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The Economic Impacts of Climate Change:

Evidence from Agricultural Output and Random Fluctuations in Weather

ABSTRACT

This paper measures the economic impact of climate change on US agricultural land by estimating the

effect of the presumably random year-to-year variation in temperature and precipitation on agricultural

profits. Using long-run climate change predictions from the Hadley 2 Model, the preferred estimates

indicate that climate change will lead to a $1.3 billion (2002$) or 4.0% increase in annual profits. The

95% confidence interval ranges from -$0.5 billion to $3.1 billion and the impact is robust to a wide

variety of specification checks, so large negative or positive effects are unlikely. There is considerable

heterogeneity in the effect across the country with California's predicted impact equal to -$0.75 billion (or

nearly 15% of state agricultural profits). Further, the analysis indicates that the predicted increases in

temperature and precipitation will have virtually no effect on yields among the most important crops,

which suggest that the small effect on profits are not due to short-run price increases. The paper also

implements the hedonic approach that is predominant in the previous literature and finds that it may be

unreliable, because it produces estimates of the effect of climate change that are extremely sensitive to

seemingly minor decisions about the appropriate control variables, sample and weighting. Overall, the

findings contradict the popular view that climate change will have substantial negative welfare

consequences for the US agricultural sector.
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Introduction

There is a growing consensus that emissions of greenhouse gases due to human activity will lead to

higher temperatures and increased precipitation. It is thought that these changes in climate will impact

economic well-being. Since temperature and precipitation are direct inputs in agricultural production,

many believe that the largest effects will be in this sector. Previous research on climate change is

inconclusive about the sign and magnitude of its effect on the value of US agricultural land (see, for

example, Adams 1989; Mendelsohn et. al 1994 and 1999; Kelly, Kolstad, and Mitchell 2005; Schlenker,

Hanemann, and Fisher (henceforth, SHF) 2005, 2006).

Most prior research employs either the production function or hedonic approach to estimate the

effect of climate change.' Due to its experimental design, the production function approach provides

estimates of the effect of weather on the yields of specific crops that are purged of bias due to

determinants of agricultural output that are beyond farmers' control (e.g., soil quality). Its disadvantage is

that these estimates do not account for the full range of compensatory responses to changes in weather

made by profit maximizing farmers. For example in response to a change in climate, farmers may alter

their use of fertilizers, change their mix of crops, or even decide to use their farmland for another activity

(e.g., a housing complex). Since farmer adaptations are completely constrained in the production function

approach, it is likely to produce estimates of climate change that are biased downwards.

The hedonic approach attempts to measure directly the effect of climate on land values. Its clear

advantage is that if land markets are operating properly, prices will reflect the present discounted value of

land rents into the infinite future. In principle, this approach accounts for the full range of farmer

adaptations. However, its validity rests on the consistent estimation of the effect of climate on land

values. Since at least the classic Hoch (1958 and 1962) and Mundlak (1961) papers, it has been

recognized that unmeasured characteristics (e.g., soil quality and the option value to convert to a new use)

are important determinants of output and land values in agricultural settings." Consequently, the hedonic

approach may confound climate with other factors and the sign and magnitude of the resulting omitted

variables bias is unknown.

In light of the importance of the question, this paper proposes a new strategy to estimate the

impact of climate change on the agricultural sector. The most well respected climate change models

predict that temperatures and precipitation will increase in the future. This paper's idea is simple—we

exploit the presumably random year-to-year variation in temperature and precipitation to estimate whether

1

Throughout "weather" refers to temperature and precipitation at a given time and place. "Climate" or "climate

normals" refers to a location's weather averaged over long periods of time.
2 Mundlak focused on heterogeneity in the skills of fanners, but in Mundlak (2001), he writes, "Other sources of

farm-specific effects are differences in land quality, micro-climate, and so on" (p. 9).



agricultural profits are higher or lower in years that are warmer and wetter. Specifically, we estimate the

impacts of temperature and precipitation on agricultural profits and then multiply them by the predicted

change in climate to infer the economic impact of climate change in this sector.

To conduct the analysis, we compiled the most detailed and comprehensive data available to form

a county-level panel on agricultural profits and production, soil quality, climate and weather. These data

are used to estimate the effect of weather on agricultural profits and yields, conditional on county and

state by year fixed effects. Thus, the weather parameters are identified from the county-specific

deviations in weather about the county averages after adjustment for shocks common to all counties in a

state. Put another way, the estimates are identified from comparisons of counties within the same state

that had positive weather shocks with ones that had negative weather shocks, after accounting for their

average weather realization.

This variation is presumed to be orthogonal to unobserved determinants of agricultural profits, so

it offers a possible solution to the omitted variables bias problems that plague the hedonic approach. The

approach's primary limitation is that farmers cannot implement the full range of adaptations in response

to a single year's weather realization. Consequently, its estimates may overstate the damage associated

with climate change or, put another way, be downward biased.

Figures 1A and IB summarize the paper's primary findings. These figures show the fitted

quadratic relationships between aggregate agricultural profits, the value of the corn harvest, and the value

of the soybean harvest with growing season degree-days (1A) and total precipitation (IB). (These

measures of temperature and precipitation are the standard in the agronomy literature.) The key features

of these estimates are that they are conditioned on county fixed effects, so the relationships are identified

from the presumably random variation in weather across years within a county. The estimating equations

also include state by year fixed effects. The vertical lines correspond to the national averages of growing

season degree-days and precipitation. The average county is predicted to have increases of roughly 1,200

degree-days and 3.0 inches during the growing season

The striking finding is that all of the response surfaces are flat over the ranges of the predicted

changes in degree-days and inches. If anything, climate change appears to be slightly beneficial for

profits and yields. This qualitative finding holds throughout the battery of tests presented below.

Using long-run climate change predictions from the Hadley 2 Model, the preferred estimates

indicate that climate change will lead to a $1.3 billion (2002$) or 4.0% increase in annual agricultural

sector profits. The 95% confidence interval ranges from -$0.5 billion to $3.1 billion so large negative or

positive effects are unlikely. The basic finding of an economically and statistically small effect is robust

to a wide variety of specification checks including adjustment for the rich set of available controls,

modeling temperature and precipitation flexibly, estimating separate regression equations for each state,.



and implementing a procedure that minimizes the influence of outliers. Additionally, the analysis

indicates that the predicted increases in temperature and precipitation will have virtually no effect on

yields among the most important crops (i.e., corn for grain and soybeans). These crop yield findings

suggest that the small effect on profits is not due to short-run price increases.

Although the overall effect is small, there is considerable heterogeneity across the country. The

most striking finding is that California will be substantially harmed by climate change. Its predicted loss

in agricultural profits is $750 million, and this is nearly 15% of current annual profits in California.

Nebraska (-$670 million), North Carolina (-$650 million) are also predicted to have big losses, while the

two biggest winners are South Dakota ($720 million) and Georgia ($540 million). It is important to note

that these state-level estimates are demanding of the data and therefore less precise than is ideal.

The paper also re-examines the hedonic approach that is predominant in the previous literature.

We find that estimates of the effect of the benchmark doubling of greenhouse gasses on the value of

agricultural land range from -$200 billion (2002$) to $320 billion (or -18% to 29%), which is an even

wider range than has been noted in the previous literature. This variation in predicted impacts results

from seemingly minor decisions about the appropriate control variables, sample, and weighting. Despite

its theoretical appeal, we conclude that the hedonic method may be unreliable in this setting.
3

The paper proceeds as follows. Section I provides the conceptual framework for our approach.

Section II describes the data sources and provides summary statistics. Section III presents the

econometric approach and Section IV describes the results. Section V assesses the magnitude of our

estimates of the effect of climate change and discusses a number of important caveats to the analysis.

Section VI concludes the paper.

I. Conceptual Framework

A. A New Approach to Valuing Climate Change

In this paper we propose a new strategy to estimate the effects of climate change. We use a

county-level panel data file constructed from the Censuses of Agriculture to estimate the effect of weather

on agricultural profits, conditional on county and state by year fixed effects. Thus, the weather

parameters are identified from the county-specific deviations in weather about the county averages after

adjustment for shocks common to all counties in a state. This variation is presumed to be orthogonal to

unobserved determinants of agricultural profits, so it offers a possible solution to the omitted variables

bias problems that appear to plague the hedonic approach.

3
Recent research demonstrates that cross-sectional hedonic equations appear misspecified in a variety of contexts

(Black 1999; Black and Kneisner 2003; Chay and Greenstone 2005; Greenstone and Gallagher 2005).



This approach differs from the hedonic one in a few key ways. First, under an additive

separability assumption, its estimated parameters are purged of the influence of all unobserved time

invariant factors. Second, it is not feasible to use land values as the dependent variable once the county

fixed effects are included. This is because land values reflect long run averages of weather, not annual

deviations from these averages, and there is no time variation in such variables.

Third, although the dependent variable is not land values, our approach can be used to

approximate the effect of climate change on agricultural land values. Specifically, we estimate how farm

profits are affected by increases in temperature and precipitation. We then multiply these estimates by the

predicted changes in climate to infer the impact on profits. Since the value of land is equal to the present

discounted stream of rental rates, it is straightforward to calculate the change in land values when we

assume the predicted change in profits is permanent and make an assumption about the discount rate.

B. The Economics of Using Annual Variation in Weather to Infer the Impacts of Climate Change

There are two economic issues that could undermine the validity of using the relationship

between short run variation in weather and farm profits to infer the effects of climate change. The first

issue is that short run variation in weather may lead to temporary changes in prices that obscure the true

long-run impact of climate change. To see this, consider the following simplified expression for the

profits of a representative fanner that is producing a given crop and is unable to switch crops in response

to short run variation in weather:

( 1

)

n = p(q(w)) q(w) - c(q(w)),

where p, q, and c, denote prices, quantities, and costs, respectively. Prices and total costs are a function of

quantities. Importantly, quantities are a function of weather, w, because precipitation and temperature

directly affect yields.

Since climate change is a permanent phenomenon, we would like to isolate the long run change in

profits. Consider how the representative producer's profits respond to a change in weather:

(2) dn I dw = (dp I dq) (dq I dw) q + (p - 5c / dq) (Sq / dw).

The first term is the change in prices due to the weather shock (through weather's effect on

quantities) multiplied by the initial level of quantities. When the change in weather affects output, the

first term is likely to differ in the short and long runs. Consider a weather shock that reduces output (e.g.,

(i.e., dq I dw < 0). In the short run supply is likely to be inelastic due to the lag between planting and

harvests, so (dp I 3q)short Run < 0. This increase in prices helps to mitigate the representative farmer's

losses due to the lower production. However, the supply of agricultural goods is more elastic in the long

run as other farmers (or even new fanners) will respond to the price change by increasing output.

Consequently, it is sensible to assume that (dp I <3q)Long Run > (dp I 3q)shon Run and is perhaps even equal to-



zero. The result is that the first term may be positive in the short run but small, or zero in the long run.

The second term in equation (2) is the difference between price and marginal cost multiplied by

the change in quantities due to the change in weather. This term measures the change in profits due to the

weather-induced change in quantities. It is the long run effect of climate change on agricultural profits

(holding constant crop choice), and this is the term that we would like to isolate.

Although our empirical approach relies on short run variation in weather, there are several

reasons that it may be reasonable to assume that our estimates are largely purged of the influence of price

changes (i.e., the first term in equation (2)). Most importantly, we find that the predicted changes in

climate will have a statistically and economically small effect on crop yields (i.e., quantities) of the most

important crops. This finding undermines much of the basis for concerns about short run price changes.

Further the preferred econometric model includes a full set of state by year interactions, so it non-

parametrically adjusts for all factors that are common across counties within a state by year, such as crop

price levels.
4

Thus, the estimates will not be influenced by changes in state-level agricultural prices.

Interestingly, the qualitative results are similar whether we control for year or state by year fixed effects.
5

The second potential threat to the validity of our approach is that fanners cannot undertake the

full range of adaptations in response to a singe year's weather realization. Specifically, permanent

climate change might cause them to alter the activities they conduct on their land. For example, they

might switch crops because profits would be higher with an alternative crop.

Figure 2 illustrates this issue. Profits per acre are on the y-axis and temperature is on the x-axis.

For simplicity, we assume that the influence of precipitation and all other exogenous determinants (e.g.,

soil quality) of profits per acre have been successfully controlled or adjusted for. The Crop 1 and Crop 2

Profit Functions reveal the relationship between profits per acre and temperature when these crops are

chosen. It is evident that crop-specific profits vary with temperatures. Further, the profit-maximizing

crop varies with temperature. For example, Crop 1 maximizes profits between T) and Ti, Crops 1 and 2

produce identical profits at Ti where the profit functions cross (i.e., point B), and Crop 2 is optimal at

temperatures between T 2 and T3 .

The hedonic equilibrium is denoted as the broken line and it represents the equilibrium

4
If production in individual counties affects the overall price level, which would be the case if a few counties

determine crop prices, or there are segmented local (i.e., geographic units smaller than states) markets for

agricultural outputs, then this identification strategy will not hold prices constant. Production of the most important

crops is not concentrated in a small number of counties, so we think this is unlikely. For example, McLean County,

Illinois and Whitman County, Washington are the largest producers of corn and wheat, respectively, but they only

account for 0.58% and 1 .39% of total production of these crops in the US.
5 We explored whether it was possible to directly control for local prices. The USDA maintains data files on crop

prices at the state-level, but unfortunately these data files frequently have missing values and limited geographic

coverage. Moreover, the state by year fixed effects provide a more flexible way to control for state-level variation in

price, because they control for all unobserved factors that vary at the state by year level.



relationship between temperature and profits. In the long run when farmers can freely switch crops, they

will choose to operate along the hedonic equilibrium because it reveals the crop choices that maximize

their profits. It is formed by the regions of each crop's profit function where that crop produces the

highest profits over all potential uses of that land.

Consider a permanent increase in temperature from T) to T3 . If farmers are able to switch

production from crop 1 to crop 2, then their profits can be read off the y-axis at point C. However,

farmers that are unable to switch crops will earn profits of C. Thus, the long-run change in profits is C -

A, but in the short run the difference is C - A, which is a downward biased estimate of the long-run

effect. It is noteworthy that if the new temperature is > T| and < T2 , then the farmer's short-run and long-

run profits are equal because the hedonic equilibrium and the crop 1 profit function are identical.

This paper's empirical strategy relies on year-to-year variation in weather and thus it is unlikely

that farmers are able to switch crops upon a year's weather realization. The import for the subsequent

analysis is that our estimates of the impact of climate change may be downward biased, relative to the

preferred long-run effect that allows for all economic substitutions. If the degree of climate change is

"small," however, our estimates are equal to the preferred long-run effect. One final note is that in

response to year-to-year fluctuations, farmers are able to adjust their mix of inputs (e.g., fertilizer and

irrigated water usage), so the subsequent estimates are preferable to production function estimates that do

not allow for any adaptation.

II. Data Sources and Summary Statistics

To implement the analysis, we collected the most detailed and comprehensive data available on

agricultural production, temperature, precipitation, and soil quality. This section describes these data and

reports some summary statistics.

A. Data Sources

Agricultural Production. The data on agricultural production come from the 1978, 1982, 1987,

1992, 1997, and 2002 Censuses of Agriculture. The operators of all farms and ranches from which

$1,000 or more of agricultural products are produced and sold, or normally would have been sold, during

the census year are required to respond to the census forms. For confidentiality reasons, counties are the

finest geographic unit of observation in these data.

In much of the subsequent regression analysis, county-level agricultural profits per acre of

farmland is the dependent variable. The numerator is constructed as the difference between the market

value of agricultural products sold and total production expenses across all farms in a county. The

production expense information was not collected in 1978 or 1982, so the 1987, 1992, 1997, and 2002-



data are the basis for the analysis. The denominator includes acres devoted to crops, pasture, and grazing.

The revenues component measures the gross market value before taxes of all agricultural products sold or

removed from the farm, regardless of who received the payment. Importantly, it does not include income

from participation in federal farm programs , labor earnings off the farm (e.g., income from harvesting a

different field), or nonfarm sources. Thus, it is a measure of the revenue produced with the land.

Total production expenses are the measure of costs. It includes expenditures by landowners,

contractors, and partners in the operation of the farm business. Importantly, it covers all variable costs

(e.g., seeds, labor, and agricultural chemicals/fertilizers). It also includes measures of interest paid on

debts and the amount spent on repair and maintenance of buildings, motor vehicles, and farm equipment

used for farm business. Its chief limitation is that it does not account for the rental rate of the portion of

the capital stock that is not secured by a loan, so it is only a partial measure of farms' cost of capital. Just

as with the revenue variable, the measure of expenses is limited to those that are incurred in the operation

of the farm so, for example, any expenses associated with contract work for other farms is excluded.
7

This measure of profits per acre is a substitute for the ideal measure of total rent per acre, so it is

instructive to compare the two. Since separate information on rental land is unavailable in the Censuses,

we used tabulations from the 1 999 Agricultural Economics and Land Ownership Survey to estimate the

mean rent per acre (calculated as the "cash rent for land, buildings, and grazing" divided by the "acres

rented with cash"
8

) as roughly $35 (2002S). The mean of agricultural profits per acre in the Census

sample is about $42 (2002$), so agricultural profits per acre appear to overstate the rental rate modestly.

Consequently, it may be appropriate to multiply the paper's estimates of the impact of climate change on

profits by 0.83 (i.e., the estimated ratio of rent to profits) to obtain a welfare measure.

In our replication of the hedonic approach, we utilize the variable on the value of land and

buildings as the dependent variable. This variable is available in all six Censuses.

Finally, we use the Census data to examine the relationship between the two most important crops

(i.e., corn for grain and soybeans) yields and annual weather fluctuations. Crop yields are measured as

total bushels of production per acres planted.

Soil Quality Data. No study of agricultural productivity would be complete without data on soil

6 An exception is that it includes receipts from placing commodities in the Commodity Credit Corporation loan

program. These receipts differ from other federal payments because farmers receive them in exchange for products.
7
The Censuses contain separate variables for subcategories of revenue (e.g., revenues due to crops and dairy sales),

but expenditures are not reported separately for these different types of operations. Consequently, we cannot

provide separate measures of profits by these categories and instead focus on total agriculture profits.
8 The estimate of acres rented with cash includes some acres where the rent is a combination of cash and a share of

the output. Consequently, the measure of rental rate per acre is an underestimate, because the cash rent variable

does not account for the value of payments in crops. Kirwan (2005) reports that among rental land where at least

part of the rent is paid in cash, roughly 85% of the rental contracts are all cash with the remainder constituting

cash/output share combinations. The point is that this downward bias is unlikely to be substantial.



quality, and we rely on the National Resource Inventory (NRI) for our measures of these variables. The

NRJ is a massive survey of soil samples and land characteristics from roughly 800,000 sites that is

conducted in Census years. We follow the convention in the literature and use a number of soil quality

variables as controls in the equations for land values, profits, and yields, including measures of

susceptibility to floods, soil erosion (K-Factor), slope length, sand content, irrigation, and permeability.

County-level measures are calculated as weighted averages across sites used for agriculture, where the

weight is the amount of land the sample represents in the county. Although these data provide a rich

portrait of soil quality, we suspect that they are not comprehensive. Our approach is motivated by this

possibility of unmeasured soil quality and other determinants of productivity.

Climate and Weather Data. The climate data are derived from the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM).
9

This model generates estimates of precipitation

and temperature at 4 x 4 kilometers grid cells for the entire US. The data that are used to derive these

estimates are from the National Climatic Data Center's Summary of the Month Cooperative Files. The

PRISM model is used by NASA, the Weather Channel, and almost all professional weather services. It is

regarded as one of the most reliable interpolation procedures for climatic data on a small scale.

This model and data are used to develop month by year measures of precipitation and temperature

for the agricultural land in each county for the 1970 - 2000 period. This was accomplished by overlaying

a map of land uses on the PRISM predictions for each grid cell and then by taking the simple average

across all agricultural land grid cells. To replicate the previous literature's application of the hedonic

approach, we calculated the climate normals as the simple average of each county's annual monthly

temperature and precipitation estimates between 1970 and two years before the relevant Census year.

Furthermore, we follow the convention in the literature and include the January, April, July, and October

mean as independent variables in the analysis (Mendelsohn et. al 1994 and 1999; SHF 2005).

Although the monthly averages may be appropriate for a hedonic analysis of property values,

there are better methods for modeling the effect of weather on annual agricultural profits. Agronomists

have shown that plant growth depends on the cumulative exposure to heat and precipitation during the

growing season. The standard agronomic approach for modeling temperature is to convert daily

temperatures into degree-days, which represent heating units (Hodges 1991; Grierson 2002). The effect

of heat accumulation is nonlinear since temperature must be above a threshold for plants to absorb heat

and below a ceiling as plants cannot absorb extra heat when temperature is too high. These thresholds or

bases vary across crops, but we join SHF (2006) and follow Ritchie and NeSmith's (1991) suggested

characterization for the entire agricultural sector and use a base of 46.4° Fahrenheit (F) and a ceiling of

PRISM was developed by the Spatial Climate Analysis Service at Oregon State University for the National.

Oceanic and Atmospheric Administration. See http://www.ocs.orst.edu/prism/docs/przfact.html for further details.

8



89.6° F (or 8° and 32° C). Ritchie and NeSmith also discuss the possibility of a temperature threshold at

93.2° F (34° C), above which increases in temperature are harmful. We explore this possibility below.

We use daily-level data on temperatures to calculate growing season degree-days between April

1
st

and September 30
lh

. This period covers the growing season for most crops, except winter wheat

(USDA, NASS 1997). The degree-days variable is calculated so that a day with a mean temperature:

below 46.4° F contributes degree-days; between 46.4° F and 89.6° F contributes the number of degrees

F above 46.4 degree-days; above 89.6° F contributes 43.2 degree-days. The growing season degree-day

variable is then calculated by summing the daily measures over the entire growing season.

Unfortunately, the monthly PRISM data cannot be used to directly develop a measure of growing

season degree-days. To measure these degree-day variables, we used daily-level data on mean daily

temperature from the approximately 8,000 operational weather stations located in the U.S. during our

sample period. These data were obtained from the National Climatic Data Center "Cooperative Summary

of the Day" Files. The construction of the sample used is described with more details in the appendix.

Our use of daily data to calculate degree-days is an important improvement over previous work that has

estimated growing season degree-days with monthly data and distributional assumptions (Thorn 1966;

SHF 2006). Finally, in the specifications that use the degree-days measures of temperature, the

precipitation variable is total precipitation in the growing season, which is measured with the PRISM data

as the sum of precipitation across the growing season months in the relevant year.

Climate Change Predictions. We rely on two sets of predictions about climate change to develop

our estimates of its effects on US agricultural land. The first predictions rely on the climate change

scenario from the l

sl

IPCC report associated with a doubling of atmospheric concentrations of greenhouse

gases by the end of the 21
s1

century (IPCC 1990; NAS 1992). This model assumes uniform increases

(across months and regions of the US and their interaction) of 5° F in temperature and 8% in precipitation

and has been used extensively in the previous literature (Mendelsohn et al. 1994 and 1999; SHF 2005).

The second set of predictions is from the Hadley Centre's 2
nd

Coupled Ocean-Atmosphere

General Circulation Model, which we refer to as Hadley 2 (T. C. Johns et al. 1997). This model of

climate is comprised of several individually modeled components — the atmosphere, the ocean, and sea

ice — which are equilibrated using a "spinup" process. The Hadley 2 model and an emissions scenario are

used to obtain daily state-level predictions for January 1994 through December 2099. The emissions

scenario assumes a 1% per year compounded increase in both carbon dioxide and IS92A sulphate

aerosols, which implies an increase in greenhouse gas concentrations to roughly 2.5 times current levels

by the end of the 21
s

' century. This emissions assumption is standard and the climate change prediction is

in the middle of the range of predictions. From these daily predictions, we calculate predicted growing

season degree-days and total precipitation using the formulas described above (see the Data Appendix for



further details).
10 We focus on the "medium term" and "long run" effects on climate, which are defined

as averages of growing season degree-days and precipitation over 2020-2049 and 2070-2099.

B. Summary Statistics

Agricultural Finances, Soil, and Weather Statistics. Table 1 reports county-level summary

statistics from the three data sources for 1978, 1982, 1987, 1992, 1997, and 2002. The sample is

comprised of a balanced panel of 2,268 counties." Over the period, the number of farms per county

varied between 680 and 800. The total number of acres devoted to farming declined by roughly 7.5%. At

the same time, the acreage devoted to cropland was roughly constant implying that the decline was due to

reduced land for livestock, dairy, and poultry farming. The mean average value of land and buildings per

acre ranged between $892 and SI, 3 70 (2002$), with the peak and trough occurring in 1978 and 1992,

respectively.
12

(All subsequent figures are reported in 2002 constant dollars, unless noted otherwise.)

The second panel details annual financial information about farms. We focus on 1987-2002,

since complete data is only available for these four censuses. During this period the mean county-level

sales of agricultural products ranged from $72 to $80 million. Although it is not reported here, the share

of revenue from crop products increased from 43.7% to 47.9% in this period with the remainder coming

from the sale of livestock and poultry. Farm production expenses grew from $57 million to $65 million.

The mean county profits from farming operations were S14.4 million, $14.0 million, $18.6 million, $10.0

million or $42, $41, $56 and $30 per acre in 1987, 1992, 1997, and 2002 respectively. These profit

figures do not include government payments, which are listed at the bottom of this panel. The subsequent

analysis of profits also excludes government payments.

The third panel lists the means of the available measures of soil quality, which are key

determinants of lands' productivity in agriculture. These variables are essentially unchanged across years

since soil and land types at a given site are generally time-invariant. The small time-series variation in

these variables is due to changes in the composition of land that is used for farming. Notably, the only

measure of salinity is from 1982, so we use this measure for all years.

Climate Change Statistics. Panels A and B of Table 2 report on the predictions of two climate

change models. All entries are calculated as the weighted average across the fixed sample of 2,268

The Hadley Centre has released a 3
rd

climate model, which has some technical improvements over the 2
nd

one.

We do not use it for this paper's predictions, because daily predictions are not yet available on a subnational scale

over the course of the entire 21
s

' century to make state-level predictions about climate.

" Observations from Alaska and Hawaii were excluded. We also dropped all observations from counties that had

missing values for one or more years on any of the soil variables, acres of farmland, acres of irrigated farmland, per

capita income, population density, and latitude at the county centroid. The sample restrictions were imposed to

provide a balanced panel of counties from 1978-2002 for the subsequent regressions.

All entries are simple averages over the 2,268 counties, except "Average Value of Land/Bldg (1$ acre)" and,

"Profit per Acre (l$/acre)", which are weighted by acres of farmland.
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counties, where the weight is the number of acres of farmland. The "Actual" column shows the 1970-

2000 averages of each of the listed variables. There are also columns for the predicted values of the

variables and the difference between the actual and predicted values. Finally, all of the information is

provided separately for non-irrigated and irrigated counties. We define a county as irrigated if at least

10% of its farmland is irrigated, and this definition is used throughout the remainder of the paper.

Panel A reports on the benchmark global wanning model from the l

sl IPCC report, which predicts

uniform (across season and space) increases of 5° F and 8% in precipitation. We mimic previous research

and focus on January, April, July, and October. There are also entries for growing season degree-days

and total precipitation.

Panel B reports on the long run predicted effects from the Hadley 2 Global Warming model for

growing season degree-days and precipitation. This information is listed for the country as a whole and

for each of the Census Bureau's four regions. The model predicts a mean increase in degree-days of

roughly 1,200 by the end of the century (i.e., the 2070-2099 period). The most striking regional

difference is the dramatic increase in temperature in the South. Its long run predicted increase in degree-

days of roughly 1,700 among non-irrigated counties greatly exceeds the approximate increases of 810,

1,000, and 960 in the Northeast, Midwest, and West, respectively. The overall average increase in

growing season precipitation in the long run is approximately 3.0 inches, with the largest predicted

increase in the South and smallest increase in the West. There is also substantial intra-regional (e.g., at

the state level) variation in the climate change predictions, and this variation is used in the remainder of

the paper to infer the economic impacts of climate change.

Weather Variation Statistics. In our preferred approach, we aim to infer the effects of weather

fluctuations on agricultural profits. We focus on regression models that include county and year fixed

effects and county and state by year fixed effects. It would be ideal if after adjustment for these fixed

effects, the variation in the weather variables that remains is as large as those predicted by the climate

change models used in this study. In this case, our predicted economic impacts will be identified from the

data, rather than by extrapolation due to functional form assumptions.

Panel C of Table 2 reports on the magnitude of the deviations between counties' yearly weather

realizations and their long run averages after taking out year (row 1) and state-by-year fixed effects (row

2). Therefore, it provides an opportunity to assess the magnitude of the variation in growing season

degree-days and precipitation after adjustment for permanent county factors (e.g., whether the county is

usually hot or wet) and national time varying factors (e.g., whether it was a hot or wet year nationally) or

state-specific time-varying factors (e.g., whether it was a hot or wet year in a particular state).

Specifically, the entries report the fraction of county by year observations with deviations at least

as large as the one reported in the column heading, averaged over the years 1987, 1992, 1997, and 2002.

11



For example, the "Removed State*Year Effects" degree-days row indicates that 24.5%, 9.3%, and 2.2%

of county by year observations had deviations larger than 400, 800, and 1,200 degree-days, respectively.

The corresponding row for growing season precipitation reports that 62.3% 35.3% and 18.1% of the

county by year observations had deviations larger than 1.0, 2.0, and 3.0 inches, respectively.

Temperature and precipitation deviations of the magnitudes predicted by the climate change

models occur in the data. This is especially true of precipitation where more than 1 8% of county by year

observations have a deviation larger than 3 inches, which roughly equals the predicted increase from the

long run Hadley 2 scenario. The impact of the scenario's mean increase of about 1,200 degree-days could

be non-parametrically identified, although it would come from just 2.2% of observations. However, 5%

of annual county observations have deviations as large as 1 ,000 degree-days. Finally, it is noteworthy

that differencing out state weather shocks does not substantially reduce the frequency of large deviations,

highlighting that there are important regional patterns to weather shocks.

III. Econometric Strategy

A. The Hedonic Approach

This section describes the econometric framework that we use to assess the consequences of

global climate change. We initially consider the hedonic cross sectional model that has been predominant

in the previous literature (Mendelsohn et. al, 1994, 1999; SHF 2005, 2006). Equation (3) provides a

standard formulation of this model:

(3) y ct
= X ct'P + £j 0i f(Wic

) + sct ,
sct

= ac + uct ,

where y c , is the value of agricultural land per acre in county c in year t. The t subscript indicates that this

model could be estimated in any year for which data is available. X ct is a vector of observable

determinants of farmland values, some of which are time-varying. The last term in equation (3) is the

stochastic error term, e ct , that is comprised of a permanent, county-specific component, ac , and an

idiosyncratic shock, ucl .

W
ic
represents a series of climate variables for county c. We follow Mendelsohn et al. (1994) and

let i indicate one of eight climatic variables. In particular, there are separate measures of temperature and

total precipitation in January, April, July, and October, so there is one month from each quarter of the

year. The appropriate functional form for each of the climate variables is unknown, but in our

replication of the hedonic approach we follow the convention in the literature and model the climatic
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variables with linear and quadratic terms. As emphasized by SHF (2005), it is important to allow the

effect of climate to differ across non-irrigated and irrigated counties. Accordingly, we include

interactions of all the climate variables and indicators for non-irrigated and irrigated counties.

The coefficient vector 9 is the 'true' effect of climate on farmland values and its estimates are

used to calculate the overall effect of climate change associated with the benchmark 5-degree Fahrenheit

increase in temperature and eight percent increase in precipitation. Since the total effect of climate

change is a linear function of the components of the 9 vector, it is straightforward to formulate and

implement tests of the effects of alternative climate change scenarios on agricultural land values.
13 We

will report the standard errors associated with the overall estimate of the effect of climate change.

However, the total effect of climate change is a function of 32 parameter estimates when the climate

variables are modeled with a quadratic, so it is not surprising that statistical significance is elusive.

Consistent estimation of the vector 9, and consequently of the effect of climate change, requires

that E[f,(W
ic

) ec ,| Xct]
= for each climate variable i. This assumption will be invalid if there are

unmeasured permanent (ac ) and/or transitory (u cl) factors that covary with the climate variables. To

obtain reliable estimates of G, we collected a wide range of potential explanatory variables including all

the soil quality variables listed in Table 1, as well as per capita income and population density.
14 We also

estimate specifications that include state fixed effects.

There are three further issues about equation (3) that bear noting. First, it is likely that the error

terms are correlated among nearby geographical areas. For example, unobserved soil productivity is

spatially correlated, so the standard OLS formulas for inference are likely incorrect. In the absence of

knowledge on the sources and the extent of residual spatial dependence in land value data, we adjust the

standard errors for spatial dependence of an unknown form following the approach of Conley ( 1 999).

The basic idea is that the spatial dependence between two observations will decline as the distance

between the counties increases.
15

Throughout the paper, we present standard errors calculated with the

Eicker-White formula that allows for heteroskedasticity of an unspecified nature. In addition we also

13
Since we use a quadratic model for the climate variables, each county's predicted impact is calculated as the

discrete difference in agricultural land values at the county's predicted temperatures and precipitation after climate

change and its current climate (i.e., the average over the 1970-2000 period).
14

Previous research suggests that urbanicity, population density, the local price of irrigation, and air pollution

concentrations are important determinants of land values (Cline 1996; Plantinga, Lubowski, and Stavins 2002; SHF
2005, 2006; Chay and Greenstone 2005). Comprehensive data on the price of irrigation and air pollution

concentrations are unavailable.
15 More precisely, the Conley (1999) covariance matrix estimator is obtained by taking a weighted average of spatial

autocovariances. The weights are given by the product of Bartlett kernels in two dimensions (north/south and

east/west), which decline linearly from 1 to 0. The weights reach when one of the coordinates exceeds a pre-

specified cutoff point. Throughout we choose the cutoff points to be 7 degrees of latitude and longitude,

corresponding to distances of about 500 miles.
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present the Conley standard errors for our preferred fixed-effect models.

Second, it may be appropriate to weight equation (3). Since the dependent variable is county-

level farmland values per acre, we think there are two complementary reasons to weight by the square

root of acres of farmland. First, the estimates of the value of farmland from counties with large

agricultural operations will be more precise than the estimates from counties with small operations, and

this weight corrects for the heteroskedasticity associated with the differences in precision. Second, the

weighted mean of the dependent variable is equal to the mean value of farmland per acre in the country.

Mendelsohn et al. (1994, 1999) and SHF (2005) both use the square root of the percent of the

county in cropland and the square root of total revenue from crop sales as weights. We elected not to

report the results based on these approaches in the main tables, since the motivation for these weighting

schemes is less transparent. For example, it is difficult to justify the assumptions about the variance-

covariance matrix that would motivate these weights as a solution to heteroskedasticity. Further, although

these weights emphasize the counties that are most important to total agricultural production, they do so

in an unconventional manner-

B. A New Approach

One of this paper's primary points is that the cross-sectional hedonic equation is likely to be

misspecified. As a possible solution to this problem, we fit:

(4) y c ,
= ac + y, + Xc/p + 1| 8; fi(W ict) + uct .

There are a number of important differences between equations (4) and (3). For starters, the equation

includes a full set of county fixed effects, ac . The appeal of including the county fixed effects is that they

absorb all unobserved county-specific time invariant determinants of the dependent variable.
16

The

equation also includes year indicators, yt , that control for annual differences in the dependent variable that

are common across counties. Our preferred specification replaces the year fixed effects with state by year

fixed effects (yst).

The inclusion of the county fixed effects necessitates two substantive differences in equation (4),

relative to (3). First, the dependent variable, yct , is now county-level agricultural profits, instead of land

values.
17

This is because land values capitalize long run characteristics of sites and, conditional on county

fixed effects, annual realizations of weather should not affect land values. However, weather does affect

farm revenues and expenditures and their difference is equal to profits.

Second, it is impossible to estimate the effect of the long run climate averages in a model with

6
Interestingly, the fixed effects model was first developed by Hoch (1958 and 1962) and Mundlak (1961) to

account for unobserved heterogeneity in estimating farm production functions.
17
Kelly et al. (2005) estimate the cross-sectional relationship between agricultural profits and climate.

14



county fixed-effects, because there is no temporal variation in W
jc

. Consequently, we replace the climate

variables with annual realizations of weather, W, ct . We follow the standard agronomic approach and

model temperature by using growing season degree-days, defined with a base of 46.4° F and a ceiling of

89.6° F. Similarly, we model the effect of precipitation on agricultural profits per acre by using growing

season precipitation. Once again, we let the effects of these variables differ across irrigated and non-

irrigated counties. Further, we model them with quadratics.

The validity of any estimate of the impact of climate change based on equation (4) rests crucially

on the assumption that its estimation will produce unbiased estimates of the 6 vector. Formally, the

consistency of each 0, requires E[f,(W ict) uct |
Xct , a c , yst]= 0. By conditioning on the county and state by

year fixed effects, the 0,'s are identified from county-specific deviations in weather about the county

averages after controlling for shocks common to all counties in a state. This variation is presumed to be

orthogonal to unobserved determinants of agricultural profits, so it provides a potential solution to the

omitted variables bias problems that appear to plague the estimation of equation (3). A shortcoming of

this approach is that all the fixed effects are likely to magnify the importance of misspecification due to

measurement error, which generally attenuates the estimated parameters.

IV. Results

This section is divided into three subsections. The first provides some suggestive evidence on the

validity of the hedonic approach and then present results from that approach. The second subsection

presents results from the fitting of equation (4) to estimate the impact of climate change on the US

agricultural sector. It also probes the distributional consequences of climate change across the country.

The third and final subsection estimates the effect of climate change on crop yields for corn for grain and

soybeans, the two most important crops in the agricultural sector in terms of value.

A. Estimates of the Impact of Climate Changesfrom the Hedonic Approach

Does Climate Vary with Observables? As the previous section highlighted, the hedonic approach

relies on the assumption that the climate variables are orthogonal to the unobserved determinants of land

values. We begin by examining whether these variables are orthogonal to observable predictors of farm

values. While this is not a formal test of the identifying assumption, there are at least two reasons that it

may seem reasonable to presume that this approach will produce valid estimates of the effects of climate

when the observables are balanced. First, consistent inference will not depend on functional form

assumptions on the relations between the observable confounders and farm values. Second, the

unobservables may be more likely to be balanced (Altonji, Elder, and Taber 2000).
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Table 3 shows the association between the July temperature and precipitation normals (calculated

from 1970-2000) and selected determinants of farm values. Tables with the full set of determinants of

farm values and the temperature and precipitation normals of other months are reported in the online

appendix. Panel A (B) reports the means of county-level farmland values, soil characteristics, and

socioeconomic and locational attributes by quartile of the July temperature (precipitation) normal. The

means are calculated with data from the six Censuses but are adjusted for year effects. For temperature

(precipitation), quartile 1 refers to the counties with the coldest temperature (least precipitation). The

fifth column reports F-statistics from tests that the means are equal across the quartiles. Since there are

six observations per county, the test statistics allows for county-specific random effects. A value of 2.37

(3.34) indicates that the null hypothesis can be rejected at the 5% (1%) level. If climate were randomly

assigned across counties, there would be very few significant differences.

It is immediately evident that the observable determinants of farmland values are not balanced

across the quartiles of weather normals: All of the F-statistics markedly reject the null hypothesis of

equality across quartiles. In fact, in our extended analysis reported in the online appendix, the null

hypothesis of equality of the sample means of the explanatory variables across quartiles can be rejected at

the 1% level in 1 1 1 of the 1 12 cases considered.
18

In many cases the differences in the means are large, implying that rejection of the null is not

simply due to the sample sizes. For example, the fraction of the land that is irrigated and the population

density (a measure of urbanicity or of the likelihood of conversion to residential housing) in the county

are known to be important determinants of the agricultural land values, and their means vary dramatically

across quartiles of the climate variables. In fact, the finding that population density is associated with

agricultural land values undermines the validity of the hedonic approach to leam about climate change

because density has no direct impact on agricultural yields. Overall, the entries suggest that the

conventional cross-sectional hedonic approach may be biased due to incorrect specification of the

functional form of the observed variables and potentially due to unobserved variables.

Replication of SHF (2005) Hedonic Approach. With these results in mind, we implement the

hedonic approach outlined in equation (3). We begin by replicating the analysis of SHF (2005) using

their data based on the 1982 Census of Agriculture and programs, which they provided. We follow their

proposed approach and use a quadratic in each of the 8 climate variables. Although the point of their

paper is that pooling irrigated and non-irrigated counties can lead to biased estimates of climate

parameters in hedonic models, they only report estimates based on specifications that constrain the effect

18 We also divided the sample into non-irrigated and irrigated counties, where a county is defined as irrigated if at

least 10% of the farmland is irrigated and the other counties are labeled non-irrigated. Among the non-irrigated

(irrigated) counties, the null hypothesis of equality of the sample means of the explanatory variables across quartiles.

can be rejected at the 1% level for 1 1 1 (96) of the 112 covariates.
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of climate to be the same in both sets of counties. Based on this approach, the aggregate impact of the

benchmark scenario increases of 5 degrees Fahrenheit in temperatures and 8% in precipitation on

farmland values is -S543.7 billion (2002S) with cropland weights or $69.1 billion with crop revenue

weights. Except for a CPI adjustment, these estimates are identical to those in SHF (2005).

To probe the robustness of these results, we re-estimate the hedonic models using two alternative

sets of covariates. The first drops all covariates, except the climate variables, while the second adds state

fixed effects to the specification used by SHF. The state fixed effects account for all unobserved

differences across states (e.g., soil quality and state agricultural programs). The simple specification that

only controls for the climate variables produces an estimate of -$98.5 billion with the cropland weights

and $437.6 billion with the crop revenue weights. The specification that adds state fixed effects produces

estimates of -$477.8 billion and $1,034.0 billion. The latter figure seems implausible, since it is nearly as

large as the entire value of agricultural land and buildings in the US, which was $1,115 billion in 2002.

As discussed previously, our view is that these two sets of weights have no clear justification. In

our opinion, the appropriate approach is to weight by acres of farmland. Re-estimation of the SHF,

climate variables only, and SHF plus state fixed effects specifications with the reconstructed version of

the SHF data file produces estimates of $225.1 billion, -$315.4 billion, and -$0.6 billion. Consequently,

the SHF findings appear to also be related to the choice of weights. It seems reasonable to conclude that

the application of the hedonic approach to the SHF data fails to produce robust estimates of the impact of

climate change even with a single year of data. In our view, the fragility or non-robustness of this

approach is not conveyed adequately in their article or in Mendelsohn et al. (1994).
19

New Hedonic Estimates. Table 4 further investigates the robustness of the hedonic approach by

conducting our own broader analysis. To this end, we assemble our own samples from the 1978-2002

Censuses of Agriculture. We maintain the same quadratic specification in each of the 8 climate variables.

There are some important differences between our approach and SHF. First, we fit regressions

that allow the effects of climate on farmland values to vary in irrigated and non-irrigated counties. In

addition, the regressions allow for intercept differences across irrigated and non-irrigated counties but

constrain all other parameters to be equal in the two sets of counties. Second, we report standard errors

for the estimated impacts. Third, we do not truncate the county-specific estimated impacts at zero.

The entries in Table 4 report the predicted changes in land values in billions of 2002 dollars (and

their standard errors in parentheses) from the benchmark increases of 5 degrees Fahrenheit in

temperatures and 8% in precipitation. These predicted changes are based on the estimated climate

parameters from the fitting of equation (3). The 42 different estimates of the national impact on land
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values are the result of 7 different data samples, 3 specifications, and 2 assumptions about the correct

weights. The data samples are denoted in the row headings. There is a separate sample for each of the

Census years and the seventh is the result of pooling data from the six Censuses.

The A, B, and C pairs of columns correspond to three sets of control variables. In the A columns,

the climate parameters are the only regressors. The entries in the B columns are adjusted for the soil

characteristics in Table 1, as well as per capita income and population density and their squares. The

specification in the C columns adds state fixed effects to the B specification. The exact controls are

summarized in the rows at the bottom of the table and detailed in the Data Appendix.

Among the A, B, and C pairs of columns, the column "[0]" regression equations are unweighted.

The column "[1]" entries are the result of weighting by the square root of acres of farmland. We re-

emphasize that this seems like the most sensible assumption about the weights, because it corrects for the

heteroskedasticity associated with the differences in precision in the dependent variable across counties.

The predicted change in land values per acre is calculated separately for each county as the

difference in predicted land values with the current climate and the climate predicted by the benchmark

model.' We then sum each county's change in per acre land values multiplied by the number of acres

devoted to agriculture in that county across the 2,124 counties in the sample to calculate the national

effect.
21

For the year-specific estimates, the heteroskedastic-consistent standard errors (White 1980)

associated with each estimate are reported in parentheses. " For the pooled estimates, the standard errors

reported in parentheses allow for clustering at the county level.

We initially focus on the year-specific estimates in the top panel. The most striking feature of the

entries is the tremendous variation in the estimated impact of climate change on agricultural land values.

For example, in the preferred B and C columns, the estimates range between -$202 billion and S321

billion, which are -18% and 29% of the total value of land and structures in the country during this period.

An especially unsettling feature of these results is that even when the covariates and weighting

assumption are held constant, the estimated impact can vary greatly depending on the sample. For

example, the C [0] regression produces an estimated impact of roughly $321 billion in 1978 but

essentially $0 in 2002. This difference is large, even in the context of the sampling errors. These results

Among non-irrigated counties, the same set of estimates ranges from -$144.2 billion to -$396.2 billion, so the

same conclusion applies to non-irrigated counties as well. However, recent research suggests that modeling

temperature with degree days may reduce the variability of hedonic estimates (SHF 2006).

Due to the nonlinear functional form assumptions about the climate variables, we calculate this discrete difference

in land values rather than simply multiplying the marginal impact of each of the climate variables by the magnitude

of the change. Of course, we use the climate parameters from the irrigated (non-irrigated) counties when calculating

the effect for the irrigated (non-irrigated) counties.

For the analysis in Table 4, we add the sample selection rule that the variable for the value of land and buildings is

non-missing in all census years to the rules used in Table 1 . The resulting sample has 144 fewer counties.



are troubling, because there is no ex-ante reason to believe that the estimates from a particular year are

more reliable than those from other years.

Figure 3 graphically captures the variability of the 36 year-specific estimates by plotting each of

the point estimates, along with their +/- 1 standard error range. The wide variability of the estimates is

evident visually and underscores this approach's sensitivity to alternative assumptions and data sources.

The second panel reports the pooled results, which summarize the estimates from each of the 6

combinations of specifications and weighting procedures. In these specifications, the intercept and the

parameters, except the climate ones, are allowed to vary across years. The estimated change in property

values from the benchmark global warming scenario ranges from -S75.1 billion (standard error of $28.0

billion) to $1 10.8 billion (standard error of S23.4 billion). The preferred column C specifications indicate

increases of S95.2 and $1 10.8 billion, and these estimates are statistically significant at the 5% level.

There are some notable features of the separate estimates for non-irrigated and irrigated counties.

For instance, the predicted effects of climate change are concentrated in the non-irrigated counties.

However, in the preferred C [1] specification, both non-irrigated and irrigated counties are predicted to

have statistically significant increases in land values. Additionally, there are statistically significant

positive and negative estimates for the non-irrigated counties, which demonstrates that even among these

counties the estimates are sensitive to choices about the proper set of covariates and weighting scheme.

Overall, this subsection has produced a few important findings. First, the observable

determinants of land prices are poorly balanced across quartiles of the climate normals. Second, the more

reliable hedonic specifications suggest that on net climate change will be modestly beneficial for the US

agriculture sector. Third, the hedonic farm values approach produces estimates of the effect of climate

change that are extremely sensitive to seemingly small decisions about the specification, weighting

procedure, and sample. Together, these findings suggest that the hedonic method may be unable to

produce a credible estimate of the economic impact of climate change in the U.S.. In light of the

importance of the question, it is worthwhile to consider alternative methods.

B. Estimates ofthe Impact of Climate Changefrom Local Variation in Weather

We now turn to our preferred approach that relies on annual fluctuations in weather to estimate

the impact of climate change on agricultural profits. To provide intuition for the subsequent regression

results, Figure 4A visually explores the relationship between profits per acre and growing season degree-

days using data from the balanced sample of counties from the 1987-2002 Censuses.
23

The figure plots

22
After adjustment for covariates (e.g., in panels B and C), the Conley spatial standard errors are 20-30% smaller

than the standard errors reported in Table 4.

For this figure and the remainder of the subsection, we add the sample selection rule that the variable for profits is

non-missing in all census years to the rules used in Table 1. This yields a balanced sample of 2,262 counties.
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the results from 4 separate regressions for county-level profits per acre, all of which are weighted by total

county-level agricultural acres. The line "Year FE [Decile]" plots the parameter estimates on indicator

variables for deciles of the distribution of growing season degree-days at the midpoint of each decile's

range. As the title of the line indicates, this regression also includes year fixed effects. The next two

lines repeat this exercise but include year and county fixed effects and state by year and county fixed

effects, respectively. The final line replaces degree-day decile indicators with a quadratic in degree-days

and plots the conditional means at the midpoints of each decile's range. It is labeled "State by Year &

County FE [Quadratic]."

There are several important findings in this graph. First, in the "Year FE" line there is

tremendous variation in profits per acre. Notably, it peaks in the 6
lh

decile (midpoint = 2,697 degree-

days), which includes the overall mean of roughly 2,850. Second, the addition of county fixed effects to

the specification greatly reduces the variation in profits per acre. Further, the inclusion of state by year

fixed effects further mitigates it. This finding is consistent with the hedonic results that temperature is

confounded by many other factors and a failure to adjust for them will lead to severely biased estimates of

its effect. Third, the modeling of degree-days with a quadratic provides a good approximation to the less

parametric approach. Fourth, and most importantly, the adjusted models show that even relatively large

changes in degree-days will have modest effects on profits per acre. This foreshadows the degree-day

results from the estimation of equation (4).

Figure 4B repeats this exercise for precipitation and leads to similar conclusions. After

adjustment for county fixed effects, the response surfaces are quite flat. They all suggest that the Hadley

2's predicted average increase of 3 inches of precipitation will have a small impact on profits per acre.

Table 5 presents estimates of the impact of three climate change scenarios on agricultural profits.

These results are derived from the estimation of four versions of equation (4). Growing season degree-

days and precipitation are both modeled with a quadratic and allowed to differ in non-irrigated and

irrigated counties. The individual parameter estimates and their standard errors are presented in the

online Appendix Table 4. Each specification includes a full set of county fixed effects. In columns (1)

and (2), the specification includes unrestricted year effects, and these are replaced with state by year

effects in columns (3) and (4). Additionally, the columns (2) and (4) specifications adjust for the full set

of soil variables listed in Table 1, while the columns (1) and (3) estimating equations do not include these

variables. All equations are weighted by the square root of total acres of farmland. The specification

details are noted at the bottom of the table.

Due to the nonlinear modeling of the weather variables, each county's predicted impact is

calculated as the discrete difference in per acre profits at the county's predicted degree-days and
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precipitation after climate change and its current climate (i.e., the average over the 1970-2000 period).
24

The resulting change in per acre profits is multiplied by the number of acres of farmland in the county,

and then the national effect is obtained by summing across all 2,262 counties in the sample. The irrigated

(non-irrigated) weather parameters are used to calculate the effect for irrigated (non-irrigated) counties.

We focus here on the Hadley 2 Long Run (2070-2099) scenario that allows for state-level

variation in the change in degree-days and precipitation. The preferred estimates from the column (4)

specification with soil controls and state by year fixed effects suggest that climate change will lead to an

increase in agricultural sector profits of roughly $1.3 billion. This estimate is statistically

indistinguishable from zero with either the Eicker-White (parentheses) or Conley (square brackets)

standard errors. With the smaller standard errors, the 95% confidence interval ranges from about -$0.5

billion to $3.1 billion. In the context of the mean annual profits of $32. 3 billion over the 1987-2002

period, these estimates imply that it is unlikely that climate change will have large negative or positive

impacts on agricultural profits. The qualitative conclusions from the other scenarios are identical.

A few other features of the results are noteworthy. First, after adjustment for the state by year

effects, the predicted change in precipitation has a statistically significant and positive impact on profits.

Second when the point estimates are taken literally, the overall effect is almost entirely concentrated in

non-irrigated counties.
25

Third, the results from all scenarios follow a similar pattern in that the columns

(1) and (2) estimates suggest a small decline in profits, while the columns (3) and (4) specifications that

include state by year fixed effects indicate a small increase. This finding that estimated profits are higher

with state by year fixed effects implies that local price changes do not appear to be a major concern in this

context.

Table 6 explores the robustness of the results to alternative specifications. All of the

specifications include the soil variables and county and state by year fixed effects. The estimated impacts

continue to be based on the Hadley 2 Long Run Scenario. The last column normalizes the predicted

impact by mean annual profits (i.e., $32.3 billion) to provide a sense of the magnitude.

The true functional form of the weather variables is unknown, and thus far we have assumed that

these variables are accurately modeled with a quadratic. Rows (1) through (3) model the weather

variables linearly, with a cubic, and using indicator variables for each 500 degree-days and 2 inch

interval, respectively.
26 The predicted change in profits is positive in all three of these approaches but a

24
Since the Hadley 2 predictions are at the state level, each county is assigned its state's prediction

15 We also estimated "fully interacted" models that allowed all parameters (e.g., the year or state by year fixed

effects and soil parameters) to vary across irrigated and non-irrigated counties. The estimated national impact of

climate change is virtually unchanged in the columns (l)-(4) specifications.
26

In the indicator variable approach, the estimated impact is obtained by comparing predicted profits at each

county's current degree-day and precipitation categories and their degree-day and precipitation categories that are

predicted by the Hadley 2 long mn scenario. A few counties are predicted to have growing season degree-days and
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zero effect cannot be rejected in any of the cases.

Row (4) considers the possibility of harmful degree-days. Recall that those are defined as the

number of Fahrenheit degree exceeding 93.2° F over the whole growing season. However, there is no

empirical support in our data to estimate such effects, because the average county in the United States

faced 0.2 growing season degree-days of such harmful temperature during our sample. Rather than

defining harmful degree-days on the basis of mean daily temperature, we define harmful degree-days

using the maximum daily temperature, as suggested by SHF (2006). Although this alternative measure is

not the norm in the agronomy literature, it greatly increases the number of harmful degree-days per

growing season— from 0.2 to 30 on average per county— so its effect can be estimated from the data.

In row (4) we follow the specification of SHF (2006) and model the impact of harmful degree-

days with a square root, again allowing its effect to vary across irrigated and non-irrigated counties. We

also include this measure of harmful degree-days in our calculation of the impacts of climate change. The

table reveals that the resulting estimate of the impact of climate change on agricultural profits is

practically unchanged by the inclusion of controls for damaging degree-days.

Row (5) explores the possibility that outliers drive the results in Table 5. Specifically, it presents

the results from the "rreg" robust regression routine in STATA (Berk 1990). This routine begins by

excluding outliers, defined as observations with values of Cook's D>1, and then weights observations

based on absolute residuals so that large residuals are downweighted. The entry indicates that the

qualitative finding is unchanged.

Row (6) summarizes the results from estimating separate versions of equation (4) for each of the

48 states. Thus, all the parameters are allowed to vary at the state-level. The effect of the weather

variables is allowed to vary across irrigated and non-irrigated counties within each state. The sum of the

state-specific estimates of the impact is roughly SO. 2 billion. The heavy demands that this approach

places on the data is evident in the poor precision of this estimate.
27

The remaining rows lead to the same qualitative conclusion that climate change will have only a

modest effect on agricultural profits. Rows (7) through (9) indicate that the results are largely insensitive

to how counties are assigned to the irrigated and non-irrigated categories and whether the weather

parameters are allowed to vary across these groups. In row (10) the growing season is extended by a

month to include October and in row (11) we allow for two growing seasons that cover the entire year to

precipitation outside the range of the current data. To predict profits in these cases, we assign the average change in

profits associated with a 1 category change across the entire range of current data for each 500 degree day or 2 inch

category increase. For example, if a county is currently in the highest 500 degree-day category and moves up two

500 degree-day categories under the Hadley 2 scenario, its predicted increase in profits equals two times the average

change in profits associated with an increase in a 500 degree category over the current range of data.
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allow for the effect of the important winter wheat crop. The predicted change remains small and

statistically insignificant in these rows. In row (12), the regression equation is unweighted, which

increases the estimated standard error by more than 250% but leaves the qualitative finding unaltered.

Table 7 explores the distributional consequences of climate change across states. It lists the

predicted impact of the Hadley 2 long run climate change scenario on state-level agricultural profits. The

states are ordered by the impact on profits and the percentage change in profits from largest to smallest in

columns (1) and (2), respectively. The entries are based on the estimation of separate version of equation

(4) for each state. The sum of these effects is $0.2 billion and was reported in row (6) of Table 6.

The most striking finding is that California will be significantly harmed by climate change. Its

loss in agricultural profits is approximately $750 million, and this is nearly 15% of total California

agricultural profits. To place this estimate in further context, the remaining 47 states are predicted to have

a gain of $930 million. Nebraska (-$670 million) and North Carolina (-$650 million) are also predicted to

have big losses, while the two biggest winners are South Dakota ($720 million) and Georgia ($540

million). It would be remiss to fail to point out that in general these state-specific predictions are

imprecise and the null of zero can be rejected at the 5% level or better for only eight states (i.e., Montana,

Nebraska, New York, North Carolina, North Dakota, South Carolina, South Dakota, and Pennsylvania).

Overall, the estimates in this subsection suggest that the predicted changes in climate will lead to

economically and statistically small changes in profits. The preferred estimates suggest an increase in

profits and have a 95% confidence interval that ranges from a change in profits of -$0.5 billion to $3.1

billion, or -1.5% to 9.6%. Thus, large negative or positive effects are unlikely.

C. Estimates ofthe Response ofCrop Yields to Climate Change

In this subsection, we explore the effect of predicted climate change on crop yields. Large

declines in yields would suggest that the profit results may be biased (relative to the preferred long ran

measure) by short run price increases. Although farmers cannot switch crops in response to weather

shocks, they are able to undertake some adaptations, and in this respect this approach is preferable to the

production function approach.

Table 8 presents the results from the estimation of versions of equation (4), where the dependent

variables are county-level total bushels of production per acre planted (production / acre planted) for corn

for grain and soybeans. The independent variables of interest are growing season degree-days and

precipitation, both of which are modeled with a quadratic and allowed to vary by irrigation status of the

county. The regressions all include controls for soil characteristics and county fixed effects and are

;7
There are a total of 22 parameters so this model cannot be estimated separately for the 1 1 states with fewer than

22 counties in our sample. Instead, we group these states together in 2 groups (AZ, NV) and (CT, DE, MA, MD,
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weighted by the square root of the number of acres planted. The "a" specifications include year fixed

effects and the "b" ones have state by year fixed effects. The sample is drawn from 1987, 1992, and

1 997, and 2002 Censuses, and for each crop it is limited to the counties with production of the crop in

each of these years. These two crops account for roughly $39 billion of revenues when their output is

evaluated at the average crop price over these years, which is about 22% of total agricultural revenues.

The second panel reports the predicted change in national output in billion of bushels and its

standard error under the Hadley 2 long run scenario. Each county's predicted change in bushels per acre

is calculated as the discrete difference in per acre output at the county's predicted degree-days and

precipitation after climate change and its current climate (i.e., the average over the 1970-2000 period).

The resulting change in bushels per acre is multiplied by the number of acres of farmland in the county

and then the national effect is obtained by summing across all counties in the sample. The next row

presents this change as a percentage of the average yield in our balanced sample of counties. The other

rows report the change in bushels in non-irrigated and irrigated counties and the separate impacts of the

predicted changes in temperature and precipitation.

The results are consistent across the crops. Specifically, the more robust model with state by year

fixed effects fails to find a statistically significant relationship between climate change and crop yields for

either of the crops. The less robust "a" specification finds negative effects for corn and soybeans, but

they are small in magnitude.
28

In general, the increase in temperature is harmful for yields and the

increase in precipitation is beneficial. This finding underscores that it is important to account for both the

change in temperature and precipitation when assessing the impacts of climate change. In summary, the

small changes in output or quantities suggest that it is unlikely that the previous subsection's finding that

climate change will have a small effect on agricultural profits is due to short-run price increases.

V. Interpretation

Optimal decisions about climate change policies require estimates of individuals' willingness to

pay to avoid climate change over the long run. The above analysis has developed measures of the impact

of climate change on the profits from agricultural operations that accrue to the owners of land. Since land

values ultimately reflect the present discounted value of land rents, or profits from land, we use the

estimates from the previous section to develop a measure of the welfare consequences of climate change.

ME, NH, NJ, RI, VT) and estimate the model separately for each group.

Lobell and Asner (2003a) find a negative relationship between county level corn and soybean yield trends and

trends in mean temperatures. There are a number of differences between Lobell and Asner's approach and this

paper's approach that make comparisons of the results difficult, including that Lobell and Asner: limit the sample to

counties that exhibit a negative correlation between temperature and yields (see Gu 2003 and Lobell and Asner

2003b); do not adjust their estimates for state shocks (e.g., by including state fixed effects) or changes in.

precipitation; and use mean temperature over the growing season, rather than degree-days.
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We assume that the predicted increase of $1.3 billion (from column 4 of Table 5 and the long run Hadley

2 model) in annual agricultural profits holds for all years in the future and apply a discount rate of 5%.

This implies that climate change increases the present value of the stream of land rents by about $26

billion. The 95% confidence interval is -$10 billion to $62 billion. This range is much tighter than the

range of point estimates from the hedonic approach and that range would be even wider if it accounted for

sampling variability.

There are a number of important caveats to these calculations and, more generally, to the analysis.

First, some models of climate change predict increases in extreme events (e.g., droughts and floods) or the

variance of climate realizations, in addition to any effects on growing season degree-days and

precipitation. Our analysis is uninformative about the economic impact of these events. If the predictions

about these events are correct, a full accounting of the welfare effects of climate change would have to

add the impacts of these changes to the impacts presented here. Similarly, it is thought that permanent

changes in climate will disrupt local ecosystems and/or change soil quality. Both of these factors may

affect agricultural productivity. Since annual fluctuations in climate are unlikely to have the same effect

on ecosystems and soil quality as permanent changes, our estimates fail to account for these effects too. '

Second, as its name suggests, global climate change will affect agricultural production around the

globe. It may be reasonable to assume that this will alter the long run costs of production, and this would

cause changes in relative prices. Since our estimates are based on annual fluctuations in weather and are

adjusted for state by year fixed effects, it is unlikely that they fully account for this possibility. It is

noteworthy that the hedonic approach is unable to account for such changes either because the land value-

climate gradient is estimated over the existing set of prices.

Third, there is a complex system of government programs that impact agricultural profits and

land values by affecting farmers' decisions about which crops to plant, the amount of land to use, and the

level of production (Kirwan 2005). Our estimates would likely differ if they were estimated with an

alternative set of subsidy policies in force. This caveat also applies to the hedonic method.

Fourth, our measure of agricultural profits differs from an ideal one in some important respects.

In particular, interest payments are the only measure of the rental cost of capital in the Censuses. Thus,

our measure understates the cost of capital by not accounting for the opportunity cost of the portion of the

capital stock that is not leveraged. Further, our measure of agricultural profits does not account for labor

costs that are not compensated with wages (e.g., the labor provided by the farm owner).

Finally, we discuss two caveats to our approach that would lead to an overstatement of the

damage associated with climate change. First as we have emphasized, our approach does not allow for

the full set of adaptations available to farmers. In this case, the direction of the bias can be signed,

because farmers will only undertake these adaptations if the benefits exceed the costs.
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Second, elevated carbon dioxide (C0 2 ) concentrations are known to increase the yield per planted

acre for many plants (see e.g., Miglietta, et. al. 1998). Since higher C0 2 concentrations are thought to be

a primary cause of climate change, it may be reasonable to assume that climate change will lead to higher

yields per acre. The approach proposed in this paper does not account for this "fertilizing" effect of

increased C0 2 concentrations.

VI. Conclusions

This study proposes and implements a new strategy to estimate the impact of climate change on

the US agricultural sector. The strategy exploits the presumably random year-to-year variation in

temperature and precipitation to estimate their effect on agricultural profits. Specifically, we use a

county-level panel data file constructed from the Censuses of Agriculture to estimate the effect of weather

on agricultural profits, conditional on county and state by year fixed effects.

Using long-run climate change predictions from the Hadley 2 Model, the preferred estimates

indicate that climate change will lead to a $1.3 billion (2002S) or 4.0% increase in annual agricultural

sector profits. The 95% confidence interval ranges from -$0.5 billion to $3.1 billion so large negative or

positive effects are unlikely. The basic finding of an economically and statistically small effect is robust

to a wide variety of specification checks including adjustment for the rich set of available controls,

modeling temperature and precipitation flexibly, estimating separate regression equations for each state,

and implementing a procedure that minimizes the influence of outliers. Although the overall effect is

small, we showed that there is considerable heterogeneity in the predicted impacts across states.

Additionally, the analysis indicates that the predicted increases in temperature and precipitation will have

virtually no effect on yields among the most important crops (i.e., corn for grain and soybeans), which

suggests that the small effect on profits are not due to short-run price increases.

Finally, we re-examine the hedonic farm value approach that is predominant in the previous

literature. We find that the estimates of the effect of climate change on the value of agricultural land

range from -$200 billion (2002$) to $320 billion (or -18% to 29%), which is an even wider range than has

been noted in the previous literature. This variation in predicted impacts results from seemingly minor

decisions about the appropriate control variables, sample, and weighting. Despite its theoretical appeal,

we conclude that the hedonic farm value method may be unreliable in this setting.

There is room for much additional research in the valuation of climate change. For example,

there is an especial need for new research on the impact of climate change on measures of human health,

particularly mortality rates. More generally, future research should aim to produce estimates of the

impact of climate change that have a sound theoretical basis and are statistically robust.
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Data Appendix

I. Covariates in Land Value and Agricultural Profits Regressions

The following are the control variables used in the land value and agricultural profits regressions. They

are listed by the categories indicated in the row headings at the bottom of these tables. All of the

variables are measured at the county level.

A. Dependent Variables:}. Value of Land and Buildings per Acre; 2. Agricultural Profits per Acre; 3.

Bushels per Acre of Corn for Grain; and 4. Bushels per Acre of Soybeans.

B. Soil Variables:]. K-Factor of Top Soil; 2. Slope Length; 3. Fraction Flood-Prone; 4. Fraction Sand; 5.

Fraction Clay; 6. Fraction Irrigated; 7. Permeability; 8. Moisture Capacity; 9. Wetlands; and 10. Salinity

C. Socioeconomic Variables: 1. Income per Capita; 2. Income per Capita squared; 3. Population Density;

and 4. Population Density Squared

II. Details on Data Sources

A. Census ofAgriculture

The data on number of farms, land in farms, cropland, agricultural profits, and other agriculture related

variables are from the 1987, 1992, 1997, 2002 Censuses of Agriculture. The Census of Agriculture has

been conducted every 5 years starting in 1925 and includes as a farm "every place from which SI,000 or

more of agricultural products were produced and sold or normally would have been sold during the

census year". Participation in the Census of Agriculture is mandated by law: All farmers and ranchers

who receive a census report form must respond even if they did not operate a farm or ranch in the census

year. For confidentiality reasons the public-use files provide only county averages or totals.

The following are definitions for some specific variables that we used in the analysis:

1

.

Farm Revenues : Farm revenues are the gross market value of all agricultural products sold before taxes

and expenses in the census year including livestock, poultry, and their products, and crops, including

nursery and greenhouse crops, and hay. All sales occurring during the Census year are included, even if

the payment has not been received.

2. Production Expenditures : Production expenses are limited to those incurred in the operation of the farm

business. Property taxes paid by landlords are excluded. Also excluded were expenditures for non-farm

activities and farm-related activities such as producing and harvesting forest products, providing

recreational services, and household expenses. Among the included items are: agricultural chemicals,

commercial fertilizer, machine hire, rental of machinery and equipment, feed for livestock and poultry,

hired farm and ranch labor, interest paid on debts, livestock and poultry purchased, repairs and

maintenance, seed cost. All costs incurred during the Census year are included, regardless of whether the

payment has been made.

3. Land in farms : The acreage designated as "land in farms" consists primarily of agricultural land used

for crops, pasture, or grazing.

4. Value of land and buildings : Respondents were asked to report their estimate of the current market

value of land and buildings owned, rented or leased from others, and rented or leased to others. Market

value refers to the value the land and buildings would sell for under current market conditions.

B. National Resource Inventory

County-level data on soils are taken from the National Resource Inventory

(http://www.nrcs.usda.gov/technical/NRI/). The NRI is a statistically based sample of land use and

natural resource conditions and trends on U.S. nonfederal lands. The data has been collected in
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approximately 800,000 points during the Census of Agriculture years, starting in 1982. For example,

information on soil permeability, salinity, soil contents (sand and clay), slope length, K-factor, and

fraction of the county irrigated is available.

C. Hadley 2 State-Level and Regional Predictions on Growing Season Degree-days and Precipitation.

We downloaded the raw climate data from The Vegetation/Ecosystem Modeling and Analysis Project

(VEMAP)'s Transient Climate database. VEMAP was established as a project to learn more about

ecosystem dynamics through models and simulations and involved a large number of American and

foreign scientists from a variety of different organizations (Kittel et al. 1995; Kittel et al. 1997; Kittel et

al. 2000). Phase 2 of VEMAP focused on transient dynamics, and the resulting database contains several

climate change scenarios for the continental United States, including the predictions made by the Hadley

2 model. The climate variables included in this data set are daily precipitation and daily minimum and

maximum temperature. The data is given from January 1994 to December 2099.

VEMAP measures climate data at a set of regular grid points spanning the contiguous United States and

separated vertically and horizontally by 0.5°. Data covering the entire grid was downloaded from the

VEMAP2 website. The data portal can be found here:

http://www.cgd.ucar.edu/vemap/dodsUSday ds.html .

To obtain predicted impacts on temperature and precipitation, we assume a 1% per year compounded

increase in both carbon dioxide and IS92A sulphate aerosols, which implies that greenhouse gas

concentrations will increase to roughly 2.5 times their current levels by the end of the 21st century. These

assumptions about emissions and resulting climate change predictions are standard assumptions and result

in middle of the range predictions.

We then used GIS software to place each of these gridpoints into U.S. states. With these placements, we
were able to create the Hadley 2 state-level predictions for each day from 2020 to 2099. These state-level

year by day predictions are calculated as the simple average across all grid points that fall within each

state. From these daily predictions, we calculate growing season degree-days and total precipitation using

the formulas described in the text. These state-level Hadley 2 predictions are used to infer the economic

costs of climate change throughout this paper. We focus on the "medium term" and "long run" effects on

climate, which are defined as the temperature and precipitation averages across the 2020-2049 and 2070-

2099 predictions, respectively. The Hadley 2 model is not precise enough to use at smaller units of

aggregation than the state.

D. Growing Season Degree-days

We construct our measure of growing season degree-days using daily data drawn from the

National Climatic Data Center (NCDC) Summary of the Day Data (TD-3200). The data are daily

measurements from weather stations in the United States. In any given year in our sample period, there

were approximately 8,000 stations in operation. The key variables used to construct degree-days are the

daily maximum and minimum temperature from each station. Using the daily minimum and maximum
temperatures, we define the mean daily temperature as the simple average of the minimum and maximum
temperature for a station. We then construct the mean daily temperature for a county by taking the simple

average of the mean temperature across all stations within a county. For counties without a station, we
impute the average mean temperature from the contiguous counties. The degree-days variable is

calculated on the daily mean temperature for each county as explained in the text in Section II.
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Table 1 : County-Level Summary Statistics

1978 1982 1987 1992 1997 2002

Farmland and Its Value:

Number of Farms 799.3 796.3 745.4 688.3 684.9 766.5

Land in Farms (th. acres) 363.7 352.4 345.5 338.4 333.4 336.1

Total Cropland (th. acres) 158.7 156.0 158.3 155.9 154.1 155.3

Avg. Value of Land&Bldg ($1/acre) 1,370.4 1,300.7 907.3 892.2 1,028.2 1,235.6

Avg. Value of Machines&Equip ($1/acre) — — 126.7 118.8 129.2 145.8

Annual Financial Information:

Profits ($Mil.) — — 14.4 14.0 18.6 10.0

Profits Per Acre ($1/acre) ... ... 41.7 41.3 55.7 29.7

Farm Revenues ($Mil.) 88.7 80.0 71.5 72.9 79.9 74.9

Total Farm Expenses ($Mil.) — — 57.2 58.9 61.3 64.9

Total Government Payments ($Mil.) — ... 4.8 2.3 1.9 2.4

Measures of Soil Productivity:

K-Factor 0.30 0.30 0.30 0.30 0.30 0.30

Slope Length 218.9 218.9 218.3 217.8 218.3 218.3

Fraction Flood-Prone 0.15 0.15 0.15 0.15 0.15 0.15

Fraction Sand 0.09 0.09 0.09 0.09 0.09 0.09

Fraction Clay 0.18 0.18 0.18 0.18 0.18 0.18

Fraction Irrigated 0.18 0.18 0.18 0.18 0.19 0.19

Permeability 2.90 2.90 2.90 2.88 2.88 2.88

Moisture Capacity 0.17 0.17 0.17 0.17 0.17 0.17

Wetlands 0.10 0.10 0.10 0.10 0.10 0.10

Salinity 0.01 0.01 0.01 0.01 0.01 0.01

Notes: Averages are calculated for a balanced panel of 2,268 counties. All entries are simple averages over the

2,268 counties, with the exception of "Average Value of Land&Bldg (1$/acre)" and "Profit Per Acre (1$/acre)", which

are weighted by acres of farmland. All dollar values are in 2002 constant dollars.



Table 2: Climate Predictions under Different Global Warming Models

Non- Irrigated Counties Irriqated Counties

Actual Predicted Difference Actual Predicted Difference

A. BENCHMARK GLOBAL WARMING MODEL
January Mean Temperature 29.0 34.0 5.0 32.9 37.9 5.0

April Mean Temperature 51.9 56.9 5.0 52.3 57.3 5.0

July Mean Temperature 74.7 79.7 5.0 74.3 79.3 5.0

October Mean Temperature 54.3 59.3 5.0 55.1 60.1 5.0

January Total Precipitation 1.57 1.70 0.13 1.92 2.08 0.15

April Total Precipitation 2.40 2.60 0.19 2.08 2.25 0.17

July Total Precipitation 2.82 3.05 0.23 2.27 2.45 0.18

October Total Precipitation 2.23 2.41 0.18 1.73 1.87 0.14

Growing Season Degree-Days 3,184.8 3,905.7 720.9 3,289.1 4,018.7 729.5

Growing Season Total Precipitation 16.96 18.32 1.36 13.60 14.68 1.09

B. HADLEY 2 GLOBAL WARMING MODEL, LONG TERM (2070-2099)

Growing Season Degree-Days:

All Counties [2262] 3,184.8 4,387.2 1,202.4

Std Deviation (1,459.3) (1,162.3) (1,272.2)

3,289.1 4,449.1 1,160.0

(1,503.4) (1,153.6) (1,196.2)

Northeast Region [178]

Midwest Region [735]

South Region [986]

West Region [363]

Growing Season Total Precipitation:

All Counties [2262]

Std Deviation

Northeast Region [178]

Midwest Region [735]

South Region [986]

West Region [363]

2,556.3 3,366.7 810.4

2,977.4 3,998.7 1,021.3

4,097.6 5,796.3 1,698.7

2,581.6 3,538.3 956.7

16.96 19.88 2.92

(6.74) (7.99) (3.26)

23.38 27.54 4.16

19.51 22.69 3.18

21.20 25.67 4.47

9.42 10.30 0.88

3,581.7 4,050.9 469.2

3,214.0 4,372.2 1,158.2

4,451.2 6,026.6 1,575.4

2,720.8 3,669.8 949.0

13.60 16.77 3.17

(8.56) (9.02) (3.27)

24.04 27.81 3.77

18.18 21.39 3.21

23.31 27.51 4.20

6.58 8.67 2.09

C. OBSERVED WEATHER VARIATION (1987-2002)

Proportion of Counties with Degree Days Below/Above Average (Degrees):

±400 ±600 ±800 ±1000 ±1200 ±1400

1

.

Removed Year Effects 0.261 0.166 0.106 0.055 0.025 0.013

2. Removed State*Year Effects 0.245 0.150 0.093 0.049 0.022 0.010

1

.

Removed Year Effects

2. Removed State*Year Effects

Proportion of Counties with Precipitations Below/Above Average (Inches):

±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5

0.692 0.547 0.429 0.330 0.251 0.187

0.623 0.474 0.353 0.255 0.181 0.128

Notes: All entries are averages over the 2,268 counties, weighted by acres of farmland,

column are averages of the listed variables over the 1970-2000 period.

Entries under the "Actual"
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Table 4: Hedonic Estimates of Impact of Benchmark Climate Change Scenario on
Agricultural Land Values (in Billions of 2002 Dollars), 1978-2002

Specification: A B C
Weights: [0] [1] [0] [1] [0] [1]

Sinqle Census Year

1978 131.9 131.1 141.2 154.7 321.3 255.6

(35.6) (35.7) (38.0) (31.3) (46.1) (31.8)

1982 36.3 36.1 19.2 40.8 203.3 154.6

(28.6) (25.7) (28.7) (24.4) (46.6) (32.2)

1987 -55.9 -9.6 -49.3 -8.7 45.9 51.3

(25.8) (21.5) (27.5) (20.0) (38.8) (22.6)

1992 -50.4 -23.0 -32.9 -8.1 22.3 46.4

(35.0) (31.6) (32.5) (24.5) (50.3) (25.2)

1997 -117.0 -55.5 -89.0 -33.5 25.5 65.8

(32.7) (38.7) (35.3) (31.1) (46.5) (24.1)

2002 -288.6 -139.5 -202.1 -101.0 -8.8 60.9 •

(59.2) (61.4) (58.4) (49.5) (77.0) (38.7)

Pooled 1978-2002

All Counties -75.1 -16.9 -45.6 0.7 95.2 110.8

(28.0) (30.7) (40.2) (34.2) (41.6) (23.4)

Non-Irrigated Counties -63.9 -28.6 -44.7 -10.9 66.1 82.1

(24.3) (28.5) (28.0) (24.6) (35.5) (17.9)

Irrigated Counties -11.2 11.6 -0.9 11.6 29.1 28.6

(13.8) (11.2) (12.2) (9.6) (13.1) (10.4)

Soil Variables No No Yes Yes Yes Yes

Socioecon. Vars No No Yes Yes Yes Yes

State Fixed-Effects No No No No Yes Yes

Notes: All dollar figures in billions of 2002 constant dollars. The entries are the predicted impact on agricultural land

values of the benchmark uniform increases of 5 degree Fahrenheit and 8% precipitation from the estimation of 56

different hedonic models, noted as equation (3) in the text. The standard errors of the predicted impacts are reported

in parentheses. The 42 different sets of estimates of the national impact on land values are the result of 7 different

data samples, 3 specifications, and 2 assumptions about the correct weights. The data samples are denoted in the

row headings. There is a separate sample for each of the Census years and the seventh is the result of pooling data

from the six Censuses. The specification details are noted in the row headings at the bottom of the table. The
weights used in the regressions are reported in the top row and are as follows: [0]=unweighted; [1]=square root of

acres of farmland. The estimated impacts are reported separately for non-irrigated and irrigated counties for the

pooled sample. See the text for further details.



Table 5: Fixed-Effects Estimates of Agricultural Profit Models: Predicted Impact of

Three Global Warming Scenarios (in Billions of 2002 Dollars)

ill. J2L il) (4)

A. Benchmark Climate Change Model:

All Counties -1.51

(0.49)

[0.81]

-1.54

(0.49)

[0.81]

0.69

(0.43)

[0.85]

0.73

(0.43)

[0.85]

B. Hadley 2 Climate Change Model Medium Term (2020-2049):

All Counties -0.75 -0.79 0.72 0.66

(0.67) (0.67) (0.64) (0.64)

[1.14] [1.14] [1.19] [1.19]

C. Hadley 2 Climate Change Model Long Term (2070-2099)

All Counties -1.79 -1.86 1.34 1.29

(0.97) (0.97) (0.91) (0.92)

[1.59] [1.59] [1.67] [1.67]

Non-Irrigated Counties: -1.66

(0.72)

-1.73

(0.73)

1.16

(0.68)

1.10

(0.69)

Irrigated Counties: -0.14

(0.55)

-0.13

(0.55)

0.19

(0.50)

0.18

(0.50)

Impact of Change in Degree Days -1.47

(0.94)

-1.55

(0.95)

0.47

(0.87)

0.39

(0.87)

Impact of Change in Total Precipitation -0.33

(0.28)

-0.32

(0.28)

0.87

(0.29)

0.90

(0.29)

Soil Controls

County Fixed Effects

Year Fixed Effects

State*Year Fixed Effects

No

Yes

Yes

No

Yes

Yes

Yes

No

No
Yes

No
Yes

Yes

Yes

No
Yes

Notes: All dollar figures in billions of 2002 constant dollars. The means of the dependent variable (i.e., county-level

agriculture profits per acre) in non-irrigated and irrigated counties are $31.27 and $85.75. This table report predicted

impacts of climate change on agricultural profits using the estimation results from the fitting of versions of equation (4)

and three climate change scenarios. The impacts' heteroskedastic consistent standard errors are in parentheses and
the Conley ones are in square brackets. Due to the nonlinear modeling of the weather variables, each county's

predicted impact is calculated as the discrete difference in per acre profits at the county's predicted degree-days and
precipitation after climate change and its current climate (i.e., the average over the 1970-2000 period). The resulting

change in per acre profits is multiplied by the number of acres of farmland in the county and then the national effect is

obtained by summing across all 2,262 counties in the sample. The climate parameters from the irrigated (non-

irrigated) counties are used to calculate the effect for the irrigated (non-irrigated) counties.



Table 6: Alternative Fixed-Effects Estimates of Hadley 2 Long Run Climate
Change scenario on Agricultural Profits

Hadley 2 Long Run (2070-2099)

Predicted Change Standard Error Percent Effect

(Billion dollars)

[Al Alternative Specifications

(1

)

Model Weather Vars Linearly:

(2) Model Weather Vars with Cubics:

(3) Model Weather Vars with Indicator Variables:

(4) Control for Harmful Degree-Days

(5) Minimize the Influence of Outliers:

(6) Fully interacted by State:

(7) Irrigation Cutoff = 5%:

(8) Irrigation Cutoff = 15%:

(9) Assume Equal Weather Coefficients in

Non-Irrigated and Irrigated Counties:

(10) Growing Season = April-October:

(11) Two Growing Seasons, April-October

and November-March:

(12) Unweighted Regression:

1.47 (0.75) 4.6

3.59 (2.03) 11.1

0.75 (1.34) 2.3

1.33 (0.93) 4.1

-0.24 (0.41) -0.7

0.17 (11.00) 0.5

1.23 (0.91) 3.8

1.29 (0.97) 4.0

1.27 (0.99) 3.9

0.57 (2.02) 1.8

-0.98 (5.04) -3.0

-0.52 (2.46) -1.6

Notes: All dollar figures in billions of 2002 constant dollars. The entries report predicted impacts of climate

change on agricultural profits using the estimation results from alternative versions of equation (4) and the

Hadley 2 Long Run climate change scenario. All versions of equation (4) include controls for soil

productivity and county and state by year fixed effects. The impacts' heteroskedastic consistent standard

errors are in parentheses. The "Percent Effect" column reports the predicted change as a percent of mean
annual agricultural profits in the 1 987-2002 period. See Table 6, as well as the text for further details.



Table 7: Fixed-Effects Estimates of Hadley 2 Long Run Climate Change scenario

on Agricultural Profits, by State

Predicted Impact on State Agricultural Profits (Larqest to Smallest)

State Billions of $s Std Error State Percent

(1a) (1b) (1c) (2a) (2b)

South Dakota 0.72 (0.09) West Virginia 189 6

Georgia 0.54 (0.61) Arizona 118.9

Arizona 0.49 (0.81) South Dakota 109.2

Nevada 0.49 (0.81) South Carolina 102.8

Kansas 0.24 (0.15) Georgia 71.7

New York 0.23 (0.07) Nevada 69.6

South Carolina 0.23 (0.09) Wyoming 45.4

Kentucky 0.21 (0.28) New York 43.4

Pennsylvania 0.17 (0.06) Louisiana 43.2

North Dakota 0.16 (0.07) North Dakota 40.0

Louisiana 0.15 (0.42) Kentucky 27.1

Missouri 0.10 (0.07) Utah 22.6

Oregon 0.10 (0.32) Pennsylvania 20.0

West Virginia 0.08 (0.10) Kansas 19.7

Wyoming 0.07 (0.09) Oregon 18.3

Minnesota 0.07 (0.07) Missouri 13.1

Michigan 0.05 (0.05) Michigan 9.3

Washington 0.04 (0.85) Indiana 5.9

Utah 0.04 0.19) Minnesota 5.6

Indiana 0.04 '0.12) Washington 4.7

New Mexico 0.01 0.15) Virginia 3.0

Virginia 0.01 (0.06) New Mexico 2.4

Oklahoma 0.00 '0.15) Oklahoma -0.2

Idaho 0.00 0.10) Idaho -0.6

Iowa -0.01 0.07) Iowa -0.9

Connecticut -0.03 0.10) Wisconsin -2.5

Delaware -0.03 0.10) Tennessee -9.2

Massachusetts -0.03 0.10) Texas -10.0

Maryland -0.03 0.10) Ohio -10.2

Maine -0.03 '0.10) Illinois -12.1

New Hampshire -0.03 0.10) Maryland -12.7

New Jersey -0.03 (0.10) Arkansas -13.0

Rhode Island -0.03 (0.10) California -15.0

Vermont -0.03 (0.10) New Jersey -18.2

Tennessee -0.03 (0.07) Delaware -23.2

Wisconsin -0.03 (0.05) Connecticut -25.5

Ohio -0.07 (0.08) Massachusetts -28.3

Arkansas -0.11 (0.27) Maine -28.3

Montana -0.12 (0.06) Florida -28.6

Mississippi -0.16 (0.18) Colorado -36.3

Texas -0.16 (0.50) Vermont -36.4

Illinois -0.18 (0.13) Montana -40.2

Colorado -0.21 (0.22) Nebraska -40.8

Alabama -0.21 (0.33) Mississippi -42.7

Florida -0.45 (0.44) North Carolina -46.0

North Carolina -0.65 (0.24) Alabama -46.7

Nebraska -0.67 (0.22) Rhode Island -84.9

California -0.75 (1.50) New Hampshire -127.4

Notes: All Figures in billions of 2002 constant dollars The entries report state-level predicted impacts of climate change
on agricultural profits using the estimation results from state-level versions of equation (4) and the Hadley 2 Long Run
climate change scenario. Growing season degree-days and total precipitation are modeled with quadratics and their

effects are allowed to vary in irrigated and non-irrigated counties. The specification also includes controls for soil

productivity and county and year fixed effects. There are a total of 22 parameters so this model cannot be estimated

separately for the 11 states with fewer than 22 counties in our sample. Instead, we group these states together in 2
groups (AZ, NV) and (CT, DE, MA, MD, ME, NH, NJ, Rl, VT) and estimate the model separately for each group. See the

text for more details.



Table 8: Fixed-Effects Estimates of Agricultural Yield Models

Corn for Grain Soybeans

(1a) (lb) (2a) (2b)

16.32

36.63

2.38

0.02

(0.02)

U.S. Total Value (Billion Dollars) 22.54 22.54 16.32

County Mean of Dep. Variable 114.77 114.77 36.63

U.S. Total Production (Billion Bushels) 8.67 8.67 2.38

Predicted Impact of Hadley 2 Long Term (2070-2099) Scenario on Crop Yields

All Counties: -0.06 0.01 -0.05

(0.08) (0.07) (0.02)

Percent of U.S. Total Yield -0.7 0.1 -2.0 0.7

Non-Irrigated Counties: -0.10 0.00 -0.04 0.01

(0.06) (0.05) (0.01) (0.01)

Irrigated Counties: 0.04 0.01 -0.01 0.00

(0.03) (0.03) (0.02) (0.01)

Impact of Change in Temperature -0.34 -0.16 -0.12 -0.04

(0.07) (0.06) (0.02) (0.01)

Impact of Change in Precipitation 0.28 0.17 0.07 0.06

(0.03) (0.02) (0.01) (0.01)

Soil Controls Yes Yes Yes Yes

County Fixed Effects Yes Yes Yes Yes

Year Fixed Effects Yes No Yes No

State'Year Fixed Effects No Yes No Yes

Notes: "U.S. Total Value" is expressed in billions of 2002 constant dollars. The row "County Mean of Dependent

Variable" is expressed in bushels per acre and "U.S. Total Yield" is in billions of bushels. The other entries report

predicted impacts of climate change on crop output (in billions of bushels) using the estimation results from versions

of equation (4) and the Hadley 2 Long Run climate change scenario. In the versions of equation (4), the dependent

variables are county-level total bushels of production per acre planted (production / acre planted) for corn for grain,

soybeans, and wheat for grain. The independent variables of interest are growing season degree-days and

precipitation, both of which are modeled with a quadratic and allowed to vary among non-irrigated and irrigated

counties. The regressions all include controls for soil characteristics and county fixed effects and are weighted by the

square root of the number of acres planted for the relevant crop. Due to the nonlinear modeling of the weather

variables, each county's predicted change in bushels per acre is calculated as the discrete difference in per acre

output at the county's predicted degree-days and precipitation after climate change and its current climate (i.e., the

average over the 1 970-2000 period). The resulting change in bushels per acre is multiplied by the number of acres of

farmland in the county and then the national effect is obtained by summing across all counties in the sample. There

are 5,992 observations in columns (1a) and (1b) and 4,320 in columns (2a) and (2b).



Figure l A: Fitted Relationship Between Aggregate Profits, Total Value of Crops

Produced and Growing Season Degree-Days
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Figure IB: Fitted Relationship Between Aggregate Profits, Total Value of Crops

Produced and Growing Season Precipitation
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Notes: Underlying the figure are quadratic regressions of profits per acre and yields per acre planted on growing season degree-days

(l A) and total precipitation (IB). The crop yield per acre values are converted to an aggregate figure by multiplying the regression

estimates by 1987-2002 average crop price per bushel and by the 1987-2002 average aggregate acreage planted in the relevant crop.

The profit per acre values are converted to an aggregate figure by multiplying the regression estimates by the 19S7-2002 average

aggregate acreage in farms. The regressions also include county fixed effects and state by year fixed effects and are weighted by

acres of farmland (profits models) or acres planted in the relevant crop (crop yield models).



Figure 2: Theoretical Relationship Between Profits Per Acre and Temperature
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Figure 4A: Estimated Relationship Between Profits per Acre & Growing Season Degree Days
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Notes: The figure plots the results from 4 separate regressions for county-level profits per acre all of which are weighted by total agricultural

acres. The line "Year FE [Decile]" plots the parameter estimates on indicator variables for deciles of the distribution of growing season degree

days at the midpoint of each decile's range. As the title of the line indicates, this regression also includes year fixed effects. The "Year & County

FE [Decile]" and "State by Year & County FE [Decile]" lines repeat this exercise but include year and county fixed effects and state by year and

county fixed effects, respectively. The "State by Year & County FE [Quadratic]" line replaces the indicators variables with a quadratic in degree

days and plots the conditional means at the midpoints of each decile's range.

Figure 4B: Estimated Relationship Between Profits per Acre & Growing Season Precipitation
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Notes: This figure replicates the graphical exercise in 4A, except for growing season precipitation (rather than growing season degree-days).
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