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Abstract

The Fudenberg and Maskin folk theorem for discounted repeated games

assumes that the set of feasible payoffs is full dimensional . We obtain the

same conclusion using a weaker condition. This condition is that no pair of

players has equivalent von Neumann-Morgenstern utilities over outcomes. We

term this condition NEU ("non-equivalent utilities"). The condition is weak,

easily interpreted, and also almost necessary for the result. We also extend

our analysis to finitely repeated games and overlapping generations games.



1. Introduction

We are concerned here with "folk theorems" for repeated games with

complete information. Such theorems establish that in the limit with little

or no discounting any feasible and individually rational payoff of the stage

game is an equilibrium payoff of the associated repeated game. More

precisely, let G(A .tt :i-l,...,n) be a finite (normal form) game, where A is

a finite action set, M is the associated set of mixed actions, and w is the
i 1

payoff function, for player i. Player i's minimax payoff level is denoted

min max w (a ,m ), and can be normalized to without loss of generality.
ii a 1 1 -1
-1 1

This is the lowest payoff a maximizing player can be forced down to. It is

important that the minimization by the other players be over mixed strategies.

Note also the order of the min and max operators: Player i chooses his

maximizing action after the minimaxing mixed strategy choice of the other

players. A payoff vector « - (as , . . . ,<s ) is strictly (resp. weakly)
1 n

individually rational if for all i,« > (resp. >) 0. Folk theorems assert

that any feasible and individually rational payoff vector is a (subgame

perfect) equilibrium payoff in the associated infinitely repeated game with

little or no discounting (where payoff streams are evaluated as average

discounted or average values respectively) . It is obvious that feasibility and

individual rationality are necessary conditions for a payoff vector to be an

equilibrium payoff. The surprising content of the folk theorems is that these

conditions are also (almost) sufficient.

Perhaps the first folk theorem type result is due to Friedman (1971) who

showed that any feasible payoff which Pareto dominates a Nash equilibrium

payoff of the stage game will be an equilibrium payoff in the associated

repeated game with sufficiently patient players. This kind of result is

sometimes termed a "Nash threats" folk theorem, a reference to its method of

proof. For the more permissive kinds of folk theorems considered here the



seminal results are those of Aumann and Shapley (1976) and Rubinstein {1911
,

1979) . These authors assume that payoff streams are undiscounted. Fudenberg

and Maskin (1986) establish an analogous result for discounted repeated games

as the discount factor goes to 1. Their result uses techniques of proof

rather different from those used by Aumann- Shapley and Rubinstein,

respectively. See their paper for an insightful discussion of this point, and

quite generally for more by way of background. It is a key reference for

subsequent work in this area, including our own.

For the two -player case, the result of Fudenberg and Maskin (1986) is a

complete if and only if characterization (modulo the requirement of strict

rather than weak individual rationality, which we retain in this note ) and

does not employ additional conditions. For three or more players Fudenberg

and Maskin introduced a full dimensionality condition: the convex hull F, of

the set of feasible payoff vectors of the stage game must have dimension n

(recall that n is the number of players) , or equivalently a non-empty

interior. This condition has been widely adopted in proving folk theorems for

related environments such as finitely repeated games (Benoit and Krishna

(1985)), and overlapping generations games (Smith, (1992)).

Full dimensionality is a sufficient condition. Fudenberg and Maskin

present an example of a three -player stage game in which the conclusion of the

folk theorem is false. In this example all players receive the same payoffs in

all contingencies; the (convex hull of the) set of feasible payoffs is

one - dimens ional . This example violates full dimensionality in a rather

extreme way. Less extreme violations may also lead to difficulties as the

Aumann and Shapley (1976) employ the limit of means criterion and
Rubinstein (1977) considers both the limit of means and the overtaking
criterion.



following example taken from Benoit and Krishna (1985) indicates. The payoffs

in their three-player example are given by:

3,3,3 0,0,0

0,1.1 0,0,0

0,0,0 0,0,0

1.1,1 2,2.2

0.1,1 0,0,0

0.1,1 0,1,1

where player 1 chooses rows, 2 chooses columns, and 3 chooses matrices. Let

p{S) = inf{p|p is an (average discounted) payoff to players 2 and 3 in some

(subgame perfect) equilibrium of the associated repeated game with discount

factor 5). We argue that for any 5 >
, p(6) > 1/2. Since each player's

minimax payoff is zero and (1/4, 1/4, 1/4) is. for instance, a feasible

payoff, this yields a contradiction to the conclusion of the folk theorem. To

establish that p(S) > 1/2 we need simply show that for any combination of

mixed actions in the stage game either player 2 or 3 can by deviating, if

necessary, obtain a payoff of at least 1/2. Suppose this were not the case

and let player 1 play row i with probability r . Then, if player 2 plays

left, he obtains 1 for sure if player 3 chooses the right matrix and 3r + r

otherwise. Hence, 3r + r < 1/2. Similarly, for player 3 not to receive at

least 1/2 by choosing the right matrix, it must be that 2r + r < 1/2.

Together these inequalities yield 4r < 0, a contradiction.

One might be tempted to conjecture that, except in this special case in

which a pair of players have identical payoffs, the conclusion of the folk

theorem is true. This guess cannot possibly be exactly right since affine

transformations of a player's payoffs do not alter the strategic structure of

a game. We must at the very least exclude equivalent von Neumann-Morgenstern

Their analysis was for the finitely repeated case, but the example works
equally well in the infinitely repeated setting.



utility functions over outcomes. The functions ir and ir are equivalent if

there exist scalars c,d where d > such that ir (a) - c + dir (a) for all a e

A. Of course, equivalent utility functions yield identical orderings of

lotteries over outcomes. By changing the origin and scale of player i's

utility function it may be made identical to player j's. Viewed

geometrically, equivalent payoffs lie on a straight line with positive slope.

In this form the initial conjecture is in fact correct; the simple

condition that no pair of players have equivalent utility functions is

sufficient. We term this requirement non- equivalent utilities (NEU) . This

condition is easy to understand, and, of course, weaker than full

dimensionality. Furthermore, it is a "tight" condition in the sense that it

is also often necessary . While full dimensionality may be viewed as a generic

condition, NEU holds generically within the smaller class of stage games with

dimensions 2 , 3 , . .
. , (n-1) respectively. Such games may arise naturally; for

instance the payoffs of various coalitions of players might have constant sum.

Our result is for the standard case in which mixed strategies are

unobservable . But to develop some feeling for our condition and the argument

assiime, for the moment, that mixed strategies are ex-post observable or simply

confine attention to pure strategies (and define individual rationality in the

latter case through pure strategies). Let u be a strictly individually

rational and feasible payoff vector. A simple lemma below shows that an

implication of NEU is that there exist n strictly individually rational payoff

vectors x , . . . ,x such that x < x'' Vi,i , i»*i and x < u . We may think of
i i -^ -^ i i ^

these payoff vectors as player -specific "punishments" which have the property

that player i's payoff in his own punishment is strictly worse than his payoff

in any other player's punishment. Let a and a be (correlated) action

profiles which yield the payoff vectors u and x , i-l,...,n respectively. Let



P° be the path in which a is played in every period and P the path in which

player i is minimaxed for q periods (during which he plays a best response)

followed by the action a forever after. Consider the simple profile (Abreu

(1988)) in which P is played initially and any deviation by player i alone

from an ongoing path is responded to by imposing P (and simultaneous

deviations are ignored). Let the integer q satisfy qx > max rr (a ,a )
-

i a i i -i
i

?r (a ) , for all i. Then, using the criterion of "unimprovability" (which only

checks one -shot deviations) it can be directly verified that for high enough

discount factors, the described simple profile is a subgame perfect

equilibrium. (Player i will not deviate from P since by the preceding
, .

inequality any one -period gain is wiped out by q periods of minimaxing.

Player jHi will not deviate from P since x'^ < x . Finally, since x < u a

one-shot deviation from P is unprofitable). That is, with observable mixed

strategies and given NEU the extension of the undiscounted folk theorem to the

discounted case is fairly straightforward. The subtleties in the argument

derive primarily from the consideration of mixed strategies.

This paper is organized as follows. Section 2 presents the model.

Section 3 establishes the sufficiency of NEU and proves a necessity result in

the context of infinitely repeated games with discounting. Section 4 presents

analogous results for finitely repeated games. In doing so, we strengthen

the Benoit-Krishna (1985) result in two ways: First, we admit the possibility

that one player might not have distinct Nash payoffs in the stage game.

Second, and this introduces some subtleties that we must finesse in the proof,

we produce an exact (rather than approximate) folk theorem. Section 5

discusses overlapping generations games. Section 6 concludes.



2. The Model

We consider a finite n-player game In normal form defined by <A , ir
;

1-1 n> where A Is the 1 player's finite set of actions, and let

"
th

A - n A . The 1 player's payoff is ir :k-¥R. Let M be the set of player
1-1

n

i's mixed strategies and let M - II M . Abusing notation, we write ir (^) for
1-1

i's expected payoff under the mixed strategy fi - (/i , . . ./i ) e M. For any
1 n

n-element vector v — (v , . . .v ) let v denote the corresponding (n-1) element
1 n ~1

th *
vector with the 1 element missing. Let ?r (/i ) = max ir (a. ,n ) be player

1 -1 a 1 1 -1
1

i's best response payoff against the mixed profile ^ Denote by m -

(m , . . . ,m ) € M a mixed strategy profile which satisfies m e

* i i 1
argmin n (n ) and m e argmax ir (/i ,m ) In words, m is a (n-1) -profile

1

of mixed strategies which minimax player i and m is a best response

for 1 when being minimaxed. We have adopted the normalization jt (m ) - for

all i. Let F - co{n(n) [fi G M) and denote by F* the set of feasible and

(strictly) individually rational payoffs; F* - {we F:w > 0, for all 1).

We will analyze the associated repeated game with perfect monitoring.

That is, for all 1, player i's action in period t can be conditioned on the

past actions of all players. In addition, we permit public randomization .

That is, in every period players publicly observe the realization of an

exogeneous continuous random variable and can condition on its outcome. This

assumption can be made without loss of generality; a result due to Fudenberg

and Maskin (1991) shows explicitly how public randomization can be replaced by

"time -averaging" in the infinitely repeated case.

Denote by a - (a a , . . . ) a (behavior) strategy for player 1 in

the repeated game and by »r (a) his expected payoff in period t given the



strategy profile a. Player i's (average) discounted payoff under the (common)

discount factor 5 is v (a) - (1-5) 5~ 5 ir (a). Let V(5) denote the set of
i '^O it

subgame perfect equilibrium payoffs.

3 . Infinitely Repeated Games

NEU has two quite powerful and equivalent representations, one of which

has already been alluded to in the informal discussion above. These are

developed in the lemmas below.

Let F
,

j^'i denote the projection of F on the i-j coordinate plane and

*
dim F the dimension of F Observe that if F , the set of feasible and

strictly individually rational payoffs, is non-null, then no player is

indifferent over all possible action profiles.

Lemma 1 Suppose NEU and that no player is indifferent over all possible

profiles. Then the following projection condition obtains: for all i »< j

,

dim F ^1; furthermore, if for some j»*i, dim F - 1, then F has a
IJ ij ij

Strictly negative slope and dim F - 2 for all k ^ i,j-

Proof Since we rule out universal indifference by assumption, it is clear

that dim F > 1 for all i,i, i>*i . Now suppose that dim(F ) - dim(F ) - 1

for some j^k. NEU applied to the payoffs of players i and j (and similarly

players i and k) implies that the payoffs are perfectly negatively correlated.

This in turn implies that the payoffs of players j and k are perfectly

positively correlated. That is, players j and k have equivalent payoffs, in

violation of NEU. Q.E.D.

The representation below was already discussed in the introduction.



Lemma 2 Suppose that the projection condition of Lemma 1 obtains. Let u be a

feasible and strictly individually rational payoff vector. Then there exist

payoff vectors x\ i-1 n such that Vi.j.if'j,

1. x^ » strict individual rationality

2

.

X < x'^ payoff asymmetry

3. X < u target payoff domination

Step 1 By Lemma 1 it follows that for all i.j.i^j there exist feasible payoff

vectors v such that v > v and v < v . Let 9 , k-1 —= be
i i j J k Z

Strictly increasing weights (with ^ ^ - 1) and v be a convex of all the

V '^'swhich gives weight 8 to player i's k best payoff (break ties

k j i j
arbitrarily) in the set {v ) . Obviously v < v for all i,j,i»*j.

Step 2 Let w denote a payoff vector which yields player i his lowest payoff

in the game; i.e., w - min {v :(v ,v ) e F) . Define

x^ - fl w^ + fl v^ + 5 u
1 2 3

where fi ,0 ,fi are convexifying weights which are independent of i and chosen

such that /3 is strictly positive and the ratios /^ and (0 +fi )/fi are both

small. By the definition of w and v it follows that if is strictly

positive, X < x'^ for all i,j,i »* j (payoff asymmetry). For small enough

B /B , we must have x < u (even if v > v ) . Thus we can obtain target

payoff domination. Finally for small enough (P +0 )/fi , x > since u >

(strict individual rationality). Q.E.D.

Lemma 2 also has an easy geometric proof. For consider u as a point in

R , and let 11 be the vector space spanned by the payoff space F. Note that 11

might be high dimensional and hard to visualize. With a little imagination,

*
however, it can be seen that we may choose some (two-dimensional) plane n

within n satisfying the projection condition of Lemma 1. That is, the

8



projection of II onto any two players' coordinate plane is either

two-dimensional or a line with negative slope. We may now select our vectors

1 * *
(x ) to lie on II . Here's how: Draw an « > circle about u in 11 . For

sufficiently small e > 0, all points on it are strictly individually rational.

For each i, let x be the point on the circle with the smallest i-coordinate

.

We need only show that the {x ) are distinct. By assumption, the projection

of the circle onto the coordinate plane of any two players (i,k) is either a

i k
line of negative slope or an ellipse. In the first case, x and x lie at

opposite ends of a line segment, while in the second, they lie at different

locations on the ellipse.

It is straightforward to see that the existence of asymmetric payoff

vectors x (satisfying inequality 2. above) implies NEU. In other words, NEU,

the projection condition and the existence of asymmetric payoffs are

equivalent assumptions (modulo F f* 4>) . ...

-

We are now ready to prove the folk theorem.

*
Theorem 1 Under NEU, any point in F is a subgame perfect equilibrium payoff

*
when players are sufficiently patient. That is, for any u e F there exists

5 < 1 such that u e V(5) for all 5 > 6.

* i
Proof Fix u € F and let x , i-1 , . .

.
,n be as defined in Lemma 2.

We will assxime without loss of generality that, in addition, the x 's lie

*
in the relative interior of F . We now specify a strategy profile which

yields payoff u and which for sufficiently high 5 is also a subgame perfect

equilibrium. The strategy is as follows. Players play the (correlated)

action that generates payoff u at t-1 and continue to do so unless some player

i deviates singly in some period t. The key element of the specification is

the "punishment" for player i which is invoked for any (single person)



deviation by player i from prescribed behavior. Assume that for some kr*i,

dim(F ) - 1. (The proof when there is no such k is a corollary). Then by

Lemma 1, dim(F ) - 2, for j»*i, k. Furthermore, observe that by NEU, F is a

straight line with negative slope. Let m minimax player i. Then fixing m
,

for j^'i, k, induces a constant-sum game between i and k. We will require that

player i's best response m additionally minimaxes player k in this induced

constant-sum game. Lemma 1 and this observation are the key new elements of

our proof.

The punishment for player i consists of q periods of play of m as

( specified above followed by transition to action profiles which yield player

I .

'i, X . The difficulty now is to induce minimaxing players j»'i,k to play pure

strategies in the support of their mixed strategies with the appropriate

probabilities. As noted by Fudenberg and Maskin (1986), the only way to do so

is to make them indifferent across their pure strategies. Note that player

k's mixed strategy m is a best response to m , and that for j»'i,k deviations

outside the support of m are easily deterred by directly punishing player j

.

For i»*i,k, since dim(F ) =- 2 and the x 's are in the relative interior
ij

* a *
of F , there exist payoff vectors c e F such that

Asymmetry x„ < c,'^, lr*i (3.1)

Indifference for i x - c
"^

1 1

Differential for j x^ > c^'^ (3.2)
J J

At the end of q periods of minimaxing player i, play moves

probabilistically (via the public randomization device) to x or to the c ^'s,

where the probabilities are chosen to maintain the incentives of minimaxing

players j^'i. Let p (a ) satisfy for all a , a' in the support of m , and

10



a-S)ir (a .m' ) + S'"'*' p'^(a ) (c'^-x') -
J J " J t J J J . „

(l-6)»r (a' ,m ^) + 5"''*^
p^'^Ca' ) (c^'^-x^) (3.3)

The values p '^(a ) are not unique. One procedure through which they can

be defined is as follows: suppose that action a yields the highest myopic

payoff to player j (when the other players play m ). Then set p '^(a ) equal

to 0. For other actions, a', p'^(a') is defined through (3.3) after
j ^ j

substituting p '^(a ) - 0.
t j

If the realized sequence of action profiles is a , t-1 q then for all

j^i.k play proceeds to c '^ with probability J^ p (a ). Notice that the

p^""
' s are independent across players j^'i and across periods and are chosen to

make players indifferent across the support of their minimaxing strategies.

Let p^^(a
, a)-X^p^^(a ). Then with probability 1 - X P^^(a ... ,a ) ,Iqltjt jlq

play goes to x . For high enough 5, the p 's defined above can be made small

and positive for all possible realizations of a a and so we indeed have
1 q

probabilistic transitions. Since the inequalities, (3.1) and (3.2) are

strict, no detectable one-shot deviation is profitable. By construction,

minimaxing players are indifferent over the support of their mixed minimaxing

strategies. It follows that for the profile specified, after no history does

a one -shot deviation yield a higher payoff. By the "unimprovability"

criterion, the profile is a subgame perfect

equilibrium. Q.E.D.

We turn now to the necessity of NEU. To avoid trivialities, from here on

*
F 7* <fi. Let f - min{v v € F and v > for all i). Thus f is the worst

i i
'

J
-^

1

payoff to i in the set of weakly individually rational payoff vectors . We

will refer to f as play i's minimal attainable payoff . The necessity of

payoff asymmetry is shown for games in which no two (maximizing) players can

11



be simultaneously held at or below their minimal attainable payoff. In stage

games where every player's minimal attainable payoff is Indeed his minimax

payoff (f -0), the condition stated below is equivalent to the restriction

3
that no pair of players can be simultaneously minimaxed. Note that the

condition below uses the term minimiz ing.

*
No simultaneous Minimizing [NSM] For all /i € M such that w (/x ) ^ f for

i -i i

*
some i, it is the case that ir (n ) > f for all ]^i.

J -J j

Under the above assumption we obtain a complete characterization.

Theorem 2 Suppose NSM obtains. Then, NEU is both necessary and sufficient

for the conclusion of the folk theorem for discounted infinitely repeated

games.

Proof To establish necessity, we exhibit payoff vectors w i-l,...,n such

that for all i.j.i^j, w < w'^ . It follows immediately that for all i,j, i>*j

the outcome corresponding to w is strictly worse for player i than the

outcome corresponding to w'^ , and conversely for player j , so that NEU is

satisfied.

Since the conclusion of the folk theorem is valid, the set of subgame

perfect equilibrium payoffs is non-empty for sufficiently high 5. Denote by

w (6) an equilibrium payoff vector which yields player i his lowest subgame

perfect equilibrium payoff. By adapting the argument of Abreu, Pearce and

i 4 i
Stacchetti (1990) it can easily be shown that w (5) exists; denote by a an

3
A game in which the minimally attainable payoff is not the minimax payoff

for every player is the two-player game specified by the following payoffs:
co[ (6, -1) , (1,0) , (2,1) ] with (0,-1) a payoff at which player 1 is minimaxed and
(1,0) a payoff where player 2 is minimaxed.
4

The available results on the existence of the worst equilibrium are for the
case where mixed strategies are observable; hence we cannot directly appeal to

any of them. The result is however certainly true and may be proved by, for
instance, adapting the self-generation techniques of Abreu, Pearce and

12



equilibrium strategy profile that generates w (6). By definition, w^(5) <

w^(5) for all i,j. By the folk theorem hypothesis, w (5) -» f , as 5 -» 1. By

playing his myopic best response in period one and conforming thereafter,

player i can get at least (1-5) ir (7_ (5)) + 5w (5) where 7 (5) is the first

i i * i

period strategy vector in the play of a . Hence, w (5) > (,l-S)ir {y_ (5)) +

(5w^(5), or equivalently w (5) > jt (7 (5)). It then follows that as 5 -i> 1

any subsequential limit of 7 (5) yields player i , in a best response, a

* i
payoff at or below f , i.e. ir (lim7 (5)) ^ f .

Clearly w\s) > (1-5) ir* (y^ (5)) + 5w^(5). Hence if v^S) - w\S) it
j j -j j J j

i * i

follows that w (5) > tt (7 (5)). We claim now that there is 5 < 1 such that
J j -j

w'^(5) < w^(5) for all i,j, j»'i. A contradiction to this claim implies the

existence of a sequence 5^1 and fixed indices i,j, jj'i such that
m

j * 1
w (5 ) > TT (7 (5 )). The left-hand side of the inequality goes to f while

j m j -J m J

* i
the right-hand side is strictly greater than f since ir (lim7 (5)) < f and

simultaneous minimizing is impossible (NSM) . This yields the desired

contradiction. Now take w - w (5). ^
Q.E.D.

Remarks :

1. .When NSM is not satisfied a weaker version of NEU is necessary for the

folk theorem. This condition is that any subset of players who cannot all be

simultaneously minimized cannot all have equivalent utilities. It must be

possible to simultaneously minimize the entire subset of players who have

equivalent payoffs

.

2. One class of games in which NSM is violated is two -player games. Another

is the class of symmetric games in which all players can be simultaneously

minimaxed. By the preceding remark all players may have equivalent utilities

Stachetti (1990) to the present context.

13



in such games. ' Indeed, for these games It essentially follows from the

two-player analysis of Fudenberg and Maskin (1986) that the folk theorem holds

without any conditions on the set of feasible payoffs.

4. The Folk Theorem for Finitely-Repeated Games

In this section, we let G(fi,T) denote the T-fold repetition of G with the

discount factor 5 < 1. What follows is a strengthening of Theorem 3.7 of

Benoit and Krishna (1985), (or the simpler proof in Krishna (1989)) on several

fronts. First, we admit payoff discounting. In so doing, we can establish a

uniform folk theorem, meaning that the discount factor and horizon length can

vary independently over the relevant range. Second, we substitute NEU for

full-dimensionality. Finally, we weaken the condition that all players must

have distinct Nash payoffs to all but one -- provided his Nash payoff is

strictly positive. However, unlike the (more intuitive) use of long

deterministic cycles in Benoit and Krishna (1985) , we simply rely upon

correlated outcomes. This has the useful biproduct of permitting an exact

(rather than approximate) folk theorem.

Let the best and worst Nash payoff vectors for player i in the stage game

G be y and z , Vi. Also, denote the set of subgame perfect equilibrium

payoffs by V(5,T).

Theorem 3

Suppose G satisfies NEU, and that either (a) every player has a strict

ranking among some pair of Nash outcomes, i.e. y > z Vk, or (b) all but

player 1 does, and that player I's unique Nash payoff is strictly individually

For symmetric games, f - f - 0. Hence NSM reduces precisely to no

simultaneous minimaxing.
6

In any symmetric game it is always possible to simultaneously minimax two
players, but not necessarily all players.

14



rational, i.e. y > z V ki^l, but y - z > 0. Then any point in F is a

subgame perfect equilibrium payoff of the finitely-repeated game when players

are sufficiently patient and the horizon is long enough. That is: V u € F
,

3 T < « and 6 < 1 so that T > T and 5 e [5 ,1] =» u € V(6,T).

Proof

We suppose first that mixed strategies are observable, and discuss how to

*
modify the argument later. Let y be a payoff vector according equal weight

1/n (via public randomizations) to each of the preferred Nash payoff vectors

^ _ _ * *
y . The typical T-period equilibritim outcome sequence is u u; y y ,

* — *
where y lasts s < T periods, and u € F will be seen to satisfy the required

target payoff equation

- *
(T-s)u + sy - Tu (4.1a)

if 5 - 1, or
'

(l-5^'')u + 5^"'(l-6')y* - (l-5^)u ^ (4.1b)

if 5 < 1. We now explicitly describe players' strategies. For ease of

exposition, late deviations are those occurring during the final q + r + s

periods of the repeated game; all others are called early deviations. Also

note that we interchangeably refer to an action and its associated payoff

vector.

1. Play u until period T - s. [If player j deviates early, start 2; if

player 1 deviates late, start 4.] Then play y until the end.

2. Play m for q periods. [If player k^j deviates, start 3.] Then set

k ^ j.

In this proof, j ,k, and i denote arbitrary players. Moreover, for clarity,
we use the simple notation k <- j to mean "assign k the value j." Also,
program steps always follow sequentially, unless otherwise indicated.
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3. Play X for r periods. [If some player j deviates early, restart 2;

if player £h1 deviates late, start 4; if 1 deviates late, start 5.]

Then return to step 1.

I
4. Play z until the end.

5. Play m until period 7 - s + ^y Sj [If player lr*l deviates, start

*
4.] Then play y until the end.

Notice that step 5 reflects our weakening of the distinct Nash payoff

requirement. Effectively, we enlist the support of players 2,3 n (who do

have distinct Nash payoffs) to ensure late compliance by player 1 (who might

not)

.

We proceed recursively as we ensure subgame perfection. First note that

given continuity of discounted sums in 5 , if each deterrent is strict by some

positive margin, say 1, they will remain strict for any level of discounting

5 e [5 ,1], for some S < 1.
^

8
We now choose q, r, and s. In light of x > 0, let q satisfy

w^ + qx'^ > b^ + 1 (4.2)
j J J

for all j e N, where b'^ is the best payoff vector for player j in G. Since

X < u too, (4.2) simultaneously renders the punishment interlude a strict

deterrent to deviations from steps 1 and 3, for any r. Next, step 3 deters

deviations by the punishers from step 2 if r is large enough that

qw'' + rx'^ > b'' + rx'' + (q - l)u +1 (4.3)

The inequality (4.2) -- in particular, why the left-hand side is not (q+l)x

-- reflects the fact that obeying the random correlating device generating x
might sometimes require j to play his worst possible outcome.
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for all kj'j . Given the u is as yet unspecified, we shall instead insist that

r satisfy

qw'' + rx'^ > b" + rx'' + (q - l)(2u - x"") + 1. (4.4)
^ k k k k k k

This will turn out to imply (4.3) once u is chosen. Thus, the punishment

interlude, steps 2 and 3, will deter deviations from step 1.

Next step 4 will deter all "late" deviations by players tr^l so long as s

is large enough that

(q+r+V^ )w^ + (s->/~s)y^ > b^+(q+r+s-l)z^ +1 (4.5a)

for all Ir'l. This inequality obtains for all sufficiently large s, because

for each player y» > z» for all tr*! , and since s grows faster than V s.

Similarly, step 5 is a deterrent to late deviations by player 1 from steps 3

and 5, respectively, provided

1 1*1 /— *
qw + rx + sy > b + (s - v s)y + 1 (^•5b)
^ 1 1 -^ 1 1

'
I

and

sy > b + (sV s)y + 1. i^-^c)

Clearly, for large enough s, inequalities (4.5a), (4.5b), and (4.5c) are

valid.

Recall that the personalized punishment vectors satisfy x < u Vk. It

now remains to ensure that T is always large enough that (1) yields u close

enough to u so that x < u Vk. We continue along these lines: We first

specify a lower bound T for T, and then proceed to verify that for any 8 > S

(appropriately chosen), the implied u works.

Given q, r, and s as defined above, feasibility entails T > q + r + s.

* *
Next, since u e F , there is some r;- neighborhood (in the hyperplane which F

17



*
spans) around u entirely contained within F . Then let T be sufficiently

large that

II u-y II < min(fj,min [u -x ]) (4.6a)
T - s

•'

J J j

so that

S
'

II u-y II < min(r7,min [u -x ]) (4.6b)--I~S JJJ

for all S < 1 and T > T .

Finally, given T > T , let each deterrent remain strict for all S e

[5 ,1], for some 6 < 1. Define u implicitly by the target payoff equation
O o

_ *
(la) or (lb). To verify that indeed u G F

,
(4.1a) and (4.1b) can be

rewritten as

^ [u-y*] if 5 - 1

u - u - < 5 ^ (4.7)
^T-s_L-0

^^_y J
if 5 < 1

1-5^''

— *
In light of (4.6a) and (4.6b), equation (4.7) both says that u e F and also

that

I
u -u

I
< min [u -x'^] (4.8)

k k j j j

for all k. By the triangle inequality, there are two immediate consequences

of (4.8). First, we may conclude that u < 2u - x , so that (4.4) implies

(4.3); and second, that

- k k -
u -X— u -x +u -u
k k k k k k

> [U -X^] - |u -U
I

>
k k^ ' k k '
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for all k, both of which were asserted earlier. Q.E.D.

We now address the knotty issue of unobservable mixed strategies.

Suppose that 5 has been chosen. Define c just as in (4.6) . but now let

p''\a ) satisfy for all a ,a' in the support of m , and t < q,
t j j j j

(l-5)7r, (a. ,m .) + [6 - 5^ ]p^ (a.)(c^ -x )
-

J J -J t J J J

(1-6)5T (a' ,m .) + [5^ - S ]p (a')(c -x ) .

J J -J t J J J

Thus we may modify, k la Theorem 1, our step 3. That is, play proceeds

probabilistically to one of several s -period phases, not an infinitely long

phase

.

Consider now the necessity of the conditions of Theorem 3. We do not

address the necessity of the proviso about distinct Nash equilibrium payoffs.

Rather, we consider the class '§ of games satisfying that criterion, and ask

whether NEU is needed. Suppose not. To wit, let a folk theorem obtain when

the one -shot game is G . Now imagine the supergame with stage game G as a

sequence of games G ((5,T). Clearly, if u is a subgame perfect discounted

average payoff for G (5,T), then it is also one for the infinitely repeated

*
game with stage game G . This establishes

Theorem 4

Suppose that NSM obtains. Then NEU is both necessary and sufficient for

the conclusion of the finite horizon folk theorem in the class of games §.

5. A Folk Theorem for Overlapping Generations Games

Smith (1992) considers a model of overlapping generations games

0LG(G;5,T), in which -- in its most basic formulation --a player dies and is
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9
replaced every T periods. Using the techniques developed in the previous

section, it is possible to render that folk theorem exact too. Moreover, its

full -dimensionality condition can also be weakened to payoff asymmetry.

Theorem 5

* *
Let u e F . Suppose that NEU holds. Then any point in F is a subgame

perfect equilibrium payoff of the overlapping generations game when players

are sufficiently patient and the overlap between player deaths is long enough.

*
That is, for any u e F , 3 T < « and 5 < 1 so that T > T and 5 e [5 ,1] =»

0LG(G;5,T) has a subgame perfect discounted average payoff u.

A parallel proof of this result is possible, but is omitted.

Once again, we ask if NEU is necessary here. The answer is not as

immediate. For in an overlapping generations context, because the players'

tenures do not coincide, we may also distinguish between them intertemporallv .

That is, we may await the death of specific players before rewarding or

punishing the others. The development of this idea is the substance of the

non-uniform folk theorems of Smith (1992) and Kandori (1992). Indeed, such a

folk theorem can obtain even when all players receive the same payoff :

however, any non-uniform result demands that the discount factor and horizon

length positively covary . That is, 6 1 1 necessarily as T
"f

"=».

This insight allows us to more generally think of NEU more generally as

just one method of awarding players separable payoff streams. For the uniform

result of Theorem 5, we must payoff distinguish between players at the stage

game level; punishments cannot be deferred. We must leave as an open question

the necessity of NEU for a uniform folk theorem for an overlapping generations

game. Our strong suspicion is that it is necessary, and that a convex

9
Kandori (1992) describes a related model, but doesn't consider the uniform

folk theorem discussed below.
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combination of the methods of Theorem 2 and of example 3 in Smith (1992) will

eventually do the trick.

6 . Concluding Remarks

We have established folk theorems by assuming that players have

non-equivalent utilities. This condition is weaker than the full

dimensionality condition introduced by Fudenberg and Maskin (1986). Our

condition is appealing in that it is easily interpreted (while full

dimensionality is a natural geometric concept, it lacks an immediate strategic

interpretation) and also minimal in the sense of being almost necessary. It

focuses on the deterrence of individual deviations as required by Nash

equilibrium theory; full dimensionality permits the greater but unnecessary

luxury of providing individually calibrated punishments to all players

simultaneously .

Dutta (1991) uses some of the ideas presented here in proving a folk

theorem for the more general class of stochastic games. An interesting

question is whether our results can be extended to other environments, such as

imperfect monitoring, in which full dimensionality has been invoked (see

Fudenberg, Levine, and Maskin (1989)) to prove folk theorems.
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