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Intergenerational Equity and Exhaustible Resources

The theory of optimal economic growth, in the form given it by Frank

Ramsey and developed by many others, is thoroughly utilitarian in conception.

It is utilitarian in the broad sense that social states are valued as a function

of the utilities of individuals (individual moments of time, in this case,

since individual persons are usually taken as identical and identically treated),

with the possibility that a loss of utility to one individual (or generation)

can be more than offset by an increment to another. It is also utilitarian

in the narrow sense that social welfare is (usually ) defined as the sum of

the utilities of different individuals or generations.

Recently the whole utilitarian approach to social choice has come under

2
fundamental attack by John Rawls. One particular view advanced by Rawls

concerns me here. He argues, in effect, that inequality in the distribution

of wealth or utility is justified only if it is a necessary condition for

improvement in the position of the poorest individual or individuals. In other

words, if social welfare, W, is to be written as a function of individual utilities

U, ,...,U , then Rawls argues for the particular function W = min(U, ,...,U ),In in
1. For examples of results Involving non-additive social welfare function,

see H. Y. Wan, "Optimal Savings Program under Intertemporally Dependent

Preferences," International Economic Review, Vol. 11, No, 3 (1970), pp. 521-5A7;

P. A. Samuelson, "Turnpike Theorem even though Tastes are Intertemporally

Dependent," Western Economic Journal , Vol. 9 (1971), pp. 21-26; K. Iwai,

"Optimal Economic Growth and Stationary Ordinal Utility—A Fisherian Approach,"

Journal of Economic Theory . Vol. 5 (1972), pp. 121-151.

2. A Theory of Justice , Harvard University Press, 1971.



3
so that maximizing social welfare amounts to maximizing the smallest U

This welfare function is sensitive only to gains and losses of utility by

the poorest person.

A Theory of Justice contains a section explicitly devoted to equity

between generations, i.e. the question that arises in the theory of optimal

capital accumulation. Remarkably, the one thing this chapter does not do is

to advocate unequivocally the max-min criterion espoused elsewhere in the book.

In this context Rawls settles for such ambivalent statements as the following:

"...the question of justice between generations. . .subjects any ethical

theory to severe if not impossible tests... I believe that it is not possible,

at present anyway, to define precise limits on what the rate of savings should

be. How the burden of capital accumulation and of raising the standard of

civilization is to be shared between generations seems to admit of no definite

answer. It does not follow, however, that certain bounds which impose sig-

nificant ethical constraints cannot be formulated... Thus it seems evident,

for example, that the classical principle of utility leads in the wrong direction

for questions of justice between generations... Thus the utilitarian doctrine

may direct us to demand heavy sacrifices of the poorer generations for the

sake of greater advantages for later ones that are far better off. But this

calculus of advantages which balances the losses of some against benefits to

others appears even less justified in the case of generations than among

3. This can be regarded as a limiting special case of utilitarianism because,

1/p
for instance, if W =

P n^ i
, then lim W = mln(U, ,...,U ). Note that

p in
W is the additive x^elfare function, W the constant-elasticity function, and

lim W is the "royalist" max(U,,...,U ).
p inP

4. See pp. 284-293



contemporaries... It is a natural fact that generations are spread out

in time and actual exchanges can take place between them in only one direc-

tion. We can do something for posterity but it can do nothing for us. This

situation is unalterable, and so the question of justice does not arise...

It is now clear why the (max-min criterion) does not apply to the savings

problem. There is no way for the later generation to improve the situation

of the least fortunate first generation. The principle is inapplicable

and it would seem to imply, if anything, that there he no saving at all.

Thus, the problem of saving must be treated in another fashion."

My purpose in this article is to explore the consequences of a straight-

forward application of the max-min principle to the intergenerational problem

of optimal capital accumulation. I shall proceed by starting with the simplest

possible case (constant population, no technical progress, no scarce natural

resources) and adding complications one at a time. This procedure has the

advantage that the simpler cases, v/here the argument is trivial, serve to

illustrate the basic ideas, unencumbered by technical detail.

1 . The max-min principle and optimal economic growth .

Nothing relevant to this analysis vjould be gained if I strayed outside

the conventional framei>7ork of the one-sector economy whose single produced

commodity can be either consumed directly or accumulated as a capital good.

I shall also hold to the standard assumption that at each instant of time con-

sumption is shared equally by the population (labor force) of the moment.

The only equity problem that arises is that between instants of time (i.e.

"generations").

for

tion per head be constant through time. If consumption per head were higher

Except possibly trick cases, the max-min principle requires that consump-
A
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for a later than for an earlier generaflon, then social welfare would be

increased if the early generation were to save and invest less, or to con-

sume capital, so as to increase its o\^m consumption at the expense of the

later generation. If consumption per head were higher for an earlier than

for a later generation, then social welfare would be increased if the early

generation were to consume less and, correspondingly, save and invest more,

so as to permit higher consumption in the future. Thus the max-min principle

tells us that consumption per head should be the same for all generations.

The exceptions would arise onlv if there were some technical obstacle to the

equalization of consumption over time; that is, they would be in the nature

of corner solutions. They present no issue of principle, so I shall ignore

them.

2. Constant population, constant technology, no scarce natural resources.

Let net output Q be produced under constant returns to scale by a stock

of homogeneous capital K and a flov? of homogeneous labor L according to the

well-behaved production function

= F(K,L) = Lf(k) (1)

where k = K/L. Since Q is net output, we can write

Q = C + K (2)

when C is aggregate consumption. Let K^ stand for the initial stock of

capital at time zero (the present)

.

Since L is constant, by hypothesis, the max-min principle calls for C

to be constant in time, and the question is merely: what is the largest

aggregate consumption that can be maintained forever? The answer, obviously,

is to set K = 0, K = K_, C = F(K^L). In other words, the optimal policy is

for each generation to maintain the capital stock intact and consume the



whole net national product. For the Initial generation to save would make

it poorer and the future richer than it; for the initial generation to dissave

would make it richer and the future poorer than it. Neither is desirable.

And then the same situation reproduces itself for each generation in turn.

3 . Exponentially growing population.

Suppose that L = L^e with no possibility of social control of natural

increase. From (1) and (2) it follows that

L
= f(k) - c

where c = ~ is consumption per person. From the definitions,

k K ,' K ,
^

'

— = — - n or k = — - nk,
rC K Li

and thus, finally,

k = f(k) - nk - c . (3)

Any time path c(t) for consumption per head defines a time path for k(t)

through the differential equation (3). In the way that growth theory has made

familiar, the inherited capital stock and the exogenously given supply of labor

determine current ful] -employment output; once consumption is specified, the

rest of full-employment output is net investment, and is added to the inherited

stock of capital to give the next instant's stock of capital. The whole future

is thus determinate. That is the content of (3).

A time path c(t) is feasible provided the solution of (3) satisfies

k(t) >^ 0; i.e. provided it leaves enough net investment to keep the stock of

capital from disappearing. The optimum problem according to the max-min

principle is to choose the largest constant c^ such that the k(t) defined by

5. For Rawls, with his interest in the social contract to be agreed upon

before society has any history, it might be natural to ask how the initial

capital stock could be accumulated. Under these assumptions, that question

has no good answer.
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(3) with c = c is non-negative for all t >^ 0, given that k(0) = k is

the initial capital per worker.

6
Under the usual assumptions about f(k) , the function f(k) - nk

will appear as in Figure 1. The initial k has been marked and a horizontal

line has been drawn at height c . From (3), k is given by the vertical distance

between f(k) - nk and c ,
positive if the curve is above c„, negative if below.

*
If c = f(k„) - nk = c , then clearly k = for all t and k remains equal to

k^. This value of c_ is feasible. Smaller values of c. are also feasible,

and will cause k to increase from k to the larger root of c. = f (k) - nk.

But these smaller values of c^ are not optimal. If c^ is chosen larger than

c*, so that f(k„) - nk - c < 0, it is clear from the diagram that k will

decrease steadily from k , reaching zero in finite time, with k strictly

negative at that time. So c_ > c* is not feasible. It follows that c* is

. -,7
optimal.

The max-min rule says: the initial generation should invest only enough

to provide capital for the increase in population at the initial capital-labor

ratio. Then each succeeding generation should do the same. That is: widen,

but don't deepen. This contrasts with the outcome of the conventional utili-

Q

tarian theory: if there is no pure time preference, capital should be deepened

6. Increasing, concave, f(0) = 0, f'(0) > n, f ' (°°) < n.

7. In Figure 1, k, defined by f'(k) = n, is the Golden-Rule capital-stock-

per-worker, providing the largest sustainable consumption-per-worker. I

am assuming that k„ < k. If in some Eden k^ > k, then consuming capital is
u

^ ^ ^

good for everyone and the optimal max-min policy is to set c = c = f(k) - nk.

Tlien k(t) will fall from k to k and stay there.

8. See, for instance, T. C. Koopmans, "Obiectives, Constraints, and Outcomes

in Optimal Growth Models," Econometrica , 35 (1967) pp. 1-15.



b^

^(*)-«ft

F.^.re



to approach the Golden-Rule k (at which the curve in Figure 1 attains the

maximum). Earlier generations consume less than c* per person, but later

generations surpass c* and ultimately approach the maximum sustainable con-

r\ /\ -N

sumption c = f(k) - nk. The Rawlsian principle refuses this trade-off, even

though c would be less than c'^'-e for a finite time and greater than c*-£

forever after.

4. Technical progress .

Suppose there is labor-augmenting technical progress, so that (1) becomes

= F(K, e^\) = e^'^Lf(z) (la)

at
where z stands for capital per worker in efficiency units, i.e. z = K/e L.

Combining (la) and (2) one finds

K at^,
,- = e f (z) - c;

notice that c is still defined as consumption per worker in natural units,

because there is no ethical significance whatever in consumption per worker

in efficiency units. Now

^K . K , . ,

z = z(-r-n-a)= —— - (n + a)z
K at^

e L

so that

z = f(z) - (n+a)z - ce '

, (4)

which reduces to (3) when a = 0. The problem now is to find the largest

constant c which generates a solution z(t) of (4), starting from z(0) = z^,

which is non-negative for all t >, 0.

In the case without technical progress, wc could choose a c such that

the right-hand side of (3) was zero at t=0. Then (3) would remain zero forever

after. In (4), however, maintaining capital intact is not a proper strategy.

Ongoing technical progress would favor the future over the present, and



unfairly according to the Rawlsian criterion. The proper strategy must

be to consume capital from the beginning, allowing technical progress to

maintain future consumption standards. For instance, mimicking the earlier

procedure would suggest setting c = c = f(Zr,) - (n+a)z in (4). This would

make z(0) = 0, but still z(t) > for all t > 0. Thus this value of c is

possible, but hardly the largest possible.

It is easy to find a c_ that is too large. Define z by f'(z) = n+a

SO that z maximizes f(z) - (n+a)z and set d = f(z) - (n+a)z. Then, from

-at
(4) z < d - c e . Choose any T > 0; then if i < -z_/T for ^ t <^ T, clearly

2(T) < 0, i.eo z will have gone negative before time T. But to insure that
z z

i < -z„/T, it is only necessary that d - c^e < - — or c^ > e (d + ~ i

for 1. t 5_ T, which can be achieved by choosing c_ > e (d + —)

.

We have seen that some constants c are feasible, e.g. c = or

c = f(z-.) - (n+a)z_^, and others are not. There will be a largest feasible

9
c . It seems likely that for this optimal value of c^, the differential

equation (4) will imply that lim z(t) = 0. That is to say, the largest per-

manently maintainable consumption per person has the property that it asymp-

totically consumes all the capital stock. Of course, this conclusion depends
10

on the assumed unboundedness of technical progress (and perhaps also on the

9. This is a little more than I am legally entitled to claim. We know that

the feasible c_ form an interval bounded above (by any c_ that is too large)

The least upper bound of the feasible c. is what I have loosely called the

largest feasible c„. In view of the definitions, it seems very likely that

the least upper bound is itself a feasible c^, but I have not tried to

prove that formally. It is a mere technicality.

10. Unfortunately, I have had no luck in trying to solve (4) for the Cobb-

Douglas or any other traditional case. The best I have been able to do so

far is with f(z) = r + sz (r > 0, and s < a + n) , which violates f(0) = 0.

Then (4) is a linear equation whose solution is
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(footnote JO continued)

.. r . ,. r, -bt ^ c . -bt -at.
z(t) =-+ (k^ --) e +^ (e - e )

where b=a+n-s>0. Cleirly the optimal z(t) starts at z , decreases

first and then tends ultimately to v-- The optimal c is the one that causes

z(t) to touch zero, but not cross it, at a minimum point for some t > 0.

But this is a very unsatisfactory sort of optimal policy. The asymptote

z (°°) = T- is the point at which f(z) = a + n; from elementary growth theory,
b

it is the largest sustainable ratio of capital to labor in efficiency units.

It is silly for a society to accumulate this much capital. What has happened

is that the constant rate of consumption has been set just so high that at

one point the stock of capital goods is reduced to zero: since capital is

not indispensable to production, output recovers, and afterwards too much

capital is accumulated merely because there is nothing else to do with the

output, since the max-min criterion rules out consuming any more of it than

earlier generations had been able to consume. One susnects that in this

situation the social contract might have to be rewritten.

assumption that f(0) = 0, i.e. no production without capital).
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5 . Sununary so far.

My impression is that, in the situations considered so far, the Rawlslan

criterion does not function very well as a principle of intergenerational

equity. (Perhaps this is why Rawls himself is so unassertive in his chapter

on intertemporal choice.) It calls, as I have mentioned, for zero net saving

with stationary technology, and for negative net saving with advancing tech-

nology. That is by itself not off-putting. What is less satisfactory is

the fact that the max-min criterion is so much at the mercy of the initial

conditions. If the initial capital stock is very small, no more will be

accumulated and the standard of living will be low forever.

Of course, this result follows from the basic principle itself. Capital

could be accumulated and consumption increased subsequently, but only at the

cost of a lower standard of living for earlier generations. It is part of

Rawls 's argument for the max-min criterion that we should regard earlier and

later generations as facing each other contemporaneously vrhen the social

contract is being drawn up. But then it is hardly surprising that the pre-

ferred strategy refuses to make some people poorer than others in order to

make the others richer, iust because the first group can be given the essen-

tially arbitrary label of "earlier." From this point of view the distinction

by time is merely a trick played on us by posterity and by us on our ancestors.

But it can be argued that it is a useful trick, reflecting the "physical" fact

11. The economist who has most strongly and perceptively argued that ethical

principles must be revised or criticized in view of the sensibleness of their

implications is, of course, Tjalling Koopmans. See his "Intertemporal

Distribution and 'Optimal' Aggregate Economic Growth," in Scientific Papers

of T. C. Koopmans, Springer-Verlag, 1970.



11.

that there is no way the past can be compensated by the future after the

12saving has taken place and the productivity of capital goods exploited.

If this productive time-asyrametry were absent, there would be no element

of surprise or incongruity. For instance, if the problem were simply to ration

out a given finite stock of grain over a finite interval, with no possibility

of production, the obvious solution would be an equal division of what there

is. We can add just such an element to the problem by allowing for a finite

pool of non-reproducible natural resources which has to be used up in production.

That is the next step.

12. Rawls remarks (Theory of Justice , pp. 290-291), and attributes a similar

thought to Herzen and to Kant, that, at least on the surface, the process

of saving is unfair in the sense that later generations fatten on the

sacrifices of earlier and offer nothing in return. He argues that this is

just a physical asymmetry and to talk about justice is as futile and

inappropriate, say, as to discuss the justice of the fact that the earth

rotates in one direction, so the sun rises in Boston before it does in San

Francisco. But I think this puts the matter too simply. There is^ something

the future can do for the past: it can inherit less capital. All the more

so, if technical progress favors later periods over earlier, the later

generation can compensate the earlier by inheriting even less capital than

that. The asymmetry is more subtle. If capital goods were Dot producti/e,

I think there would appear no difficulty of principle. The problem arises

because capital formation exploits nature; if the earlier generation

dissaves for the sake of equity, the future pays more— in output foregone

—

than the past has gained. If the initial standard of consumption were high

enough, then the principle of diminishing marginal utility might suggest

that the future does not pay more, not in terms of the coin that really counts.
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6. Exhaustible resources

Suppose we extend the model of production to read

Q = F(K,L,R),

where R is a rate of flow of a natural resource, extracted from a pre-existing

pool. For the problem to be interesting and substantial, R must enter in a

certain way. For example, if production is possible without natural resources,

then they Introduce no new element. Presumably the initial stock would be

used up early in the game to shore up consumption while a stock of capital

is accumulated, which will then be maintained intact while the same level of

consumption goes on even after the natural resource pool is all gone. On the

other hand, if the average product of resources is bounded, then only a finite

amount of output can ever be produced from the finite pool of resources; and

the only level of aggregate consumption maintainable for infinite time is zero.

The interesting case is one in which R=0 entails 0=0, but the average

product of R has no upper bound. The Cobb-Douglas has this property, or a

function like

== F(K,L)R^

13
with F homogeneous of degree 1-h. This being so, I shall carry on the rest

of the analysis using the Cobb-Douglas explicitly, especially because that

will simplify the treatment of technical progress too. Any extra generality

hardly seems worth striving for.

Suppose, therefore, that

13. Only the Cobb-Douglas will do among CES functions. If the elasticity

of substitution between resources and other factors exceeds one, then

resources are not indispensable to production. If it is less than one,

then the average product of resources is bounded. So only the Cobb-Douglas

remains.
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= e^'^^HK^-^-^ (6)

where mg is the rate of Hlcks-neutral technical progress or, equivalently

,

m is the rate of labor-augmenting technical progress. Combining (6) with

(2), letting y = R/Le ", z = K/Le and c = C/L, and proceeding as before,

we get the differential equation

1-g-h fi / , V -ti^t /,.
z = z y - (n-Hn)z - ce , (7)

which generates z(t) and therefore K:(t) starting from given z(0) or K(0) ,

and given also time paths for c and y (or C and R)

.

Formally, the optimum problem with the max-min criterion is to find the

largest constant c_ for which there exists a function y(t) >. for all

t >^ constrained by

h , I (m+n ) t , ,
~

, „

.

y(t)e^ dt £ R (8)

such that when this y(t) and c(t) = c are inserted in (7), the solution

z(t), z(0) = z , of the differential equation is non-negative for all t >^ 0.

That is to say, we must find the largest constant consumption per head which

can be maintained forever with account taken of the finiteness of the pool of

exhaustible resource and of the fact that we can not consume capital that

isn't there.

7 . Exhaustible resources: reformulation

This is an unusual sort of maximum problem and I do not see any obvious

direct approach. Fortunately, there is an alternative way to go about it.

Choose an arbitrary c in (7) and solve the more conventional problem of

minimizing y(t)e^"'^^^dt subject to (7) and y(t) > 0, z(t) > 0. If the



minimized value of the integral is greater than R/L., the c^ chosen was

too high and must be diminished; if the minimized value of the integral is

less than R/L„, the c^ chosen was too small and can be increased. When a

c^ is found for which the minimized value of the integral is just R/L„, the

original problem is solved.

A necessary condition for a minimum of this modified problem is the

existence of a shadow-price of capital (in terms of the natural resource)

p(t) with the properties

phz^-S-hyh-l ^ ^ \ ^g^^

p/p = -(l-g-h)z"^"V; (9b)

14
and the constraint (7) must held.

The economic meaning of (9ab) is straightforward, given the inter-

pretation of p(t) as the efficiency price of capital in terms of the natural

resource. The content of (9a) is simply that the resource should be drawn

down in such a way that its marginal value product is kept equal to its own

efficiency price. In effect, (9b) says that the rate of change of the shadov?

price of resources should equal the sum of the rate of change of the shadow

price of a unit of capital and the own rate of return from using capital

(optimally) to produce itself; In other words, a rational investor, calculating

with efficiency prices, should be at all times indifferent at the margin between

holding capital goods and holding mineral deposits as earning assets.

Together (7) , (9a) and (9b) are three equations in the three unknown

time-functions p(t), y(t) and z(t). Two of them are first-order differential

14. The applicable version of the Pontryagin Principle is nicely laid out

in Arrow and Kurz, Public Investment, the Rate of Return and Optimal Fiscal

Policy, Proposition 7, pp. 48-9. But it is evident from (7) that neither

y nor z can be zero at any finite time along a feasible path, so ordinary

Euler-Lagrange methods will do.
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equations, so a solution of the system will contain two arbitrary constants.

One of these is used up in making z(0) = z = K /L„. The remaining degree

of freedom is available to choose p(0) (or y(0), the other being determined

by (9a)) so that the resulting path is actually optimal. All this is with

arbitrarllv chosen c., which must then be varied until (8) holds with equality.

To get further, take the logarithm of (9a), differentiate v/ith respect

to time and use the result to eliminate p/p from (9b). The result is

y/y = - ( -W^ ) ( m + n + ^f— ) (10)
X—

n

2

which, with (7), gives two equations in y and z. They contain time explicitly,

so can not be fully described in the usual sort of phase diagram. For this

and for other reasons, I take up some special cases first. It will turn out

that I can find out most of what I want to know without tackling the full

problem.

8. Zero population growth and zero technical progress again.

One reason for choosing the Cobb-Douglas function (6) is that it makes

output per unit of natural-resource input go to infinity as the flow of resources

diminishes toward zero. Otherwise, as I pointed out, the total output that can

possibly be built on a finite point of resources is finite and therefore the

only aggregate output flow maintainable forever is zero. Even with the

Cobb-Douglas,

_ mgt R h K 1-g-h
L - ^ ^T? ^L^

so that at any given time, with given capital per worker, output per worker

goes to zero as the resource flow per worker goes to zero. With a finite

initial pool, the annual resource flow must eventually go to zero. In the

absence of technical progress, the only way a positive consumption flow can



16.

be maintained is through fast enough capital accumulation to drive K/L

toward infinity as R/L drops toward zero. But, in the absence of technical

progress, conventional growth theory tells us that there is a largest main-

tainable stock of capital per worker if the labor force grows geometrically.

(It is the right-hand intersection of the curve in Figure 1 with the k-axis.)

And that is without worrying about resource exhaustion. This suggests that

continued technological progress is likely to be necessary for a positive

consumption flow to be maintainable.

In a model with finite natural resources, it seems ridiculous to hold

to the convention of exponentially growing population. We all know that

population can not grow forever, if only for square-footage reasons. The

convention of exponential population growth makes excellent sense as an

approximation so long as population is well below its limit. On a time-scale

appropriate to finite resources, however, exponential growth of population

is an inappropriate idealization. But then we might as well treat the popu-

lation as constant. So suppose for now that n=0 in (7) and (10).

Suppose in addition that there is no technical progress, i.e. that

m=0. Then (7) and (10) become

1-g-h h .-,
>,

z = z ^ y - c I
(7a)

y = -(1 - ^) cy/z. (10a)

Now z, y, and c are now essentially capital per worker, resource flow

per worker and consumption per worker, since the population is constant

15. That may be a very long time scale. For a delightful combination of

science and imagination see Freeman J. Oyson, "The World, The Flesh, and

The Devil," Third J. D. Bernal Lecture at Birkbeck College, London, 1972.
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in both natural and efficiency units, so L can be normalized at one.

For temporary notational reasons, I set l-g-h=a and h=b so that

z = z y - c (/a)

y = ~ cy/z (10a)'

In this notation, it is taken for granted that < a, b < 1, indeed that

a + b < 1. Moreover, for reasons that will become clear, I assume that

a > b, i.e. that the elasticity of output with respect to reproducible capital

exceeds that with respect to exhaustible resources. This seems quite safe:

from factor shares, a would be at least three times b.

One important preliminary remains to be checked before formal analysis.

It would be reassuring to know that under the present assumptions there does

Indeed exist an indefinitely-maintainable positive level of consumption per

head. That is to say, I xvould like to exhibit a function y(t) and a positive

constant c such that (7a) has a forever non-negative solution z(t) with

z(0) = z , and such that y(t) >^ for all t >^ and y(t)dt = R/L .

It is clear from (7a) that any such solution z(t) must necessarily go

to infinity with t. For if z(t) is bounded then, because y(t) -^ as t -* °°

16. See W. Nordhaus and J. Tobin, "Is Economic Growth Obsolete," in Economic

Growth (Fiftieth Anniversary Colloquium, V), National Bureau of Economic Research,

1972, pp. 60-70. Nordhaus and Tobin's calculations suggest much stronger con-

clusions, that the elasticity of substitution between natural resources and

the labor-capital composite exceeds one, or that there is rapid resource-saving

technical progress, or both. In either case, the exhaustible-resource problem

disappears as a fundamental problem. For my purposes, however, I must aick to

my moderately pessimistic assumptions.



18.

so that its integral can converge, the RHS of (7a) must eventually become

and remain negative and bounded away from zero. Thus eventually any bounded

z(t) must become negative.

There does, in fact, exist ah admissible solution to (7a). For

example, z(t) = z^ + ut, y(t) = (c_ + u) (z + ut) can be verified to

be a solution of (7a)'. Clearly z(t) is unbounded if u > 0, and the Integral

of y(t) converges if a > b. Calculation of the Integral gives

b/a-b R vb a-b

so that it is always possible to choose c and u positive. As one would

expect, the range of feasible c Is larger, the larger R and z .

If, however, a < b, then it can be shown that there is no positive c_

such that (7a) has a non-negative solution for anv admissible y(t). A proof

of this proposition, which I owe to Professor Frederic Wan and Louis Howard

of the M.I.T. mathematics department, is given in an Appendix.

9. ZPG and ZTP, detailed solution.

Now (7a) ' and (10a) ' are necessary conditions for an optimal choice of

y(t), given c . Since they are autonomous enuations, they can be analyzed in

a phase diagram, as in Figure 2. The locus along with z = is obviously

a b
z y = c . The locus y = is the z-axis and, in addition, for any y,

y ->• as z -» «>. The general shape of Figure 2 differs from that of the usual

hyperbolic phase diagram, because Figure 2 is "trying" to have a saddle point

at y = 0, z = oo.
:

Any trajectory in Figure 2 is an integral curve of the differential

equations. Since z(0) is fixed by the initial capital stock at z^, a candidate

17. I am very grateful to Prof. Frederic Y-M Wan of the I4.I.T. Mathematics

Department for having provided this example and set me on the right

track.
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optimal path must start on the horizontal z = z . The initial y has to

be chosen (optimally). Clearly if y is too small, the corresponding traiectdry

will reach a maximum and turn down; and we know that is not permanently
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feasible, let alone optimal. The analogy to a saddle-point at y=0, z=<»

suggests looking for a "separatrix", a traiectory that does not ever turn

down, but instead heads for the singular point at infinity.

It turns out that the curve defined by the equation

a b ''O ,^^,z y = —

^

(11)

is an integral curve of (7a)' and (10a)'. If this equation is substituted

into (7a)
'

, it follows easily that

be

'0 ' T^b
z^ + T-r t (12)

^c >l/b / be Y^/b

provides a solution to (7a)' and (10a)' that lies on the curve (11) for

all t > 0.

These are necessary conditions. It takes only a little effort to

complete the argument by shoving that the choices (12) and (13) do in fact

minimize total resource use in maintaining the constant consumption level

18 ,,. ,c per worker. The last step is to set y(t)dt = R/Lp,5 to determine the

largest feasible c_. Routine computation gives

- vb/l-b a/l-b b/l-a

Co=(- z^ (a-b) (1-b)

18. According to Proposition 8 on page 49 of Arrow and Kurz (op. cit.), the

necessary conditions are sufficient provided that (1) the Hamiltonian

a b
-y + p(z y - c^) , maximized with respect to y, is a concave function of z

and (2) lim p(t) >_ 0, lim p(t)z(t) = 0. One can check that (1) is satisfied

if a + b < 1, which is so, and (2) is satisfied if a > b, which is

assumed to be so. I



20.

11. ZPG and ZIP: discussion .

As in the corresponding situation without exhaustible resource

(treated in section 2 earlier), there is a well-defined solution to the

max-min problem. Again, the allowable consumption per head depends very

much on the initial capital stock. Under the assumptions I have made, the

allowable c is a concave unbounded function of the initial capital stock

per worker, when population is constant. The existence of indispensable

exhaustible resources makes no difference to that proposition (provided, of

course, that the elasticity of substitution between resources and labor-and-

capltal is at least one). Any level of consumption per worker can be maintained

if only the initial capital stock is large enough.

The optimal program under the Rawlslan criterion calls for capital

per worker to grow from the very beginning and for resource use per worker

to fall from the very beginning. If a is much bigger than b (as is probably

the case) earlier generations should use up the resource pool quite fast,

building up the capital stock in return.

A much more precise statement is possible. From (11), along the optimal

path, net output is constant . Moreover, a fraction (1-b) = (1-h) of output

is consumed and the rest is net investment. Since h is the elasticity of

output with respect to resource input, it is probably quite small, perhaps

near 0.05. Net Investment of 5% of net output is enough to maintain output

and consumption constant in the face of dwindling resource inputs.

In the utilitarian approach to optimal capital accumulation, the invest-

ment ratio tends to be much higher, near the elasticity of output with respect

to capital. Those calculations ignore the presence of exhaustible resources,

but it seems very likely that this qualitative difference between the
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utilitarian and Rawlsian approaches would persist. I have not calculated

whether a utilitarian (without time preference) would use up the resource

pool faster or slower than a Rawlsian.

From (9a), the shadow-price of capital in terms of resources is

be -a/b
proportional to (z + ^j

—

— t) . Thus the shadow-price of resources in

terms of the produced commodity rises ultimately like t where a/b ^ 1.

12

.

Exponential population growth with limited resources .

I have already said why I do not consider the assumption of unlimited

population growth to be sensible in the present context. For the sake of

completeness, however, I will merely point out that the basic constrain't

equation (7) becomes, when m=0 but n > 0,

1-g-h h ,z=zy-hz-c,
where z, y, and c are expressed per v7orker in natural units. No positive

constant consumption per worker is maintainable forever. To see this, observe

that if z(t) Is bounded then, because y(t) ^ eventually, z must finally

become and remain less than some negative number, so that eventually z itself

goes negative. But if 2(t) is unbounded, exactly the same is true, because

the term -hz must eventually dominate the first time on the RHS . There is

no surprise in this.

13. Constant population with unlimited technical progress .

Unlimited technological progress may be unlikely, but it is not, like

unlimited population growth on a finite planet, absurd. A complete analysis

of its implications would be laborious, as one can see from (7) and (10),

even with n=0. I shall limit myself here to one simple point. For this

purpose I return to the extensive equation (6) in the form

K = e'"^*^R\^-^-'' _C . (U)
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where I have put L=l with no loss of generality, since population is

constant.

If there were no technical chang;e, we would be back to the case already

studied in detail. Suppose C were the maximum maintainable consumption,

J(t) the corresponding time path for the capital stock and R(t) the optimal

resource flow. Then J(t) satisfies

I want to show that C_e is a possible consumption path for (14).

In other words, the differential equation

K = e"'^^RV-^-'' - S^

starting from K(0) = J(0) has a non-negative solution for all t >^ 0.

Take the same resource-use profile R(t) in both situations. Then, first of

all, K(0) = j(0).

Next, by differentiation with respect to time at t =0, one can calculate

that K(0) = mg K(0) + J(0). From earlier analysis, we know that K(0) = j(0) > 0.

Therefore K exceeds J at least for all t in an interval < t < t.

Finally, after eliminating C^ between the two differential equations,

one can \^rite

K _ j = e"^8t^h^j^l-g-h - /-8-h)
+ (e-^t _ ^^-

It is known from (12) that J > always. Thus whenever K(t) > J(t) , K(t) > J(t).

Since K(t) starts larger than J(t), it must forever remain larger than J(t).

This proves the assertion that C e is an admissible consumption path for

(lA).

Now presumably the problem (14) does admit a largest maintainable

constant consumption per head, say C , and undoubtedly C -* C . The presence
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of exponential technological change must permit a permanently higher rate

of consumption. Although I have not proved it, I would guess that when

C = C and R(t) is optimally chosen, K(t) -> as t -> «>. That is to say,

society asymptotically consumes its stock of capital as it consumes its

pool of resources, relying on technical progress to maintain net output and

consumption.

The result proved in this section merely suggests that the Rawlsian

criterion may be unsatisfactory when there is limited population but unlimited

technical progress. It requires society to choose a constant level of con-

sumption per head when it could have exponentially-growing consumption per

head. Even in the absence of social time preference, societv must prefer

C forever to a history in which consumption is slightly less than C for

finite time, between C^ and C„ > C for finite time, and greater than C„

for infinite time, where C„ may be chosen as large as desired . That seems

rather strong, given the natural asymmetry of time.

14 . Summary

Apart from any detail that may be found interesting, there are two main

conclusions from the analysis. The first is that the max-min criterion seems

to be a reasonable criterion for intertemporal planning decisions except for

two important difficulties: (a) it requires an initial capital stock big

enough to support a decent standard of living, else it perpetuates poverty,

but it can not tell us why the initial capital stock should ever have been

accumulated: and (b) it seems to give foolishly conservative injunctions when

there is stationary population and unlimited technical progress.

The second main conclusion is that the introduction of exhaustible

resources into this sort of optimization model leads to interesting results —
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some of which have been sketched — but to no great reversal of basic prin-

ciples. This conclusion depends on the presumption that the elasticity of

substitution between natural resources and labor-and-capital-goods is no les;3

than unity—which would certainly be the educated guess at the moment. The

finite pool of resources (I have excluded full recycling) should be used up

optimally according to the general rules that govern the optimal use of repro-

ducible assets. In particular, earlier generations are entitled to draw down

the pool (optimally, of course!) so long as they add (optimally, of course!)

to the stock of reproducible capital.

Robert M. Solow
M.I.T.
January 197 3



25.

Appendix

Proof that (7a) has no admissible xolution if a < b:

If c > 0, if follows from (7a) that

-a " d , z , ^ b

^ ^ = dl ^1^^ ' ^ '

so that

1-a, , 1-a

y (s)ds = y (s) • 1

)
I

1-a
ds.

By Holder's Inequality,

't

V (s) • 1 ds <^ y(s)ds

-

Idt

1-b

< t
l-b(M

^. 1-b

or

z^-^(t) < k/-"" + Zq^-"

Thus there is a positive constant K such that

z-'^"^(t) < Kj^t^'^ for all t > 1.

Going back to the differential equation (7a), if t > 1,

- a/l-a
a b

z = z y - Cq <
h'

1-b b
V - c

which implies, after integration, that
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z(t) - z(l) < K^ •s V (s)ds - CpCt-l)

b t 1-b

< K,
- )

y (s)ds
a/l-a ,

s as

< KJl \^^-.u^'^-
t \ i-b

c,(t-l)

- ^o('^-i)

again hy Holder's Inequality.

Therefore

z(t) < z(l) - c^(t-l) + K^ t^/^- - 1

1-b

< z(l) - CQ(t-l) + K3t^-^^^^

But b > a implies (l-tjfp.-aj < 1; so the linear term dominates and z(t) <

for sufficiently large t.
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