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Abstract

While 2SLS is the most widely used estimator for simuhaneous equation models, OLS

may do better in finite samples. Here we demonstrate analytically that the for the widely

used simultaneous equation model with one jointly endogenous variable and valid

instruments, 2SLS has smaller MSE error, up to second order, than OLS unless the R , or

the F statistic of the reduced form equation is extremely low We then consider the

relative estimators when the instruments are invalid, i e the instruments are correlated

with the stochastic disturbance. Here, both 2SLS and OLS are biased in finite samples

and inconsistent We investigate conditions under which the approximate finite sample

bias or the MSE of 2SLS is smaller than the corresponding statistics for the OLS

estimator. We again find that 2SLS does better than OLS under a wide range of

conditions. We then present a method of sensitivity analysis, which calculates the

maximal asymptotic bias of 2SLS under small violations of the exclusion restrictions. For

a given correlation between invalid instruments and the error term, we derive the

maximal asymptotic bias. We apply our results to IV estimation of the returns to

education We denve the bias in the estimated standard errors of 2SLS for the first time.

This derivation also has implications for the test of over-identify ing restnctions.

Keywords: instrumental variables, 2SLS, weak instruments, retums to education
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rV Estimation with Valid and Invalid Instruments

Jinyong Hahn and Jerry Hausman
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While 2SLS is the most widely used estimator for simultaneous equation models,

OLS may do better in finite samples. Econometricians have recognized this possibility,

and many Monte Carlo studies were undertaken in the early years of econometrics to

attempt to determine condition when OLS might do better than 2SLS. Here we

demonstrate analytically that the for the widely used simultaneous equation mode! with

one jointly endogenous variable and valid instruments, 2SLS has smaller MSE error, up

to second order, than OLS unless the R" , or the F statistic of the reduced fomi equation is

extremely low. We do a calculation based on observable statistics with one unknown

parameter that allows a calculation that should give valuable infomiation about the

relative MSEs of OLS and 2SLS.

We then consider the relative estimators when the instruments are invalid, i.e. the

instnmients are correlated with the stochastic disturbance. Here, both 2SLS and OLS are

biased in finite samples and inconsistent. We investigate conditions under which the

approximate finite sample bias or the MSE of 2SLS is smaller than the corresponding

statistics for the OLS estimator. We again find that 2SLS does better than OLS under a

wide range of conditions, which we characterize as functions of observable statistics and

one unobser\'able stafistic.

We then present a method of sensitivity analysis, which calculates the maximal

asymptotic bias of 2SLS under small violations of the exclusion restrictions. For a given

correlation between invalid instruments and the error term, we derive the maximal

asymptotic bias. We demonstrate how such maximal asymptotic bias can be estimated in

practice.

Next, we turn to inference. In the "weak instruments" situation the bias in the

2SLS estimator creates a problem, since it is biased towards the OLS estimator, which is

also biased. The other problem that arises is that the estimated standard errors of the

2SLS estimator are often much too small to signal the problem of imprecise estimates.
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Here we derive the bias in the estimated standard errors for the first time, which turns out

to cause the problem. This derivation also has implications for the test of over-

identifying restrictions.

We do not survey the weak instruments literature. For recent surveys see Stock

et. al. (2002) and Hahn and Hausman (2003).

I Model Specification

We begin with the model specification with one right hand side (RHS) jointly

endogenous variable so that the left hand side (LHS) variable depends only on the single

jointly endogenous RHS variable. This model specification accounts for other RHS

predetermined (or exogenous) variables, which have been "partialled out" of the

specification. We will assume that'

(1.1) y,=l3y,+e,

(1.2) yj =27:-, +V2,

where dim(;r2 ) = K . Thus, the matrix z is the matrix of all predetermined variables, and

equation (1.1) is the reduced form equation for y^ with coefficient vector 71^. We also

assume homoscedasticity:

(1.3)

fr \

v^2,y

n{q,y)~n
(J. (J..

We use the following notation:

y

h^

\.yn)

f ^'\

, o-,, = Var(f„ ), a^ = Var{v,,), cr^ = Cov(£-„ , v,, ) = a,

\^nj

We initially assume the presence of valid instruments, E[z'e/ Ji] = and 71:2 ^0

.

' Without loss of generality we normalize the data such that yj has zero mean.



II Estimation with Valid Instruments

From previous papers, e.g. Hahn and Hausman (2002a, 2002b) we know the bias

and MSE of 2SLS up to second order. The bias of 2SLS is

(2.1) eKJ-P^^^^^ f^- ,

where © = n' z'zTTJn , assumed to be fixed, R is the theoretical value from the second

(reduced form) equation, andyj is normalized to have mean zero. We assume:

Condition 1: K ^> ^ as n ^ o<, such that K / yfn = /J + o(l) for somefJ. i^ 0.

A Properties of the 2SLS Estimator

As a special case of Theorem 3 in Section 3, we obtain that:

Theorem 1: V"(&2.sz,5 - P)^> N'<MLv '

Here, V-^^^^ = o^jQ, the usual 2SLS first order asymptotic variance. As a consequence,

we obtain the approximate MSE of 2SLS:

(2.2) MSE{2SLS) = M, =^^ +^ = f"^'"" ,
+

^''

ne' n R\y\y,f R'(y',y,)

Note that both terms in equation (2.2) approach zero as {yj' y-. ) increases with increasing

sample size. The first term, bias squared also approach zero more quickly, as expected,

since 2SLS is "root n" consistent.

We now simplify the M2 expression for 2SLS. Without loss of generality we use the

normalization (rescaling of units) O"^^ = a^^. = 1 so that Var{y^) = \/{l-R^) and

(J^, = p . Using this normalization we find:

(K'p'(\-R')+nR'-)(\-R'^
(2.3) MSE{2SLS) = M,=

n'R' R'

The convergence of MSE to zero in terms of the sample size n becomes quite evident

with this normalization.

These parameter are theoretical values from the underlying model specifications for given parameter

values.



B Properties of the OLS Estimator

We now calculate the bias and MSE of the OLS estimator. The approximate bias

is:

(2.4) eKJ~P~~^^^'^
.Var(yj) G + <J,

The approximate variance is defined as:

.2 /2v2

(2.5) V,,,=-^ Oj^^l^^

As a special case of Theorem 4 in Section 3, we obtain the distribution for the OLS

estimator:

Theorem 2: V«
' ',. '^ '^

OLS

V V
+ cr,

^l^i^JoLs)
w JJ

This result is the same as in Hausman (1978). Thus, the approximate MSE of OLS is

(2.6) MSE{OLS) = M,
a V,OLS

(e + CT„,)^ n

The inconsistency of OLS is evident from equation (2.6) because while the second term

goes to zero as n becomes large, the first term is not a function of «. The OLS MSE

under the normalization used above becomes:

M„
(7 ev (T,

2 d42(j\R

(2.7)

var^(>'2) "var(>'2) «var^(>'2) '^'^^^^(y'l)

^/?'(77-l-27?')(l-/?') +



We see that the first term in the OLS MSE is the usual first order bias term squared. It

does not go to zero as n becomes large since OLS is inconsistent.

From the 2SLS MSE calculations as the sample size grows large the denominator

of the 2SLS MSE calculation in equation (2.3) dominates, and the MSE goes to zero. To

the contrary for the OLS MSE, in equation (2.7) the numerator also grows with ;;, as the

bias of the OLS estimator does not go to zero with the sample size. Thus, for large

samples 2SLS is consistent and OLS is not. We now consider how the estimators do in

finite samples.

C Bias Comparisons of the 2SLS and OLS Estimators

We compare the approximate finite sample bias of 2SLS to the approximate MSE of

OLS:

(2.8) ^= '^ '

B^ nR'' \-R- F

where the F statistic is the "theoretical" F-statistic from the first-stage reduced form.

Thus, if F » 1 , 2SLS has less bias. However the OLS variance is less than the 2SLS

variance so v^'e compare the MSEs below.

Before leaving the bias comparisons, we also consider what happens when we are

close to being unidentified so that tTj - aj ^n . where the vector has dimension K. Thus,

the reduced fomi coefficients are "local to zero". With ;r, = cr/v'J , equation (2.1)

predicts the bias of 2SLS to be

(2.9) £[6,,,J-/? =
SLS J r- ^

K

where equation (2.9) is an approximation to the asymptotic bias of 2SLS under the

asymptotics where tt^ = aj^n . Here, Y = a' z' za . On the other hand, equation (2.4)

predicts the approximate bias for OLS to be:



(2.10) E[baJ-P- ""

n

Taking the ratio of the biases under local to zero asymptotics:

(2.11) ^" -"

K'

From equation (2.1 1), it follows that the bias of 2SLS is smaller than OLS as long as

K « n ,a condition which will always be satisfied in practice.

D MSE Comparisons of the 2SLS and OLS Estimators

We next compare the MSE of 2SLS to the MSE of OLS using the normalization

(and non-local asymptotics):

(2.12)
^^^- K'p'(\-R') + nR'

M, {nR')[{n-\-2R')p\\-R') + \]

where 7?" = (7?" )^ . The correlation parameter p is the key parameter in simultaneous

equation analysis because if it is zero the OLS estimator is the unbiased Gauss-Markov

estimator and the ratio of MSEs in equation (2.12) equals 1/7?^ > 1, but OLS is biased

and inconsistent if the parameter value of p is not zero.

Which estimator to use will depend on whether equation (2.12) is less than or

greater than unity. We can solve for the "critical value" of p^ which causes the MSE of

the 2 estimators to be equal. The solution for this "critical value" has a remarkably

simple form:

(2.13) p'
nR'

nR\n-\-2R')-K-



As « becomes large the "critical value" of /7^ goes to zero. In any particular sample i?"^

and F can typically be accurately estimated from the unbiased estimates of the reduced

form so that only p^ is unknown. While this parameter value is typically unknown, the

applied econometrician will often have a good (a priori) knowledge of p so that she will

be able to determine whether the critical value is below the square of the correlation

coefficient.^' As we now demonstrate, the critical value is often so low that 2SLS will

have a lower MSE than OLS, even for situation with relatively "weak instruments" or a

low F statistic.

In Figure 1 we calculate the critical value of p (using the absolute value) for a

range of values of R^ for K of 5, 10, and 30 and for sample sizes of n = 100.^ The

results of Figure 1 demonstrate that for K=5 if R" > 0.1 then the critical value of p is

sufficiently small that 2SLS should typically be used in terms of the MSE comparison.

For K=10 2SLS will typically be belter if R'^ > 0.2 . However, for K=30 we typically

require R" > 0.4 . In Table 1 we repeat the calculations for n=500 and n=1000. Here we

find that if R' > 0.1 that 2SLS typically will have a lower MSE. Thus, except in the case

of weak instalments, which can arise when both R is low and the number of instruments

is high, 2SLS is typically the preferred estimator based on an approximate finite sample

comparison of MSEs.

Ill Estimation with Invalid Instruments

Up to this point we have assumed that the instniments are valid so that they are

orthogonal to the stochastic disturbance f, . However, the econometrician may not be

certain that the instruments satisfy the orthogonality condition. We now consider the

situation where the orthogonality condition on the instruments fails so that

£[z'f| / n] ^ 0. We first consider the "large sample bias" of 2SLS:

The parameter p is also estimated from the 2SLS estimation, but a good estimate may be diffcult to

achieve in a "weak instrument" situation

The curves for increasing K lie to the right of each other.



(3.1) plim[6,,„]-y9 = -^5^

where W = ztTj . When we compare this with the analogous expression for OLS

(3.2) plimlVsJ-^^-^^
a..

yiyi

In general either estimator may be preferred on this criterion depending on

circumstances. The numerator of equation (3.1) would likely be smaller ("less

correlation" in the instrument) than the numerator of equation (3.2), but the denominator

of equation (3.1) is always smaller since R^ < 1. Indeed, if R^ is very small, the OLS

estimator may do better in tenns of inconsistency.

A Invalid Instrument Specification

To do asymptotic approximations we need to specify the correlation of the

instrument with the stochastic disturbance in the structural equation (1.1). We use a local

specification similar to the approach in Hausman (1978, Theorem 2.1):

(3.3) £,=z{yl4n) + efory^0.

We assume that (e,v) is homoscedastic and zero mean normally distributed with

covariance matrix :

'e,,^

V^2,V

n{o,q.)-~n
f^ll CS-12

^12 <^7-̂"-'jy

B Properties of the 2SLS Estimator with Invalid Instruments

We derive the asymptotic distribution of the 2SLS estimator with locally invalid

instruments in Appendix A:



Theorem 3: V" (^.^^^ -fi)=>N
e

V
1 ^ 2SLS ^N -Jna^:^ +[kI -Inp^

R'a..

11 V
' 22SiS

where J^F = z;r2 is the instrument and ^ = ;r'z'z7/;2, which is assumed to be fixed . The

first term in the numerator of the mean E arises fi"om failure of the orthogonality

condition. The second term is the usual finite sample bias term and it decreases with the

sample size. The variance continues to be f^25is under instrument invalidity because of

the local departure in equation (3.3) similar to Hausman (1978, p. 1256).

We use Theorem 3 to calculate the approximate bias of the 2SLS estimator with

invalid instruments is:

=.l4n + K(7,Jn \-R^( 1 1 , ^

© R \yln n J

where we use the previous nonnalizations and set o^y.^ = H/ V« = apf4n for a <\

Using Theorem 3 we find the MSE of 2SLS to be:

M5£,,=^^l^^i+''"-

(3.5)

0^ n n

(. n2^V

/?'
—j= ap + -^ Kp + —

n

^\-R'^

C Distribution of the OLS Estimator with Invalid Instruments

We derive the asymptoUc distribufion of the OLS estimator with locally invalid

instruments in Appendix A:

Theorem 4: V" OLS

V V

/».
''"

+ (J,,

TV

+ C7.,

V
J

V"<7„,.^
V,

V ^.o

OLS

The distribution is centered around the usual OLS bias, as before, and the numerator of

the mean of the distribution arises from the instrument invalidity. Again, the variance



continues to be F^^^ under instrument invalidity because of the local departure in

equation (3.3). Using Theorem 4 we find the MSE of OLS to be:

MSEo, =

(3.6)

(Tr 1 ^+/^g"l2+

2\2
= (l-/?0

rn
ap + p

^' ^-p'(l + 27?')(l-^') + l^
(i-/i')

The first term in parentheses is the "usual" simultaneous equation bias of OLS that does

not decrease with the sample size.

We consider a special situation which make the fonnulae easier to interpret. Let

y = T7t for some r . Under this proportionality assumption, the asymptotic distributions

take the form:

2SLS and

+ cr„

r

N V
'

'^ OLS ^(^R\v,,,)
l + cr,2/0

where we have used the normalization to derive the final expression for the distribution

of OLS.

D Bias Comparison of 2SLS with OLS

We now compare the bias of 2SLS under instrument invalidity with the bias of

OLS given similar circumstances. We now re-write the bias of OLS using the

normalization:

(3.7) B^,=E[b,J-/3^{\-R^)
^r

ap + p

As before, we take the ratio of (3.4) and (3.7):
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(3 8) ^ = ^P'^ + ^P'"

The ratio of the biases is homogeneous of degree zero in the correlation coefficient p , so

we can simplify terms. We plot the ratio of the biases in Figure 2 for the case of n=100

and K=5 and « = 0. 1

.

We find that the 2SLS bias is less than the OLS bias if:

.. r.s 1 nR^-K

Equation (3.9) is very easy to interpret. We calculate a "critical alpha" in Figure 3, and

note that it increase quite rapidly, so that the bias of 2SLS with invalid instniments

remains less than the bias of OLS so long as F exceeds 1 .0 by a small amount. The

straightforward relationship of equation (3.9) allows for an easy interpretation on which

the econometrician may well have some a priori knowledge.

In certain situations it may be reasonable to consider a relationship between o^^,.^

and R^ such that when the covariance is less so is R'. If we totally differentiate equation

(3.9), we fmd that clR' I da-{n-K)l\ n''\a + ^n) . Thus, for a given increase in the

covariance between the instnimcnt and the stochastic term, a , we fmd that the required

increase in R^ is approximate at the rate of the one over the square root of n to keep the

ratio of the biases approximately the same. However, the required change in R is also

inversely related to a .

Note that the common empirical finding that the 2SLS coefficient is larger than

the OLS coefficient can arise because of the OLS bias when the instruments are valid or

because of an improper instrument. Thus, even if the instrument is "almost uncorrelated"

so that cr„..^ = substantial bias can still arise because R' is often quite small in the

weak instruments situation. Thus, comparing equation (3.4) to the bias of OLS in

equation (3.7), the empirical finding that the 2SLS estimate increases compared to the

OLS estimate may indicate that the instrument is not orthogonal to the stochastic

11



disturbance. The resulting bias can be substantial. Indeed, it could exceed the OLS bias,

leading to an increase in the estimated 2SLS coefficient over the estimated OLS

coefficient.

E MSE Comparison of 2SLS and OLS with Invalid Instruments

Returning to the general situation and using the normalizations the ratio of the

MSEs is

M, (\-R'iap + Kp/^J/R'+\/R'

Mo il-R')[{ap + /^py +\-{l-R')p' ~2i\-R')p'R']'

No straightforward condition can be derived where the ratio is less than one. We graph

the ratio of the MSEs for « = 0.1 and K=5, n=100 in Figure 4 (please note the inverted

vertical axis). Note that the ratio of MSEs is below 1 .0 except in the situation where R^

becomes quite small (as with weak instruments) and p becomes small (which decreases

the OLS bias). The situation remains essentially the same when we increase to a = 0.3

in Figure 5. To yield a better understanding of what can happen in this situation, we plot

the situation in Figure 6 where R^ < 0.2 and p < 0.3 for « = 0.1 . Figure 6 demonstrates

that the 2SLS estimator can do quite poorly compared to the OLS estimator, even though

the F statistic exceeds 1 .0 by a large amount. The reason for this poor relative

performance is the small size of p which makes OLS a relatively good estimator.

However, this situation is typically not a situation where the absolute performance of the

2SLS estimator with valid instruments would be poor under weak instruments because p

is not large. It is the presence of invalid instruments, with only a "small amount" of

correlation with the stochastic disturbance that creates the problem.

F. Comparison of a (Second order) Unbiased Estimator

In our comparisons of 2SLS with OLS, two sources of bias arise. The first source

of bias is from the use of estimated parameters, Kj in equation (1 .2), in forming the

instruments. This source of bias disappears as the sample becomes large. The second

source of bias is from the use of invalid instruments, y ^0 in equation (3.3). This source

12



of bias does not disappear sufficiently fast with the sample size to cause 2SLS to be

consistent. An interesting question would be about how the comparison of IV to OLS

would change if the first source of bias were eliminated. We can eliminate this source of

bias (to second order) by using the Nagar estimator.

We derive the asymptotic distribution of the Nagar estimator with locally invalid

instruments in Appendix A:

Theorem 5: 4n{b^ - (3) N
0'

= A/
vnicr„We

2 _ '
•" 2SLS

R'a
-,V,s

where W = zn^ is the instrument and 'E = n' z'zy I n, vv'hich is assumed to be fixed, and

as before V^^^^ = cr^jQ . Thus to compare the MSE of the Nagar estimator to the MSE

of the 2SLS estimator with invalid instruments, we see that the variance of the two

estimators is the same, but that the bias differs as explained above. However, when we

compare the bias square of 2SLS from equation (3.4) with the Nagar estimator we find

that

(3.1 i;

=.1 4n -\- Ka^2 /" H/V^lf ~

0^

can be less than or greater than zero. Thus, we cannot conclude that using the Nagar

estimator to compare with OLS would make the comparison more favorable to an IV

estimator.

IV Sensitivity Analysis

Card (2001) discusses possible concerns that the instruments may be invalid in

discussing the empirical literature that estimates the return to additional education. The

use of instrumental variables in this situation began with Griliches (1977) well known

paper. To investigate the possibility of invalid instruments, we consider the specification:

' The Nagar estimator may perform poorly with weak instnimenis because of its lack of moments. See

Hahn, Hausman, and Kuersteiner (2002).
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(5.1)
y,{e) = py,+ze + £

£ =zO + e

Note that we have added zd to the error e . We derive the maximal asymptotic bias for

a small violation of the exclusion restriction in Appendix B, where y/ is the correlation

between z^tt and £•' so that i//^ is the R^ of between z-TT and e' . We find the maximal

asymptotic bias to be:

Theorem 6: max plim bias y?2as (^)
1 plim/7"'^£-;2A"V 2 \

I//
^

R' pVimn-'Y^yl r
Note that the maximal asymptotic bias can be consistently estimated by

(5.2)
1 "-'Z^:

1/2

/ 2 A"2

\-y/'

Imbens (2003) suggested a different sensitivity analysis in a program evaluation

model with binary explanatory variable, extending Rosenbaum and Rubin's (1983). With

some simplification, it can be said that he considers a parametric model where an omitted

variable bias is suspected. It is well known that the omitted variable bias can be related to

two parameters, the coefficient of the omitted variable and the correlation of the omitted

variable with other observed variables in the model, e.g. Griliches (1957). The sensitivity

analysis of Imbens (2002) is based on manipulation of these two parameters.

We now consider the effect of invalid instruments in an empirical example.

Estimating the return to education has been a well-researched problem over the past 25

years. Griliches (1977) is a seminal paper that uses FV to estimate returns to schooling.

The usual result is that researchers find the OLS estimate to be smaller than the 2SLS

estimate by approximately 25%-50%, e.g. Card (2001). This result arises from a tradeoff

between two potential sources of bias: (1) an omitted variable, call it "spunk" in the

stochastic disturbance may be correlated with the amount of educations. Thus, people

Imbens (2003) considers the question of sensitivity analysis, but not in the context of instrumental

variables.

14



with more spunk achieve higher education levels and also higher earnings, because they

work harder both in school and on the job. This left out variable would lead to an upward

bias in the least squares estimate of the schooling coefficient. (2) errors in variables (EFV)

that arise because years of schooling are a noisy measure of "useful knowledge" attained

with more years of school that leads to higher earnings. Here the EFV would lead to a

downward bias in the least squares estimate of the schooling coefficient. The typical IV

results finds that the EIV effect is larger than the left out variable effect, so the 2SLS

estimated typically exceed the OLS results by a significant amount.

We now consider the Angrist and Krueger (AK) results which have an extremely

large sample and use quarter of birth to fonn instruments, which may be more likely to be

orthogonal to the stochastic disturbance than more widely used family background and

other types of instruments typically used in the empirical returns to schooling literature.

However, the AK instruments have an extremely low R" that could help create a weak

instruments situation. Angrist and Krueger (1991) used a sample of n = 329,509

observations to estimate the returns to education. Using the .AK data we estimate the

2SLS return to education to be 0.0891 (.016) using K=30 after partialing out the other

right hand side variables. This estimate is closer to the OLS estimate of 0.071 (.0003)

than expected given other empirical results. After partialling out, we find that the

average squared residuals equal 0.41, the average of the partialled out right hand side

endogenous variable (education) equals 10.8, and R^ = .00044662. For \i/~
= 0.0001 , we

find that the solution to equation (5.2) is 0.0925. This maximal bias exceeds the 2SLS

estimate of 0.0891, so a small amount of bias could either eliminate any estimated return

to education or double the estimate.

Our finding that the returns to coefficient could be over two times the OLS

estimate contrasts with the results of Manski and Pepper (2000) who apply Manski's

(1990, 2003) non-parametric bounds approach. Manski and Pepper (on a different

sample) find that the upper bound is substantially less than two times the usual OLS

estimates of the returns to schooling. Hov^ever, the Manski approach does not allow for

15



errors in variables. This omission may significantly limit the empirical relevance of the

Manski approach to this problem.

This result demonstrates that use of a "weak identification" strategy such as the

AK approach is extremely sensitive to very small departures from the IV orthogonality

assumption. Note that from the result in Theorem 6, that this extremely sensitivity does

not decrease with increasing sample size. Thus, the AK estimate of the returns to

schooling is very sensitive despite an extremely large sample size of n = 329,509. Our

results caution against using a weak identification strategy that has become widely used

in applied econometrics.

V Bias in Estimated Standard Errors

We have previously discussed the biased in the 2SLS estimator in equation (2.1)

and Theorem 1 . In the "weak instruments" situation this bias may be quite large. A

further problem arises in that the 2SLS estimator is biased in the same direction as the

OLS estimator as equation (2.4) and Theorem 2 demonstrate. Thus, Hausman (1978)

specification type test will be biased towards not rejecting the null hypothesis of lack of

orthogonality between f, and v^ in equations (1 .1) and (1.2). However, another problem

has been recognized in the weak instruments situation. The estimated standard errors for

the 2SLS estimator are downward biased, sometimes leading to the mistaken inference

that the 2SLS estimate are much more precise than they actually are. From analysis

based on first order asymptotics the usual conclusion would be that with "weak

instruments" that the reported standard error of the 2SLS estimator would be sufficiently

large to signal the finding that so much uncertainty exists with the estimate that it would

not be of much use. However, researchers have found that, to the contrary, often the

2SLS estimator in the presence of weak instruments leads to a reasonably small standard

error. Thus, the researcher may be unaware of the weak instruments problem, although

Hahn-Hausman (2002, 2003) propose a test that is useful in identifying when weak

instruments is causing a problem. The source of the problem of small reported standard

More generally, since the bias in the OLS estimate when ElV exists depends on the variance of the

measurement error, or alternatively the R" of the regression, typically no bounds exist in the ElV problem

for the estimated coefficient unless some judgment is made regarding the unknowTi variance. For further

discussion, see Hausman (2001).
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errors of the 2SLS estimator has not been discussed in the literature. Here we derive the

source of the problem and offer a possible approach to fixing it.

The variance of 2SLS is derived in Theorem 1 and takes the usual form of

^2SLs
- ^ce^ where = tt'z'z/t / n is assumed to be fixed. Now is not difficult to

esfimate since unbiased estimated of 7i follow from OLS on equation (1 .2). Thus, the

downward bias in the estimated 2SLS standard errors must arise from a downward biased

estimate of a^^ . We now derive the bias. The intuition follows from the fact that 2SLS

is biased towards the OLS estimator, which minimizes a^^ . Thus, we find that the bias

of the 2SLS estimator of fi creates a bias in the 2SLS estimate of a^^ . We find the bias

to be:

Theorem?; E[<J isls 1 = cr„ -^^ cT « + -^-^
'' n e n n e

Note that the leading term in the bias calculation of Theorem 5 is 2 times the bias of the

2SLS estimator from equation (2.1). As either the number of instruments grows or the

covariance between the structural and reduced term stochastic disturbances becomes

large, the bias in the estimation of a^^ will also become large. We now apply the

normalization that we used above to find:

E[(J 2SLS ] = 1 ; P +-- ^
(5.1) " ^^ " " ^'

\[(2K-4)p'-\]{\-R') I ^

n R n

The bias can be quite substantial as demonstrated by equafion (5.1). The final term in

equation (4.2) will typically be small so that it can be ignored. Equation (5.1

)

demonstrates that the downward bias can be substantial; in Monte-Carlo results we find

that for R = .01 and p = 0.9 that the mean bias of the 2SLS estimate of the variance

varies from -70% to -80% as K, the number of instruments, increases from 5 to 30.

Thus, we note that the bias in the estimation even when K = 5 can be quite large. This

finding explains the result that when weak instruments are present, the estimated standard

' The Monte-Carlo design is the same as in Hahn-Hausman (2002a).
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errors of 2SLS can appear to be near those ofOLS and small enough to allow the

researcher to make conclusions about the likely true parameter value. However, with

weak instruments these conclusions could be erroneous because of the substantial bias in

the estimated standard error of the 2SLS estimator. Kleibergen (2002) also proposes an

alternative approach to modify inferential procedures, but his approach is based on the

LIML estimator rather than the 2SLS estimator. Hahn-Hausman (2003) and Hahn,

Hausman, and Kuiersteiner (2003) discuss problems that may arise with this approach

because of non-existence of moments of the LIML estimator.

We now consider the finding that the often used test of over identifying

restrictions (OID test) rejects "too often" when weak instruments are present, i.e. the

actual size of the test is considerably larger than the nominal size. See Hahn-Hausman

(2002a), Table xx where the nominal size is 0.05 while the actual size is sometimes

greater than 0.5. The OID test can be quite important since it tests the economic theory

embodied in the model as discuss by e.g. Hausman ( 1 983). In the weak instrument

situation it may have increased importance given the substantial bias in the 2SLS

estimator and the large MSE that we calculation in equations (3.1), (3.3) and (3.4). From

Hausman (1983) we write the OID test as:

£' P £
(5.2) W = ^-^-^

W is distributed as chi-square with K-1 degrees of freedom. From equation (5.2), we see

that a downward biased of (7„ can lead to substantial over-rejection and an upward

biased size of the OID test. Thus, correcting for this problem can have an important

effect on test results.

VI Conclusions

We derive second order approximations for the bias and MSE of 2SLS (and the

Nagar estimator) with both valid and invalid instnnnents. The derivation for invalid

instruments is new, to the best of our knowledge. We find that substantial finite sample

bias can occur when weak instruments exist which arises when the R'' of the reduced



form regression is low, the number of instmments is high, or the correlation between the

structural and reduced form stochastic terms p is high.

We then compare the bias and MSE of 2SLS with OLS. The OLS estimator is

biased and inconsistent, but its smaller variance may make it preferable to 2SLS in a

weak instruments situation. We determine straightforward and easily checked conditions

under which 2SLS has smaller bias than OLS. These bias conditions carry over, in large,

part, to the MSE comparisons because changes in the bias term are quite important in

changes in the MSE term given typical sample sizes of n=100 or larger. We find that for

R^ > 0.1 , 2SLS is generally the preferred estimator. However, the econometrician can

use our formulae to check the expected performance of 2SLS and OLS in a given

situation given some a priori knowledge about likely parameter values.

We also demonstrate that a substantial bias exists in the 2SLS estimator for the

variance of the stochastic disturbance, which lead to downward biased 2SLS standard

errors and over-rejection of the test of over-identifying restrictions. We derive a formula

for the bias that would allow for correction of the bias.
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Figure 1

Critical Values for Rho

n=100 and K=5. 10.30

rr
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Table 1: Critical Values of p

R'^2 0.01 0.1 0.2 0.3 0.5 0.7 0.9

K=5

100
**

0.3677 0.2323 0.1863 0.1432 0.1210 0.1070

500
* 0.1423 0.1002 0.0818 0.0634 0.0536 0.0473

1000 0.3654 0.1002 0.0708 0.0578 0.0448 0.0378 0.0334

K=10

100
•k-U **

0.2601 0.1949 0.1455 0.1220 0.1075

500
** 0.1445 0.1006 0.0819 0.0634 0.0536 0.0473

1000
** 0.1006 0.0708 0.0578 0,0448 0.0378 0.0334

K=10

100
** ** ** »*

0.1789 0.1339 0.1135

500
** 0.1771 0.1050 0.0834 0.0638 0.0538 0.0474

1000
** 0.1049 0.0716 0.0581 0.0448 0.0379 00334

denotes no critical value of p less than 1.0 exists
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Figure 2: Ratio of 2SLS Bias to OLS Bias with Invalid Instruments

N=100,K=5, a = 0.1
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Figure 3

Critical Values for Alpha

n=100andK=5, 10.30
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Figure 4

MSE 2SLS/MSE OLS

Alpha=0.1 andK=5
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Figure 5

MSE 2SLS/MSE OLS

Alpha=0.3 and K=5
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Figure 6

MSE 2SLS/MSE OLS

Alpha=0.1 and K=5
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A Bekker Asymptotic Distribution of 2SLS, OLS, and Nagar

under Misspecification

Suppose that

Vu = y2iP + ei = {z[^2) P + uu

where

TV 0,
f^l,! '^1,2

'^1,2 '^2,2

Following is the Lemma reproduced from Hahn and Hausman (2001);

Lenima 1 Let U = \ y\ y2 \- Assume that ^ ^t a-ir o (n"''/^), and that -k^z' z-k^Iti is fixed at 0. Let

S = U'P.U and S-L = U'M.U. We then have

n-'^S22

n-'S^2

leJ-

e+^ -UJ2,2

\ (l-^)-2.2 J J\ ri-'Si2 I

where A and A"*" denote symmetric 3x3 matrices such that

/ ' AM 0,

V A^

and

A]_2 = 2t^i,i0/3 + W^Q^\,2 + Sawi, 1(^1,2

A] .3 = 4/3eu.'i,2 + 2qwJ2

A2.2 — fj-"!,!© + /3 01^2, 2 + 20a;i.2/? + Qa;j_iu;2,2 + ct<^\
2

A2,3 = 2(^2,20/5 + 200;] ,2 + 2qu;2,2'^1,2

As.s = 4cJ2,20 + 2Qa;^_2

Aj 2 = 2(1- q)u/'i_ilji,2

A^,3 = 2(l-Q)a;'[2

A5 (1 - q)cJ],]U,'2,2 4- (1 - Q)t '1,2

A^3 = 2(1 - q)u;2,2I^'i,2

H,Z 2(1 -q)u;^_2



Remark 1 TTie u)s in the Lemma correspond to the "reduced form'". It would be convenient to rewrite

the above with structural form parameters. Because

u = £ + I3v

we can see that

^1,1 = ffi.i + 2/3ai,2 + /3V2,2

t^l,2 = cri,2 + /3l72,2

t^2,2 = 0-2,2

Lemma 2 Suppose that -j^ = /i + o(l). Then we have

\/ri

y'oPzV^

r^ UP^y\ - ^v'^M.vl _
^ \y',P-^y2-^^y'2M,y2

C^l,2

Vy2y2 V + t^2,2

=> N[Q,V2SLS)

=> A' (n, Vols)

Proof. Suppose that q = 0. Using the previous Lemma, we obtain

n^'S,2 \
f

©-Z^ + f -^1,2
.V

and

n^' (S,2 - ^S^,)

n-i (S,2 + 5^2)

"^' (S22 + 52^2)

B • /3 f u.'i 2

+ u-'2,2

AA

(,d-u.'2,2 + 2u.'].-2,'3 + '^1,1) 2 (cjo.i/^ + '^1,2) Q

2 ((^2.2/^ + '^'1,2)© 4a'2,20

(/./-u,'2,2 + 2^;, ,2/^ + '^'1,1)0 2 (a;2,2,ff + ^'] ,2)

2 (^^2,2/3 + ^^'1.2) 4u;2.20

J^ 0,
(/3 u-'2.2 + 2aJi_2/? + iJ-"],]) + 1^1 2 + '^'1.1 "''2. 2 2 (^,'2.2,/? + 1^1,2) © + 2u;2.2'^'l,

4^2 20 + 2u;?2 (u;2,2/3 + '^'1,2) + 2u,'2.2i^'l.2

Therefore, using Delta method, we obtain tlie following

,2
^9 9

V2/2^=2/2
0+-^-c^2,2

/^ / y2-P.yi - ^y2^-^.~Vl• e p

yv

?/2J/l 0/3 + a;i,

,J/2?/2 © + '^2,2

where we used the fact that

N I

(^i.i '],2
^2,02

(0 + "^2.2; (© + > (0+^2.2)

ti,']
J = C],] + 23a] 2 + /3 '^2,2

(^'1,2 = cri.2 + l3ff 2,2

0^2,2 -- 02,2



Because -^ =/i + o(l), we can see that

/e-j0+f •a;i,2 e-/3\ ^^1.2 M'^1.2

and

^"U^^.y2 e ; - ^"VyiF.2/2 e + f a;^,^ j+^"l^ e + ^.c.2,2 e

'yz^zyl ©-Z^ + f '^1.2^
,
M^i,2^^,j) •

^y^P,j/2 + V '^2,2 /

V e ' e y

.

A.l Asymptotic Distribution of 2SLS under Misspecification

Note that

y'2P^y2 y'2Pzy2

_ y'2Pzy\
,

1 n~^ (271-2 + V2)'-z7

y'2Pzy2 yjn n-iy^P^y2

But

n ^ (27r2 + U2) 27 = — + n ''j;227 = ~ + Op (1)

n-^y'2P.y2 = n-1522 = 6 + Op (1)

n ' (271-2 + V2)'27 -
, ,1^

"-^2/2^.^2 e

7:;;^^ K\ rz i y'i^--yl ,,V " M27r2+V2)'z7

so that

It follows that

y'2Pzy2 J n ^y'2Pzy2

A.2 Asymptotic Distribution of OLS under Misspecification

Note that

y',y,
y'2 {yl + 7^n)

"OLS = —— = ;

^22/2 2/2^2

= ^22/1
,

1 71'^ (27r2 + z;2)'a7

^2^2 Vn n-Jy^j/2



But

so that

It follows that

n ^ {ZTT2+V2)' zj = =. + n ^i4z7 = ^ + Op (1)

"~^2/22/2 = n"^522 +""^5^2 = © + (^2,2 + Op(l)

n ^ {zTT2 + V2)' z-y 5
,

,,.+ Op(l)
'y^P,y2 e + a2,2

0-1,2 \^ = V^l
fy'2yl

Ky2y2
(3 1

'"'^

6+tJ2,2/y' \ f + W2,2

= V^\
(y'2y\

12/2^2
(P 1

'"''

\ + UJ2^2

^ n( r\ ,

,VoLs)
^9 + (72,2

A.3 Asymptotic Distribution of Nagar under Misspecification

Note that

, _ y'2P.yi - ^M.yi _ ^'^^^ (2^' + 7^^"^') - ^^2^. {y\ + :j^n

y^Pzj/2 - fy^A/.y2 ^^^.^2 - ^y'2M.y2

y'2P^yJ--±y2Mfyi . 1 n-'(z7r2 + ^2)'^!
+

But

so that

It follows that

y'2Pzy2 - ^y'2M.y2 V^ n-i (y^F.yz - ^y^A/.yz)

n"' (zTTa + r2)'27 = H + Op(l)

"^' ly2P.y2 - ^y'2M,y2] = @ + Op (1)

Ti~' (z7r2 +i^2)'z7 ^ S

V'n (6;v -0) = Vn
I
-777- k,., - P | + __w,/^, k3^''\y'2P..y2-^y'2M.y2

( y'2P.y{ - ^y'2M..y\ \

\y'2P.y2-^y'2M^.y2 ^)

n-' (y^P.yz - 7-2/2 A/. y2)

e
+ H + op(l)

A^l Q,V2SLS



B Sensitivity Analysis

Consider a model with one endogenous regressor where other included exogenous variables are partialled

out. The model takes the form where

Vi =1^/3 + e,, 2 = 1,... ,n.

Denote the available instrument as Zi, and write the first stage regression as

Xi = z'tT + Uj (1)

2SLS estimator is obviously given by

hsLs = [x'z {z'zy' z'xY x'z {z'z)-' z'y,

where

X

x\

Y

Vi

Vn

,
z

What is the property of b if the exclusion restriction is in fact violated? In order to implement violation

exclusion restriction, we add a little noise to £,, and consider a new model

where

y* {0) = x,(3 + z[0 + e:

e = zM + e,

(2)

Let

and

PlsLsid)^ Ix'ziz'zy'z'xV x'ziz'zy'z'Y^ie)

We would like to examine the maximal asymptotic bias \b2sLS {0)\ for a small violation of exclusion

restriction, i.e., the violation such that the correlation between z'^O and e* is some small number jp. We

argue that

n-'n^^t 1 ^

\n-^T.: 1 -•!/;'
(3)

provides such measure of sensitivity. Here, ffi? denotes the R^ in the first stage.



B.l Derivation of (3)

It can be shown that'

where

Note that

b2SLs{d) = {^''^^) '^''^0

$ = plimn-^Z'Z

^ ,
= (tt <P7r) TT <P

do' ^
'

which is maximized when 9 oa n. We therefore focus on the type of violation such that ^ = ^ tt for some

scalar (.^ Without loss of generality, we will write

hsLS (S) = b2SLS (^ tt) = b2SLS (0

Note that the population R^ in the regression of e* on z, which is equal to the square of the correlation

(^ between e* and z'^tt, is equal to

0'<i>9 _ ^^ tt'^tt

e'<^e + E [£2]
"

^2 . ^,^^ ^ £.
[^2]

and

62Sis(0 = (7r'*^)"''r'$(C-7r) = C (5)

We can solve (4) for ^ , and obtain

Now, note that the population R^ in the first stage R? is equal to

7r'$7r
1.2

which can be solved for tt'^tt as

k'^TT = R2 . £. ^2.2j (7")

^ See next ^subsection for a slight !> more general proof.

-Maximization of ||b2S/.s (^)ll witli respect to 8 fixing 8'<Pd constant has the purpose of maximizing the asymptotic

bias b'2SLS C) for a fixed population R^ in the regression of f' on z. Because

ln'-t-el^ < (7r'4>7r) • {e'^e)

with equality when 9 octx. we can say that tt is the direction that maximizes the sensitivity (inconsistency) of b2SLS for ^

given amount of violation of exclusion restriction.



Combining (6) and (7), we obtain

E |x2] K2 1 - V;

or

e 2

lCl = l^...s(OI=,/f||^^^ (8)

We note that (8) can be approximated by the empirical counterpart

\i\=\h2SLs[i)\
n-'T.un 1 ^

.2

B.2 Digression: Robustness of 2SLS

In genera], we estimate /? by

^p^=[[ZA)'XY'(ZA)'Y

and the counterpart under small misspecification is

'p\{e) = [[ZA)'xY'(ZA)'Y'{e)

so that

Note that

and

bA{e) = plim3.4(e)-/5

= p\\m[(ZA)' xY\za)'y' {e)-p

= plim [{ZA)' X]
"

' [ZA)' {X(i + Ze + e)-P

= /3 + p\im[(ZA)' X]'YZA)' Z9-P
= p]im{A'Z'X]~'^ A'Z'Ze

= p]]m \A' z'z {z'zy'^ z'x] A'z'ze

= [A'^Tx)'^ A'^e

—, = {it $7r) IT $

(9)

Instead of dealing with an awkward normalization involving the weight matrix $, it is convenient to

use assume that $ = /. We then have

db2SLS {9)

39'

and

{^'^)-'^'

^M..,-.-



Remcirk 2 If there is only one instrument, then —%gf = tt ^ Therefore, small t: indicates that 2SLS

IS sensitive to misspecification.

Remark 3 // there are multiple components in n, and if the first component of tt is small relative to

other components ofn, then —'gg^ would be small, i.e., 2SLS is not very sensitive to the violation of

the exclusion restriction in z, i.

Remark 4 Note that

db2SLS {9)

and

dbA [9]

de'

89'

{A'TTf^A'A{A'TTy'^

(ttV)-

[A'Trf
~

\\Af \\nf \m'

db2SLS (9)

de'

Therefore, 2SLS is the most robust estimator among the class of IV estnnators 6,4.

C Higher Order Bias of a

Our model is gi\en by

y, = x,p + e^,

T, = f,+U, = z',TT+U, 1= 1,. . . ,n

where (f,.u,) is homoscedastic and normal. We consider the 2SLS

x'Py
P2SLS x'Px

and the related estimator for the \-ariance of f,

1 " >

We have the following characterization of o'

5' = ii:('''^'(^2SLs-p)f
1T=1

n

f'u _
uu\ (-r y

[^2315 - P)+ 7/ + 2'

where

H = ^f'f = --j'Z'Zix
n n



Lemma 3

for

T, = ^/'t = 0,(l)

n = -2{^]-h(^f'e]=0,

n J H\ ^ )
^P U

2

77. ) m \^
Proof. Note that 2SLS is a special case of the fc-class estimator

- x'Py - k x'My
^^ ~ x'Px - k x'Mx

for

^6 = -2 V 77^^ =Op

T. - 2^^^\i,(^r.\.o('

n

and 6 is the "eigenvalue" . Note that 2SLS corresponds to a = and 6 = 0. The result follows from

Donald and Newey (1998).

We therefore obtain

Lemma 4

a^ = ol

1 ^(e's n\ 2 (\^

1

' n

Proof. We have



Because

T: = Op(l)

and

^ - o.(i), ^^4t,^oV^
n n v^. ' VV"

^ = °'(^)' ""= 0, H- . — = o,(i)

we obtain

^2 e £
a = —

n

1 /.. u'u\ / 1 „\^ /I

K\"^- [tJ^ ^^^[n

Now, note that

V^(i£-aM=Op(i), y;:^f£-^-a,..J=o,(i), /^f^_a?,
)
= o,(i)

We therefore obtain

al + -7=V^
V^ \ n

o.
e'e 2 1 /- A'f 2— = r ' " ~

n

3

f /
'

1

;^--(^^E^.j+^v/^(v-"^'')(iH^')^«.'

and

It follows that

n \ n I \ H I n H n H^ Vn

?2 = ^2^_Ly^('^_^2
/n V n

|--(^^e^^J"^v"(t-"";|-U?^' -^Kv-)(»-^^
1 Tf 1 a^T/ ^ 1

10



a = a c

Vn

+Ob

- (J. \ 7=a^
H'
,T,

¥^^ji''^
2 r- /

«^'"

n \ n

1 r? 1 crin
n H n m

Condition 1 Assume that we can ignore the Op (^j term in Lemma 4 in calculation of expectation.

Theorem 1

E\a^\^ot--2[K-2)al^ 1,
,
lolo2^2

n H K +
n ' n H

where

Proof. From Lemma 4, we have

-2 2
a = a^

1 ^ fe'e

Jn \ n

H= -f'f= -n'Z'Zn
n n

?\ 2 / 1 ^

2.,..(..,,..,)_£^(5;._„J(...)_l2,lz|2

+ 0r,

Because expected values of the Op
(
-j= I terms in the second line are zero, it suffices to consider the

Op (-) in the third line. First, we note that

E[T2] = E

E[T^] = E

u'Pe
--Ka,

\/n

-?)M>
from which we obtain

Second, we note that

2 / 1 ^ 1 ^

== —r^^

2 {K-2)al
n H

2 fe'u W 1

n \ n I \ H

due to symmetry. Third, we note that

E [rn = Ha]

11



from which we obtain

1 T2 1 oin2T-21

n H n m n n H

We therefore obtain

Eld
' n H n ' n H

Remark 5 In order to understand Theorem 1, imagine a counter-factual situation where the first order

asymptotic approximation for ^/n {P2SLS ~ /^l w; exact, i.e., write

We would then have

V^{hsLS-P) = j^T,

::?2 ^2a = (7,

Jn \ n
—^Ofu ttTi
yn

2 r- /e'w
- — v/n a
n \ n

fu
' I

Jj^'^

H

n H n //2

+ Od

and

IP i-~2| _ 2 1 2 ,1 ^^f^^

n ' n H

Therefore, Theorem 1 implies that the approximate Tnean of a is smaller by

2 (/^-2)aL
n H

than would be expected out of first order asymptotic approximation.

Remark 6 Theorem 1 can be understood from a different perspective. Note that the approximate bias of

2SLS IS equal to

yjn nH

Roughly speaking, 2SLS is biased toward OLS, which minimizes - ^"-j {y, — x^b) with respect to h. If

the 2SLS 02SLS ^^ close to the OLS f^oLS^ then we should expect

i=l 1= 1 i=] 1=1

12
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