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Abstract

To what degree should societies allow inequality to be inherited? What role should estate

taxation play in shaping the intergenerational transmission of welfare? We explore these ques-

tions by modeling altruistically-linked individuals who experience privately observed taste or

productivity shocks. Our positive economy is identical to models with infinite-lived individ-

uals where efficiency requires immiseration: inequality grows without bound and everyone's

consumption converges to zero. However, under an intergenerational interpretation, previous

work only characterizes a particular set of Pareto-efficient allocations: those that value only

the initial generation's welfare. We study other efficient allocations where the social welfare

criterion values future generations directly, placing a positive weight on their welfare so that

the effective social discount rate is lower than the private one. For any such difference in social

and private discounting we find that consumption exhibits mean-reversion and that a steady-

state, cross-sectional distribution for consumption and welfare exists, where no one is trapped

at misery. The optimal allocation can then be implemented by a combination of income and

estate taxation. We find that the optimal estate tax is progressive: fortunate parents face

higher average marginal tax rates on their bequests.

1 Introduction

Societies inevitably choose the inheritability of inequality. Some balance between equality of oppor-

tunity for newborns and incentives for altruistic parents is struck. We explore how this balancing

act plays out to determine long-run inequality and draw some novel implications for optimal estate

taxation.

'For useful discussions and comments we thank Daron Acemoglu, Fernando Alvarez, George-Marios Angeletos,

Abhijit Banerjee, Gary Becker, Olivier Blanchard, Ricardo Caballero, Dean Corbae, Bengt Holmstrom, Narayana

Kocherlakota, Robert Luccis, Casey Mulligan, Roger Myerson, Chris Phelan, Gilles Saint-Paul, Nancy Stokey, Jean

Tirole and seminar and conference participants at Chicago, Minnesota, MIT and the Texas Monetary Conference

held at the University of Austin in honor of the late Scott Freeman. This work begun motivated by a seminar

presentation of Chris Phelan at MIT in May 2004. We also have gained significant insight from a manuscript by
Freeman and Sadler—we thank Dean Corbae for bringing it to our attention.



Existing normative models of inequality reach an extreme conclusion: inequality should be per-

fectly inheritable and rise steadily without bound, with everyone converging to absolute misery and

a vanishing lucky fraction to bliss. This immiseration result is robust; requires very weak assump-

tions on preferences (Phelan, 1998); and obtains invariably in partial equilibrium (Green, 1987,

Thomas and Worrall, 1990), in general equilibrium (Atkeson and Lucas, 1992), and across environ-

ments with moral-hazard regarding work effort or with private information regarding preferences

or productivity (Aiyagari and Alvarez, 1995).^

We depart minimally from these contributions, adopting the same positive economic models,

but a shghtly different normative criterion. In a generational context, previous work with infinite-

lived agents characterizes the instance where future generations are not considered directly, but

only indirectly through the altruism of earlier ones. On the opposite side of the spectrum, Phelan

(2005) proposes a social planner with equal weights on all future generations. Our interest here is in

exploring a class of Pareto-efficient allocations that take into account the current population along

with unborn future generations. We place a positive and vanishing Pareto weight on the expected

utility of future generations, this leads effectively to a social discount rate that is lower than the

private one.

This relatively small change produces a drastically different result: long-run inequality remains

bounded, a steady-state, cross-sectional distribution exists for consumption and welfare, social mo-

bility is possible and everyone avoids misery. Indeed, welfare typically remains above an endogenous

lower bound that is strictly better than misery. This outcome holds however small the difference

between social and private discounting, and regardless of whether the source of asymmetric infor-

mation is privately observed preferences or productivity shocks.

We begin by modeling a positive economy that is identical to the taste-shock setup developed

by Atkeson and Lucas (1992). Each generation is composed of a continuum of individuals who live

for one period and are altruistic towards a single descendant. There is a constant aggregate endow-

ment of the only consumption good in each period. Individuals are ex-ante identical, but experience

idiosyncratic shocks to preferences that are only privately observed — thus ruling out first-best allo-

cations. Feasible allocations must be incentive compatible and must satisfy the aggregate resource

constraint in all periods.

When only the welfare of the first generation is considered, the planning problem is equivalent

to that of an economy with infinite-lived individuals. Intuitively, immiseration then results from

the desire to smooth the dynastic consumption path: rewards and punishments, required for incen-

tives, are best delivered permanently. As a result, the consumption process inherits a random-walk

component that leads cross-sectional inequahty to grow endlessly without bound. Infinite spreading

of the distribution is consistent with a constant aggregate endowment only if everyone's consump-

'Many find the immiseration result perplexing and some even find it morally questionable, but it is also incon-

venient from a practical standpoint. Long-run steady-states often provide a natural benchmark to study dynamic

economies, but such long-run analyses are not possible for private-information economies without a steady-state

distribution with positive consumption. This has impaired the study of long-run implications of optimal taxation,

so common in the Ramsey taxation literature.



tion eventually converges to zero. Note, that as a consequence, no steady-state, cross-sectional

distribution with positive consumption exists.

Across generations, this arrangement requires a lock-step link between the welfare of parent and

child. Of course, the perfect intergenerational transmission of welfare improves parental incentives

— but at the expense of exposing newborns to the risk of their parent's luck.

By contrast, it remains optimal to link the fortunes of parents and children in our model, but

no longer in lock-step. Rewards and punishments are distributed over all future descendants, but

in a front-loaded manner. This creates a mean-reverting tendency in consumption — instead of a

random walk — that is strong enough to bound long-run inequality. The result is a steady-state

cross-sectional distribution for consumption and welfare, with no fraction of the population stuck

at misery.

We also study a repeated Mirrleesian version of our economy and derive imphcations for optimal

estate taxation. In this model, individuals have identical preferences with regard to consumption

and work effort, but are heterogenous in the productivity of their work effort. Information about

productivity and work effort is private — only the resulting output is publicly observable. We show

that the analysis from the taste-shock model carries over to this setup, virtually without change. In

particular, a very similar Bellman equation characterizes the solution to the social planning prob-

lem: consumption exhibits mean-reversion and has a steady-state cross-sectional distribution. This

outcome highlights the fact that our results do not require any particular asymmetry of information.

More importantly, the Mirrleesian model offers new insights into estate taxation. Feasible al-

locations can be implemented by combining income and estate taxes. Specifically, we find that a

progressive estate tax, which imposes a higher average marginal tax rate on the bequests of fortu-

nate parents, is optimal. This result reflects the mean-reversion of consumption: more fortunate

dynasties, with relatively high levels of current consumption, must have a declining consumption

path induced by higher estate tax rates that lower the net rates of return across generations.

Finally, an important methodological contribution of this paper is to reformulate the social

planning problem recursively. In doing so, we extend ideas introduced by Spear and Srivastava

(1987) to situations where private and social preferences differ. Indeed, we are able to reduce

the dynamic program to a one-dimensional state variable, and our analysis and results heavily

exploit the resulting Bellman equation.'^ Our dynamic program also offers an efficient and accurate

computational strategy, as illustrated by an example in Section 4.

Related Literature. Our paper is most closely related to Phelan (2005), who considered a

social planning problem with no discounting of the future. He shows that if a steady state for the

planning problem exists then it must solve a static maximization problem, and that solutions to this

problem have strictly positive inequahty and social mobility. Our paper establishes the existence

of a steady-state distribution for the planning problem for any difference in social and private

discounting. Unlike the case with no discounting, there is no associated static planning problem for

^We also present a recursive formulation with a two-dimensional state-variable that has a very simple economic

interpretation and is useful for developing an intuitive understanding of our results.



steady-state distributions, and as a result, the methods we develop here are very different.

In overlapping-generation models without altruistic links, all market equilibria that are Pareto

efficient place positive direct weight on future generations. Bernheim (1989) was the first to point

out that in the dynastic extension of these models with altruism, many Pareto efficient allocations

are not attainable by the market. Kaplow (1995) argued that these Pareto efficient allocations

are natural social objectives and that they can be implemented by market equilibria with estate

taxation policy. The estate tax is negative — it is a subsidy — so as to internalize the externality

of giving on future generations.

Our work contributes to a large literature on dynamic economies with asymmetric information.

In addition to the work mentioned above, this includes recent research on dynamic optimal taxation

(e.g., Golosov, Kocherlakota and Tsyvinski, 2003; Albanesi and Sleet, 2004; and Kocherlakota,

2004). This hterature has been handicapped by the immiseration result and by the non-existence of a

steady-state distribution with positive consumption, making it difficult to draw long-run conclusions

for optimal taxation. Our results provide an encouraging way to overcome this problem.

Our work is also indirectly related to a paper by Sleet and Yeltekin (2004), who study an Atkeson-

Lucas environment with a utilitarian planner, who lacks commitment and cares only for the current

generation. In this environment, as in Phelan's, it is a foregone conclusion that immiseration will not

hold, so the interesting question is how to solve for the best subgame-perfect equilibria. Sleet and

Yeltekin derive first-order conditions from a Lagrangian and use these to numerically simulate the

solution. Interestingly, it turns out that the best allocation in their no-commitment environment is

asymptotically equivalent to the optimal one with commitment but featuring a more patient welfare

criterion. Thus, our analysis and results provide an indirect, but effective way of characterizing the

no-commitment problem and of formally establishing that a steady-state distribution with no one

at misery exists.

The rest of the paper is organized as follows. Section 2 introduces the economic environment

and sets up the social planning problem. In Section 3, we develop a recursive version of the planning

problem and draw its connection to our original formulation. The resulting Bellman equation is

then put to use in Section 4 to characterize the solution to the social planning problem. Here we

derive our main results on mean-reversion and on the existence of a steady-state distribution for

consumption. We discuss these results in Section 5 and develop intuition for them by studying

some related problems and reformulations. In Section 6, we turn to the canonical optimal-taxation

setup with productivity shocks and focus on its implications for estate taxes. Section 7 offers some

conclusions from the analysis. All proofs omitted in the main text are contained in the Appendix.

2 A Social Insurance Problem

The backbone of our model requires a tradeoff between insurance and incentives. This tradeoff

can be due to private information regarding either productivity or preferences. For purposes of

comparison, we first adopt the Atkeson-Lucas taste-shock specification. In Section 6, we adapt our



arguments to a repeated Mirrleesian model with privately observed productivity shocks. Similar

arguments could be applied to moral-hazard situations with unobservable effort choices.

Our positive economy is identical to that of Atkeson-Lucas — the differences are only normative.

An infinite-lived agent can be interpreted as a dynasty of individuals who have finite lives but are

altruistically linked. Under this interpretation, Atkeson-Lucas and others focus on a particular

set of efficient allocations: those that only directly consider the welfare of the initial generation.'^

In contrast, our interest here lies with efficient allocations that directly weigh the welfare of all

future generations. This approach is asymptotically equivalent to postulating preferences for an

infinitely-lived social planner who is more patient than individuals.

Demography, Preferences and Technology. At any point in time, our economy is populated

by a continuum of individuals who have identical preferences, live for one period, and are replaced

by a single descendant in the next. Parents born in period t are altruistic towards their only child

and their utility Vt satisfies

vt = Et-i [9tu{ct) + pvt+i] ,

where q > is the parent's own consumption and /3 G (0, 1) is the altruistic weight placed on the

descendant's utility Vt+i- We assume that the utility function u : M+ —
> R is continuous, concave,

and continuously differentiable for positive consumption levels, with the Inada conditions w'(0) = oo

and w'(oo) = 0. The extremes v = u{0) and v = u(oo) may or may not be finite. We let c{u) denote

the inverse of the utility function c = m~^, or cost function. The taste shock ^ G is distributed

identically and independently across individuals and time. For simplicity, we assume is finite and

adopt the normalization that E[^] = 1.

This specification of altruism is consistent with individuals having a preference over the entire

future consumption of their dynasty given by

Vt J2P'^t-l[0t-,sU{(k+s)]. (1)

In each period, a resource constraint limits aggregate consumption to be no greater than some

constant aggregate endowment e > 0. These specifications of individual preferences and technology

are precisely those adopted by Atkeson-Lucas.

Social Welfare. We depart from Atkeson-Lucas by assuming that the social welfare criterion can

be represented by preferences given by the utility function

oo

J2P'^-i[9tu{ct)], (2)

t=0

with P > p. Thus, social preferences are identical to the individual preferences given by (1), except

The final paragraph in Atkeson-Lucas's paper discusses the possible importance of relaxing this assumption.

However, the approach taken in the literature has been to impose an exogenous lower bound on ex-post lifetime

utility, as in Atkeson and Lucas (1993) and Albanesi and Sleet (2004).



for the discount factor.

This setup puts weight on the welfare of future generations directly. Future generations are

already indirectly valued through the altruism of the current generation. If, in addition, they are

also directly included in the welfare function the social discount factor must be higher than p. To

see this, consider the utilitarian welfare criterion

oo oo

5]a*E_it;4 = J]<5tE_i[^iw(Q)], (3)

where 5^ = /3* + (5^~^a + • • • + [3q^~^ + a*. Then the discount factor satisfies

and social preferences are more patient. In the limit St+i/St -^ max(/3,tt), so the welfare criterion

(3) approaches (2) with $ = max(/3, a).^'^

Atkeson-Lucas' analysis applies to the case with /? = /3, so we focus on the case where enough

weight is placed on future generations to ensure that the long-run social discount factor remains

strictly higher than the private one, $ > /3. Although we adopt the preference in (2) directly for

the rest of the paper, we also briefly show how our analysis can be easily adapted to work with the

welfare criterion (3). These two specifications are slightly different for any finite horizon but are

identical for the long-run, which is our primary concern.

Information and Incentives. Taste shock realizations are privately observed by individuals and

their descendants. The revelation principle then allows us to restrict our attention to mechanisms

that rely on truthful reports of these shocks. Thus, each dynasty faces a sequence of consumption

functions {q}, where Ct{9'^) represents an individual's consumption after reporting the history 9^ =

{0o,9i, ...,6't). A dynasty's reporting strategy a = {at} is a sequence of functions at :

0*"''^ —
> O

that maps histories of shocks 9* into a current report 9t. Any strategy a induces a history of reports

(7* :
0* -» 9*. We use a* to denote the truth-teUing strategy with cr*(6'*) = 9t for all 9* e QK

Given an allocation {q}, the utility obtained from any reporting strategy a is

oo

U{{ct},a;P)=J2 Yl P%u{ct{a\e')))Pr{9').

t=Q 6(«ee*+i

^Caplin and Leahy (2005) argue that a similar logic applies to intra-personal discounting within a lifetime. This

leads to a social discount factor that is greater than the private one not only across generations, but within generations

as well.

^One can also adopt the more general welfare criterion E_i ^Zt^o '^t^t ^°^ some sequence of positive Pareto weights

{q;}, where the weight at can be interpreted as the probability of being born into generation t for "souls behind the

veil of ignorance. "In particular, the sequence qq = (1 — 0)/{l — P) and at = aoP for i > 1 delivers St+i/5t = $ for

all i = 0,1,..



An allocation {cj} is incentive compatible if truth-telling is optimal:

U{{ct},a*:P) >U{{ct},a;P). (4)

Social Planning Problem. Following Atkeson-Lucas, we identify each dynasty with a number

V, which we interpret as its initial entitlement to expected, discounted utility, vq = v. We assume

that all dynasties with the same entitlement v receive the same treatment. We then let tp denote a

distribution of utiUties v across the population of dynasties: V^(/l) is the fraction of dynasties who

wiU receive expected discounted utility in the set yl C M.

An allocation is a sequence of functions {cJ'} for each v, where c\{9^) represents the consumption

that a dynasty with initial entitlement v gets at date t after reporting the sequence of shocks 9*'

.

For any given initial distribution of entitlements ijj and resources e, we say that an allocation {c^

}

is feasible if: (i) it is incentive compatible for all dynasties; (ii) it delivers expected utility of at

least V to all initial dynasties entitled to v\ and (iii) average consumption in the population does

not exceed the fixed endowment e in all periods.

A social optimum maximizes the average social welfare function, weighed by ip, over all feasible

allocations. That is, the social planning problem given an initial distribution of entitlements -(/; is

to maximize

subject to i; = U{{c1} , a*
; 0) > C/({c^}, a;/?) for all v, and

/ J2 Ct (^*) Pr{e')dw{v) <e t = 0,l, ... (5)

Steady States. Our focus is on distributions of utility entitlements ip such that the solution

to the planning problem features, in each period, a cross-sectional distribution of continuation

utilities Vt that is also distributed according to xp. We also require the cross-sectional distribution

of consumption to replicate itself over time. We term any initial distribution of entitlements with

these properties a steady state and denote them by ip* . As we shall demonstrate below, continuation

utility constitutes a state variable that follows a Markov process, and steady states are then invariant

distributions of this process.

Note that in the Atkeson-Lucas case, with P = P, the non-existence of a steady state with positive

consumption is a consequence of the immiseration result. Starting from any initial distribution of

entitlements the sequence of distributions converges weakly to the distribution having full mass

at misery and zero consumption for everyone. This distribution constitutes a trivial steady state,

which does not exhaust the endowment and is Pareto dominated by an allocations that improves

everyone's welfare and the social welfare criterion. In contrast, in our model we seek non-trivial

steady states that exhaust the aggregate endowment in all periods.



3 A Bellman Equation

In this section we study a relaxed version of the social planning problem. This has two advantages:

First, because the relaxed problem can be solved by studying a set of subproblems — one for each

dynasty with entitlement v — we avoid the need to keep track of the entire population. Second,

each of these subproblems admits a simple recursive formulation, which can be characterized quite

sharply.

Consider a relaxed planning problem where the sequence of resource constraints (5) is replaced

by the single intertemporal condition

/oo oo

5]Q,J]cn^*)Pr(^*)d^(i;)<e5]g„ (6)

for some positive sequence {Qt} with Yl't^o Qt < c«- Oi^e can interpret this problem as representing

a small open economy facing intertemporal prices {Qt}- The relaxed and original versions of the

planning problem are related in that any solution to the former which happens to satisfy the

resource constraints in (5) must also be a solution to the latter. A Lagrangian argument establishes

the converse: there must exist some positive sequence {Qt} such that the solution to the original

planning problem also solves the relaxed problem. Most importantly, any steady-state solution to

the relaxed problem is a steady-state solution to the original one.

Our focus on steady states leads naturally to Qt = q^ for some q > 0. Indeed, steady states

are only compatible with q — $, so we adopt this 'value for the relaxed problem from this point

forward.^ Attaching a multiplier A > to the intertemporal resource constraint (6), we can form

the Lagrangian L = f L^dip{v) where

oo

and study the optimization of L subject to v = U {{c^} , a*
; P) > U{{c^},a;P) for all v. This is

equivalent to the pointwise optimization, for each v, of the subproblem k{v) = supL*' subject to

V = U {{c^} , a*
; P) > f/({C(}, cr;/3). Where there is no risk of confusion, we henceforth drop the

superscript v when denoting allocations {c^}.

Our first result characterizes the value function and shows that it satisfies the Bellman equation

k{v) = m&xE\eu{e) - Xc(u{e)) + pk(w{e))] (7)

subject to

V = E[9u{9) + pw{9)] (8)

''A simple variational argument can be used to show that Qt+i/Qt = P for any relaxed problem at an invariant

distribution with a finite average value for c'{ut).



eu{e) + pw{0) > 9u{e') + pw{e') (9)

for all ^,^' e0."

Theorem 1 The value function k{v) is continuous, concave, and satisfies the Bellman equation

(V-(9).

The recursive formulation imposes a promise-keeping constraint (8) and an incentive constraint

(9). Intuitively, the latter rules out one-shot deviations from truth-telling, guaranteeing that telling

the truth today is optimal if the truth is told in future periods. This is necessary to satisfy the

full incentive-compatibility condition (4). The rest is implicitly taken care of in (7) by evaluating

the value function at the continuation utility: for any given continuation value w[9), envision the

planner in the next period solving the remaining sequence problem by selecting an entire allocation

that is incentive compatible from then on. Then k{w{9)) represents the value to the planner of

this continuation allocation. Taken together, a pair u{9) and w{9) that satisfies (8)-(9) pasted with

the corresponding continuation allocations for each w{9), yields an allocation that satisfies the full

incentive-compatibility (4). The objective function in (7) then represents the value to the planner

of this allocation.

Among other things, Theorem 1 shows that the maximum in the Bellman equation (7) is at-

tained. We let the policy functions g^{9,v) and g^{9,v) denote the unique solutions for u and w,

respectively. For any initial utility entitlement Vq, an allocation {ut} can then be generated from the

policy functions (^",y^) by setting Uo{9o) = g^{9o,vo) and defining Mt(^*) and Wt+i(^*) recursively

for t > 1 using ut{9') = g^{9t,v^{9'-')) and v^+,{e') = g^{9t,Vt{9'-')).

Our next result elucidates the connection between allocations generated from the policy functions

in this way and solutions to the planning problem.

Theorem 2 (a) An allocation {ut} is optimal for the relaxed problem, given Vq, if and only if it

is generated by the policy functions {g^,g^) starting at vo, is incentive compatible, and delivers a

lifetime utility of Vq; (h) an allocation {ut} generated by the policy functions (g^ig^), starting at

vq, has limt_»oo /?*IE-if((^*~'^) — and delivers utility vq; (c) an allocation {ut.,Vt} generated by the

policy functions {g^,g^), starting from Vq, is incentive compatible if

limsupE_i/3*Ui((j*-^(^*-^)) >0
t—»oo

for all reporting strategies a.

Part (a) of Theorem 2 implies that either the solution to the relaxed planning problem is

generated by the policy functions of the Bellman equation, or there is no solution at all. Parts (b)

and (c) of the theorem show that the first case is guaranteed if we can verify the limit condition in

^We study a Bellman equation that also characterizes the problem for g 7^ /? in Section 5.



part (b). The latter is automatically satisfied for all utility functions that are bounded below and

we will see that it can be verified in other cases of interest.^

We close this section with a detour and state the Bellman for the relaxed planning problem

associated with maximizing the welfare criterion (3). Define k{v) = sup Ylu^o '^*^-i['^t~-^cJ'] subject

to f = U{{dl},(T*;/3) > U{{c^},a]P). Then very similar arguments imply that the value function

k{v) satisfies the Bellman equation

~k{v) = maxETu - Xc(u{e)) + ak(w{e))]
u,w

subject to (8) and (9). Because this Bellman equation is almost identical to the one in (7), the

analysis and results that follow can easily be adapted to this case.

4 Optimal Inequality

In this section we exploit the connection between the Bellman equation and the planning problem.

We characterize the solution and derive a key equation that illustrates mean-reverting forces in the

dynamics of consumption. The main result of the section is to establish that these forces are strong

enough to imply the existence of an invariant distribution with no misery. Finally, we provide

sufficient conditions that verify the requirements of Theorem 2, and ensure that a solution to the

planning problem exists.

Mean Reversion

We are now in a position to study the Bellman equation's optimization problem. To begin, we

justify the use of first-order conditions with the following lemma:

Lemma 1 The value function k{v) is strictly concave and differentiable on the interior of its do-

main, with \iiny^yk'{v) = — oo. If utility is unbounded below, then liiny^yk'{v) = 1. Otherwise

\imy^yk'{v) = oo.

Let A = k'{v) be the multiplier on the left-hand side of the promise-keeping constraint (8) and

let n{9,9') be the multipliers on the incentive constraints (9). The first-order condition for u{6) is

1 - Xc'{u{e))]p{9) - e\p{e) + Y^ Oi^ie, e') -^ e'^{e, e') < o,

^Theorem 2 involves various applications of versions of the Principle of Optimality. For example, given policy

functions {g'\g^) and an initial value Vo, the individual dynasty faces a recursive dynamic programming problem

with state variable v. Conditions (8) and (9) then amount to guessing and verifying a solution to the Bellman

equation of the agent's problem. In particular, that the value function that solves the Bellman equation, with truth

telling, is the identity function. However, one needs to verify that this value function indeed represents the true

value from the msjcimization of the dynasty's sequential problem. This verification is accomplished by part (c) of

Theorem 2.

10



with equality if u (9) is interior. The solution for w{9) must be interior, given the Inada conditions

for k{v) derived in Lemma 1, and must satisfy the first-order condition

pk'{w{e))p{9) - f3\p{9) +PY1 i^{9, 9')-PY1 ^(^' ^') = 0-

e' e'

Using the envelope condition k'{v) = A and adding up across 9, this becomes

Y,k'{w{9))p{9) = ^k'{v).

This key equation can be represented in sequential notation as

E,.^[k'{vt+,{9'))] = ^k'{vt{9'-')). (10)

where {vt} is generated by the policy function g^. Thus, {k'{vt)} is a Conditional Linear Auto

Regressive (hereafter: CLAR) Markov process. Note that we can translate anything about the

process {k'{vt)} into implications for the process {vt}, since the derivative k'{v) is continuous and

strictly decreasing. Likewise, using the policy function g^{9,v), conclusions about the process {vt}

provide information about the process for consumption.

The conditional expectation in (10) illustrates that /3//3 < 1 creates a force for mean reversion

for the process {k'{vt)} toward zero. Lemma 1 imphes that the value function k{v) has an interior

maximum, so reversion occurs towards an interior utility level — away from misery. This feature

is key to our results on the existence of invariant distributions. By contrast, in the Atkeson-Lucas

model with /3 = /?, a CLAR equation similar to (10) also holds, but the relevant value function in

this case is monotone.

To see this we write the Bellman equation for the relaxed problem in the Atkeson-Lucas case and

derive its CLAR Euler equation. Even though no steady state exists in this model, if we assume

a constant relative risk aversion utility function, then the relaxed problem does characterize the

social planning problem for an appropriately chosen value of the price qal- The associated Bellman

equation is

KAL{v)=mmE[c{u{9))+qALKAL{w{0))]
U,W L \ / \ / J

subject to (8) and (9). Crucially, here the value function KAiiv) is strictly increasing, so that

K'^i [v) > 0. The envelope and first-order conditions yield the CLAR Euler equation

E ^"alH0))p{9) = ^K,{v),

11



similar to condition (10) when qal > P-^ However, the critical difference is that here {-^^^^(^4)} is a

non-negative process, which implies by the Martingale Convergence Theorem that it must converge

almost surely (a.s.) to some finite value. Since incentives must be provided using continuation

utilities g^(9,v) ^ g'^{0,v), this rules out anything other than K'^j^{vt) —> a.s. Immiseration then

follows, Vt ^ V and q —;> a.s. This highlights the technical importance of our value function's

non-monotonicity, which in turn hinges on the lower social discounting [3 > fi.

Economically, the mean-reversion equation implies a form of social mobility. That is, descendants

of individuals with current welfare above v will eventually fall below v* , and vice versa. The resulting

rise and fall of famiUes illustrates a strong intergenerational mobility in the model.

Our next result pushes the characterization of reversion past the average behavior of the {k[}

process by deriving bounds for its evolution. These bounds are critical for guaranteeing the existence

of an invariant distribution with no mass at misery. We summarize the previous CLAR equation

and state the next result in the following proposition:

Proposition 1 The policy function satisfies

J2k'{g'"{e,v))p{9) = ^k'{v).

dee P

Define the constants

7 = iP/P) max{{l + er.-E{e<9n])/en),
l<n<N

7 = iP/P) 2min^(l + ^n-i - E[^
i

^ > ^„]/^„_i).

Then (a) if utility is unbounded below,

7(1 - k\v)) +
(^1

- < 1 - k'{g-{e, v)) < 7(1 - k'{v)) + (1
- (11)

and (b) if utility is bounded below with u{0) = 0, for values of v such that k'{v) > 1, we have

u{e) =

w{e) = p-^v>v

k'{w{e)) = {p/p)k\v)

for all 9 E Q. For values of v such that k'{v) < 1, the lower bound in (11) holds; the upper bound

in (11) holds for sufficiently high v.

°With logarithmic utility the partial cqiiilibrinm sohition with qal = P features constant average consumption.

Thus, it is also a solution to the problem that imposes an aggregate resource constraint in every period. With the

constant relative risk aversion utility function u{c) = c^'" /{I — a) there is a value of qal, for each value of a, that

has the same effect. Indeed, for ct < 1 the appropriate qal satisfies qal > P-
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Proposition 1 illustrates a powerful tendency away from misery. For example, with utility

unbounded below, continuation utility g'^{9, v) remains bounded even as t" ^ — oo. Thus, no matter

how much a parent is supposed to be punished, his child is always somewhat spared.

Main Result: Existence of an Invariant Distribution with No Misery

We now state the main result of this section: if a solution to the relaxed planning problem exists,

then it admits an invariant distribution with no misery. The proof of this result relies on the

conditional-expectation equation (10) and the bounds in Proposition 1. Thus, it makes use of both

mean-reversion properties discussed in the previous subsection. ^°

Proposition 2 The existence of an invariant distribution ip* with no mass at misery, Tp*{{v}) = 0,

for the Markov process {vt} implied by g'^ is guaranteed if either: utility is unbounded below, utility

is bounded above, or j < 1.

Proposition 2, when combined with part (a) of Theorem 2, leaves open only two possibihties: (i)

the rela:xed problem admits a steady-state invariant distribution with no misery; or (ii) no solution

exists. This situation contrasts strongly with the Atkeson-Lucas case, with /? = /?, where a solution

exists but does not admit a steady state, and everyone ends up at misery. Towards the end of this

section we show that a solution to the planning problem can be guaranteed so that case (i) holds.

Our Bellman equation also provides an efficient method for explicitly solving the planning prob-

lem. We illustrate this with two examples, one analytical and another numerical.

Example 1. Suppose utility is CRRA with a — 1/2, so that u{c) = 4c^/^ for c > and c{u) = u^/2

for IX > 0. Atkeson-Lucas cover this case for P = $ and show that the optimum involves consumption

inequality growing without bound, leading to immiseration.

Consider the relaxed problem where we ignore the non-negativity constraints on u and w,

k{v) = ma^E\eu{e) - XuiOf 12 + Mw{e))]
,

U,W \ / J

subject to (8) and (9). This is a linear quadratic dynamic programming problem, so the solution is

a quadratic value function with linear policy functions in v.

g^{9,v) = j-{e)v + ro{0)

For taste shocks with sufficiently small amplitude we can guarantee, by continuity with the deter-

ministic case = 9, that -y'^{9) < 1 and 7"'(^) > 0, implying a unique bounded ergodic set for utility

[vl,vh] with vl > 0. Moreover, g'^{9,v) > for u G [vl-,vh\- Hence, since the planning problem is

^"When utility is bounded below, we either require that utility be bounded above, or that 7 < 1 — which is

ensured for a small dispersion of the shocks — as a simple way of ensuring that the ergodic set is bounded away
from misery. It seems very plausible, however, that these conditions could be dispensed with.
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Figure 1: Policy functions g'^{6,v) Figure 2: Policy function g'^{6,w)

convex and utility turns out to be strictly positive at the steady state, this solution does solves the

original problem with non-negativity constraints on u.

Example 2. To illustrate the numerical value of our recursive formulation, we compute the solution

for the logarithmic case with P = 0.9, p = 0.975, e = (A)-i = 0.6, Oh = 1.2, Oi = 0.75 and p = 0.5.

We iterated on the Bellman equation for k{v) until convergence.^^

Figure 1 plots the policy function for continuation utility in consumption-equivalent units,

c{v{l — P)) against c{g"'{9,v){l — /?)), while Figure 2 does the same for the pohcy function for

consumption, c{v{l — P)) against g'^{9,v). Both policy functions are monotonic and smooth. Figure

1 reveals a unique, bounded ergodic set for v. Note that both policy functions become nearly flat for

low values of v. This illustrates the result, discussed immediately after Proposition 1, that utility

is kept above some endogenous bound.

Figure 3 displays the steady-state, cross-sectional distribution of dynastic utility measured in

consumption-equivalent units, c{v{l — P)) implied by the solution to the planning problem. ^^ The

'^The details of this numerical exercise where as follows: we solved for u{9) as a function of w {0) using the

incentive and promise-keeping constraints. We then maximized over w{9). We employed a grid for v defined in

terms of equally spaced consumption-equivalent units c((l — (3)v) = {0.01, ..., 2}. Results with a grid size of 100

and 300 were similar; we report the latter. We used Matlab's splines package to interpolate the value function

and used fmincon.m as our optimization routine over w{9). Our iterations were initialized with the value function

corresponding to the feasible plan that features constant consumption:

ko{v)
v{l - ,6) - \c{v{l - ,6))

1-13

We stopped the iterations when ||fcn(u) — A':„_i(w)|| < 10~''-° and verified that the policy functions had also converged.

Note that g"'(0,t') is well within the interior of [.01, 2], so that the arbitrary upper and lower bounds from our grid

choice were not found to be binding.

'^^The invariant distribution was approximated by generated a Monte Carlo simulation for the dynamics of the Vt

process generated by g^, with an arbitrary initial value of vq. Since this process converges to a unique invariant

distribution ip, starting from any initial value of Vq, the frequencies in a long time-series sample approach the

frequencies of 0. To create the figure we used Matlab's Wavelet Toolbox to approximate the density from the

simulated Monte-Carlo sample.
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utility in consumption equivalent units

Figure 3: Steady-State Distributions of DjTiastic Utility

long-run distribution has a smooth bell-curve shape — a feature that must be due to the smooth,

mean-reverting dynamics of the model, since it cannot be a direct consequence of our two-point

distribution of taste shocks. The figure also shows the invariant distributions for various values of

/?. The degree of inequality appears to decrease with higher values of /?. This outcome is suggested

intuitively by the coefficient on the CLAR equation (10) and the discussion in Section 5 on features

of the impulse response to shocks. These simulations also support the natural conjecture that as

we approach the Atkeson-Lucas case, 3 -^ (3, the resulting sequence of invariant distributions blows

up. since no steady state with positive consumption exists when $ = (3.

We now tmn briefly to issues of uniqueness and stability for the invariant distribution guaranteed

by Proposition 2. This question is of economic interest because it represents an even stronger notion

of social mobihty than that implied by the mean-reversion condition (10) discussed in the previous

subsection. That is, if convergence toward the distribution tp" occurs starting from any initial

utiUty level vq, then the fortunes of distant descendants — the distribution of their welfare — is

independent of the individual's present condition. At the optimum, the past always exerts some

influence on the present, but its influence is bounded and dies out over time, so that the advantages

or disadvantages of distant ancestors are eventually wiped out.

Indeed, under some conditions we can guarantee that the social optimum in our model does

display this strong notion of social mobility. To see this, suppose the ergodic set for the {kf}

process is compact. This is guaranteed, for example, by applying Proposition 1 when 7 < 1. Then,

if the policy function g^{9,v) is monotone in v, the invariant distribution ip* is unique and stable

in the sense that, starting from any initial distribution ipQ, the sequence of distributions {^t},
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generated by g'^, converges weakly to ip* . This follows since the conditional-expectation equation

(10) ensures enough mixing to apply Hopenhayn-Prescott's Theorem. ^^ The monotonicity of the

policy functions for continuation utility w seems intuitive and plausible, as illustrated by Examples

1 and 2.14

Another approach suggests uniqueness and convergence without relying on monotonicity. Grun-

wald, Hyndman, Tedesco and Tweedie (1999) show that one-dimensional, irreducible Markov processes

with the Feller property that are bounded below and satisfy a CLAR condition, such as (10), have

a unique and stable invariant distribution. Moreover, convergence to this distribution from any

initial distribution is fast, in the sense that it occurs at the geometric rate P/$. All the require-

ments of their theorem have been verified already for our model, except for the technical condition

of irreducibility, which is likely to hold if we were to assume that the taste shock has a continuous

distribution. We do not pursue this formally other than to note that the forces for reversion in (10)

could be further exploited to establish uniqueness and convergence.

Our focus on steady states, where the distribution of utility entitlements replicates itself over

time, has exploited the fact the relaxed and original planning problems then coincide. For the loga-

rithmic utility case we can do more: we characterize transitional dynamics for any initial distribution

of entitlements.

Proposition 3 (a) If utility is logarithmic, then for any initial distribution of utility entitlements

ijj there exists a value of e such that the solution to the relaxed and original social planning "problem

coincide, (h) Suppose two distributions of utility entitlements satisfy ip"' > ip^ in the sense of

first-order stochastic dominance, then the associated endowments satisfy ea > et-

Proof, (a) Consider the relaxed social planning problem for some A = e~^. We first show that

its solution also solves the original social planning problem for any distribution ipQ that satisfies

/ k'{v; e)dip{v) — 0. We then show that there exists a value for A = e~^ for any initial distribution.

Since utility is unbounded below, we have k'{vt) = Ei_i[l — Xc'{ut)]. Applying the law of iterated

expectations to (10) then yields

E_i[l-Ac'K(^*))] = (^0^'^ V

-1

With logarithmic utihty c'{u) = c{u), so that J k'{v)d'ip{v) = imphes jE^iCtdip = A = e for all

t = 0, 1, ... The allocation is incentive compatible by Proposition 2 below, and applying part (c) of

Theorem 2, it follows that it must solve the original planning problem.

Now consider any initial distribution ip. We argue that we can find a value of A = e"^ such that

J k'{v; e)dip{v) = 0, and the result then follows immediately. We denote the value function for the

^'^See pg. 382-38:i in Stokey, Lucas and Prescott (1989).

^'^Indeed, it can be shown that g^ (v, 9) is strictly increasing in v. However, although we know of no counterexample,

we have not found conditions that ensure the monotonicity of g^{6, (O.v)) for 9^6.

16



relaxed problem with A = e ^ by k{v; e). The homogeneity of the sequential problem implies that

the value function must satisfy

^^^' ^^ " VI^ ^^^^^^ + k(v- ^— log(e); 1

Note that k'{v — log(e)/(l — /?); 1) is strictly increasing in e and limits to 1 and — oo as e —* oo and

e ^^ — oo, respectively. It follows that

/
k'{v] e)dij{v) =

I
k' (v - -^ log(e); 1

j
d^p{v) = (12)

defines a unique value of e for any initial distribution ^q-

(b) This part follows immediately from equation (12) which determines e by using the fact that

A;'(-; 1) is a strictly decreasing function.

Perhaps of particular interest is the situation where the planning problem is modified to select

the best initial distribution, instead of taking one as given. Then all initial dynasties are treated

identically at the outset and started with the utility level v* that solves k'{v*) =0. With logarithmic

utility the social optimum then coincides with the solution to the relaxed problem. Then our

previous discussion of convergence to a unique invariant distribution '0* can be reinterpreted in

terms of the stability of the cross-sectional distribution in the population. If the Markov process

{vt} is stable then the cross-sectional distribution of welfare and consumption in the population

will eventually settle down to the steady state.

The economic interest behind part (b) is that it implies that the solution to the planning

problem is ex-post Pareto efficient in the following sense. Consider the optimal allocation that

attains a distribution of entitlements ifj with some constant endowment level e. The proposition

then implies that there is no alternative allocation that improves the social welfare criterion and

creates a Pareto improvement among individuals in the current generation. That is, the optimal

allocation also solves the original social planning problem modified to require [/({cJ'},cr*;/3) >v\n.

place of U{{dl}, a*;P) = v. Since this result holds for any distribution of entitlements it also holds

for the distribution of continuation utilities implied by the optimal allocation in any period. Thus,

in this sense, the optimal allocation is ex-post Pareto efficient.

Sufficient Conditions for Verification

We conclude this section by describing sufficient conditions for a solution to the planning problem

to exist at the steady state ip* identified by the policy functions in Proposition 2. This involves two

steps. First, we establish that allocations generated by the policy functions are indeed incentive

compatible by verifying the condition in part (c) of Theorem 2. Second, we verify that average

consumption is finite under the invariant distribution ip*.
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Lemma 2 The allocation generated from the policy functions {g^,g^), starting from any vq, is

guaranteed to be incentive compatible in the following cases: (a) utility is bounded above; (b) utility

is bounded below; (c) utility is logarithmic; or (d) ^ < 1 or 7 > 0.

Proof, (a) If utility is also bounded below, then the result follows from part (b). So suppose

utility is unbounded below, but bounded above. Then k'{g^{6, )) is continuous and Proposition 1

implies that \imy^_cok'{g^(9,v)) = 1. It follows that m.ax^ k' {g'^" (9 , v)) is attained, so there exists

a vl > —00 such that g'^(6,v) > vl-

(b) If utility is bounded below, the result follows immediately from part (c) of Theorem 2.

(c) Using the first-order conditions from the proof of Proposition 1, one can show that:

d{u{e_)) - e'

With logarithmic utility this implies that g^{6,v) — g^{0,v) < log {0/9). The incentive constraint

then implies that g'^{e,v) - g'"{e,v) < {0/[3)\og{e/e) = A. It follows that Vt{0^~^) > Vt{e^-^) - tA

for all pairs of histories 9 and 9 . Then

P'¥._,[vt{a'-\9'-^))] >/3*E_i[i;,(^*-i)] - pHA.

From part (b) of Theorem 2 we have Yimt^oo (3^'^-i[vt{9^~^)] = 0. Since Y\m.t^^l3hA = 0, it follows

that limsupt^^/3*E_i[t;(((j*-i(^*-^)] > 0.

(d) If 7 > then the bound in (11) implies that k' {g^ (^i f^)) ^ 1 ~ P/P ^^^ the result follows

immediately. If 7 < 1, then we can define k = 1 — (1 — (3/P)/{l — 7), and define vh by k'{vH) = k.

Then for all v < vh ^e have g^{9, v) < v. It follows that the unique ergodic set is bounded above

by Vh- We can now apply the argument in (a) so there exists a vl > —00 such that g^ (9, v) > vl-

U

We now find sufficient conditions that guarantee average consumption is finite under the invariant

distribution ip* . If the ergodic set for utility v is bounded away from the extremes, then consumption

is bounded and average consumption is trivially finite. Even when a bounded ergodic set for utility

V cannot be ensured, finite average consumption can be guaranteed for a large class of utility

functions.

Lemma 3 Average consumption is finite under the invariant distribution ip*

9

if either (a) the ergodic set for v is bounded; or (b) utility is such that c'{u{c)) is a convex function

of c.

Proof. Part (a) is immediate since by continuity of the policy functions, consumption is bounded.

For part (b), recall that J k'{v)dip*{v) = under the invariant distribution ijj* . If utihty is un-
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bounded below then all solutions for consumption are interior. If utility is bounded below, then

corner solutions with g^{9, v) = for some 9 can only occur for low enough levels of v, so that

g'^iO, v) is bounded, for all 6 in this compact set. Recall that for interior solutions

l-k'{v) = XE[c'{g^{e,v))]=XE[c'{;u{c{g''ie,v))))]

Applying Jensen's inequality we obtain

c' (u (jE[c{g''{9,v))]dr{v)]) < j E[d {u{c{g'^{9,v))))]dr{v) = 1-

The result then follows since c!{u{c)) is an increasing function of c.

Note that a bounded ergodic set is guaranteed by 7 < 1, which is ensured for taste shocks

with sufficiently small amplitude; and condition (b) holds, for example, for all constant relative risk

aversion utility functions with a > 1.

The value of average consumption depends on the value of A. For instance, in the case of

constant relative risk aversion utility, average steady state consumption is a power function of A,

and thus has full range. In fact, in this case the entire solution for consumption is homogenous

of degree one in the value of the endowment e. This ensures a steady state solution to the social

planning problem for any endowment level.

5 Discussion: Mean-Reversion

This section develops an intuitive understanding of the key mean-reversion property discussed pre-

viously. We first derive the impulse response of consumption to a one-time taste shock. We then

revisit the full problem with an alternative Bellman equation that is useful as a source of intuition.

Impulse Response

Consider a version of our model where only the first generation faces uncertainty. In the first

period, there are two possible values for the taste shock ^0 ^ {9l-, 9h}, but thereafter the economy

is deterministic: 9t = I for t > 1. We compare this to the case with no uncertainty in the first

period. This allows us to trace out the consumption response to the taste shock over time. To

simplify, we adopt logarithmic utility.

We begin by studying a subproblem of the deterministic planning problem from the second

generation onward, that is for t = 1,2,.... For a given, promised continuation utility Vi, the

planning problem is

kdet{vi) = max V"^ (logQ - Xct]
,
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subject to

<=1

The associated Bellman equation is

kdetivt) = max ( log(Q) - Aq + ^A;det(^^i+i)
ct,vt+l \ J

subject to Vt = logQ + /3ft+i. The first-order and envelope conditions imply that

k',Jvt+i) = ^X^tivt), (13)

ct = X~\l-k',Jvt)). (14)

Condition (13) shows that {k'^eti'^t}} reverts geometrically towards zero at the rate /?//?. This is

a deterministic version of the conditional-expectation equation (10). In the logarithmic case, it

translates directly into consumption by the first-order condition (14). Thus, consumption reverts

back to a common steady state at the same rate; deviations from the steady-state level of consump-

tion have a half-life of (log2 (/?//?)
)~^. Note that in the Atkeson-Lucas case when social and private

discounting coincide, so that /? = /?, consumption remains perfectly constant after the shock at its

new level q = c{vi/{l — /?)).

Turning to the first generation at i = 0, the planning problem solves

maxE[^olog(co(^o)) - AoCo(^o) + ^fcdet(yi(^o))l
Uo,Vl

subject to

OLiog{co{eL)) + Pv,{eL) > eLiog{co{dH)) + PvjiOH).

where we omit the other incentive constraint since it is not binding at the optimum, and the problem

is convex. At the optimum, Cq{6h) > Cq(6l), vi{6h) < viidi), and

EKet(^l(^))]=0,

implying that Vi{9h) < v* < Vi{9l) where k'{v*) = 0. Note that average consumption is constant

and equal to A in all periods.

Figure 4 shows the consumption response to a taste shock in the first period, for subsequent

periods. That is, we use (13) and (14) for t > 1 starting at Vi{9l), v* and v-[{9h)- The effect

on consumption from the shock dies out over time and consumption returns to a common steady-

state level. Again, this illustrates that the influence of past fortunes eventually vanishes for distant

descendants. We also plot the Atkeson-Lucas case with (3 = $, where the luck of the first generation

has a permanent impact on the consumption of all descendants.

To provide incentives for the first generation, society rewards the descendants of an individual
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Figure 4: Consumption path for i > 1 in response to taste shock at ^ =

reporting a low taste shock. Rewards can take two forms and society makes use of both. The

first is standard and involves increased consumption spending, in present-value terms. The second

is more subtle and exploits differences in preferences: it allows an adjustment in the pattern of

consumption, for a given present value, in the direction preferred by individuals.^'^

Since individuals are more impatient than the planner, this latter form of reward is delivered

by tilting the consumption profile toward the present. Similarly, punishments involve tilting the

consumption path toward the future. In both cases, earlier consumption dates are used more

intensively to provide incentives — rewards and punishments are front-loaded. Indeed, consumption

returns to a common steady-state level in the long-run regardless of the initial shock because

affecting the consumption of very distant descendants is not an efficient way for society to provide

incentives to the first generation.

Another Bellman Equation

Here we develop another Bellman equation that holds for any value of q not necessarily equal to $.

This alternative formulation is useful, both as a source of intuition and to motivate our focus on

Consider the following cost minimization problem

oo

^^Some readers may recognize this last method as the time-honored system of rewards and punishments used by

parents when conceding their child's favorite snack or reducing their TV-time. In these instances, the child values

some goods more than the parent wishes, and the parent uses them to provide incentives.
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subject to the incentive compatibility constraint U {{ct} , a*
; P) > U{{ct},a; P) and

oo

V = J2p'E.,[9Mct)]
t=o _-

oo

while delivering utility v and v for the planner and individual, respectively. Then the value function

must satisfy the Bellman equation

K{v,v) = maxE[c(u(^)) + qK(w (6) ,w [9))],
u,w,w

subject to

V = E[eu{9) + Pw{0)]

V = E[9u{9) + Pw{9)]

and

9u{9) + Pw{9) > 9u{9') + I3w{9') for all 9, 9' e 6.

This formulation could be used to derive all of our results, although the lower-dimensional Bellman

equation (7) is slightly more convenient for that purpose. The advantage of this cost-minimization

formulation, however, is that it lends itself naturally to economic interpretations.

The following story provides a useful reinterpretation and source for intuition. Consider an

infinite-lived household with two members, husband and wife, and assume that consumption is a

public good — there is no intra-period resource allocation problem. However, husband and wife

disagree on how to discount the future. Suppose the wife is more patient, but only the husband

can observe and report taste-shock realizations.

Then this cost-minimization problem characterizes the constrained Pareto problem for this

household, in the sense that the isocost curve K{v,v) = Kq represents, given resources Kq, the

Pareto frontier between husband and wife. The Pareto frontier is non-standard in that it is not

everywhere decreasing and does not represent the usual transfer of private goods between two

agents. Instead, it arises from differences in preferences that generate a disagreement about the

optimal consumption path for the only public good. Since disagreement on preferences is bounded,

the Pareto frontier is non-monotone and the highest possible utility for the wife is attained for an

interior utility level for the husband, where Ki{v*,v*) — 0. Reductions in the husband's utility to

the left of this point must also decrease utility for the wife, for a given level of resources.

The first-order conditions can be rearranged to deliver

PK2{v,v)=qK2{w{9),w{9)) (15)
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K2{v,v)
J3

K\{w{e),w{9))

K2{w{9),w{9))
(16)

Condition (15) can then be used to argue that a steady-state requires q = p. Indeed, ii q < 0, then

{K2t} would increase without bound; likewise, if g > ^, then {K2t} decreases toward zero. Both

situations clearly do not lend themselves to the existence of an invariant distribution for {v,v).

On the other hand, if g = /? then K2{vt,Vt) is constant along the optimal path and an invariant

distribution is possible.

When q = P, the state {vt,Vt) moves along a one-dimensional locus given by K2{v,v) =

-f^2(f^0) "f^o)- Intuitively, since no incentives are required for the wife, she is perfectly insured in

the sense that the marginal cost of delivering welfare to her is held constant across time.

Figure 5: Isocost curves of K{v,v)

Figure 5 shows that the curve K2{v,v) — K2{vo,Vo) for continuation utilities cuts the isocost

curves from below, and cuts Ki{v,v) = from above. Intuitively, incentives require foregoing

perfect insurance for the husband and accepting fluctuations in v as rewards and punishments.

Starting from {v*,v*), rewards can be dehvered in two ways. The optimum makes use of both forms

of rewards, explaining the shape of the schedule for continuation utilities.

The first form of rewarding involves increasing resources K, and can be seen as an upward

movement along the diagonal Ki{v,v) = 0. However, the husband is also rewarded by allowing

an allocation of these resources that is more to his liking, which can be represented as lateral

movements along the Pareto frontier, which at {v*,v*) is horizontally flat. The solution combines

both forms of rewards and, as a result, {v,v) travels along K2{v,v) — /C2(fo,t'o) to the right of

K\{y,v) = and above the initial isocost curve.
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Condition (16) is the analog of the conditional-expectation equation (10) obtained from the

one-dimensional Bellman equation. Here, it implies that the slope of the isocost curve (Pareto

frontier), —K1/K2 reverts geometrically toward 0. Thus, {vt,Vt) moves along K2{v,v) = K2{vq,Vq)

and eventually reverts toward {y* , v*). Intuitively, the solution deviates from [v* ,v*) to provide the

husband with incentives, but it is efficient to revert back to this point of ma:x:imum efficiency for

the wife: Patience ensures that the wife has her way in the long-run.

6 Estate Taxation

We now turn to a repeated Mirrleesian economy and study optimal taxation. In this version of our

model, individuals have identical preferences over consumption and work effort but are heterogenous

regarding their labor productivity, which is privately observed by the individual and independently

distributed across generations and dynasties. We continue to focus on the case where the social

welfare criterion discounts the future at a lower rate than individuals.

Unlike the taste-shock model, here even if we were to restrict allocations to feature no link

between parent and child, there would still be a non-trivial planning problem. Indeed, in each

period the situation would then be identical to the static, nonlinear income tax problem originally

studied by Mirrlees (1971). Moreover, in the absence of altruism, so that (5 — Q, the social optimum

actually coincides with this static solution. With altruism, however, we shall see below that it is

always optimal to link welfare across generations within a dynasty to enhance incentives for parents.

Despite differences between the Mirrleesian economy and our taste-shock model, our previous

analysis can be adapted virtually without change. In particular, a recursive representation can

be derived, and the Bellman equation can be used to characterize the solution and to establish

that a steady-state, invariant distribution exists. This highlights the fact that our model requires

asymmetric information, but not any particular form of it.

We focus on an implementation of the allocation that uses income and estate taxes, and derive

some interesting results for the latter. We find that estate taxation should be progressive: more

fortunate parents should face a higher average marginal tax rate on their bequests. This result

reflects the mean reversion in consumption explained in the previous section. A higher estate tax

ensures that the fortunate face a lower net rate of return across generations, and that consequently

their consumption path decreases over time toward the mean.

Repeated Mirrlees: Productivity Shocks

Each period of this economy is identical to the canonical optimal taxation setup in Mirrlees (1971).

Utility depends on the level of consumption c and work effort n. We assume that individuals in

generation t have identical preferences that satisfy

Vt = Et.Mct)-h[nt)+l3Vt+i],
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but diflFer regarding their productivity in translating work effort into output. An individual with

productivity w, exerting work effort n, produces output y = wn. We assume that productivity w is

independently and identically distributed across dynasties and generations. Thus, the productivity

talents of parent and child are unrelated — innate skills are assumed nonheritable. Given this

assumption, if the optimum features intergenerational transmission of welfare, then it represents a

social decision to provide altruistic parents with incentives in this way, and not a mechanical result

originating from the eissumed physical environment.-'^

For convenience, we adopt the power disutility function h{n) — rC/^ so that, defining = w~'^

,

we can write total utility over consumption and output as being subject to taste shocks

CXD OO

5]/3*E_i[«(q) -^,/i(y,)] = X^/?^E_i[r'MQ_i) -^,/i(y,)] - E_i [^o%o)]
t=0 i=l

The right-hand side of this equation leads to a convenient recursive representation of the planning

problem in the continuation utility defined by Vt — ^^Q/5*Et_i[u(ct+s-i) — Ot+sh{yt+s)\ — where

we are abusing notation shghtly by folding the /3~^ into the definition of the utility function u{c).

The resource constraint requires total consumption not to exceed total output plus some fixed

constant endowment

Y,c'i{e')Y>v{e')d^{v) < fY,yt{0')Pr{9')di^{v) + e,

where individuals are indexed by their initial utility entitlement v, with distribution ip in the

population.

We continue to assume social discounting is lower than private discounting: $ > (3. The planning

problem is to choose an allocation {c^{6^),y^{6^)} to maximize average social welfare subject to the

incentive-compatibility constraints and the resource constraints.

Using the last expression for the utility function and applying similar reasoning as in the taste-

shock model yields the Bellman equation for the associated relaxed problem

k{v) = max E\u^ - Ac(«_) - eh{9) + Xyih{e)) + ]3kiw{e))]
u-,h,w

v = E[u_-eh{e) + i3w{e)]

-eh{9) + pw{e) > -eh{6') + (3w{e'),

where the function y{h) represents the inverse of the disutihty function, y = h~^ . The arguments

that justify the study of this Bellman equation, are similar to those that underlie Theorems 1 and 2

in the context of the taste-shock model. The results regarding steady states parallel those obtained

previously, and imply that an invariant distribution exists with no immiseration, as in Proposition

^^As in the taste shock model, here the case with /3 = /? leads to immiseration. This case has been studied by

Albanesi and Sleet (2004), who impose an exogenous lower bound on dynastic welfare to circumvent immiseration.

25



Implementation with Income and Estate Taxation

Any allocation that is incentive compatible and feasible can be implemented by a combination of

taxes on labor income and estates. Here we first describe this implementation, and explore some

features of the optimal estate tax in the next subsection.

For any incentive-compatible and feasible allocation {cj(^*), y]^{6^)} we propose an implemen-

tation along the lines of Kocherlakota (2004). In each period, conditional on the history of their

dynasty's reports 9 and any inherited wealth, individuals report their current shock Of, produce,

consume, pay taxes and bequeath wealth subject to the following set of budget constraints

ct + bt< yt{e') - Tt{9') + (1 - Tt{9'))Rt-,,tbt-i t = 0,l, ... (17)

where Rt-i^t is the before-tax interest rate across generations, and initially 6_i = 0. Individuals are

subject to two forms of taxation: a labor income tax Tt{9^), and a proportional tax on inherited

wealth Rt-i^th-i at rate at rate Tt{9 )}'^

Given a tax policy {Tj"(^'), t'^{9*), yf{9'')}, an equihbrium consists of a sequence of interest

rates {Rt^t+i}', an allocation for consumption, labor income and bequests {cj'(^*), 6J'(^')}; and a

reporting strategy {crj(^*)} such that: (i) {q, jbt, at} maximize dynastic utility subject to (17),

taking the sequence of interest rates {Rt^t+i} and the tax; policy {Tj, r^, yt} as given; and (ii) the

asset market clears so that J E^j[b'^{9^)]d(j){v) — for all t = 0,1,... We say that a competitive

equilibrium is incentive compatible if, in addition, it induces truth telling.

For any feasible, incentive-compatible allocation {dl,y^}, we construct an incentive-compatible

competitive equilibrium with no bequests by setting T^{9^) = yt{9^) — Ct[9^) and

pRt-i,t u'{c^{9 ))

for any sequence of interest rates {Rt-i^t}- These choices work because the estate tax ensures

that for any reporting strategy a, the consumption allocation {Cf{a\9*))} satisfies the consumption

Euler equation

«'(c^(a*(^*))) = ,5i?,,+i J]^x'(c^^l(cT'+l(^^^,+l)))(l - rr+i(o-*+^(^',^m))) Pr(^m),

and the labor income tax is such that the budget constraints are satisfied with this consumption

allocation and no bequests, 6J'(^*)
= 0. Thus, this no-bequest choice is optimal for the individual

^^In this formulation, taxes are a function of the entire history of reports, and labor income y# is mandated given

this history. However, if the labor income histories j/' :
6' —> M* being implemented are invertible, then by the

taxation principle we can rewrite T and r as functions of this history of labor income and avoid having to mandate
labor income. Under this arrangement, individuals do not make reports on their shocks, but instead simplj^ choose

a budget-feasible allocation of consumption and labor income, taking as given prices and the tax system.
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regardless of the reporting strategy followed. Since the resulting allocation is incentive compatible,

by hypothesis, it follows that truth teUing is optimal. The resource constraints together with the

budget constraints then ensure that the asset market clears.
^^

As noted above, in our economy without capital only the after-tax interest rate matters so the

implementation allows any equilibrium before-tax interest rate {Rt^it}. In the next subsection,

we set the interest rate to the reciprocal of the social discount factor, Rt-i,t = P This choice is

natural because it represents the interest rate that would prevail at the steady state in a version of

our economy with capital.

Optimal Progressive Estate Taxation

In this subsection we derive an important intertemporal condition that must be satisfied by the

optimal allocation. This condition has interesting implications for the optimal estate tax, computed

using (18) at the optimal allocation.

Let A be the multiplier on the promise-keeping constraint and let /x(^, 6') represent the multipliers

on the incentive constraints. Then the first-order conditions for w_ and w{9) are

c'(t/_)-A-A =

M'W^))pW-/3Ap(^)-J]M^,^') + E^(^''^) =
e' e'

and the envelope condition is k' {v) = X. Together these imply

Y,k'{wi9))p{e) = L'{v),

e P

Using c'(«_) = l/u'{c-) = A -I- k'{v) we arrive at the Modified Inverse Euler equation

^ = ii:;4^M«)-A(i-i). (19)

The left-hand side together with the first term on the right-hand side is the standard inverse Euler

equation. The second term on the right-hand side is novel, since it is zero when (3 = (5 and is strictly

negative when $ > p}^

In our environment, the relevant past history is encoded in the continuation utility so the estate

tax r(0*~\^i) can actually be reexpressed as a function of Vt{6*'~^) and Ot- Abusing notation we

then denote the estate tax by Tt{v,9t)- Since we focus on the steady-state, invariant distribution,

we also drop the time subscripts and write t{v, 9).

^^Since the consumption Euler equation holds with equality, the same estate tax can be used to implement alloca-

tions with any other bequest plan with income taxes that are consistent with the budget constraints.

^^This equation can also be derived from an elementary variation argument. This is done in Farhi, Kocherlakota

and Werning (2005), who also show that this equation, and its implications for estate taxation, generalize to an

economy with capital and an arbitrary process for skills.
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The average estate tax rate t{v) is then defined by

l-f(i;) = 5^(l-r(^,^))p(^) (20)

e

Using the modified inverse Euler equation (19) we obtain

f{v) = -A«'(c_(^^))(^-l)

In particular, this impfies that the average estate tax rate is negative, f{v) < 0, so that bequests

are subsidized. However, recaU that before-tax interest rates are not uniquely determined in our

implementation. As a consequence, neither are the estate taxes computed by (18). With our

particular choice for the before-tax; interest rate, however, the tax rates are pinned down and

acquires a corrective, Pigouvian role. Differences in discounting can be interpreted as a form of

externalities from future consumption, and the negative average tax can then be seen as a way

of countering these externalities as prescribed by Pigou. In our setup without capital, this result

depends on the choice of the before-tax interest rate. However, the negative tax on estates would

be a robust steady-state outcome in a version of our economy with capital.

In our model it is more interesting to understand how the average tax varies with the history

of past shocks encoded in the promised continuation utility v. The average tax is an increasing

function of consumption, which, in turn, is an increasing function of v. Thus, estate taxation is

progressive: the average tax on transfers for more fortunate parents is higher.

Proposition 4 In the repeated Mirrlees economy, the optimal allocation can be implemented by a

combination of income and estate taxes. At a steady-state, invariant distribution ip* , the optimal

average estate tax f{v) defined by (18) and (20) is increasing in promised continuation utility v.

The progressivity of the estate tax reflects the mean-reversion in consumption. The fortunate

must face lower net rates of return so that their consumption path decreases towards the mean.^°

7 Conclusions

Should privately- felt parental altruism affect the social contract? If so, what are the long-run

implications for inequality? To address these questions, we model a central tension in society:

the tradeoff between ensuring equality of opportunity for newborns and providing incentives for

altruistic parents.

Our model's answer is that society should indeed exploit altruism to motivate parents, linking

the welfare of children to that of their parents. However, we also find that if we value the welfare

of future generations directly, the inheritability of good or bad fortune should be tempered. This

^*^Farhi, Kocherlakota and Werning (2005) explore more general versions of this result and discuss several related

intuitions.
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produces a steady-state outcome in which welfare and consumption are mean-reverting, long-run

inequality is bounded, social mobility is possible and misery is avoided by everyone.

What instruments should society use to implement such allocations? For a Mirrleesian version

of our model we find an important role for the estate tax. The optimal tax on inheritances is

progressive: more fortunate parents should face a higher average marginal tax rate on their bequests.

This result illustrates an interesting way in which the conflict between corrective and redistributive

taxation is optimally resolved. Further examination of other situations with similar conflicts remains

an interesting direction for future work.^^

Appendix

Proof of Theorem 1

Weak concavity of the value function k{v) follows because the relaxed sequence problem has a

concave objective and a convex constraint set. The weak concavity of the value function k{v) implies

its continuity over the interior of its domain. If utility is bounded, continuity at the extremes can

also be established as follows. Define the first-best value function

k*{v) = max^^* E.^[etut{e') - Xc{ut{9'))]

subject to 1) = ^^Q/3*E_i[^4Ui(^*)]. Then k*{v) is continuous and k{v) < k*{v), with equality

at any finite extremes v and v. Then continuity of k{v) at finite extremes follows. Thus, k{v) is

continuous.

The constraint (6) with q — J3 implies that utihty and continuation utility are well-defined.

Toward a contradiction, suppose
T

T—>oo
lim Y(3'Esetu{ct)
^—>oo ' ^

t=0

is not defined, for some s > — 1. This implies that limy^oo St=o/3*'^^^(-^s^t'"(^)7 0) = ^^- Since

utility is concave 9u{c) < Ac-[- B for some A, 5 > 0, so it follows that

T T T

^/5*max(£;,^tu(Q),0) < A^/?%q + S < /I
J]]

^*E,q -f 5

Taking the limit yields lim^^oo X^f=o /^ ^^-iCt = oo. Since there are finitely many histories 9^ G 0*+^

this implies limj-^oo St=o/5 E_iQ = oo. If there is a non-zero measure of such agents this implies

a contradiction of (6). Thus, for both the relaxed and unrelaxed problems utility and continuation

utility are well defined given the other constraints on the problem. This is important for our

recursive formulation below.

'Some progress along these lines can be found in Amador, Angeletos and Werning (2005).
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We next prove two lemmas that imply the rest of the theorem. Consider the optimization

problem on the right hand side of the Bellman equation:

supE[^^i(^) - Xc{u{9)) + pk{w{e))] (21)

v = E[eu{9)+Pw{e)] (22)

Ou (e) + pw{e) > Ou {9') + pw{9') for all 9,9' eQ (23)

Define m = maXc>o,6iee(^^(c) — Ac) and k{v) = k{v) — m/{\ — $) < 0. The problem in (21) is

equivalent to the following optimization with non-positive objective:

supE[^u(^) - Xc{u{9)) -m + pk{w{9))] (24)

subject to (22) and (23).

Lemma 1 The supremum in (21), or equivalently (24), is attained.

Proof. If utility is bounded the result follows immediately by continuity of the objective function

and compactness of the constraint set. So suppose utility is unbounded above and below — similar

arguments apply when utility is only unbounded below or only unbounded above. We first show

that

lim k{v) = lim k{v) = —oo (25)
v—*oo i;—»— oo

and then use this result to restrict, without loss, the optimization within a compact set, ensuring a

maximum is attained.

To establish these limits, define

oo

h{v] p) = sup Y^ ^*E_i [9tu{9') - \c{u{9')) - m]

subject to f = E_i Yl^ol^^^tu{9^)- Since this corresponds to the same problem but without the

incentive constraints it follows that k{v) < h{v,P). If \miy^ooh{v, $) = limy^^oo h{v,/3) = — oo,

then the desired limits (25) follow. Since 9u — Xc{u) — m < and (3 < $ it follows that

777

h{v, P) < h{v, P)=v- XC{v, (3) - ^—^, (26)

where
CO

C{v,l3) = miY^(3'E_^c{u{9'))
t=o

subject to f = ^^g/3*E_i[^iu(^')]. Note that C{v,P) is a standard convex first-best allocation

problem, with solution u{9^) = {c')~^{9t'y{v)) for some positive multiplier 7(f), increasing in v and
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such that hmij^-ooTlf) = ^^^ hm^_oo7 i'^) = oo- Then

C{v,P) = ^E[c[{cr\9^{v)))],

so that Um^j^-oo h{v, /?) = — oo and hm^,^oo h{v, /3) = — oo. Using the inequahty (26) this estabhshes

hm„_^_oo h{v, (3) = —oo and hm,;_^oo h{v,$) = — oo, which, in turn, imply the hmits (25).

Fix a V. Take any allocation that verifies the constraints (22) and (23) and let A; < oo be

the corresponding value of (24). Then, since the objective is non-positive, we can restrict the

maximization to w{9) such that k{w{9)) > k/{$p{9)). Since k{w{9)) is concave with the limits (25),

this defines a closed, bounded interval for w{9), for each 9. It follows that there exists My^^ < oo

such that we can restrict the maximization to |w(^)| < M^„;.

Similarly, we can restrict the maximization over u{9) so that 9u{9) — Xc{u{9)) — m > k/p{9).

Since {9u — Xc{u)) is strictly concave, with {9u — \c{u)) —> —oo when either u —* oo or m ^ — oo,

this defines a closed, bounded interval for u{9), for each 9. Thus, there exists an My^ < oo such

that we can restrict the maximization to \u{9)\ < My^u-

Hence, we can restrict the ma:ximization in (24) to a compact set. Since the objective function

is continuous over this restricted set, the maximum must be attained.

Lemma 2 The value function k{v) satisfies the Bellman equation (7)-(9 ).

Proof. Suppose that for some v

k{v) > maxE[^M(^) - Xc{u{9)) + pk[w{9))]

where the maximization is subject to (22) and (23). Then there exists A > such that

k{v) >¥.[9u{9)-\c{u{9))^[5k{w{9))]^/l

for all {u,w) that satisfy (22) and (23). But then by definition

oo

k{w{9)) > J];3*E_i[^,M,(^*) - Xc{ut{9'))]

for all allocations u that yield w [9] and are incentive compatible. Substituting, we find that

oo

k{v) > Y^p'e_,[9M0') - HMO'))] + A
t=o

for all incentive-compatible allocations that deliver v, a contradiction with the definition of k{v).

Namely, that there should be a plan with value arbitrarily close to k{vo). We conclude that k{v) <

max„,^ E[^u(^) - Xc{u{9)) + Pk{w{9))] subject to (22) and (23).
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By definition, for every v and e > there exists a plan {U((^*; v, e)} that is incentive compatible

and delivers v with value

oo

Y,J5'¥._^[etUt(e';v,e)-Xc{ut{e'-v,e))] >k{v)-£.

Let {u* {9) , w* {6)) e argmax„,^E[6'ti(6') - Xc{u{6)) + Pk{w{6))]. Consider the plan Uo{9o) = u*{6q)

ondutie') =Ut-i{{9i,...,et);w*{eo),€) fori> 1. Then

oo

k{v) > 5];3'E_i[0,u,(^*)-Ac(«i(^*))]

f=0

oo

= E_i [eoU*{9o) - Ac(«*(^o)) +^^^*Eo[^i+iMt+i(^*+^) - Xc{ut+i{e'+'))]j

t=o

> maxE[6'u(^) - Xu{e) + (3k(w{e))] - Pe.

Since £ > was arbitrary it follows that k{v) > max^^u; E[^ii(^) — Xc{u{9)) + (3k{w{6))] subject to

(22) and (23).

Finally, together both inequalities imply k{v) = maXu^.u,E[^'u(0) — Xc{u{6)) -\- pk{w{9))\ subject

to (22) and (23).

Proof of Theorem 2

Pcirt (a). Suppose the allocation {ut} is generated by the policy functions starting from Vq, is

incentive compatible and delivers lifetime utility Vq. After repeated substitutions of the Bellman

equation (7), we arrive at

T

k{vo) = J^P'^-ii^Me') - Xc{u,{0'))]+p^E_,k{vT{9^)). (27)

t=0

Since k{vo) is bounded above this implies that

oo

k{vo) < ^p'E_,[eMo') - xc{ut{e'))],

so {tit} is optimal, by definition of k{vo).

Conversely, suppose an allocation {uf} is optimal given vq. Then, by definition it must be

incentive compatible and deliver utility vq. Define the continuation utility implicit in the allocation

oo

t=l

and suppose that either uq (9) ^ (7" {9; vq) or wq (9) 7^ g"^ {9; Vq), for some 9 E Q. Since the original
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plan {ut} is incentive compatible, Uo{9) and wo{9) satisfy (22) and (23). The Bellman equation

then implies that

k{vo) = E[g''{e;vo)-Xc{g%9;vo))+Pk{g^{9;vo))]

> E[uo{9) - Xc{uo{9)) + pk.{wo{9))]

CXD

> E_,[uo{9o) - Xc{uoi9o))] +J2f^'^-^[Md') ~ HMO'))].
t=i

The first inequality follows since uq does not maximize (7), while the second inequahty follows the

definition of k{wo{9)). Thus, the allocation {ut} cannot be optimal, a contradiction. A similar

argument applies if the plan is not generated by the policy functions after some history ^* and

t > 1. We conclude that an optimal allocation must be generated from the policy functions.

Pcirt (b). First, suppose an allocation {ut, Vt} generated by the policy functions (^", g^) starting

at vo satisfies limt^oo/3*E_ift(^*) = 0. Then, after repeated substitutions of (8), we obtain

T

V = Y, /5'E_i [9Md')] + /3^E_i [vt{9^)] . (28)

t=o

Taking the limit we get Vq = Yl't^o /5*E-i[^<^f (^*)] so that the allocation {ut} delivers lifetime utility

Vq. Next, we show that for any ahocation generated by (p",p"'), starting from finite Vq, we have

Suppose utility is unbounded above and limsupj_Qo/^*E-i^<(^*) > 0- Then (3 > (5 implies that

limsupj^Q^/? E_ifi(^') = oo. Since the value function k{v) is non-constant, concave and reaches an

interior maximum, we can bound the value function so that k{v) < av + b, with a < 0. Thus,

limsup/9'E_iA;(z;t(^*)) < alimsup^*E_iz;f(^*) + b= -oo
i—»oo t—>oo

and then (27) implies that k{vo) = — cx), a contradiction since there are feasible plans that yield

finite values. We conclude that limsupj^^/3*E_it;j(^*) < 0.

Similarly, suppose utility is unbounded below and that liminfj^oo /3*E_ii;i(^*) < 0. Then

liminfi^oo/3 E_ift(^*) = — oo. Using k{v) < av + b, with a > 0, we conclude that

liminf /?*E_iA;(z;i(^*)) = -oo
t—«x

implying A;(i;o) = — oo, a contradiction. Thus, we must have liminft^oo/5*JE_ii't(^*) > 0.

The two established inequalities imply limt^oo P^E_iVt{9^) = 0.

Part (c). Suppose limsup^^^ P^E-iVt{a^{9^)) > for every reporting strategy a. Then after
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repeated substitutions of (9),

implying
T

^""
t=o

Therefore, {ut} is incentive compatible, since v is attainable with truth telling from part (b).

Proof of Lemma 1

Part (a) (Strict Concavity) Let {ut{6'^ , vq) , Vt{9\ Vq)} be the plans generated from the policy

functions starting at vq (note: no claim of incentive compatibility is required). Take two initial

utility values Va and Vb, with Va^ Vb. Define the average utilities

<(^*) = aut{d\va) + {I - a)ut{e\vb)

v^{e') = avt{e';va) + {l-a)vt{9';vb)

Theorem 2 part (b) implies that {ut{9^,Va)} and {ut(^*,Vf,)} deliver Va and Vb, respectively. This

immediately implies that {uf{9^)} delivers initial utility v°' = aVa + (1 — ce)vb- It also implies that

there exists a finite time T such that

T T

so that

ut{9'va)i^u^{9'vb), (29)

for some history 9^ € 0'+^. Consider iterating T times on the Bellman equations starting from Va

and Vb :

T

k{v,) = J2p'E.,[9M0';Va)-c{ut{9';Va))]+fE_,k{vT{9^;Va))

T

Kvb) = 5];5*E_l[^,^i,(^^^;6)-c(«i(^^i;,))]+^Vl^^(t;T(^^;^;6)),
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and averaging we obtain

T

ak{va) + {l-a)k{v,) = J2p'E_i[etunO') - [ac{ut{9';Va)) + (1 - a)c{ut{9';v,))]]

t=0

+fE^^[ak{vT{e'^;Va)) + (1 - a)k{vT{9^;Vk))]

T

4=0

where the strict inequahty follows from the strict concavity of the cost function c(u), the fact

that we have the inequality (29), and the weak concavity of the value function k. The last weak

inequality follows from iterating on the Bellman equation for v°' since the average plan {u°',v°')

satisfies the Bellman equations constraints at every step. This proves that the value function k{v)

is strictly concave.

(b) (Differentiability) Since the value function k{v) is concave, it is sub-differentiable — that

is, there is at least one sub-gradient at every point v. Differentiability can then be established by

the following variational envelope arguments.

Suppose first that utility is unbounded below. Fix an interior value vq for initial utility. For a

neighborhood around Vq define the test function

W{v) = E[9{g^{9, vo) + {v - Vo)) - Xc[g\9, vo) + {v - Vo)) + Pk{g^{9, vo))]

.

Since W{v) is the value of a feasible allocation in the neighborhood of vq it follows that W{v) < k{v),

with equality at vq. Since W'{vo) exists it follows, by application of the Benveniste-Scheinkman

Theorem (see Theorem 4.10, in Stokey, Lucas and Prescott, 1989), that k'{vo) also exists and

k'ivo) = W'ivo) = 1 - A E[c'{u*{9))]. (30)

Finally, since d{u) >0 this shows that k'{v) < 1.

Next, suppose utility is bounded below, say, by zero. Then the argument above establishes

differentiability at a point Vq as long as g'^{9, vq) > 0, for all 9 E Q. However, corner solutions with

g'^{9,Vo) = are possible here even with Inada assumption on the utility function, so a different

envelope argument is required. We provide one that exploits the homogeneity of the constraint set.

If utility is bounded below, then limsupj_^^E_i/3*f((a-(^*)) > for all reporting strategies a so

that, applying Theorem 2, a solution {uj} to the planner's sequence problem is ensured. Then, for

any interior vq, the plan {{v/vQ)uf} is incentive compatible and attains value v for the agent. In

addition the test function

W{v) = V^*E_i \9t-ut{9') - Xc(-ut{9')]
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satisfies W{v) < k{v), W{vo) = k{vo) and is differentiable. It follows from the Benveniste-

Scheinkman Theorem, that k'{vo) exists and equals W'{vo).

The Hmit lim.y^yk'{v) = —oo follows immediately from lim^^c A;(w) = — oo, if i; < oo. Other-

wise it is inherited by the upper bound h{v,P) introduced in the proof of Theorem 1, since both

limy^ooh{v,p) = -oo and lim^^oo §^h{v,P) = -oo.

FinaUy, we show that \imy^y^k'{v) = oo. Consider the deterministic planning problem

oo

k{v) = uiaxy^P {ut — \c{ut))

t=Q

subject to v = ^^0 /5*'"i- Note that k{v) is differentiable with liiny^yk^{v) = oo. Since deterministic

plans are trivially incentive compatible, it follows that k{v) < k{v), with equality at v. Then we

must have liiny^yk'{v) = oo to avoid a contradiction.

Proof of Proposition 1

The CLAR equation was shown in the main text, so we focus here on the bounds. Consider the

program

maxy^ Pn{9nUn " c(m„) + Pk{Wn)}
n '

V = y^^PnjOnUn+PWn)

9nUn + PlUn > 6'„M„+i + /3Wn+l ioT U = 1,2, ..., K - 1,

This problem and its notation require some discussion. We do not incorporate the monotonicity

constraint on u. But this notation allows us to consider bunching in the following way. If any set

of neighboring agents is bunched, then we group these agents under a single index and let p„ be

the total probability of this group. Likewise let On represent the conditional average of 9 within

this group, which is what is relevant for the promise-keeping constraint and the objective function.

Let 9n be the taste shock of the highest agent in the group. The incentive constraint must rule the

highest agent in each group from deviating and taking the allocation of the group above him.

Of course, every combination of bunched agents leads to a different program. We study all of

them. The optimal allocation of our problem must solve one of these programs, although not nec-

essarily the one that yields the highest value, since this one may not be feasible if the monotonicity

condition is violated.

The first-order conditions are

Pn{9n - Ac' (tin) - Xdn} + On/J^n " ^n-lA^n-l =

PniPk'iWr,) - PX} + /?(/X„ - Ai„_i) =

where, by the Envelope theorem, A = k'{v). Summing the first-order conditions for consumption,
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we get

\E[c'{u{9))] = l-k'{v)

The first-order conditions for n — I imply

(l-X)+ ^ ^ = ^^^("i) < ^^^^("^)1 ^ 1^

This imphes

Using

we get

Pi
~ ^1

:i-A)^

A;'K) >
P

3 1 ^i" ,// X 13
'0^

1

l + :r- k'{v) + ^ - —
(^ ^1 (^iJ P Ui ^1

Similarly, writing the first-order conditions for n = K, we get

This implies

Using

we get

'1 _ A) - ^J£zlt^I<^ = A(/(uk) > XE[c'{ue)] ^ 1-A

f-i>i^-(l-A)/^

,// X P^
,
P l^K-1

P P Pk

fA'-l c/A'-1 /5L eK-l ^K-\
k'{v) -f

For any n, lU/c < i^n < u^i, we have for every n

1 + 1-^
^1 ^1

A:'(i;) + i
P

h_}_
h 0,

< k'{Wn)

< P
1 +

'K-l (^K-l
k'{v)

'K-l ^K-1
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After rearranging, we obtain

1 ^1
:i-k'(v)) + l^i > l-k'{g''{e,v))

> e
1

^A'-l
(1 - k'{v)) + 1-1

To arrive at the expression in the text we take the worst case scenario: we choose the subproblem

that is most unfavorable to each bound, noting that 1 — k'{v) > 0.

Turning to the bounded utihty case, note that all the first-order conditions and constraints are

satisfied when A > 1 with ^„ = and u{9) = and w {9) = P~^v > v. The first-order condition for

w implies k'{w{9)) = k'{f3~^v) = ((5/(3)k' {v) . Since the problem is strictly convex, this represents

the unique solution.

Since establishing the lower bound involved no assumption on interior solutions for u this holds

for all V. The upper bound, on the other hand, required u{9) > for all 9, which must be true for

high enough v, i.e. for low enough k'{v).

Proof of Proposition 2

Since the derivative k'{v) is continuous and strictly decreasing, we can define the transition function

Q{x,9) = k'{g-{{krHx),0))

for all X < 1. For any probabihty distribution //, let Tq{ii) be the probability distribution defined

by

Tq{ij){A) = / ^{Q(x,e)eA}d^i{x)dp{9)

for any Borel set A. Define

_ Tq + TI + ... + T^
^^'"

=
n

For example, TQ^ni^x) is the empirical average of k'{vt) over all histories of length n starting with

k'{vo) = X.

Lemma 4 For each x < 1 there exists a subsequence TQ^^(n){5x) that converges weakly (i.e. in

distribution) to an invariant distribution on (— oo, 1) under Q.

Proof. The bounds (11) derived in Proposition 1 imply that

limg(x,^) = lim k'ig'\9,v)) = P/p < 1.
xj,l t;—-0O

We first extend the continuous transition function Q{x, 9) : (— oo, 1) x —^ (— oo, 1) to a continuous

transition function Q{x,9) : [— oo, 1) x 6 —» (— oo, 1), with Q{1,9) = P/P and Q{x,9) = Q{x,9),
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for all X G (—00, 1). It follows that Tq maps probability distributions over [—00, 1) to probability

distributions over (—00, 1), and Tq{Sj:) = Tq{5x), for all x G (—00, 1).

We next show that the sequence {Tq^{5x)} is tight, in that for any £ > there exists a compact

set A^ such that Tq^{6x){Ai;) > 1 — e, for all ri. The expected value of the distribution T^{Sx)

is simply E^i[k'{vtie'-^))] with x = k'{vo) < 1. Recall that E_i[k'{vt{9^-^))] = k'{vo){P/PY -^ 0.

This imphes that

mm{0,k'{vo)} < E^,[k'{vt{e'-'))]

< T^{Sx){-cx,,-A)i-A) + {l-T^{5x){-cx,,-A))l

for all A > 0. Rearranging,

T^fe)(-cx..-^)< '-7;\°-^>

which implies that {Tq{6x)}, and therefore {Tq^niSx)}, is tight.

Tightness implies that there exists a subsequence Tqj^,.{Sx) that converges weakly (i.e. in

distribution) to some tt. Since Q{x,9) is continuous in x, then Tq{Tq ^,J5x)) converges weakly to

TQ{n). But the linearity of Tq implies that

_T^^''^^\5x)-Tq{5x)

and since 0(n) ^ 00 we must have Tq{7v) = tt.

Recall that Tq maps probability distributions over [—00, 1) to probability distributions over

(—00, 1). This implies that tt = ^^(Tr) has no probability mass at {!}. Since Tq and Tq coincide

for such distribution it follows that n = Tq{'k)^ so that tt is an invariant distribution on (—00, 1)

under Q.

When utility is bounded below and either utihty is bounded above or 7 < 1 then there exists an

upper bound on the ergodic set for v. This in turn implies lower bound fl > for the ergodic set

defined as the minimum of the policy function g^ over the set of values of v with k'{v) < 1, since

g'^ is never zero and continuous on a compact set it attains a positive minimum. The argument

then follows along similar lines as above.
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