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Abstract

In this paper we consider stationary pure exchange overlapping

generations models with n goods in each period. ¥e argue that for a model

with non-zero stock of nominal debt there is potentially an n - 1 dimensional

indeterminacy. Thus relative prices within a period can be indeterminate.

Although our results agree with those previously known for the case where

there is one good in every period, they indicate that indeterminacy does not

depend on the existence of fiat money or other assets. Furthermore, even in

pure exchange models with no aggregate debt or assets, our results indicate

that equilibria may be indeterminate or not whether or not they are pareto

efficient. ¥e construct robust examples of models with indeterminacy of

relative prices in which the only departure from the simple model with one

consumer in every generation and one good in every period is that each

consumer lives for three, rather than two, periods. This three period lived

constimer model can also be viewed as a model of one with two two period lived

consumers in each generation and two goods in each period.





Indeterminacy of Relative Prices in Overlapping Generations Models

by

Timothy J. Kehoe and David K. Levine*

I. Introduction

The overlapping generations model developed by Samuelson (1958) provides

an attractive alternative to models with infinitely lived agents as an

intertemporal general equilihrium model. In contrast to models with a finite

number of infinitely lived agents, it may possess equilibria that are not

pareto efficient. It may also possess equilibria in which a stock of nominal

debt, often identified as fiat money when it is positive, is passed from

generation to generation. These features, among others, have made this type

of model popular in discussions of the theoretical aspects of such issues as

social security schemes and national debt (Diamond (1965)), monetary policy

(Lucas (1972)), and international exchange rates (Kareken and Wallace

(I98I)). This type of model would also seem to be ideal as a tool for policy

analysis. Unfortunately, and also in contrast to models with a finite number

of infinitely lived agents, overlapping generations models may not have

determinate equilibria (Kehoe and Levine (l982a)).

That an overlapping generations model might have a continuum of

equilibria is well known. ¥hen counting the equations and unknowns in his

equilibrium conditions, Samuelson himself has noted that "we never seem to

get enough equations: Lengthening our time. period turns out always to add as

*The research presented in this paper was funded by Grant No. SES-8209448
from the National Science Foundation. We are very grateful to Jonathan
Burke, who showed considerable skill and insight in constructing the
numerical examples presented in the paper.
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many new unknowns as it supplies equations." Gale (1973) has extensively

studied the overlapping generations model with a single two period lived

consumer in each generation and one good in each period. In such a model he

finds that indeterminacy is always associated with equilibria that are

inefficient and have positive amounts of nominal debt or with equilibria that

are efficient and have negative amounts of nominal debt. In either case

there is a one dimensional set of equilibria; in other words, the equilibria

can be indexed by a single number, for example, the price of fiat money.

Balasko and Shell ( 1 981 ) have extended these results to a model in which

there are many goods in each period, but a single two period lived consumer

in each generation, in fact, one with a Cobb-Douglas utility function. Calvo

(1978) has constructed examples in which the indeterminacy is still one

dimensional, indexed by the price of an asset such as land or capital.

In this paper we consider pure exchange overlapping generations models

with n goods in each period. Ve argue that for a model with a non-zero stock

of nominal debt there is potentially an n dimensional indeterminacy, while

for a model with no nominal debt there is potentially an n - 1 dimensional

indeterminacy. Thus relative prices within a period can be indeterminate.

Although our results agree with those previously known for the case where

there is one good in every period, they indicate that indeterminacy does not

depend on the existence of fiat money or other assets. Furthermore, even in

pure exchange models with no aggregate debt or assets, our results indicate

that equilibria may be indeterminate or not whether or not they are pareto

efficient.

How far do we have to go to construct examples in which there are

indeterminate equilibria without fiat money or indeterminate equilibria that

are pareto efficient? We shall present an example in which the only
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departure from the simple model considered by Gale is that the single

consumer in each generation lives three, rather than two periods. Gale

himself considers such models and conjectures that the results he obtains for

the two period lived model carries over to them. Unfortunately, we provide a

robust example that demonstrates that this is not the case. This stands in

fundamental constrast to the static pure exchange model, where, although it

is always possible to construct examples with a continuum of equilibria, such

examples cannot be robust. As we shall see, our three period lived consumer

model can also be viewed as a model with two two period lived consumers in

each generation and two goods in each period.

We begin by describing a simple stationary model and examining its

steady states. We then study the behavior of equilibrium price paths around

a steady state and characterize the dimensionality of paths that converge to

the steady state. We also indicate how our results can be extended to models

that have growing populations and that are non-stationary for a finite number

of periods. Finally, we discuss the significance of indeterminacy in models

of this type.

II. The Model and Its SteaoT States

We begin by considering the model in which each generation lives two

periods. As we shall explain, the model in which each generation lives more

than two periods can be viewed as a special case of this model. Each

generation t > 1 is identical and lives in periods t and t + 1 . There are n

goods in each period. The vector p = (p.,-.., p.) denotes prices in t. TheXX X

consumption and savings decisions of the (possibly many different types of)

consumers in generation t are aggregated into excess demand functions
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y(p p ) when young and z(Pa^. Pt+i ^ vhen old; y and z are, of course, n

dimensional vectors. Excess demands are assumed to be homogeneous of degree

zero,

(1)

z(ept, ep^^^) = z(p^, p^^^)

for any 9 > 0, and to satisfy Valras's law, the aggregate demand "budget

constraint

,

Both of these assumptions can be justified if each consumer faces a single

budget constraint, in other words, if we allow consumers to make

intertemporal trades.

¥e assume that excess demands are continuously differentiable for all

strictly positive price pairs (pj., p^..), which, as Debreu (1972) and

Kas-Colell (1974) have shown, entails little loss of generality. We further

assume that y and z are bounded from below and such that as some, but not

all, prices approach zero, e'[y(p., P++4 ) *" z(px. P++i )) ' " where e denotes

the n vector whose every element is one. These assumptions are naturally

satisfied if y and z are derived from utility maximization: If consumption

of every good by every consumer must be non-negative, then an obvious lower

bound for (y, z) is (-w , -w_) where w and w are the aggregate endowment

vectors when young and when old respectively. If preferences are

monotonically increasing in consumption, then when a single price goes to
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zero the excess demand for that good becomes infinite. Furthermore, if more

than one price goes to zero, then excess demand for some, hut perhaps not

all, of the corresponding goods becomes infinite (see Arrow and Hahn (1971),

pp. 29-51-)

Debreu (1974) has demonstrated that, for any y and z that satisfy the

assumptions of homogeneity and Walras's law, there exists a generation of 2n

utility maximizing consumers whose aggregate excess demand functions y* and

z» agree with y and z on any set of positive relative prices uniformly

bounded away from zero. There is a minor technical complication in that y*

and z* may not agree with y and z as some relative prices approach zero.

Utilizing a result due to Mas-Colell (1977), however, Kehoe and Levine

(l982c) argue that we can. ignore this qualification when studying the

behavior of the excess demand functions near steady states. Consequently,

for our purposes, we are justified in viewing our assumptions as both

necessary and sufficient for demand functions derived from utility

maximization by heterogeneous consximers. As we shall see, however, the

possibility of indeterminacy of relative prices in overlapping generations

models does not depend on implausible aggregate excess demand functions.

The assTimptions of homogeneity and Valras ' s law are implicitly

equivalent to the assumption that consumers are allowed to trade goods with

each other even if the goods are consumed in different time periods. One

institutional story to go with this assumption is that we allow creation of

private debt, or inside money. The presence of a public debt, or outside

money, is a different matter, however, which depends only on initial

conditions. An equilibrium price path for this economy is one for which

excess demand vanishes in each period:
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ZqCpi) * y(Pi. P2) " (3)

for t " 1 and

z(p^_^, p^) * y(p^. p^^^)
"0 (4)

for t > 1. Here z^ denotes the excess demand of old people in the first

period. Let \x = p'z^(p.) be the nominal savings of the initial old

generation. Repeated application of the equilibrium conditions and Walras's

law implies that -p^y(p^, P^+^ ) " P^+^ z(p^.
^t+1

**
" >^ ^''^ ^^^ times.

Consequently, we can view ^ as a constant stock of outside money, fiat money,

at least if ^i > 0. It is the fixed nominal net savings done by the young

generation each period.

A steady state of this economy is a relative price vector p and an

inflation factor p such that p. = P p satisfies

z(p^""'p, p^p) + y(pS. P'^*^) = z(p, pp) + y(p, Pp) = 0. (5)

In other words, if relative prices in each period are given by p and the

price level grows by a factor p , markets would necessarily clear in all

but possibly the first period. Since claims to good i now cost p and claims

next period cost Pp , 1/p - 1 is the steady state rate of interest.

There are two types of steady states: real steady states in which

^ = -p'y(p, Pp) = and monetary, or nominal, steady states in which \x t 0.

On one hand, Walras's law implies that p' (y + pz) = and, consequently, that

Pp'z = p.. On the other, the equilibrium condition (5) implies that
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p'(y •«• z) "0 and, consequently, that p'z - \i.. Therefore (p - 1 )^ - 0, and

any nominal steady state must have p " 1 . Gale calls steady states in which

P
" 1 golden rule steady states because they maximize a weighted sum of

individual utility functions subject to the constraint of stationary

consumption over time. He calls real steady states balanced.

It is possible to construct ezamples in which a golden rule steady state

is also balanced, in other words, in which ^l = and p =
1 simultaneously.

Such a steady state must satisfy z(p, p) + y(p, p) = and -p'yCPf p) ' 0.

Walras's law implies that this is a system of n independent equations;

homogeneity implies that there are n - 1 independent unknowns. Consequently,

we would expect this system of equations to have a solution only by

coincidence. In fact, Kehoe and Levine (l982c) prove that almost all

economies do not have a steady state where both |i = and p = 1 . They give

the space of economies (y, z) that satisfy the assumptions of differentiability,

homogeneity, Walras's law, and the boundary condition a topological structure:

Two economies are close to each other if the values of the demand functions and

the values of their partial derivatives are uniformly close. The phrase "almost

all" in this context means that the property holds for a subset that is open and

dense: Any sufficiently small perturbation of an economy that does not have a

steady state where p. = and p = 1 results in an economy that still does not

have such a steady state; for any economy that has such a steady state, however,

there exist arbitrarily small perturbations that result in economies that do not

have such steady states. A property that holds for almost all economies is

called a generic property.

Gale proves that the model with a single two period lived consumer in

each generation has a unique nominal steady state and, generically, a unique

real steady state. The unique nominal steady state is where the price of the
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eingle good is constant over time. Walras's law implies that this situation

does indeed satisfy the steady state condition (5)« At this steady state the

savings of the young person are not, in general, zero. Since there is only

one consumer in each generation any trade that takes place must be between

generations. Consequently, since there is only one good in each period,

there can be trade only if there is a corresponding transfer of nominal debt

from period to period. Any real steady state must, therefore, by given by a

relative price ratio p = P++1 /P+ that makes the consumer prefer not to

trade. Such a price ratio obviously exists; generically there is only one.

Vith many consumers in each generation, but only one good in each

period, nominal steady states are still unique, but real steady states need

not be: Consider a one period pure ezchange economy with two consumers and

two goods that has multiple, but determinate, equilibria. Robust examples of

this sort are, of course, easy to construct (see, for example, Shapley and

Shubik (1973)). Nov construct an overlapping generations economy by

assigning two such consumers to each generation and by letting one of the

goods be available in the first period of their lives and the other in the

second. Each of the different equilibria of the static economy now

corresponds to a different real steady state of the overlapping generations

economy in which the two consumers in each generation trade with each other,

but not with other generations. Vith many goods and many consumers neither

real steady states nor nominal steady states need be unique. Kehoe and

Levine ( 1982c) prove, however, that generically there exists an odd number of

each type. Their arguments are similar to those used to prove that the

number of equilibria of a. pure exchange economy is odd. (See, for example,

Varian (1974)-)

Using a result due to Balasko and Shell (198O), we are able to examine
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the efficiency properties of steady states. They consider models with a

single consumer in each generation that satisfy a uniform curvature condition

on indifference surfaces that is quite natural in a stationary setting such

as ours. They demonstrate that a necessary and sufficient condition for an

equilihrium price path of such a model to be pareto efficient is that the

infinite sumri/||p.|I does not converge. (Here, of course,

1 /2
llPill ^ (p+P+) •) This result can easily be extended to models with many

consumers in every generation. Consequently, a steady state of our model is

pareto efficient if and only if p < 1,. in other words, if and only if the

interest rate is non-negative. Price paths that converge to steady states

where p < 1 are pareto effficient; those that converge to steady states where

p > 1 are not.

Every economy has a pareto efficient steady state since it always has a

steady state where p = 1 . In the model with one two period lived consumer in

each generation and one good in each period. Gale finds that the unique real

steady state has p < 1 if and only if the unique nominal steady state has

ti < 0. Similarly, p > 1 at the real steady state if and only if ^i > at the

nominal steady state. In the more general model we cannot make such strong

statements. We can, however, demonstrate that every economy has an odd

number of steady states where p < 1 and p < 0. Ve sketch an argument below;

details are given by Kehoe and Levine (l982c). This argument also makes it

clear why every economy has an odd number of real steady states and an odd

number of nominal steady states.

Consider the n functions

i'i(p» P) = y (p, Pp) + z^(p, pp) - p'(y(p, Pp) + z(p, pp)). (6)
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Our assumption on the behavior of excess demand as some prices tend toward

zero guarantees that there exists §_ > and P > §_ such that any steady state

value of p satisfies g_ < p < p. Furthermore, for any p > there exists at

least one value of p that solves the equations

f^(p, P) = 0, i = 1, ..., n - 1. (7)

Since this is a system of n - 1 equations in n - 1 unknowns it can easily be

shown that solutions to this system of equations are generically smooth

implicit functions of p

.

There are two distinct ways for a pair (p, p) that satisfies (7) to be a

steady state: if -p'y(p, p ) = or if p = 1 . In either case Walras's law

implies that p'[y(p, Pp) + zCp, Pp)) = 0. Let

m(p, p) = -p'y(p, Pp) (8)

for any (p, p), and consider pairs p. and p such that \i = m(p, p) and (p, p)

satisfies (7). Unfortunately, p. is not, in general, a well defined function

of p since for any p there may be more than one p such that (7) is satisfied.

Ve are justified, however, in drawing diagrams such as that in Figure 1.

Figure 1

There are a finite number of paths of pairs ^i and p . that satisfy our
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conditions. Some of them are loops that do not intersect the boundary P
"

g_

or p " F' I't is possible, however, to demonstrate that generically there are

an odd number of points of the form (p, g_) where (7) is satisfied, and,

similarly, an odd number of the form (p, P*). To make this plausible observe

that, for any fixed p, the functions f
. (p, p) have the formal properties of

excess demand functions of a static pure exchange economy: They are

homogeneous of degree zero in p and satisfy Valras's law, p'f(p, p) = 0. It

is well known that generically (in this case, for almost all p) there are an

odd number of equilibria of such economies. An even number, possibly zero,

of pairs \i and p are associated with paths that return to the boundary p =
g_.

An odd number, at least one, therefore cannot return. Our boundary

assumption implies that, for g_ < p < p , the prices that satisfy (7) are

uniformly bounded away from zero. Consequently, m(p, p) remains bounded, and

paths that start at p =
g_ and do not return must eventually reach the

boundary p = p. Any path or loop may intersect itself, but does not, in

general, do so where p = 1 (or B_ or p ) or where ^i = 0.

Our boundary assumption implies that vi > when P
=

§_ and ji < when

P
= p . Consequently, any path that starts at P_ and ends at p must intersect

the line m = an odd number of times. Similarly, any such path must

intersect the line p = 1 an odd number of times. On the other hand, every

loop or path that starts and ends at the same boundary intersects both p. =

and p = 1 an even, possibly zero, number of times. Each of these

intersections corresponds to a steady state. Generically, there is none

where ^ = and p = 1 . Experimenting with different possibilities we ceoi

easily verify that any admissible graph must share with that in Figure 1 the

property that there are an odd number of steady states where p < 1 and p. >

and an odd number where p > 1 and \i < 0.
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III. Determlnaey of Equilibrium Price Paths

Ve now focus our attention on the behavior of equilibrium price paths

near a steady state. In addition to the requirement that markets clear

in every period we require that prices converge to the steady state, in other

words, that (p^, p^^^)/II(p^, P^^^ ) I I
^ (p- Pp)/ll(p. Pp)|| as t -^ ». We do

this for two reasons. First, price paths that converge to a steady state are

the most plausible perfect foresight equilibria: Agents can compute future

prices using only local information. If prices are not converging to a

steady state, however, then agents need global information to compute future

prices. Second, these price paths are the easiest to study. To determine

the qualitative behavior of price paths near a steady state we can linearize

the equilibrium conditions. Paths that do not converge may display very

complex periodic, or even chaotic, behavior. Some paths may even lead to

prices that are zero or negative, where excess demands explode.

Determinacy of equilibrium price paths that converge to a steady state

may still leave room for indeterminacy. There may be paths that do not

converge to a steady state, but nevertheless always remain strictly positive

and are, therefore, legitimate equilibria. That a model has a determinate

path that converges to a steady state is a weak test. ¥e shall establish,

however, that there are robust examples of economies that fail even this

test.

Consider again the equations that an equilibrium price path must

satisfy:

ZqCp^) + 7(P,, Pj) = (3)

for t = 1 and
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z(p^_l, P^) *y(Pt. P^^^) - ... (4)

for t > 1- Once p, and p. are determined (4) acts as a non-linear difference

equation determining the rest of the price path. We begin by asking how many

pairs (p^ , Pp) give rise to a price path that converges to a steady state

(p, Pp)« ^6 stable manifold theorem from the theory of dynamical systems,

described, for example, by Irwin (1980), implies that generically these

questions can be answered by linearizing (4) around (p, Pp). We then ask how

many pairs (p. , p„) are consistent with equilibrium in the first period.

This question can be answered by linearizing (3). Pairs (p., p.) that lie in

the intersection of these two sets correspond to equilibrium price paths.

The dimension of this intersection can generically be deduced from a simple

counting argument. If this dimension is greater than zero, there is a

continuum of equilibrium price paths. If it is greater than one, relative

prices are indeterminate: Hot even by exogenously specifying the price level

can we make price paths determinate. Details of the argximents presented

below are given by Kehoe and Levine (l982a).

Baking use of the fact that derivatives of excess demand are homogeneous

of degree minus one, we can write the linearized system as

• '^^ p^+^ + (i^^y + P^2^^Pt * ^^1^ ^t-1
" ° (4')

where D.y is, for example, the matrix of partial derivatives of y with
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respect to its first vector of arguments and where all derivatives are

evaluated at (p, Pp).

Kehoe and Levine (l982c) have shown that D_y is generically non-

singular. Consequently, (4') can be solved for an explicit second order

difference equation. Using a standard trick, we can write this equation as

the first order system q = ^t-l ^^^^^
^t

"
^^t' ^t+1^

^^^

-pD^y'^D^z -D^y'"" (D^y -^ pB^z) (9)

The stability properties of this difference equation are governed by the

eigenvalues of G. By differentiating the homogeneity assumption we can

establish that p is an eigenvalue of G since

p

P^P
PP

(10)

Similarly differentiating Walras's law, we can establish that unity is

another eigenvalue since

p'[-pD^z D^yjG = p'[-pr^z D^y] (11)

In the case where p = 1 these are generically the same restriction, and we

have information about only one eigenvalue.

Consider now the diference equation q = (l/p)G . Any steady state

q = (p, Pp) is a stationary solution to this equation. Let n be the number

of eigenvalues of (l/p)G that lie inside the unit circle in the complex

plane, that is, whose moduli are less than unity. These correspond to
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eigenvalues of G that lie inside the circle of radius p . The set of initial

conditions q^ - (p^, p^) such that q^ - Gq^_^ satisfies q^/I Iq^I |
* q/llqll

8 2n
as t •• " forms an n +1 dimensional subspace V of R . The extra dimension

s

shows up because of homogeneity: If q satisfies q./||q.|l -> q/llq||, then

g
80 does 9q for any scalar G . This subspace is spanned by the n eigenvalues

of G associated with the eigenvalues that lie inside the circle of radius p

and the eigenvector q associated with the eigenvalue p.

Besides yielding a path that converges to the steady state ray, (p, , p„)

must also satisfy the linearized equilibrium conditions in the first period,

(5'). Let us first examine the situation where ^ ^t 0. Assiune that

p^Z(-,(p^) =
M. for all p., so that the initial nominal savings of old people

are independent of prices. In this case s^ cannot be homogeneous of degree

zero in p^ , and, since p^'DZq(p^)p^ = -pjzp(p^) = -\i t 0, Dz^ -p t 0.

Consequently, (3') defines an n dimensional affine subset of prices (p., p„)

consistent with equilibrium in the first period. The intersection of this

subset with the subspace of prices that yield a path that converges to the

steady state generically has dimension (n +l)+n-2n=n +1-n<n.

There are several cases of interest: First, if n < n - 1, then

generically there are no equilibrium paths that converge to this steady

state. Ve call such a steady state unstable. Second, if n = n - 1, then

stable equilibriiun price paths are locally unique and, in a small enough

neighborhood of the steady state, actually unique. ¥e call such a steady

g
state determinate. Third, if n < n - 1, then there is a continuum of

locally stable paths. In fact, the (p. , p^) that generate these paths form a

manifold of dimension n + 1 - n. ¥e call such a steady state indeterminate.

The n + 1 - n subspace of the corresponding linear system is, in fact, the
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tangent space to this manifold at (p, Pp), in other words, its best linear

approximation.

Let us now consider the situation where ^ " 0. Here it is natural to

assume that z. is homogeneous of degree zero in p , which implies that

Dz^ p = 0. There are two considerations that reduce the dimension of the

subspace of initial conditions that we are concerned with. First, since the

equilibrium conditions (3') and (4') are now homogeneous, we can impose a

price normalization and work in a 2n - 1 dimensional affine subset of E ,

for example, by setting p. = 1 . This allows us to ignore the eigenvalue p

associated with the eigenvector q. Second, since ^ •= 0, the initial price

pair (p., Pp), and all subsequent pairs (p , p, . ), must satisfy

P^yCPv Pp) ~ Q' This restriction can be linearized at (p, Pp) as

(y* + p'D^y)?! + V"^^ P2 = 0. (12)

Since Djy is generically non-singular, this defines a 2n - 2 dimensional

subset of the normalized price space. Differentiating Walras's law with

respect to p., we establish that y' + p'D.y "•" Pp'D.z = at (p, pp).

Consequently, (12) can be rewritten as

p'[-pD^z D^y]
^1

P2
(13)

This implies that the unit eigenvalue associated with the (left) eigenvector

p*[-pD.z I-y] is irrelevant on any path where ^ = 0.

Let n denote the number of eigenvalues of (1/P)G that lie inside the

unit circle excluding the root 1/p, which we have argued is irrelevant. The

set of prices q = (p , p ) that satisfy (13) and the price normalization and
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give rise to a price path that converges to q - (p, pp) forms an n

dimensional set. The set of prices q. - (p., p ) that satisfy (I5) and the

price normalization and are consistent with equilibrium in the first period

forms an n - 1 dimensional set. Equilibrium price paths are associated with

points in the intersection of these two sets, which generically has dimension

^+(n-l)-(2n-2)=^+1-n<n-1.

Although the eigenvalue 1/^ is irrelevant for price paths in which

^ = 0, it is crucial for the behavior of paths where p. ^ 0: If p ^

initially, then the price path cannot converge to a steady state where p < 1

since 1/P is an unstable root. In other words, with a positive interest rate

money cannot have value. Although paths with p. * can converge to steady

states where p > 1 , asymptotically the constant nominal money stock

disappears because of inflation.

A warning should be given about the generic nature of our results.

Although they hold for almost all economies, it is possible to think of

examples that violate them: ¥hen there is a single two period lived consumer

with an intertemporally separable utility function in each generation, for

example, both D„y and D. z have rank one. Consequently if there are two or

more goods, we cannot invert D^y. In this case, Kehoe and Levine (l982b)

demonstrate that the situation is essentially the same as that in a model

with only one good in each period: Vith nominal initial conditions there is

at most a one dimensional indetermihacy--and,. with real initial conditions no •

indeterminacy is possible. These results are, of course, closely related to

those of Balasko and Shell (1981) cited earlier.

IV. An Example with Three Period Lived Consumers

Consider now an economy in which each generation consists of a single

consumer who lives three periods and in which there is a single good in each
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period. Balasko, Cass, and Shell (1980) _present a simple procedure for

converting such a model into one in which consumers live two periods. The

essential feature of the two period lived model is that each generation

overlaps with only one other in each time period. Redefine generations so

that generations -1 and become generation 0, generations 1 and 2 become

generation 1, and, in general, generations t and t + 1 become generation

(t+1 )/2 when t is odd. Similarly redefine time periods. The following table

is an incidence matrix with a 1 where the generation is alive and a where

it is not.

Generation

-1

4

5

1

1

Time Period

2 3-4 5 6

H

H

H- H

}

• •

}
1

} 2

• •

• •

} 3
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Hotice that now there are two consumers in each redefined generation and two

goods in each redefined period, and that each generation overlaps with only .*

one other during any period.

In this section we consider examples of economies in which each consumer':,

lives three periods. Our above discussion indicates that such examples are

also examples of an economy in which each consumer lives two periods.

Suppose the single consumer in each generation has a utility function of the

form

u(c^ , c^, c^) = (l/b)(a^c^ + B.^z^ + a^c^) (U)

where a> , a_, a_ > and b < 1. This is, of course, the familiar constant

elasticity of substitution utility function with elasticity of substitution

Ti
= 1/(1 - b). The excess demand functions for the consumer bora in period t

have the form

Pt-.j-i ^i=i^iPt-i-i

all. .p.^. .w.
/ \ 2 1=1 t+i-1 1 . . ^ _ (.^s

^j^^t' Vi' V2^ =:Tr^—;:r-irj^T--^j' ^ = ^'2, 3. (15)

The equilibrium conditions for such an economy take the form

"^ (p^ ) + 3^(Pi . P2) * ^^ (Pi ' P2' P3) = (16)

for t = 1

,

-^iv^, Pj) •" ==^2^^1 ' ^2' ^3^ "^ ^1^2' Pj* P4) = (17)
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for t - 2, and

z. j(Pt.2. Pt_r Pt^ * ^2^-1' Pf ^+1^ * ^1^^' Vr Pt+2^ ' ° ^^^^

for t > 2- Vhen we redefine generations, time periods, and goods in the

manner described above these conditions become the same as (3) and (4).

Linearizing (18) around a steady state p produces

^\^^V^.2 ^ ^pV? ^ P^1^2^Pt-1 * ^pS^3 ' PV2 " ^1^1 ^Pt

+ (PD^x^ - I)2X^)p^,^ VVlV2^ °- (^9)

2
Here all derivatives are evaluated at (I, p, p ). ¥e are interested in the

roots of the corresponding fourth order polynomial. These correspond, in

turn, to eigenvalues of a 4 i 4 matrix like that in (9)'

Notice that, in addition to price paths of the form {I, p, p , p ,

4 1

P ,...}, the model with two period lived consumers may have steady states of

2 2 2
the form { 1 , y , y6 , y 6 , y 6 ,...}: 'Vrhen we redefined time periods and goods

two period cycles became steady states. In this section, however, we analyze

only steady states of the original three period model. Indeed, our nximerical

examples do not happen to have such two period cycles.

Consider first an example with the following parameter values:
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Period

1 2 3

2 2 1

3 15 2

-4

This economy has one nominal steady state and three real steady states.

The diagram corresponding to that in Figure 1 is given in Figure 2.

Figure 2

The roots of the fourth order difference equation (19) at these steady states

are listed below:

p Other Roots

0.04239 1.0 0.47907 -0.01380

0.93295 1.0 0.17245 ± 0.82735i

1.0 0.93286 0.18594 ± 0.89862i

53.80562 1.0 2.04076 -121.45064

1

2

3

4

The modulus of the pair of complez conjugates at the steady state where

P = 0.93295 is 0.84513; where p = 1 .0 it is 0.91766. Let us focus our

attention on these two steady states. By constructing suitable consumers

bom in periods -1 and 0, we can find a robust example of an econon^^ with a

continuum of equilibria converging to each of these steady states.
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Let the consumer bom in period -1 have an endowment of 2 units of the

good in his last period of life. He derives utility only from the

consumption of this good, of course, so we need not specify any utility

function. Let the consumer bom in period have an endowment of 10.37894 in

the second period of his life and 2 in the third. Let his utility function

be u(cp, c_) = -1/4(2c2 + c_ ) . Suppose, in addition, that consumers hold

-1
p. and \i in nominal claims respectively at the beginning of the first

period. First, consider the case where \i = \i =0. It is straightforward,

but tedious, to check that (p^ , p^, p^, p^) ' (l, 0.93295, (0.93295) ,

(0.93295) ) satisfies the conditions for equilibrium in the first two

periods, (16) and (17). Since p = 0.93295 is a steady state, this is a

legitimate equilibrium price path. Our arguments from the previous section

imply that this is only one of a continuum. Since ^i = 0, the excess demands

of generations -1 and are homogeneous of degree zero and we can normalize

prices by setting p. = 1 . We can then choose Pp = 0.93295 + z for any small

e, positive or negative, and use the equilibrium conditions (16) and (17) to

solve for p_ and p . Using the equilibrium condition (I8), we can solve for

an infinite price sequence. This price sequence must converge to one where

p,_^-/p, = 0.93295 since the modulus of the root governing stability is less

than 0.93295. The root equal to unity is, as we have explained, irrelevant

since \x = everywhere along this price path.

How consider the case where p. = -0.55557 and p = 0.65376. Here it can

be checked that (p , p , p_ , p ) = (l, 1, 1, I) satisfies (I6) and (17). In

this case the excess demands of generations -1 and are not homogeneous and

we are not permitted a price normalization: Money is itself the numeraire.

¥e can now choose p. =1 + z and p„ = 1 + E_for any z., £„ small enough and

use (16) and (17) to solve for p_ and p.. Again using (I8), we can solve for



-25-

an equilibrium price sequence that converges to one where p • /p. - 1

.

The relative price indeterminacy exhibited in this example does not

depend on one of the old consumers coming into the first period with nominal

debts, negative fiat money. Suppose, for example, that \i "=0, that

p,
= 0.09809 and that the endowment of the consumer in the second period of

his life is 10.93461, but that otherwise consumers -1 and are the same as

above. The corresponding demand functions give rise to equilibrium

conditions in the first period that are satisfied by p =
1 , t = 1 , 2, 3, 4.

-1
Again there is a two dimensional indeterminacy. Setting \i = p. = does

not, however, result in equilibrium conditions that are satisfied by

p^ = (0.93295)*"\ t = 1, 2, 3, 4.

Motice that this example also generates equilibria of the type Gale

describes: Any equilibrixim price path that converges to the steady state

where p = 0.04239 is determinate and pareto efficient. Any equilibrium price

path that converges to the steady state where p = 53.80562 and has no net

nominal debt is also determinate. Any path with non-zero nominal debt that

converges to this steady state has a one dimensional indeterminacy, however.

Pixing p. and p., that is, fixing the price of fiat money, eliminates this

indeterminacy. Any path that converges to this steady state is, of course,

pareto inefficient.

,. Choosing the parameters of this type of model suitably, we can

illustrate other possibilities for behavior of equilibrium price paths near

steady states. For example, the following parameter values correspond to an

economy with four steady states with p 's and other roots that are the

reciprocals of those given above.
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Period

1 2 3

1 2 2

2 15 3

b = -4

Here the steady state where p = 1 is unstable: There are no paths that can

approach it unless, by pure chance, p. '=1,t"1,2, 3, 4, satisfies the

equilibrium conditions in the first two periods. The steady state where

P
•= 1.07187 = (0.93295) is also unstable for price paths with no nominal

debts. There are, however, determinate price paths with non-zero nominal

debt that converge to this steady state.

Suppose that the parameters of the economy are as follows:

w.
1

Period

1 2 3

3 1 1

4 36 1

-2

This economy has a steady state where p = 2.36512 and the other roots are 1.0

and .81499 i '1.18782i. The modulus of this pair of complex conjugates is

1,44053, which is less than p. By choosing the initial old consumers

appropriately, we can find a two dimensional continuum of price paths with

non-zero nominal debt, and a one dimensional continuum of paths without

nominal debts, that converge to this steady state.
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An essential feature of all of the a"bove examples is that they are

robust: ¥e can perturb slightly the parameters, and even functional forms,

of the demand functions of all of the consumers, including the initial old,

and still have an economy whose equilibria have the same qualitative

features. Ve choose initial old consumers so that the steady state prices

satisfy the equilibrium conditions in the first two periods only to make it

easy to verify that there are prices that satisfy these equilibrium

conditions and also converge to the steady state-

V. Discussion

¥e have analyzed the behavior of equilibrium price paths near the steady

states of stationary pure exchange overlapping generations models. Ve have

also presented robust examples of such models with three period lived

consumers and various forms of relative price indeterminacy. As we have

indicated, these examples can be interpreted as models with two period lived

consumers and two consumers, rather than one, in each generation and two

goods, rather than one, in each period. In this section we discuss some

possible extensions of our results and some of their implications for applied

work-

Let us first explain how our results can be extended to models with a

constant rate of population growth. Suppose the demands of generations t

are

:

3^t^^t' Vl^ =°^'^'^3^lW' ^t+1^

=t^^t' ^t+l^ = "^"^'^^I^Pf ^t+1^

(20)
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Here a - 1 is the rate of population growth. With a suitable redefinition of

prices and excess demand functions, this model can be transformed into the

~ t-1 ~
one we have been working with: Let P^ •= a p^, ^^Pt' ^t+l^

'
"^l^^t* °^t+1 ^

and !;(?., Pa.+< ) " z(p
, p , _|^. ) • Notice that y and z are homogeneous of degree

zero if j. and z. are. Notice too that, if y. and z> satisfy Walras's law.

p;yi(Pt. Pt^i) ^ pl^i^i^Pf Pt+i^ " °' (21)

then so do y and z:

t-2 , 2-1^ 1-t- V t-1 , 1-t- -1r~ X0=a z^ (a
Pt_i ' °^ Pt^ * °^ ^V°- Pf '^ ^t+1 ^

(22)

0=a p^y^(a p^, a P^.^^ ) + « Pt+1 ^^^ Pf '^ ^t+W

Pt^^Pf Vl^ Vl^^Pf ^t+l^

Finally, notice that if p , t = 1, 2, ..., satisfies the equilibrium

conditions

= ^_i(Pt-l' Pt^ ^ ^t^^V Pt+1^' (25)

then p .
, t =

1 , 2, ..., satisfies the corresponding conditions:

(24)

^^t-r'^t^ ^"^(Pf Vl^
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This transformation is obviously invertible: If we know p. , y and z,

and the growth factor a, we can recover p , y , and z . Nominal steady

states are those where p = p. _^. , which is equivalent to p •= ocp, ^. . This

implies Samuelson's result that the rate of interest at such a steady state

is, in fact, the growth rate of the population.

Other forms of non-stationarity can be incorporated into our framework

as long as the model is stationary for all generations after some generation

T. In this case the equilibrium conditions for the first T + 1 periods serve

the same role that the equilibrium conditions for the first period do in the

stationary model. Generically, they determine all of the price vectors

Pi » Po» •••» Pm "^^"^ one. The remaining price vector may, or may not, be

determined by the condition that P„ and p^_^, give rise to a price path that

converges to a steady state when viewed as initial values for the difference

equation corresponding to the remaining equilibrium conditions. The analysis

of relative price indeterminacy remains the same.

A restrictive aspect of our analysis is that we have only analyzed price

paths near steady states. In fact, however, our analysis immediately extends

to price paths near any cycle of finite length. Eecall that when we

redefined generations, time periods, and goods to convert the three period

lived model into a two period lived model we noted that two cycles become

steady states. In general, suppose that a model has a cycle of length k, in

other words, that (p^^^ , p^^^' ••" Vk^ = ^ ^^t-k+r ^t-k+2'
•'•'

^t^

satisfies the equilibrium conditions. Suppose we redefine generations, time

periods and goods so that, for example, generations 1, 2, ..., k are now

generation 1 and so on. The cycle now corresponds to a steady state of the

redefined model.
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Further research is currently being carried out to determine whether our

results extend to models with production, durable assets, and some infinitely

lived agents. Muller (19S3) has extended our analysis to economies with

activity analysis production technologies that permit storage of goods from

period to period. Woodford (1985) has analyzed models in which there are

some finitely lived consumers of the sort we have analyzed here and some

infinitely lived consumers. Both find that there remain robust examples of

economies with relative price indeterminacy. Interestingly enough, there are

also examples where the indeterminacy disappears because of production or

infinitely lived agents.

More work obviously remains to be done, but it seems that indeterminacy

of perfect foresight equilibria remains a robust characteristic of certain

intertemporal equilibrium models in that no small changes in specification

can eliminate it. One crucial hypothesis to be examined is that of perfect

foresight. ¥ith adaptive expectations, for example, equilibrium price paths

are generically determinate. Is there some general, and economically

meaningful, way to choose a perfect foresight expectations mechanism that

gives rise to determinate equilibria? If not, how far do we have to depart

from the perfect foresight hypothesis to get determinacy?

Our results should be troubling to researchers interested in

applications of the overlapping generations model. A model that does not

give determinate results is not very useful for doing policy analysis. One

way to handle this type of model is to solve for prices that satisfy the

equilibrium conditions for the first T periods by fixing expectations of what

prices would be in period T + 1. ¥e could, for example, require that

Ptp+4 ~ Pm or that Pm+-i
~ P» "the steady state price vector. This type of
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truncated model generically ha3 determinate equilibria. Furthermore, if the

truncation date T is large enough, then an equilibrium of the truncated model

would be a reasonable approximation to an equilibrium of the actual model.

(How large a T is necessary in practice is itself an interesting question.)

Unfortunately, the results may depend crucially on the arbitrarily specified

expectations for Pm. < • If there is a continuum of equilibrium price paths

converging to the steady state, then setting p^,^.
= p we may get drastically

different results, even for p., as we vary T.

That the overlapping generations model seems plagued by indeterminacy is

not a satisfactory justification for completely abandoning it in favor of the

model with a finite number of infinitely lived consumers. As Gale (1973) has

pointed out, "the reason for considering a population rather than a fixed set

of agents is that the former is what in reality we have, the latter is what

we have not." To build a useful intertemporal equilibrium model, however, it

would seem necessary to address the issues that we have raised in this

paper

.
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