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Abstract

Sequential (one by one) rather than simultaneous estimation of multiple breaks is

investigated in this paper. The advantage of this method lies in its significant com-

putational savings. The number of least squares required to compute all of the break

points is of order T, the sample size. Each estimated break point is shown to be

consistent for one of the true ones despite under-specification of the number of breaks.

More interestingly and somewhat surprisingly, the estimated break points are shown to

be T consistent, the same as the simultaneous estimation. Limiting distributions are

also derived. Unlike simultaneous estimation, however, the limiting distributions are

generally not symmetric, and are influenced by regression parameters of all regimes.

A simple method is introduced to obtain break point estimators having the same lim-

iting distributions as those obtained via simultaneous estimation. Finally, a procedure

is proposed to consistently estimate the number of breaks.

Keywords and Phrases: Multiple breaks, sequential estimation, simultaneous esti-

mation, T consistency, limiting distribution, repartition method.

Running Head: MULTIPLE BREAKS



1. Introduction

Multiple breaks may exist in the trend function of many economic time series, as

suggested by the studies of Cooper (1995), Garcia and Perron (1994), Papell and

Lumsdaine (1995), and others. This paper presents some theory and methods for

making inferences in the presence of multiple breaks with unknown break dates. The

focus is the sequential method, which identifies break points one by one as opposed

to all at once simultaneously.

A number of issues arise with the existence of multiple breaks. These include the

determination of the number of breaks, estimation of the break points given the num-

ber, and statistical analysis of the resulting estimators. These issues are examined by

Bai and Perron (1994) when a different approach of estimation is used. The major

results of Bai and Perron (1994) assume simultaneous estimation which estimates all

of the breaks at the same time. Incidentally, taking advantage of dynamic program-

ming, the simultaneous method requires 0{T2
) number of least squares irrespective

of the number of break points. In this paper we study an alternative method, which

sequentially identifies the break points. The procedure estimates one break point even

if multiple breaks exist. The number of least squares required to compute all of the

breaks is proportional to the sample size. Obviously, simultaneous and sequential

methods are not merely two different computing techniques; they are fundamentally

different methodologies that yield different estimators. Not much is known about

sequentially obtained estimators. This paper develops the underlying theory about

them.

The method of sequential estimation was proposed independently by Bai and Per-

ron (1994) and Chong (1994) (also, see Bai (1994c) for an earlier exposition of the

method). They argued that the estimated break point is consistent for one of the true

break points. However, neither of the studies give the convergence rate of the esti-

mated break point. In fact, the approach used in the previous studies does not allow

one to study the convergence rate of sequential estimators. A different framework and

more detailed analysis are necessary. The framework used in this paper is adapted

from Bai (1994a). A major finding of this study is that the sequentially obtained

estimated break points are T consistent, the same as the simultaneous estimation.

This result is somewhat surprising in that, on first inspection, one might even doubt

its consistency, let alone T consistency, in view of the incorrect specification of the

number of breaks.

Furthermore, we obtain the asymptotic distribution of the estimated break points.



The asymptotic distributions of sequentially estimated break points are found to be

different from those of simultaneous estimation. We suggest a procedure for obtaining

estimators having the same asymptotic distribution as the simultaneous estimators.

We also propose a procedure to consistently estimate the number of breaks. All these

latter results are made possible by the T consistency. For example, one can construct

consistent (but not T consistent) break-point estimators for which the procedure will

overestimate the number of breaks. In this view, the T consistent result for a sequential

estimator is particularly significant.

This paper is organized as follows. Section 2 states the model, the assumptions

needed, and the estimation method. The T consistency for the estimated break points

is established in Section 3. Section 4 studies a special configuration for the model's

parameters that leads to some interesting asymptotic results. Limiting distributions

are derived in Section 5. Results corresponding to more than two breaks are stated in

Section 6. The issue of the number of breaks is also discussed in this section. Section

7 proposes the "repartition method" that gives rise to estimators having the same

asymptotic distribution as simultaneous estimation. Section 8 deals with shrinking

shifts. Convergence rates and limiting distributions are also derived. Section 9 states

the results for general models. Simulation results are reported in Section 10. The last

section concludes. Mathematical proofs are provided in the appendix.

2. The Model

To present the major idea we shall consider a simple model with mean shifts in a

linear process. The whole theory and results can be elaborated to general regression

models using a combination of the argument of Bai (1994b) and this paper. To make

the matter even simpler, the presentation and proof will be stated in terms of two

breaks. Because of the nature of sequential estimation, the analysis in terms of two

breaks incurs no loss of generality. This can also be seen from the proof. The general

results with more than two breaks will be stated later. The model considered is as

follows:

Yt = m + xu iit<k°
Yt

= (i2 + Xt , iik° + l<t<k° (1)

Yt = us + Xu if k°2 + 1 < t < T.

where /z, is the mean of regime i (i = 1,2,3) and Xt is a linear process of martingale

differences such that
oo

xt = ^2 aj£t-j
i=o



with a(l) = Y?jLo aj 7^ 0. We assume that fi\ ^ /12, Pi ^ ^3, so that there are

two break points in the model. In addition, we assume k\ = [7Y°] and fc° = [^T2 1

with t° < r° and t°,t° € (0,1). The unknown parameters are (t°,t°) [or (k°,k%)}

and (fii,^,^)- The focus will be the break points (t°,T2)
:
because once they are

obtained, the regression parameters can be easily computed.

The main thrust of sequential estimation is "one break at a time." The model

is treated as if there were only one break point. Estimating one break point for a

mean shift in linear processes is studied by Bai (1994a). A single break point can be

obtained by minimizing the sum of squared residuals among all possible sample splits.

As in Bai (1994a), we denote the mean of the first k observations by Yk and the mean

of the last T — k observations by Yj*. The sum of squared residuals is

SH*) = EOS -?*)+ EOS-W
t=i t=fc+i

A break point estimator is defined as

k = axgmin1<k<T_iST{k)

.

Using the formula linking total variance with within-group and between-group vari-

ances, we can write, for each k (1 < k < T — 1),

YXZ - y? = ST(k) + TVT(k)2 (2)

t=l

where Y is the overall mean and

vrW = (^^)
1/2

(F;-n). 0)

It follows that

k = argmin
fc
5r(fc) = argmax

fc
Vj(fc)

2 = argmin
fc
|V7'(A;)|.

Consequently, the properties of k can be analyzed equivalently by examining Sr(k)

or Vr(k). We define f = k/T. Both f and k are referred to as the estimated break

points. The former is also referred to as estimated break fraction.

One of our major results is that f is T consistent for one of the true breaks t°. It

should be pointed out, however, k itself is not consistent for any of the k° (i = 1,2). For

ease of exposition, we shall frequently say that k is T consistent with an understanding

that we are actually referred to f.



Below axe assumptions that guarantee T consistency.

Assumption Al The e t axe martingale differences satisfying E(et\J~t-i) = 0,

Ee2 = °'2
) an<^ there exists a 8 > such that sup

t
£|e t |

2+* < oo, where J- t is the

a—field generated by e, for s <t.

Assumption A2
oo

i=0

Assumption A3 m ± fii+1 , k? = [Tif\, and t? € (0, 1) (i=l,2) with r° < r2
°.

These assumptions are used in Bai (1994a), except A3 which is stated in terms of

a single break. Assumptions Al and A2 are standard for linear processes. A3 assumes

that there are two breaks. The next section proves the T consistency of f for one of

the break points. The identification for the other break point will also be considered.

3. Consistency and Rate of Convergence

In this section, a number of useful properties for the sum of squared residuals Sr(k)

will be presented. These properties lead to the consistency result naturally. Write

Ut(t) = T^StUTt]) for r € [0, 1]. We define both ST (0) and ST(T) as the total sum

of squared residuals with the full sample, i.e. 5r(0) = St(T) = Y%=i(Yt ~ Y)"1 - This

definition is also consistent with (2), as Vt-(O) = Vr(T) = 0. In this way, Ut(t) is well

defined for all r e [0,1].

Lemma 1. Under A1-A3, Ut{t) converges uniformly in probability to a nonstochastic

function U(t) on [0,1].

The limit U(t) is a continuous function and has different expressions over three

different regimes. In particular,

TT(<r°\ — zt2 _l (
T2)(r2 Ti) i „ „ \2

1 ~ T
i

(4)

and

Utf) = a\ + ^(r2
° - r°)(Ml - /z2 )

2
(5)

where c\ = EX?.

Lemma 2. Under assumptions A1-A3,

sup
Kk<T

UT(k/T) - EUT(k/T)\ = O^T-1'2
).



This lemma says that the objective function (as a function of k ) is uniformly

close to its expected function. As a result, if the expected function is minimized at a

certain point, then the stochastic function will be minimized at a neighborhood of that

point with large probability. To study the extreme value of the expected function, we

need an additional assumption, which is stated in terms of the limiting function U(t).

Typically, the function U(t) has two local minima. To ensure the smallest value of

U(r) is unique, we assume:

Assumption A4. C/(r°) < U(t°).

This condition guarantees the uniqueness of the global minimum of U(t). The

condition is equivalent to, by (4) and (5),

4(/*l - H2? > \
Z4>{H2 - tof (6)

Evidently, the condition assumes that the first break is more dominating in terms of

the relative span of regimes and the magnitude of shifts. In other words, when the

first break is more pronounced (larger t° and/or larger fa — /i2 ), A4 will be true.

The inequality will be reversed when the second break is more pronounced. Under

A4 together with A1-A3, the estimated fraction f converges in probability to r°.

This is true because only if the more pronounced break is chosen can the sum of

squared residuals be reduced the most. If the inequality in A4 is reversed, then by

mere symmetry, f converges in probability to r° . In the next section, we examine

the case in which U(t°) = C/(r°). Under this condition, we show that f converges in

distribution to a random variable with equal mass at t° and t° only. Incidentally, the

set of parameters {(r°, t°, /ii,/*2i A^)} which makes £/(t°) = f/(T°), defines a subset

of 7l
5 having a Lebesgue measure zero.

Lemma 3. Under assumptions A1-A4, there exists a C > 0, only depending on r°,

and fij (i = 1,2, j = 1,2,3) such that

EST(k) - EST (k°) > C\k - Jfe°| for all large T.

The lemma implies that the expected value of the sum of squared residuals is min-

imized at k° only. As mentioned earlier, because of the uniform closeness of the

objective function to its expected function by Lemma 2, it is reasonable to expect

that the minimum point of the stochastic objective function is close to k° with large

probability. Precisely, we have



Proposition 1. Under assumptions A1-A4,

f - r° = p(T-^
2
).

That is, the estimated break point is consistent for r°.

This proposition not only establishes consistency but also gives a convergence rate.

Proof:

ST(k) - SrikO) = ST(k) - EST(k) - [Sr (fc?) - £Sr(*?)] + EST (k) - EST{k°)

> -2 sup \ST(j)-EST(j)\+EST(k)-EST(k°)

> -2 sup \ST(j)-EST(j)\ + C\k-k°\ by Lemma 3.

1<j<T

The above holds for all k € [1, T]. In particular, it holds for k. From Sr(k) — Sr{k°) <

0, we obtain

|A: — A:°| < C~ a
2 sup \ST (j) - EST (j)\.
i<i<T

Dividing the above inequality by T on both sides and using Lemma 2, we obtain the

proposition immediately.

The above convergence rate is obtained by examining the global behavior of the

objective function. We can use this initial rate of convergence to obtain a better rate.

Define Dt = {k : Ttj < k < 2V°(1 — 77)} , where 77 is a small positive number such

that r° € (n,T°(l — 77)) and Dm = {k : \k — k°\ < M}, where M < 00 is a constant.

Thus for each k € Dt, k is both away from 1 and away from the second break point

with a positive fraction of observations. By Proposition 1, k will eventually fall into

Dt- That is, for every e > 0, P(k $. Dt) < t for all large T. We shall argue that k

must eventually fall into Dm with large probability for large M, which is equivalent

to T consistency.

Let Dt,m be the intersection of Dt and the complement of Dm, that is, Dt,m =

{k:Tt}<k< Tr2°(l
-

77), \k - fc°| > M).

Lemma 4. Under A1-A4, for every e > 0, there exists an M < 00 such that

P ( min ST (k) - ST(k°) < ) < e.

Proposition 2. Under assumptions A1-A4, for every e > 0, there exists an M < 00

such that

P(T\t - t°| > M) < t.

That is, the break point estimator is T consistent.
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Proof: Because Sr(k) < Sr(k®), if k € A, it must be the case that min^/i Sr(k) <

Sr(^i)j where A is an arbitrary subset of integers. Thus

P(\k - Jfc°| > M) < P(jfc £ Dr ) + P(Jb e £>T ,
|ifc - fc°| > M)

<e + P( min Sr (*) - ST(k°) < 0) < 2e

by Lemma 4. This proves the proposition.

The rate of convergence is identical that of simultaneous estimators; see Bai and

Perron (1994).

If it is known that k/T is consistent for r°, then an estimate for r° can be easily

constructed. Just apply the same technique to the random sample [k, T). Let k?

denote the resulting estimator. Then t2 = k2/T must be T consistent for r° . This

follows because k = fc° + P(1), one is effectively using [fc°, T] to estimate the second

break. Alternatively, even if k < fc° , the dominating break in the subsample [k, T] can

only be k°. Thus our previous analysis implies the T consistency of f2 for t° .

In summary, T consistent estimators for r° and r" can be obtained by sequential

procedure. The total number of least squares required is no more than 2T.

4. The case of U(r?) = U(t§)

When U(r°) = U(t%), it is easy to show that U(t), as a function of r, has two local

minima at r° and r" , respectively. This leads to the conjecture that the estimated

break point f may converge in distribution to a random variable with mass at r° and

t° only. Indeed we have the following result:

Proposition 3. Under Al-AS together with U(t°) = U(t$), the estimator t con-

verges in distribution to a random variable with equal mass at r° and r®, respectively.

Furthermore, f converges either to r° or to t° at rate T in the sense that for every

e > 0, there exists an M < oo such that

P(\T(t - r°)| > M and \T(t - r2°)| > M) < e.

To prove the proposition, we need a number of preliminary results. Analogous to

Lemma 3, we have

Lemma 5. Under the assumptions of Proposition 3, there exists C > such that for

all large T,

EST {k) - EST(k°) > C\k - k\\ Vk < ftg,



EST {k) - EST (k°) > C\k - k°
2 \

VJfc > k'

where k£ = (k° + k%)/2.

The choice of k$ in the above fashion is not essential. Any number in between k°

and fc° while bounded away from k® and k° with a positive fraction of observations is

equally valid.

Let kx be the location of the minimum of Sr(k) for k such that k < k£, that is,

&i = argmin
fc< fc

.5r(fc). Let k2 = argmini . <Jt5r(A;). Note that this k2 is different from

the one defined in the previous section. Also, k\ and k2 are not estimators as fcj is

unknown. They are introduced here for theoretical purposes. It is clear that the global

minimizer k satisfies:

l = ik if ST(k) < Srih) m
\ k2 iiST(k1)>ST{k2 ).

l )

Note that P(5t(^i) = Sr{k2 )) = if Xt has a continuous distribution. Even without

the assumption of continuous distribution for Xt , because T-1 /2{Sr(ki) — Sxifa)}

converges in distribution to a normal random variable (see the proof of Lemma 7

below), the event {5r(&i) = Sx{k2 )} has a probability approaching zero as the sample

size increases.

Let f, = k/T (i = 1,2). Using Lemma 2 and Lemma 5, we can easily obtain the

following result analogous to Proposition 1.

fx-r^o^r- 1 /2
),

r2 - r° = P(T~^).

The root T consistency is strengthened to T consistency using the following:

Lemma 6. Under the assumptions of Proposition S, for every e > 0, there exists an

M > such that

P ( min ST (k) - ST (k?) < I < e, for i = 1,2
,keD$M

where

D?M = {k:Tr,<k< *& \k - *»| > M},

D {

t,m = {k:k- + l<k<T(l-n),\k- k°\ > M).

Lemma 6 together with the consistency result implies the T consistency of fc,- the

same way as Lemma 4 (together with the consistency) implies the T consistency of k

of Section 3. Using the T consistency, we can prove

8



Lemma 7. Under the assumptions of Proposition 3,

lim P(k = Ja) = 1/2, i = 1,2.
T—>oo

Proof of Proposition 3. By lemma 7, P{t = f.) -> 1/2 (t = 1,2). But f, -£- r°, it

follows that f converges in distribution to random variable with equal mass at r° and

r°. The second part of the proposition follows from the T consistency of f,.

It is clear that A; is a good estimator for one of the breaks. If it is known that k,

for a given sample, is estimating k° , then we can use the subsample [k, T] to estimate

k°. Note that this second stage estimator is not necessarily equal to &2, as the latter

is based on the sum of squared residuals using the entire sample. Similarly, if A; is

estimating &°, we can use the sample [1, k] to estimate fc°. Let (k^\k^) denote the

ordered pair of the first stage and the second stage estimators such that k^ < k^\

It follows that the ordered pair forms a T consistent estimator for (k® , k°).

5. Limiting Distribution

Given the rate of convergence, it is relatively easy to derive the limiting distributions.

We strengthen the assumption of second order stationarity to strict stationarity.

Assumption A5. The process {Xt } is strictly stationary.
1

Let {Xt } be an independent copy of the process of {Xt }. Define W^(£, A) =

Wi 1]
(£, A) for £ < and W^\£, A) = W2

(1)
(£, A) for £ > and W^{0, A) = 0, where

Wi
(1,

(/, A) = -2(/x2 - Ml ) £ X
t

(1) + |*|(02 - 0i)
2
(l + A), £ = -1, -2, ...

t=i+i

W?\£, A) = 2(02 -/*!)£Xt

(1) + £(fi2 - /zx)
2
(l - A), £=1,2,...

t=i

Proposition 4. Under assumptions A1-A5, together with the assumption of contin-

uous distribution for Xt,

fc _ fc° _±> argmin,W(1)
(£, Ar),

where
1 -r2

°//i3 -02'

JThis assumption allows one to express the limiting distribution free from the change point

(fcJ).The assumption can be dispensed with, see Bai (1994b).



Note that condition A4 [or equivalently (6)] guarantees that |Ai| < 1. The assump-

tion of continuous distribution ensures the uniqueness of the global minimum for the

process W^(£, Ai), so that argmin^W^ 1
)^, Ai) is well denned. The proof of this propo-

sition is provided in the Appendix.

When A is zero, the limiting distribution corresponds to that of a single break

(/Z3 = H2) or to that of the first break point estimator in the case of multiple breaks

with simultaneous estimation. If Xt has a symmetric distribution and A is equal to

zero, W^(£, A) and W^(—£, A) will have the same distribution and consequently,

k — k° will have a symmetric distribution. Because A ^ generally, the limiting

distribution from sequential estimation is not symmetric about zero. For positive A

(or equivalently, ^2 — ^1 and fi3 — \i2 have the same sign), the drift term of W2 '(£, A) is

smaller than that of W\ (£, A). This implies that the distribution of k will have a heavy

right tail, a tendency to overestimate the break point relative to the simultaneous

estimation. For negative A, there is a tendency to underestimate the break point.

These theoretical implications are all borne out by Monte Carlo simulations.

Suppose the inequality in Assumption A4 is reversed, i.e. U(t°) > U(t%). Then

by mere symmetry,

k - jfc°
-i+ argmin,W(2

>(£, A2 )

where

WW{£,\) =

and

-2(^3 - 02) EL+i X\2) + I'lfos " ^2 )

2
(1 + A), £= -1, -2,

2(^3 - 112)EL X? ] + l(to - /^)
2
(1 - A), £ = 1, 2, ...

A2 = ZL(^i) ;

T2
U V3 ~W

with \X\ } being an independent copy of the process {Xt}, and being also indepen-

dent of {X(

(1)
}.

As discussed in Section 3, when k/T is consistent for r°, an estimate for t° can be

obtained by applying the same technique to the subsample [k, T). Let k2 denote the

resulting estimator. We have argued that f2 = k2/T is T consistent for r2 . Moreover,

we shall prove that the limiting distribution of k2 — k% is the same as that from a

single break model. More precisely,

Proposition 5. Under assumptions A1-A5,

k2 -k°-U argmin^^O)

and is independent of k — fc° asymptotically.

10



The proof is given in the appendix. The asymptotic independence follows because

k and k2 are determined by increasingly distant observations that are only weakly

dependent.

Similarly, if k/T is consistent for r° , then one can use the sample [1, k] to estimate

r°. The resulting estimator must be T consistent. The limiting distribution is given

by aigmineW^(£,0).

We now consider the case in which U(t°) = U(t°). As in Section 4, let (fc
(1\ k^)

denote the ordered pair of the first and second stage estimators. Then we have the

following result: for £ = 1,2

£.(«') J.°
d / axgnuiitWW^, A,-) with probability 1/2

•' '

\ argmin,W(')(£,0) with probability 1/2.

This is true because, in the limit, with probability 1/2, k^ is the first stage estimator,

and with probability 1/2, it is the second stage estimator. When k^ is the first stage

estimator, its limiting distribution is given by argmin^W^ 1^, Ai). When k^ is the

second stage estimator, its limiting distribution is given by aigm.mtW^(£, 0) because

it is estimated effectively with the sample [1, k%], which contains only a single break.

The argument for k^ is similar.

6. More Than Two Breaks

In this section, we extend the procedure and the theoretical results to general multiple

break points:

Yt = m+ Xt ,
if r < fc°

Yt
= m + Xu if Jfc? + 1 < t < k°

(8)

Yt = fim+i+Xt , iikl + l<t<T.

where /*, ^ m+1 fc? = [Tt?], r? € (0,1) and r? < r?+1 for t = 1, ...,m with r° +1 = 1.

Assume the process Xt satisfies A1-A2.

Define the quantities Sr(k), Vr(k), and Ut(t) as before, and denote by U[t) the

limit of Ut{t). Again, let k = argminiSx(A:) and f = k/T. From the proof for the

earlier results in the appendix we can see that the assumption of two breaks is not

essential. With more than two breaks, one just needs to deal with extra terms. The

argument is virtually identical. Therefore we state the major results without proof.

First we impose the following:

Assumption A6: There exists an i such that, U(t°) < U(t°) for all j ^ i.

11



Proposition 6. Under assumptions of A 1-A3 and A6, the estimated break point f is

T consistent for rf

.

Proposition 7. Under the assumption of Proposition 6 and A5,

k - Jfcf -U aigmintWli)
(l, A,)

where W^*'(£, A) has the same form as W^ l
'{£, A) with (/12 — f*i) replaced by (/z,+i — //,)

and

A,= '

fJ-i+1 ~ Hi 1 r
t j=,+i r«- ^=1

Again, assumption A6 ensures that |A,| < 1.

A new terminology is appropriate here. A subsample [k,£] is said to contain a

nontrivial break point if both k and £ are bounded away from the break point with

a positive fraction of observations. That is, k° — k > Tto and £ — k° > Tcq for some

e > and for all large T, where k° is a break point inside [k,£]. This definition rules

out subsamples such as [1, k] where k = k° + Op (l).

When it is known that the subsample [1, k] contains at least one nontrivial break

point, the same procedure can be used to estimate a break point based on the sample

[1, &]. That is, the second break point is defined as the location where S^) is mini-

mized over the range [1, k]. The resulting estimator must be T consistent for one of the

break points, assuming again assumption A6 holds for this subsample. Furthermore,

the resulting estimator has a limiting distribution as if the sample [1,'fcP] were used

and thus has no connection with parameters in the sample [kf + 1,T]. This is because

the first stage estimator k/T is T consistent for r°. A similar conclusion applies to

the interval [k, T]. Therefore, second round estimation may yield an additional two

breaks, and consequently, up to 4 subintervals are to be considered in the third round

estimation. This procedure is repeated until each resulting subsample contains no

nontrivial break point. Assuming the knowledge of the number of breaks as well as

the knowledge of the existence of a nontrivial break in a given subsample, then all the

breaks can be identified and all the estimated break fractions are T consistent. The

total number of least squares required is no more than mT; here, m is the number of

breaks.

A problem arises immediately in practice as to whether a subsample contains a

nontrivial break, which is clearly tied up with the determination of the number of

breaks. We suggest that the decision be made based on testing the hypothesis of

12



parameter constancy for the subsample. We prove in the next section, such a decision

rule leads to a consistent estimation of the number of breaks, and implicitly a correct

judgment about the existence of a nontrivial break in a given subsample.

6.1. Determination of the number of breaks

The number of breaks, m, in practice is unknown. We show how the sequential

procedure coupled with hypothesis testing can yield a consistent estimate for the

true number of breaks. The procedure works in a similar way as described in the

previous section. Along the way, hypothesis testing is used as an auxiliary tool to

determine the existence of a break point for a given subsample. We summarize the

procedure here. When the first break point is identified, the whole sample is divided

into two subsamples with the first subsample consisting of the first k observations

and the second subsample consisting of the rest of the observations. We then perform

hypothesis testing of parameter constancy for each subsample, estimating a break

point for the subsample where the constancy test fails. Divide the corresponding

subsample further into subsamples at the newly estimated break point, and perform

parameter constancy tests for the hierarchically obtained subsamples. This procedure

is repeated until the parameter constancy test is accepted for all sequentially obtained

subsamples. The number of break points is equal to the number of subsamples minus

1.

Let m be the number of breaks determined in the above procedure and mQ is the

true number of breaks. We argue that P(m — mo) converges to 1 as the sample size

grows unbounded, provided the size of the tests converges to zero slowly. To prove

this assertion, we need the following general result. Let

Yt = m+Xu if - ni + 1 < t < 0,

Yt = fi + Xu if 1 < t < n (9)

Yt = fJ-2 + Xt ,
if n + 1 < t < n + n-i

where n is a nonrandom integer and ni and n?, are integer-valued random variables

such that n,- = P(1) as n — oo. The first and the third regimes are dominated by

the second one in the sense that rii/n = O^n' 1
). Let N = n + ri\ + n2 . The supF

test is based on the difference between restricted and unrestricted sums of squared

residuals. More specifically, let SN = £?=-«, +i(^ - Yf and SN (k) = £*=-„1+i(*f
-

^t)
2 + Hr=fc+i(^ — ijt*)

2
5
where Yk represents the sample mean for the first k + ni

observations and Yk* represents the sample mean for the last n + 712 — k observations.

13



The supF test is then defined as, for some 77 € (0, 1/2),

„ Sn — S^ik)
SUp I'M = SUp —

—

—!-

Nv<k<N(l-v )
&

where a2
is a consistent estimator of a(l) 2

cr
2

. Note that a(l) 2
of is proportional to

the spectral density of Xt at zero, which can be consistently estimated in a number

of ways.

Lemma 8. Under model (9) and assumptions Al-AS, as n — 00,

sup^ sup
W-rW

,

i?<t<1-tj T(L — T)

where B(-) is standard Brownian motion on [0,1].

The limiting distribution is identical to what it would be in the absence of the first

and the last regime in Model (9). This is simply due to the stochastic boundedness

of ni and n-i- We assume that the supF test is used in the sequential procedure, and

the critical value and size of the test are based on the asymptotic distribution. Using

this lemma, we can prove

Proposition 8. Suppose that the size of the test ax converges to zero slowly. Then

under model (8) and assumptions A1-A2,

P(m = m )
—* 1, as T 00

Proof: Consider the event {m < mo}. When the estimated number of breaks is

less than the true number, there must exist a segment [k,£] containing at least one

true break point which is nontrivial in the sense that both the distance from k to the

break point and the distance from £ to the break point contain a positive fraction of

observations. That is, k° — k > TtQ and £—k° > Tcq for some to > 0, where k° € (k,£)

is a break point. Then the test statistic based on this subsample must converge to

infinity because the sup F test is consistent, see Andrews (1993). Thus, one will reject

the null hypothesis of parameter constancy (as long as ax does not decrease too fast).

This implies that P(m < m) converges to zero as the sample size increases.

Next, consider the event {m > mo}. For m > m to be true, it must be the case

that for some i, at a certain stage in the sequential estimation, one rejects the null

hypothesis for the interval [&,-, &t
-

+i], where A;,- = k° + Op(l) and &,+ i = kf+1 + Op{\).

14



That is, the given interval contains no nontrivial break point, but the null hypothesis

is rejected. Thus

P(rh > m ) < P(3i, reject parameter constancy for [fc,-, £,+1])
TTlo

< 5Z-P( reject parameter constancy for [&,-, &t+i])

i=0

where ko = 1 and fcmo +i = T. Because £, = k° + Op (l) and ki+ i
= fc°+1 + Op (l), if

one lets n = fc°+1 — kf and TV = fct+ i
— hi, then the supF statistic computed for the

subsample [hi, fc,+i] converges in distribution, by Lemma 8, to the right hand side of

(10). Denote the limiting distribution by £. Suppose the size qj and the critical value

ct are chosen using the asymptotic distribution such that P(£ > C?) < qt, then for

large T (and hence large n), P(sup Fn > ct) < 2qj. Thus P{fh > mo) < (mo+ l)2ar,

which converges to zero if ar converges to zero as T increases. This completes the

proof of the proposition.

It remains unanswered as to what rate aj should converge to zero. Of course,

the rate should be low so that the critical value will not increase too quickly in order

to guarantee a rejection under the alternative hypothesis. With the existence of a

nontrivial break, the statistic supi^V is of order T. Therefore, any vanishing sequence

of ax making cj a lower order than T is sufficient. A more accurate statement can

also be made about the quickest rate for qj. Such a rate is clearly linked to the tail

behavior of the random variable £. In practice, the issue is perhaps more empirical

than theoretical. An appropriate choice requires an assessment of the adverse effect of

overestimating or underestimating on the problem under consideration. If underesti-

mating is more costly, larger size may be used and vice versa. For most economic data

with moderate size, we recommend a 5% significant level. Once the size is chosen, all

the rest can be automated. 2

Bai and Perron (1994) propose an alternative strategy for selecting the number of

breaks. We first describe their procedure for estimating the break points when the

number of breaks is known. In each round of estimation, their method selects only one

additional break. The single additional break is chosen such that the sum of squared

residuals for the total sample is reduced the most. For example, at the beginning of

the ith round, i — 1 breaks are already determined, yielding i subsamples. The ith

break point is chosen in the subsample for which the reduction in the sum of squared

residuals is the most. The procedure is repeated until the specified number of break

2A computer program written in GAUSS for both sequential and simultaneous estimations is

available upon request. The program is introduced in Bai and Perron (1994).
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points is obtained. It is necessary to know when to terminate the procedure when

the number of breaks is unspecified. The stopping rule is based on a test for the

presence of an additional break given the number of breaks already obtained. The

number of breaks is the number of subsamples upon terminating the procedure minus

1. Again, assuming the size of the test approaches zero at a slow rate as the sample

size increases, the number of breaks determined in this way is also consistent. A

further alternative is proposed by Yao (1987). Yao suggests the BIC criterion. His

method requires simultaneous estimation.

6.2. Some Comments

Although the asymptotic theory implies that the sequential procedure will not un-

derestimate (in a probabilistic sense) the number of breaks, Monte Carlo simulations

show that the procedure has a tendency to underestimate. The problem was caused

in part by the inconsistent estimation of the error variance in the presence of mul-

tiple breaks. When multiple breaks exist and only one is allowed in estimation, the

error variance cannot be consistently estimated (because of the inconsistency of the

regression parameters) and is biased upward. This decreases the power of the test.

It is thus less likely to reject parameter constancy. This also explains partially why

the conventional supF test may possess less power than the test proposed by Bai and

Perron (1994) in the presence of multiple breaks.

The problem may be overcome by using a two-step procedure. In the first step,

the goal is to obtain a consistent (or less biased) estimate for the error variance. This

can be achieved by allowing more breaks (solely for the purpose of constructing error

variance). It is evident that as long as m > m , the error variance will be consistently

estimated. Obviously, one does not know whether m > mo, but the specification of m
in this stage is not as important as in the final model estimation. When m is fixed,

the m break points can be either selected by simultaneous estimation or by the "one

additional break" sequential procedure described in Bai and Perron (1994) (no test is

performed). In the second step, the number of breaks is determined by the sequential

procedure coupled with hypothesis testing. The test statistics use the error variance

estimator (as the denominator) obtained in the first step.
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7. Fine Tuning: Repartition

Although each estimated break point is T consistent, there is a tendency to over or

underestimate the location of the breaks depending on whether A, is positive or nega-

tive. We now discuss a procedure that yields an estimator having the same asymptotic

distribution as the simultaneous estimators. We call the procedure repartition. The

idea of repartition is simple and was first introduced in Bai (1994b) in an empirical

application. This paper provides the theoretical basis for doing so. Suppose there

are m breaks and initial T consistent estimators kh (h = l,...,m) are obtained. The

repartition technique reestimates each of the break points based on the initial esti-

mates. To estimate k°, the subsample [fcj_i, &i+i] is used. We denote the resulting
*

»
*

ft

estimator by k*. Because of the proximity of kh to k%, we effectively use the sample

[Ar°_! + l,fc°+1 ] to estimate k°. Consequently, k* is also T consistent for fc°, with a

limiting distribution identical to what it would be for a single break point model (or

for a model with multiple breaks estimated by the simultaneous method, see Bai and

Perron (1994)). In summary:

Proposition 9. Under model (8) and assumptions A1-A2, the repartition estimators

satisfy: for each t > 0, there exists an M < oo, such that for all large T

,

P{\k*-k°\>M)<t, (i = l,2,...,m)

and under the additional assumption A5,

k* - k° -±+ argmin,W(,)
(^,0), (i = l,2,...,m)

Note that assumption A6 is not required. The proposition only uses the fact

that the initial estimators are T consistent. As is known in Section 4, T consistent

estimators can be obtained regardless of the validity of A6 (or A4).

It is evident that the repartition method is straightforward to implement. Reparti-

tion requires an additional T least squares computations. All together, no more than

(m + \)T least squares are necessary to obtain break point estimators that have the

same limiting distributions as those obtained by simultaneous estimation.

8. Small Shifts

The limiting distributions derived earlier, though of theoretical interest, are perhaps

of limited practical use because the distribution of argmin^W^'^, A) depends on that
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of Xt and is difficult to obtain. An alternative strategy is to consider small shifts in

which the magnitude of shifts converges to zero as the sample size increases to infinity.

The limiting distributions under this setup are invariant to the distribution of Xt and

remain adequate even for moderate shifts. The result will be useful for constructing

confidence intervals for the break points.

For concreteness and ease of exposition, we consider the two-break model of Section

2. This also enables us to deliver a full proof of our results without much additional

effort. We assume that the mean /x t)x for the ith regime can be written as /i.-.j = vxfii

(z = 1,2,3). We further assume

Assumption Bl. The sequence of numbers vt satisfies

vT -» 0, r(1/2)_Vr -> oo for some 8 G (0, 1/2) (11)

Because vj converges to zero, the function U(r) defined in section 2 will be a

constant function for all r. This can be seen from (4) and (5), with Uj interpreted as

vtP-j- Therefore, assumption A4 is no longer appropriate. The correct condition for f

to be consistent for rf is

Assumption B2.

plim vj2
[UT(*$/T) - UT(k°/T)] < 0.

This condition turns out to be equivalent to (6), with /j,j replaced by jij.

Under Bl and B2, we shall argue that f is consistent for r". However, the conver-

gence rate is slower than T, which is expected because it is more difficult to discern

small shifts.

Proposition 10. Under assumptions A1-A3 and B1-B2 we have Tv^{t— t°) = Op (l)

or, equivalently, for every t > 0, there exists an M < oo such that

p{T\(t-t?)\>Mv?) < e.

The proof of this proposition is again based on some preliminary results analogous

to Lemma 2 and 3. First we modified the objective function as

sT(k)-j:xi
t=i

This does not change the problem, as the second term is free from k.

Lemma 9. Under the assumptions of Proposition 10, we have
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(a)

sup \uT(k/T) - EUT(k/T) - T- 1

J2(X? ~ EX})\ = Op(T-
1/2vT ).

(b) There exists C\ > 0, only depending on rf and jlj (i = 1,2, j = 1,2,3) such that

EST(k) - EST (k°) > dv 2

T \k - k°\ for all large T.

Corollary 1. Under the assumptions of Proposition 10,

Proof: Adding and subtracting Y%=\(X-t — EX2
) to the following identity

ST (k) - ST(k°) = ST(k) - EST {k) - [ST(k°) - ESt(%)] + EST (k) - EST (k°)

to obtain

ST (k) - ST(k°)

> -2 sup ISTW-ESTW-YXXf-EXH + ESTW-ESTik")
i<i<r' t= i

'

> -2 sup ST(j)-ESTU)-52(X?-EX?)\ + Civ$\k-k%
i<i<T t=i

'

where the second inequality follows from Lemma 9(b). From Sx(k) — Srik®) < 0, we

have

I* - *?| < C^2vj2
sup ST(j) ~ EST (j) ~ J2(xt

~ EX2
)\.

i<i<T t=1
'

The corollary is obtained upon dividing the above inequality by T on both sides and

using Lemma 9(a).

Because y/Tvi — oo, f is consistent for r°. Using this initial consistency, the rate

of convergence stated in Proposition 10 can be proved. In view of the anticipated rate

of convergence, we define D^M the same as Dtm but replacing M by Mv^2
. Thus

for k 6 Dq*M , it is possible for k — k° to converge to infinity because v^ 2
converges to

infinity, although at a much slower rate than T.

Lemma 10. Under assumptions of Proposition 10, for every e > 0, there exists an

M > such that

P(^ ST(k) - 5r (fc?) < o) < e.
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Proof of Proposition 10. The proof is virtually identical to that of Proposition 2,

but one uses Lemma 10 instead of Lemma 4. .
Having obtained the rate of convergence, we examine the local behavior of the ob-

jective function in appropriate neighborhoods of k° to obtain the limiting distribution.

Let Bi(s) (i = 1,2) be two independent Brownian motions on [0,oo) with i?,(0) =

and define a two-sided drifted Brownian motion on TZ as

, / 2B1 (-s) + \s\(l + X) iis<0
/Hs,Aj-| 2B2 (s) + \s\(l-X) if s >0

with A(0,A) = 0.

Proposition 11. Under the assumptions of Proposition 10,

T(fj,2T - (j.it)
2
(t ~ if) — a(l)V

£

2argmin
sA(s, A x )

where A x is defined in Proposition 4 with p.j replaced by jij.

While the density function of argminJA(s, Ai) is derived in Bai (1994b) so that confi-

dence intervals can be constructed, it is suggested that the repartitioned estimators be

used. For the repartitioned estimator, the limiting distribution corresponds to Ai = 0.

9. Further Extensions

The preceding discussion has focused on multiple mean shifts in linear processes. The

whole procedure can be elaborated to multiple regressions that are more useful in

econometric applications. Here we give conditions that ensure T consistency. These

conditions are similar to those in Bai (1994b) and Bai and Perron (1994).

Consider

Yt = Z
t6i + Xt , t = 1,2, ...,«!,

Yt
= Z'

t
82 + Xt , t = fc

x + 1,..., k2 ,

Yt = Zl6m+1 +Xu t = *o+i,...,r,

where Yt as before is the observed dependent variable at time t; Zt (q x 1) is a vector

of covariates; Sj (J
= l,...,m + 1) are the corresponding vectors of coefficients with

Si ^ 8{+i (i = l,...,m); Xt is a linear process satisfying A1-A2.

Assumption Cl: The regressors satisfy:

i [Tv]

plim-J2Zt Z't = Q(v)
1 t=\
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uniformly in v € [0, 1], where Q(v) is a positive definite matrix for each v > and

Q{v) - Q(u) >0forv>u.

Assumption C2: For large £, the minimum eigenvalues of \ IZ
fc
o +1

Zt Z[ and of

t ^k°-t ZtZ't are bounded away from zero [i = 1, ..., m + 1).

Assumption C3: The disturbances {Xt } satisfy one of the following alternatives:

a) {Xt ,Tt} forms a sequence of martingale differences where Ft = a — field

{Za+1 ,Xs ;s < t} with sup
f
E\Xt \

4+s < oo.

b) Xt is independent of Za for all t and all s, but {Xt } forms a sequence of

mixingales satisfying conditions given in Bai and Perron (1994).

Assumption C4: fc? = [Tt?], t? € (0, 1) with t? < rt+1 (i = 1, ..., m).

Assumption Cl is satisfied by i.i.d. regressors having a finite variance. It is also

satisfied by any second order stationarity process such that the strong law of large

numbers holds for Zt Z[. In these cases, Q(v) = vQ, where Q = EZt Z't . Trending

regressors also satisfy Cl. More interestingly, it is satisfied by autoregressive models

with breaks. Suppose Zt
= (1, Yt-\, ..., Yt-q-\). Although Zt is not globally stationary,

its adjustment to its new stationary path is very quick after a break takes place. Thus

for segment t, the limit plim^rSfc
o+1

" i Zt Z't converges to vQ,-, where A&, = fc°+1
—

k° and Qi is the second moment matrix of a stationary autoregressive process with

autoregressive parameters £,-. Therefore, Q{v) = t°QiH KT°~rt-i)Qt+( v~T?)Qt+i

i0TVe[T?,T?+1].

Assumption C2 requires that there be sufficient data near the break point. It is

used for T consistency. Part (a) of Assumption C3 allows for autoregressive models or

models with lagged dependent variables. Part (b) allows for general serial correlated

disturbances. A mixingale sequence includes many dependent processes as special

cases. These assumptions are similar to those of Bai (1994b) and Bai and Perron

(1994).

Under the assumptions C1-C4, using the argument presented earlier in this paper

together with that of Bai (1994b), it can be shown that the sequential estimators

are T consistent. The repartitioned estimators have limiting distributions identical

to simultaneous estimators. Therefore, confidence intervals can be constructed in the

way given in Bai (1994b) and Bai and Perron (1994).

10. Some Simulated Results

This section reports results from some Monte Carlo simulations. The data are gener-

ated according to a model with three mean breaks. Let (fii , ..., fi4 ) denote the mean pa-
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rameters and (k° , k®, fc°) denote the break points. We consider two sets of mean param-

eters. The first set is given by (1.0,2.0, 1.0,0.0), and the second by (1.0,2.0, -1.0, 1.0).

The sample size T is taken to be 160 with break points at (40,80,120) for both sets

of mean parameters. The disturbances {Xt} are i.i.d. standard normal. All reported

results are based on 5000 repetitions.

First we assume the number of break points is known and focus on their estimation.

The break points are chosen using the suggestion of Bai and Perron (1994), "one and

only one additional break" in each round. A chosen break point must achieve greatest

reduction in total sum of squared residuals for that round of estimation.

Figure 1 displays the estimated break points for the first set of parameters [called

model (I)]. To verify the theory and for comparison purposes, three different methods

are used- sequential, repartition, and simultaneous methods. Because, for model

(I), the magnitude of shift for each break is the same, we expect three estimated

break points should have a similar distribution for the repartition and simultaneous

methods. This is indeed so, as suggested by the histograms. For sequential estimation,

the distribution of the estimated break points shows asymmetry, as suggested by the

theory. This asymmetry is removed by the repartition procedure.

Figure 2 displays the corresponding results for the second set of parameters [model

(II)]. Because the middle break has the largest magnitude of shift, it is estimated

with the highest precision, then followed by the third, and then by the first. Note

that the sequential method picks up the middle break point in the first place. This

has two implications. One, the first and third estimated break points will have the

same limiting distribution as simultaneous estimation, even without repartition. This

explains why the results look homogeneous for the three different methods. Two,

Only the middle break point will have an asymmetric distribution for the sequential

method. This asymmetry is again removed by repartition.

These simulation results are entirely consistent with the theory. Also remarkable

is the match rate for the repartition and simultaneous methods. They yield almost

identical results in the simulation. The match rate for model (I) is over 92%, while

for model (II) the rate is over 99.5%.

We also perform some limited Monte Carlo simulations for estimating the number

of breaks using the sequential method. In addition to the two sets of parameters

considered earlier, we add a third set of parameters, which is (1.0, 2.0, 3.0, 4.0) [referred

to as model (III)]. For comparison purposes, estimates using the BIC method are also

given. Figure 3 displays the estimated numbers for both methods. The left three

histograms (a, b, c) are for the sequential method and the right three (a', b'', c') are
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for the BIC method. The sequential method uses a two-step procedure described in

Section 6.2. We assume the number of breaks is 4 in the first step and estimate the

error variance based on repartitioned estimators. The size of the test is chosen to be

0.05 with the corresponding critical value 9.63.

For the first set of parameters, the BIC criterion does a better job than the se-

quential method. The latter underestimates the number of breaks. For a significant

proportion of observations, the sequential method only detects a single break. We find

that the single break identified by the sequential method in most cases is the third

break. Put another way, the sequential method has difficulties in finding breaks if

the first 80 observations are used. Indeed, the supF test has lower power in detecting

"hat" shaped mean changes (especially for small samples and less pronounced shifts).

For the second set of parameters, the two methods are comparable. Interestingly, the

sequential method works better than the BIC criterion for the third set of parameters.

The sequential method may be improved upon in at least two dimensions. First,

the supF test which is designed for testing a single break may be replaced by, or used

in conjunction with, Bai and Perron's supF(£) test for testing multiple breaks. The

latter test has better power in the presence of multiple breaks. Other tests such as the

exponential type or average type tests can also be used; see Andrews and Ploberger

(1994). Second, the critical values may be chosen using small sample distributions

rather than limiting distributions. There are certain degrees of flexibility in the choice

of sizes as well. In any case, the sequential procedure seems promising. Further

investigation is warranted.

11. Summary

We have developed some underlying theory for estimating multiple breaks one at

a time. We proved that the estimated break points are T consistent and we also

derived their limiting distributions. A number of ideas have been presented to analyze

multiple local minima, to obtain estimators having the same limiting distribution

as those of simultaneous estimation, and to consistently determine the number of

breaks in the data. The proposed repartition method is particularly useful because it

allows confidence intervals to be constructed as if simultaneous estimation were used.

Of course, the repartition estimators are not necessarily identical to simultaneous

estimators.
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Appendix: Mathematical Proofs

Throughout the proof, the notation op (l) [0P (1)] is used to denote a sequence of

random variables converging to zero in probability [stochastically bounded]. All limits

are taken as the sample size T converges to infinity, unless stated otherwise. We may

write X = Y when X and Y having the same distribution.

The first two lemmas in the text are closely related. We first derive some results

common to these two lemmas. We need to examine Ur(k) for all k € [1, T\.

For k < JbJ,

K t=l

— 1 \~^ \r 1 2 1 2 \~~^ vY
"
=
T^k j£x

'

= r^1 + T^k fl2 + T^k*13 + ¥^k J?+1
Xt -

Throughout, we define Ark and Ajk as

1
k

1
T

^* = lE^'' ATk - T _ 7 E Xt .

K t=l
IK t=k+1

E(Xt - ^)
2 = J2(xt -

1

Ex{f = j:(xt - ATkf (is)

t=i t=i
K »=i t=i

Thus

and

E (« - n*)
2

t=k+l

k° k° T

= ± (Ml + xt
- y;Y +J2(n2 + xt

- y;Y + e (^ + x, - y;Y
t=k+l JtJ+1 fco+l

it

= E It^-t{(T - fc?)(/i! - W ) + (T - fc
2°)(/.2 - *,)} + Xt - A'Tk?

t=k+l 1 K

+ E l^K*? - *)te - mi) + (r - *»°)to - M3 )} + x, - a^] 2

+ E k^tt*? - *)(/* " Ml) + (*2 " *)(A*3 - /*)} + * - >1^]
2

-

The latter expression can be rewritten as

E W - n*)
2 = (*f - *)4* + 2ar* E (X, - A*Tk )

t=k+l t=k+\
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where

Rewrite

and

ark =

brk =

CTk =

T-k
1

T-k
1

+(A:2 - ^)fc^ + 2fer fc J] (Ai - A^)

+(T - *2°)4* + 2cTk J2 (Xt - A'Tk )

k°+i

+ J2(Xt
- A'Tkf

{(T - k*)^ - n) + (T- k°2 )(to - fi3)}

{(*? - k)(fi2 - #n) + (T - k°2 )(to ~ Us)}

{(A? - k)(to - in) + (k°
2
- k)(to - i*)}.

? E (xt - A-Tkr = 1 £ x\ - ^=A(A^y
1 t=k+l x t=k+l J

fD*-W-^-^g*f.

(14)

(15)

(16)

Combining (13) and (14) and using (15) and (16), we have for k < fc°,

where

UT(k/T) = -ST(k)

aTk + bTk +
1 l t=\

RMk) = i
t

fc?

2aT* E ^t + 26r fc E *t + 2c™ E *
*°+l

2
(*° - k)aTk + (k°

2
- k°)brk + (T- k°2 )cTk Ark

We shall argue that

R1T(k) = Op{T-
1/2

) uniformly in fc € [1, k°).

(17)

(18)

(19)
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Note that ajkibrk, and ^Tk are uniformly bounded in T and in k < [Tt°] and Ajk
=

Ov(T~
l l2

), it is easy to see that first two expression on the right hand side of (18)

are Op(T-^
2
) uniformly in k < [7Y°]. The second to the last term is T- xOp {\og

2 T)

because sup1<fc<T \-jzJ2i=i Xi\ = Op(\°zT). Finally, the last term is Op(T
-1

) because

A^.k = Op{T~^
2
) uniformly in k < k°. This gives RlT{k) = Op{T~

l12
) uniformly in

k<k°.

Next consider k € [k° + 1, k°]. We have

>it = yMi + ~Jp"M* + ATfc ,

it - A-

v« _ 2?
M2 +

r-fc°
Ma + Aj.

fc
.

Thus

X - n = {

Yt -y: = {

^.( fll
-

M2 ) + Xt -ATk ift€[l,*a

%(H2 - m) + Xt - ATk iite[k° + l,k]

' ^(fX2
-

fl3 ) + Xt -A'Tk tite[k + l,k°]T-k

k°-k

.
££(;* - Ma) + *t - ^r* if * € [t§ + 1, T].

Hence for k G [Jfc? -J- 1, fc°],

E(^ - ^)
2

= *°4
fc
+ 2<fr* £(Xt - ATk ) + Jt(X<

~ ATkf

t=\

t=\ t=\

+(k-k°
1
)e

2
Tk + 2eTk E (Xt-ATk)+ E (X, - ATfc )

2

t=jt°+i t=*?+i

where drfc = -T_L
(/ii

— M2) and e™ = -}J-(M2
- Mi), and,

(20)

E re - y;y
t=k+l

*z *§

= (k°2 - k)fTk + 2fTk E(*< - Ark) + E(^ " ATkf
fc+i fc+i

+(T - k°2 )g
2
Tk + 2gTk E (Xt

- A*Tk ) + E {Xt
- A*Tkf

fc§+l fc°+l

(21)
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where fTk = yzjt"(^2 - ^3) and gTk = -fzki^ - Pt)- Therefore,

UT(k/T) = ^ST(k)

k° k - k° k° - k T -k° 1
T

= f4k + -Y±4k + ^Afk + t-jF-A* + fY,*? + RMQ (22)

t=i

k
x
{k k

t ) 2
(fc

2 - k)(T - k2 ) 2 ,
1 v-" v2 _l R m- ^ (/*2-A*l) + JY?1 -^ (^3-/^2) + y 2^ A « + H-2T{k)

where

fc?

JM*) = ^2<frjt £jr, + 2eTib £ ^t + 2/rfcE^ + 2^E^
<=1 t=k°+l fc+1 fc°+l

2^ %dTk + (k- k°)eTk + (k°
2
- k)fTk + (T- k°2 )gTk A'Tk (23)

~^{ATkf - ^jA(A±ky.

Using the uniform boundedness of dxki^Thfrk and gjk as well as Ark = Op(T~
l l2

)

and Ajk = P (T
,_1

/2
) uniformly in A; € [fc° + 1, k2 ], we can easily show that R.2T(k) =

p(r
-1 / 2

) uniformly in k € \k® + 1, fc°]. As for k > k2 , using the symmetry with the

first regime, we have

Ur(k/T) = |/4* + ^Ap2

Tk +^& +
ff.

X\ + R3T(k) (24)

where, similar to before, R3r(k) — Op{T~ x l2
) uniformly for k € [k2 , T] and

hrk = r[(k - k°){fii - fi2 ) + (k- k2 ){n2 - ^3)]

PTk = -j-[k°(fi2 - Hi) + (k - k°)(fi2 - ft3 )]

qrk = £[*?(/*2 - A*i) + *a0*3 - M2)].

Proof of Lemma 1. Because axib&Tfci •••j'Zxfc all have uniform limits for k = [TV]

and the stochastic terms in (17), (22), and (24) all have uniform limits in pertinent

regions for r € [0, 1], The uniform convergence of Ut{t) follows easily. The uniform

limit of Ut(t) is also easy to obtain. Note that (4) and (5) are obtained, respectively,

by taking k = k° and k = k2 in (22) and letting T —» 00.

Proof of Lemma 2. The only stochastic terms in (17), (22), and (24) are Rir(k)

(i = 1,2,3). Each of which is Op(T~
1^2

) uniformly over pertinent regions for k.
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Furthermore, it is easy to see that EFUrik) = 0(T-1
) uniformly in k (i = 1,2,3).

These results imply Lemma 2.

To prove Lemma 3, we need additional results.

Lemma 11. There exists an M < oo such that for all i and all j > i,

\E{(±Xt)(± X,)}\<M.
t=i *=t+i

Proof: Let f{h) = E(XtXt+h). Then under assumptions A1-A2, it is easy to argue

that Er=i h \~f(h )\ < oo- Now

i£(X»(i; *.)i=ie e 7(«-oi<e*I7(*)i<i;ai7(*)i<oo.
t=l »=t'+l t=l s=i+l /i=l h=l

a

We will also use the following result: there exists anM < oo, such that for arbitrary

i < j,

E^ZT-i E X^ < M. (25)
•?

z t=t+i

In the sequel, we shall use ark and ar(k) interchangeably. Similar notations are

also adopted for Ark, Ajk as well as for brk,CTk,---

Lemma 12. Under A1-A3, there exists an M < oo such that

T\ERlT(k) - ER1T(%)\ < ^V^M.

Proof: The expected value of the first two terms on the right hand side of (18) is zero.

We thus need to consider the last two terms. For k < fc°,

1
k

1
fc?

K t=i
rc
i t=i

= (T " To)(E^)
2 - 2p(E^)( E *.) - i( E *0 2

(26)
K K

l t=l K
l t=l t=fc+l

K
l t=fc+l

fc° — A- 1
k

1 *
k°

k° — k 1

*°

= ^t(E*?-24c*x £ *)- V%.-* < E *»)'
K
l

K t=l K
l t=l tzzk+l

Kl
K
l

K
t=fc+l

Apply Lemma 11 to the second term above and apply (25) to the first term and the

third term above, we see that the absolute value of the expectation of (26) is bounded

28



by M\k° - k\/T. This result holds for k > k° (only need to use £JL, = £*!, + EZk+i
in the proof). By symmetry,

|(T - k)E{A'T{k)f - (T - kl)E{A^{kl)f\ < M\k° - k\/T

Combining these results, we obtain Lemma 12.

Note that the expected values of Rjr(k) for j = 1, 2, 3 have an identical expression

as functions of k. We thus have

T\ERiT(k) - ERiTik,)] < !^^M, (i = 1,2,3) (27)

Proof of Lemma 3. For k < k°, using (17) with some algebra to obtain

EST (k) - EST(k°)

= (k* - k)aT(kf + (k°
2
- k^brikf - 6r(fci)

2
] + (T - k°2 )[cT(kY - cT (fc?)

2
]

+T{ERlT(k) - ERrrik,)}

=
(
i-fc/r)("i-^/r) t

(1 " k
°
JT){(il ~^ + (1 " k

°
JT){fJL2 "^ (28)

+T{ERlT(k)-ERlT(k°1 )}.

Because \(k$/T) - rf| < T" 1
(i = 1,2),

EST (k) - EST(k°)

=
(i - fc/r)(i - q/T) l

(1 " T
°
){fl1 "^ + (1 " T2

°
)(/i2 "^

+0($y±) + T{JB/Jir(*) - ER1T(k°)}.

We claim that when U(t°) < U(t°),

C = (1 - Tf)(^ - ft) + (1 - r°)(ft - ft) # 0. (29)

Condition £/(r°) < U(t%) is equivalent to

1-T°
f-^(ft - ft)

2 < 3r(ft - /^)
5

Multiplying (1 — t$)(1 — t°) on both sides of above and using (1 — t°)t^/t° < 1 — t°

to obtain

(1 - T°)
2
(ft - ft)

2 < (1 - T°)
2
(ft - ft)

2
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This verifies (29). Together with Lemma 12, we have

EST (k) - ESrik*) > (Jfc° - k)C2 - 0(^y^) > (Jfc° - k)C 2
/2 (30)

for all large T.

Remark 1 (a) Regardless of the validity of Assumption A4, by (28) and Lemma 12,

for k < k°

EST(k) - EST(k°) > T{ERlT(k) - ER1T(k°)} > -M\k\ - k\/T.

By symmetry (which can be thought of as reversing the data order), for k > k°,

EST (k) - EST{k°2 ) > T{ER3T(k) - ER3T(k°)} > -M\k° - k\/T.

This property will be used later.

(b) Even if the strict inequality in Assumption A4 is replaced by an equality, i.e.

£/(r°) = ^/(r"), the previous proof shows that Lemma 3 still holds for k € [1, k°]. The

strict inequality is only needed for k € [fc° + 1, k%)], which is considered below.

For k € [k° + 1, A;")], use the last equality of (22) with some algebra,

EST{k) - EST {k\)

= {k-k\)

+T{ER2T(k) - ER2T(k°1 )}.

Factor out k°/k, and use k(T - k°)/{k%(T - k)} < 1, for all it < jfc°,

"h / \2 V
-^ 2/ / \1

T^-^ ] -(T-k)(T-kO)^-^ (31)

EST(k) - EST (k°)

> (k-k°4 %2-^f-^-^M-^f
k [k^ rly

(r-jfc?)

+T{ER2T(k)-ER2T(k°1 )}.

Denote C* = (t°/t2°)(//2 - fn)
2 - [(1 - r2°)/(l - T°))(fi3 - fi2 )

2
. By (6), C > 0. From

(32)
K2 T2 J Kf 1 Tj"

we have

it r°

| - T

fc = O(T-),
rc2 '2

T — k° 1 - t°i *2 X ^ =0(T- 1
)

EST (k) - EST(k°)

> (k-k^C
-(fc - A:?)0(T-

1

) + T{ER2T(k) - ER^k")}

> (k - k°)C* -M^-
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for some M < oo by Lemma 12. Thus for large T,

EST {k) - EST {k°) > (Jfc - k°)C
m
/2. (33)

It remains to consider k € [Jk° + l,?
1

]. From Remark 1(a), EST (k) - EST {k°) >

-T\ER3T(k) - ER3T (k°)\ > -(jfc - k°)M/T > -(T - Jfc°)M/T. Thus

EST (k) - ESt(^) = EST{k) - EST(k°) + EST {k°) - EST (k°)

> EST {k°) - EST(%) - (T - k°)M/T

EST(k°) - EST {k°) M"T - k°

T-k°[ T-k° T

the last inequality follows from (k — k°)/(T — k°) < 1. Using (33) with k = k°, we see

that the term in the bracket is no smaller than f—

i

C*/4 for large T. Thus
'2

rO ,-0

EST (k) - EST(%) >(k- k^^-^-C'/S (34)

for all large T. Combining (30), (33), and (34), we obtain Lemma 3.

Proof of Lemma 4. Rewrite

ST(k) - ST(k°) = ST(k) - EST (k) - [ST(k°) - EST (k°)] + EST (k) - EST (k°).

From Lemma 3, Sr(k) — Sr(&i) < implies that

ST(k) - EST (k) - [Srffl - EST (k°)]
< r

\k-kl\ - °"

This further implies that the absolute value of the left hand side of the above is at

least as large as C. We show this is unlikely for k £ Dj,m- More specifically, for every

e > and -q > 0, there exists an M > such that for all large T,

P[ sup
\*€DT|M

ST(k) - EST (k) - {ST (k°) - EST(k°)}
\k - fc°|

> r/ < e.

First note that

\ST(k) - EST(k) - {Srik,) - EST(%)}\
= \T{R1T(k) - ER1T(k)} - TiRMtf) - ER1T(k°)}\

< \T{R1T(k)-R1T(k°l )}\ + M'\k-k1
\/T
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for some M' < oo by Lemma 12. Thus it suffices to show

>t))<t.P[ sup
T{RlT(k)-R1T(k°1 )}

(35)

We consider the case k < k®. From (18),

T{R1T(k) - R1T(k°)}

k
l *2 T

= 2(aTk £ Xt ) + 2({brk - 6r(*?)} f) *f) + 2({cTfc - <*(*?)} £ Xt
)

-(*? - *)«r*Ar* - (fc° - fc?){&r*^ - M*?Mt(*?)*} (36)

-(T - AS){orfcA5. fc
- cr^VrC*?)}

+[4(E^)
2

~ i(^x
2

]
+ [(

r - *?)Mr(*?))
a - (r - k)(A*Tky]l*°

t=i t=i

we shall show that each term on the right hand side divided by k® — k is arbitrarily

small in probability as long as M is large and T is large. Because ajk, &Tfc, Or* are all

uniformly bounded, with an upper bound say, L, the first term divided by k° — k is

k°
bounded by L\-^^ J2k+i Xt\, which is uniformly small in k < k° — M for large M by

the strong law of large numbers. For the rest of terms, we will use the following easily

verifiable facts:

|6r*-M*i°)l<

\cTk - cr(*?)| <

rC-i K

T-k C,

T-k C,

for some C < oo, and

T\ 1 )
"~~

**-T\ )
"~~

Art /C
T fc?

E*
(r_fc)(r-fc?)^ r-t^t

(37)

(38)

(39)

In view of (37), the second term on the right hand side of (36) divided by k° — k is

bounded by

I *2

tI

fc°

1
klc^Zx^c^i^Zx^c^tx,,

11
fc?+l fc?+l

for some C" < oo, which converges to zero in probability by the law of large numbers

(note that T — k > T(l — r") for all k (E Dt). The third term is treated similarly.
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The fourth term divided by k° — k is bounded by X|j4j
fc |

= Op{T~
l l2

) uniformly in

k € Dt- The fifth term can be rewritten as

(k°
2 - k°){brk - M*?)Mr* + (*2

° " *?)M*?)W(*?) - A'T(k)} (40)

Using (37), the first expression of (40) divided by k° — k is readily seen to be op (l).

The second expression divided by k° — k is equal to, by (39)

k° -k° T k° - k° , 1 v

k°

(T - k)(T - *?)& ' T-k Uf-i-Z x'-fcf(linn) S* («)
t=fco

1 K K
l

K t=k+l

with the first term being op (l) and the second term being small for large M. Thus

the fifth term of (36)) is small if M is large. The sixth term is treated similarly to

the fifth one. It is also elementary to show that the seventh term and the eighth term

of (36) divided by k° — k can be arbitrarily small in probability provided that M and

T are large. This proves the Lemma 4 for k < k°. The case of k > fc° is similar; the

details are omitted. .
Proof of Lemma 5. We prove the first inequality, the second follows from symmetry.

For k < &i, the lemma is implied by Lemma 3 which holds for U(t°) = U(t$), see

Remark 1(b). Next, consider for k € [fc° + l,k°]. From (31), (32), and the condition

Utf) = U(if) (i.e. {iffflfa -^ = [(1 - r2°)/(l - t°)](^3 - ^)
2
), we have

EST (k) - EST (k°)

(k° T — k°\ t°

= <*-*?>(£-TZ]?)>-*>
a ^

+(Jb - fc?)0(r-
x
) + T{ER2T(k) - ERxrik*)}

Note that for all it < k^ = (fc° + fc£)/2,

K
2

J- »2 \ ""2 ""/-* \ o-l ' 2 *l)-' ^. o 2 "'l

Jt T-k k{T-k)-
1

k(T-k) - r - 2
*:

The last two terms of (42) on the right hand side are dominated by the first term.

The lemma is proved.

Proof of Lemma 6. It is enough to prove the lemma for i = 1. The case of i = 2

follows from symmetry. The proof is virtually identical to that of Lemma 4. One uses

Lemma 5 instead of Lemma 3. The rest can be copied here. .
Proof of Lemma 7. We shall prove P(5r(fci) - Srifa) < 0) —» 1/2 or equivalently,

P(T- 1 /2{5r (fci) - ST(k2 )} < 0) -» 1/2. Because jfc,- = fc? + Op(l), ST(fc) = ST(kf) +
Op (l) (see the proof of Proposition 4). It suffices therefore to prove

P (r- 1 /2{5r (fc
1 )
- ST(k°2 )} < 0) - 1/2.
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The equality of U(t°) and U(t°) translates into an approximate equality of ESr{k°)

and ESr(k%). More precisely, using \(k°/T) — r°\ < 1/T, it is easy to show that

\EST{kf) - TU(t?)\ < A for some A < oo. This implies \EST(k°) - EST(k%)\ < 2A.

Thus

T-^{ST (k°) - ST (k°
2 )} = y/f{R2T(k\) - R2T(k%)} + 0(T^ 2

)

where R2T (k?) = ^{Sri^) - EST(kf)} {i = 1,2), see (22). Note that we have used

the fact that Sr(k), when k — k°, can be represented by both (17) and (22) and we

have used (22). Consequently, it suffices to prove

P(y/f{R2T(k°1 )
- R2T(k°2 )} < 0) ^ 1/2.

From (23),

TWRrrift) = 2/r(*?)-i= ±Xt +2^)4= E Xt + Op{T~^).

The above follows from {k°-k°)fT{k°)+(T-k°)gT (k°) = and (T-k^T-^A^) =

Op{T-
1 '2

). Similarly,

it k°

T^R2T(k°) = 2dT (k°2)^=±Xt + 2er(*°)-L E Xt + Op(T~^).

Thus r 1 / 2{i?2r(^i)— -^27(^2)} converges in distribution to a mean zero normal random

variable by the central limit theorem. The lemma follows because a mean zero normal

random variable is symmetric about zero.

Proof of Proposition 4. Consider the process Sr(k° + £) — Sr(k°) indexed by £,

where £ is an integer (positive or negative). Suppose that the minimum of this process

is attained at £. By definition, £ = k— k®. By proposition 2, for each e > 0, there exists

an M < 00 such that P(\k - k%\ > M) = P(\£\ > M) < t. Thus to study the limiting

distribution of £ — k — k°, it suffices to study the behavior of Sj{k° + £) — Sr(&?) for

bounded £. We shall prove that Sr(k° + £) — Sr(k°) converges in distribution for each

£ to (1 + Ai)WW(£,Ai), where Aj and W<M(£,\i) are denned in the text. This will

imply jfc - k° -i+ argmin,(l + Ai)WW(£, A^; see, Bai (1994b). Because (1 + A a ) > 0,

argmin^l + X\)W^(£, Ai) = argmin^W^ 1^, Ai), giving rise to the proposition. First

consider the case of £ > and £ < M, where M > is an arbitrary finite number. Let

1 *?+< 1 t

« = 70T7 E« and ^ = T ,0 E *, («)
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k° t

£i = 7oE^ aQd ft=jTTI E *S- (
44

)

1 t=1 x t=k°+l

Thus Ai is the least squares estimator of \i\ using the first k° + £ observations and

A2
is the least squares estimator of a weighted average of fi2 and /x3 using the last

T — k° — £ observations. The interpretation of A; (t = 1,2) is similar. The estimators

A* (t = 1, 2) depend on £. This dependence will be suppressed for notational simplicity.

It is straightforward to establish the following result:

ft - Hi = Op{T-
1 '2

) and Ai " /*i = CUT" 1 ' 2

) (45)

A;-^-^4(^3-^2 ) = OpCr-
1/2

) and A2-^-f=4(M3.-^2) = OpCT"
1 /2

)
1 — Tj 1 — Tj

(46)

A*-A. = op(r-
1

)
(i = i,2) (47)

where the Op {-) terms are uniform in £ such that |^| < M. Now,

k° k°+t T
ST(k° + t) = Y:(Y<-K)

2
+ E (*-«)* + E &-&*. (48)

Similarly,

k° k°+t x

sT(k°1 ) = ±(Yt -filf+ £ (f<-a2 )

2 + E (y<-M
2

- (49)
t=i t=k°+i k°+e+i

The difference between the two first terms on the right hand side of (48) and (49),

respectively, is

Jt° k°

t,(Xt - At)
2 - £pi - Ai)

2 = *?(£ - Ai)
2 = P (T-'). (50)

t=l t=\

Similarly, the difference between the two third terms on the right hand sides of (48)

and (49), respectively, is also Op(T
-1

). Next consider the difference between the two

middle terms. For t € [k° + M], Yt
= /x2 + Xt . Hence

k°+t k°+t

E % - At)
2 - E (^ - a2 )

2

t=Jfc°+l t=k°+l

k°+(

= 2{/x2 -At-(/x2 -A2 )} E xt + £{(,x2 -At)
2
-(^-A2)

2
}. (51)
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From (45) and (46), we have

fi2 - ft - (fl2 - fa) = (V2 ~ /*l)(l + Aj) + Op{T-
1 '2

)

and

(ft - AI)
2 - (ft - £ 2 )

2 = 0*2 - /xx)
2
(l - A

2
) + Op(T-

1/2
).

Thus (51) is equal to

2(/z2 -/i 1 )(l + A 1 ) £ ^t +^2
-

Ai 1 )

2(l-A;) + Op(r-
1/2

). (52)

t=it°+i

Under strict stationarity, J2tLe>+i ^* îas ^e same distribution as Ylt=\ Xt . Thus (52)

or, equivalently, (51) converges in distribution to (1 + Ai)!^ (£, A x ). This implies

that ST(k^ + £)- SHfc?) converges in distribution to (1 + A^W^Vi Aj) for £ > 0.

It remains to consider £ < 0. We replace £ by —£ and still consider a positive £.

In particular, ft and ft are defined with —£ in place of £. Then (48) and (49) are

replaced, respectively, by

sHk* - £) = e (Yt - ad
2 + e (^-ft)

2 +E(^-ft)
2

(53)

<=1 t=fc°-M-l A:°+l

and
k° -( k° x

ST(k°1)=J2(Yt -fa)
2 + E (rt -Ai)

2 +E(^-A2 )

2
. (54)

'=1 t=Jt°-M-l fcj+l

The major distinction between (48) and (53) lies in the change of ft to ft f°r the

middle terms on the right hand. One can observe a similar change for (49) and (54).

Similar to (50), the difference between the two first terms on the right hand of (53)

and (54) is Op{T~
l
). The same is true for the difference between the two third terms

on the right hand. Using Yt
= fi\ + Xt for t < k°, we have

E ow;)2 - E (Yt-M 2

t=jt°-/+i t=k°~i+i

k°

= 2(ft-ft) E Xt + i^-MH + O^T-V2

)

t=k°-e+i

fc°

= -2( fi2 -fi 1 )(l + X1 ) E ^ + (A*2-Mi)
a
(l + Ai)

2
^ + Op(r-

1 /2
).

t=k°-t+l
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Ignoring the (^(T-1 /2
) term and using strict stationarity, we see that the above has the

same distribution as (1 + X\)Wi (—£, Ai). In summary, we have proved that Sr{k°) +

£) — Sr(k°) converges in distribution to (1 + \i)W^(£, Ax). This convergence implies

that k - k° -±+ argmin,(l + \i)WW(i, A a ) = argmin^ 1^, A x ). The proposition is

proved.

Proof of Proposition 5. The argument is virtually the same as in the proof of

Proposition 4. The reason for A = is that regression coefficients can be consistently

estimated in this case, in contrast with the inconsistent estimation given in (46). The

details will not be presented to avoid repetition.

Proof of Lemma 8. From the identity (2), Sn — Sff(k) = NV^(k) 2
, where V^(k) =

{(k/N)(l - k/N)} l/2
(Y,* - Yk ). It is enough to consider it such that k € [nrj, n(l - 77)]

because N and n are of the same order. Now

N^2VN (k)

, -I n+n2 1 k

= N^{(k/N)(i - k/N)yi\
l - y, x* - rf- £ x*

\n + n2 -k k+1 k + n x _nj+1

n2 n2 «i ,

n i \
A*2 - —-7—

TJ1 ~ 1. _ Pi + 1. . _ A»

)

n + n,2 — k n + 712 — k k + ni k + ni
n+n2

Vn + ^-fc^j K + ni_ni+1 n/

= »"2
{(*/<0(l -kW(^E *' ~ £E*) + p(n-"

2

)

where the second equality follows from n, =
P (1) and A

-1 = 0(n_1
); the third

follows from the asymptotic equivalence of N and n; the fourth follows from some

simple algebra. For k = [nr], iV1 /2V/v(fc) converges in distribution to a(l)a{r(l —

r)} _1/'2 [rB(l) — B(t)]. This gives the finite dimensional convergence. The rest follows

from the functional central limit theorem and the continuous mapping theorem.

Proof of Proposition 9. By the T consistency of fc,_i and &,+i, we see that k® is

a nontrivial and dominating break point in the interval [fc,_i, fct+i]. Thus the T con-

sistency of k' for kf follows from the property of sequential estimator. The argument

for the limiting distribution is the same as that of Proposition 5.

Proof of Lemma 9.
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Proof of (a). First consider k < k°. From (17),

\UT(k/T) - EUT(k/T) - T- 1

J2(X? - EX2

)\
= \RlT (k) - ER1T (k)\ (55)

t=i

The first two terms of Ru(k) [see (18)] are linear in /z.-j, and thus are vtOv{T
l l2

).

The last two terms do not depend on /x,j, but are of higher order than vtOv{T~
1 I2

).

Moreover, ERlT (k) = (^(T- 1
) uniformly in k. Thus \R1T{k)-ERlT(k)\ = Op{T-^

2vT )

uniformly in k < k°. This proves the lemma for k < k°. The proof for k > k° is the

same and follows from RiT (k) - ERiT (k) = Op{T-
l'2vT )

(i = 2, 3).

Proof of (b). Consider first k < k°. By the second equality of (28), the first term

of ESr(k) — ESr(k°) on the right hand side depends on the squared and the cross

product of fiix — H(i+i)T (i — 1>2) (hence on v2
*). Factor out v\ and replace fij by fij,

the rest of proof will be the same as that of Lemma 3. This implies that

EST (k) - EST{k%) > t4(Jfc? - k)C2
/2

where C is given by (29) with fij in place of fij. The proof for k > k° is similar and

the details are omitted.

Proof of Lemma 10. As in the proof of Lemma 4, it suffices to show that for every

t\ > 0, there exists an M > such that

sup
T{R1T(k)-R1T(k°1 )}

/C rt-i

> tjvt < e. (56)

The above is similar to (35) with rj replaced by r/Vj and Dj,m replaced by D^M .

Note for k 6 Dj-M , we either have k < k° — Mv^ 2
or k > k° + Mvj 2

. Consider

k < fc° — Mvj 2
. We need to show that each term on the right hand side of (36)

divided by k° — k is no larger than rjVj- as long as M is large and T is large. The proof

requires the Hajek and Renyi inequality, extended to linear processes by Bai (1994a):

there exists a C\ < oo such that for each £ > 0,

fellS^'H^-
Now consider the first term on the right hand side of (36). Note that \axk\ < vtL for

some L < oo. Thus it is enough to show

p( sup 5Z x* >f]vTL M <
X k<k\-Mx,~* t=k+l
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for large M. By the Hajek and Renyi inequality (applied with the data order reversed

by treating k° as 1),

/V CXL
2 C^L2

p( sup J2 Xt > tjvtL-
1

) <
^k<k°-Mv-2

t=k+l Tj
2VjMvT T)

2M
The above probability is small if M is large. The proof of Lemma 4 demonstrates

that all other terms are of lower or equal magnitude than the term just treated. This

proves the lemma for k less than k\. The proof for k > fc° is analogous. Q.

Proof of Proposition 11. The proof is similar to that of Proposition 4. We only

outline the major distinction. In view of the rate of convergence, we consider the

process Ar(s) = Sr{k° + [suj
2
])
— Sr(fc°), indexed by a real number 5. We shall

derive the limiting process for |s| < M for an arbitrary given M < oo. Let D[—M, M]

denote the space of cadlag functions endowed with the Skorohod metric, see Pollard

(1984). We shall show that At(s) converges weakly in D[—M,M] to a pertinent

limiting process. First consider s > 0. Let £ = [su^
2
]. Define /2* and /2 t as in (43) and

(44), respectively. Then (45)-(47) still hold with fij interpreted as fijx- For example,

vt(^ - *t) =—
^fTl
— +^r^ E xt = o,(i).

This follows because, from |£| < Mv^ 2
, the first term on the right hand side is of

0(1/(VTvt)) which converges to zero, and the second term is P (1). Equations (48)-

(49) are simply identities and still hold here. Similar to the proof of Proposition 4,

the difference between the two first terms and the difference between the two third

terms of (48) and (49) converge to zero in probability. Equation (52) in the present

case is reduced to

k°+l

2(l + A 1 )(/i2 -/iiK E Xt + ^(/22 -/ii)
2(l-Ai) 2 -rOp(r-

1 /2
).

t=k°+l

Note that Ai is free from vt because it is canceled out due to its presence in the

denominator and the numerator. From £ = [sv? ], using the functional central limit

theorem for linear processes [e.g., Phillips and Solo (1992)]

k°+[av-*} [sv-
2
]

VT 2 Xt = vT J2 Xt-k° = a(l)<T£jB2(.s)

t=k°
1
+l *=1

in the space D[0, M], where ^(s) is a Brownian motion process on [0, oo), and

£vf
2 = [svj

2
]vj —* s, uniformly in s € [0, M}.
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In summary, for s > 0,

ST(k° + [svy
2
]) - ST(k°) = 2(1 + Ax )(/22 - /21)a(l)<7£52 (s) + s(£2 - /i,)

2
(l - A2

).

The same analysis shows that for s < 0,

5T (A:? + [^?
2
])
- 5T (fc?) => 2(1 4- A 1 )(/i2 - /i 1 )a(l)at51 (-5 ) + |s|(/22 - fa)

2
(l + Ax)

2
,

where Bi(-) is another Brownian motion process on [0, oo) independent of B2 (-). In-

troduce
f 2o(l)<7e51 (-s) + |s|(l + A) if s <

1 lS
'

A; _
\ 2a{\)atB2 (s) + |s|(l - A) if s >

with T(0, A) = 0. The process T differs from A in the extra term a(l)at . By a change

of variable, it can be show that argmin
s
r(s, A) = a(l) 2

<T
2argminsA(s, A). Now because

cBi(s) has the same distribution as Bi(c*s), we have

ST(k° + [svt
2
])
- ST{k\) = (1 + A x )r((/i2 - fcfs, A x )

.

This implies that

Tvt(t - t°) -^-» argmin
s
(l + A a )r((/t2 - £i)

2
s, A x

)

= (^2 - /xi^axgmmJXi;, A x )

= (a«2
- /ii)"

2
a(l)

2
o-
2argmin

t;
A(t;, Ax ).

We have used the fact that argminIa/(x) = argminx/(x) for a > and argminx/(a
2x) =

a
-2
argminx/(x) for an arbitrary function f(x).
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Figure 1: Histograms of the estimated break points for Model (I): (a) Sequential

method; (b) Repartition method; (c) Simultaneous Method.
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Figure 2: Histograms of the estimated break points for Model (II): (a) Sequential

method; (b) Repartition method; (c) Simultaneous Method.
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Figure 3: Histograms of the estimated numbers (of breaks) for models (I), (II) and

(III). Sequential estimation: (a),(6),(c). BIC criterion: (a'), (6'), (d)
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