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This paper investigates the effect of firm size and ouTiership structure on
technology adoption decisions, using data on the electric utility industry.
Ue argue that traditional models of technology diffusion are subject to sanple
selectivity biases that may overstate the effect of firm size on adoption
probabilities. By extending conventional hazard rate models to use
information on both adoption and non-adoption decisions, we differentiate
between firms' opportunities for adoption and their underlying adoption
propensities. The results suggest that large firms and investor -owned electric
utilities are likely to adopt new technologies earlier than do their smaller
and publicly-owned counterparts. Moreover, the selection biases from
conventional statistical models can lead one to overstate size effects by a

factor of two and to understate ouTiership structure and factor cost effects by
two to four times.
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1. Introduction

Economises have long been interested in understanding the determinants of

technology diffusion across firms and industries. An important set of

questions in this area concerns "Schumpeterian" hypotheses of the influence of

competition and firm size on innovation. Much of the theoretical and empirical

work on process technology diffusion suggests that firm size may play an impor-

tant role in decisions to adopt new technologies, perhaps as a proxy for such

factors such as risk aversion, participation in research and development

activities, or economies of scale in using the innovation. Recent empirical

studies yield mixed results, however, on the question of whether larger firms

are more or less innovative than are their smaller counterparts (see Oster,

1982, Hannan and McDowell, 1984, and Levin, Levin, and Meisel (hereafter LL.M)
,

1987).

This paper uses data on steam-electric generating technology to analyze

patterns of process technology diffusion across firms. By restricting the

study to the electric utility industry, we abstract from competitive and market

structure effects: virtually ail firms operate as local monopolies subject

either to rate of return regulation in rhe case of investor-owned utilities

(lOUs) or to other ferns of control in the case of most goverrjnent and coopera-

tivelv-owned utilities. ~ This allows us to focus the anaivsis on the role of

See for exacple, Griliches (1957), Mansfield (195S) , David (1959). and
Kasbeth and E.ay (1974) .

The existence of de facto exclusive retail franchises and rate-of-
retum regulation need not inplv that firms have no incentives to undertake
cost-reducing investments. For investor-owned utilities (IOTjs) , regulatory lag
provides strong incentives to invest in cost saving technologies (Joskow,
1974). Other mechanisms through which investment incentives may operate
include the threat of municipal condemnation (takeovers) and the possibility of
wholesale power transactions with other utilities. All three of these mechan-
isms operated during- our sample period and were particularly prominent during
the 1950s and 1950s, when most of the generating units in our sam.ple were
planned.
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firm size and two other determinants of technology diffusion suggested by the

theoretical and empirical literature: factor cost differences that influence

the expected cost savings from adopting an innovation and firms' ownership

structures. The nature of our data also makes it possible for us to distin-

guish between measured size effects resulting only from differences in oppor-

tunities to adopt and those resulting from an underlying propensity to adopt

new technologies quickly. ,
-

'

Two steam-electric generating technologies are analyzed in the paper:

high pressure conventional units (2400 pounds per square inch (psi)) and very

3high pressure supercritical units (above 3206 psi)." The 2400 psi technology

was first introduced in 1953 and began to diffuse fairly widely by 1958; the

supercritical technology was first introduced in 1957 but diffused much more

slowly. Ue use data on 144 utilities that built steam generating units between

1950 and 1980 to estimate the determinants of firm.s' decisions to adopt each of

these technologies. Results from a broad range of statistical specifications

suggest that larger firms and investor -owned utilities tend to adopt new tech-

nologies earlier than do small firms and municipal or cooperative utilities,

conditional on equal factor prices. Our finding of positive correlations

between firm size and the speed of technology adoption is similar to the

conclusions reached by Soramers (1980) with respect to nuclear power, bv Hannan

and McDowell (1984) with respect to the banking industry, and by many of the

case studies in Mansfield (1968) and Nasbeth and Ray (1974)."* This res-^ilt

3
These technologies are discussed in Joskow and Rose (1985). Ve do not

consider nuclear power technologies; see Sommers (1980) for a study of nuclear
power technology choice.

4 „.
inese studies do not, however, control for differential adoption oppor-

tunities. As discussed at greater length below, this may bias their results
toward estimating positive relationships even when no relationship exists.
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stands in contrast to Oster's (1982) conclusion that large firms were slower to

adopt innovations in the steel industry and to LLM's (1987) conclusion that

firm size does not affect technology adoption by grocery stores.

Ue also find that controlling for differential opportunities to adopt is

critical to the results. Large firms have a higher probability of building a

new generating unit of any kind in a given year, other things equal. Failing

to account for these higher building probabilities leads one to overstate size

effects on adoption propensities by a factor of two and to understate the

effects of ownership structure and potential cost savings on adoption propen-

sities for the 2^00 psi technology.

The paper is structured as follows: In the next section we briefly

discuss theoretical and empirical models of interfirm technology diffusion.

Section 3 describes the particular innovations we study and the factors likely

to affect their diffusion. Statistical models of adoption decisions are

developed and compared in section h and estimates from these are reported in

section 5. Conclusions are contained in the final section.

2. The Diffusion of New Technologies

Theoretical models of technoloev diffusion have attracted incre <=..=> -.lit.

atter.-ion in recer.r years; see Stoneman (1986) and David (19E6) for over^.'iews.

Although the specific predictions depend upon the assucrptions and focus of each

model, a common set of factors that should influence the diffusion process

ring the

tion, com.petitive conditions and technolocical characteristics that affect the

appropriabiliry of gains, and characteristics that influence rhe expected

profitability." of the innovation or firms' "willingness to innovate," such as
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economies of scale or of learning in using the innovation, firm participation

in complementary R&D activity, and discount rates. A diffusion path typically

is generated by assuming that the cost of adopting the innovation declines

through time. Firms' relative positions along this path are determined by

their characteristics: firms with lower discount rates will adopt before firms

with higher discount rates, larger firms will adopt sooner than smaller firms

if economies of scale are important, firms with high factor costs will adopt

innovations that increase input efficiency earlier than will firms with low

factor costs

.

Early theoretical work assumed that the costs and benefits of the innova-

tion were Vcnown. More recent papers have relaxed these assumptions and

emphasized the effects of uncertainty. In these models diffusion paths can be

generated as uncertainty about the technology is resolved over time. Adoption

decisions are influenced by firms' prior estimates of the mean and variance of

the innovation's returns, their information updating processes and risk

aversion, and the expected path of future technological change. These models

suggest that more risk averse firms will be slower to adopt innovations, that

firn:s nay make mistakes (adopt technologies that are ex post unprofitable and

rai_ to adopt those that are ex post profitable), and that interfirm cifrusion

will be slower when innovations are perceived to be riskier.

Insritrutional characteristics also m.ay play an important role in ceter-

niining the path of diffusion. Of these, the theoretical literature has been

most concerned with possible vintage or "history" effects induced by the

embodiment of technology in long-lived physical capital. As David (1985)

notes, new technologies will be relatively disadvantaged when they are embodied

m indivisible capital goods, particularly if capital costs of new plant are
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high relative to the operating cost of existing facilities. Not only will

this tend to slow the diffusion of the new technology throughout the industry,

it also suggests that the pattern of technology diffusion across firms will be

dependent upon the history of capital investment. Firms that are equally

likely to adopt a new technology, other things equal, may do so at different

times if their initial capital configurations differ. It seems misleading,

however, to characterize this as a difference in " innovativeness .

"

In this study, we distinguish between early use of technology that is

observed only because opportunities for adoption are more frequent and early

use that reflects an early decision to employ a new technology. In parti-

cular, large firms may adopt innovations sooner for reasons that have little to

do wirh technological progressiveness , such as their more frequent capital

additions to replace old (retired) capacity or to meet a given growth rate in

demand. We decompose the firm site effect into a component that influences a

firm. 's opportunities to adopt an innovation and a com.ponent that affects its

. . . . , 6 _. .

aecLsion to exercise an opportunity to introduce tne new tecnnoxogy. ir.is

Our notion of innovativeness is cuite similar to Mansfield's (195S, p.

172) argument that large firms should be interpreted as being more progressive
only if "the difference in the speed of response between large and sniall firms

is greater than would be expected if a large firn; acted as if it were simply
the sujE of an equivalent nxinber of small, independent firms."

An example may clarify our distinction. Compare two utilities: a large
firm with 1000 megawatts (Mw) of capacity and a small firm with 100 Mw of
capacity", each growing at 10 percent per year. Assume that both will use the

new technology at the first available opportunity; that is, they are equally
"innovative." If new units come in 100 Mw increments, the large utility will
build a unit next vear, while the small utilitv z.a\ not build a new unit for 10

years. We attribute this gap to differences in opportunities, not to differ-
ences in the propensity to adopt new technologies.

Our decomposition also can be interpreted as separating the factors
that affect the probability cf observing a firm's adoption decision from, those
that affect the adoption decision itself. In this -sense, the decomposition is

a correction for samnle selection biases.



explicit distinction differentiates our work from most previous empirical (and

theoretical) work on technology diffusion.

Finally, a number of factors that have received relatively little theor-

etical attention also may influence interfirm diffusion patterns. These

include the role of human capital investments and labor unions, regulatory

distortions of technology choices, and deviations from pure profit-maximizing

Q

objectives (for example, by government -owned firms or non-profit entities).

The predicted effects of these are context-specific. For example, some forms

of regulation may speed technology diffusion (Hannan and .McDowell, 1984, on

banking regulation); others may retard it (Oster and Quigley, 1977, on building

codes). Government ownership might allow technology-oriented bureaucrats to

adopt innovations sooner than would a profit-maximizing management; in other

cases, the insulation from prof it-maxim.izing pressures might permit management

to lag in technology adoption (wilson)

.

Given the breadth of theoretical predictions and their dependence on

specific assumptions about the nature of the technology and the industry, it is

useful to ask whether there are any generalizations that can be drawn from the

empirical literature. Empirical tests of interfiric diffusion models have

tended to focus on possible ' Sch'ompeterian' effects of firm size and market

structure on technologv adootion decisions. Early studies by Mansfield (195S),

E.oraeo (1975), and some of the case studies in Kasbeth and F.ay (1974) find that

larger firms tend to adopt innovations sooner than do their smaller counter-

Oster (1982) captures this distinction by using plants rather than
firms as her unit of analysis. She finds that steel plants owned by large
firms tend to take longer to adopt innovations than do plants owned by small
firms, other things equal.

8 . .
-

A numoer oi these issues are raised by Nelson and winter (i982) and
Stoneman (1986) .
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parts, although this relation is not universal. Much of the early literature

was either largely qualitative or susceptible to considerable statistical and

methodological criticism, however. Many of the statistical analyses suffer

from selectivity problems (e.g., Romeo, 1975, uses data only on adopting firms

in his time-to-adoption analysis) or from pooling across noncomparable innova-

tions or industries (see the interindustry analysis in Romeo, 1975, and

Benvignati, 1982, for examples).

Recent work, in an effort to address some of these concerns, has employed

more sophisticated statistical models of the diffusion process. The results

continue to be mixed, suggesting that no simple generalizations may apply in

all industries. Oster (1982) examines the diffusion of the basic oxygen

furnace (BOF) and continuous casting in the relatively concentrated U.S. steel

industry. She finds a negative effect of firm size on adoption probabilities;

large firir.s tend to adopt both innovations later than do smaller firms,

although the effect is significant only for the SOF. LLM (1987) find negative

effects of concentration on retail grocery stores' decisions to adopt optical

scanner systenis, but positive effects of market share. They report some

evidence that the largest chains are not among the first adopters, bur their

reliance on a cuiel^'' variable for larce average store site instead or measuring

firm size cakes it difficult to say much about firr: size effects. In contrast,

Rannan and McDowell (1984) find strong support for Schumpeterian models of

innovation: rhey conclude that the probability cf adopting autoz:ated teller

machines (ATMs) rises wirh both firs size and market concentration. They also

find significant regulatory effects (ATMs appear to be used to relax unit

9 ^ rror a number of innovations studied in Nasbeth and P.ay (1974) , small
firms lead large firms in technology adoption.
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banking and branching restrictions) and ownership effects (banks owned by bank

holding companies are more likely to adopt ATMs). Sommers (1980) concludes

that large utilities and members of power pools are more likely to try nuclear

technologies, although he does not look explicitly at time to adoption and his

. , , 10
econometric model creates some interpretation problems.

We extend this body of empirical work in a number of dimensions. First,

almost all of these studies mix " innovativeness " effects with "opportunity"

effects; we explicitly differentiate between these. Second, we consider

flexible forms for the time path of diffusion. Much of the empirical work to

date has assumed that the "hazard rate," or probability of adopting an innova-

tion conditional on not having already adopted it, is constant or monotonically

increasing through time after conditioning on utility characteristics.

Finally, adding evidence on the determinants of adoption decisions in the

electric utility industry may help economists to better understand differential

effects of factors like firm size across industries. To accomplish this, we

first must describe how these factors are likelv to influence the innovations

we s tudy

.

3, Technoloeical Innovation ir Steam Electric Generatir.r "rech-nplorv. !°50-19S0

In an earlier paper (Joskow and Rose, 1985), we argued that technological

advances in fossil- fueled electricitv generation over the past rhirry* years

10 ^ . . , .

Sommers uses a logit mocel to estimate the choice between ccg^ anc
nuclear technologies conditional on buildin^, but he uses only one observation
per utility: the first adoption (for adopters) or last non-adoption (for non-
adopters) decision. Utility characteristics are measured in the year of that
decision, implicitly assuming that characteristics that affect adoption
decisions vary through time but that the time path of characteristics prior to

the adoption decision is irrelevant. These features make it difficult to

compare his results to those of other studies.
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have focused on improving the design thermal efficiency of generating units by

increasing their steam operating pressures. Increases in thermal efficiency

reduce operating costs by enabling utilities to generate more electricity from

a given amount of fuel. Our 1985 study identified two significant steam

generating technologies introduced after 1950: high pressure subcritical units

operating at steam pressures around 2400 psi and very high pressure super-

critical units operating above 3206 psi. These technologies are the focus

of the present analysis.

The previous theoretical and empirical literature on technology diffusion

suggests at least five factors that are liV;ely to affect the pattern of inter-

utility adoption of these technologies. These include: the expected cost

savings, uncertainty over the distribution of expected savings, utility sice,

12utility ouTiership structure, and time. We describe their anticipated effects

below.

11
^ At pressures sDove the critical level or 3206 psi, water neatec to

706 ? directly vaporizes to dry steam. Increasing stesm pressure is one way to

increase design ther-al efficiencv. This admittedly is only one diniension over

which generating unit technology has been improved, however. Others include
higher stearc tenrperatures , the introduction of reheat cvcies and -ultiple bleed
point preheat cycles, and larger unit sizes. In our 19S5 paper, we argue rhat
tech.nolcgical progress in therrr.al efficiencv over the last 25 vears has focused
on raising steain pressure conditions. This eisphasis is n:air.tained ir. our
present study.

- o

'~"e ignore potential c.ifferences in the regulatory environrcent across
lOUs and focus instead on differences in ownership structures. Since cunicipal
a.nd cooperative utilities are not regulated in the same sense as are lO'Js, any
cifrerences between the grouts irav reflect both crrar.izational and regulatory
etfecrs. All investor -owned utilities face essentiallv rhe same general forrr.

or regulation. V.'ithin this general structure the regulatory envirotLTient cf
course varies over tiir.e and space. These differences are difficult to charac-
terize empirically, however, and we do not believe that variables reflecting
such differences are likely to be correlated with the independent variables
tnat we use. It may be worthwhile to introduce measures of variations in the

competitive and regulatory environment in future research. .Absent this-, our
results should be interpreted as measuring the influence of the observed
factors in the presence of regulated local monopoly marVtets.



10

We expect the speed of adoption to be increasing in average fuel costs.

At their introduction, both technologies were expected to reduce operating

costs by enhancing fuel efficiency. While the design efficiency gains were

relatively modest (on the order of 2 to 5 percent) , the significance of the ex

ante cost savings depended on the utility's expected cost of fuel over the life

13
of the generating unit. These costs vary considerably across utilities.

For the 144 utilities in our sample, the ratio of highest to lowest average

fuel cost per million Btus was 325 percent in 1962 and 393 percent in 1972.

Such differences in fuel costs should contribute to significant variation in

the relative attractiveness of the new technologies.

Theoretical models suggest that greater uncertainty about a technology's

potential will lead to a slower diffusion path, all else equal. Although data

are not available to construct a direct test of the influence of uncertainty on

adoption patterns, some insight may be gained by comparing diffusion paths

across the two technologies. The 2400 psi units constitute a significant

im.provement over pre-existing subcritical technoiog^' although they were not a

major departure from that technology; the supercritical units represent a m.cre

radical change from, previous boiler technologies. This dichotomy suggests

t.hat the uncertaintv surrounding the ex ante costs and benefits of adopting the

supercritical technology is likely to have been considerably larger than the

uncertainty associated with adopting the 2400 psi subcritical technology. We

itanspcrtation costs can account tor a hisih traction or aeiiverec coax
costs, im.plying that locations near nigh quality coal sources may face substan-
tially lower costs.

14 ^ .

Operating at supercritical pressures elimiinates tne neec tor a

substantial amount of equipment associated wirh saturated ("wet") steam., but
requires more advanced materials and desiens to handle the considerable
increase in steam pressure.
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would expect this to shrink the adoption probabilities for the supercritical

technology and lead to a slower diffusion path.

The expected speed of diffusion also is dampened by the embodiment of

generating technology in very long-lived capital equipment. Capital costs of

powerplants are large relative to operating costs and plants are designed to

have useful lives of thirty years or more. As power plants age their utiliza-

tion patterns typically change, moving from base load to cycling to peaking

operation. Additions of new generating capacity are driven primarily by

increases in electrical load, rather than by opportunities to replace existing

capacity with capacity that has significantly lower operating costs.

Although both 2400 psi and supercritical technologies were expected to lower

the total cost of generating electricity, neither prom.ised sufficient savings

to warrant scrapping existing facilities and replacing them with new generating

16
units. This will tend to slow diffusion of both technologies and implies

t±i£t we will obser\'e a utility's decision to adopt one of these technologies

only when the utilirv decides to add new baseioac capacitv.

Obviously, generating capacity eventually is retired, so that retire-
ments have some effect on the demand for additional capacity. During our
sample period, however, cap2cit~>.- additions dwarf retirements. For exanrple in

1970, 28,000 megawatts (.".w) of new ceneratinc capacitv was added, while only
1,000 Mw was retired. .Zdisor Zlectri: Institute Statistical Yearbook of the

This is in sharp contrast to Osrer's (1952) finding on t:he economics
o- replacing existing steel furnace technology with the basic oxygen furnace.

1 ' ..
we assu-Tie nere and throughout the paper that a utility's decision to

add new baseload capacity is independent of its technology choice. This cor-
responds to an assumption that utilities first decide their schedule of
additions, based primarily on demand growth projections and unit retirement
schedules, and then decide what type of units to build to meet their additions
schedule. This assumption may not strictly hold; if new technologies are
scale-augmenting, technology choice may have some effect on building schedules.
Even in this case, the increase in efficient size is unlikely to be large rela-
tive to the size of the "average" generating unit. We therefore maintain the
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There are a number of channels through which firm size might influence

innovativeness . First, larger utilities are more likely to have internal

engineering, design and maintenance staffs that are both interested in and

capable of adopting new technologies before substantial experience has been

gained with them (Joskow and Rose, 1985). Second, larger utilities are likely

to be less averse to the risks of early adoption. For utilities with a large

portfolio of generating units, the impact of a "mistake" on the cost of service

and overall profitability will be modest. Third, if there are economies that

lead to lower costs when more plants of a given technology are operated by a

single firm, larger firms mny find early adoption more attractive. We find

some evidence of this type of economy in our earlier work (Joskow and Rose,

1985): there appears to be modest learning-by-doing that may lower construc-

tion costs as a utility gains experience with a given technology. Finally, if

new technologies are scale augmenting, they may be more attractive to larger

19
utilities that can economically add capacity in large chunks

.

~

Ve also expect larger utilities to build new generating units of any V:ind

more frequently than do smaller utilities, ceteris paribus . This will result

from the relationship between size, growth rates, and the lurr.piness of genera-

ting units. Thus, there r.sv be a natural nu^ierical relaticnshi':; betw-een site

and speed of adoption that arises not from differences in the frouensitv to

adopt new technologies but instead from differences in economic opporrunities

to add new capacitv. As a result, failing, to account for differential building

maepencence ass-umption as approximately correct, and believe that accounting
tor potential correlations is unlikely to yield additional insieht.

IS .^. .

0.2 tne cost im.pact is small relative to total costs, regulators are
less likely to notice or penalize a utility in regulatory rate hearings.

19
But see note 16, supra.
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frequencies may induce a positive correlation between firm size and the

estimated speed of adoption, even if the true relation is a positive effect of

size on the probability of building but no effect of size on the probability of

adoption conditional on building. Distinguishing between these two effects is

critical to the interpretation of the results. We are not aware of any other

work that controls for the opportunity to adopt as we do here.

Ownership structure may affect adoption probabilities although the

direction of the predicted effect is ambiguous. There are three types of

utilities in our sample: investor-owned (private) utilities, governrrient- owned

utilities (primarily municipal utilities) and cooperatives (primarily rural

electric cooperatives). The largest group is the investor-owned utilities,

20
which are most likely to behave as prof it-ir.sxircizing firms. Municipal

utilities ("munis") and cooperatives ("coons") mav have objectives other than

profit-maximization that alter their behavior relative to that of investor-

owned utilities. Munis and coods also appear to be less likely to be involved

in R£J) activities: 73% of investor-owned utilities belong to the Electric Power

Research Institute (EPRI), as compared to only 37% of munis and 32% of coops

(EPRI, 1987, p.l). Ve expect most of these differences to lower innovation

proDabilities for m'.inis and coods. There could be offsetting considerations,

however. If govern-Tient-owriec utilities are more responsive to the interests cf

power plant engineers, for example, we mieht expect greater pressures to adopt

20
Regulators' lag and opportunities to m.ake wholesale transactions that

are subject to relatively loose regulatory constraints (Joskow and Schmalensee

,

I9S3) provide incentives to adopt cost-saving technologies. Since new generat-
ing technologies tend to be more capital-intensive than older generating tech-
nologies, rate of return regulation may provide additional incentives (Smith,
1974).
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new technologies (Joskow, 1976). We expect this to be of potential signifi-

cance only for the largest government- or cooperatively -owned utilities.

Finally, the expected pattern of diffusion through time is unlikely to be

monotonic. While much of the literature posits constant or increasing hazard

rates, we expect that adoption probabilities will increase initially and then

decline for both of our innovations. The technologies we explore co-exist in

time with each other and with older (lower pressure) technologies. Although

the 2A00 psi technology was developed before the supercritical technology, for

a large part of the sample period the 2400 psi and supercritical technologies

21
represent competing choices. This suggests that the probability of adoption

for 2400 psi units may decline after some date as utilities decide to "skip" a

generation of technology and move immediately to the newer supercritical tech-

nology. Declines in the adoption probability for the supercritical technology

are likely to arise not from the development of more advanced technologies but

from unexpected problem.s with supercritical units. The development of substan-

tial reliability problems and unexpectedly high m.aintenance costs for super-

critical units curing the mid-1970s appear to have reduced or eliminated the

expected savings from this technologv (Joskow and Rose, 1985, and Joskov and

Schmaler.see , 19S7). Adoption probabilities for supercritical technologies

snouid have decreased after these problem.s were realized.
^~

in summary, we expect adoption probabilities for each of the two

t ec^.no i. o £1 ies considered in th'^s '-a'^e'^ to be "^ ^c'^'s^s'' n" in firm, size and tuel

.-. n'um.ber of utilities reverted to older technologies after building
one or more units with the newer technology. For reasons discussed below, th:

result m^ay be expected for the supercritical technologv. Less explicable is

its occurrence for the 2400 psi technologv.

One might expect this to increase the adoption probabilitv for 2400
technologies, although there is little evidence of this in the data.
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costs. The predicted effect of ownership structure is ambiguous, although it

seems likely that the probability of adopting an innovation will be higher for

investor-owned utilities than it is for government and cooperatively owned

utilities. Finally, we expect that adoption probabilities will vary through

time, initially rising as uncertainties about the technology are resolved and

costs decline and ultimately falling as even newer technologies become avail-

able .

A. Statistical .Models of Technolorv Adoption

The empirical literature has used a variety of approaches to estimate

models of technology diffusion. we discuss below two of the most popular

classes cf models wirh the assumptions implicit in their use. These are models

based on norm.al probability distributions, including probit and Tobit analyses,

and those based on failure time or hazard rate specifications. We also

describe a statistical model of technology adoption that we believe distin-

guishes firm si~e effects on "innovativeness" fron-. firm site efrects on

adoption opportunities better than have most previous models.

Common to our paper and much of the literature or. technology ciirusior. is

a focus en time tc transition or first use cf a new technology, net en tecr.-

nologv choice fer se . In line with this, we characterize fir"s as being either

in the "no adoption" state, prior to their first use of the new tecnnolog^', or

in the "adoption" state, once the technolocv has been usee and forever alter.

This em.phasis is appropriate if one is concerned with how long it takes firms

23
.A.S such, our paper belongs in the literature on interfirm. diffusion

patterns; see Kannan and McDowell (1984) and Liy. (1987) for other recent
examples of this t^t-pe of study. Intrafirm. diffusion patterns-- the penetration
of innovations within firm.s-- have been subject to less empirical study.
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in an industry to Cry a new technology rather than with how long it takes firms

to convert their entire production lines to the new technology. This approach

seems of particular interest for industries such as electric utilities, in

24which technology is embodied in long-lived capital.

We also assume that a utility's probability of adoption is related to its

characteristics, such as size and average fuel cost, as of some point in time;

cross- sectional differences in these characteristics drive the differences in

utility adoption dates. Variations in adoption rates through time are deter-

mined by forces common to all utilities, such as the number of other firms

adopting the technology, improvements in the technology through time, or

resolution of uncertainties about the technology's costs and benefits. Using

this assumption, which typifies much of the emipirical worV: in this area, we

work with models that specify the adoption probability as: Pr(utility i

adopting at time t) - f (X.,t), where X. are utility i's characteristilies

measured at some time comjuon to all utilities. . _

Normal probability models ..v.'

A number of studies have used a normal probability cistributicn to analyze

the time until adoption for firms or plants, measured from som.e ir.itial date of

availability." This m.odel was implicit in early studies that used OLS

regressions to estimate the determiinants of interfirm differences ir. adopticr.

dates (c.f. .Kansfield, 19d£, and Romeo, 1975). A sitr.ifleant shcrtccming in

If capital is long-lived and operating costs are low relative to

capital costs, replacement of capacity is likelv to be slow even if firms are
aware of technological advances and prepared to adopt them, as soon as it is

profitable to do so.

25
"

One could as easily measure time since adoption, counting oackwarc
from the end-of -sample date (see Oster, 1982).
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many early studies is the failure to account for sample selection or censoring

problems: firms that had not adopted the new technology by the end of the

sample period frequently were excluded from the analysis (Romeo, 1975) or

treated as never adopting. These biases can be eliminated by including both

adopters and non-adopters in the sample and using a Tobit model to treat end-

of-sample censoring on adoption dates; see Oster (1982) for a study using this

technique

.

A second potential problem arises from the normal distribution's range

over (-",+<=). Presumably a technology cannot be adopted prior to some innova-

tion date, implying that the time until adoption is distributed over (0, -hb)
,

where time is set equal to in the year that the technology first becomes

available. The statistical analysis could account for this either by treating

the distribution as a left- truncated normal or by transforming the model. we

find the latter course most appealing and in our empirical work with zhe normal

probability model assume that the log of the time to adoption is distributed as

26
a normal random variable, with rignt censoring at "he enc-of -sam^ple cate.

To derive the likelihood function based on this distributional assumption,

define zhe set of exogenous variables rhat affect firm i's adoption decision as

X_. , fir.i i's time until adoption as t., and the enc-of -saziple censcrir.g date as

T. we also define X. - -X. as a ncrmalitation to ease the comparison between

this model and the other models discussed below, where the time to adoption is

a decreasing: function cf X.£ and 5 is the -sarameter vector irorr, t."e norriai

This follows from an assumption that the time to adoption is distri-
buted as a log-normal random variable.



(1) Pr(t t ) = n ( ^( (t. - X.^ )/o ) /a) n II - <I>((T->L^ )/a) )

^ ^ j=l J J n
u=l ^ "

where denotes the natural log of the time variable, N is the set of firms

that adopt on or before the end-of- sample date, N is tlie set of firms that

have not adopted by time T, and N - N\ + N„ . The parameters B and a can be12 n

estimated by maximum likelihood methods.

This model does not assume any explicit time dependence in the adoption

probability; systematic variations in adoption dates are attributable only to

variations in firms' characteristics (X). The model does, however, assume that

the "critical" level of X/3 , above which firm.s choose to adopt the technology,
n

declines through time. This can be seen most easily by recogni::ing that the

2
exDected time to adoption is declining in Xfl : E(t.|X.) = X.^S + .So"" - -X.;3

° n 11 ~in in
9

+ . Scr"" This feature of the model is consistent with the assumptions built

into most theoretical models of technology diffusion that the cost of adoption

or perceived riskiness of the technology declines over time.

^o cie ' ^

A second class of models used to analyze technology diffusion is based on

fs-iure rime or hazard rate specifications (Hannan and McDowell, 1984, and LLM

,

i9£/). The hazard rate, h.(t), -is defined as the probabilitv that fizT: i will

adopt an innovation at time t conditional on havins: not ador;tec the innovation

Derore t. Because these models explicitly focus on transition probabilities,
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they seem particularly suited to study patterns of technology adoption across

.. 27
firms

.

Although particular distributional assumptions on the hazard rate vary

across applications, the models share a common structure. The unconditional

probability that firm i will adopt the innovation at time t (the density

function) is equal to:

t

(2) f (t) - h (t) e>:p(- / h.(r)dr)
T-0

and the probability that firm i will not adopt the innovation prior to t (the

"survivor" function) is equal to:

(2) 1 - F(t) - evp(-J h.(T)dr)
r-0

*

To estimate this model, the form of the hazard rate must be specified. In

principle, virtually any function that satisfies the properties of a condi-

tional probability could be used. For concreteness , we consider two specifica-

tions of the hazard rate.

The proportional hazards model is oerhats the most videlv '^sed soezLzLzz.-

tion; in the diffusion literature, LL.M (19E7) use this model to esti-.ate the

diffusion of optical scanners among retail grocerv stores. The proportional

Hazards moae^ assumes that the relative hazard rates for f-o fir~.s are ccnstan:

through time , allowing the hazard to be decom.oosed into separate fir- and time

27 , ,.,.-...
See Kaibrieiscn and Prentice (1980) for descriptions of failure time

models and their applications. Hazard -rate models have been used extensively
to model unemployment dynamics; see Lancaster (1979) and Nickell (1979) for
early applications.
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components. We can write this as h.(t) - h (t)exp(X.), where h (t) specifies

the evolution of the hazard rate over time and X. are fixed firm characteris-
1

tics. The time component can be estimated non-parametrically (see LLM , 1987)

or parametrically by assuming some distribution for h (t). Our estimates of

the proportional hazard model parameterize h (t) using the Weibull distribu-

tion: h (t) = Qt . Under this assumption, the likelihood function for the

data is :

Q - 1 Q Q
_

(4) Pr(t_..,t,,) = n Q •t.'^' exp(X./3 ) -expC -exp(X.^ )t.'') • H exp(-exp(>' fl )T
i :, w J J w J w J '' ^

j=l
.

k-1

where N. and N„ are as defined earlier and a and a are the parameters of the12 WW
Weibull proportional hazards model. The adoption probability is increasing in

X^ _; the hazard rate will be monotonically increasing, decreasing or constant

through time as q is greater than, less than, or equal to one.

Alternatives to the proportional hazards model allow the relative probabi-

lities cf adoptior; across firms to change through time. This can be accorr.-

pj-Zshec either by allowing time- va rA' in" f i nr. characteristics to attect adortion

probabilities (see Hanr.^n and McDowell. 198") or bv interacting time and firm

"o allow us to compare results across different models, we cnoose

I

distribution:

28
Kannan and .^-IcDowell assume that the adoption -probability conditional

on X_. is constant through time, although changes in X. over tim.e may increase
or decrease the adoption probability for a firm.



21

a -1 a

(5) h.(t) - Q C exp(X./3 ) / (1 + t exp(X,;9 ) )

where subscript e denotes estimates from the log-logistic hazard model. This

specification allows us to estimate the hazard as a function of the constant

firm characteristics (X.) used to estimate the Tobit and Weibull diffusion

models discussed above. As in the Ueibull hazard model, the adoption probabil-

ity is increasing in X. . The log-logistic specification implies a monotone

S

1

decreasing hazard rate if q < 1 and a hazard that is initially increasing then
c

decreasing for q > 1. This latter characteristic is particularly appealing
c

for our data. The log- likelihood associated with this specification is:

(6) LL - Z \ (l-a.)[ ln(a ) + (q -l)ln(t.) -h X.;5 - 21n(l + t exp(X.£ )) 1f., 1 C C 1 IC X .^c
i=l

- a.ln(l + T '"exp(X./5 ) \
1 1 c J

where a. is a durarcv variable eaual to one for utiiiries zr.az co not aaopt tne
1

new technology by T, zero otherwise.

Models conditionsl cr. buildir.r ; double -cer.sored rrorieis''

.-.11 of the models described above assume that date at v.-.ic". uti_ities

would choose to adopt the new technology is known and that the variables

included ir. X affect fines' adoption decisions but not their adoption oppor-

tunities. As described earlier, we think these assuj-ptions are unliKely to te

29
satisfied either in our data set or in most technolocv difrusion studies.

29
Similar assumptions are im.plicit in many studies of unemployment

transitions, in which job offers are assumed to arrive independently of

variables included in X.
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In particular, we expect large firms to build generating units more frequently

than do small firms, generating spurious correlations between firm size and

adoption probabilities in the earlier models.

This is illustrated in figure 1. Denote the latent (unobserved) adoption

value for firm i at time t by A(X.,t). Firm i will adopt the new technology at

the first opportunity after A(X.,t) > A*, where A* is the "critical" level

required for adoption. Each time we observe the utility building a new unit we

learn one of two things. Either the utility uses an old technology, in which

case we know A(X.,t) < A*, or the utility adopts the new technology, in which

30
case we know A(X. ,t) > A*. Censoring occurs when a utility does not build

each year. Let t* be the date at which A(X.,t) > A*. We Vmow that t* lies

somewhere between the date of the last old unit (t_) and the date of the first

new unit (t,). For utilities that build freauentlv, the cao between t„ and t,

5 B
w'ill tend to be small and t.^ will be quite close to t* (see t_ and z^ in

figure 1). For utilities that build infrequently, the gap between t„ and t,

S S
may be large, suggesting that t may greatly ey^ceed t* (see t and t^ in

figure 1) .

^

If we have data on the units built before the utilitv adoDts the new

tectinology. we can correct this censoring bias by estimating adoption probabil-

ities conditional on building a new unit. Consider a panel data set with

obser^.-ations on each utilitv over time. For each vear, we obser\'e one of three

outcomes; the utility builds a unit and adopts the new technology, the utility

30 ^. ^ - -. . . , . .

iince we are interested in time to tirst use, not m tecnnoiogy cnoice
per se, we only need to observe building decisions until the first new tech-
nology unit is constructed.



23

builds a unit but does not adopt the new technology, or the utility does not

31
build any unit. This suggests a full likelihood function of the form:

(6) Pr(u . .u ) - n pr(utility i builds at t) • pr(A(X.,t) > A*)

it £ N

n pr(utility i builds at t) • pr(A(X.,t) < A*)

it £ N^
^

n pr(utility i does not build at t)

it ( N,

where u. is an observation on utility i's generating unit choice in year t, N..

is the set of utility-year observations in which utilities build and adopt the

new technology, N^ is the set of utility-year observations in which utilities

build but do not adopt the new technology, K., is the set of utility-year

observations in which utilities do not build anv units, and N, -i- N' -t- N\ - NT.
1 2 J

We choose a probit specification to model building probabilities for each

utility and a log-logistic hazard specification to model the evolution of the

32latent adoption probabilities
. "~ We assume, as discussed in note 17, that

utilities' building decisions are independent of their adoption decisions.

This imolies vields the lo^-liVielihood for the double-censored model:

Alter a uti_ity Duiids a unit with the new technology it is consiaered
to tie in the adoption state for the rest of the sarr.^le.

32 . . .

Any oi tne other models could be used to model the aaoption probaDil-
iry; we choose the log- logistic hazard because it is the m.ost flexible of the
models we consider.
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N T

(7) LL - E Z

i-1 t-1

b. a. (ln(4>(Z. «J')) + a^ln(t) + X./3^
It It It f if

ln(l + t exp(X.^^)) ) + b.^d - a.^)

liiCI-CZ.^*)) - ln(l + t exp(X.^^))

+ (1-b. )-ln(l - 4>(Z. -J'))
It It

where b.^ is a dummy variable equal to one if utility i builds a unit at time

t, otherwise; a.^ is a dummy variable equal to zero before the utility adopts

the new technology and one during all other years; "i are the parameters of the

variables Z in the building probit; and the subscript f denotes estimates from,

the full-maximum likelihood, double -censored model.

Under the independence assumption, this likelihood function is separable

33
in the building and adoption probabilities. Ve can therefore estimate the

parameters of the adoDtion decision bv estim.atinq the crobabilitv of adoration

conciticnai en in tnis licn

tion models discussed above arise from sample selection biases: these models

censor observa-ions in which utilities decide to build but not adopt the new

tecnnciogy. whiie sophisticated applications cf the conventional models

recognize t.nat the adoption date for non-adofters is right- censored at the end

of tne sam:ple date, the applications generally fail to treat the lef t-censorin

While the independence assumption m.av not be strictly true, we believe
it is approximately correct for this industry and that little would be gained
from the complexity introduced by allowing for correlated errors

.
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that arises because utilities' adoption decisions are not observed until they

v -n^ .34
build a new unit.

In the following section, we report results using each of the four

specifications we have developed: Tobit, Ueibull proportional hazards, log-

logistic hazard, and hazard models conditional on building. We expect the

first three specifications to yield qualitatively similar results, although the

magnitude and interpretation of the coefficients will vary across the models,

due primarily to their different implicit assumptions on the evolution of the

hazard rate through time. The results from these models indicate what our

estimates would be if we used the techniques common in the diffusion litera-

ture. We are most interested in comparing these estimates to those from tne

model that conditions on building decisions, which we consider to be a more

correct specification for our problem.. Differences between the first three

sets of results and those of the double censored problem will provide inior-a-

tion on the significance of the biases introduced by assuming that adoption (or

observation) opportunities are randomly distributed across firms, independently

of variables chat affect adoption probabilities. 'while estimates oi the

building probabilirv are not recuired to estim.ate the adoption parajneters ,
we

also refcrr results from buildinz trcbit ecuations to illustrate the ir.t_uer.ce

or size en acoiition CDDortunities

.

An equivalent statistical treatment for the bias is to write the

likelihood function as a left- and right-censored hazard model, in which we

observe tO and tl for each utility, and estimate the likelihood function ove:

K: n ?r(tO < t* < tl)

.
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5. Data and Results '

'

,
,

The statistical models developed in the previous section are estimated

using data on the building decisions and technology choices of 1^^ electric

utilities over the 1950 through 1980 period. In this section, we first

describe the data used in the analysis and present descriptive statistics on

the patterns of technology adoption in the industry. We next report estimates

of adoption patterns for the 2400 psi technology and compare the results across

different statistical specifications; the corresponding results for the

supercritical technology follow. The section concludes by discussing what we

learn from the various statistical models.

Data and descriptive statistics :•''"

Our data set consists of information on a census of l^iA electric utilities

that built one or more fossil- fired steam turbine generating units between 1950

35
and 1980. For these utilities, we collected information on the date and

technology type of all fossil-fuel steam turbine capacity additions, firm, size

in megawatts of capacity, capacity growth rates, average fuel cost per million

Btus . and t^-pe of ownership (investor, municipal, federal, or cooperative).

'we define X, the set of exogenous variables that affect a utility's

adoption decision, to include four variables: firm site, tvpe of ow-nersTiip,

average fuel cost, and (perhaps) time. To allow for nonlinear effects of fina

site, we include both site and site-squared in the equations. The building

equation models a utility's decision to build zero versus one or more units in

35
Missing data forced us to exclude from the sample three utilities that

built coal-fired generating units during this period. The utilities included
in the sample constructed 1091 units between 1950 and 1980, which comprise
virtually all fossil- fired steam turbine capacity added during the sample
period.
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a given year. Ue assume that Z, the set of variables that influence a util-

ity's building decision, includes the utility's size, growth rate, ouTiership

structure (perhaps), and time. The model allows for nonlinear size effects and

time trends by including quadratic terms in both utility size and time.

As discussed earlier, the adoption models are based on a constant X. for^ 1

each firm, raising the question of when the characteristics should be

measured. We consider two dates: 1960 and 1970 (due to data collection

37
requirements, fuel prices are observed two years after each of these dates).

The first of these allows us to measure firm characteristics part-way through

the diffusion process for the 2400 psi technology and before the diffusion

process really begins for the supercritical technology. If utilities are

forward-looking, 1960 ir.ay be too myopic. we therefore consider 1970 as an

alternative. As there is no strong theoretical basis for choosing between

these, we allow the data to decide which is more appropriate.

Before presenting results fron: tightly parameterized statistical models of

the diffusion process it mav be instructive to examine some sin-.ple descriptive

statistics on the data. Table 1 reports means and standard deviations for the

variables usee in the statistical analysis. .As indicated, the 2400 psi tech-

nology had diff-^sed quite widelv throush the incustrv bv 19SC. with 93 utili-

ties (b5 percent) adoptins this technolocv bv the end of the sample. Tne

supercritical technoloev achieved much more limited diffusion, with onlv 39

utilitie s (27 percent) adopting the supercritical technology by 19S0.

Building probabilities may be a function of constant or time-varying
firm, characteristics.

;7

ava 1 1 aD

The choice of dates is somewhat arbitrarv; we were influenced by data
1 ; selecting tnese two cancicates.
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This pattern is amplified in table 2, which reports the distribution of

technology type for the 1091 generating units included in our sample. The

table highlights the co-existence of both old and new technologies over long

periods: units continue to be built using old lower pressure technologies

twenty or more years after newer technologies have been introduced. The

relative dominance of different technologies does shift over time, however.

The 2A00 psi technology supplanted lower pressure technologies as the modal

choice by the mid-1960s and was itself superceded by the supercritical technol-

ogy during the early 1970s. As noted earlier, however, the 2^400 psi technology

re-emerged as the leading technology during the last part of the 1970s, most

likely in response to increasing dissatisfaction with the operating performance

of supercritical units. "

The differences in the diffusion path of the 2^00 psi and supercritical

technologies may be illustrated best by a graph of the diffusion paths. Figure

2 plots nonparametric (Kaplan-Meier) estimates of the survivor function for

each of the two technologies (see Kalbfleisch and Prentice, 19S0). As indica-

ted by the bottom curve, the probability of adopting the 2A00 psi technology is

quite small until after 1956. From 1957, the hazard rate (which is propor-

tional to the slope of the curve) looks fairlv constant and relativeiv large.

Although it flattens somewhat in the m.id-1970s, it returns to the previous rate

by the end of the period, suggesting that continued penetration of the technol-

ogy through the remaining 3^; percent of the utilities is likely.

The picture is quite different for the supercritical technology. The

hazard rates are small until the m,id-1960s, increase substantially for a 5 year

period, and then decline again in the early 1970s. Virtuallv no utilities

adopted this technology after 1975 and it seems likelv that the technolo£;v will
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never penetrate much beyond the 27 percent adoption level achieved by 1980.

With these diffusion patterns in mind, we now turn to parametric estimates of

adoption probabilities, to determine whether systematic differences across

utilities explain the positions of individual firms along the diffusion cur\'es.

Results for the 2A00 psi technolorv

In this section, we first examine Tobit, proportional hazards, and log-

39
logistic hazard estimates for the diffusion of the 2A00 psi technology.

These allow our results to be compared to those of other diffusion studies,

most of which use a variant of one of these models. After discussing these

results, we examine estimates from, the hazard model conditional on building to

determine the extent of biases introduced by the exclusion of adoption oppor-

tunity information from the first three models.

Table 3 reports results from the first three models. As discussed

earlier, the exogenous variables in the models are utility size and its scusre

the utility's average fuel cost, ownership dummy variables for coops and

govermr.ent- owned utilities, and time. Because specifications that measure

utility size by 1970 capacitv outperform: those that use 1960 measures of size,

onlv t."";£ tormer are reported. The first three col'u:r.ns report Totit, Veiru-^

in tuture w-ort;, one might wish to modifv the like_ihood tunction .c

allow rhe cumulative probabilitv of adopting this technolosr*' to as\"ir.ptote ever
time to some level consicerablv less than one.

----- t.ne likelihood functions "csec. in this stucv were programmed ir.

Fortran and estim.ated using a m.aximum likelihood routine based on the BHHH
algorith.T,. We are grateful to Kank Farber for providing us with the code for
nis optimization routine.

40
The results using 1550 size measures are quite sim.ilar, but the

standard errors tend to be somewhat larger and the fit of the equation sorr;ewha;

poorer than in the corresponding equations that use 1970 capacitv.
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proportional hazards, and log-logistic hazards results using 1962 average fuel

prices. The second three columns report similar specifications using 1972

average fuel prices. Since the Tobit model implicitly assumes a constant

hazard through time, time is not included in the Tobit specifications.

The results are quite similar across all six specifications. Firm size

has a strong, significant, positive effect on adoption probabilities. Larger

firms are likely to adopt the technology earlier than are smaller firms,

although there are diminishing returns as indicated by the negative coefficient

on the size-squared term. The quadratic peaks at 8,500 to 10,000 .Mw of 1970

capacity, substantially above the sample mean of 1,900 .Mw but not beyond the

sample size range. This suggests that for a few large utilities, size has a

net negative effect on adoption probabilities. The estimated magnitude of the

size effect is virtually identical across the Tobit and Weibull specifications

and is substantially larger in the log-logistic specification.

Fuel prices appear to have some positive impact on adoption probabilities,

although the effect is statisticallv distinguishable from zero only in the

hazard models that use 1972 fuel prices. The point estimates for coop and

government ownership suggest negative effects on acootion probabilities, but

these are imprecisely measured and cannot be statistically distinguished frc-

zero. Finally, the hazard models suggest that adoption probabilities initially

rise through time. The magnitude of the time coefficient in the log-logistic

spectiication implies that the hazard diminishes within the sample period,

suggesting that the weibull's restriction on a monotonic hazard should be

re j ec ted

.

To explore how much of the size effect in these results m.ight be due to

diflerences in adoption opoortunities , we next estim.ated a model of utilities'
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building decisions. Table U reports estimates from probit models of the

building equations. The results indicate strong positive effects of size on

building probabilities, although the quadratic terms indicate that the size

effects peak sooner for the building models than they do for the adoption

models (between 1600 and 6000 Mw) . This implies that building probabilities

decline with size over part of the sample of utilities. Capacity growth rates

also have substantial positive effects on building probabilities. Building

probabilities rise through time, but at a declining rate. Finally, coops and

munis appear to build less frequently than do comparable investor-ovTied

utilities, although the estimated effect is fairly unstable and imprecise

across specifications.

These results suggest that at least part of the firm size effect in the

adoption models may be due to differences in the frequency of building, which

translate into differences in the frequency with which we observe technology

choices of different types of f irm.s . To treat this possible source of bias, we

re-estimate the adoption probabilities using the full information structure cf

the problem. while we could in principle apply this technique to all tnree

models, the Tobit and Veibull model imnose restrictions on the tim.e path of

nazarc rates that irore fler-iible models reiect. so we apply this technique only

to the log- logistic hazard. This model is estimated on a panel of annual data

on each utility over the 1950 through 19S0 period.

-.aD^e J reports aacption probabilities conditional on building :cr a

num.ber of specifications of the 2400 psi technology log- logistic hazard. A

comparison of table 5 with table 3 suggests cuite substantive changes from the

The estimates assum.e serially uncorrelated independent errors. If
these assumptions are violated- - for example, by negative serial correlation in
the errors- -the reported standard errors will be inconsistent.
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simple adoption model results. First, the estimated effect of firm size on

adoption probabilities is halved. While larger firms appear to exercise their

opportunities to adopt the 2400 psi technology earlier than do smaller firms,

about half the effect of firm size on the simple adoption probabilities can be

attributed to differential building rates. This suggests that models that fail

to account for systematic differences in adoption or observation opportunities

may significantly overstate size effects on innovativeness . The quadratic term

suggests that size effects peak in the same range as estimated in table 3.

Moreover, after treating this source of bias, the effects of the other

factors in the adoption model become much more pronounced. Average fuel costs

have a much larger estimated effect on decisions to adopt the new technology

and can be easily bounded away from zero. The owp.ership variables also have a

significant effect in the full maximum liV:elihood m.odel. Once differential

building rates are accounted for, government- owned and cooperative utilities

are less likely to adopt the 2400 psi technology than are investor- owned

utilities. At least part of this effect may be due to the smaller effect of

firm size. Since munis and coops tend to be smaller than are investor-owned

utilities, firm size mav have absorbed part of the ow-nership effects in the

earlier results. VThen the effect of firir size is reduced, the differences

among the ow-nership structures becomes more apparent.

Results ror the s-unercri tical technolorv

These same statistical models can be used to studv the determ.inants of

adoption probabilities for the supercritical technology. As we noted earlier,

the greater uncertainty surrounding this technology is likely to have slowed

its diriusion and the develop.ment of substantial reliability problems with
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early supercritical units appears to have almost halted its diffusion by the

end of the 1970s. We are interested in exploring whether these factors also

affected which firms are most likely to have adopted the technology.

Table 6 presents results from both simple adoption probability models and

full maximum likelihood models. In columns 1 through 3, we report Tobit,

Weibull proportional hazards, and log-logistic hazard results, using 1970

capacity and 1972 fuel prices. In general, these results are much noisier

than were those for the 2^00 psi technology. Utility size has a slightly

larger effect on adoption probabilities for the supercritical technology,

although the estimates are within a standard deviation of those for the 2^400

psi technology. The quadratic in size continues to be important and adoption

probabilities again peak in the 8,500 to 10,000 Nw range. .Adoption probabili-

ties rise through time (q > 1 in both u'eibull and log-logistic models), but

eventually decline (in the log-logistic results). The time paths are statisti-

cally indistinguishable from those for the 2-^00 psi technology, but the point

estimates suggest a somewhat slower diffusion rate for supercritical units.

The fuel price and ownership variables have no clear effect in these equations;

the point estimates are unstable and the standard errors are enormous relative

to the cos I z icier.ts .

We report estirr.ates for the full maximuji: likelihood model ir. coiun:r.s •^ and

5 or tatle 6. Correcting for building opoortunities has much less impact on

the resu_ts icr the supercritical technology than it had for the 2-.00 psi

technology. The firm size effect remains within 10 to 20 percent of z'r.e

estimates fron; simple adoption probability models and are substantially larger

than were the corrected size effects for the 2400 psi technology. The hazard

-ste rises more quickly in the full maximuir. likelihood model, though the
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difference in the coefficient from the simple log-logistic model does not

appear statistically signficant. The estimated effects of fuel prices and

ownership structures continue to be unstable and very poorly identified.

These results may be an artifact of the limited number of utilities that

adopt this technology over the sample period (39 of lAA). With only one-

quarter of the sample ever adopting the technology, the data appear not to

contain enough information to pin down distinctions among the adopters and non-

adopters. Alternatively, the results may reflect the peculiarities of the

supercritical technology itself.

6 . Conclus i ons

The results presented in this paper provide strong evidence that large

firms tend to lead the electric utility industry in adopting technological

innovations. For both of the new technologies we analyze, large firms were

significantly more liV:ely to be among the early adopters. There does,

however, appear to be an optim.urn size with respect to encouraging the diffusion

of innovations; for the very largest firm.s in the industry, increasing size

reduces the probability of earlv adoption. Our results also suggest that

Oster's (19S2) finding of a negative correlation between firir: size and inncva-

tiveness in the steel industrv does not generalize to all capital-intensive

industries

.

Our results also suggest that ownership structure can exert an i-portant

influence on innovative activity. Investor-owned utilities tended to adopt

the 2^00 psi technology earlier than did their m.unicipally-owned and

cooperatively-owned counterparts in the industry, leading to more rapid

diffusion of the technology through the industrv. This finding is consistent
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with the observation that investor-owned utilities also exhibit more involve-

ment in industry research and development activities and organizations.

Finally, our analysis provides strong evidence on the need to control for

differences in building opportunities when analyzing firms' decisions to adopt

technologies embodied in long-lived capital. In most cases, we expect to

observe more frequent capacity additions for larger firms in an industry. This

can lead econometric results to overstate the correlation between firm size and

adoption probabilities. We propose a methodology to correct this bias, and

find that its application to the 2A00 psi technology reduces estimated size

effects by one-half. Moreover, we find that the effects of ownership structure

and factor cost differentials are larger and more precisely estimated after

controlling for the opportunity bias. These results suggest that future

studies of technology diffusion, and other studies that employ hazard rate

analysis, may benefit from application of this methodology.
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Table 1

SAMPLE DESCRIPTIVE STATISTICS
(1^4 Utilities)

Variable Mean Standard Deviation

Utility Size (hundred Mw)

1960 capacity 9.91 14.75
1970 capacity ---.,;, 19.26 27.54

2
Utility Size (hundred Mw)

1960 capacity 314.45 1153.19
1970 capacity 1124.57 3505.59

Capacity growth rate (%) 3.27 4.95

Average fuel cost (cents/million Btu)

1962 26.51 6.03
1972 39.48 11.81

OwTiership (0,1)
Investor . 70

Government . 17

Cooperative . 13

2400 risi technolorv

First adoption 1953
Percent utilities adopting bv 1980 .65

Mean adoption date (for adopters) 1967.9

Supercritical rechnolorv

First adoption 1957
Percent utilities adopting by 19S0. .27

Mean adoption date (for adopters) 195S.I
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Table 2

NUMBER OF UNITS BUILT
BY TECHNOLOGY CLASS AND TIME PERIOD

Time < 2000 psi 2000 psi 2400 psi 3500 psi Total

1950-1954 115 11 2 128
1955-1959 150 57 33 2 242
1960-1964 71 41 61 7 180
1965-1969 47 8 64 49 168
1970-1974 50 13 62 70 195
1975-1980 29 10 108 31 178

Total 462 140 330 159 1091
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Table 3

ADOPTION PROBABILITY ESTIMATES. NOT CONDITIONED ON BUILDING:
2A00 PSI TECHNOLOGY

Adoption Probability Model
Log- Log-

Variable Tobit Weibull locistic Tobit Weibull lop.istic

Fuel price
as of: 1972 197: 1972 1962 1962 1962

Constant .26A -11.408 -16.290 .840 -10.917 -15.096

-
(.A99) (1.253) (1.581) (.639) (1.241) (1.548)

Size .070 .070 .118 .070 .068 .120

(1970) (.OU) (.008) (.016) (.014) (.008) (.015)

Size2 - .00035 - .0004 -.0007 -.00035 - .0004 -.0007
(1970) (.00009) (.00006) (.00009) (.00009) ( .00006) (.00009)

Fuel Price .003 .015 .029 -.017 .011 .010

(.011) ( .008) (.013) (.021) (.016) (.C26)

Coop -.574 - .244 -.263 -.648 -.323 -.350

(.429) (.439) (.583) (.424) (.427) (-396)

Goverrjnent -.389 -.413 -.265 -.412 -.418 -.263

(.331) (.284) (.^^77) (.331) (.303) (.-£-)

Time .. -
4.319 2.947 4.207

(.310) (.395) (.295) (.387)

Sigma 1.391
(-172)

-- -- 1.384

(.168)

-- --

Log-
likelihood -235.52 -356.66 - 350 92 -234.76 -358.05 -352.98

Number of
Observations 144 144 144 144 144 144

Standard errors in parentheses
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Table 4

ESTIMATES OF BUILDING PROBABILITIES
PROBIT MODELS

Variable 1970 Size

Constant -2.375

(.106)

Size .020

(.003)

Size^ -' -.0002

(.00002)

Growth .112

(.011)

Tiree .119

(.013)

2
Time -.003

(.0004)

Coop - . 101

(.093)

Governir.ent .015

(.077)

SaT.ple propcr~ion
no build .804

Proportion Correctly
Predicted .830

Log- likelihood -1778.97

1960 Size Time-Varvinp Size

-2.308 -2.235

(.105) (.105)

.024 .004

(.005) (.004)

-.0004 -.0001

(.00005) (.00003)

.119 .136

(.010) (.008)

.121 .123

(.012) (.013)

-.003 -.003

(.0004) ( .0004)

-.153 - .291

(.053) (.091)

- .04i -.183

(.075) (.075)

Number of Obs

.

4464

.804

-1787.22
<i464

.804

.831

-1791.67

Standard errors ir. parentheses



Table 5

ADOPTION PROBABILITY ESTIMATES, CONDITIONAL ON BUILDING:
2400 PSI TECHNOLOGY

Variable

Constant

1972 fuel price 1962 fuel price

Size

(1970)

2
Size

(1970)

Fuel Pr ice

Coop

(joverrmient

Time

Log -likelihood
Number of Obser^'ations

-15.615 -13.296
(1.157) (1.055)

.051 .051

(.009) (.008)

-.0002 - .0002

(.00006) ( .00005)

.061 . 044

(.009) (.016)

" -1.2A6 -1.424

(.401) (.423)

-1.056 -1.092

(.326) (.331)

/ '-. r\ r 4.013
(.305) (.275)

-2557. S7 -2578.71
UUi^U 4464

Standard errors in parentheses.



43

Table 6

ADOPTION PROBABILITY ESTIMATES:
SUPERCRITICAL TECHNOLOGY

Variab]

e

Not Conditioned on Ruildinp Conditioned on Building

Loc-
Tobi t Weibull lor.istic Fuel 72 Fuel 62

Constant -3.479 -11.315 -15.196

(1.625) (2.282) (2.392)

-16.766 -15.389
(1.448) (1.429)

Size

(1970)

.122 .085 .100

(.046) (.014) 1.020

.090 .092

(.010) (.011)

Size

(1970)

-.0006 -.0005 -.0005

(.00025) (.0001) (.001)

-.0005 -.0005

(.00007) (.00007)

Fuel Price
(1972)

.007 -.009 .005

(.028) (.016) (.021)

.004 -.038

(.011) (.021)

Coop .230 .044 .222

(.960) (.798) (.849)

-.603 -.661

(.657) (.647)

Govemment -.128 .104 .073

(1.019) (.741) (.838)

.257 .311

(.463) (.453)

2.675 3.639

(.629) (.6':;2)

4. 468 4.366
(.407) (.415)

Sigma 2.3-^4

(-615)

Log-likelihood
Number of Obs

.

•90.76 -1S3.39 -178.9a
144 lUU lUii

2496.24 -2494.09
A464 uabu

Standard errors in parentheses.





Figure 1
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Figure 2

KAPLAN-MEIER ESTIMATES OF SURVIVOR FUNCTIOf^S
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