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Estimation of limited-dependent variable models with dummy endogenous regressors:

Simple strategies for empirical practice

Applied economists have long struggled with the question of how to accommodate binary

endogenous regressors in models with binary and non-negative outcomes. I argue here that

much of the difficulty with limited-dependent variables comes from a focus on structural

parameters, such as index coefficients, instead of causal effects. Once the object of

estimation is taken to be the causal effect of treatment, a number of simple strategies are

available. These include conventional two-stage least squares, multiplicative models for

conditional means, linear approximation ofnonlinear causal models, models for distribution

effects, and quantile regression with an endogenous binary regressor. The estimation

strategies discussed in the paper are illustrated by using multiple births to estimate the effect

of childbearing on employment status and hours of work.
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Econometric models with dummy endogenous regressors capture the causal relationship between a binary

regressor and an outcome variable. A canonical example is the evaluation of training programs, where the

regressor is an indicator for those who were trained, and outcomes are earnings and employment status.

Other examples include treatment effects in epidemiology and health economics, effects of union status, and

the effects of teen childbearing on schooling or labor market outcomes. All of these problems have a

treatment-control flavor, since they involve binary regressors. The notion that treatment status is

"endogenous" reflects the fact that simple comparisons of treated and untreated individuals are unlikely to

have a causal interpretation. Instead, the dummy endogenous variable model is meant to allow for the

possibility of joint determination of outcomes and treatment status, or omitted variables related to both

treatment status and outcomes.

The principle challenge facing empirical researchers conducting studies of this type is identification.

Successful identification in this context usually means finding an instrumental variable that affects outcomes

solely through its impact on the binary regressor of interest. For better or worse, however, the formal

discipline of Econometrics is not much concerned with the "finding instruments problem," this is a job left

to the imagination of empirical researchers. This division of responsibility reminds me a little of Steve

Martin's old joke about "how to make a million dollars and never pay taxes." First, Martin blandly suggests,

"get a million dollars." In the same spirit, once you have solved the difficult problem of finding an

instrument, then the tasks ofestimation and inference - typically using two-stage least squares (2SLS) — look

relatively straightforward.

But perhaps there is reason to worry about estimation and inference in this context after all. Even

with a plausible instrument, the dummy endogenous variables model still seems to raise some special

econometric problems. For one thing, the endogenous regressor is binary, so perhaps a nonlinear first stage

is in order. Second, and more importantly, in many cases the outcome of interest is also binary. Examples

include employment status in the evaluation of training programs and survival status in health research. In

other cases, the dependent variable has limited support, most often being non-negative with a mass point at



zero. Examples of this sort of outcome include earnings, hours worked, and expenditure on health care. The

analysis of such limited dependent variables (LDVs) seems to call for nonlinear models like Probit and Tobit.

This generates few stumbling blocks when the regressors are exogenous, but with endogenous regressors

LDV models appear to present special challenges.

This paper argues that the difficulty with endogenous variables in nonlinearLDV models is, in fact,

more apparent than real. For binary endogenous regressors, at least, the technical challenges posed by

limited-dependent variable models come primarily from what I see as a counterproductive focus on structural

parameters such as latent index coefficients or censored regression coefficients, instead of directly

interpretable causal effects. In my view, the problem of causal inference with LDVs is not fundamentally

different from causal inference with continuous outcomes.

The next section begins by discussing identification strategies in LDV models with dummy

endogenous regressors. I show that the auxiliary assumptions associated with structural modeling are largely

unnecessary for causal inference. There is one important exception to this claim, however, and that is when

the identification is for conditional-on-positive effects, as in sample selection models. For example, labor

economists sometimes study the effect of an endogenous treatment on hours worked for those who work.

Identification of such effects turns heavily on an underlying structural framework. On the other hand, the

motivation for estimating this sort of effect is often unclear (at least to me). Moreover, claims for

identification in this context typically strike me as overly ambitious, since even an ideal randomized

experiment fails to identify conditional-on-positive effects.

Setting aside the conceptual problems inherent in conditional-on-positive effects, a focus on causal

effects instead of, say, censored regression parameters or latent index coefficients, has a major practical

payoff. First and most basic is the observation that if there are no covariates or the covariates are sparse and

discrete, linear models and associated estimation techniques like two-stage least squares (2SLS) are no less

appropriate for LDVs than for other kinds of dependent variables. This is because conditional expectation



functions with discrete covariates can be parameterized as linear using a saturated model, regardless of the

support of the dependent variable. Of course, relationships involving continuous covariates or a less-than-

saturated parameterization for discrete covariates are usually nonlinear (even if the outcome variable has

continuous support). In such cases, however, it still makes sense to ask whether nonlinear modeling

strategies change inferences about causal effects.

If nonlinearity does seem important, it can be incorporated into models for conditional means using

two new semi-parametric estimators. The first, due to Mullahy (1997), is based on a multiplicative model

that can be estimated using a simple nonlinear instrumental variables (IV) estimator. The second, developed

by Abadie (1999), allows flexible nonlinear approximation of the causal response function of interest. In

addition to new strategies for estimating effects on means, I also discuss estimates of the effect of treatment

on distribution ordinates and quantiles using an approach developed by Abadie, Angrist, and Imbens (1998).

This provides an alternative to the estimation of conditional-on-positive effects. Two advantages of these

new approaches are their computational simplicity and weak identification requirements relative to earlier

semi-parametric approaches. Another advantage is the fact that they estimate causal effects directly and are

not tied to a latent-index/censored-regression framework. The new estimators are illustrated by estimating

the effect of childbearing on women's employment status and hours of work using multiple births as an

instrument. This "twins instrument" has been used to estimate the labor-supply consequences ofchildbearing

by Rosenzweig and Wolpin (1980), Bronars and Grogger (1994), Gangadharan and Rosenbloom (1996), and

Angrist and Evans (1998).

1 . Causal effects and structural parameters

1.1 What to estimate?

The relationship between fertility and labor supply is of longstanding interest in labor economics

and demography. For a recent discussion and references to the literature see Angrist and Evans (1998),



which is the basis of the empirical work in Section 4. The Angrist-Evans application is concerned with the

effect of going from a family size of two children to more than two children. Let Dj be an indicator for

women with more than two children in a sample of women with at least two children. The reasons for

focusing on the transition from two to more than two are both practical and substantive. First, on the

practical side, there are plausible instruments available for this fertility increment. Second, recent reductions

in marital fertility have been concentrated in the 2-3 child range.

What is the object of study in an application like this? Sometimes the purpose of research is merely

descriptive, in which case we might simply compare the outcomes of women who have D|=l with those of

women who have D—O. For this descriptive agenda, at least, no special issues are raised by the fact that the

dependent variable is limited, beyond the obvious consideration that if Y| is binary, then one need only look

at means. In contrast, if Yj is a variable like earnings with a skewed distribution, the mean may not capture

everything about labor supply behavior that is of interest. In fact, a complete description would probably

look at the entire distribution of earnings, or at least at selected quantiles.

A major problem with descriptive analyses is that they may have little predictive value. Part of the

motivation for studying labor supply and fertility is interest in how changes in government policy and the

environment affect childbearing and labor supply. For example, we might be interested in the consequences

of changes in contraceptive technology or costs, a motivation for studying the twins experiment mentioned

by Rosenzweig and Wolpin [1980, p. 347]). Similarly, one of the questions addressed in the labor supply

literature is to what extent exogenous declines in fertility have been a causal factor in increasing female

employment rates over time. In contrast with descriptive analyses, causal relationships answer counter-

factual questions, and are therefore more likely to be of value for predicting the effects of changing policies

or changing circumstances (see, e.g., Manski [1996]).

Causal relationships can be described most simply using explicit notation for counterfactuals or

potential outcomes. This approach to causal inference was developed by Rubin (1974, 1977). Let Y,i denote



the labor market behavior of mother / if she has a third child and let Yqj denote labor market behavior

otherwise, for the same mother. The average effect of child-bearing on mothers who have a third child is

E[Y,i| D-1] - E[Yoi| D,= l] = E[Y,.-Yo,| D,= l] (1)

Note that the first term on the left hand side is observed, but the second term is an unobserved counter-factual

average that we assume is well-defined.

The right hand side of (1) is often called the effect of treatment on the treated, and is widely

discussed in the evaluation literature (e.g., Rubin, 1977; Heckman and Robb, 1985; Angrist, 1998). In the

context of social program evaluation, the effect of treatment on the treated tells us whether the program was

beneficial for participants. This is not the only average effect of interest; we might also care about the

unconditional average effect or the effect in some subpopulation defined by covariates (i.e., E[Y,i-Yoi| X] for

covariates, X). Ultimately, of course, we are also likely to want to extrapolate from the experiences of the

treated to other as-yet-untreated groups. Such extrapolation makes little sense, however, unless average

causal effects in existing populations can be reliably assessed.

Simple comparisons ofoutcomes by D| generally fail to identify causal effects. Rather, a comparison

between treated and untreated individuals equals the effect of treatment on the treated plus a bias term:

E[Yi| D-1] - E[Yi| D.=l] = E[Y„| D-1] - E[Yo,| D^O] (2)

= E[Y„-Yo,| D,=l] +{E[Yo,| D-l]-E[Yo,| D,=0]}.

The bias term disappears in the childbearing example if childbearing is determined in a manner independent

of a woman's potential labor market behavior if she does not have children. In that case, {E[Yoi| D,=0]-E[Yoi|

Di=l] }=0, and simple comparisons identify the effect of treatment on the treated. But this independence

assumption seems unrealistic, since childbearing is affected by choices made in light of information about

earnings potential and career plans.



1.2 Structural models

What connects the causal parameters discussed in the previous section with the parameters in

structural econometric models? Suppose that instead of potential outcomes, we begin with a labor supply

model for hours worked, along the lines ofmany second-generation labor supply studies (see Killingsworth,

1983, for a survey). In this setting, childbearing is determining by comparing the utility of having a child

and not having a child. We can model this process as:

D; = l(X,'Y>iii), (3a)

where X, is a A'xl vector of observed characteristics that determine utility and tj^ is an unobserved variable

reflecting a person-specific utility contrast.

In a simple static model, labor supply is given by the combination of the participation decision and

hours determination for workers. Workers chose their latent hours (y^) by equating offered wages, W;, with

the marginal rate of substitution of goods for leisure, m,(yi). Participation is determined by the relationship

between W; and the marginal rate of substitution at zero hours, m,(0). Since offered wages are unobserved

for nonworkers, and reservation wages are never observed, we decompose these variables into a linear

function of observable characteristics and regression error terms (denoted v^^i,v,ni), as in Heckman (1974) and

many other papers:

Wi = Xi'6„ + (p„D,-t-v„i, (3b)

m,(yi) =Xi '8„ + x^iy, + cp^D, + v^,. (3c)

Equating (3b) and (3c) and relabeling parameters and the error term, we can solve for observed hours:

Yj = Xj'S -(- (pDj + e„ if Wi>mi(0); Y^O otherwise.

Equivalently,

Y; = l(Xi'5 + (pDi>-e,)(X/5 + (pD, + e^). (4)

Childbearing behavior is said to be endogenous if the unobserved error determining D; depends on the

unobserved error in the participation and hours equations.
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Since the structural equations tell us what a woman would do under alternative values of D,, they

describe the same sort of potential outcomes referred to in the previous model. The explicit link is:

Y,= Yo,(l-D;)+Y.,D,

where

Yo,= l(X/5>-e.)(X,'5 + £,) (5a)

Y,= l(X/5+cp>-e,)(X,'5 + cp + e,). (5b)

Once the structural parameters are known, we can use these relationships to write down expressions for

causal effects. For example, the effect of treatment on the treated is:

E[Y,;-Yoi| D-1] = E{ 1(X,'5 + (p>-e,)(X,'5 + cp + ei)-l(X,'5>-8,)(X/5 + e,)] X/y > ii,}. (6)

Note, however, that knowledge of the parameters on the right hand side of (6) is still not enough to evaluate

this expression. The following Lemma outlines the identification possibilities in this context:

Lemma. Assume the covariates (Xj) are independent of the latent errors, (tj;, 8;). Then:

i. (Heckman, 1990) If tji is not independent of % and the probability of treatment is always non-zero,

the effect of treatment on the treated is not identified without further assumptions.

ii. (exogenous treatment) If r\^ is independent of E;, the effect of treatment on the treated is identified,

iii. (Imbens and Angrist, 1994) Suppose there is a covariate denoted Z; with coefficient y, in (3a), which

is excluded from (3b) and (3c). Without loss of generality, assume y,>0. Then the local

average treatment effect (LATE) given by E[Y,i-Yo,| X,'y+y, > rji > X/y] is identified,

iv. (Angrist and Imbens, 1991) Suppose that LATE is identified as in (iii), and that P[Di=l| Z,=0]=0.

Then LATE equals the effect of treatment on the treated: E[Y,i-Yoj| Di=l]. Similarly, if P[Di=l|

Zpl]=l, LATE equals E[Y„-Yoi| D,=0].

This set of results can easily be summarized using non-technical language. First, without additional



assumptions, the effect of treatment on the treated is not identified in latent index models. Second, the three

positive identification results in the lemma, i.e., for exogenous treatment, the LATE result, and the

specialization of LATE to effects on the treated and non-treated, require no assumptions beyond those in

the lemma. In fact, no information of any kind about the structural model is required for identification in

these cases. On the other hand, the result for endogenous treatments in part (iii) does not refer to the effect

of treatment on the treated, so here the role played by the structural model in identifying causal effects merits

further discussion.

The treatment effects mentioned in part (iii) capture the effect of treatment on the treated for those

whose treatment status is changed by the instrument, Z,. The data are informative about the effect of

treatment on these people because the instrument changes their behavior. Thus, an exclusion restriction is

enough to identify causal effects for a group directly affected by the "experiment" at hand (Angrist, Imbens,

and Rubin, 1996, call these people compilers). In some cases this is the set of all treated individuals, while

in other cases this is only a subset. In any case, however, this result provides a foundation for credible causal

inference since the assumptions needed for this narrow "identification-in-principle" can be separated from

modeling assumptions required for smoothing and extrapolation to other groups of interest. The quality of

this extrapolation is, of course, an open question and undoubtedly differs across applications. But numerous

examples (including the one below) lead me to believe that even though valid instruments guarantee

identification only for causal effects on compliers, in practice, estimates ofLATE differ little from estimates

based on the stronger assumptions invoked to identify effects on the entire treated population.

To sum up: I see parameters like LATE and the effect of treatment on the treated as providing a

minimum-controversy jumping-off point for causal inference and prediction, whether or not the dependent

variable is limited. For some readers, however, a focus on causal effects of any type may seem misguided.

After all, it is structural parameters that are usually linked to economic theory. But what was the purpose

of the theory in the first place? The ultimate goal of theory-motivated structural estimation seems to differ
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little from the agenda outlined here. For example, Keane and Wolpin (1997, p. Ill) want to use structural

models to "forecast the behavior of agents given any change in the state of the world that can be

characterized as a change in their constraints". A natural pre-requisite for this is credible assessment of the

consequences of past changes. Structural parameters that are not linked to causal effects are not useful for

this basic purpose (Mullahy [1998] makes a similar point).

2. Causal effects on LDVs

2. 1 Average effects in experimental data

hi this section, I return to the non-structural causal model defined directly using potential outcomes,

and ask whether the limited nature of the dependent variable has any implications for empirical analysis.

A natural starting point for this discussion is the analysis of randomized experiments, since some of the

issues raised by LDVs have nothing to do with endogeneity. Suppose that Dj was randomly assigned, or at

least assigned by some mechanism that ensures independence between D, and Yqj. In this case, a simple

difference in means between those with D|=l and with Dj=0 identifies the effect of treatment on the treated:

E[Yi| D,=l] - E[Y,| D,=0] = E[Y„| D-1] - E[Yo,| D-0] (8)

= E[Y,i| D,=l] - E[Y(,i| Di=l] (by independence of Yoi and D;)

= E[Yii - Yoil D|=l] (by linearity of conditional means).

If Dj is also independent of Yj, as would be likely in an experiment, then E[Y,| - Yq\ D,= 1] =E[Yii - Yoi], the

unconditional average treatment effect. (Usually this "unconditional" average still refers to a subpopulation

eligible to participate in the experiment).

Equation (8) shows that the estimation ofcausal effects in experiments presents no special challenges

whether or not Y; is binary, non-negative, or continuously distributed. If Y, is binary, then the difference in

means on the left hand side of (8) estimates a difference in probabilities, while if Y, has a mass point at zero,

the difference in means estimates the difference in E[Yi| Yi>0, Di]P[Yi>0| DJ. But these facts have no



bearing on the causal interpretation of estimates or, in the absence of further assumptions or restrictions, the

choice of estimators.

2.2 Conditional-on-positive effects

In many studies with non-negative dependent variables, researchers are interested in effects in a

subset of the population with positive outcomes. Interest in conditional-on-positive effects is sometimes

motivated by the following decomposition of differences in means, first noted in this context by McDonald

and Moffit (1980):

E[Yi| D,=l] - E[Y,| Di=0] = {P[Y,>0| D,= l] - P[Y;>0| D,=0] }E[Yi|Y,>0,D,= l]

+ { E[Y,|Y;>0,D,= 1 ] - E[Yi|Y,>0,D,=0] } P[Yi>0| D-0]

.

(9)

This decomposition describes how much of the overall treatment-control difference is due to participation

effects (i.e., the impact on l[Yi>0]) and how much is due to an increase in intensity for those with Yi>0.

For a recent example, see Evans, Farrelly, and Montgomery (1999), who analyze the impact of workplace

smoking restrictions on smoking participation and intensity.

In an experimental setting, the interpretation of the first part of (9) as giving the causal effect of

treatment on participation is straightforward. Does the conditional-on-positive difference in the second part

also have a straightforward interpretation? A large literature contrasting two-part and sample-selection

models for LDVs suggests this issue remains controversial. (See, for example, Duan, et al, 1984; Hay and

Olsen, 1984; Hay, Leu, and Rohrer, 1987; Leung and Yu, 1996;Maddala, 1985; Manning, Duan, and Rogers,

1987; and MuUahy, 1998.)

To analyze the conditional-on-positive comparison further, it is useful to write the mean difference

by treatment status as follows (still assuming Yqj and Dj are independent):

E[Yi|Yi>0,D,=l]-E[Yi|Y,>0,DpO] = E[Y„| Y„>0, D-1] - E[YoJ Yoi>0, D-0]

= E[Y„| Y,i>0, D-1] - E[Yoi| Yoi>0, Di=l] (10a)

10



= E[Y,-Y,;|Y„>0,D,=1]

+ {E[Yo,|Y„>0,D,= l]-E[Yo,|Yo,>0,D,= l]}. (10b)

On one hand, (10a) suggests that the conditional contrast estimates a potentially interesting effect, since this

clearly amounts to a statement about the impact of treatment on the distribution of potential outcomes (in

fact, this is something like a comparison of hazard rates). On the other hand, from (10b), it is clear that a

conditional-on-working comparison would not tell is us how much of the overall treatment effect is due to

an increase in work among treated workers . The problem is that the conditional contrast involves different

groups of people: those with Yii>0, and those with Yo,>0. Suppose, for example, that the treatment effect

is a positive constant, say, Yii=Yoi+a. Since the second term in (10b) must then be negative, the observed

difference, E[Yi| Yi>0] - E[Yi| Yi>0], is clearly less than the causal effect on treated workers, which is a in

the constant-effects model. This is the selectivity-bias problem first noted by Gronau [1974].

In principle, Tobit and sample-selection models can be used to eliminate selectivity bias in

conditional-on-positive comparisons. These models depict Y| as the censored observation of an underlying

continuously distributed latent variable. Suppose, for example, that

Yi=l[Y>0]Y;, where (11)

Y; = YoXY,*-Yo;)D, = Yo; + D,a.

Two recent studies with Tobit-type censoring in a female labor supply models are Blundell and Smith (1989)

and Lee (1995), both of which include endogenous regressors. Note that in this context the constant-effects

causal model is applied to the latent variable, not the observed outcome.

Under a variety of distributional assumptions (e.g., normality, as in Heckman, 1974, or weaker

assumptions like symmetry, as in Powell, 1986a), the parameter a is identified. What sort of causal parameter

is a? One answer is that a is the causal effect of Dj on Y,*, but Y,* is not observed so this is not usually of

intrinsic interest. However, a direct calculation using (1 1) shows that a is also a causal effect on conditional-

on-positive Yj (for details, see the appendix). In particular,

11



a = E[Y„-Yo,| Y„>0] ifa<0; (12a)

a = E[Y„-Yoi| Yo,>0] if a>0. (12b)

Thus, the censored-regression model does succeed in separating causal effects from selection effects in

conditional-on-positive comparisons. (We don't know whether a is the effect in [12a] or [12b], but it seems

reasonable to use the sign of the estimated a to decide.)

Although (1 1) provides an elegant resolution of the selection-bias dilemma, in practice I find the use

of censored-regression models to accomplish this unattractive. One problem is conceptual. While I might

comfortably use a censored regression model to analyze CPS earnings data, since these data are in fact

censored at the CPS topcode, the notion of a latent labor supply equation that can take on negative values

is less clear cut. The mass point in this case comes about because some people choose to work zero hours,

and not because of a problem in the measurement of outcomes (Maddala [1985] makes a similar point for

Tobin's original application). Here, an underlying structural model seems essential to the interpretation of

empirical results. For example, in the labor-supply model from Section 1, the censored latent variable

equates wages to marginal rates of substitution. The latent structure in this case cannot be interpreted

without abstract theoretical constructs, and, most importantly, the estimated index coefficients have no

predictive value for directly observable quantities.

Second, even if we adopt a theoretical framework that makes conditional-on-positive effects

meaningful, identification of the censored-regression model requires assumptions beyond those needed for

identification of unconditional effects. Semi-parametric estimators that do not rely on distributional

assumptions fail here because the regressor is discrete and there are no exclusion restrictions on the selection

equation (see Chamberlain, 1986). Moreover, in addition to the distributional assumptions required for

identification, the causal interpretation of a in (12) turns heavily on the additive, constant effects model in

(11). This is because objects like E[Y,i-Yoi| Y,i>0] involve the^om? distribution of Y, and Yq. The constant-

effects assumption nails this joint distribution down, but the actual data contain information on marginal

12



distributions only (which is why even randomized trials fail to answer the causal question that motivates

sample selection models).

These concerns, echoed by many applied researchers, have stimulated a search for alternative

strategies for the analysis of non-negative outcomes (see, e.g., Moffit's [1999] recent survey). The two-part

model (2PM), introduced by Cragg (1971), and the subject of recent discussion among health economists,

seems to provide a less demanding framework for the analysis of LDVs than sample selection models. The

two parts of the 2PM are P[Yi>0| DJ and E[Y|| Y|>0, DJ. Researchers using this model freely pick a

functional form for each part. For example, Probit or a linear probability model might be used for the first

part and a linear or log-linear model might be used for the second part (see, e.g., Eichner, et al, 1997, for a

recent application to expenditure data). Log-linearity for the second part may be desirable since this imposes

non-negativity of fitted values.

One attraction of the 2PM is that it fits a nonlinear functional form to the conditional expectation

function (CEF) for LDVs even if both parts are linear. On the other hand, sample-selection models fit a

nonlinear CEF as well, provided there are covariates other than D|. For example, the CEF implied by (1 1)

with latent-index Yoi* = X/ji + D;a -t- e,, and Normal homoscedastic error is

E[Y;| Xi, D,] = <D>[(X/p + D,a)h][X.:\i + D^a] + o(p[(X/|i + Dia)/o] (13)

where (p(») and 0(») are the standard Normal density and distribution functions and o is the standard

deviation of Sj (see, e.g, McDonald and Moffit, 1980).

The nonlinearity of (13) notwithstanding, at first blush the 2PM seems to provide a more flexible

nonlinear specification than Tobit or other sample-selection models. The latter imposes restrictions tied to

the latent-index structure, while the two parts of the 2PM can be specified in whatever form seems

convenient and fits the data well (a point made by Lin and Schmidt, 1984). A signal feature of the 2PM,

however, and the main point of contrast with sample-selection models, is that the 2PM does not attempt to

solve the sample selection problem in (10b). Thus, the second part of the 2PM does not have a clear-cut
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causal interpretation even if D; is randomly assigned. Similarly, and of particular relevance here, is the point

that instrumental variables that are valid for estimating the effect of D| on Y, are not valid for estimating the

effect of Dj on Y; conditional on Yi>0. The 2PM would therefore seem to be of limited interest for the type

of estimation problems that are the primary focus of this paper.

2.3 Effects on distributions

Interest in conditional-on-positive effects and sample selection models sometimes reflects an interest

in the consequences of Dj beyond the impact on average outcomes. A natural question is whether there are

schemes for estimating effects on distributions that are less demanding than sample selection models. I

believe the answer to this question is "yes" since, once the basic problem of identifying causal effects is

resolved, the impact of Dj on the distribution of outcomes is identified and can be easily estimated.

To see this for the experimental (exogenous Dj) case, note that given the assumed independence of

Dj and Yq„ the following relationship holds for any point, c, in the support of Yj:

E[l(Y,<c)| D,= l] - E[l(Y,<c)| D,=0] = P[Y„<c| D,=l] - P[Yo,<c| D,=l].

In fact, the entire marginal distributions of Y,j and Yqj are identified for those with Di=I. So it is easy to

check whether Dj changes the probability Yj=0, as in the first part of the 2PM, or whether there is a change

in the distribution ofoutcomes at any positive value, or over any interval of positive values. This information

is enough to make social welfare comparisons, as long as the comparisons of interest do not involve the joint

distribution of Y,, and Yqj

2.4 Covariates and nonlinearity

The conditional expectation of Yj given Dj is linear, as are other conditional relationships involving

only Dj. Suppose, however, that identification is based on a "selection-on-observables" assumption instead

of presumed random assignment. This means causal inference is based on the presumption that
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Yo, U DJ X,

Now causal effects must be estimated after conditioning on Xj. For example, the effect of treatment on the

treated can be expressed as:

E[Y,-Yoi| D, = l] =E{E[YjX„D.= l]-E[Yo,|X„Di=l]| D.= l} (14)

= J{E[YJX;, Di=l] -E[Yoi| X, D;=0]}P(X-x| D = l)dx.

Estimation using the sample analog of (14) is straightforward if Xj has discrete support with many

observations per cell (see, e.g., Angrist, 1998). Otherwise, some sort of smoothing (modeling) is required

to estimate the possibly nonlinear CEFs E[Y,i|Xi, 0;= 1] and E[Yoj| X^, D,=0].

Often, regression provides a flexible and computationally attractive smoothing device. A conceptual

justification for regression smoothing is that population regression coefficients provide the best (minimum

mean squared error) linear approximation to E[Yi| Xj, DJ (see, e.g., Goldberger, 1991). This "approximation

property" holds regardless of the distribution of Y;.

Separate regressions can be used to approximate E[Yij|Xi, Dj=l] and E[Yoi| X„ Di=0], though

this leaves the problem of estimating P(Xi=x| D = 1) to compute the average difference in CEFs. On the

other hand, a simple additive model, say

E[Yi|Xi, DJ = X,'P, + aA,

sometimes works well, in the sense that a^ — the "regression estimand"-- is close to average effects derived

from models that allow for nonlinearity and interactions between Dj and X|. With discrete covariates and

a saturated model for Xj, the additive model can be thought of as implicitly producing a weighted average

of covariate-specific contrasts. Although the regression weighting scheme differs from that in (14), in

practice the empirical treatment-effect heterogeneity may be limited enough that different weighting schemes

have little impact on the overall estimate (see Angrist and Krueger [1999] for more on this point).
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3. Endogenous regressors: traditional solutions

LDV models with endogenous regressors were first estimating using distributional assumptions and

maximum likelihood (ML). An early and influential paper in this mold is Heckman (1978). This approach

is not wedded to ML; Heckman (1978), Amemiya (1978, 1979), Newey (1987), and Blundell and Smith

(1989) discuss two-step procedures, minimum-distance estimators, GLS estimators, and other variations on

this framework. Semi-parametric estimators based on weaker distributional assumptions are discussed by,

among others, Newey (1985) and Lee (1996).

The basic idea behind these strategies can be described as follows. Take the censored-regression

model from (11), and add a latent first stage with instrumental variable, Zj. So the complete model is:

y, = i[y;>o]y;,

Y; = Y,: + (Y,*-Yo.*)D, = Yoi* + D,a = n + D,a + e.

D,= l[yo+y,Z,>i1i]- (15)

The principal identifying assumption here is

(Yo„ 11) U Z, (16)

Parametric schemes use two-step estimators orML to estimate a. Semi-parametric estimators typically work

by substituting an estimated conditional expectation, t[D^\ ZJ, for D| and then using a non-parametric or

semi-parametric procedure to estimate the pseudo reduced form (e.g., Manski's [1975] maximum score

estimator for binary outcomes).

In the previous section, I listed problems with this approach: First, latent index coefficients are not

causal effects. If the outcome is binary, semiparametric methods estimate scaled index coefficients and not

average causal effects. Similarly, censored regression parameters alone are not enough to determine the

causal effect of Dj on the observed Y,. (I should note that this criticism does not apply to parametric

estimators, where distributional assumptions can be used to recover causal effects, or to a recently develop

semi-parametric method by Blundell and Powell [1999] for continuous endogenous variables). Second, this
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approach turns heavily on the censored-regression/latent-index/constant-coefficients setup. We can add to

these two points the fact that even weak distributional assumptions like conditional symmetry fail for the

reduced-form error term, (D;- E[Di| ZJ)- 8„ since D, is binary (see, e.g., Lee, 1996).

A final point from my perspective is that, given assumption (16), this whole setup is unnecessary for

causal inference. The effect oftreatment on the observed Y; is identified for those women whose childbearing

behavior is affected by the instrument. The twins instrument, for example, identifies the effect of Dj on

mothers who would not have had a third child without a multiple second birth (see result [iv] in the Lemma).

It is almost certainly of interest to extrapolate from this group's experiences to those of other women, but

that problem is distinct from identifying the causal effect of childbearing in the "twins experiment".

4. New econometric methods

Although conditional moments and other probability statements involving only D| are linear, causal

relationships involving covariates are likely to be nonlinear unless the covariates are discrete and the model

is saturated. LDV models like Probit and Tobit are often used because of an implicit concern that, since the

covariate parameterization is not saturated, LDVs lead to nonlinear CEFs. The 2PM is also sometimes

motivated this way (see, e.g., Duan, et. al, 1984).

Are there any simple schemes for estimating causal effects in LDV models with endogenous

regressors and covariates? In this section, I discuss three strategies for estimating effects on means and two

for estimating effects on distributions. All but the first are based on new models and methods. None are tied

to an underlying structural model.

The simplest option for estimating effects on means is undoubtedly to "punt" by using a linear,

constant-effects model to described the relationship of interest:

E[Yoi|X;]=X,'P; (17a)

Y„ = Yoi + a. (17b)
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These assumptions lead to the formulation,

Yi = X/p + aD, + ei, (18)

an equation that is easily estimated by 2SLS. (If we substitute "population-regression" for "conditional

expectation" in [17a], the instrument must be independent of the regression residual instead of independent

of Yoi given Xi).

Because D; is binary, it is tempting to use a nonlinear model such as Probit or Logit for the first stage

for this 2SLS problem. In the context of an additive constant-effects model such as (17), however, second-

stage estimates computed by OLS regression on first-stage fitted values from a nonlinear model are

inconsistent, unless the model for the first-stage CEF is actually correct. On the other hand, conventional

2SLS estimates using a linear probability model are consistent whether or not the first-stage CEF is linear.

So it is generally safer to use a linear first-stage. Alternately, consistent estimates can be obtained by using

a linear or nonlinear estimate of E[Di| Xj, ZJ as an instrument . (This is the same as the plug-in-fitted-values

method when the first-stage is linear). See Kelejian (1971), orHeckman (1978, pp. 946-947) for a discussion

of this point and additional references. (It is also worth noting that a Probit first-stage cannot even be

estimated for the twins instrument since P[D|=1| X^, Z^^lJ^l for twins.)

4. 1 rv for an exponential conditional mean

A linear model like ( 18) is obviously unrealistic for binary outcomes, and fails to incorporate natural

restrictions on the CEF for other non-negative LDVs. This motivates Mullahy (1997) to estimate causal

effects on non-negative LDVs using a multiplicative model similar to that used by Wooldridge (1999) for

panel data. The Mullahy (1997) model can be written in my notation as follows. Let X, be a vector of

observed covariates as before, and let cOj be an unobserved covariate. The fact that this covariate is

unobserved is the reason we need to instrument.

Let Z; be a candidate instrument. Conditional on observed and unobserved covariates, both
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treatment and the instrument are assumed to be independent of potential outcomes:

Yo, U (D„ Z.)
I

X„ CO, (Ml)

Moreover, conditional on observed covariates, the candidate instrument is independent of the unobserved

covariate, C0|:

Z, U coi
I
Xi, (M2)

though CO; and D, are presumed to be related. The CEF for Yqi is constrained to be non-negative using an

exponential model and (Ml):

E[Yo,| Di, Z„ X„ CO;] = exp(X:^ + ttco,) = (n.'expiX/^), (M3)

where we also assume the unobservable covariate has been defined so that E[cO|*| X,]=l (this is a

normalization since we can define co = 7r''[u-ln(E[e''| X])], where v is unrestricted.)

Finally, the conditional-on-X-and-co average treatment effect is assumed to be proportionally

constant, again using an exponential model that ensures non-negative fitted values:

E[Y,J D„ Z„ Xi, OD,] = g°E[Yoi| D,, Z., X;, coj = e'^E[Yo,\ X, coj. (M4)

Combining (M3) and (M4) we can write

Y| = exp(X,'P + aD; + TtcOj) + £;,

where E[ e-} D,, Z|, X;, C0i]=0. These assumptions imply

E{expi-X,'^-aD,)Yrl
\
X, ZJ = 0, (20)

so (20) can be used for estimation provided Z| has an impact on D^. The proportional average treatment effect

in this model is e°-l, which is approximately equal to a for small values of a.

Estimation based on (20) guarantees non-negative fitted values, without dropping zeros as a

traditional log-linear regression model would. The price for this is a constant-proportional-effects setup, and

the need for non-linear estimation. It is interesting to note, however, that with a binary instrument and no

covariates, (20) generates a simple closed-form solution for a. In the appendix I show that for this case, the

proportional treatment effect can be obtained as follows:
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ga.i^ E[YJZ,=1]-E[Y,|Z,=0]
^21)

-{E[(l-Di)Yi|Z,=l]-E[(l-D,)Yi|Z,=0]}

In light of this simplification, it seems worth asking if the right hand side of (21) has an interpretation

that is not tied to the constant-proportional-effects model. To provide this interpretation, let Dqj and D,i

denote potential treatment assignments indexed against the binary instrument. For example, an assignment

mechanism such as (15) determines Dqi and D,| as follows:

Doi= 1[Yo>i1,].

Dii = Uyo + yi>ili]-

Using this notation, we have

E[Yi| Z,=l] - E[Y,| Z,=0] = E[Y,rYoi| D, > DqJ • {E[m Z-1] - E[D,| Z-0] }. (22)

The term E[Yij-Yo,| D,; > Dq;] is the LATE parameter mentioned in Lemma 1, in this case, for a model

without covariates.

The same argument used to establish the original LATE result can also be used to show a similar

result for the average of Yqj (i.e., instead of the average Y,| -Yq^; see Abadie, 1998, for details ). In particular,

E[(l-Di)Y,| Z,=l] - E[(l-Di)Yi| Z,=0] = -E[YoJ 0,^ > Do,] • {£[0,1 Z-1] - ELDJ Z^O] }. (23)

Substituting (22) and (23) for the numerator and denominator in (21), we have:

e-'-l = E[Y,rYoi| D,, > DoJ/ELYoJ D,, > Do,]. (24)

Thus, Mullahy's procedure estimates a proportional LATE parameter in models with no covariates. The

resulting estimates therefore have a causal interpretation under much weaker assumptions than M1-M4.

Moreover, the exponential model used in M3 to incorporate covariates seems natural, and has a semi-

parametric flavor similar to proportional hazard models for duration data.

4.2 Approximating causal models

Now, suppose that the additive, constant-effects assumptions (17a) and (17b) do not really hold and

we estimate (18) by 2SLS anyway. It seems reasonable to imagine that the resulting 2SLS estimates can be
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interpreted as providing some sort of "best linear approximation" to an underlying nonlinear causal

relationship, just as regression provides the best linear predictor (BLP) for any CEF. Perhaps surprisingly,

however, 2SLS does not provide this sort of linear approximation in general. On the other hand, in a recent

paper, Abadie (1999) introduced a Causal-FV estimator that does have this property.

Causal-FV is based on the assumptions used by Imbens and Angrist (1994) to estimate average

treatment effects. Under these assumptions, it can be shown that treatment is independent of potential

outcomes conditional on being in the group whose treatment status is affected by the instrument (i.e., those

with Di,>Doi, the group of "compilers" mentioned earlier). This independence can be expressed as:

Yoi,Y„umX;,D„>Do, (25)

A consequence of (25) is that, for compilers, comparisons by treatment status have a causal interpretation:

E[Yi| X„ D,=l, D,>Do,] - E[Yi| X„ D,=0, D,.>DoJ = E[Y,-YoJ X„ D, > Do,].

For this reason, Abadie (1999) calls E[Yi| Xj, D„ D,i>Doi] the Compiler Causal Response Function (CCRF).

Now, consider choosing parameters b and a to minimize

E[(E[YJ X, D„ D,i>DoJ - X^'b-aDfl D„ > D,],

or, equivalently,

E[(Yi - X,'b-aD,y-\ D„ > D,].

This choice of b and a provides the minimum mean squared error (MMSE) approximation to the CCRF.

Since the set of compilers is not identified, this minimization problem is not feasible as written. However,

it can be shown that

E[K,(E[Y,|X;,Di,D„>Doi] -Xi'fe-aD,)^]/P[D,>Do,]=E[(E[Y,|X„D„D,i>DoJ -X/b-aDf] D„>Do],

where

K, = 1 - D,(l-Z,)/(l-E[Zi| X,]) - (l-Di)Z;/E[Z,| XJ.

Since iq can be estimated, the MMSE linear approximation to the CCRF can also be estimated.

Note that while the above discussion focuses on linear approximation of the CCRF, any function can
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be used for the approximation. For binary outcomes, for example, we might use ^[X,'b+aD,] and chose

parameters to minimize E[Ki(Yi- (i>[X^'b-aD^y]. Similarly, for non-negative outcomes, it seems sensible to

use an exponential model, explX^'b+aDJ, and choose parameters to minimize £[!<;(¥- exp[X,'b-aD,]y].

Abadie's framework allows flexible approximation of the CCRF using any functional form the researcher

finds appealing and convenient. The resulting estimates have a robust causal interpretation, regardless of

the shape of the actual CEF for potential outcomes.

4.3 Distribution and Quantile Treatment Effects

If Y, has a mass point at zero, the conditional mean provides an incomplete picture of the causal

impact of D; on Y| We might like to know, for example, how much of the impact of D| is due to a pure

participation effect and how much involves changes elsewhere in the distribution. This sometimes motivates

separate analyses of participation and conditional-on-positive effects. In section 2.3, I suggested that

questions regarding the effect of treatment on the distribution of outcomes be addressed directly by

comparing distributions. This is fine for the analysis of experimental data, but if what if covariates are

involved? As with the analysis of mean outcomes, the simplest strategy is 2SLS, in this case using linear

probability models for distribution ordinates:

l[Yi<c]=X,'|3, + aA + eci

Of course, the linear model is not literally correct for the conditional distribution except in special cases (i.e.,

a saturated regression parameterization).

Here too, the Abadie (1999) weighting scheme can be used to generate estimates that provide the

MMSE error approximation to the underlying distribution function (see Imbens and Rubin, 1997, for a

related approach to this problem). The estimator in this case chooses b^ and a^ to minimize the sample analog

of the population minimand

E[K,a[Y<c]-X:b,-aflfl (26)
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The resulting estimates provide the BLP for P[Y,<c| X^, Dj, D,i>Doi]. The latter quantity has a causal

interpretation since

P[Y,<c| X, D,=l, D,i>Doi]-P[Yi<c| X, D~0, D,>Doi] = P[Y,i<c| X, D„>DoJ-P[Yo,<c| X„ D„>Do,].

Because the outcome here is binary, it also makes sense to consider a nonlinear model such as Probit or Logit

to approximate P[Yi<c| Xj, D,, D,j>Doi]. Finally, note that it is equally straightforward to approximate the

probability the outcome falls into an interval, instead of the cumulative distribution function.

An alternative to estimation based on (26) postulates a model for quantiles instead of distribution

ordinates. Conventional quantile regression (QR) models begin with a linear specification:

Qe[Y,| X, D,] = X/^eo + |ie,D,

The parameters ([i^q, |ie,) can be shown to minimize E[pe(Y|-Xj'm(, -/n;D,.)], where Pe(Ui) = Qu^*+ (l-6)Ui" is

called the "check function" (see Koenker and Basset, 1978). This minimization is computationally

straightforward since it can be written as a linear programming problem.

The analysis of quantiles has two advantages. First quantiles like the median, quartiles, and deciles

provide benchmarks that can be used to summarize and compare conditional distributions for different

outcomes. In contrast, the choice of c for the analysis of ordinates is application-specific. Second, since

non-negative LDVs are often virtually continuously distributed away from the mass point, linear models are

likely to be more accurate for conditional quantiles above the censoring point than for conditional

probabilities. (For quantiles close to the censoring point, Powell's (1986b) censored quantile regression

model may be more appropriate).

Abadie, Angrist, and Imbens (1998) developed a QR estimator for models with binary endogenous

regressors. Their quantile treatment effects (QTE) procedure begins with a linear model for conditional

quantiles for compilers :

Qe[Yi|Xi,D,Dn>Do;]=X,'Pe + aeD,-

The coefficient a^ has a causal interpretation because
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liers.

ae = Qe[Y„| X, D,>Do,]-Qe[Yoi| X, D.,>Doi].

In other words, a^ is the difference in 0-quantiles for compli

The QTE parameters minimize the following weighted check-function minimand:

E[K,Pe(Y,-X;'b-aD,)].

As with the Causal-FV estimators, weighting by Kj transforms the conventional QR minimand into a problem

for compilers only. For computational reasons, however, it is useful to rewrite this as

E[K,pe(Y;-Xi'Z; -aD,)]

where iCj = E[Ki| X;, D„ YJ. It is possible to show that E[Ki| X,, D„ Yi]=P[D,i>Doi| X„ D„ YJ > 0. This

modified estimation problem has a linear programming representation similar to conventional quantile

regression, since the weights are positive. Thus, QTE estimates can be computed using existing QR software,

though this approach requires first-step estimation of iC; . Here I use the fact that

^ = E[,,|X„D„Y,]= 1 -
D.(1-E[Z,|Y.,D„X,]) _ (1-D,)E[Z,|Y„D.,XJ

^^^^

(1-E[Z,|XJ) E[ZJX,]

and estimate E[Z||Yi,D|,Xi] and E[Z||Xi] with a Probit first step. Since iCj is theoretically supposed to be

positive, any negative estimates of iCj generated by the Probit first step are set to zero.

5. Application: The Third Child

The estimation uses a sample of roughly 250,000 married women aged 21-35 with at least two

children drawn from the 1980 Census 5 percent file. About 53 percent of the women in this sample worked

in 1979. Overall (i.e., including zeros), women in the sample worked about 17 hours per week. This can be

seen in the first column ofTable I, which reports descriptive statistics and repeats some of the OLS and 2SLS

estimates from Angrist and Evans (1998). Roughly 38 percent of women in this sample had a third child,

an event indicated by the variable Morekids. The OLS estimates show that women with Morekids=l were

about 17 percentage points less likely to have worked in 1979 and worked about 6 hours fewer per week than
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women with Morekids=0. The covariates in this regression are age, age at first birth, a dummy for male first-

born, a dummy for male second-bom, and black, hispanic, and other race indicators.

Table I also reports estimates of average effects computed using nonlinear models, sfill treating

Morekids as exogenous. The average effects reported here are approximations to effects of treatment on the

treated that use derivatives to simplify computations. A detailed description of the average effects

calculations used for all the results appears in the appendix. The results of Probit estimation of the average

impact on employment, shown in column 3, are almost identical to the OLS estimates. Similarly, the Tobit

estimate of the average effect of D, on hours worked, shown in column 4, is -6.01, remarkably close to the

OLS estimate of -6.02 (Note that the Tobit coefficient is -11. 7. This illustrates the importance of comparing

apples to apples when using models like Tobit). Column 5 of Table I reports estimated average effects

computed using a two-part model., where both parts of the model are linear. The 2PM estimate is virtually

identical to the Tobit and OLS estimates.

Roughly 8/10 of one percent of women in the extract had a twin second birth (multiple births are

identified in the 1980 Census using age and quarter of birth). Reduced-form estimates of the effect of a twin

birth are reported in columns 6-7. The reduced forms show that women who had a multiple birth were 63

percentage points more likely to have a third child than women who had a singleton second birth. Mothers

of twins were also 5.5 percentage points less likely to be working (standard error=.01) and worked 2.2 fewer

hours per week (standard error=.37). The 2SLS estimates derived from these reduced forms, reported in

column 8, show an impact of about -.09 (standard error=.02) on employment rates and -3.6 (standard

error=.6) on weekly hours. These estimates are just over half as large as the OLS estimates, suggesting the

latter exaggerate the causal effects of childbearing. Of course, the twins instrument is not perfect and the

2SLS estimates may also be biased. For example, twinning probabilities are slightly higher for certain

demographic groups. But Angrist and Evans (1998) found that 2SLS estimates using twins instruments are

largely insensitive to the inclusion of controls for mothers' personal characteristics.
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Two variations on linear models generate estimates identical or almost identical to the conventional

2SLS estimates. This can be seen in Columns 2 and 3 of Table II, which report 2SLS estimates of a 2PM

for hours worked and Causal-FV estimates of linear models for employment and hours. The Causal-FV

estimates use Probit to estimate E[Z|X] and plug this into the formula for k;. The second step in Causal-FV

estimation is a weighted least squares problem, possibly nonlinear, with some negative weights. Since use

of negative weights is non-standard for statistical packages (e.g, Stata does not currently allow this), when

computing Causal-FV estimates I used aMATLAB program written for this purpose by Alberto Abadie. The

2PM estimates in the table were constructed from 2SLS estimates of a linear probability model for

participation and 2SLS estimates of a linear model for hours worked conditional on working. In principle,

the 2PM estimates do not have a causal interpretation since the instruments are not valid conditional on

working. In practice, however, 2SLS estimates of the 2PM differ little from conventional 2SLS estimates.

The estimates of nonlinear/nonstructural models are mostly similar to each other and to conventional

2SLS. Results from nonlinear models are reported as marginal effects that approximate average effects on

the treated; For example, Probit model for employment status generates an average effect of -.088, identical

(up to the reported accuracy) to the 2SLS estimate. Causal-FV estimation of an exponential model for hours

worked, the result of a procedure that minimizes E[k,(Yj - exp[X,' b-oD^)^], generates an estimate of -3.21.

This too differs little from the conventional 2SLS estimate of -3.55. Similarly, the Mullahy estimate of -3.82

in column 4 is less than 8 percent larger than conventional 2SLS in absolute value. It is noteworthy,

however, that the Mullahy model generates results that change markedly (falling by about 20 percent) when

the covariates are dropped. Since the covariates are not highly correlated with the twins instrument, this lack

of robustness to the choice of covariates seems undesirable. On the other hand, without covariates, the

Mullahy estimates are close to those from exponential/Causal-FV.

The bivariate Probit estimate of the effect childbearing on employment status, reported in column

7, is -. 12, roughly a third larger in absolute value than the conventional 2SLS estimate. Interestingly, in an
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another application, Abadie (1999) also found that bivariate Probit estimates are larger than Causal-IV. The

gap between bivariate Probit and Causal-IV estimates of effects on labor supply appears to be a consequence

of the Probit model for exogenous covariates. Without covariates, bivariate Probit generates estimates that

are very close to the results from the other estimators. It should be noted, however, that bivariate Probit is

not really appropriate for twins instruments because the probability Morekids=\ is equal to 1 for twins. The

Probit ML estimator does not exist in this case. Therefore, to compute all of the estimates using a Probit

first-stage (bivariate Probit, endogenous Tobit, and Mill's ratio), I randomly receded 1 percent of D,

observations to zero. In principle, the resulting measurement error in a binary endogenous regressor biases

2SLS estimates (see Kane, Rouse, and Staiger, 1999). In this case, however, column 10 shows that 2SLS

estimates with the randomly recoded data differ little from 2SLS estimates using the original data.

Column 8 of Table 11 reports estimates of a structural Tobit model with endogenous regressors.

These estimates were computed using a two-step estimator that approximates the MLE, again with recoded

data. The two-step procedure adds a Mills-ratio type endogeneity-correction to the censored regression, and

then applies Tobit to the model with the correction term. (The correction term is pCTg[Di(-(Pi/<l)j) + ( 1 -Di)9/( 1 -

Oj)], where p is the correlation between the latent error determining treatment assignment and the outcome

residual; o^ is the standard deviation of the outcome residual; and cp, and Oj are Normal density and

distribution functions evaluated at the Probit first-stage fitted values; see Heckman and Robb, [1985]).

As with the bivariate Probit estimate, the endogenous Tobit estimate is somewhat larger in magnitude

than conventional 2SLS. This may be a consequence of the Mills ratio procedure for controlling for selection

bias in the estimation of treatment effects and not a consequence of the Tobit correction for non-negative

outcomes. To see this, note that Mills ratio estimate of the effect of childbearing, reported in column 9, is

considerably larger than the corresponding conventional 2SLS estimates. Interestingly, both the Probit and

Tobit structural estimators generate results that are more sensitive to the inclusion of covariates than any of

the other estimators except MuUahy. In fact, Panel B of the table shows that without covariates, all
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estimation techniques give very similar results. This is not surprising since, without covariates, parametric

assumptions are weaker.

The last set of results show that childbearing is associated with marked changes in the distribution

of hours worked. These results can be seen in the first columns of Table III, which report the distribution

of hours worked by interval, along with linear probability estimates of the relationship between childbearing

and the probability of falling into each interval (these models include the same covariates used for Table II).

The largest entry in column 1 is for the probability of working zero hours. There is also a large negative

effect on the probability of working 31-40 hours per week, which shows that women who have a third child

are much less likely to work full-time. Once again, Probit average effects, reported in column 2, are almost

indistinguishable from the OLS estimates. Estimates from an ordered Probit model, reported in column 3,

differ from OLS somewhat more than simple Probit, but still generate a very similar pattern.

Like the 2SLS estimates for average outcomes, 2SLS estimates of linear probability models for the

probability of falling into each interval show that models which treat childbearing as exogenous exaggerate

the negative impact on labor supply. 2SLS estimates for the probability of working zero hours are identical

(by construction) to those for employment in Table I. The 2SLS estimates of the impact of childbearing on

full-time work are also considerably less than the corresponding OLS estimates.

As with results formean outcome, non-structural Causal-IV models treating Morekids as endogenous

generate estimates very close to 2SLS estimates of the effect of hours falling into each interval. Columns

5 and 6 show that the results are also remarkably insensitive to whether a linear or Probit model is used to

approximate the distribution function. The estimates again indicate that childbearing changes the distribution

of hours by raising the probability of non-participation and by reducing the probability of full-time work. The

quantile treatment effects estimator provides summary statistics for changes in the distribution of hours

worked. These estimates were computed as the solution to a weighted quantile regression problem using (27)

to construct weights, and the reported standard errors are from a bootstrap. Quantile regression estimates

treating childbearing as exogenous leads to an estimated 9 hour decline in median hours worked, but the QTE
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estimator shows that the causal effect of childbearing on median hours woriced is only about 5 hours.

Estimates at higher quantiles are similarly reduced when childbearing is treated as endogenous.

6. Summary and conclusions

Structural parameters must ultimately be converted into causal effects if they are to be useful for

policy evaluation or determining whether a trend association is causal. The problem of estimating causal

effects for LDVs does not differ fundamentally from the analogous problem for continuously distributed

outcomes. The key differences seem to me to be the increased likelihood of interest in distributional

outcomes and the inherent nonlinearity of CEFs for LDVs in models with covariates. Without covariates,

conventional 2SLS estimates capture both distributional effects and effects on means. Simple IV strategies

adapted for nonlinear models can be used to estimate average effects in models with covariates, while FV

strategies for probability models and quantile regression can be used to estimate effects on distributions.

These approaches are illustrated using twin births to estimate the labor-supply consequences of

childbearing. Alternative non-structural approaches to IV estimation using twins instruments generate

similar estimates, whether or not the model is nonlinear. Structural estimates tend to be somewhat larger

when exogenous covariates are included, even though the covariates are not strongly related to the twins

instrument. Since the structural models impose additional distributional and functional form assumptions,

and cannot be computed without artificial modification of the data when using the twins instrument, I see

no reason to prefer them. Finally, non-structural estimates of the effect of childbearing on the distribution

of hours worked show that the impact of child-bearing is characterized by substantially increased non-

participation and by an almost equally large shift away from full-time work. Estimates that treat childbearing

as exogenous exaggerate the causal effect of childbearing on average hours worked and on changes in

distribution. This finding is clear in results from both probability models and quantile models.
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APPENDIX

Derivation of equation ("12) in the text

Drop the / subscripts.

a. Model

Yo=l(Yo*>0)Yo* =l(Yo'>0)Yo*
Y, = l(Yo* + a > 0) (Yo* + a) = KY,* > 0)Y,*

b. Causal effects

Since D is independent of Yq, and Y, = l(Yo* + a > 0) (Yg* + a), D is independent of Y,. Conditional effects

on the treated are therefore the same as conditional effects without conditioning on treatment status:

E[Y,-Yo|Y,>0,D=l]= E[Y,-Yo|Y,>0]
E[Y,-Yo|Yo>0,D=l]= E[Y,-Yo|Yo>0],

so the effects on the right hand side are the parameters of interest.

c. Evaluation of expressions

(A) E[Y,|Y,>0] = E[Y,*|Y,*>0]=E[Yo*|Y,*>0] + a

(B) E[Yo|Y,>0] =E[Yo*1(Yo*>0)|Y;>0]
= E [Yo*

I

Y,' > 0, Yo* > ] P(Yo* > | Y,* > 0)

= (a > 0) : Yo* > - Y,* > 0, so (B) = E [Yo*|Yo* > 0] P(Yo* > | Y,* > 0)

(a < 0) : Y,* > - Yq* > 0, so (B) = E [Yo*|Y,* > 0] • 1

So a < - E [Y, - Yo
I

Y, > 0] = a

(C) E[Y,|Yo>0] =E[l(Yo* + a>0)(Yo* + a)|Yo*>0]
= E [Yo*

I

Y,* > 0, Yo* > ] P(Y,* > | Yq* > 0) + a P(Y,* > 0|Yo* > 0)

= (a > 0): Yo* > - Y,* > 0, so P(Y,* > | Yq* > 0) = 1

And E [Yo*
I

Y,* > 0, Yo* > ] = E [Yo*|Yo* > 0].

(D) E[Yo|Yo>0] = E[Yo*!Yo*>0]

so a < - E [Yi - Yo
I

Y, > 0] = a

a > - E [Y, - Yo
I
Yo > 0] = a.

d. Generalization to non-Tobit selection

Let Wo and W, be potential outcomes that determine selection.
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Yo = l(Wo* > 0) Yo* =l(Wo*>0)Yo*
Y, = l(Wo* + a, > 0) (Yo* + a.) = KW,* > 0)Y,*

An analogous result holds: a, < => E [Y, - Yq
|

W, > 0] = a^

a, >0-E[Y, -Yo|Wo>0] = a2.

Derivation of equation (21) in the text

Drop the / subscripts. Note that e'"'^ = [(1-D) + De"]. Let p* = e'^ and a*=e ". Z is binary and there are no

covariates, so we can now write (20) as:

p*E[(l-D)Y| Z=l] + p* a*E[DY| Z=l] -1=0 (A.l)

p*E[(l-D)Y| Z=0] + p* a*E[DY| Z=0] -1 = 0. (A.2)

Divide A. 1 by A.2 to get rid of P*, then solve for a*. Subtract 1 and bring over a common denominator to

get equation (21).

Average effects and standard errors for non-linear models

Average effects and standard errors were calculated with the aid of short-cuts and approximations that are

likely to be useful in empirical practice.

Probit

The Probit average treatments effect were approximated using a derivative. Note that

0[X/yff+a] - 0[Xi'y5] - (pLX/^+aDJ • a ,

so the average effect on the treated can be approximated as

{ (1/N,) E, D, 9[X;'y?+aDJ } . a ,

where N,=£| D|. This approximation turns out to be accurate to three decimal places for the Probit estimates

in Table I. Standard errors were calculated treating the scaling factor as non-random. This follows the

convention for reporting marginal effects in programs like Stata; in practice, any correction for estimation

of the scaling factor is likely to be minor. A similar approach was used for ordered Probit.

Tobit

Tobit average treatment effects were approximated using a derivative formula in Greene (1999):

E[Yi|Xi, Di=l]-E[Yi|Xi, Di=0] = aELYjX, DJ/^D = (D[X,'^+aD,] • a .

Average effects on the treated can therefore be approximated using

{(l/N,)LDiO[X/;ff-haD,]}.a.
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Standard errors were calculated treating the scaling factor as non-random.

2PM

Let the part-1 coefficient be a, and the part-2 coefficient be aj. Since the model multiplies parts and both

parts are linear, the average effect is approximated using derivatives as:

a,E[Yil D,= 1 , Y,>0] + a^PLD- 1 , Yi>0]

.

Standard errors were calculated treating the scaling factors E[Y| D|=1,Y>0] and P[D,= 1, Y>0] as non-

random, and using the fact that the estimates of a, and Oj are uncorrelated.

Mullahy

Note that E[Y||Xi, Dj, ii>']=(ii*exp[X^ P+D^a], where this CEF has a causal interpretation. Again, using

derivatives, we have

(£)*exp[X^'P+a] - (i)*exp[X.{P] ~ (n'explX^'P+oD^ • a

The model is such that E[(£)'\ X,] equals 1, but E[(M|*| X„ DJ is unrestricted. I ignore this problem and

approximate the average effect on the treated as:

{(l/N,)XiDigxp[Xi'yff+aD.]}.a.

Standard errors were calculated treating the scaling factor as non-random.

Bivariate Probit

Same as Probit, using parameters from the latent index equation for outcomes.

Endogenous Tobit

Same as Tobit, but using coefficients and predicted probability positive from the model with the compound

Mills ratio term included.

Mills Ratio

Standard errors were calculated treating the compound Mills ratio term as known.

Causal-IV (nonlinear)

Average effects were calculated as described above for the Probit and Mullahy (exponential) functional form.

The first-stage estimates of E[Zj| XJ needed to construct K; were estimated using Probit. Standard errors for

a were calculated using asymptotic formulas in Abadie (1999), and take account of the first-step estimation

of E[Z,| X,]. As before, scaling factors were treated as non-random. Note that in contrast with the Mullahy

estimator, there is no conceptual problem converting derivatives from the exponential Causal-IV model into

average effects. An implicit assumption for all the Causal-IV models, however, is that it makes sense to

convert conditional-on-X effects on compilers into effects on the treated.
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Computation of Quantile Treatment Effects and standard errors

Quantile treatment effects were computed by plugging first-step estimates of k, = E[k,| Xj, D|, YJ into a

weiglited quantile regression calculation performed by Stata. Non-negative estimates of E[k,| X|, Dj, Y|]

were constructed by separately estimating E[Zi| XJ and E[Z,| Yj, D, XJ using Probit and then trimming. In

principle, standard errors should take account of this first-step estimation. An additional complication is that

the analytic standard errors for QTE involve a conditional error density. In this case, I sidestepped messy

analytic calculations by using a bootstrap procedure that repeats both the first-stage estimation of ic, and

the second-step estimation of the parameters of interest in 100 replicate samples of 2500 observations each.

The 100 replicate samples were sampled without replacement using the Stata command bsample. The

reported standard errors were calculated as (N/N*)"-Zj5e;y, where bse,^ is the standard deviation of the 100

replicate estimates, N=2500, and N* is the full sample size.
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Table I: Descriptive Statistics and Baseline Results

Mean

(1)

Morekids exogenous Morekids endogenous

OLS
Effect

(2)

Probit

(3)

Tobit

(4)

2PM

(5)

Reduced-Forms 2SLS

Dependent

Variable

(Morekids)

(6)

(Dep. var)

(7)

Effect

(8)

Employment

Hours Worked

0.528

(0.499)

16.7

(18.3)

-0.167

(.002)

-6.02

(.074)

-.166

(.002)

-6.01

(.073)

-5.97

(.073)

0.627

(.003)

0.627

(.003)

-0.055

(.011)

-2.23

(.371)

-0.088

(.017)

-3.55

(.592)

Notes: The sample includes 254,654 observations and is the same as in Angrist & Evans (1998). The

instrument is an indicator for multiple births. The mean of the endogenous regressor is .381. The probability

of a multiple birth is .008. The model includes as covariates age, age at first birth, boy first, boy second, and

race indicators. Standard deviations are shown in parentheses in column 1. Standard errors are shown in

parentheses in other columns.

Table II: Impact on Mean Outcomes {Morekids endogenous )

Linear Models Nonlinear Models Structural Models

2SLS 2PM Causal- Mullahy Causal- Causal- Bivar. Endog. Mills 2SLS

Dependent IV IV IV Probit Tobit Ratio Bench-

Linear Probit Expon. mark

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. With Covariates

Employment -0.088 — -0.089 - -0.088 - -.124 - - -.089

(.017) (.017) (.016) (.016) (.017)

Hours worked -3.55 -3.54 -3.55 -3.82 _ -3.21 _ -3.81 -4.51 -3.60

(.592) (.598) (.592) (.598) (.694) (.580) (.549) (.599)

B. No Covariates

Employment -0.084 _ -0.084 -0.084 _ -0.086 _ -.084

(.017) (.017) (.017) (.017) (.018)

Hours worked -3.47 -3.37 -3.47 -3.10 _ -3.12 _ -3.35 -3.48 -3.52

(.617) (.614) (.617) (.561) (.616) (.642) (.641) (.624)

Notes: Sample and covariates are the same as Table 1. Results for nonlinear models are derivative-based

approximations to effects on the treated. Causal-IV estimates are based on a procedure discussed in Abadie

(1999). Standard errors are shown in parentheses.



Table III: Impact on the Distribution of Hours Worked

Distribution Treatment Effects Quantile Treatmeni

Quantile QR

t Effects

Exogenous Morekids Endogenous Morekids

2SLS Causal- Causal-OLS Probit Ordered QTE
(LPM) (row by Probit IV IV (value)

Range row) LPM Probit

(mean) (1) (2) (3) (4) (5) (6) (7) (8)

0.167 0.166 0.147 0.088 .089 .088 0.5 -8.92 -5.24

(.472) (.002) (.002) (.002) (.017) (.017) (.016) (8) (.186) (.686)

1-10 0.001 0.001 -0.002 -0.001 -.001 -.002 0.6 -12.7 -7.98

(.046) (.001) (.001) (.00003) (.007) (.007) (.006) (20) (.172) (.860)

11-20 -0.015 -0.014 -0.011 0.002 .002 .002 0.7 -9.54 -6.19

(.093) (.001) (.001) (.0001) (.010) (.010) (.010) (35) (.184) (1.07)

21-30 -0.024 -0.022 -0.014 -0.004 -.005 -.006 0.75 -6.45 -3.60

(.075) (.001) (.001) (.0002) (.009) (.009) (.010) (40) (.156) (1.17)

31-40 -0.119 -0.110 -0.097 -0.072 -.072 -.071 0.8 -1.00 0.00

(.277) (.002) (.002) (.001) (.014) (.014) (.016) (40) (.286) (1.09)

41+ -0.009 -0.008 -0.023 -0.009 -.009 -.006 .9 _ _

(.027) (.001) (.001) (.0003) (.005) (.005) (.007) (40)

Notes: The table reports probability-model and quantile treatment effect estimates of the impact of

childbearing on the distribution of hours worked. The sample and covariates are the same as in Panel A of

Table II. Causal-IV estimates are based on a procedure discussed in Abadie (1999). Quantile Treatments

are based on a procedure discussed in Abadie, Angrist, and Imbens (1998). Standard errors are shown in

parentheses. The standard errors in columns 7 and 8 are bootstrapped.
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