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Abstract

The starting point of this paper is a simple, regular, dynamic game in which

subgame-perfect equilibrium fails to exist. Examination of this example shows that

existence would be restored if players were allowed to observe public signals. The main

result of the paper shows that allowing the observation of public signals yields existence,

not only in the example, but also in an extremely large class of dynamic games.

I should like to thank Drew Fudenberg, Daniel Maldoom, Andreu Mas—Colell, Eric

Maskin, Jean—Francois Mertens, Meg Meyer, Jean Tirole, John Vickers, and
participants at seminars and workshops at Oxford, Stonybrook and Harvard for

helpful comments on the earlier paper from which the present paper is drawn.
The present paper is drawn from an earlier paper entitled "The Existence of

Subgame—Perfect Equilibrium with and without Markov Strategies: a Case for

Extensive Form Correlation".





1 Introduction

Consider the following example of a dynamic game. Firms set out with exogenously

specified capacities (which are known to all). In period one they simultaneously choose

investment levels (possibly on a random basis), and are then informed of one another's

choices. The result is a change in capacities. In period two firms simultaneously choose

production levels (within their capacity constraints), and are then informed of one

another's choices. The result is a change in inventories. In period three firms

simultaneously choose prices. The vector of prices chosen affects the vector of demands for

their products, but so do certain exogenous random factors. Firms are informed of one

another's chosen prices and of the final realised demands. (The demands bring about a

second change in inventories.) The three period cycle of choices the begins afresh. And so

on.

This game is an example of a game of the following general type. Time is discrete.

There is a finite number of active players. There is also a passive player, Nature. In any

given period: all players (both active and passive) know the outcomes of all previous

periods; the set of actions available to any active player is compact, and depends

continuously on the outcomes of the previous periods; the distribution of Nature's action

(which is given exogenously) depends continuously on the outcomes of the previous periods;

the players (active and passive) choose their actions simultaneously; and the outcome of

the period is simply the vector of actions chosen. The outcome of the game as a whole is

the (possibly infinite) sequence of outcomes of all periods, and players' payoffs are bounded

and depend continuously on the outcome of the game.

This is as regular a class of dynamic games as one could ask for. A counter-example

shows, however, that games in this class need not have a subgame—perfect equilibrium. It

is therefore necessary to extend the equilibrium concept in such a way that existence is

restored. l

The problem is reminiscent of that of the non-existence of Nash equilibrium in pure



What is the most natural extension of the equilibrium concept? One clue as to the

answer to this question is provided by the following considerations. First, if we simplify

the class of games under consideration by requiring that players' action sets are always

finite, then subgame—perfect equilibrium always exists. Hence the non-existence problem

appears to relate specifically to the fact that we allow a continuum of actions. Secondly,

suppose instead that we simplify the class of games under consideration by assuming that

players' action sets are independent of the outcomes of previous periods. Then a natural

way of approximating a game is to consider subsets of players' action sets that consist of

large but finite numbers of closely spaced actions. 2 Moreover, if one takes a sequence of

increasingly fine approximations, and a subgame—perfect equilibrium of each of the

approximations, then it is natural to expect that any limit point of the sequence of

equilibrium paths so obtained will be an equilibrium path of the original game. 3 One can,

however, find examples in which the limit point involves a special form of extensive—form

correlation: at the outset of each period agents observe a public signal. 4

strategies. But there is one important difference: if agents' action sets are always finite,

then subgame—perfect equilibrium does exist.

2 Hellwig and Leininger (1986) were the first to introduce such an approximation, in

the context of finite—horizon games of perfect information. They proved an
upper—semicontinuity result: they showed that any limit point of equilibrium paths of the

finite approximations is an equilibrium path of the original game. Their result can,

however, be understood in terms of the results of Harris (1985a). Indeed, in that paper it is

shown that the point—to—set mapping from period—t subgames of a game of perfect

information to period—t equilibrium paths is upper semicontinuous. Hence, in order to

obtain their result, one need only introduce a dummy player who chooses n e IN U {qd} at

the outset of the game. If n < od then the remaining players will be restricted to actions

chosen from the n approximation to their action sets. If n = od then they will be free to

choose actions from their original action sets.

3 Convergence of equilibrium paths, as used implicitly in Harris (1985a) and explicitly

in Hellwig and Leininger (1986) and Borgers (1989) seems more relevant than the

convergence of strategies considered by Fudenberg and Levine (1983) and Harris (1985b).

4 Fudenberg and Tirole (1985) consider two such games. They point out that the

obvious discretisations of these games have a unique symmetric subgame—perfect
equilibrium, and that the limiting equilibria obtained as the discretisation becomes
arbitrarily fine involve correlation. Their games do not, however, yield counterexamples to

the existence of subgame—perfect equilibrium. For both games possess asymmetric
equilibria which do not involve correlation.



These considerations suggest that, at the very least, the equilibrium concept should

be extended to allow the observation of public signals. This minimal extension is also

sufficient. For, first, it restores existence. Secondly, with it, the equilibrium

correspondence of a continuous family of games is upper semicontinuous. In particular, any

limit, point of equilibrium paths of finite approximations to a game whose action sets are

continua is an equilibrium path of the game. Thirdly, any limit point of subgame-perfect e-

equilibrium paths of a game is an equilibrium path in the extended sense. 5

The basic structure of the proof of the existence of subgame-perfect equilibrium in

the extended sense is the same as the structure of the proof of the existence of

subgame-perfect pure—strategy equilibrium in games of perfect information given in Harris

(1985a). It breaks down into two main parts, the backwards and the forwards programs.

The backwards program is most easily explained in the context of a game with finite

horizon T. In such a game, it consists in solving recursively for what turn out to be the

equilibrium paths of the game. More precisely, one solves first for the equilibrium paths of

period—T subgames. (The set of equilibrium paths of a period—T subgame is the convex

hull of the set of probability distributions over period—T outcomes.) Then one solves for

the equilibrium paths of period—(T—1) subgames. (The set of equilibrium paths of a

period—(T—1) subgame is a set of probability distributions over period—(T—1) histories, i.e.

a joint distribution over period—(T—1) and period—T outcomes.) And so on until period 1

is reached, and a set of probability distributions over period—1 histories is obtained.

There is of course no general guarantee that the paths obtained in the course of

carrying out the backwards program really are equilibrium paths until equilibrium

strategies generating them have been constructed. To construct such strategies is the

purpose of the forwards program. The essential idea is this. Pick any of the period—

1

paths obtained as the final product of the backwards program. Such a path is a probability

distribution over period—1 histories. Its marginal over period—1 outcomes can be used to

5 Chakrabarti (1988) claims that subgame-perfect e-equilibria exist. We believe this

claim, but are unable to vouch for the proof.



construct period—1 behaviour strategies for the players. Its conditional over period—

2

histories yields continuation paths to be followed from period 2 onwards in the event that

players do not deviate from their period—1 strategies. In order to obtain continuation

paths in the event that some player does deviate from his period—1 strategy, it is sufficient

to choose from among the period—2 paths obtained in the course of the backwards program

some path which minimises the continuation payoff of that player. In this way

continuation paths for all period—2 subgames are obtained. Period—2 strategies are then

obtained from the marginals of these paths over period—2 outcomes. And so on until

finally period—T strategies are obtained.

Implementing this proof does, however, involve two significant new complications.

First, for technical reasons, it is necessary to maintain the induction that the point—to—set

mapping from period—t subgames to period—t equilibrium paths is upper semicontinuous.

This follows from a generalisation of the work of Simon and Zame (1990). Secondly,

because players may randomise, it is essential to ensure that all the strategies constructed

are measurable. 6 That this requirement can be met emerges as a natural corollary of the

construction employed: one can always construct a measurable family of conditional

distributions from a measurable family of probability distributions. 7

The organisation of the paper is as follows. Section 2 sets out the counterexample

to the existence of subgame—perfect equilibrium. This example involves a three—period

game with two players in each period. In this game, each player's action set is compact

6 Hellwig and Leininger (1987) were the first to draw attention to the desirability of

ensuring that strategies are measurable. Their approach to the existence of

subgame—perfect equilibrium is not, however, necessary in order to obtain measurability.

Indeed, if the assumptions of Harris (1985a) are specialised appropriately (by assuming
that the embedding spaces for players' action sets are compact metric instead of compact
Hausdorff), then it is simple to show that exactly the construction given there can be
carried out in a measurable way. Indeed, in the notation of Harris (1985a; p. 625), all that

is necessary is to ensure that the functions gj can be chosen to be measurable; and that

this is possible follows from the argument given in the first paragraph of the proof of

Lemma 4.1 in the present paper.

7 Had we employed a dynamic—programming approach, the problem of ensuring
measurability of strategies would have been much harder — see below for further discussion.

Indeed, we do not know how to solve the measurable selection problem that arises when
such an approach is employed.



and independent of the outcomes of previous periods, and each player's payoff function is

continuous. Section 3 formulates the basic framework used in this paper for the analysis of

dynamic games. Section 4 shows that when the dynamics are continuous, players' payoff

functions are continuous, and the framework is extended to allow the observation of public

signals, subgame—perfect equilibrium exists. This is the main result of the paper. Section

4.1 provides a detailed overview of the proof. Section 4.2 develops the analysis necessary

for the backwards program. Section 4.3 develops the analysis necessary for the forwards

program. Section 4.4 exploits the analysis of Sections 4.2 and 4.3 to prove the main result,

showing in particular how to deal with the infinite—horizon case. Section 5 attempts to

develop a perspective on the main result. It is shown there that there are at least three

types of game in which the introduction of public signals is not necessary to obtain the

existence of subgame-perfect equilibrium: games of perfect information, finite-action games,

and zero-sum games. It is also shown that the introduction of public signals accommodates

all the equilibria that one can obtain by taking finite-action approximations to a game, or

by considering e—equilibria of a game. We do not know whether the introduction of public

signals is the minimal extension with these two properties, but it seems plausible to argue

that it is.



2 The Counterexample

A counterexample to the existence of subgame—perfect equilibrium in the class of

dynamic games described in the introduction must have a certain minimum complexity.

First of all, it must have at least two periods. Otherwise the standard existence theorem

for Nash equilibrium would apply. Secondly, there must be at least two players in the

second period. For with only one player in the second period, the correspondence

describing the continuation payoffs available to the player or players in period one would

be convex valued. (The player in period two can randomise over any set of alternatives

between which he is indifferent.) So the existence result of Simon and Zame (1990) would

apply to period one. Thirdly, there must be at least two players in period one. For the

continuation—payoff correspondence for period one will be upper semicontinuous, and a

single player will therefore be able to find an optimum.

The counterexample presented in this section is not this minimal. It has three

periods, with two players in each period. It would be of considerable interest to find an

example with only two periods and two players in each period. For, aside from being

minimal in relation to the class of dynamic games considered in this paper, such an

example would settle the question as to whether equilibrium exists in two—stage games or

not.

The cast of the counter—example, and their choice variables, are as follows. In

period one two punters A and B pick a 6 [0,1] and b € [0,1] respectively. In period

two, two greyhounds C and D each receive an injection of size a + b , which changes

their attitude to the race. They pick c e [0,1] and d 6 [0,1] , which are the times in which

they complete the course. In period three each of two referees E and F must declare a

winner, picking e 6 {C,D} and f e {C,D} respectively. In each period choices are made

simultaneously, and players in later periods observe the actions taken by players in earlier

periods.



Punter A obtains a payoff of 1 — a if greyhound C is declared the winner by

both referees, and —1 — a otherwise. Similarly, punter B obtains 1 — b if both referees

declare D to be the winner, and —1 — b otherwise. In other words, A wants C to win,

B wants D to win, and both want a result. They would also like to keep their

contributions to the injection as small as possible. The payoff to greyhound C is 2c if

e = C and 1 — (a + b)(l — c) if e = D . That is, the form of his payoff depends on

whether he or the other greyhound is declared the winner by referee E , but either way he

would prefer to run the race as slowly as possible. Also, he would prefer to be first rather

than second provided that he does not have to run too fast. The payoff to greyhound D is

2d if e = D and 1 — (a + b)(l — d) if e = C : like greyhound C , he is only interested

in the verdict of referee E . Lastly, referee E gets payoff d is he declares C to be the

winner and c if he declares D to be the winner. Referee F 's payoffs are identical.

It will be seen that, in this game, each player's action set is compact and

independent of the actions chosen by earlier players, and that players' payoffs are

continuous.

The game centres around the two greyhounds. Because referee E chooses C when

c < d and D when c > d , the race between them is essentially a game of timing with

the discontinuous payoffs (2c, 1 — (a + b)(l — d)) if c < d
, (1 - (a + b)(l - c), 2d) if

c > d , and some convex combination of these two payoffs when c = d . (Note that the

weights in the convex combination can depend on (c,d) .) Standard considerations

therefore yield the following lemma.

Lemma 2.1 Suppose that a + b > . Then both C and D use mixed actions with

distribution function G given by G(x) = for x e [0,|] and G(x) = (2x - l)/(2x - 1

+ (a + b)(l-x)) for xe [$,1] .

Notice that this mixed action is non-atomic, that its support is [j,l] , and that all

its probability mass concentrates at £ as a + b -» 0+ . Not surprisingly, then, we obtain:



Lemma 2.2 Suppose that a + b = . Then both C and D choose $ with probability

one. d

The remainder of the argument is straightforward. If a + b > then c will equal

d with probability zero. Hence both referees will always agree. Also, each greyhound will

win exactly half the time. The payoffs to A and B are therefore —a and —b. If, on the

other hand, a + b = , then c = d = \ with probability one. Hence each referee is

indifferent as to which greyhound he declares to be the winner. Suppose that E opts for

C with probability p and D with probability 1 — p , and that F opts for C with

probability q and D with probability 1 - q . Then A 's payoff is 2pq — 1 and B 's is

2(l-p)(l-q)-l.

It is easy to see, however, that the game with these payoffs between A and B has

no equilibrium. Indeed, any a > is strictly dominated for A , as is any b > for B .

So the only possibility for an equilibrium is for A to set a = with probability one and

B to set b = with probability one. But if b = then it must be that 2pq — 1 >

— otherwise A would raise a from zero. Similarly, 2(1 — p)(l — q) — 1 > . And these

two inequalities are mutually inconsistent. 8 This contradiction establishes the counter-

example.

The essence of the counterexample is this. As long as a + b > , both greyhounds

use strictly mixed actions. This behaviour on their part generates a public signal

endogenously within the game. The two referees use this public signal to co-ordinate their

actions. When a + b = , however, this signal suddenly degenerates, and the only way

in which the referees can coordinate their actions is by both choosing C with probability

one or both choosing D with probability one. But if they both choose C then B gets

8 To see this, note that the sum of the payoffs of the two players A and B is if

e = f and —1 if e ^ f. Hence the expected value of this sum is non—positive. If the

expected value is strictly negative, then the payoff of at least one player is also strictly

negative. If the expected value of the sum is zero, then e and f must be perfectly

correlated. In this case the payoff of the player against whom the decision goes is —1.



—1 . So he would prefer the truly random outcome. Similarly, if both referees choose D

then A will wish to restore the truly random outcome.

In the light of this explanation, it is natural to try to restore existence by allowing

players to observe suitable public signals. In the present example, this would amount to

allowing the two referees to toss a coin to determine the winner in the event of a tie (which

would certainly restore existence). That such an extension yields existence in the general

case will be demonstrated in Section 4.
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3 The Basic Framework

3.1 The Data

There is a non-empty finite set J<A of active players, indexed by i or j . There

is also a passive player, Nature, whose index is i or j = . The overall set of players is

therefore J= J^i U {0} . Time is discrete, and is indexed by t or se J"= {0,1,2,...} .

For notational reasons, we assume that J n «J= . The players play one of a family of

games, parameterised by x eX . In each active period t 6 STjd = {1,2,...} each player

i e J must choose an action. The set of actions available to her or him depends on which

game is being played, and on the outcomes of previous periods. This situation is modelled

by a point—to—set mapping A..: X
—

-» Y,. . The vector x
—

e X
—

lists the

parameter of the game being played, and the outcomes of any preceding periods, while

A, .(x ) C Y, - is the set of actions available. For reasons of expositional economy, we

take it that A.^x
—

) = Y,^ for all x
—

€ X ~~
.
9 The set of outcomes possible in

period t is nothing more than the set of profiles of actions that players can take. It is

modelled by the point-to-set mapping A .: X
—

- Y. , where Y. = x Y.. and

A,(x ) = x A,.(x ) for all x EX . And X is simply the set of all pairs

(x ~ ,y, ) such that x
—
eX~ and y, e A,(x

—
) , i.e. the graph of A, . Finally, the

payoff of any active player i depends on which game x e X is played, and the

outcomes of all periods. It is modelled by a function u-: Xw -» IR . Here X00
is the set of

,0 t-1 / N . Vt-1
vectors x = (x ,Xp...) e X x x Y. such that x

—
= (x

n
,x. ,..,x,_.) eX~ for all

t > 1 . (Nature does not have a payoff function.)

We make the following standing assumptions about these data:

(i) X , and all of the sets Y.. , are non-empty complete separable metric spaces;

(ii) for all i € X4 and all t > 1 , A..: X
—

- J6(Y,-) is measurable;

(iii) for all i e J<A , u- is bounded and measurable.

9 This assumption does in principle involve a slight loss of generality. However, since

we shall in any case fix Nature's strategy below, there seems to be little advantage in

constraining her actions as well.
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(In this paper, 'measurable' will always mean Borel measurable unless explicitly stated to

the contrary; and •%(•) will always denote the space of non-empty compact subsets of •

endowed with the Hausdorff metric.) These assumptions are designed to ensure that every

player possesses at least one strategy, and that associated with every strategy profile and

every subgame there is a well defined payoff for every active player (see below). Stronger

assumptions are needed to ensure the existence of equilibrium.

3.2 Strategies and extended strategies

In the standard version of our model, the evolution of the game is as follows. At the

beginning of period 1, players are told which game they are playing. That is, they are

informed of x . They then simultaneously choose actions from their action sets for period

1. This completes period 1. At the beginning of period 2, players are told the outcome of

period 1. That is, they are told y, . They then choose simultaneously from their action

sets for period 2. This completes period 2. And so it goes on. It follows that players'

information in period t can be summarised by a vector x
— eX~ , and that X

—
can

be identified with the set of subgames in period t .

Definition 3.1 For each t > 1 and each i e J , a strategy for player i in period t is a

measurable function f,.: X ~~
-> 9Jl^{

4 -) such that supp[f,.(x
_

)] C A,.(x ) for all

t-1 , vt-lx 6 X

Here 9Ji{XA denotes the set of probability measures over Y,. . (In this paper,

'probability measure' will always mean Borel probability measure; and spaces of

probability measures will be taken to be endowed with the weak topology 10 unless explicitly

stated to the contrary.)

10 In the terminology of Parthasarathy (1967), a sequence of probability measures

{A } C &M(Y.) converges in the weak topology to A iff Jx dXn converges to /xdA for

all continuous bounded x- Yf
-» IR .
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The f.- are behaviour strategies. For each t , i and x , f, .(x ) can be

thought of as the randomising device that player i will use to choose among the actions

available to him in period t when x is the previous history of the game. As such, it is

independent of the devices used by the other players in period t , and of all devices used in

all preceding and subsequent periods.

Strategies and strategy profiles certainly exist under our standing assumptions.

Moreover, given any strategy profile and any subgame, the payoffs of active players can be

calculated in the natural way. We may therefore define subgame—perfect equilibrium as

follows.

Definition 3.2 A subgame—perfect equilibrium is a strategy profile <f,- 1 1 > 1, i e Jj&>

such that, for all t > 1, all x
—

e X
—

, and all i G X^"
,
player i cannot improve his

payoff in subgame x by a unilateral change in his strategy.

As the counterexample of Section 2 shows, however, subgame—perfect equilibrium

need not exist in general. We therefore introduce the concept of an extended strategy.

Suppose that {£. |t > 1} is a sequence of signals, drawn independently from [0,1]

according to the uniform distribution. Suppose that, at the beginning of each active period

t > 1
,
players are informed not only of the outcome of the preceding period, but also of

£, . Then the information available to them when they make their choices can be

summarised by a vector h
—

= (x
—

,£ ) , where £ = (£-,,...,

£

t
) We refer to the set

H ~~ = X
—

x [0,1] of such vectors as the set of extended subgames of the game in

period t .

Definition 3.3 For each t > 1 and each i e J , an extended strategy for player i in

period t is a measurable function f,.: H
—

-> &J((Y..) such that supp[f,.(x
—

,£ )]

C A
ti
(x
t_1

) for all (x
t_1

,^) e Ht_1 .
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Once again the f,. are behaviour strategies. So f..(x
—

,£ ) can be thought of as

the randomising device that player i will use to choose among the actions available to him

in period t , when x
—

is the previous history of the game and £ is the vector of public

signals observed up to and including period t . But this time this device is independent,

not only of the devices used by the other players in period t and of all devices used in all

other periods, but also of all the public signals.

Definition 3.4 A subgame—perfect equilibrium in extended strategies is an extended-

strategy profile <f. |t > 1, i e X^> such that, for all t > 1 , all h
— eH~ , and all i

6 Jj6
,
player i cannot improve his payoff in extended subgame h by a unilateral

change in his strategy.

A subgame—perfect equilibrium in extended strategies allows a limited amount of

coordination: after the outcome of a period has been realised, the players can coordinate on

the continuation equilibrium to be played following that outcome by exploiting the next

public signal. It is therefore a limited kind of extensive—form correlated equilibrium. (The

correlation is limited in that the players observe a common signal, rather than each

privately observing a single component of a vector of signals.)
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4 The Main Result

We need the following assumptions:

(Al) for all t > 1 and all i e J^i , the mapping A.-: X ~~
-» J£(T..) is continuous;

(A2) for all t > 1 , a strategy f.* (and not an extended strategy) for Nature in period t

is given, and f,*: X
—

-* 9M (Y,,-.) is continuous;

(A3) for all i G J^i , u- is bounded and continuous.

Taken in conjunction with the standing assumptions made in respect of the basic

framework, they guarantee the existence of a subgame—perfect equilibrium in extended

strategies.

The present section is devoted to a proof of this fact. It begins, in Section 4.1, with

an overview of the proof. The proof involves two main steps. The analysis necessary for

the first of these, namely the backwards program, is given in Section 4.2. The analysis

necessary for the other, namely the forwards program, is given in Section 4.3. Section 4.4

then integrates the backwards and the forwards programs to complete the proof. The

reader may wish to read Section 4.1 and then skip to Section 5.

4.1 Overview

Imagine for the purposes of the present subsection that the game has horizon T .

Then the proof divides into essentially two steps. In the first step, one programs backwards

from stage T , finding what turn out to be the equilibrium paths of the game. In the

second, one programs forwards, constructing strategies that generate these paths and that

constitute an equilibrium.

The basic ideas of the backwards program are as follows. First, for each history

T—1 T—

1

x e X , find the set of Nash equilibria (including Nash equilibria in mixed

strategies) that can occur in the final stage of the game. Let C™(x ) be the set of

probability distributions over Y™ that result from these Nash equilibria. Because action

T—

1

sets are compact and payoff functions are continuous, C™(x ) is a non-empty compact
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T—

1

set contained in 9JC{Xrr) . Because actions sets depend continuously on x , the

T—

1

point—to—set mapping C™ from X to ^(^^(Yrp)) is upper semicontinuous. 11

•p o
Next, let x be the history of the game prior to period T—1 . For any v™ -

T—

2

G AT_1
(x ) , the set of continuation paths consistent with equilibrium is given by

<p o
co[CT(x ,y rp_1

)] . (This set consists, in effect, of those probability distributions over

YT that can be obtained by randomising over Nash equilibria in Crp(xrj,_, ) .) For each

selection cT(x , • ) from the correspondence co[Cy(x , • )] , find the set of Nash

equilibria that can occur in period T—1 when the continuation of the game is specified by

^p 2 T 2
Crp(x , •) . (For a general c,y(x ,•) , this set may be empty. But there will always

<p 2
be at least one c,y,(x ,•) for which it is not. This is essentially the content of the

existence theorem of Simon and Zame (1990).) And for each Nash equilibrium associated

T—

2

with Crp(x , • ) , find the probability distribution over Y™, * Y™ that results when

that equilibrium is played in period T—1 and the continuation paths are given by

p<_2 "p 2
Crp(x , • ) . Let Crp_-. (x ) be the set of such distributions obtained when both

T—

2

Crp(x , •) , and the Nash equilibrium associated with it, are allowed to vary. Then

T—

2

Cy,_|(x ) is a non-empty compact subset of &J£(Yrr<_i*Yrp) , and the point—to—set

p 2
mapping C™, from X to ^(^^(Y^ixYrp)) is upper semicontinuous. (This is

essentially the content of the generalisation of Simon and Zame's theorem given in

Section 4.2.)

11 The relevance of the assumption that players' action sets in period T depend
continuously on the history of the game prior to period T emerges clearly in the context

of a two—period game. For each n > 1 , let a? be a Nash equilibrium in period 2 of such a

game when the outcome of period 1 is y, , and suppose that (y^a^) -» (y^a^) as n -» <d .

Because player i 's action set is upper semicontinuous in the outcome of period 1, the

action a„j is actually available to him in period 2 when the outcome of period 1 is y-, .

Also, because his action set in period 2 is lower semicontinuous in the outcome of period 1,

any deviation open to him in period 2 when the outcome of period 1 is y, can be

approximated by deviations open to him when the outcome of period 1 is y, . Hence a^.

really is an optimal action.
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Finally, iterate until period 1 is reached, and a set C.(x ) of probability

T
distributions over X...Y. is obtained for all x eX . (The set co[C,(x )] will turn

out to be the set of equilibrium paths of the game x .) This completes the backwards

program.

Consider now the forwards program. Suppose that, for each x 6 X , we are given

c,(x ) 6 co[C.(x )] . Since any path in co[C,(x )] can be viewed as a randomisation over

paths in C.(x ), we can associate a probability measure d,(x ) over C,(x ) with

c..(x ) . Also, for each d,(x ) we can find a random variable e,(x ,•): [0,1] -» C,(x
)

whose distribution over C,(x ) is d,(x ) when [0,1] is given Lebesgue measure. For

each i and each £ e [0,1] , let f,-(x ,£ ) be the marginal of e,(x ,£ ) over Y-. . By

definition of C,(x ), there exists a selection c~(x ,-,£ ) from co[C
2
(x ,-)] such that:

(i) the f,-(x ,£ ) constitute a Nash equilibrium in period 1 when the continuation paths

are given by c«(x ,-,£ ) ; and (ii) for all y,, c«(x ,y-.,£ ) is the conditional distribution

of e, (x ,£ )
given that y

1
is the outcome in period 1.

Similarly, beginning with cJx ,£ ) 6 co[C
2
(x )] one obtains d„(x ,^ ), eJx ,( ),

12 2 2
f„.(x ,£ ) and cJx ,£ ) . And so on until one has a complete set of strategies f,- for all

1 < t < T and i e J^£ . That these strategies really do produce the paths they are

intended to produce is primarily a technical matter. The essential points are that the

expectation of e,(x
-

,£

-
,-) is always c,(x

—
,f

—
) , and that c,

,
.(x

—
,y,,^ ) is

always the conditional distribution of e,(x ,£ )
given y, . That they constitute an

equilibrium follows from the fact that the f,-(x
—

,£ ) constitute a Nash equilibrium.

This ensures that no single—period deviation is profitable. That no more complex deviation

is profitable follows from a standard unravelling argument. This completes the forwards

program.

Overall, the essential ingredients of the theorem are the following: players action

sets are compact; players' payoffs are continuous; Nature's strategy is continuous; players'

action sets in a given period depend continuously on the history of the game prior to that

period; players observe public signals; and players' payoffs are bounded. The role played
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by the first three of these should be obvious. The role played by the fourth is, roughly, to

ensure that the point—to—set mapping from subgames in period t to equilibrium paths of

those subgames is upper semicontinuous. The role of the fifth is to ensure that the

point—to—set mapping from subgames in period t to equilibrium paths of those subgames is,

in addition, convex valued. And the sixth is needed only for the relatively technical reason

that we do not insist that Nature's behaviour strategies have compact support.

4.2 The backwards program

In this subsection we develop the analysis necessary for the backwards program. To

this end:

(i) let X, Y- for all i e J , and Z be non-empty complete separable metric spaces;

(ii) for all i 6 X4 , let A-: X -> Jfc(Y-) be a continuous point—to—set mapping;

(iii) let f*: X -» 9>Jt (Y*) be a continuous mapping;

(iv) let Y = "jgjYj and let A(x) = Y^ x x ^Aj(x) for all x £ X
;

(v) let C : gr(A) -» Jf(Z) be an upper semicontinuous point—to—set mapping;

(vi) for each i e J^i , let u-: gr(C) -» R be a continuous function.

The similarity of this notation to that of Section 3 is deliberate, and is intended to be

helpful, not confusing.

With reference to the model of Section 3 and the discussion of Section 4: X is the set

of past histories; A. describes the dependence of player i 's action set on the past history;

f* describes Nature's behaviour; C describes the set of possible continuation paths; and

u- is the payoff of active player i . In terms of a somewhat more abstract perspective,

what we have is a continuous family of games parameterised by x e X . The three

essential ingredients of such a family are: the continuity of the action sets; the upper

semicontinuity of the continuation paths; and the continuity of the payoffs in the

parameter, the outcome and the continuation.

For each x 6 X we are interested in the set of equilibrium paths

^C(x) c &Jt(Y * Z) that are obtained when one is free to choose any randomisation over
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C(x,y) as the continuation path following the outcome y G A(x) . More formally, A

€ Jc(x) iff:

(i) the marginal \i of A over Y is a product measure with supp[/x] C A(x)
;

(ii) the marginal /jg of \i over Y* is frt(*|x);

(iii) A possesses an r.c.p.d. (regular conditional probability distribution) v over Z

such that supp[i/( •
| y)] C C(x,y) for all y e A(x)

;

(iv) moreover the marginals \i- of (j, over the Y- constitute a Nash equilibrium when

the continuation path following outcome y is v( •
| y) for all y .

(It may be helpful to state more explicitly what is meant by (iv). Suppose we are given

probability measures
fj,-

over A.(x) for all \£ J and a transition probability v such

that supp[^(- |y)] C C(x,y) for all y 6 A(x) . Let A be the measure over Y«Z

obtained by combining the product of the n- with v . Then the payoff of an active player

i is /u-(x,y,z)dA(y,z) , and the \i- constitute a Nash equilibrium if no such player can

improve his payoff by changing his probability measure.)

Lemma 4.1 #C is an upper semicontinuous map from X into Jf( 3>JC{Y * Z)) .

Proof We begin with some notation. For each i , x , and y 6 A(x) , let p-(x,y)

= min{u.(x,y,z)
|
z 6 C(x,y)} . Then p-(x,y) is the lowest payoff that can be imposed on

player i in game x following outcome y . Standard considerations show that p. is lower

semicontinuous. Let P:(x,y) = {z|z e C(x,y) and u-(x,y,z) = p-(x,y)} . We shall need a

measurable selection from P. . Following Deimling (1985; Proposition 24.3 and Theorem

24.3), the existence of such a selection will follow if P7 (D) = {(x,y)|D n P-(x,y) j- 0} is

measurable for all closed D C Z . To this end, define p (x,y) = min{u-(x,y,z)|z 6 D

n C(x,y)} . (By definition p . (x,y) = oo if D n C(x,y) = .) Like p.
, p • is lower

semicontinuous. Hence P~ (D) = {(x,y)|p.(x,y) = p. (x,y)} is measurable. Let q.: gr(A)

-• Z be the resulting measurable selection.
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The proof now divides into three parts. For each x e X , let B(x) be the set of

paths of game x that are consistent with Nature's mixed action £*( • jx) . The first part of

the proof shows that this mapping is an upper semicontinuous mapping from X into

J6{9Jl^i * Z)) . The second shows that the graph of #C is closed. Since this graph is

clearly contained in that of B , all that remains is to demonstrate that #C is non—empty

valued. This is done in the third step. The second step accounts for the bulk of the proof.

It is clear that B is non-empty valued, and that its graph is closed. All that we

need therefore show is that it is compact valued. To this end, let x e X be given. Since

B(x) is closed, we need only show that it is tight in order to show that it is compact.

That is, we need only show that, for all e > , there exists a compact K c Y * Z such

that A(K) > 1—e for all A e B(x) . But there certainly exists a compact K C Y* such

(V

that ffl(K) > 1—e , and we may therefore let K be the graph of the restriction of C(x, •

)

to K ieX*AjW . This completes the first step.

In order to begin the second step, suppose that (x ,A ) 6 gr^C] , and that (x ,A
)n' n y n' n'

-» (x,A) . For all i , let r- be player i 's payoff from A , and let it. be his payoff from

A . From the definition of ^C(x ) one can deduce that:

/X
i
(y

i
)x

j
(y

j

)dA
n
(y,z) = [/x

i
(y

i

)dA
n(y,z)J |/x

j
(y

j

)dA
n(y >

z) .(5.1)

for all i # j and all continuous y. : Y. -» R and y- : Y.J A
i i

A
J J

IX0(y0)dAn
(y,z) = jy (y )df (y ]x

n ) ...(5.2)

for all continuous Xa ' Y -» K
;

supp(A
n
)cgr(C(x

n,.)) .(5.3),
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where C(x , • ) is regarded as a (possibly empty—valued) correspondence from Y to Z
n

(C(x
n,y) is empty iff y t A(x

n)) ;

/X
i
(y

i
)u

i

(x,y,z)dA
n
(y,z) = ^/^(y^dA^z) ...(5.4)

for all active i and all continuous X\ :Y. -» R ; and

rM > /p
i

(x
n
,y\a

ni
)dA

n(y )
z) ...(5.5)

for all active i and all a . e A.(x ) .

ni p n'

Equation (5.1) follows from the independence of the marginals of A over the Y. .

Equation (5.2) follows from the fact that A is consistent with Nature's strategy.

Relation (5.3) follows from the facts that the marginal \i of A is supported on A(x ) ,

and that its conditional u (• |y) is supported on C(x ,y) for all y 6 A(x ) . Equation

(5.4) holds because the expectation of u-(x ,-,-) conditional on y. is ir a.s. This

follows from the fact that, in equilibrium, the probability mass of player i 's mixed

strategy must be confined to a set of actions, each of which yields him his equilibrium

payoff. (It is important to avoid the word 'support' here. For player i 's continuation

payoff /u-(x ,y,z)di/ (z|y) need not be continuous in y , and so the set of pure strategies

yielding him r. need not be closed.) Inequality (5.5) states that player i 's equilibrium

payoff must be at least what he would get if he were to deviate to a • and if, following

this deviation and no matter what the realised choices of the other players, the worst

conceivable continuation path from his point of view occurred. Equation (5.4) captures the

idea that no redistribution of probability mass among equilibrium actions is worthwhile.

Inequality (5.5) captures the idea that no redistribution of probability mass from

equilibrium to out—of—equilibrium actions is worthwhile.

Now it is easy to see that relations (5.1), (5.2) and (5.3) are preserved in the limit.

Also, since ic = /u-(x ,y,z)dA (y,z) , x . -» ir. . Hence (5.4) is preserved too. Lastly, for
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any a- e A.(x) , there exist a . e A-(x ) such that a . -» a- , by the lower semicontinuity

of A. . Since also w- is lower semicontinuous, (5.5) too is preserved. The proof that #C

has a closed graph will therefore be complete if we can show that the analogues of (5.1)-

(5.5) for x and A , which we shall refer to as (5.1')-(5.5'), imply that A 6 ^C(x) .

Using standard considerations we can deduce from (5.1'), (5.2') and (5.3') that the

marginal /j of A over Y is a product measure supported on A(x) , that the marginal of

/x over Y* is f*(-jx) , and that A has an r.c.p.d. v over Z such that £(-|y) is

supported on C(x,y) for all y 6 A(x) . Now consider the game with continuation paths

specified by v . The marginals \i- of \l over the Y. need not constitute a Nash

equilibrium for this game. However, by (5.4'), the set Y- of a- 6 A.(x) such that

deviation by active player i from /x. to 6 , the Dirac measure concentrated at a- , will
1 a- 1

i

raise his payoff above x. has //.—measure zero. We may therefore alter v in such a way

that it remains an r.c.p.d. of A, but such deviations are no longer attractive. We set

K- 17) = K- ly) a y. 6 Y\Y for all i
,
and K-|y) = *

q . (X|y)
if 7j e Yj\Yj for all j

^ i but y. 6 Y- . It is of no importance how we define v{ •
| y) if y. e Y. for more than

one i. (Such a y corresponds to a coordinated deviation by two or more players.) For

definiteness, we set ^(-|y) equal to £(-|y) in this case. Inequality (5.5') ensures that,

with the new continuation paths specified by v , deviation is no longer profitable. The //•

therefore constitute a Nash equilibrium with these continuations, and therefore A

€ Jc(x) .

Having proved that $C has closed graph, all that remains is to show that \?C is

non-empty valued. To this end, fix x and find, for each i , a sequence {y } that is

dense in A.(x) . For each 1 < N < od , construct a finite game with action sets {y - 1 1 < n

< N} in the natural way from the existing game x . And for N = a> simply take the

existing game x . The family of games obtained as N varies is continuous, and its

equilibrium correspondence therefore has compact values and a closed graph. Moreover

standard results show that the set of equilibria is non-empty when N < od . It follows that
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it is non-empty for N = cd too.

Lemma 4.1 captures the essence of the backwards program: we begin with an upper

semicontinuous correspondence C depending on the sequence of outcomes up to and

including the current period, and end up with an upper semicontinuous correspondence 'I'C

depending on the sequence of outcomes preceding the current period. There is however one

further complication. When we come to complete the proof of the theorem in Section 4.4,

the continuation paths in Z will themselves be probability measures over sequences of

future outcomes. In the present, more abstract, setting this can be captured by writing Z

= ^^(W) , where W is itself a complete separable metric space. With this notation, the

equilibrium paths described by *C lie in 9JC{Y x $>JC(W)) . This means that #C

cannot serve directly as input for the next iteration of the backwards program. What is

required instead is a correspondence ^C : X -> 9JC{Y x W) . (The point is that elements

of &JC{Y x W) are probability measures over sequences of future outcomes, whereas

those of 9>Jl[X x 3>JC{yi)) are not.) Such a correspondence can be obtained by replacing

elements of PJC^&Jt^)) with their expectations.

More formally, for each xGX let ^C(x) c ,?1(Y x W) be the set of measures A

such that:

(i) the marginal \i of A over Y is a product measure with supp(/z) C A(x)
;

(ii) the marginal \l* of \i over Y* is fg(x)
;

(iii) A possesses an r.c. p. d. v over W such that v{ •
| y) e co[C(x,y)] for all y

e A(x)
;

(iv) moreover the marginals /j. of \i over the Y. constitute a Nash equilibrium when

the continuation path following outcome y is r/(- |y) for all y .

(Once again it may be helpful to expand on (iv). Suppose that we are given \i-

6 &JC(k.{xj) and a transition probability v such that u(- |y) G co[C(x,y)] for all y

€ A(x) . Then active player i 's payoff is /u-(x,y,^(- |y))d/i(y) , where /z is the product

of the (jl- . The //• constitute a Nash equilibrium if no such player can improve his payoff
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by changing his p. .)

Lemma 4.2 Suppose that the domain of definition of u-(x,y,z) is convex in z , and

suppose that u(x,y,z) is linear in z on its domain. Then *C is an upper

semicontinuous mapping from X into Jtp(?JC(Y x W)) .

It should be noted that, when we come to apply Lemma 4.2, u-(x,y,z) will be

defined as the expectation with respect to z of an underlying function of (x,y,w) . So the

convexity of the domain of u.(x,y,z) in z , and the linearity of u-(x,y,z) in z , will be

natural consequences of the problem structure. Lemma 4.2 will be proved by showing,

roughly speaking, that #C is the image of tfC under the projection that consists of

replacing elements of &J£($>J((W)) by their expectations, and that this projection is

continuous.

Proof Let A G ^JC{Y x Z) , let \i be the marginal of A over Y , and let v be an

r.c.p.d of fi over Z. Let
fj,
= fi , and let u{- |y) = /z d^(z|y) be the expectation of

j/(-|y) for all y£Y. Then the projection X of A onto M(Y « W) is the probability

measure with marginal \i and conditional v . (It should be clear that X is independent

of the r.c.p.d. chosen for A .) The first step of the proof is to show that projection is

continuous.

To this end, let {A
n} C 9Jt{X x Z) converge to A 6 9JC{Y x Z) . Then, to show

that {A~
n} C ?JC(Y x W) converges to Xe^(YxW), it suffices to show that

/x(yMw) dA~
n
(y,w) -. /x(yMw) dl(y,w)

for all continuous functions x- Y " K and ifr. W -» IR . Let t 3>JC(W) -» K be the

continuous linear functional defined by 1(k) = /^w)d«(w) . Then



24

/x(yMw)d!n(y,w)
= / Mw)di/

n
(w|y) x(y)d**n(y)

(by Fubini's theorem)

= / K\(-\v)) x(y)d/*n(y)

(by definition of €}

= / /<z)di/
n
(z|y) x(y)d/x

n(y)

(by definition of the expectation of u (• |y))

/x(y)^(z)dA
n(y

)Z
)

(by Fubini again, and because // = // ). But the latter expression converges to

/x(y)4 z)dA(y,z) by definition of weak convergence, and this integral is equal in turn to

/x(y)V(w)dA"(y,z) by reversing the above argument. This completes the proof of

continuity.

To complete the proof, it suffices to show that gr(^C) is the image of gr(^C)

under the projection that takes (x,A) into (x,X) . Suppose first that (x,A) G gr(^C) .

Then the payoff from A is

/Uj(x,y,z)dA(y,z) = / /u
i

(x,y
>
z)di<z|y) d/x(y)

= /u
i

(x,y,/zd^(z|y))d/i(y)

(by the linearity of u-)
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= /u
i
(x,y,K-|y))d/i(y)

(by definition of V). But u{- |y) G co[C(x,y)] because supp[*/(- |y)] C C(x,y) ,
and

/u-(x,y,P(- |y))d/z(y) is by definition the payoff from A~ . So it is easy to see that (x,A~)

e gr(*C) .

Suppose now that (x,X) G gr(#C) . We need to find (x,A) G gr(#C) of which

(x,A~) is the projection. To this end, let C(x,y,z) be the set of k G 9Ji{V) with

expectation z and such that supp[/t] C C(x,y) . Then C has a closed graph, and

standard considerations show that C(x,y) is non-empty iff z G co[C(x,y)] . Let

c: gr(co[C]) -» &JC(7j) be a measurable selection from the restriction of C to gr(co[C])
,

let u{
| y) = c(x,y,F(

| y)) for all y G A(x) , and let v{ •
| y) be arbitrary for y £ A(x)

(for example, one could set v{- |y) = &-, , x for such y). Then it can be checked as

above, using the linearity of u- , that the measure A obtained by combining the marginal

Jl with the transition probability v lies in ^C(x) .

Lemma 4.2 is the basic result justifying the backwards program. We conclude the

present subsection by relating it to the work of Simon and Zame (1990).

The standard existence theorem for normal—form games can be expressed as

follows. If each player's strategy set is a compact metric space, and if there is a continuous

function associating a vector of payoffs with each vector of strategies, then there exists a

vector of (possibly mixed) strategies that forms a Nash equilibrium. Simon and Zame

(1990) extended this result by showing that if, instead, there is an upper semicontinuous

correspondence associating a convex set of payoffs with each vector of strategies, then there

exists a selection from this correspondence and a vector of (possibly mixed) strategies that

forms a Nash equilibrium when the payoff function is given by this selection.

In order to explain how Lemma 4.2 extends the result of Simon and Zame, it is

helpful to reinterpret their work slightly. Much as we do in the proof of Lemma 4.1, they

consider a sequence of finite approximations to their basic game. Suppose these
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approximations are indexed by N , suppose that the mixed strategies /a^- constitute a

Nash equilibrium of game N for some selection from its payoff correspondence, and let the

equilibrium payoffs of this equilibrium be 7iYr- . Then their proof shows that, if the mixed

strategies /a- and payoffs ir- constitute a limit point of the strategies /a^- and payoffs

7iVr- , then there exists a selection from the payoff correspondence of the original game such

that the \i- constitute a Nash equilibrium with equilibrium payoffs ir- when the payoff

function is given by this selection. In other words, they demonstrate a limited form of

upper semicontinuity for a particular continuous family of games.

Lemma 4.2 therefore extends the result of Simon and Zame in two ways. 12 The

first is relatively minor: it shows that upper semicontinuity holds for a general continuous

family of games. The second is more substantive. The result of Simon and Zame tells us

about the behaviour of the equilibrium strategies and equilibrium payoffs, but it tells us

very little about the selections from the payoff correspondence that enforce these strategies.

Lemma 4.2, by contrast, concerns a comprehensive description of equilibrium. Such a

description of equilibrium is not without intrinsic interest. But its main significance for

the purposes of the present paper is that it allows us to avoid a measurable selection

problem that would otherwise arise when we come to program forwards. 13

12 As it stands Lemma 4.2 is not a direct generalisation of the result of Simon and
Zame. But it can easily be adapted to obtain one. To do so, view Z , not as a space of

probability measures over a compact metric space, but more generally as a compact
metrisable subset of a locally convex topological vector space. (This perspective is more

general, and includes the possibility that Z is a compact subset of IR . If Z is a compact

subset of IR , then one can define u-(x,y,z) = z. .) And define ^C(x) in a more limited

way, to consist of pairs (/a,7t) G &J((Y) * IR , where /a is the distribution of a Nash
equilibrium and ir is its equilibrium payoff vector. (This more limited definition of $C is

the price one must pay for the more general Z .) Then a proof almost identical to that of

Lemma 4.2 shows that $C is a continuous projection of $C, and therefore upper
semicontinuous.

13 It would be tempting to conduct the backwards program as follows. Let II: gr(A)

-» IR be an upper—hemicontinuous convex—valued correspondence describing possible

continuation payoffs. Then $11: X -» IR , the correspondence describing possible Nash
equilibrium payoffs for the current period, is upper hemicontinuous; and so therefore is

co^II] , the continuation—payoff correspondence for the next iteration of the backwards
program. This simple program is, however, difficult to reverse. For, in order to reverse it,
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4.3 The Forwards Program

In this subsection we develop the analysis necessary for the forwards program. For

this purpose we shall need a measurable selection c from #C . This function can be

thought of as part of the output of previous iterations of the forwards program. It

describes the equilibrium paths that must be followed from the current period onwards if

the strategies calculated for earlier periods by the previous iterations of the forwards

program are really to constitute part of an equilibrium.

Lemma 4.3 There exist measurable functions A: X x [0,1] -» ^J({Y * W) and w.X * Y

x [0,1] -» $>JC{W) such that, for all (x,£) e X * [0,1] :

(i) the marginal /x(-|x,£) of A(-|x,£) over Y is a product measure such that

supp[/x(-|x,0] C A(x)
;

(ii) themarginal^0(-|x,£)of/z(-|x,£) over Y is ity{-\x);

(iii) i/(-|x,-,£) is an r.c.p.d. of A(«|x,£) over W such that u{- |x,y,£) € co[C(x,y)]

for all y 6 A(x);

(iv) the marginals /j.(-|x,£) of /x(»|x,£) over the Y- constitute a Nash equilibrium

when the continuation path following outcome y is v{- |x,y,£) for all y e A(x).

Moreover /A(- |x,£)d£ = c(x) for all x e X .

Lemma 4.3 captures the essence of the forwards program. It requires some

explanation. First of all, conditions (i)—(iv) imply that A(- |x,£) € ^C(x) . The condition

/A(- |x,£)d£ = c(x) therefore tells us that, if the equilibrium path is chosen from ^C(x)

on the basis of the current public signal £ e [0,1] , then the overall path will be precisely

one must be able to find, for any measurable selection ir from #11 , a measurable
selection $7r from II such that the game with payoff function $7r(x,-) has a Nash
equilibrium with payoff 7r(x) . This is not a standard measurable—selection problem. For
what is actually required is that we select, for each x , a function $7t(x,-) , and that these

choices of functions be coordinated in x to obtain a single measurable function 3>7r . (A
version of this non—standard problem did arise for Mertens and Parthasarathy (1987;

Lemma 1 of Section 6, pp 41—42). In their case, however, the functions $7r(x,-j could be
taken to be continuous.)



28

c(x) . (If Lebesgue measure is the marginal distribution over [0,1] , and if A(- |x,-) is the

conditional distribution over Y x W , then /A(-|x,^)d^ is the marginal distribution over

Y x W .) Secondly, the lemma goes beyond the simple assertion that there exists A: X

x [0,1] -» ?JC{Y x W) such that A(- |x,£) G *C(x) for all (x,£) . For, while this

assertion would automatically imply the existence of a v that was measurable in y for

each (x,£) , the proposition delivers a v that is measurable in (x,y,£) jointly. Thirdly,

the \i-\ X x [0,1] -• &J((Y.) are precisely the strategies of the players for the current

period. Fourthly, the restriction $c of v to gr(A) x [0,1] describes the equilibrium

paths that must be followed from the next period onwards. It serves as the input for the

next iteration of the forwards program.

Proof Most of the considerations necessary for the proof have already arisen in the proof,

of Lemmas 4.1 and 4.2. The present proof will therefore be brief.

The first step is to find a measurable d: X -• 9JL
(
$>JC(Y * W)) such that, for all

x G X , supp(d(x)) c \PC(x) and the expectation of d(x) is c(x) . This can be done using

an argument very similar to one used in the proof of Lemma 4.2. Next, we need a

measurable mapping A: X x [0,1] -» &J£(Y x W) such that, when [0,1] is given Lebesgue

measure, the distribution of the random variable A(- |x,«): [0,1] -» 9Jl{Y x YV) over

^Ji(Y x W) is precisely d(x) for all x . Such a mapping can be obtained by applying a

'measurable' representation theorem, e.g. Gihman and Skorohod (1979; Lemma 1.2, p 9).

The third step is to find a measurable mapping u: X x Y x [0,1] -» &Jt(W) such that

£(-|x,-,£) is an r.c.p.d. of A(- |x,£) for all (x,£) e X x [0,1] . In other words, we need a

'measurable' version of the standard result which asserts the existence, for each (x,£) , of

an r.c.p.d. v{- |x,-,£) of A(- |x,£) . Since this is, in effect, the central step of the

forwards program, and since we have not been able to find precisely the result we need in

the literature, we sketch a proof of this.

Let /x(- |x,£) be the marginal of A(« |x,£) over Y . Let {B 1 1 < n < <d} be a

sequence of sets that generates the Borel a—algebra on Y . For each N , let 5?™ be the
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a-algebra generated by {B
1
1 < n < N} . And let v be a fixed element of ^l#(W) .

Since &** is finite we can give an explicit formula for an r.c.p.d. of A(-|x,£)

given the a—algebra 5?-^ on Y . For each y G Y and each measurable W C W we set

,,;, - A(YxW|x,Q
"N(W|x,y,£) = -L--

—

l-x^L

M(Y|x,0

if Y is the atom of &N containing y and /i(Y|x,£) > , andN

z,N(W|x,y,£) = KW)

otherwise. It is immediate from these formulae that u-^(- |x,y,£) is jointly measurable in

(x,y,£) , and therefore that the convergence set K of u-^ is measurable. Set v

= lim!/v,on K and v — v outside K .

Certainly u is measurable. Also, since i/^(-|x,-,£) is effectively a version of the

conditional expectation of A(- |x,£) given &„ , the martingale convergence theorem

implies that 1 im i/M(- |x,-,^) exists //(• |x,£) — a.s., and that u(-\x,',£) is a version of

what is effectively the conditional expectation of A(- |x,£) given the Borel a—algebra on

Y. That is, u{- |x, •,£) is an r.c.p.d. of A(-|x,£). This completes the third step.

There are two difficulties with u as it stands: it may not be the case that

u(- |x,-,£) e co[C(x,y)] for all y 6 A(x) ; and the marginals /z(-|x,£) of A(-|x,£) need

not constitute a Nash equilibrium when the continuation path following outcome y is

u(- |x,y,£) . The fourth and final step constructs a v that does have these properties from

v . To obtain the first property, let q be any measurable selection from co[C] ,
and

redefine i>(-|x,y,£) to be q(x,y) wherever it does not lie in co[C(x,y)] for some y

G A(x) . To obtain the second: for each i , let q. be the function defined in the proof of

Lemma 4.1; let 7r.(x,£) = Ju-(x,y,v(- |x,y,^))d/i(y|x,^) ; and let Y.(x,£) be the set of a-
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6 A-(x) such that /u.(x,y\a.,^(- |x,y,£))d/z(y|x,£) > ^(x,^) . Then we may set

v{- |x,y;0 =
qi

(x,y) if 7 . 6 Y^YjCx.O for all j * i but yj £ Y(x,0 , and v{- |x,y,£)

= £(• |x,y,£j otherwise. Standard considerations show that the resulting v is measurable,

and the fact that A(- |x,£) e C(x) implies that u(- |x,»,£) is still an r.c.p.d. of

A(-|x,£). o

4.4 Completion of the proof

Before proceeding, we need to define the equilibrium correspondence for a family of

games. In making this definition we encounter a minor technicality. We have defined an

equilibrium as a strategy profile that is in Nash equilibrium in every subgame. But a

strategy profile specifies players' behaviour for the entire family of games that they might

face. Hence an equilibrium will generate a whole family of paths, one for each game x

6 X . We therefore define E.. (x ) , the set of equilibrium paths of game x , to be the set

of paths A such that A is the equilibrium path generated in game x by some

equilibrium. Similarly, reinterpreting our basic family of games as a family parameterised

t—1 t—

1

by x e X , we can define, correspondences E. for t > 2 .

Theorem 4.1 Suppose that (Al)—(A3) hold. Then E, is an upper semicontinuous map

from Xt_1 into J6{9Jt{**_ . Yj).

The main interest of Theorem 4.1 derives from the fact that it implies existence

(see Section 5). However upper semicontinuity is itself of interest: it is reassuring to know

that our concept of equilibrium possesses this standard regularity property.

Proof The proof proceeds in three steps. Let B.(x
—

) be the set of paths beginning in

period t that are consistent with Nature's strategy. The first part of the proof shows that

B. is an upper semicontinuous map from X
—

into JGi^JC^ ®Y )). In the second, a
I S— X s

sequence of correspondences {C.
1
1 < t < cd} is constructed, each of which is upper
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semicontinuous. In the third it is shown that E. = co[C.] for all t .

For notational convenience, we show that B
1

is upper semicontinuous. To this

end, let B?(x ) be the set of marginals over « ,Y of measures in B,(x ). Then a

backwards programming argument similar to, but simpler than, that developed in Lemmas

4.1 and 4.2 shows that B, is an upper semicontinuous map from X into

J6{9Jt{* _, Y )). But a sequence of measures {A } C ^("/iY.) converges iff its

marginals over PJCi* _.Y ) converge for all t. So B, , too, is upper semicontinuous.

This completes the first step.

T
Turning to the second step, let T > 1 be given. For each t > T , let C. = B. .

T T
And, for each 1 < t < T , let C . be defined inductively by the formula C ,

=

T T t—

1

$, (C . , ,
) . (In other words, C . (x ) is the set of equilibrium paths that are obtained

T
for period t onwards when the continuation paths can be chosen from co[C, ,] .) Then

T
the backwards program ensures that each C, is upper semicontinuous.

T T S
Now define C. = n

t
™,C. for each t > 1. It is obvious that C, cC. whenever T

> S. Hence C, too is upper semicontinuous. It is also the case that ^
t
(C,

, ,) C C.. To

see this, let A 6 [^
t
(C.

,

1
)](x ) . By definition, A can be enforced by continuation

T
paths from C, , . But paths in C. ,, belong a fortiori to C, ,-, . Hence

A 6 [^
t
(C^

+1
)](x

t_1
) for all T . Since C

t
= n

T=i*t(
CT+l^ '

the rec*uired conclusion

T
follows. Finally, C. C *+(C. , ,) . To see this note that the correspondences C .

,
, for

1 < T < od together with C,,, for T = cd form a continuous family of games with

parameters x and T . And Lemma 4.2 shows that the equilibrium correspondence of

such a family is upper semicontinuous. It follows that any A 6 C. (x
—

) , which is

certainly a limit point of points in [^.(C. ,)](x ), also lies in [*
t
(C,

,
,)](x ).

Overall, then, we obtain a sequence of upper semicontinuous correspondences

{C.| 1 < t < a) } such that C, = ^
t
(C.

, ,) for all t . It remains only to show that E,

= co[C,] for all t . We do this for t = 1 only. The other cases are analogous.

We show first that co[CJ C E, . It suffices to show that any measurable selection

c, from co[CJ is also a selection from E
1

. So let C. be any such selection. Then
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repeated application of the forwards program starting with c, yields, for all t > 1
,

strategies f,. and a measurable selection c.,, from co[C.,J such that: (i) for all

(x ,()e H~ , the f.-(x
—

,£ ) constitute a Nash equilibrium in period t when the

continuation paths are given by c,
,
,(x ,•>£ ) and (") the paths obtained from period t

onward when the f.. are employed in period t and the continuation paths are given by

c.,, are precisely those required by c. . It follows from (i) and a standard dynamic

programming argument that the strategy profile f constitutes an equilibrium. And it

follows from (ii) that the equilibrium path in game x is precisely c, (x ) . This

completes the proof that co[CJ c E,.

We now show that E, C co[CJ . To this end, let f = <f.. |t > 1, i € X<> be

any subgame-perfect equilibrium in extended strategies. For each t > 1 , let c ,: H
~~

-» 3>JC(X * Y ) describe the paths followed from period t onwards when the strategy

profile f is employed. The mapping c, inherits measurability from f . Let T > 1 be

T
given. Now certainly c™,, is a selection from co[Cy,,]. Also, suppose that c,,

1
is a

T
selection from co[C. J for some 1 < t < T. Since f is an equilibrium, the f,- specify

Nash equilibria for period t when the continuation paths are given by c. , . It follows

T
at once that c, is a selection from co[C , ] . Proceeding inductively we therefore conclude

T
that c, is a selection from co[C, ] . Moreover, allowing T to vary, we obtain that C, is

a selection from co[CJ . This completes the proof.
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5 Existence with and without Public Signals

This section provides a systematic discussion of the question of existence of

equilibrium in the dynamic model introduced in Section 3. It begins with a recapitulation

of the main result for this case, namely that, when public signals are allowed, any family of

games satisfying the standing assumptions (Al)—(A3) possesses an equilibrium. However,

the section also addresses two further questions. Under what circumstances can existence

be obtained without the use of public signals? And is the extension of the concept of

subgame—perfect equilibrium obtained by allowing the observation of public signals

sufficiently rich?

5.1 Existence with Public Signals

The following result is an immediate corollary of Theorem 4.1:

Theorem 5.1 Suppose that (Al)—(A3) hold. Then there exists a subgame-perfect

equilibrium in extended strategies.

Proof Pick any x eX . By Theorem 4.1, E,(x ) is non-empty. Pick any A 6 E.(x ).

Then, by definition of E..(x
) , there exists an equilibrium of the family of games that

generates equilibrium path A in game x . In particular, there exists an equilibrium!

The potential drawback of this result is that, in order to obtain the existence

equilibrium in what is intended to be a purely non-cooperative situation, it introduces an

extraneous element into the model, namely public signals. It is therefore of some interest

to discover circumstances under which equilibrium exists even without this element.
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5.2 Existence without public signals

There are at least three classes of game in which public signals are not needed for

existence: games of perfect information, finite—action games, and zero—sum games. The

results for such games are summarised in Theorems 5.2, 5.3, and 5.4 respectively.

Theorem 5.2 Suppose that (Al)—(A3) hold, and that the family of games has perfect

information. Then a subgame—perfect equilibrium exists. a

Proof Oddly enough, Theorem 5.2 is not an immediate corollary of Theorem 5.1.

(Intuitively it would seem obvious that, when only one player acts at a time, public signals

do not allow players to achieve anything they could not achieve using mixed strategies.

But there is a minor complication: players observe not only the current signal, but also

past signals.) However, an equilibrium can be constructed using the correspondences C,

used in the proof of Theorem 4.1. We begin with any measurable selection c, from C-.
,

and define f,.(x ) to be the marginal of c,(x ) over Y... . Next, let c« be a measurable

selection from co[CJ that enforces c, . Since the game is a game of perfect information,

co[C
2 ]
= C^ • Hence c„ is also a measurable selection from C« . So we may define

L.(x ) to be the marginal of c
2
(x ) over Y,. . And so on. o

Indeed, one can even show that there exists a subgame-perfect equilibrium in

which players employ pure actions only. We do not demonstrate this here, since the

argument does not appear to be a simple corollary of the construction that we have

employed. 14 Note that the proof of Theorem 5.2 shows incidentally that allowing public

signals in a game of perfect information does not enlarge the set of equilibrium paths.

14 See Harris (1985) for a treatment of the case of perfect information. The argument
used there can easily be adapted to the present context. Alternatively, one can work
directly with the apparatus used here, taking care to purify the selections as one programs
forward.
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Let us say that a family of games is of finite action if X is finite, and if, for all

t > 1 and all x"
1
6 X1

*
, A^x

1
*) is a finite set.

Theorem 5.3 Suppose that (Al)—(A3) hold, and that the family of games is of finite

action. Then a subgame—perfect equilibrium exists. Moreover, for each x 6 X , the set

of equilibrium paths is compact.

Proof Theorem 5.3 is more or less well known, and there is more than one way of proving

it. (See Fudenberg and Levine (1983) for a different proof.) So we merely note that it can

be proved by a simple adaptation of the methods of this paper. The basic idea can be

expressed in terms of the notation of Section 4.2 as follows. Instead of defining #C(x) to

be the set of equilibrium paths that can be obtained by choosing continuation paths from

co[C] , one defines it to be the set of equilibrium paths that can be obtained by choosing

continuation paths from C. Because X is finite, and because the A.(x) are finite for all

x e X , this new definition still yields an upper semicontinuous correspondence.

It should be noted that both finiteness assumptions are needed. Indeed, suppose

that X is finite but that one or more of the A-(x) are infinite for some x. Then it can

happen that there is a sequence of equilibria of game x, each of which involves a public

signal generated endogenously by players' randomisation over their action sets A.(x), and

that this sequence converges to a limiting equilibrium which does not generate any such

signal. Suppose, on the other hand, that the A.(x) are finite for all xgX but that X is

infinite. Then it can happen that there is a convergent sequence of games in X , and that

there is at least one player for whom at least one player for whom at least two actions

coalesce in the limit. If this player randomises over his two actions, then he generates a

public signal which disappears in the limit.

It is precisely in order to compensate for the potential disappearance of such

endogenously generated public signals that the exogenous public signals are used in our

basic existence theorem. o
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To complete our discussion of the existence of subgame—perfect equilibrium, we

consider the case of a family of zero—sum games. (A family of games is of zero sum if J<A

contains precisely two elements, and if E. j/^\ = .)

Theorem 5.4 Suppose that (Al)—(A3) hold, and that the family of games is of zero sum.

Then a subgame—perfect equilibrium exists.

In order to understand this result, it is helpful to recall some facts about one-

period zero—sum games. It is well known that each players' set of optimal strategies is

convex in such a game. But the set of equilibria, regarded as the set of probability

distributions over outcomes, need not be. Hence, even in a zero—sum game, the set of

equilibria will be enlarged if players are allowed to observe a public signal. The set of

equilibrium payoffs, on the other hand, will not. For the public signal merely allows the

two players to co-ordinate on a choice of Nash equilibrium for the game, and all Nash

equilibria have the same equilibrium payoff (namely (v, —v) , where v is the value of the

game).

Proof Note first that our proof of the existence of equilibrium shows, in particular, that

the extended family of games has a Nash equilibrium. It follows immediately from

standard considerations that this family also has a value. That is, there exists a

measurable mapping v, : X -> [R such that v, (x ) is the value of extended game x .

(Indeed, since v.,(x ) is simply player l's payoff from any path in E,(x ), and since E, is

upper semicontinuous, v, is actually continuous. We do not need this fact, however.)

Similarly, there exist mappings v X ~~
-» IR such that v.(x ) is the value of the

extended game beginning in period t.

With these considerations in mind, we can construct a subgame—perfect

equilibrium of the original family of games as follows. The construction follows the

construction of an equilibrium of the extended game, but takes care to avoid the need for a
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public signal. The first step is to find a measurable selection c, from C, . Since c, is a

measurable selection from C, rather than co[C,] , its marginals over Y, are already

product measures. So we may define strategies f,.: X -» ^^(Y.-) by setting f,.(x ) to

be the marginal of c,(x ) over Y... . Similarly, c, generates a measurable selection Cr,

from co[CJ that enforces the f,. . But all A e co[C
2
(x

)]
generate the same

continuation payoff, namely v
2
(x ) . In particular, if c« is a measurable selection from

C
9

then (L generates the same continuation payoffs as c« • Hence the f, • can be

enforced by <L just as well as by c« • (The continuation paths specified by c« do not

necessarily constitute an r.c.p.d. of c, , of course.) Iterating this argument we obtain

strategies £.: Xt_1 -» ?JC{Y.^ for all t > 2 as well, o

5.3 Approximation by finite—action games

Suppose that we are given a single game (i.e. a family of games for which X is a

singleton) satisfying (Al)—(A3). Then a finite—action approximation to this game is,

roughly speaking, a new family of games indexed by n e IN U{od} such that: the game

corresponding to n = oo is the original game; for each n 6 IN , the game corresponding to n

is of finite action; and taken as a whole the new family of games satisfies (Al)-( A3). (Here

(Al) ensures that players' action sets in the original game are continuously approximated;

(A2) ensures that Nature's behaviour is continuously approximated; and (A3) ensures that

active players' payoffs are continuously approximated.)

Finite-action approximations to a single game satisfying (Al)-(A3) certainly exist.

Indeed, we can even construct a finite-action approximation to a family of games satisfying

(Al)-(A3). To do this, we need the following ingredients. First, for each t > 1 and each

i 6 J, let {yjj|n 6 IN} be dense in Y
t

-
; and let {yj|n 6 IN} be dense in Y

Q
= X°.

Secondly, for each n € IN , let Y|| = {y
m

|
1 < m < n} . Thirdly, for each t > 1, i G J and

n 6 IN, let o£j:X
—

-» Y.. be a continuous function such that, for all x
—

e X
—

:

a..(x
—

) belongs to A,.(x
—

) , and ay(x
—

) is as close to y?. as any other point in

A..(x ). (Such a function exists because A,.:X
—

-» J£(Y..) is continuous. In
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n vt-l
Nature's case the function is simply constant with value y.* .) And let a.-: X

-. MY
ti

) be defined by ^(x1-1
) = {aj^x*

-1
)! 1 < m < n} for all x

t_1
e Xt_1

.

Fourthly, for each t > 1 and n 6 IN, let ^\*: X
—

-» &JC(Y.q) be a continuous function

such that, for all x e X : supp [</>
t(
j(x )] C {y . A\ < m < n}; and <P t

rt(x ) is as

close to f
f
rt(x ) as another measure in &J((Y. *) whose support is contained in

{y™0 1
1 < m < n} . Finally: let Yj = X

Q
;
for all t > 1 , i 6 Jj6 and x

t_1
6 Xt_1

, let

^.(x
1-1

) = A
ti
(x
t_1

) ; and for all t > 1 and x
t_1

e Xt_1 let ^ (x
t_1

) = f
t0

(x
t_1

) .

In terms of these ingredients we can define a larger family of games, which can be

interpreted as a sequence of families of finite-action games approximating the original

ssr\

family, as follows. First, let X be the union over n 6 IN U {qd} of the sets {n} * Y
n

.

^t—

1

^
Secondly, suppose that X has been defined for some t > 1 . Then: for all ie 7, A,.

S\i
1

s\ s\ /\ /\

is the restriction of aj-(-) to X
—

; A. = x- A • and X. = gr(A.) . Thirdly, for all

t > 1 , f.0 is the restriction of fl^-) to X
—

. Finally, payoff functions u- are defined

in the obvious way.

Now suppose that we are given a finite-action approximation to a single game.

Since this approximation is simply a family of games parameterised by n e IN U {qd} and

satisfying (Al)-(A3), its equilibrium correspondence is upper semicontinuous in n. Hence,

since any subgame-perfect equilibrium path of any game n 6 IN is, in particular, an

equilibrium path of that game, it follows that any limit point of subgame-perfect

equilibrium paths of the finite-action games is an equilibrium path of the original game.

And our solution concept (namely subgame-perfect equilibrium in extended strategies)

includes everything that can be obtained by taking finite-action approximations to a game

(or, more precisely, everything that can be obtained by taking continuous finite-action

approximations to a game satisfying (Al)-(A3)).

5.4 Approximation by e-equilibria

One can also show that any limit point of subgame-perfect e-equilibrium paths of

a given single game is an equilibrium path of the game, by combining the techniques of this
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paper with those of Borgers (1989). Indeed, suppose that we are given a family of games

satisfying (A1)-(A3). For each t > 1, x
t_1

e Xt_1 and e > , let E
t
(e,x

t_1
) be the set

of equilibrium paths of subgame x of a family of games identical to the original game

except that: (i) each player i G Jji is replaced by a sequence {t-|t > 1} of agents; (ii)

each agent chooses actions that are at or within e of being optimal in each subgame.

Then it is easy to adapt the methods of Section 4 to show that E. is upper

semicontinuous. But this implies the required result. For any subgame-perfect

e—equilibrium path of the original game is also an e-equilibrium path; any e—equilibrium

path is an e—equilibrium path of the game in which each active player is replaced by a

sequence of agents; and the 0—equilibrium paths of the game in which each active player is

replaced by a sequence of agents coincide with the equilibrium paths of the original game.
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7 Conclusion

The results of this paper concerning the existence of subgame-perfect equilibrium in

general dynamic games create a small dilemma. If one adopts the point of view that the

observation of public signals violates the spirit of non-cooperative game theory, then the

interpretation of the counterexample of Section 2 is presumably that games with a

continuum of actions are somehow intrinsically pathological. After all, that example seems

wholly non—pathological in all other respects. If, on the other hand, one thinks that games

with a continuum of actions are an indispensable part of non-cooperative game theory,

then presumably one must accept that games must be extended to allow the observation of

public signals.

Faced with this dilemma it is tempting to dismiss games with a continuum of

actions as pathological. There are, however, at least two reasons why this reaction may be

too simplistic. First, it can be argued that a solution concept should be robust to small

errors in the data of the games to which it applies, in the sense that one should not rule out

equilibria that occur in games arbitrarily close to the game under consideration. 15 (In other

words, the equilibrium correspondence should be upper semicontinous.) Provided that such

errors are confined to payoffs, the solution concept of subgame-perfect equilibrium satisfies

this requirement when applied to finite—action games. If, however, such errors may be

present in the extensive form itself, then public signals must be introduced if upper

semicontinuity is to be satisfied. Secondly, it is not entirely clear that public signals really

do violate the spirit of non-cooperative game theory. After all, players must in any case

coordinate on a specific Nash equilibrium to play; and public signals merely increase the

extent to which they can coordinate, by allowing them to coordinate on a random Nash

equilibrium.

15 See Fudenberg, Kreps and Levine (1988) for example.
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