\} ^^ S such that for any 1 < /c < jiS| we have that

if 1 <.?<'< i>S| , then /x^ /* //, or /,/,; ^^^ /.t^.
'

(Bl)

To construct mapping ft, we introduce a binary relation «-^ defined as

X *~^ y if and only ii x -^ y and y -^ x.

Assumption 6 guarantees that <^-> is an equivalence relation, inducing equivalence classes

{^a:]x^S defined as . ,

. '^x = {y G <5 : X «—> y}

to be such that E^ and £y either coincide or do not intersect. The binary relation —^ on elements

of S induces relation --+ in equivalence classes by letting Ex -^ Ey if and only ii x -^ y; note

that this relation is well-defined in the sense that it does not depend on the elements x and

y picked from Ex and Ey, respectively. Furthermore, this relation is acyclical in the sense that

there do not exist distinct classes E^,. . .
,£' such that E^ -^ E^'^^ for 1 < j < / and E^ -^ E^

.
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Consequently, we can form a sequence of all equivalence classes (S\...,£'"^ (where m is the

number of classes) such that f-' 7^ S'^ for any 1 < 7 < fc < m. Now, within each class S'^ , we

enumerate its elements as /xj', . .
. ,

/if,^, so that jif )/- k fi'^ ioi 1 < j < I < \£'^\ (this is feasible

due to Assumption 2'(a)). Next, construct the sequence jj, as follows: we give members of class

£1 numbers 1 to |^i |
in the order they are listed in the sequence fi^ = ( ^] , . .

. , fiLi ,

j
, then we

take members of class £'2 as they are listed in the sequence fi^, and so on. It is easy to show

that the sequence /x constructed in this way satisfies (Bl). The rest of the proof closely follows

the one of Theorem 1 and is omitted.

Similarly, an equivalent of Theorem 2 again applies.

Theorem 5 (Noncooperative Foundations of Dynamically Stable States with Lim-

ited Transitions) Suppose that binary relation --^ satisfies Assumption 6, that Assumptions 1,

S! (a),(b) and 4 hold. Then there exists /3o £ [0, 1) such if the discount factor (i > (3q, then:

1. For any mapping (p : S -^ S satisfying Axioms l'-3' there exists a set of protocols [t^s^ s<^s

and a pure-strategy MPE a of the game such that St — 4>{so) for any t > 1; that is, the

game reaches (j> (sq) after one period and stays in this state thereafter. Therefore, s = (j) (sq)

is a dynamically stable state. '

'

,
'

,
'

'

Moreover, suppose that Assmnption ^ (b)* holds. Then:

2. For any set of protocols {''^s]s^s ^^^re exists a pure-strategy MPE. Any such MPE a has

the property that for any initial state sq G S, St = s°° for all t > 1. Moreover, there

exists mapping (p : S -^ S satisfying Axioms l'-3' such that s"^ = 0(so). Therefore, all

dynamically stable states are axiomatically stable.

3. If, in addition, Assumption 3 holds, then the MPE is essentially unique in the sense that

for any set of protocols {ns}^^^, any pure-strategy MPE a induces st ~ (so) .for allt > 1,

where
(f) satisfies Axioms l'-3'. -

Proof. The proof is essentially identical to that of Theorem 2 and is omitted.

These theorems therefore show that the essential results of Theorems 1 and 2 generalize

to an environment with hmited transitions. The intuition for these results and the recursive

characterization of dynamically stable states are essentially identical to those in Theorems 1

and 2.
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7.5 Generalization of Proposition 4

We now show how Proposition 4 can be generahzed by allowing only certain types of transitions.

This generahzation makes the political elimination model of Acemoglu, Egorov, and Sonin (2O08)

(and its extension to infinite horizon) also a special case of the analysis here.

Proposition 5 Consider the environment in Acemoglu, Egorov, and Sonin (2008). Then:

1. Assumptions 1, ^ , 3 , and 6 are satisfied (provided that X -^ Y is feasible if and only if

Y CX).

2. There exists an arbitrarily small perturbation of payoffs such that Assumption 2! (b)* holds.

3. If only eliminations are possible, there exists a unique outcome mapping 4>eiim ^^'^^ satisfies

Axioms l'-3'. This mapping yields the same equilibrium (dynamically stable) states as in

Acemoglu. Egorov, and Sonin (2008).

4- In the case where any transition is feasible (as m Proposition 4 in the text), there exists a

unique outcome mapping (p that satisfies Axioms 1-3. This mapping is potentially different

from (?)^,„„.

Proof. (Part 1) Assumption 1 is satisfied by Proposition 4 (part 1), since it has not changed.

Assumptions 2' and 3' are in fact weaker than corresponding Assumptions 2 and 3, because in

the latter two, all transitions are allowed, which makes the set of potential cycles larger. Finally,

if transitions X ~-+ 1' and Y -^ Z are feasible, then Y C A' and Z C i', hence Z C A', and

therefore transition A' ~-+ Z is feasible, so Assumption 6 is satisfied.

(Part 2) The proof of this result is very similar to the proof of part 2 of Proposition 4 and

is omitted.

(Part 3) Existence and uniqueness of a mapping
(p^i^j^^

that satisfies Axioms l'-3' follows

from part 1, since Theorem 1 is applicable. Similarly, in Acemoglu, Egorov, and Sonin (2008)

it is shown that under these assumptions, there exists a unique outcome correspondence (f)^^^

that satisfy Axiom 1-4 of that paper This correspondence (p^^^^ is single-valued due to genericity

assumption, so below, we will treat (p^^^^ as a mapping, not a correspondence. To prove that

't'elim = it suffices to show that mapping 4>f,iim satisfies Axiom 1-4 of that paper. For Axiom 1

(Inclusion): Take any A'; Axiom 1' implies that either (peUm {^) = ^ or -^ "^ 4>ehTn {^)- ^^ both

cases, 0e/i^ {X) C X. For Axiom 2 (Power): Again, Axiom 1' implies that either ^g;j„, (X) = X
or X ^ 0g,,„ {X) and 0^,,^ (X) ^x X. In both cases, <?^,,j„ (X) C X and 7^^„„(a') > "7a-> so

'Pelzmi-^) S ^A' in the notation of that paper. Axiom 3 (Self-Enforcement): Take any X and

51



let Y = (j)^i,^{X). Axiom 2' implies <t>eHm'J) = (PeHm{<PeiimW) = 4>eHm{X) = Y- Finally,

Axiom 4 (Rationality): Take any X, Y = (t>eHm{^)^ ^^i^ suppose that Z e Wx (meaning

that Z C X and 7^ > aj^) ^^"^ ^ — 'Pehm i^)- If 7y < 7Z' then we have X -^ Y, Y >-x -'^j

Y = 4>i,n^ [Y) by Axiom 2', and F )-x Z. Axiom 3' then implies that Z ^ (peiim (^)- Conversely,

if Iz < 7y, then 7^ = 7y, for 7^ < 7y would imply that X -^ Z, Z yx X, Z =
(j)^i^^^ (Z),

and Z ^x ^i in which case we would get a contradiction with Y = 0e/im(^)i ^^ Axiom 3'

would imply Y 7^ 4'elimi'^)- But 7^ = 7^, together with genericity, implies Z = Y, and

hence Z — (p^n^n {^)- This proves that Axioms 1-4 of Acemoglu, Egorov, and Sonin (2008) are

satisfied, hence, (/>,;j^ = c})^^^.

(Part 4) Existence and uniqueness follow from Proposition 4 (part 1). To show that the two

mappings,
<?!>e/t„

and cj) may be different, consider four individuals, A, B, C, Z with powers 7^ = 3,

7g = 4, Jq = 5, 7o = 4.5. It is straightforward to verify that (p^n^ ({^i B, C}) = {A, B, C}, but

4>{{A, B, C]) = {A, B, Z}. Moreover, it is possible that for some coalition X, <?^ehm ('^") C X and

(f)
{X) C X, but

(f)
{X) ^ (/"eiijn

(X): this would be the case for six players A, B, C, D, E, F with

powers 100,101,103,107,115,131, respectively (here, (l)^ii„,{{A, B,C,D,E, F}) = {A,B,F},

but (j){{A,B,C,D,E,F}) = {D,E,F}). In fact, {A,B,F} is the winning coalition in

{A, B,C, D, E.F} with the least power; it also happens to be ^g^^^-stable. However, it is

not ^-stable (0({A, B,F}) = {A, i?,C}), and in this case {D,E,F} is the </)-stable winning

coalition with the least total power (in {A, 5, C, D, £", F}).
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Appendix C: Examples, Proofs From Section 6 and Additioned

Results (Not for Publication)

Definition of MPE

Consider a general n-person infinite-stage game, where each individual can take an action at

every stage. Let the action profile of each individual be a^ = (a^ , a^, . . .) for i = 1, . .
.

, n, with

a- e Al and Oj e A, = YYt^i ^i- Let /i' = (a\ . . . ,
a') be the history of play up to stage t (not

including stage t), where a* = (af, . . . ,a^), so /i° is the history at the beginning of the game,

and let if* be the set of histories /i* for t : < i < T — 1.

We denote the set of all potential histories up to date f by

Let f-continuation action profiles be aj j = (a',a''''^, . . .) for i = 1, . .
.

, n, with the set of con-

tinuation action profiles for player i denoted by Aj.t. Symmetrically, define i-truncated action

profiles as Oj _t = (aj , aj, . .
.

, a'~ ) for ?' = !,..., 7i, with the set of t-truncated action profiles

for player i denoted by /4,,_;. We also use the standard notation ai and a_, to denote the action

profiles for player i and the action profiles of all other players (similarly, Ai and A-i). The payoff

functions for the players depend only on actions, i.e., player i's payoff is given by u, {a} , . .
.

, a").

A puie strategy for player i is

^i '• ^oo * ^i'

A t-continuation strategy for player i (corresponding to strategy a^) specifies plays only after

time t (including time t), i.e.,

CTi.t : Hoc \ Ht^2 —> Ai^t,

where H^ \ i/(_2 is the set of histories starting at time (.

We then have;

Definition 9 (Markovian Strategies) A continuation strategy a^^t is Markovian if

for all T > t, whenever /i(_i,/it-_i £ //oo '^'re such that for any ai^t,(ii,T S Ai^t <md any a-^^t e

A-^,t,

Ui [a^^f. o--i.t
I

ht-i) > u, (aj,r, a-i,t
I
^r-i)

implies

Ui iai^t,a-i,t
I

/if-ij > Ui (di^r,a-.i^t
\ /^T-lj
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Markov perfect equilibria in pure strategies are defined formally as follows:

Definition 10 (MPE) A pure strategy profile a — (cti, ..., (7„) is Markov perfect equilib-

rium (MPE) (in pure strategies) if each strategy Oi is Markovian and

Ui {(Ti, d-i) > Ui {di, a-.i) for all Oi £ Ej and for all i = 1, . .
.

, n.

Examples

Example 3 (Nonexistence without Transaction Costs) In this example, we show that

a MPE in pure strategies may fail to exist if we assume away the transaction cost. There

are 8 states S = {A, B,C, D, E, F,G, H} and 7 players. The set of winning coahtions are:

Wa = {X e C : |{1,2,3} n A'l > 2} (i.e., majority voting between 1,2,3), Wb = [4], Wd =
(5],

W/r = [6], Wc = y^E = y^G = W// = [7] (here, \i\ denotes the set of winning coalitions where i is

the dictator, so [i] = {X e C : i e X}). The payoffs are as follows: liJi () = (0, 30, 0, 0, 20, 0, 0, 1),

W2{-) = (0,0,0,30,0,0,20,1), u)3(-) = (0,0,20,0,0,30,0,1), um(-) = (0,0,1,0,0,0,0,0),

u,5(.) = (0,0,0,0,1,0,0,0), wq{-) = (0,0,0,0,0,0,1,9), wj {) = (0,0,0,0,0,0,0,1). It is

straightforward to show that Assumptions 1, 2 and 2b* are satisfied (it is helpful to notice

that the only state s that satisfies s >-^ A\ss = H).
'

'

v

Evidently, state H is stable (dictator 7 will never deviate), and similarly any of the states

£', F, G will immediately lead to H . It is also evident that B will immediately lead to C, because

C is the only state where dictator 4 receives a positive utility; similarl}', D immediately leads

to E and F immediately leads to G. Let us prove that no move from state A can form a

pure-strategy equilibrium. First, it is impossible to stay in A: players 1,2,3 would be better off'

moving to H . Moving to H immediately is not possible in an equilibrium either: Then players

1 and 3 would rather deviate and move to B, which would then lead to C and only then to H

,

since the average payoff' of this path would be higher for each of these players (recall that the

discount factor is close to 1).

Let us consider possible moves to B and C (the moves to Z), E, F, G are considered similarly).

If the state were to change to C, then players 1 and 2 would rather deviate and move to D (and

then to E, followed by H). Finally, if the state were to change to B, then 2 and 3 could deviate

to F, so as to follow the path to G and H after that; this is better for these players than

moving to B, followed by C and H. So, without imposing a transaction cost it is possible that

a pure-strategy equilibrium does not exist.
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Example 4 (Cycles without Transaction Costs) In this example, we show that in the

absence of transaction cost, an equihbrium maj' involve a cycle even though Assumptions 1, 2

and 2b* hold. There are 6 players, J = {1,2,3,4,5,6}, and 3 states, S = {A,B,C}. Play-

ers' preferences are given by wi (A, B,C) = (5, 10,4), W2 {A,B,C) - (5,4, 10), wj, [A, B,C) =

(4, 5, 10), Wi {A, B, C) = (10, 5, 4), u-g (A, S, C) = (10, 4, 5), wj, {A, B, C) = (4, 10, 5), and win-

ning coahtions are defined by Wa = {X e C : 1,2 £ X], Wb = {X S C : 3,4 e X}, Wc =

{X e C : 5,6 G X}. Then one can see that there is an equilibrium which involves moving from

state A to state B, from B to C, and from C to A. To see this, because of the symmetry it

suffices to see that the players will not deviate if the current state is A. The alternatives are to

stay in A or move to C. But staying in A hurts both player 1 and player 2 (for player 2 who

dislikes state B this is true because it postpones the move to C, the state that he likes best,

while for player 1 this is evident). At the same time, moving to C hurts player 1, because state

C is the worst of the three states for him not only in terms of instantaneous payoff, but also

in terms of discounted present value (if the cycle continues, as it should due to the one-stage

deviation principle). So, this cycle constitutes a (Markov Perfect) equilibrium.

It is also easy to see that in this example, Assumptions 1, 2 and 2b* are satisfied: in fact, there

are no two states s, sq G {A, B, C} such that s ^^^ sq. Finally, notice that the aforementioned

cycle is not the only equilibrium. In particular, the cycle in the opposite direction may also arise

in an equilibrium (this holds because of symmetry), and situation where all three states are

stable is also possible (indeed, if B and C are stable, then players 1 will always block transition

from A to C whereas player 2 will always block transition from A to B).

Example 5 (Nonexistence without Assumption 2(a)) There are 3 players, J = {1,2,3},

and 3 states, S = {A,B,C). Players' preferences satisfy Wi[A) > wi{B) > wj (C),

woiB) > W2{C) > u'2iA), and u's (C) > u's (A) > u'3 (i?) (for example, wi{A,B,C) =

(10,8,5), W2 {A, B,C) = (5,10,8), W3{A,B,C) = (8,5,10)). Winning coalitions are given

by W.4 = {X e C : 3 G A'}, Ws = {A G C : 1 G A}, W,4 = {A G C : 2 G A} (in other words,

states A, B, C have dictators 1, 2, 3, respectively). We then have A y b B, B ^c C, C ^a A, so

Assumption 2(a) is violated. -
,

•

.

It is easy to see that there are no dynamically stable states in the dynamic game in this case.

To see this, suppose that state A is dynamically stable, then state B is not, since player 1 would

enforce transition to A. Therefore, state C is stable: player 2, who is the dictator in C, knows

that a transition to B will lead to A, which is worse than C. However, then player 3, knowing

that C is stable, will have an incentive to move from A to C. In equilibrium this deviation
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should not be profitable, but it is; hence, there is no equilibrium where A is stable. Now, given

the transition costs, there is no MPE in pure strategies, since if no state is dynamically sta,ble,

the players would benefit from blocking every single transition in every single state.

Let us now formally show that there is no mapping (p that satisfies Axioms 1-3. Assume

that there is such mapping (p. By Axiom 2, there is a stable state (for any state s, 4>{s) is

stable). Without loss of generality, suppose that A is such a state: (j> {A) — A. Then state C is

not stable: if it were, we would obtain a contradiction with Axiom 3, since C >^a A- If C is not

stable, then either
(f) (C) = A or (j) (C) = B. The first is impossible by Axiom 1, since player 2,

who is a member of any winning coalition in C, has W2 (C) > 102 {A). Therefore, 4){C) = B,

and by Axiom 2, (t>{B) = B. But we have A yg B and (p{A) = A; this means, by Axiom 3,

that 4> [B) = B cannot hold. This contradiction shows that with these preferences, there is no

mapping cf) that satisfies Axioms 1-3.

Example 6 (Nonexistence without Assumption 2(b)) There are 3 players, T = {1,2,3},

and 4 states, iS = {j4,B,C, D}. Players' preferences satisfy wi{A) > wi{B) > twi (C) >

wi{D), W2{B) > W2{C) > W2{A) > W2{D), and W3 (C*) > wj,{A) > ws{B) > w^ (D)

(for example, wi{A,B,C,D) = (10,8,5,4), W2{A,B,C,D) = (5,10,8,4), W3{A,B,C,D) =

(8,5,10,4)). Winning coalitions are given by Wa = Wb = "t^C = {1} = {{1,2,3}},

Wo = {{1,2} , {1,3} , {2,3} , {1,2,3}} (in other words, in states A,B,C there is unanimity

voting rule, while in state D there is majority voting rule). We then have A >- d D, A y^ D,

A yo D and A yo B, B yp C, C yp A., so Assumption 2(b) is violated. Assume, in addition,

that Kd = 3, and tto (1) = C, -np (2) = S, tt^ (3) = A.

In this case, states A, B, C are dynamically stable: evidently, player who receives 10 (1, 2,3,

respectively) will block transition to any other state. Consider state D; it is easy to see that

it is not dynamically stable. Indeed, if it were, then all three players would be better off' from

transition to either of the three other states A, B, C, so they must vote for any such proposal in

equilibrium. Now that it is not dynamically stable, we must have that some of proposals C, S, A

are accepted in equihbrium. Suppose that A is accepted, then B may not be accepted (because

two players, 1 and 3, strictly prefer A to B), and therefore C must be accepted (because two

players, 2 and 3, strictly prefer C to A). But then A may not be accepted, as players 2 and 3

would prefer to have it rejected so that C is accepted in the next period, and by Lemma 1(c)

A must be rejected in the equilibrium. This contradicts our assertion that A is accepted, and

we would obtain a similar contradiction if we assumed that some other proposal is accepted.

Hence, there is no MPE in pure strategies in this case. .,
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We now show that there is no mapping (j) that satisfies Axioms 1-3. Assume that there is

such mapping (j). Since for each of the states A^ B, C there is no state that is preferred to it by

all three players, then Axiom 1 implies that <p{A) = A, (S) = B, and (t){C) = C. Consider

state D. If
(f)
(D) = D, this would violate Axiom 3, since, for instance, state A satisfies A y jj D

and (p {A) = A. Hence, 4> {D) ^ D; without loss of generality assume ip (D) = A. But then state

C satisfies C ^d ^i C >~d D, and (f){C) = C. By Axioum 3 we cannot have 4>{D) = A. This

contradiction proves that there does not exist mapping 4> that satisfies Axioms 1-3.

Example 7 (Multiple Equilibria without Assumption 3) There are 2 players, / = {1,2},

and 3 states, S = {A,B,C}. Players' preferences satisfy lui (A) > wi (B) > wi(C),

W2{B) > W2{A) > W2{C) (for example, wi{A,B,C) = (5,3,1), W2{A,B,C) = (3,5,1)).

Winning coalitions are given by W/i = Wb = VVc = {1} = {{1,2}} (in other words, there is a

unanimity voting rule in all states A, B, C). Then Assumptions 1 and 2(a,b) are satisfied, while

Assumption 3 is violated (both A and B are preferred to C, but neither A yc B nor B >~c A).

One can easily see that in this case there exist two mappings, dt-^ and (p2, which satisfy Axioms

1-3. Let (Pi (A) =
(Pi (C) = A and cp^ (B) = B. Let (p2 (A) = A and 4>2 (B) = <j>2 (C) = B.

Mappings (/)j and (p2 differ in only that the first one maps state C to state A, and the second

one maps state C to state A. It is straightforward to verify that
4>i

and 02 satisfy Axioms 1-3,

and also that no other mapping satisfies these Axioms. Note that the sets of stable states under

these two mappings satisfy V^^ = [A, B] = T>^^, as they should according to Theorem 1.

Proofs of Propositions From Section 6

Proof of Proposition 1 (Part 1) Take ms^ = (k + l)/2 if k is odd and m^ = /c/2 if k is

even. Evidently, for any of the rules Wsl"'' , VVJ^^'', or Wi^ where /c/2 < l^ < k for all /c, m^, is

a quasi-median voter and, moreover, the sequence {ws;,};.^! is monotonically increasing.

(Part 2) In all cases W]""-', W^"'^ , or Wi^ where /c/2 < k < k, Assumption 1 trivially

holds. From part 1 it follows that Theorem 3 (part 1) is apphcable, so Assumption 2(a,b) holds.

Finally, Assumption 2b* follows from 5, as Theorem 3 (part 3) is applicable in this case.

(Part 3) In an odd-sized club Sk, median voter is a single person [k + 1) /2, and in the case

of majority voting, we have si >-s^ Sfc if and only if ii'(jr._|_jW2 (si) > ''^{k+i)/2 (Sfc) because of the

single-crossing condition. In either case, if s/ and Sj are two different clubs, player (/c -|- 1) /2 is

not indifferent between them by Assumption 5. This implies that either .s/ )-s^ Sj of Sj >-5^ s;

for any Sj and s;, which completes the proof.
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Proof of Proposition 2. (Part 1) Assumption 1 holds in each club Sk, because the voting

rule is simple majority. To show that Assumption 2(a) holds, we notice that it is impossible to

have si >-5^. s^ for I > k, because all members of s^ prefer s^ to s;. Therefore, any cycle that

we hypothesize to exist will break at its smaUest club. To show that Assumption 2(b) holds,

take any club s = s^. The set of clubs {s;} that satisfy s; yg^ ^fc is the set of clubs that satisfy

k/2 < I < k. Hence, for any clubs s/, Sm with I < m that satisfy s; >-s^. Sk and Sm >-sk ^k we

have si >-5^ s^: indeed, players i G {1, . . . ,1} which form a simple majority will prefer s; to s^,

as they are included in both clubs, but prefer the smaller one. Therefore, Sm ^Sk si is impossible

for / < m, which proves that Assumption 2(b) holds. Likewise, 5^ hs,^ s; is impossible, so the

first part of Assumption 2b* holds as well.

Let us now take S( y-g^ Sfc and Sm ^s^ Sfc- This means k/2 < I < k, and either m < k/2 or

m>k. If m < /c/2, then the set of members of club s^ who prefer s^ to s; is {1, . . . , m): those

who belong to s; but not to Sm prefer s;, while those who do not belong to either of Sm and

S( are indifferent. So, players only players in Sm may strictly prefer s„,, to 5;. But they do not

constitute at least half of the club in sj., so Sm ^s^ s/- Consider the second case, m > k. But

then all players in 5/ (i.e., a majority) will prefer s; to s„i, and therefore Sm ^s^ s;- We have

proved that Assumption 2b* holds. : /

Finally, to show that Assumption 3 holds, take s — s^, s/ and Sm such that s; J^^^ Sk,

Sm !^5t Sfc, and s; ^ Sm- Without loss of generality assume I < m. But then s; y^k ^m, since all

players from s; prefer s;, and they form a majority in s/,-. This proves that Assumption 3 holds.

(Part 2) Monotonic median voter property holds, since we can take rngf. to be player k/2

if k is even and (/c + 1) /2 is odd; clearly, {tti^^J^^j is an increasing sequence of quasi-median

voters. To show that the single-crossing condition holds, take i,j € I such that i < j and

Sk, Si E S with k < I. Suppose Wi (s;) > u', (sfc). This is possible if i S s; but i ^ Sk or i ^ Sf^, s;.

In either case, i ^ Sk, and therefore j ^ s^. But then Wj (s;) > Wj (s^). Suppose now that

Wj (si) < Wj (sfc); this means that j S s^, s;. But then i G Sfc, s;, and therefore Wi (s;) < Wi (sfc).

This estabhshes that the single-crossing condition holds.

(Part 3) Notice that it is never possible that s/ ys^Skiik<l. We can therefore start with

smaller clubs. Club si is stable and 1 = 2°. Suppose we proved the statement for j < k and

now consider club Sfc. If log2 A; ^ Z, then club Sj for j — 2'-'°S2'^'J is stable and contains more

than half members of s^.. Hence, Sfc is unstable. Conversely, if log2 /c G Z, then the only clubs

we know to be stable do not contain more than /c/2 members, so s^ is stable. This proves the

induction step. . , . , .

(Part 4) If log2 fc e Z, then 2l-'°S2*=J = /c, and the statement follows from part 3. If logj k ^ Z,

then S2[iog2J:j is the only club which is preferred to Sfc by a majority (other stable clubs are either
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larger than st or at least twice as small as Sjtiogj/cj , i.e., more than two times smaller than Sf-).

The result follows.

Proof of Proposition 3. (Part 1) Assumption 1 follows from b > N/2. Therefore,

Theorem 3 applies and Assumption 2(a,b) and 2b* are satisfied.

(Part 2) By part 1, Theorem 1 is applicable. The result immediately follows.

(Part 3) We prove this result for constitutions and voting rules simultaneously. By de-

finition, a voting rule (constitution) (a, 6) is self-stable (or self-stable, in terminology of Bar-

bera and Jackson) if \i E T : w-i (a') > Wi {a)\ < b for all feasible a' . But this is equivalent to

{a',b') ^{a,b) (a, ^) for all (a, ^), which is the definition of myopic stability. By Corollary 1, any

myopically stable state is dynamically stable, but not vice versa, which establishes the result.

(Part 4) In fight of part 3 we only need to prove that any dynamically stable state is

myopically stable. Take any constitution (a, 6) which is not myopically stable; let us prove that

(pf.
[{a,b)] 7^ (a, 6). Consider the set of constitutions Q = {{a',b')} such that {a',b') '^ia,b) i'^^^)]

since (a, b) is unstable, this set is nonempty. Note that if (a', b') G Q, then (a', A'') e Q (because

the second part of the pair of rules does not enter the utility directly). Now take some player i and

(a', b') € Q that is most preferred by i among the states within Q (or one of such states if there

are several of these). Consider state (a' , N) e Q. First, since it lies in Q, {a' , N) ^(a,6) (c^,'')-

Second, this state is (/)^-stable: indeed, if it were not the case, we would have some other

(a", b") )^(a',iV) (O'', A''). This means that each player prefers (a", b") to (a', A^), which of course

implies that at least a players prefer {a",b") to (a, 6), so {a",b") £ Q. But there is player i

who at least weakly prefers (a', 6') (and therefore {a' , N), which is the same as far as immediate

payoffs are concerned) to any other element in Q. This means that such {a",b") does not exist,

and state {a',N) is stable. Axiom 3 then implies that 4>^{a,b) cannot equal (a, 6), since state

{a' , N) is (p^-stable and is preferred to {a,b). This completes the proof.

Proof of Proposition 4. (Part 1) Assumption 1 immediately foUows from (18) and that

a > 1/2. To prove that Assumption 2(a) holds, it suffices to notice that Y >~x ^ is impossible if

7y > 7y, so any cycle would break at the least powerful coalition in it (which is unique because

of genericity). Similarly, to prove that Assumption 2(b) holds, one can notice that if Y >~x A'

and Z >~x A', then jy > 7^ implies Z )^x ^1 and thus Y )/-x Z: indeed, all players in Z

prefer Z to 1', and they form a winning coalition in A', for if they did not, Z ^x A' would be

impossible. Again, this means that any cycle would break at the least powerful coalition in it.

One can similarly show that Assumption 3 holds: is proved likewise: if Y >^x A' and Z ^x AT,

then, by genericity, X '^ Y implies 7y ^ j^- Without loss of generality, 7^- > 7^, and in this

case Z ^x Y Hence, Assumption 3 is satisfied.
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(Part 2) Let. us perturb players' payoffs so that if i ^ X, then Wi {X) = e-fx where e > is

small. After this perturbation, Assumptions 1, 2 and 3 still hold, as the proofs from part 1 are

still valid. The first part of Assumption 2b* follows, for if a corresponding >:-cycle existed, then

by genericity we would get a ;^-cycle which is ruled out by Assumption 2(b). To show that the

second part of Assumption 2b* holds, take Y )~x X and Z ^x X. This imphes ajx < 7y < 7x

and either 7^ < 07 y or 7^ > 7,v If 7z — ^Ixi ^ll players who are not in Z prefer Y to Z:

this is obviously true for the part that belongs to Y, while if a player is neither in Y nor in Z,

this is true because of the perturbation we made, for in this case 7^ > ajx ^ 7z- Since players

in Z do not form a winning coalition in this case, we have Z )/-x Y. Consider the second case

where 7^ > 7x; then all players in Y prefer Y to Z, since jy < I'z- This means that Y yx Z

and thus Z )/-x Y . Tliis proves that Assumption 2b* holds, which completes the proof.

The Relationship Between P, von Neuniann-Morgenstern Stable Set, and
Chwe's Largest Consistent Set

The following definitions are from Chwe (1994) and von Neumaim and Morgenstern (1944).

Definition 11 (Consistent Sets) For any x,y E S and any X G C, define relation —>a' by

X -^X y if c-'n-d only if either x = y or x ^ y and X e Wx- '
'

'

1. We say that state x is directly dominated by y (and write x < y) if there exists X d C

such that X —>_\' y and x ~<x y, where we write x -<x y os a shorthand for Wi {x) < w-i (y)

for all i £ X

.

2. We sa.y that state x is indirectly dominated by y (and write x <^ y) if there exist

xo,Xi, .
. . ,Xm € S such that xq = x and Xm — y and Xq, Xi, . . . ,Xm-i S C such that

Xj -^Sj 2;j+i and Xj ^5 y for j = 0, 1, . . .
,
tti — 1. .

-
. ,

3. A set S C S is called consistent if x £ S if and only ifiy € S,'iX e C such that x ~^x y

there exists z & S, where y = z or y ^ z, such that x -^x ~-

Definition 12 (von Neumann-Morgenstern's Stable Set)A set of states X C S is von

Neumann-Morgenstern stable if it satisfies the following properties:

1. (Internal stability) For any x,y G X we have y )/-x x;

2. (External stability) For any x E S\ X there exists y E X such that y y^ x.

Proposition 6 Suppose Assumptions 1 and 2 hold. Then:
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1. The set of stable states V is the unique von Neumann-Morgenstem stable set;

2. T> is the largest consistent set; '

. ^

3. Any consistent set is either V or any subset of the set of exogenously stable states (and

vice versa, all such sets are consistent).

Proof. (Part 1) We take the sequence of states < ft], ..., fii^i > satisfying (7). Suppose that set

of states X is von Neumann-Morgenstern stable; let us prove that Pd = V. Clearly, jj,-^ G X,

since yU;. )/-^^ //j for any state /j.^.. Now suppose that we have proved that X n {/ij, . .
. ,

/i^.j } =

V n {/xj, . .
. , ^^._i} for some k > 2; let us prove that

ij.f. e X li and only if ^u^. G V. From

Theorem 1 it follows that it suffices to prove that /x^. e Af if and only if Mk = 0- Suppose first

that Aik 7^ 0; then, since Mlk = X O {/ij, . . . ,iii._i} by construction, we have that /i; y^^ ji^

for some / < k such that /x; e X. Hence, if /x^, G X, then internal stability property would

be violated, and therefore ^L). ^ X. Now consider the case where Mk = 0- This means that

A'n{/Ji, . . . , /x;._i } = 0, and therefore there does not exist
ij,i

€ X such that / < k and fij >~^^ jif..

But by (7), fii ^/-n^ i^ij^ whenever / > k. Hence, for any fif ^ X such that I ^ k we have /.t; ^^^ f.if.,

and therefore fii^ G X, for otherwise external stability condition would be violated. This proves

the induction step, a,nd therefore completes the proof that X = V.

(Part 2) It is obvious that for any x,y G S, x < y implies a; <C y. In our setup, however,

the opposite is also true, so x < y if and only if x <^ y. To see this, suppose that x <^y\ take a

sequence of states and a sequence of coalitions as in Definition 1 1 . Let /c > be lowest number

such that Xk+\ j^ x. This means that x -^Xk ^k+\ (because Xk = x) and Vi G Xk Wx {i) <

Wy [i). By definition, x < y; note also that A'^ G Wx, since x ^ Xk+i-

To show that set V is consistent, consider some mapping
(f>

that satisfies Axioms 1-3. Take

any x e V, and then take any y £ S and any A' G C such that x —>x V- Let z = (p{y); then, as

follows from Axiom 1, either z = y or y <^ z. Now consider two possibilities: x = y and x ^ y. In

the first case, x = y E V, so z = y = x. Since X is nonempty, property 3i G A : w^^ (0 > w^ (?,)

is satisfied. Now suppose that x ^ y; then X G Wa-. On the other hand, z G V. But it is

impossible that z ;^x x, since both x and z are stable (otherwise, Axiom 1 would be violated for

mapping (f)), hence, in this case, 3i e X : w^ (x) > Wi {z), too.

Now take some x ^ V. We need to show that there exist y G S and X € C such that

^ ~>X y and for any z G T> which satisfies that either z = y or j/ •C z^ we necessarily have

Vz G X : ti^i (x) < Wi (2), Take y = 4>{x) and X = {i G I : Wi (x) < Wi (y)} G Wx\ then x —>x y.

Note that it is impossible that for some 2 G P we have y <^ z, for then y < z, and therefore

z >y y, which would violate Axiom \. Therefore, any z G V such that either 2 = y or y <§C 2
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must satisfy z = y. But then, by our choice of X, we have "ii £ X : Wi {x) < Wi (z). This proves

that V is indeed a consistent set.

To sliow that V is the largest consistent set, suppose, to obtain a contradiction, that the

largest consistent set \s S ^V. Since D is consistent, we must have V C S. Consider sequence

< /Ltj, ..., ^|5| > satisfying (7), and among all states in 5 \ P 7^ pick state x = ^^ G 5 \ P with

the smallest number, i.e., such that if fi; 6 S \'D, then / > k. We now show that, according

to the definition of a consistent set, x ^ S, which would contradict the assertion that state S

is consistent. Take some mapping 4> that satisfies Axioms 1-3. Now let y =
(f>

(x) G P and

X = {i £ 2 : Wj (x) < Wi (y)} G Wx; then x -^x V and, since x ^V,y ^ x, which by (7) implies

that y = fii fox I < k. Now if for some 2: G 5 we have y <^ z, then y < z, and hence z yy y.

which implies z = jj.. for some j < I < k. But then z ^ S\V, and therefore z e V. However, it is

impossible that y, z E "D and z )~y y, as this would violate Axiom 1. Therefore, if for some z E S

either 2 = y or y >C r, then in fact z = y. But for such z, we do have \/i G X : Wi {x) < Wi (2),

by construction of X . We get a contradiction, since by definition of a consistent set x ^ S, while

we picked x € S \V. This proves that T> is the largest consistent set.

(Part 3) By part 2, if 5" is a consistent set, then S C V. Suppose that S ^ V, but S includes

a state which is not exogenously stable. Suppose x G 5 is not exogenously stable and y G P \ 5;

then x -^x y for some X G Wx- Since x G S, there exists z E. S where either z = y ot y <^ z,

such that 3i £ X : Wi {x) > Wi (z). But y G P \ 5, and hence y -^ z, which implies, as before,

y < z and 2 >~y y. However, this is impossible, since y, z E V. This contradiction proves that if

S ^V, S may not include any state which is not exogenously stable.

Consider, however, any S which consists of exogenously stable states only. Take any x e 5.

If y G vS and X £ C are such that x —>x 2/1 then x — y. In that case, we can take z = y E S and

find that condition 3i E X : Wi [x) > Wi (2) trivially holds. Now take any x ^ S. Consider two

possibilities. If state x is exogenously stable, then take X = J and y = x; then x ^x V- If for

some 2 G 5 we had y <^ 2, then, in particular, y —>>- 2 for some Y G C, which is incompatible

with z ^ y\ at the same time, 2 = y is impossible, as 2 G S* and y = x ^ S. This means that for

this y there does not exist 2 G 5 such that either z = y or y <g; 2, and therefore x = y should not

be in S. Finally, suppose that x is not exogenously stable. Again, consider mapping (p satisfying

Axioms 1-3 and take y = 4>(x) and X = {i E T : Wi {x) < Wi (y)} G Wx', then x —^x V- By

the same reasoning as before, if for some 2 G 5 either 2 = y or y <C 2, then z = y, because

y <^ z would imply z yy y for y, z G V. But for such 2, we have \/i E X : Wi (x) < Wi (2) by

construction of X . This proves that S is indeed a consistent set, which completes the proof.
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