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Abstract

This paper studies a simple model of experimentation and innovation. Our analysis suggests that

patents may improve the allocation of resources by encouraging rapid experimentation and efficient ex

post transfer of knowledge across firms. Each firm receives a private signal on the success probability

of one of many potential research projects and decides when and which project to implement. A suc-

cessful innovation can be copied by other firms. Symmetric equilibria (where actions do not depend

on the identity of the firm) always involve delayed and staggered experimentation, whereas the optimal

allocation never involves delays and may involve simultaneous rather than staggered experimentation.

The social cost of insufficient experimentation can be arbitrarily large. Appropriately-designed patents

can implement the socially optimal allocation (in all equilibria). In contrast to patents, subsidies to

experimentation, research, or innovation cannot typically achieve this objective. We also show that when
signal quality differs across firms, the equilibrium may involve a nonmonotonicity, whereby players with

stronger signals may experiment after those with weaker signals. We show that in this more general

environment patents again encourage experimentation and reduce delays.
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1 Introduction

Most modern societies provide intellectual property rights protection to innovators using a patent

system. The main argument in favor of patents is that they encourage ex ante innovation by

creating ex post monopoly rents (e.g., Arrow, 1962, Kitch, 1977, Reinganum, 1981, Tirole,

1988, Klemperer, 1990, Gilbert and Shapiro, 1990, Romer, 1990, Grossman and Helpman, 1991,

Aghion and Howitt, 1992, Scotchmer, 1999, Gallini and Scotchmer, 2002). In this paper, we

suggest an alternative (and complementary) social benefit to patents. We show that, under

certain circumstances, patents encourage experimentation by potential innovators while still

allowing socially beneficial transmission of knowledge across firms.

We construct a stylized model of experimentation and innovation. In our baseline game

there is a large number of potential projects and TV symmetric potential innovators (firms).

Each firm receives a private signal on which of these projects is more likely to lead to an innova-

tion and can decide to experiment with any of these projects at any point in time. A successful

innovation is publicly observed and can be copied by any of the other potential innovators (for

example, other firms can build on the knowledge revealed by the innovation in order to increase

their own probability of success, but in the process capture some of the rents of this first in-

novator). The returns from the implementation of a successful innovation are nonincreasing in

the number of firms implementing it. We provide an explicit characterization of the (subgame

perfect or perfect Bayesian) equilibria of this dynamic game (both in discrete and continuous

time). The symmetric equilibrium always features delayed and staggered experimentation. In

particular, experimentation does not take place immediately and involves one firm experiment-

ing before others (and the latter firms free-riding on the former's experimentation). In contrast,

the optimal allocation never involves delays and may require simultaneous rather than staggered

experimentation. The insufficient equilibrium incentives for experimentation may create a sig-

nificant efficiency loss: the ratio of social surplus generated by the equilibrium relative to the

optimal allocation can be arbitrarily small.

We next show that a simple patent system, where a copying firm has to make a prespecified

payment to the innovator, can implement the optimal allocation. When the optimal allocation

involves simultaneous experimentation, the patent system makes free-riding prohibitively costly

and implements the optimal allocation as the unique equilibrium. When the optimal allocation

involves staggered experimentation, the patent system plays a more subtle role. It permits ex

post transmission of knowledge but still increases experimentation incentives to avoid delays.

The patent system can achieve this because it generates "conditional" transfers. An innovator



receives a patent payment only when copied by other firms. Consequently, patents encourage one

firm to experiment earher than others, thus achieving rapid experimentation without sacrificing

useful transfer of knowledge. Moreover, we show that patents can achieve this outcome in all

equilibria. The fact that patents are particularly well designed to play this role is also highhghted

by our result that while an appropriately-designed patent implements the optimal allocation in

all equilibria, subsidies to experimentation, research, or innovation cannot achieve the same

objective.

In our baseline model, both the optimal allocation and the symmetric equilibrium involve

sequential experimentation. Inefficiency results from lack of sufficient experimentation or from

delays. The structure of equilibria is richer when the strength (quahty) of the signals received by

potential innovators differs and is also private information. In this case, those with sufficiently

strong signals will prefer not to copy successful innovations. With two firms or when the support

of signals is such that no firm will have sufficiently strong signals, the "symmetric" equilibrium

of this extended game (where strategies do not depend on the identity of the player) satisfies

a monotonictty property, so that firms with stronger signals never act after firms with weaker

signals. This ensures an efficient pattern of experimentation and efficient ex post transfer of

knowledge. However, when there are more than two firms and sufficiently strong signals are

possible, then the equilibrium may violate monotonicity. Interestingly, when this is the case

patents are again potentially useful (though they cannot restore monotonicity without preventing

(some) ex post transfer of knowledge).

In addition to the literature on patents mentioned above, a number of other works are related

to our paper. First, ours is a simple model of (social) experimentation and shares a number

of common features with recent work in this area (e.g., Bolton and Harris, 1999, 2000, and

Keller, Rady and Cripps, 2005). These papers characterize equilibria of multi-agent two-armed

bandit problems and show that there may be insufficient experimentation. The structure of the

equilibrium is particularly simple in our model and can be characterized explicitly because all

payoff-relevant uncertainty is revealed after a single successful experimentation. In addition, as

discussed above, there is insufficient experimentation in our model as well, though this also takes

a simple form: either there is free-riding by some firms reducing the amount of experimentation

or experimentation is delayed. We also show that patent systems can increase experimentation

incentives and implement the optimal allocation.

Second, the structure of equilibria with symmetric firms is reminiscent to equilibria in war

of attrition games (e.g., Maynard Smith, 1974, Hendricks, Weiss and Wilson, 1988, Haigh and

Cannings, 1989). War of attrition games have been used in the study of market exit by Fudenberg



and Tirole (1986) and Bulow and Klemperer (1999), research tournaments by Taylor (1995), and

in auctions by Bulow and Klemperer (1994). In our symmetric model, as in symmetric wars

of attrition, players choose the stochastic timing of their actions in such a way as to make

other players indifferent and willing to mix over the timing of their own actions. The structure

of equilibria and the optimal allocation is different, however, and the optimal allocation may

involve either simultaneous experimentation by all players or staggered experimentation similar

to those resulting in asymmetric equilibria. The novel beneficial role of patents in our model

arises from their ability to implement such asymmetric equilibria.

Finally, the monotonicity property when the quality of signals differs across agents is similar

to results in generalized wars of attrition (e.g., Fudenberg and Tirole, 1986, Bulow and Klem-

perer, 1994, 1999) and is also related to Gul and Lundholm's (1995) result on the clustering of

actions in herding models. In the context of a standard herding model with endogenous timing,

Gul and Lundholm construct an equilibrium in which agents with stronger signals act earlier

than those with weaker signals, though the specifics of our model and analysis differs from these

previous contributions. This is highlighted by the result that this monotonicity property does

not hold in our model when there are more than two firms and the support of signals includes

sufficiently strong signals so that some firms prefer not to copy successful experimentations.

The rest of the paper is organized as follows. In Section 2 we start with a discrete-time

model with two symmetric firms. We characterize both asymmetric and symmetric equilibria

in this model and provide explicit solutions when period length tends to zero. This motivates

our continuous-time analysis, which is more tractable. We obtain the continuous-time model as

the limit of the discrete-time model and provide explicit characterization of equilibria in Section

3. Section 4 extends these results to a setup with an arbitrary number of firms. Section 5

characterizes the optimal allocation and shows that the efficiency gap between the symmetric

equilibrium and the optimal allocation can be arbitrarily large. The analysis in this section

also demonstrates that an appropriately-designed patent system can implement the optimal

allocation (in aU equilibria). Section 6 extends the model to an environment in which signal

quality differs across firms. It establishes the monotonicity property of equilibria when either

there are only two firms or the support of signal distributions does not include sufficiently strong

signals. Section 7 shows how this monotonicity property no longer holds when there are more

than two firms and sufficiently strong signals are possible. Section 8 discusses the optimal

allocation and the role of patents in this extended model. Section 9 concludes.



2 Two Symmetric Firms: Discrete Time

In this section, we start with a discrete-time model with two symmetric firms. n, -

2.1 Environment

The economy consists of two research firms, each maximizing the present discounted value of

profits. Let us denote the time interval between two consecutive periods by A > 0. In what

follows we will take A to be small.

Each firm can implement ("experiment with") one ofM potential innovation projects. Let us

represent the set of projects byAI = {1,...,M}. Each firm receives a private ("positive") signal

V? G A^ indicating the success potential of one of the projects. The unconditional probability

that a project will be successful (when implemented) is small (~ 0). Conditional on the positive

signal the success probability of a project is p > 0. We assume that the two firms always receive

signals about different projects.^ The success or failure of experimentation by a firm is publicly

observed. When experimentation is successful, we refer to this as an "innovation".
,

,

At each instant, a firm can choose one of three possible actions: (1) experiment with a

project (in particular, with the project on which the firm has received a positive signal); (2)

copy a successful project; (3) wait. Experimentation and copying are irreversible, so that a firm

cannot then switch to implement a different project. In the context of research, this captures

the fact that commitment of intellectual and financial resources to a specific research line or

project is necessary for success. Copying of a successful project can be interpreted more broadly

as using the information revealed by successful innovation or experimentation, so it does not

need to correspond to the second firm replicating the exact same innovation (or product).'^

Payoffs depend on the success of the project and whether the project is copied. During an

interval of length A, the payoff to a firm that is the only one implementing a successful project

is TTiA > 0. In contrast, if a successful project is implemented by both firms, each receives

7r2A > 0.^ The payoff to an unsuccessful project is normalized to zero. Both firms discount the

future at the common rate r > (so that the discount factor per period is e^'"'^).

Until we introduce heterogeneity in success probabilities, we maintain the following assump-

'This means that signals are not independent. If signals were independent, there would be a positive (but

since M is large, small) probability that the two firms receive signals about the same project. Assuming that this

event has zero probability simplifies notation.

'In line with this interpretation, we could also allow copying to be successful with some probability u £ (p, 1].

This added generality does not affect any of the main economic insights and we omit it.

It will be evident from the analysis below that all of our results can be straightforwardly generalized to the

case where an innovator receives payoff 772"^'' A when copied, whereas the copier receives ttJ'^'""'' A. Since this has

no major effect on the main economic insights and just adds notation, we do not pursue this generalization.



tion.''

Assumption 1

Let US also define the present discounted value of profits as

and for future reference, define

n^^-^for j = l,2,

^.|. (1)

Clearly, P £ {p,l) in view of Assumption 1.

Now we are in a position to define strategies in this game. Let a history up to time t (where

t = kA for some integer k) be denoted by /i'. The set of histories is denoted by W'. A strategy

for a firm is a mapping from its signal, ip & A4, and the history of the game up to time t, /i', to

the probability of experimentation at a given time interval and the distribution over projects.

Thus the time t strategy can be written as

CT^ :M xH' ^ [0, 1] X A(A4),

where [0, 1] denotes the probabihty of implementing a project (either experimenting or copy-

ing) at time t and A (A4) denotes the set of probability distributions over the set of projects,

corresponding to the choice of project when the firm implements a project. The latter piece of

generality is largely unnecessary (and will be omitted), since there will never be mixing over

projects (a firm will either copy a successful project or experiment with the project for which

it has received a positive signal). Here a' [ip, /i') = (0, ) corresponds to waiting at time t and

a' ((/5, /i') — (l,j) corresponds to implementing project j at time t, which could be experimen-

tation or copying of a successful project. Let us also denote the strategy of firm i = 1,2 by

History up to time t can be summarized by two events a' G {0, 1} denoting whether the other

firm has experimented up to time i, m' £ A^ denoting which project it has chosen in that case,

and s* e {0,1} denoting whether this choice was successful. With a slight abuse of notation

we will use both a'' [(fi,h^^ and cr* (^ip , a'' , m^ , s^'j to denote time t strategies. Although this is

a game of incomplete information, the only source of asymmetric information is the identity

of the project about which a firm has received a positive signal and no action other than the

The structure of equilibria without this assumption is trivial as our analysis in Section 5 shows.



implementation of a project reveals information about this. In light of this, it is sufiicieat to

focus on subgame perfect equilibria (rather than perfect Bayesian equilibria) in this game. A

subgame perfect equilibrium (or simply equilibrium) is a strategy profile (cti, CT2) such that <7j is

the best response to 0"_, in all histories h^ E H^ for i = 1,2.

2.2 Asymmetric Equilibria

Even though firms are symmetric (in terms of their payoffs and information), there can be

symmetric and asymmetric equilibria. Our main interest is with symmetric equilibria, where

strategies are independent of the identity of the player. Nevertheless, it is convenient to start

with asymmetric equilibria. These equilibria are somewhat less natural, because, as we will see,

they involve one of the players never experimenting until the other one does.

In an asymmetric equilibrium, one of the firms, say 1, immediately attempts the project for

which it received a signal. Firm 2 copies firm 1 in the next time period if the latter is successful

and tries its own project otherwise. In terms of the notation above, this asymmetric equilibrium

would involve

for t = 0, A,2A,.... In words, this means that firm 1 chooses to experiment immediately (if it

has not experimented yet until t) and experiments with the project on which it has received its

signal, j. Firm 2, on the other hand, uses the strategy

(1,/) if a' = 1, m' = f and 5' = 1,

^2(^2= J, o-\m\s^) = I (l,j) if a' = 1, 771' =/ and s* = 0,

(0,-) ifa' = 0,

for t = 0,A,2A,.... The crucial feature highlighted by these strategies is that firm 2 never

experiments until firm 1 does.

Using the same analysis as in the proof of Proposition 2 below, it is straightforward to verify

that (J2 is a best response to aj provided that A < A* = r~^ log (/3 + 1 — p)- What about cti?

Given (72, suppose that the game has reached time t (where t = kA for k G N). If firm 1 now

follows (7i, it will receive expected payoff

l/[(]=p(e-^'7riA + e-'-(*+^)n2),

at time t, since its experimentation will be successful with probability p, yielding a profit of tt]A

during the first period following the success (equivalent to e~'''/TiA when discounted to time

t = 0). Then according to (T2, firm 2 will copy the successful project and firm 1 will receive

the present discounted value e~''*'^^^n2 from then on. If, at this point, firm 1 chooses not



to experiment, then the game proceeds to time i + A, and according to the strategy profile

(aj"*"^, a^2 )' it will receive payoff equal to

Therefore this deviation is not profitable. This discussion establishes the following proposition

(proof in the text). Throughout the paper, when there are two firms, we use the notation ~ i

to denote the firm i' ^ i.

Proposition 1 Suppose that Assumption 1 holds and that A < A* = r~^ log (/3 + 1 — p). Then

there exist two asymmetric equilibria. In each, one firm, i = 1,2, tries its project with probability

1 immediately and the other, firm ~ i, never tries its project unless it observes the outcomes of

the experimentation of firm i. Following experim,entation by i, firm, ~ i copies it if successful

and experiments with its own project otherwise.

More formally, the two equilibria involve strategies of the form:

, .

' ( (1,/) ifa'=\,ml^j' ands' = l,

al^{<fi^, = j,a\mls^) = l (l,j) if a^ = I, ml = j' and s' = 0,

[ (0,-) ifa'^0, .

for i= 1,2. '

,, ,:,,., .•

; , ,_
.'

• '

2.3 Symmetric Equilibria

Asymmetric equilibria explicitly condition on the identity of the firm: one of the firms, with label

i, is treated differently than the firm with label ~ i. This has important payoff consequences. In

particular, it can be verified easily that firm ~ i has strictly greater payoffs in the equilibrium

of Proposition 1 than firm i. In addition, as already noted in the previous section, asymmetric

equilibria rely on the understanding by both firms that one of them will not experiment until the

other one does. In this light, symmetric equilibria, where strategies are not conditioned on firms'

"labels," and firms obtain the same equilibrium payoffs are more natural. In this subsection,

we study such symmetric equilibria. We focus on the case where the time interval A is strictly

positive but small.

As defined above a firm's strategy is a mapping from its information set to the probability

of implementing a project. We refer to a strategy as pure if the experimentation probability at

a given time t is either or I. That is, a pure strategy takes the form

••
.. a^ -.MxHf ^ {0,1} X A4. ,

Our first result shows that for small A, there are no pure-strategy symmetric equilibria.



Proposition 2 Suppose that Assumption 1 holds and that A < A* = r ^ log (/? + 1 - p) (ujhere

recall that P = Il2/Tii). Then there exist no symmetric pure-strategy equilibria.

Proof. Suppose, to obtain a contradiction, that such an equilibrium a* exists. This imphes that

there exists some time io and history h'° (with to = kA for /c G N) such that a^" ((/? = j, h^) =

(1, j). Then following this history the payoff to both firms is

V\to\(T*,a*] = e-'-'°pU,.

Now consider a deviation by firm 1 to a', which involves, after history /i'°, waiting until date

to + A, copying firm 2's project if successful, and experimenting with its own project otherwise.

The payoff to this strategy is

V [fo k',a*] - e-'-('°+^) (pRa + (1 - p)pn:)

,

since firm 2 experiments with probability 1 at time to and is successful with probabihty p.

Clearly, V [to |
cr' , a*] > V [to

\

cF*,a*] and there is a profitable deviation if

g-r((o+A)
(^^2 + (1 - p)pni) > e-"'vni,

or if

A< A* ~r-Mog(/3 + l-p).

Here A* > since, from Assumption 1,0 = U2/^\ > P- This establishes the existence of a

profitable deviation and proves the proposition.

Proposition 2 is intuitive. Asymmetric equilibria involve one of the firms always waiting

for the other one to experiment and receiving higher payoff. Intuitively, Proposition 2 implies

that in symmetric equihbria both firms would like to be in the position of the firm receiving

higher payoffs and thus delaying their own experimentation in order to benefit from that of

the other firm. These incentives imply that no (symmetric) equilibrium can have immediate

experimentation with probabihty 1 by either firm.

Proposition 2 also implies that all symmetric equilibria must involve mixed strategies. More-

over, any candidate equilibrium strategy must involve copying of a successful project in view of

Assumption 1 and immediate experimentation when the other firm has experimented. Therefore,

we can restrict attention to time t strategies of the form

{!,]') if a' = 1, m' = / and s* = 1,

a'{^ = j,a',m\s') =
{ (l,j) if a' = 1, m' = / and s* = 0, (2)

(g(t)A,j) ifa' = 0.



for i = 0, A, 2A, ..., where q{t)A is the probabihty of experimenting at time t conditional oo no

experimentation by either firm up to time t (all such histories are identical, hence we write q[t)

instead of q{h^)). Clearly, feasibility requires that q{t)A < 1.

Next we derive an explicit characterization of the unique symmetric equilibrium as A —> 0.

In the text, we assume that firms use a constant probability of experimentation over time,

i.e., q{t) = q for all t (Proposition 3 relaxes this assumption and establishes uniqueness more

generally). We consider a symmetric mixed-strategy equilibrium a* and suppose that the game

has reached time t without experimentation. Let v^ [t
\
A] and Ve [t

\
A] denote the time t

continuation payoffs to firm i when firm ~ i plays ct* and firm i chooses to wait or to experiment

(and period length is A).^ For a mixed-strategy equilibrium to exist, we need

v^ [t
I

A] = Ve [i
I

A]

.

, (3)

The proof of Proposition 3 below shows that all symmetric equilibria involve mixing after any

history h^ (with no experimentation up to t), i.e., equation (3) holds for all such /l^ Therefore, it

suffices to characterize a* such that (3) holds. First, consider firm i's payoffs from experimenting:

Ve[t\A]=qApUi + {l-qA)pU2, ' - " (4)

since in this case firm i is successful with probability p and receives continuation value Hi if

firm ~ i has also experimented during the same time interval (probability qA), and it receives

112 otherwise (probability 1 — qA).

Similarly, its payoff from waiting is
;

v^[t\A]=e-'^{qA{pU2 + {l-p)pUi) + {l-qA)v^,\t + A\A]y -

(5)

where firm i receives no payoff' today and with probability gA, firm ~ i experiments, in which

case firm i copies if the experimentation is successful and experiments with its own project

otherwise, with expected continuation return pll2 + (1 — p)pll\. With probability 1 — gA,

firm ~ i does not experiment, and firm i then receives Vu, [i + A
|
A]. Adding and subtracting

Hu, [f -1- A
I

A] from the left-hand side of (5) and rearranging, we obtain .• . ,.

v.^ [i + A
I

A] (1 - (1 - gA) e-^^) -{v^[t + A\A]- v^ [t
\

A]) = e'^^qA (pHs + (1 - p)pUi)

.

Dividing both sides by A and taking the limit as A ^ yields '

lim .. [t + A
I

A] - -^ lim^
M + A

\

A]^ v^[t
\

A] \ ^^ ^^^ + (1 - p)pU.] . (6)A— r + q A-^o \ A J ''" + q

'Here we use v, since V denotes the value discounted back to i = 0.



From equation (4), we see that Ve \t
\
A] does not depend on t. Since equation (3) holds for

all /z* (thus for all i), we have v-u, [t
|
A] = Ve \t

\

A] and Wu- [i + A
|

A] = Ug [t + A
|

A], implying

that Uu, [i + A
I

Aj = Uu, [i
I

A]. Therefore, the second term on the left-hand side of (6) must be

equal to zero. Moreover, taking the hmit as A —> in (4), we obtain ,, .

lim Du; fi + A
I

Al = lim Ug fi
I

A] = pn2.

Combined with (6), this yields

q(0 = <?* = j^ for alH, / (7)'

P

where recall, from (1), that (5 = 112/111.

The next proposition relaxes the assumption that q{t) is constant for all t and shows that

this is indeed the unique symmetric equilibrium.

Proposition 3 Suppose that Assumption 1 holds and A ^- 0. Then there exists a unique

symmetric equilibrium. In this equilibrium, both firms use the mixed strategy a as given in (2)

with q {t) = q* as in (7).

Proof. We first show that any symmetric equilibrium must involve mixing after any history /i* €

'H' along which there has been no experimentation. The argument in the proof of Proposition 2

establishes that after any such history h'', there cannot be experimentation with probability 1.

We next show that there is positive probability of experimentation at time t = 0. First note that

the equilibrium-path value to a firm, V*
,
(discounted back to time t = 0), satisfies V* > pll2,

since each firm can guarantee this by experimenting at time t = 0. This implies that in any

equilibrium there must exist some time T such that after time T there is positive probability

of experimentation and innovation. Now to obtain a contradiction, suppose that T > 0. By

the argument preceding the proposition, limA-.o Ve \T
\

A] = e~^'^pll2, and therefore, in any

mLxed-strategy equilibrium, V* [T
|
A] —

> e~^^pll2. However, for T > this is strictly less than

V* > pH2, yielding a contradiction and establishing the desired result. The same argument also

establishes that there cannot exist any time interval {T,T'), with T' > T, along which there is

no mixing.

Hence, along any history /i' where there has not been an experimentation, both firms must

be indifferent between waiting and experimenting. This implies that (3) must hold for all t. Let

q{t)A denote the probability of experimentation at time t. Firm i's payoff for experimenting at

time t is given by an expression similar to equation (4),

•
^ Ve[t\A]=qit)ApUi + {\-q{t)A)pU2. '

(8)

10



We next show that the probability of experimentation q{t) in a symmetric equilibrium is

a continuous function of t. Suppose that q{t) is not continuous at some t > 0. If (?(F) <

q{t+) (where q{i+) = lim4|fg(i)), it then follows from (8) and Assumption 1 that Vg {t\ /^] <

Ve \t+
I

A]. This implies that firm i has an incentive to delay experimentation at time t. But this

contradicts the fact that the symmetric equilibrium must involve mixing at all such t. Similarly,

if q{t) > q{t+), we have Ve\t\ A] > Ve\t+ \
A], implying that firm i will experiment -with

probability 1 at time t, again yielding a contradiction. This establishes that q(t) is a continiaous

function of t.

A derivation similar to that preceding the proposition then shows that equation (6) holds

when q is replaced by q{t). In particular,

hm..[t + A|A]--^limf --'^ + ^'^J---'^l^]U^4-bn2 + (l-p)pn,].

.
:

-
. (9)

Since v^ [t
|
A] = v^ \t

|
A] and u^, [t + A

|

A] = Wg [i + A
|

A] , we can write the second term on

the left-hand side of equation (9) as ,.

lim (

^ " 1^ + ^
I
^] ~ ^"' \^\^] \ ^ ^^^(Ve[t + A\A]-V^\t\A]

A—O V A / A-^0 V A

lim (g(£ + A)-q(i))Ap(ni-n2)

.'
".

.

,:•..-;-'•
"',

. \ = 0, ^
• . . • .,::.:.-

;, /.;

where the second equality follows from equation (8) and the third equality holds by the continuity

of the experimentation probabihty ^(f). Substituting for

Um Vw\t + A\A]= lim Vg [i
|
Al = pn2,

A^O A—

in equation (9) and solving for q{t) yields q{t) = q* as in (7), completing the proof.

Proposition 3 characterizes the unique mixed strategy equilibrium when period length A is

small. The analysis is in discrete time. The limit where A —^ 0, which Proposition 3 shows is

well behaved, should also correspond to the (symmetric) equilibrium of the same model set up

directly in continuous time. We establish this in the next section and subsequently work directly

with the continuous-time model, which is both more economical and slightly more tractable.

3 Two Symmetric Firms: Continuous Time

The model is identical to that introduced in the previous section, except that time is continuous

and we work directly with flow rates of experimentation. Strategies and equilibria are defined

U



similarly and Assumption 1 still applies. This implies that in any equilibrium a firm that has

not experimented yet will copy a successful innovation. Using this observation, we can represent

strategies by a function A : R+ -^ R+ (where R+ = R+ U {+00}) specifying the flow rate of

experimentation at each date until there is experimentation by one of the players. Waiting -with

probability 1 at time t corresponds to A (i) = 0, while experimenting with probability 1 at some

time t corresponds to A [t) = +00. The flow rate of experimentation A induces a stochastic

distribution of "stopping time," which we denote by r. The stopping time r designates the

probability distribution that experimentation will happen at any time t G 1R+ conditional on. the

other plaj'er not having experimented until then. A pure strategy simply specifies r £ M.+ . For

example, the strategy of experimenting immediately is r = 0, whereas that of waiting for the

other firm's experimentation is represented by r = +00. The t notation is convenient to use for

the next two propositions, while in characterizing the structure of equihbria we need to use A

(thus justifying the introduction of both notations).''

Proposition 4 Suppose Assumption 1 holds. Then there exist two asym.m,etric equilibria. In

each equilibrium, ti = and t^i = +00 for i = 1,2.

Proof. The proof follows from the same argument as in subsection 2.2 and is omitted.

Our next result is the parallel of Proposition 2 and shows that there are no symmetric

pure-strategy equilibria in the continuous-time model.

Proposition 5 Suppose Assumption 1 holds. Then there exist no symmetric pure-strategy equi-

libria.

Proof. Suppose, to obtain a contradiction, that a symmetric pure-strategy equilibrium exists.

Then r* = t € K+ for i = 1, 2, yielding payoff

1/(r*,T*) = e-''Vni

to both players. Now consider a deviation t' > t for one of the firms, which involves waiting for

a time interval e and copying a successful innovation if there is such an innovation during this

time interval. As e —» 0, this strategy gives the deviating firm payoff equal to

V (r', T*) = hm e-"('+^) [pHs + (1 - p)pUi]

.

'Here we can be more formal and follow Simon and Stinchcombe's (1989) formal model of continuous-time

games with jumps. This amounts to defining an extended strategy space, where stopping times are defined for all

t € R+ and also for t+ for any t € R+. In other words, strategies will be piecewise continuous and right continuous

functions of time, so that a jump immediately following some time t G R-|- is well defined. Throughout, we do

allow such jumps, but do not introduce the additional notation, since this is not necessary for any of the main

economic insights or proofs.
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Assumption 1 implies that V (r', r*) > V {r*, r*), establishing the result.

As in the discrete-time model, we will next show that there exists a (unique) symmetric

mixed-strategy equihbrium. In what follows, instead of working with the stopping time r, it is

more convenient to work directly with A(t), which designates the flow rate of experimentation

at time t. The next lemma shows that synmietric equilibria must involve mixing on all t G R+

and will be used in the characterization of mixed-strategy equilibria.

Lemma 1 The support of mixed strategy equilibria is ^+-

Proof. The proof comprises three steps.

First, we show that t = belongs to the support of mixing time (so that there is no time

interval with zero probability of experimentation). Suppose, to obtain a contradiction, that

ti = inf{i: X{t) > 0} > 0. Then with the same argument as in the proof of Proposition 3 (in

particular because experimenting after t\ is in the support of the mixed-strategy equilibrium),

equilibrium payoffs must be

Vi = e-''^'pU2.

Now consider deviation where firm i chooses A (0) = 4-oo. This has payoff -
'

for any ti > 0, yielding a contradiction.

Second, we show that there does not exist T < oo such that the support of the stopping

time r (induced by A) is within [0,r]. Suppose not, then it implies that there exists t £ [0,T]

such that A (i) = 4-oo and let ti = infji; A(i) = -|-oo}. This implies that the payoff to both

firms once the game reaches time ti without experimentation (which has positive probability

since ii = inf{(: A(t) = +oo}) is

V{T = ti) = e-^^'pU2 . .

(where V (r = t), or V {t), denotes present discounted value as a function of experimentation

time; this is diff'erent than V \t], which referred to the value at time t in subsection 2.2). Now

consider a deviation by firm i to strategy r', which involves waiting for e > after the game

has reached ti and copying a successful project by firm ~ i (if there is such a success). This has

payoff

V{t') = e-'-^'+'> \pn2 + {I - p)pU

since firm ~ i is still A (ii) = -|-oo and will thus experiment with probability 1 at ti. Assumption

1 imphes that V (r') is strictly greater than V [t = ij) for e sufficiently small. .

13



Finally, we show that A (t) > for all t. Again suppose, to obtain a contradiction, that there

exist t-[ and ^2 > *i such that A(i) = for t t (ti,i2)- Then, with the same argument as in

the first part, the payoff from the candidate equilibrium strategy r to firm i conditional on no

experimentation until ii is
, .

V'(r) = e-^*^pn2.

However, deviating and choosing t' = ti yields

V{t' = ti) =e-"*>pn2 >ViT).

This contradiction completes the proof of the lemma.

Lemma 1 implies that in all symmetric equilibria there will be mixing at all times (until there

is experimentation). Using this observation, Proposition 6 characterizes a unique symmetric

equilibrium. Let us illustrate the reasoning here by assuming that firms use a constant flow rate

of experimentation (the proof of Proposition 6 relaxes this assumption). In particular, suppose

that firm ~ i innovates at the flow rate A for all t € K+. Then the value of innovating at time t

(i.e., choosing t = t) for firm i is

V{t)= ( Xe-^'e-'' \pll2 + (1 - p)pni] dz + e-^'e-''Vn2. (1"0)

Jo

This expression uses the fact that when firm ~ i is experimenting at the flow rate A, the timing

of its experimentation has an exponential distribution, with density Ae~'^*. Then the first term

in (10) is the expected discounted value from the experimentation of firm ~ i between and

t (again taking into account that following an experimentation, a successful innovation will be

copied, with continuation value ^112 + (1 —p)'plli). The second term is the probability that

firm ~ i does not experiment until t, which, given the exponential distribution, is equal to e""^',

multiphed by the expected discounted value to firm i when it is the first to experiment at time

t (given by e~'^^pY[2)-

Lemma 1 implies that V [t) must be constant in t for all t £ 1R+. Therefore, its derivative

V' [t) must be equal to zero for all t in any symmetric equilibrium implying that

y'(() = Ae-^'e-'->n2 + (l-p)pn,]-(r + A)e-^*e-'-Vn2 = 0,
^ (11)

for all t. This equation has a unique solution:

'

A* = -^ for all t. . (12)
1 -p

The next proposition shows that this result also holds when both firms can use time-varying

experimentation rates.
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Proposition 6 Suppose Assumption 1 holds. Then there exists a unique symmetric equilibrium.

This equilibrium involves both firms using a constant flow rate of experimentation X* as given by

(12). Firm ~ i, firm i immediately copies a successful innovation by firm ~ i and experim ents

if firm ~ i experiments unsuccessfully.

Proof. Suppose that firm ~ i experiments at the flow rate A {t) at time t G R+. Let us define

m{t) = f X{z)dz. (13)
Jo

Then the equivalent of (10) is

V{t)= I \ [z) e-"^(--)e-'--' \pU2 + {l-p) pUi] dz + e'"''-'^e-''pU2. (14)
Jo

Here J^^ X{z)e~^'-~'dz is the probabihty that firm ~ i (using strategy A) will experiment be-

tween times ij and ^2, and e""*''' = 1 —
Jq X{z) e^^^^-'^dz is the probability that ~ i has not

experimented before time t. Thus the first term is the expected discoimted value from the

experimentation of firm ~ i between and t (discounted and multiplied by the probability of

this event). The second term is again the probability that firm ~ i does not experiment until t

multiplied by the expected discounted value to firm i when it is the first to experiment at time

t (given by e~'''pn2).

Lemma 1 implies that V (i) must be constant in t for all t G E-|-. Since V (t) is different! able

in t, this implies that its derivative V (t) must be equal to zero for all t. Therefore,

V'{t) = A(t)e-"^(*)e-'"*[pn2 + (l-p)pni]- (r + m'(0)e-'"(')e-''Vn2

. ,
= for all t. .:-, ..= ., ^ ,

Moreover, note that m{t) is differentiable and m'(t) = X{t). Therefore, this equation is equiva-

lent to
,

_, A(0bn2 + (1 -p)pni] = (r + A(i))pn2 for allf. .

' (15)^

The unique solution to (15) is (12), establishing the uniqueness of the symmetric equilibrium

without restricting strategies to constant flow rates.

This proposition contains exactly the same economics as Proposition 3 derived in the previous

section. The flow rate of innovation A* in (12) is also clearly identical to g* in (7). This establishes

formally that the limit of the discrete-time model and the continuous-time model give the same

economic and mathematical answers. In what follows, we will use the continuous-time model,

since it is more tractable and necessitates less notation.
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4 Multiple Firms
,

Let us now suppose that there are A^ firms, each of which receives a positive signal about one

of the projects. The probability that the project that has received a positive signal will succeed

is still p and each firm receives a signal about a diff'erent project. Let tt^ denote the flow payoff

from a project that is implemented by n other firms and define

TT — ^"

Once again, /? = 112/111 as specified in (1) and Assumption 1 holds, so that /? > p.

The following proposition is established using similar arguments to those in the previous two

sections and its proof is omitted. •

Proposition 7 Suppose that Assumption 1 holds and that there are TV > 2 firms. Then there

exist no symmetric pure-strategy equilibria. Moreover the support of the mixed-strategy equilibria

is R+.

It is also straightforward to show that there exist asymmetric pure-strategy equilibria. For

example, when Tlj\j/Y[i > p, it is an equihbriura for firm 1 to experiment and the remaining

N — 1 to copy if this firm is successful. If it is unsuccessful, then firm 2 experiments and so on.

As in the previous two sections, symmetric equilibria are of greater interest. To characterize

the structure of symmetric equilibria, let us first suppose that .

n„ = n2 for all n > 2
'

''

.
, (16)

and also to simplify the discussion, focus on symmetric equilibria with constant fiow rates.

In particular, let the rate of experimentation when there are n > 2 firms be A„. Consider a

subgame starting at time io with n firms that have not yet experimented (and all previous,

N — n, experiments have been unsuccessful). Then the continuation value of firm i (from time

to onwards) when it chooses to experiment with probability 1 at time to -\- 1 is

vn it) = r* \n[n- 1) e-^"("-i)(^-''>)e-^(^-'«) [pDj + (1 - p) v^-i] dz + e-^-^^-^^'e-^'pUi,
Jto .

(17)

where fn-i is the maximum value that the firm can obtain when there are n — 1 firms that

have not yet experimented (where we again use v since this expression refers to the continuation

value from time to onwards). Intuitively, A„ (n — 1) e~'^"("~'')(-~'°) is the density at which one

of the n — 1 other firms mixing at the rate A^ will experiment at time z G (io, to -\- 1). When this

happens, it is successful with probability p and will be copied by all other firms, and each will
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receive a value of e~^^'^~^°'Il2 (discounted back to to)- If it is is unsuccessful (probability 1 — p),

the niunber of remaining firms is n — 1, and this gives a value of Vn-i- If no firm experiments

until time t, firm i chooses to experiment at this point and receives e~'^^pll2. The probability of

this event is 1 - //j""^* A„ (n - 1) e-^"("-^)(--*°)(iz = e-^"("-i)^ As usual, in a mixed strategy

equilibrium, Vn (i) needs to be independent of i and moreover, it is clearly differentiable in t. So

its derivative must be equal to zero. This implies

A„(n-l)[pn2 + (l-p)^;„-ij = (A„(n- l) + r)pn2. (18)

Proposition 7 imphes that there has to be mixing in all histories, thus

Vn = pYl2 for all n > 2. (19)

Intuitively, mixing implies that the firm is indifferent between experimentation and waiting, and

thus its continuation payoff must be the same as the payoff from experimenting immediately,

which is pll2- Combining (18) and (19) yields

^" = 71 w"' nrr ' (20)
(1 -p)(n- i)ni

This derivation implies that in the economy with TV firms, each firm starts mixing at the

flow rate A^v- Following an unsuccessful experimentation, they increase their flow rate of exper-

imentation to A/v_i, and so on. ' '-/
'

'

';'.,-'''i'- ; '-
'*' '' " '

"'

The derivation leading up to (20) easily generalizes when we relax (16). To demonstrate

this, let us relax (16) and instead strengthen Assumption 1 to: .

Assumption 2

n„ > plf] for all n.

The value of experimenting at time t (starting with n firms) is now given by a generalization

of (17): / .
. , ;

.; - '• -

Vn {t)= r Xn (n - 1)
e-^n("-i)(~'-to)e-r(.-to) [pn„ + (1 - p) i;„_i] dz + e-^-^^-i^'e-'-'pn^.

Jto

Again differentiating this expression with respect to t and setting the derivative equal to zero

gives the equivalent indifference condition to (18) as , .

- .'
. A„(n-l)[pn„ + (l-p)Dn-i] = (A„(n-l) + r)pn„. ' (21)

for n = 2, ...,N. In addition, we still have .
.

Vn =pn„ for all n > 2.
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Combining this with (21), we obtain

-^" =
7^ Nr""im forn = 2,..„7V, (22)
(1 -p){n- i)n„_i

and let us adopt the convention that Aj = +oo.

This derivation estabUshes the following proposition.

Proposition 8 Suppose that Assumption 2 holds. Then there exists a unique symmetric equi-

librium. In this equilibrium, when there are n = 1,2, ..., A'^ firms that have not yet experimented,

each experiments at the constant flow rate An as given by (22). A successful innovation is im-

mediately copied by all remaining firms. An unsuccessful experimentation starting with n > 3

firms is followed by all remaining firms experimenting at the flow rate A„_i

.

An interesting feature of Proposition 8 is that after an unsuccessful experimentation, the

probability of further experimentation may decline. Whether this is the case or not depends on

how fast Ifn decreases in n.

5 Patents and Optimal Allocations

The analysis so far has estabUshed that both in discrete and continuous time, symmetric equi-

libria involve mixed strategies, potential delays, and also staggered experimentation (meaning

that with probability 1, one of the firms will experiment before others). Asymmetric equilibria

avoid delays, but also feature staggered experimentation. Moreover, they are less natural, be-

cause they involve one of the firms never acting (experimenting) until the other one does and

also because they give potentially very different payoffs to different firms. In this section, we

first establish the inefficiency of (symmetric) equilibria. We then suggest that an appropriately-

designed patent system can implement optimal allocations. While all of the results in the section

hold for N > 2 firms, we focus on the case with two firms to simplify notation.

5.1 Welfare

It is straightforward to see that symmetric equilibria are Pareto suboptimal. Suppose that there

exists a social planner that can decide the experimentation time for each firm. Suppose also

that the social planner would like to maximize the sum of the present discounted values of the

two firms. Clearly, in practice an optimal allocation (and thus the objective fimction of the

social planner) may also take into account the implications of these innovations on consumers.

However, we have not so far specified how consumer welfare is affected by the rephcation of
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successful innovations versus new innovations. Therefore, in what follows, we focus on opti-

mal allocations from the viewpoint of firms. This would also be the optimal allocation taking

consimier welfare into account when consumer surpluses from a new innovation and from a suc-

cessful innovation implemented by two firms are proportional to Jl] and 2112, respectively. If we

take the differential consumer surpluses created by these innovations into account, this would

only affect the thresholds provided below, and for completeness, we also indicate what these

alternative thresholds would be (see, in particular, footnote 7).

The social planner could adopt one of two strategies:

1. Staggered experimentation: this would involve having one of the firms experiment at i = 0;

if it is successful, then the other firm would copy the innovation, and otherwise the other

firm would experiment immediately. Denote the surplus generated by this strategy by SC.

2. Simultaneous experimentation: this would involve having both firms experiment immedi-

ately at i = 0. Denote the surplus generated by this strategy by 52'

•

It is clear that no other strategy could be optimal for the planner. Moreover, both in discrete

time as A —> and in continuous time, 5f and S2 have simple expressions. In particular,

' -- ' S^ = 2pU2 + {l-p)pUi.
^•'

^
'•^

(23)

Intuitively, one of the firms experiments first and is successful with probability p. When this

happens, the other firm copies a successful innovation, with total payoff 2Il2. With the com-

plementary probabihty, 1 — p, the first firm is unsuccessful, and the second firm experiments

independently, with expected payoff pIli. Both in continuous time and in discrete time as A —> 0,

these payoffs occur immediately after the first experimentation and thus are not discounted.

The alternative is to have both firms experiment immediately, which generates expected

surplus

S^ = 2pU,. (24)

The comparison of 5f and S2 implies that simultaneous experimentation by both firms is

optimal when 2p < 1 + p. In contrast, when 2/3 > 1 + p, the optimal allocation involves one of

the firms experimenting first, and the second firm copying successful innovations. This is stated

in the next proposition (proof in the text).'''

Proposition 9 Suppose that

2/3>l-fp, (25)

' If consumer surpluses from a new innovation and from the two firms implementing the same project were,
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then the optimal allocation involves staggered experimentation, that is, experimentation hy one

firm and copying of successful innovations. If (25) does not hold, then the optimal allocation

involves immediate experimentation by both firms. When 2/3 = l+p, both staggered experimen-

tation and immediate experimentation are socially optimal.

Let us now compare this to the equihbria characterized so far. Clearly, asymmetric equilibria

are identical to the first strategy of the planner and thus generate surplus 5j (recall subsection

2.2.). In contrast, the (unique) symmetric equilibrium generates social surplus

/oo

S^ = 2A*e-(2^'+'")'[2pn2 + (l-p)pni]di (26)
Jo

= w^^[^-p^2 + {i-p)pni],
za + r

where A* is the (constant) equilibrium flow rate of experimentation given by (12). The first line

of (26) applies because the time of first experimentation corresponds to the first realization of

one of two random variables, both with an exponential distribution with parameter A* and time

is discounted at the rate r. If the first experimentation is successful, which has probability p,

surplus is equal to 2112, and otherwise (with probability 1 — p), the second firm also experiments,

with expected payoff pIli. The second line is obtained by solving the integral and substituting for

(23). It is also straightforward to verify that the second line of (26) applies in the discrete-time

model with A -^ (since (12) is identical to (7)).

A straightforward comparison shows that S^ is always (strictly) less than S[ . Therefore, the

unique symmetric equilibrium is always inefficient. Moreover, this inefficiency can be quantified

in a simple manner. Let S^ = max {5f , 5.f } and consider the ratio of equilibrium social surplus

to the social surplus in the optimal allocation as a measure of inefflciency:

Naturally, the lower is s the more inefficient is the equilibrium.

Clearly, 5 < 1, so that the equilibrium is always inefficient as stated above. More specifically,

let us first suppose that (25) holds. Then, the source of inefficiency is delayed experimentation.

respectively, Ci and 2C2, then we would have

5r = 2p(n2 + C2) + (i-p)p(ni+Ci)

sf = 2p(n, +c,).

Denoting 7 s (n2 + C2)/(ni +Ci), it is then clear that condition (25) would be replaced by 27 > 1 + p and
the rest of the analysis would remain unchanged. As noted in the beginning of this section, if C2 = Kn2 and

Ci = kHi, then this condition would be identical to (25).
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In this case,

2A* _ 2/3

2A*+r ~ 2^ + 1-p'

where the last equahty simply uses (12). It is clear that s is minimized, for given p, as /3 =

(1 +p) /2 (its lower bound given (25)). In that case, we have

_ 1 +p

In addition, as p ]. 0, s can be as low as 1/2.

Next consider the case where (25) does not hold. Then

•-'2

2A* 2pn2 + (i-p)pn
'- = P,

2A* + r 2pUi . ,..,

where the last equality again uses (12) and the definition of p from (1). Since this expression

applies when < 1 +p, /? can be arbitrarily small as long as p is small (to satisfy the constraint

that > p), and thus in this case s | 0. In both cases, the source of inefficiency of the symmetric

equilibrium is because it generates insufficient incentives for experimentation. In the first case

this exhibits itself as delayed experimentation, and in the second, as lack of experimentation by

one of the firms. ,...,,, ,
.

•
,

This discussion establishes (proof in the text).**
,

:. ... .
.

Proposition 10 1. Asymm.etric equilibria are Pareto optimal and maxim.ize social surplus

when (25) holds, but fail to maximize social surplus when (25) does not hold.

2. The unique symmetric equilibrium is always Pareto suboptimal and never maximizes social

surplus. When (25) holds, this equilibrium involves delayed experimentation, and when

(25) does not hold, there is insufficient experimentation.

3. When (25) holds, the relative surplus in the equilibrium compared to the surplus in the

optimal allocation, 5, can be as small as 1/2. When (25) does not hold, the symmetric

equilibrium can be arbitrarily inefficient. In particular, s | as p J.
and /3 J,

0.

Naturally, if we take into account consumer surpluses as discussed in footnote 7 and it is not the case that

C2 = Kn2 and C\ = Kill, then equilibrium social surplus relative to social surplus in the optimal allocation can

be even lower because of the misalignment between firm profits and consumer surpluses resulting from different

types of successful research projects.
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5.2 Patents

The previous subsection established the inefficiency of the symmetric equihbrium resulting from

delayed and insufficient experimentation. In this subsection, we discuss how patents can solve

or ameliorate this problem. Our main argument is that a patent system provides incentives for

greater experimentation or for experimentation without delay.

We model a simple patent system, whereby a patent is granted to any firm that undertakes a

successful innovation. If a firm copies a patented innovation, it has to make a payment 77 to the

holder of the patent. We discuss the relationship between this pa3rment and licensing fees in the

next subsection. An appropriately-designed patent system (i.e., the appropriate level of 77) can

achieve tv,'o objectives simultaneously. First, it can allow firms to copy others when it is socially

beneficial for the knowledge created by innovations to spread to others (and prevent it when it

is not beneficial). Second, it can provide compensation to innovators, so that incentives to free-

ride on others are weakened. In particular, when staggered experimentation is optimal, a patent

system can simultaneously provide incentives to one firm to innovate early and to the other firm

to copy an existing innovation. When rj is chosen appropriately, the patent system provides

incentives for the ex post transfer of knowledge. However, more crucially, it also encourages

innovation because an innovation that is copied becomes more profitable than copying another

innovation and paying the patent fee. The key here is that the incentives provided by the

patent system are "conditional" on whether the other firm has experimented or not, and thus

induce an "asymmetric" response from the two firms. This makes innovation relatively more

profitable when the other firm copies and less profitable when the other firm innovates. This

incentive structure encourages one of the firms to be the innovator precisely when the other firm

is copying. Consequently, the resulting equihbria resemble asymmetric equilibria. Moreover,

these asymmetric incentives imply that, when the patent system is designed appropriately, a

symmetric equilibrium no longer exists. It is less profitable for a firm to innovate when the

other firm is also innovating, because innovation no longer brings patent revenues. Conversely,

it is not profitable for a firm to wait when the other firm waits, because there is no innovation

to copy in that case.

Our main result in this subsection formahzes these ideas. We state this result in the following

proposition and then provide most of the proof, which is intuitive, in the text.

Proposition 11 Consider the model with two firms. Suppose that Assumption 1 holds. Then:
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1. When (25) holds, a patent system with

^^(i-p)n.
n2-pni

2

(which is feasible in view of (25)), implements the optimal allocation, which involves stag-

gered experimentation, in all equilibria. That is, in all equilibria one firm experiments first,

and the other one copies a successful innovation and experiments immediately following

an unsuccessful experimentation.

2. When (25) does not hold, then the optimal allocation, which involves simultaneous exper-

imentation, is implemented as the unique equilibrium by a patent system with

77 > U2-PII1.

That is, there exists a unique equilibrium in which both firms immediately experiment.

Let us start with the first claim in Proposition 11. Observe that since 77 < 112 — pHi, the

equilibrium involves copying of a successful innovation by a firm that has not acted yet. However,

incentives for delaying to copy are weaker because copying now has an additional cost r], and

innovation has an additional benefit 77 if the other firm is imitating. Suppose that firm ~ i will

innovate at some date T > (provided that firm i has not done so until then). Then the payoffs

to firm i when it chooses experimentation and waiting are '.
.

experiment now = p{U2 + r}) - '

, ,
•

•'
'

_:. -. wait = e-^^(p(n2-7]) + (i-p)pni).

It is clear that for any T > 0, experimenting is a strict best response, since .

p{U2+rj)>p{U2-Tl) + {l'P)P^i -

since rj > ^ "^ ' So experimenting immediately against a firm that is waiting is optimal. To

show that all equilibria implement the optimal allocation, we also need to show that both firms

experimenting immediately is not an equilibrium. Suppose they did so. Then the payoff to each

firm, as a function of whether they experiment or wait, would be ,

experiment now = pITi '
•

.,
,

wait = p(n2 - 77) + (1 ~p)pni.

Waiting is a strict best response since .

"

• p(n2-?7) + (i-p)pni >pUi
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which holds in view of the fact that i] < II2 - pH]. This argument makes it intuitive that

patents induce an equihbrium structure without delay: waiting is (strictly) optimal when the

other firm is experimenting immediately and experimenting immediately is (strictly) optimal

when the other firm is waiting. However, to establish this formally, we need to prove that tliere

are no mixed strategy equilibria. This is done in the next lemma.

Lemma 2 When equation (25) holds, there does not exist any equilibrium with mixing.

Proof. Let us write the expected present discovmted value of experimenting at time t for firm

i when firm ~ i experiments at the flow rate X{t) as in (14) in the proof of Proposition 6

except that we now take patent payments into account and use equation (25) so that copying a

successful innovation is still profitable. This expression is

V{t)= f A(2)e-"^(-')e-''~Xn2-??) + (l-p)pni]dz + e-"We-^'p(n2+??),
-'0

:

where m (t) is given by (13) in the proof of Proposition 6. This expression must be constant for

all t in the support of the mixed-strategy equilibrium. The argument in the proof of Proposition

6 establishes that A (t) must satisfy ....

A (i) b (n2 - r?) + (1 - p) pDi] = (r + A (t)) P (n2 + 77)

.

It can be verified easily that if (25) holds this equation cannot be satisfied for any A {t) G IR+

(for any t). Therefore, there does not exist any equilibrium with mixing.

Let us next turn to the second claim in the proposition. Suppose that (25) is not satisfied and

let 77 > 112 - pHi. Then it is not profitable for a firm to copy a successful innovation. Therefore,

both firms have a unique optimal strategy which is to experiment immediately, which coincides

with the optimal allocation characterized in Proposition 9.

The preceding discussion and Proposition 11 show how an appropriately-designed patent

system can be useful by providing stronger incentives for experimentation. When simultaneous

experimentation by all parties is socially beneficial, a patent system can easily achieve this by

making copying (or "free-riding") unprofitable. On the other hand, when ex post transfer of

knowledge is socially beneficial, the patent system can instead ensure this while also preventing

delays in all equihbria. It is important to emphasize that, in the latter case, the patent system

provides such incentives selectively, so that only one of the firms engages in experimentation

and the other firm potentially benefits from the innovation of the first firm. In contrast to

patents, simple subsidies to research could not achieve this objective. This is stated in the next

proposition and highlights the particular utility of a patent system in this environment.
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Proposition 12 Suppose equation (25) holds. Consider a direct subsidy w > given to a firm

that experiments. There exists no w > such that all equilibria with subsidies correspond to the

optimal allocation.

Proof. This is straightforward to see. If w > II2 -pHi , there exists an equilibrium in which both

firms experiment immediately and if u; < 112 - pHi, the symmetric mixed-strategy equilibrium

with delayed experimentation survives.

It is clear that the same argument applies to subsidies to successful innovation or any com-

bination of subsidies to innovation and experimentation.

5.3 Patents and License Fees

The analysis in the previous subsection assumed that a firm can copy a successful innovation

and in return it has to make some pre-specified payment 77 to the original innovator. In practice

patents often provide exclusive rights to the innovator, who is then allowed to license its product

or discovery to other firms. With this interpretation, the payment rj would need to be negotiated

between the innovator and the (potential) copying firm rather than determined in advance.

While licensing is an important aspect of the patent system in practice, it is not essential for

the theoretical insights we would like to emphasize.

To illustrate this, let us suppose that the copying firm is developing a different but highly

substitutable product to the first innovation. Suppose further that the patent system gives

exclusive rights to the innovator but if the second firm copies a successful innovation, the court

system needs to determine damages. How the court system fimctions is also part of the patent

system. In particular, suppose that if a firm copies a successful innovation without licensing

and the innovator brings a lawsuit, it will succeed with probability p £ (0, 1) and the innovator

will receive damages equal to k (111 — 112), where k > 0. We ignore legal fees. Given this legal

environment, let us interpret 77 as a license fee negotiated between the potential copying firm

and the innovator. For simphcity, suppose that this negotiation can be represented by a take-

it-or-leave-it offer by the innovator (this has no effect on the conclusions of this subsection). If

the two firms agree to licensing, their joint surplus is 2112. If they disagree, then the outside

option of the copying firm is max {pHi; 112 " /^^ (fl] — 112)}, where the max operator takes care

of the fact that the best alternative for the "copying" firm may be to experiment if there is no

explicit licensing agreement. Without licensing, the innovator will receive an expected return

of 112 + /"^(IIi — 112) if 112 ~ /"^(111 — 112) > pill and IIi otherwise. This implies that the
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negotiated licensing fee, as a function of the parameters of the legal system, will be

( pk{Ui-U2) ifpDi <n2-p/^(ni-n2),
ri{p,K)=l U2-PU1 if pDi >n2--/9K(ni -02) and2n2 > Hi,

[00 otherwise,

where 00 denotes a prohibitively expensive licensing fee, such that no copying takes place.

Clearly, by choosing p and k, it can be ensured that 77 {p, k) is greater than 112 — pfli when (25)

does not hold and is between (1 - p) ni/2 and 112 — pIli when it holds. This illustrates how an

appropriately-designed legal enforcement system can ensure that equilibrium licensing fees play

exactly the same role as the pre-specified patent fees did in Proposition 11.

6 Model with Heterogeneous Information

In this and the next two sections, we relax the assumption that all firms receive signals with

identical precision. Instead, now signal quality differs stochastically across firms. We continue

to assume that each firm receives a positive signal about a single project. But the information

content of these signals differs. We parameterize signal quality by the probability with which the

indicated project is successful and denote it by p (or by p; for firm i). Throughout this and the

next two sections, we assume that p is drawn from a distribution represented by the cumulative

distribution function G(p). We also assume that G has strictly positive and continuous density

g{p) over its support [a, 6] c [0,1]. The realization of p for each firm is independent of the

realizations for others and is private inform.ation.

We continue to define /3 = 112/111 as in (1). We also focus on the equivalent of symmetric

equilibria where strategies do not depend on firm identity. Asymmetric equilibria are discussed

briefly in Section 8.

In this section, we will establish a monotonicity property showing that in equilibrium firms

with higher p (stronger signals) experiment earher (no later) than firms with lower p. This result

turns out to be true under two scenarios: when there are two firms or when there are multiple

firms but the upper support, b, of G is not "too large". In the next section, we show how this

monotonicity result does not generalize to an environment in which there are multiple firms and

b> i3.

6.1 Two Firms

The following lemma is straightforward and follows fiom the definition of /? in (1). It will play

an important role in the analysis that follows (proof omitted).
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Lemma 3 Suppose that firm ~ i has innovated successfully. If pi > P, firm i prefers to experi-

ment with its own project. If pi < /?, firm i prefers to copy the successful project.

As a first step towards characterizing ttie equilibrium with two firms, let us suppose that p

has support [a, 6] C [0,^]. Under this assumption, we will prove that there exists a symmetric

equilibrium represented by a strictly decreasing function t{p) with t(6) = which maps signals

to time of experimentation provided that the other player has not yet experimented. The

following proposition formalizes this idea and is proved by using a series of lemmas.

Proposition 13 Suppose that the support of.G is [a,h\ C [0,/?]. Define

T{p) = \ [log G{h) (1 - 6) - log G{p) (1 - p) + / log G{z)d
rp

I Jp

Then the unique symmetric equilibrium takes the following form:

b

(27)

1. each firm copies a successful innovation and immediately experiments if the other firm

experiments unsuccessfully;

2. firm i with signal quality pi experiments at tim.e t [p^) given by (27) unless firm ~ i has

experimented before time T {pi)

.

•
.

, •. ^ r

Proof. The proof uses the following lemmas. - '

.

Lemma 4 r(p) cannot be locally constant. That is, there exists no interval P = \p,p+ e] with

e > such that T{p) = t for all p ^ P.

Proof. Suppose, to obtain a contradiction, that the equilibrium involves r(p) = t for all p E P.

Then, let pi e P. Firm z's (time t) payoff after the game has reached (without experimentation)

time t is

V (t
I P^) = Pr \{G [p + e)-G (p)) ni + (1 - G (p + e) + G (p)) Hs] ,

' - > '

since with probability G{p + t) — G (p) firm ~ i has p £ P and thus also experiments at time

t. In this case, firm i, when successful, is not copied and receives IIi. With the complementary

probability, it is copied and receives 112. Now consider the deviation t(Pj) = t + 6 for 5 > and

arbitrarily small. The payoff to this is

va{t\p,) = e-''[{G{p + e)-G{p)){CU2 + {l-C)p^n^) + (l-G{p + e) + G{pJ))p^n2],

where C = E [p |
p £ P] is the expected probability of success of a firm with type in the set P.

Since 112 > PiHi, we have (^Il2 + (1 — OPi^i > Pi^i- Moreover, by the assumption that G has

strictly positive density, G {p+ e) — G {p) > 0. Thus for 5 sufficiently small, the deviation is

profitable. This contradiction establishes the lemma.
'
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Lemma 5 r(p) is continuous in [a,b]. ; ;,,;, ;';, '
'

i;!^ '
,:' >

Proof. Suppose t (p) is discontinuous at p. Assume without loss of generality that r {p+) =

lim£|o T {p + e) > T (p-) = lime|o '''(?+£)• Then firms with signal p = p+ 6 for sufficiently small

6 > can experiment at time t (p-) + e for e < t (p+) - r (p-) and increase their payoff since

r > 0.
"'" ''

Lemma 6 t(p) is strictly monotone on [a,b]. ; v

Proof. Suppose, to obtain a contradiction, that there exist qi > q2 such that r(gi) = r(ij2) = t.

Suppose that ~ i follovv^s the equilibrium strategy characterized by r(p) and consider firm i's

expected profit when Pi = q and it chooses to experiment at time t. This can be written as

V{q,t)= f e-'^^PHp^2 + {l-p)qni)dG(p) + e-''qU2 [ dG{p), (28)

where Phejore = {P- ^(P) - *} ^"'^ -^oj/er = iP- '"(p) > ^}- Notice that V(g,t) is linear in q.

For t{p) to characterize a symmetric equilibrium strategy and given our assumption that

r(gi) = T{q2) = f, we have

V{qi,f)>V{q,,t') andV{q2,f)>V{q2,t') (29)

for all t' eR+.

Now take q = aqi + (1 — Q-')'?2 for some a <E (0, 1). By the linearity of V {q, t), this implies

that for any t 7^ f, we have

V {aqi + {1 - a)q2,t) = aV{qut) + {l'a)V{q2,t)

< aV{qi,T(qi)) + [l-a)V{q2,T{q2))

= V{aqi + {l-a)q2,f),

where the middle inecjuality exploits (29). This string of inequalities implies that

T {aqi + (1 — Q:)q2) = f for a G [0, 1]. Therefore, r must be constant between qy and 92- But

this contradicts Lemma 4, establishing the current lemma. • •

'

The three lemmas together establish that t is continuous and strictly monotone. This implies

that T is invertible, with inverse t"^ [t). Moreover, r [b) = 0, since otherwise a firm v/ith signal

b — e could experiment earlier and increase its payoff. Now consider the maximization problem of

firm i with signal q. This can be written as an optimization problem where the firm in question
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chooses the threshold signal p = t ^ (t) rather than choosing the time of experimentation t . In

particular, this mciximization problem can be written as

ma^ f e-'^^P-'^ip^^U2 + {l-p^^)gn^)dG{p^^) + e-'^^P^G{p)qU2, (30)
P^la.b] Jp

where the first term is the expected return when the firm ~ i has signal quality p^i G [p, b] and

the second term is the expected return when p^j < p, so that firm ~ i will necessarily copy from

i's successful innovation.

Next, suppose that r is differentiable (we will show below that r must be differentiable).

Then the objective function (30) is also differentiable and the first-order optimality condition

can be written (after a slight rearrangement) as

9{p)
i —

9
rr'lp) l_P^(l_p)^-i

G{p)

In a symmetric equilibrium, the function r [p) must be a best response to itself, which here

corresponds to p = g. Therefore, when differentiable, r (p) is a solution to

'
' " ^^'(p) = -|^(i-p)r'-

: .

-;' (31)

Integrating this expression, then using integration by parts and the boundary condition r(6) = 0,

we obtain the unique solution (when t (p) is differentiable) as

1

r/3

rb

\ogG{b){l~b)-\ogG{p){l-p)+
f

\ogG{z)dz . \
,

To complete the proof, we need to establish that this is the unique solution. Lemmas 5 and

6 imply that t (p) must be continuous and strictly monotone. The result follows if we prove that

T (p) is also differentiable. Recall that a monotone function is differentiable almost everywhere,

i.e., it can can have at most a countable number of points of non-differentiabihty (see, for

example, FoUand, 1999, p. 101, Theorem 3.23). Take p to be a point of non-differentiability.

Then there exists some sufficiently small e > such that r (p) is differentiable on (p — e, p) and

on {p,p + e). Then (31) holds on both of these intervals. Integrating it over these intervals, we

obtain

I fP g(z)
t{p) = T{p-e)-— {l-z)-—-—dz forpe (p-e,p), and

rp Jp-^e G{z) ,:

r{p) = T ip) - ^ j\l - z) ^^dz for pe(p,p+e),
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Now taking the limit £ —
> on both intervals, we have either (i) t {p+) ^ t (jo— ); or (ii)

T (p+) = T(p— ). The first of these two possibilities contradicts continuity, so (ii) must apply.

But then t {p) is given by (27) and is thus differentiable. This argument establishes that t (p)

is differentiable everywhere and proves the uniqueness of equilibrium.

A particularly simple example to Proposition 13 is obtained when G is uniform over [a, b]

for < a < 6 < /3. In that case

t{p) = —rip -\ogp-b + \ogb] for all p € [a, b]. (32)
rp

An interesting feature of symmetric equilibria in this case is evident from (32): for a arbitrarily

close to 0, experimentation may be delayed for arbitrarily long time. It can be verified from (27)

that this is a general feature (for types arbitrarily close to to the lower support a, — log G {p) is

arbitrarily large).

Proposition 13 characterizes the unique equilibrium when both firms have p < P. The com-

plete characterization of eciuilibrium is provided in the next proposition. An important impli-

cation of this equihbrium characterization is the monotonicity property of symmetric equilibria

mentioned in the Introduction (we will see in Section 8 that this is typically not the property

of asymmetric equilibria). Firms with higher signal quality never experiment after firms with

lower signal quality.

Proposition 14 Let the support of G be [a,b] C [0, 1] and define b = min{/3,6} and

t{p) = logG(6)(l-6)-logG(p)(l-p)+ / logGi = )dz
rPG (6)

Then the unique sym.metric equilibrium involves:

ifp>.8

(33)

^^P^
I f{p} 'ifpe[a,p)

That ts, firms with p > /3 experiment immediately and firms with p G [a, j3) experiment at

time t (p) unless there has been an experimentation at t < f (p). If there is experimentation

at t < t[p), then a firm with p G [a,^) copies it if the previous attempt was successful and

experiments immediately if it was unsuccessful.

Proof. The proof consists of three steps.

The first step of the proof is to show that firms with p > /3 will always experiment before

firms with p £ [a,/?)- The proof is by a single-crossing argument. First, recall that the value

of experimenting at time t for a firm with p g [a,/3) is given by (28). Defining PafterA3+ ~ iP-
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t{p) > t and p > P} and PafteTA/S- ~ iP- ''"(P) > * ^'^'^ P ^ f^}' ^'^^ value of experimenting for a

firm with q e [a, /?) can be rewritten as

beforeip^PL,- V9 /?

^ / dG{v) + / tiG(p)

(34)

which exploits the fact that when p £ Pbefore °^ when p e PlfterAi3+' there will be no copying,

and when p G PafterAB-^ ^^^ innovation (which takes place again with probability q) will be

copied, for a payoff of II2 = PUi

.

Next, turning to firms with p = q' > P, first recall that these firms prefer not to copy

prior successful experimentation (from Lemma 3). Therefore, their corresponding value can be

written as

V{q', t) = q'n2 -
/ e— (P)dG(p) + e-^' - / dG{p) + / dG{p)

(35)

Note also that when the experimentation time is reduced, say from t to t' < t, the first

integral gives us the cost of such a change and the second expression (e"''* times the square

bracketed term) gives the gain. Now the comparison of (34) to (35) establishes the single-

crossing property, meaning that at any t a reduction to t' < i is always strictly more valuable

for q' > than for q E [a,/3). First, the gains, given by the expression in (34) and (35) are

identical. Second, the term in parenthesis in the first integral in (34) is a convex combination

of 1/q > 1//3 and 1//3, and thus is strictly greater than 1//3, so that the cost is always strictly

greater for q G [a, /?) than for q' > p. From this strict single-crossing argument it follows that

there exists some T such that t [p) <T for all p > /? and t (p) > T for all p G [a, p).

The next step of the proof establishes that all firms with p > P will experiment immediately,

that is, T (p) =0 for all p > P. To show this, first note that all terms in (35) are multiplied by

q' > P, so the optimal set of solutions for any firm with p > P must be identical. Moreover, since

r (p) > T for all p G [a,/3), PafterhB- '^ identical for all t 6 [0, T], and i > is costly because

r > 0. Therefore, the unique optimal strategy for all p > /3 is to experiment immediately.

Therefore, r (p) = for all p > /?.

The final step is to combine the equilibrium behavior of firms with p > P with those of

p e [a.,P). First suppose that b < p. Then the characterization in Proposition 13 applies

exactly. Next suppose that b > p, so that some firms might have signals p > p. The previous

step of the proof has estabhshed that these firms will experiment immediately. Subsequently,

firms with p e [a,P) will copy a successful innovation at time i = or experiment if there is an

unsuccessful experimentation at t = 0. If there is no experimentation at t = 0, then equilibrium
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behavior (of firms with p £ (a,/?)) is given by Proposition 13 except that the upper support is

now P and the relevant distribution is G (p) conditional on p G [a, /?), thus all terms are divided

by G {p). This completes the proof of the proposition.

6.2 Multiple Firms

The previous subsection established that when there are two firms, the equilibrium satisfies the

monotonicity property whereby firms with stronger signals always experiment earher than those

with weaker signals. The same result generalizes to the case where there are N > 2 firms as

long as the support of G {p) does not include "very strong" signals. In particular, let

/?N = ^.
~

(36)

Monotonicity then requires that the support of G is [a, b] C [0, /3yv]- In the next section, we will

see that monotonicity no longer holds when [a,b] ^ [0,/3yv]-

Proposition 15 Suppose that there are N > 2 firms and the support of G is [a,b] C [0,/3j^],

where (3pf is defined m (36). Then there exists a unique symmetric equilibrium. This equilibrium

takes the following form:

• a firm with signal p experiments at time t^ (p) if there has been N — n unsuccessful experi-

mentations before, where r„ (p) is strictly decreasing and. continuous for n = 0, 1, ..., N — 2.

• all firms copy immediately if there is a successful innovation.

Proof. The proof is similar to that of Proposition 13. It involves establishing the equivalents of

Lemmas 4-6 in the continuation game in which there have been n = 0, 1,...,A'' — 2 unsuccessful

experiments for each. Then we solve for T2 (p) using an identical argument to that of Proposition

13. Given T2 (p), we can then solve recursively for r^ (p) for each n = 3, ..., TV — 2. The details

are identical to the arguments in Proposition 13 and are omitted.

7 Nonmonotonicity

Equilibria characterized in the previous section involve inefficient delay as in the model with

firms with symmetric signals. Nevertheless, there is a monotonicity property, whereby firms

with stronger signals experiment earlier than firms with weaker signals. In this section, we

show that monotonicity does not always apply. In particular, when there are N > 2 firms

and the support of G satisfies [a,b]
(f. [0,/3], any symmetric equilibrium necessarily involves

nonmonotonicity with positive probability.
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The main result of this section is provided in the next proposition, which estabUshes that

monotonicity no longer holds in this case.

Proposition 16 Suppose that there are N > 3 firms and the support ofG satisfies [a, b] ^ [0,/3].

Then:

1. There does not exist a symmetric equilibrium in which all firms with p > f3 experiment at

t = 0.

2. In any symmetric equilibrium, there is positive probability that a firm with p > /3 will

experiment earlier than a firm with p' > p.

Proof. (Part 1) Suppose that N = 3, and that 112 =113. Suppose, to obtain a contradiction,

that there exists a symmetric equilibrium where all firms with p > P experiment at i = 0.

Consider firm i with pi > j3. Let Xo t>e the probability that none of the other two firms have

P > /?. Xi be the probability that one of the other two firms has p > /? and X2 be the probability

that both firms have p > p. Let us also define C = E [p |

p > /3]. Since pi > /3, by hypothesis,

firm i experiments at time t = 0. Its expected payoff is

^(Pi,0) = XoPi^2 + X-iPi
, ni n2

, ,

X2Pi^l-

Intuitively, when none of the other two firms have p > P, when successful, the firm is copied

immediately, receiving payoff 112. When both of the other two firms have p > /3, there is no

copying, so when successful, firm i receives Hi. When one of the other two firms has p > P, then

this other firm also experiments at time t = and is successful with probability ^ = E [p |
p > /?]

.

In that case, in a symmetric equilibrium the third firm copies each one of the two successful

innovations with probability 1/2. With the complementary probability, 1 — C> the other firm

with p > P is unsuccessful, and the third firm necessarily copies firm i.

Now consider the deviation to wait a short interval e > before innovation. This will have

payoff . .

I

.,

iimV(pi,e) = xoP^n2 + xiPr(cni + (i -C)n2) + X27'.:ni
£lO

> v{p,,o).
, ,,

,

•
,

The first line of the previous expression follows since, with this deviation, when there is one

other firm with p > /?, the third firm necessarily will copy the first innovator. The inequality

follows since flj > 112, establishing that there cannot be an equilibrium in which all firms with
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p > P experiment at time i = 0. This argument generalizes, with a httle modification, to cases

in which N > 3 and n„s differ.

(Part 2) Part 1 imphes that any symmetric equihbrium must involve mixing over the time

of experimentation by firms with p > p. By the same argument following from (35) in the

proof of Proposition 14, all firms with p > P will have the same set of experimentation times

that maximize their expected payoffs, so must use the same mixed strategies in any symmetric

equilibrium. Therefore, there is a positive probability that any one of them will experiment first,

establishing the claim in Part 2.

The next proposition characterizes the form of the mixed strategy equilibrium when the

monotonicity property no longer holds. To simplify the exposition, we focus on an economy in

which N = 3 and G is uniform on [0, 1]. The characterization result in this proposition can be

(relatively straightforwardly) extended to N > 3. We also conjecture that it can be extended

to any distribution G, though this is less trivial.

Proposition 17 Consider an economy with N =^ 3 firms, 112 = ^3 ind G uniform over [0, 1].

Then, the following characterizes the unique symmetric equilibrium.

• Firms with p > P experim.ent at the flow rate ^{t) as long as no other firm has experi-

mented until t. They experim.ent immediately following another (successful or unsuccessful)

experiment. There exists T < oo such that

That is, all firms with p > P will have necessarily experimented within the interval [0, T]

(or equivalently, limt^T £, {i) = +00/ .

• Firms with p < P immediately copy a successful innovation and experiment according to

a flow rate A2 (t) follounng an unsuccessful experimentation and at the rate A3 (t) if there

has been no experimentation until time T. -

Proof. From Proposition 16, firms with p > P must mix over experimentation times on some

subset of IR+. Let us define ij,{t) as the probability that firm ~ i that has not experimented until

time t has p^, > p. The assumption that G is uniform over [0, 1] implies that /i(0) = 1-/3.

Now consider the problem of firm i with pi > /?. If there has yet been no experimentation

and this firm experiments at time t, its payoff (discounted to time t = 0) is

V{p,,t)=p,e-^'[Tl,p.{ty~ + U2{l-m%
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since /.t (() is the probability with which both other firms have p > P and will thus not copy.

With the complementary probability, its innovation will be copied. Alternately, if it delays

experimentation by some small amount dt > 0, then its payoff is:

V{p^,t + dt) = p^e-''^^+'^*^\2p^{t)ij{t)dm^ + (1 - 2({t)ij{t)dt)lUifi{t + dtf + U2{1 - ii{t ^ dtf)]

+ 2^{t)ii{t){l - p)dt[YlipL{t -V dt) + n2(l - /i(t + dt))]

where p = E[p|p > j3] and we use the fact that other firms with p > l3 experiment at the rate

^(i). In a mixed-strategy equilibrium, these two expressions must be equal (as dt —> 0). Setting

these equal and rearranging, we obtain

^^^ + 2mKm - Kt))\p + Kt)] - ri^\t) =
nT^n^-

(37)

In addition, the evolution of beliefs ji (t) given the uniform distribution and flow rate of experi-

mentation at £, (i) can be obtained as

-^ -..-"-:• '^ /.(f) = —-,-——i ^^i_.;, ^^, ;.,..,:,.,,-,, ,. (38)
e-/of(-)'^-(l_/j)+/3 .

Now let us define

"
' /(i)=e--^«(^)'^(^)(l-/]). '-

.
- ' (39)

Using (39), (38) can be rewritten as .
"

\ ,

.'

fit)

which in turn implies

Moreover (39) also implies that

lj{t)

fit)

f{t)+P'

l-l^it)-

nt) m'(o

- ' '^'^-m- ii-.itmt) -

' : ;. j
.^''^

Substituting these into (37), we obtain the following differential equation for the evolution of

Kt)- .'_
,

2ii{t)ii'{t) + 2at)Kt){l - fi{t))\p + /lit)] - ri.?{t) = l_ ^. ,

Further substituting ^(t) from (40), we obtain

a'{t) = -, (1 + (Z?-^ - 1) /i^(0)-
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This differential equation satisfies the Lipschitz condition and therefore it lias a unique solution,

which takes the form

m(0 = rJ^-T t'^" \f^vr'^i
1

arctan
(
/^.(O) v^/3"^ - 1

-t +
Pir'-i) VP^^i

with boundary condition fi{0) = 1-/3. Given this solution, the flow rate of experimentation for

firms with p > P, £, (t), is obtained from (40) as

^(i) = ciC2(l + tan(ci(-C2t + cg))^)

where

1 1
+

ci = \Ij3
^ - 1, c2 = -

^_, J
—, and C3

ci + tan(ci(-C2f + C3)) tan(ci(-C2i + C3))J

(M(o)v'r^arctan

It can then be verified that

lim f it) = 00,

where T = C3/C2. It can also be verified that for all ( G [0,T], where firms with p > 8 are

experimenting at positive flow rates, firms with p < P strictly prefer to wait. The equilibrium

behavior of these firms after an unsuccessful experimentation or after time T is reached is

given by an analysis analogous to Proposition 14 and again involves mixing. Combining these

observations gives the form of the equilibrium described in the proposition.

Notice also that Proposition 17 implies that nonmonotonicity in this case affects the alloca-

tion of resources mainly by inducing delay (only firms with p > P act during the time interval

[0,T]), because following a single vmsuccessful experimentation in [0, T], other firms with p > p

experiment immediately and these firms would have preferred not to copy a successful innova-

tion.

8 Patents, Heterogeneity, and Nonmonotonicity

In this section, we discuss the optimal allocation with heterogeneity, its comparison to equilib-

rium, and the role of patents in the economy with heterogeneity.

8.1 Welfare

Consider a social planner that is interested in maximizing total surplus (as in Section 5). What

the social planner can achieve will depend on her information and on the set of instruments

that she has access to. For example, if the social planner observes the signal quality, p, for each

firm, then she can achieve a much better allocation than the ecjuilibrium characterized above.
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However, it is more plausible to limit the social planner to the same information structure. In

that case, the social planner will have to choose either the same equilibrium allocation as in

the symmetric equilibria characterized in the previous two sections, or she will implement an

asymmetric equilibrium, where one of the firms is instructed to experiment first regardless of its

p (this carmot be conditioned on p since p is private information).''*

More specifically, let us focus on the economy with two firms and suppose that the support

of G is [a, 5] c [0,/?]. In this case, without eliciting information about the realization of firm

types, the p's, the planner has three strategies.

1. Staggered asymmetric experimentation: in this case, the social planner would instruct one

of the firms to experiment immediately and then have the other firm copy if there is a

successful innovation. Since the social planner does not know the p's, she has to pick the

experimenting firm randomly. We denote the social surplus generated by this strategy by

2. Staggered equilibrium experimentation: alternatively, the social planner could let the firms

play the symmetric equilibrium of the previous two sections, whereby a firm of type p will

experiment at time t (p) unless there has previously been an experimentation by the other

firm. We denote the social surplus generated by this strategy by 5^, since this is the same

as the equilibrium outcome. ^'^ ';:
. ;:!-,;. m '' .,:..';.'.''-,' /:

3. Simultaneous experimentation: in this case, the social planner would instruct both firms

to experiment immediately. We denote the social surplus generated by this strategy by

'2S?

The social surpluses from these different strategies are given as follows. In the case of

staggered asymmetric experimentation, we have

5r Pi2n2 + (l-pi) / p2dG{p2)\Tl^ dGipi).

Yet another alternative is to specify exactly the instruments available to the planner and characterize the

solution to a mechanism design problem by the planner. However, if these instruments allow messages and include

payments conditional on messages, the planner can easily elicit the necessary information from the firms.

' 'Without eliciting information about firm types and without using additional instruments, the social planner

cannot implement another monotone staggered experimentation allocation. For example, she could announce

that if there is no innovation until some time i > 0, one of the firms will be randomly forced to experiment. But
such schemes will not preserve monotonicity, since at time t, it may be the firm with lower p that may be picked

for experimentation. In the next subsection, we discuss how she can implement better allocations using patent

payments.

37



In contrast, the expected surplus from the unique (mixed-strategy) symmetric equihbrium can

be written as ,.:'
•

,.',
'

. -.:_..::
';'"

j
g-rr(max{pi,p2}) max {pi , ps) SRs + (1 - max (pi ,

po }) / min{pi,p2}n dG(pi)dG(p2)

Intuitively, this expression follows by observing that in the equihbrium as specified in Proposition

13, the firm with the stronger signal (higher p) will experiment first, so there will be delay until

max {pi,p2}- At that point, this firm will succeed with probability max {pi,P2}, in which case

the second firm will copy. If the first firm fails (probability 1 — ma:x {pi,P2}), then the second

firm experiments and succeeds with probability min {pi,p2}. Since both pi and p2 are randomly

drawn independently from G, we integrate over G twice to find the expected surplus.

The surplus from simultaneous experimentation, on the other hand, takes a simple form and

is given by
rb

S^ = 2Yl,
/ vdG{p),
J a

since in this case each firm is successful and generates payoff Il\ with probability p distributed

with distribution function G.

In this case, there is no longer any guarantee that max {^f , ^2^} > S^ . Therefore, the sym-

metric equihbrium may generate a higher expected surplus (relative to allocations in which the

social planner does not have additional instruments). To illustrate this, let us consider a specific

example, where p has a uniform distribution over [0,/?]. In this case, staggered asymmetric

experimentation gives

re r0

?f = / / 2pin2 + (1 - pi)p2nidp2dpi = Do
(
~ + ^/3

whereas simultaneous experimentation gives

1 3

2 + 4^

fB
S^ = / 2pY[idp=mi =n2.

Jq

Comparing simultaneous experimentation and staggered asymmetric experimentation, we can

conclude that 5f > S2 whenever /? > 2/3 and 5f < S2 whenever (5 < 2/3, showing that, as

in the case with common signals, either simultaneous or staggered experimentation might be

optimal. Next, we can also compare these surpluses to S^ . Since p is uniformly distributed in

[0,j3], (27) implies that

t{p) = -7; b - logP -13 + log/?] .

As a consequence, max{pi,p2} has a Beta(2,l) distribution (over [0,/3]) while min{pi,p2} is

distributed Beta(l,2). Then evaluating the expression for 5^, we find that when < /3 < 2/3,
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5.2" > S^ , so simultaneous experimentation gives the highest social surplus. When 2/3 <

/3 < /3* ~ 0.895, 5f > 5^, so that staggered asymmetric experimentation gives the highest

social surplus. Finally, when j3* < /? < 1, 5^ > Sf > S2 , so the symmetric equilibrium

gives higher social surplus than both staggered asymmetric experimentation and simultaneous

experimentation.

Finally, it is also straightforward to see that by choosing G to be highly concentrated around

a particular value p, we can repeat the same argument as in subsection 5.1 and show that the

symmetric equilibrium can be arbitrarily inefficient relative to the optimal allocation.

8.2 Equilibrium with Patents

Equilibria with patents are also richer in the presence of heterogeneity. Let us again focus on

the case in which there are two firms. Suppose that there is a patent system identical to the

one discussed in subsection 5.2, whereby a firm that copies a successful innovation pays r] to the

innovator. Let us define

It is clear, with a reasoning similar to Lemma 3, that only firms with p < p^ will copy when

the patent system specifies a payment of 77. The next proposition characterizes the structure of

equilibria with patents. ,
'

, ;

.

Proposition 18 Suppose that there are two firms and the patent system specifies a payment

77 > for copying. Let p^ be given by (^l), the support of G he [a, 6] C [0,1], and define

6 = min{6,p''} and

f^[p)
r{Il2 + r/)G (6)

logG(6)(ni-2r7-6ni)~logG(p)(ni-277-pni)+ni f
\ogG{z)dz

Jp

.

, _ (42)

Then the unique symmetric equilibrium involves:

ifp>p^ '
'^ •:''--' .'

t"^ (v) - ^^P'
I tHp) ifpG[a,p^)

That is, firms with p > p^ experiment imm.ediately and firms with p G {a,?^) experiment at time

f (p) unless there has been an experimentation 'at t < f^ {p).

Moreover, a higher rj tends to reduce delay. In particular:
'

• for any rj' > rj such that b < p^ and b < p^ , we have t'I [p) < t^ {p) for all p £ [a, b], with

strict inequality whenever t^ (p) > 0;
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• for any rj' such that b > p^ , there exists p* (r/) G [0,p'' ) such that t^ (p) is decreasing in

T) starting at t] = rj' for all p E p* {rj') ,p^ , with strict inequality whenever t^ {p) > 0.

Proof. The proof mimics that of Proposition 14, with the only difference that the maximization

problem of firm i, with signal p^ = g, is now modified from (30) to

max f
e-''^(P-) (p^, (Ha - r?) + (1 - p^,) qU,)clG (p^J + e^'P^G (p) q {U2 + v) ,

which takes into account that copying has cost 77 and if firm i is the first innovator, then it will

be copied and will receive ?;. Repeating the same argument as in Proposition 14 establishes that

the unique equihbrium is given by (42). , .

To prove the second part of the proposition, first suppose that b < p^ and b < p^ so that

b = h m both cases. Recall also that r'^' (p) = f (p) > for p £ \a,p^). p^ is decreasing in

rj, so that t'' (p) = implies that t'' (p) = for any 77' > rj. We therefore only need to show

that f (p) is strictly decreasing for all p £ [a,p^). Since f (p) is differentiable, it is sufficient to

show that its derivative with respect to r] is negative. This follows by differentiating (42) (with

b = b). In particular,

dT'^(p) 1

di] (0-2 + rj)

f^{p) + ^^{logG{b)-logG{p)) <0,

since log G(6) > log G(p) and f (p) > 0.
'

Next, suppose that b > p'^
. In that case b = p^ and dr'''' {p) / drj (in the neighborhood of 77')

will include additional terms because of the effect of r] on b. In particular:

dT'''(p) 1
'"''

^^^ + VgW) '
'°^ ^ '

^"
)
- ^°S G (p)

dr/ (02 + ?7'

g{p^') Hi - 27?' -p"' Hi
, 5(P"

(43)

-f (p)
G(p'?')nir(n2+7/)G(p'0 G{p^')Ui

The first line is again strictly negative and so is the first expression in the second line. The second

expression in the second line could be positive, however. For given 77', this term is decreasing

in p and tends to as p approaches p^ (from (42)). Therefore, there exists p* (77') such that

for p > p* [rj'), it is no larger than the first term in the second line. This establishes that for

p & Ip* [f]') ,p^ ), T^ (p) is again decreasing in 77, completing the proof.

An important role of patents in experimentation is highlighted by this result. When r; in-

creases, T (p) tends to become "steeper" so that there is less delay and thus "time runs faster".

In particular, whenever p'' < b, t (p) is reduced by an increase in patent payments. When

p^ > b, this does not necessarily apply for very low p's, but is still true for high p's. Overall, this
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result implies that as in the case with common p's, patents tend to increase experimentation

incentives and reduce delay. In the limit, when 77 becomes arbitrarily large, the equilibrium in-

volves simultaneous experimentation. Nevertheless, as discussed in subsection 8.1, simultaneous

experimentation may not be optimal in this case.

Alternatively (and differently from Proposition 18), a patent system can also be chosen such

that the socially beneficial ex post transfer of knowledge takes place. In particular, suppose

that there has been an innovation and the second firm has probabihty of success equal to p. In

this case, social surplus is equal to 2112 if there is copying, and it is equal to Hi + pYli if the

second firm is forced to experiment. This implies that to maximize ex post social welfare, firms

with jD < 2/3 — 1 should be allowed to copy, whereas firms with p > 2/3 — 1 should be induced to

experiment. Clearly, from (41) choosing r] = Y\.i — TI2 achieves this. Naturally, from Proposition

18, this will typically lead to an equilibrium with staggered experimentation. This argument

establishes the following proposition (proof in the text).

Proposition 19 ^ patent system, with 7/ = IIi - 112 induces the socially efficient copying and

experimentation behavior for all p £ [a, 6], but typically induces delayed experimentation.

The juxtaposition of Propositions 18 and 19 implies that when signal quality is heterogeneous

and private information, the patent system can ensure either rapid experimentation or the

socially beneficial ex post transfer of knowledge (and experimentation by the right types), but

will not typically be able to achieve both objectives simultaneously. ,
.

8.3 Patents and Nonmonotonicity

Our last result shows that patent systems cannot prevent the nonmonotonicity identified in the

previous section.

Proposition 20 Consider the economy with N > 3 firms and the support of G given by [a, b] ^

[0, /3], so that the symmetric equilibrium without patents involves nonmonotonicity. Then for

any patent i], there exists an equilibrium either with no copying or nonmonotonicity. That is,

there exists no patent system such that all equilibria will avoid nonm^onotonicity while ensuring

efficient transfer of knowledge.
' '

Proof. Clearly, any patent with 77 > Ifj — 112 will prevent efficient transfer of knowledge. So

suppose that r; < 111 — 112. Then let us adopt the same definitions of C, Xc Xi ^-nd X2 ^^ i^ ^^^

proof of Proposition 16. Suppose, to obtain a contradiction, that there exists an equilibrium in
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which all firms with p > /3 experiment immediately. Then the payoflF to firm Pi > /3 when it

does so is ^^

V{p^,0) = X0P^{^2 + '2r,) + XlPl C(^ + ^)+(i-0(n. + .) + X2P'^-i

which takes into account the patent payments from the other firms into account.

Now consider a deviation for firm i that involves waiting for a short interval e > before

innovation. This will have payoff

limV^(p„e) = X'oP.(^2 + 277) + XlP,(C^l + (l-C)(^2 + r/))+X2P^^l

> V{p,,0),
,

since t] < Hi — 112. Therefore, whenever ij < Hi — 112, the symmetric equilibrium will involve

delay by firms with p > P and thus potential nonmonotonicity.

9 Conclusion

This paper studied a simple model of experimentation and innovation. Each firm receives a

private signal on the success probability of one of many potential research projects and decides

when and which project to implement. A successful innovation can be copied by other firms.

We show that, both in discrete and continuous time, symmetric equilibria, where actions do

not depend on the identity of the firm, necessarily involve delayed and staggered experimenta-

tion. Wlien the signal quality is the same for all players, the equilibrium is in mixed strategies

(pure-strategy symmetric equilibria do not exist). When signal quality differs across firms, the

equilibrium is represented by a function r (p) which specifies the time at which a firm with signal

quality p experiments. As in the environment with common signal quality, the equilibrium may

involve arbitrarily long delays.

We also show that the social cost of insufficient experimentation incentives can be arbitrarily

large. The optimal allocation may require simultaneous rather than staggered experimentation.

In this case, the efficiency gap between the optimal allocation and the equilibrium can be arbi-

trarily large. Instead, when the optimal allocation also calls for staggered experimentation, the

equilibrium is inefficient because of delays. We show that in this case the ratio of social surplus

in the ecjuilibrium to that in the optimal allocation can be as low as 1/2.

One of the main arguments of the paper is that appropriately-designed patent systems en-

courage experimentation and reduce delays without preventing efficient ex post transfer of knowl-

edge across firms. Consequently, when signal quality is the same for all firms, an appropriately-

designed patent system can ensure that the optimal allocation results in all equilibria. Patents
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are particularly well-suited to providing the correct incentives when the optimal allocation also

requires staggered experimentation. In this case, patents can simultaneously encourage one of

the firms to play the role of a leader in experimentation, while providing incentives to others

to copy successful innovations. Technically, appropriately-designed patents destroy symmetric

equilibria, which are the natural equihbria in the absence of patents but may involve a high

degree of inefficiency. That patents are an attractive instrument in this environment can also be

seen from our result that, while patents can implement the optimal allocation, there exists no

simple subsidy (to experimentation, research, or innovation) that can achieve the same policy

objective.

When signal quality differs across firms, an additional dimension of efficiency is the sequence

in which firms with different signals experiment. We show that when there are only two firms

or when there is an arbitrary number of firms but the support of the signal quality distribution

does not include "very strong" signals, the equilibrium has the following monotonicity property:

firms with stronger signals always experiment earlier (no later) than firms with weaker signals.

However, this result no longer holds when there are more than two firms and "very strong" sig-

nals are possible. In this case, we show that the equihbrium necessarily involves some amount

of nonmonotonicity. Patents are again useful in encouraging experimentation in this case and

reduce delays. Nevertheless, interestingly, when the equilibrium without patents involves non-

monotonicity, it is impossible for patents to both ensure efficient ex post transfer of knowledge

and restore monotonicity.

We believe that the role of patents in encouraging socially beneficial experimentation is

more general than the simple model used in this paper. In particular, throughout the paper we

ignored the consumer side. It is possible that new innovations create benefits to consumers that

are disproportionately greater than the use of existing successful innovations (as compared to the

relative profitabihties of the same activities). In this case, the social benefits of experimentation

are even greater and patents can also be useful in preventing copying of previous successful

innovations. The investigation of the welfare and policy consequences of pursuing successful

lines versus experimenting with new, untried research lines is an interesting and underresearched

area.
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