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Abstract

Managers make efforts and choices. Efficient incentives to

induce effort focus on the signal extraction problem of inferring

the effort level. Efficient incentives for choices line up the

relative payoffs of principal and agent. With choices much more

important than the variation in the cost of inducing effort, the

optimal payment schedule tends toward proportionality. The

argument holds if the control space of the agent has full

dimensionality, but not otherwise.

If the agent's choices include a complete set of fair gambles

and insurance, the proportional payoff schedule is no more

expensive than any other schedule that induces effort.





mi. 14
January 31, 1995

Managerial Incentives: On the Near Optimality of Linearity

Peter Diamond^

Managers are called on to make efforts and to make choices.
In designing incentives to induce effort, efficiency focuses on the
signal extraction problem associated with inferring the level of
effort made (Hart and Holmstrom, 1987) . In contrast, to
encourage appropriate choices, efficient incentive design tends to
line up the relative payoffs of principal and agent. The presence
of choices therefore alters the design of incentives in the standard
formulation by introducing an additional factor. ^ In many cases
the choices are much more important than the variation in the
cost of inducing effort. In this case the optimal payment schedule
tends toward proportionality.-^ This point is made in Section I in
a simple model with three states of nature where it is proven that
as the cost of effort shrinks (relative to gross payoffs) , the
optimal schedule of payoffs to the agent converges to a linear
function of gross payoffs. In this three state model, there is a
single variable describing choice and a single relative payment
control variable for the principal.

In Section II, a four state model is used to argue that the same
logic holds if the control space of the agent has full
dimensionality, but not otherwise.^ If the principal has more
degrees of freedom in setting incentives than the agent has
degrees of freedom in responding, the extra degrees of freedom
are associated with additional first order conditions that block the
argument that leads to linearity. The mathematical structure of
the argument is that the optimal schedule converges to one of the
optima that induce correct choice when there is no cost of effort.
When the linear schedule is the unique optimum at zero effort,
then the optimal schedule converges to a linear schedule.

1 I am grateful to Daron Acemoglu, Abhijit Banerjee, Oliver Hart,
Bengt Holmstrom, Jim Mirrlees, Jim Poterba, and participants in
the Harvard-MIT Theory Workshop for helpful comments and the
National Science Foundation for research support under grant
SBR-9307876.
2 For both choices and efforts, incentives based on outcomes can
be supplemented by incentives based on observable aspects of
agent behavior, such as gross inefficiencies.
3 For other approaches to deriving a linear optimal payment
schedule, see Holmstrom and Milgrom, 1987, Laffont and Tirole,
1986, and McAfee and McMillan, 1987.
4 The dimensionality of the control space is an analog in this
setup to the "multitask" perspective in Hart and Holmstrom, 1987.
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Among the implications of this result is the convergence of
the optimal schedule to a schedule that ignores the relative
performance of the firm when information is available on the
performance of other firms. The needed assumption of full
dimensionality implies that the agent can trade expected return
for greater correlation with the returns in the industry. When the
cost of effort is small, it is better to ignore relative performance
in order to induce a higher expected return. In the basic model
presented, effort choice is a zero-one variable. In Appendix B, the
model is reexamined for the case that effort is a continuous
variable.

In Sections I and II, the agent is assumed to be choosing from
a set of probabilities of different returns that is well-behaved
relative to the choice problem, but is not otherwise specified. In
section III, it is assumed that the sets of choices available to the
agent (with and without effort) include complete sets of fair
gambles and insurance. In this case a different result is possible.
If the agent is free to rearrange probabilities across payoffs in
any way that preserves the expected gross payoff to the principal,
the proportional payoff schedule is no more expensive than any
other schedule that induces effort. However, there are many
schedules that have this property. In section IV, it is assiomed that
the sets of choices available to the agent (with and without effort)
come from a complete set of fair gambles, but without any
insurance. Provided one assumes the monotone likelihood ratio
property, the same conclusion holds as in Section III.

I Model

We make the following assumptions. The principal is risk
neutral. The agent is risk neutral, but can not receive a negative
payment. There is no individual rationality constraint (the
expected amount of payment is sufficient to induce supply)

.

There are three states of nature, with payoffs to the principal of
X3 > 0, X2 > 0, X]^ = 0.^^ Assume that the principal chooses three
payments to the agent satisfying S3 >= 0, S2 >= 0, S]^ = 0.^ The
payment schedule is linear in gross payoffs if S2/S3 = X2/X3.

5 Adding a constant to these three payoffs makes no change in the
analysis.
6 In a one period model, one can not consider the issue of the
appropriate way to measure the return to the principal. Thus,
whether payments to managers should depend on some measure of
accounting profits or current or future stock market values, or
some combination of these is not addressed. Similarly, the choice
of a single period schedule of payments to the agent does not
allow consideration of the use of options as opposed to other
methods of compensation.
7 The principal has no reason to use a payment that is the same in
all states of nature, since it encourages neither more effort nor
correct choices. Thus this restriction amounts to requiring no
payment lower than the payment in the state with the lowest gross
payoff

.
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Effort
First we review the standard model, where there is only an

effort choice. In the standard formulation of this problem,
expending effort changes the probability vector of the gross
returns from [l-f2-f3, f2/ ^3] to [l-g2-g3, g2/ 93]. With the usual
formulation, the principal's problem can be stated as

(1) Maximize (X2-S2)g2 + (X3-S3)g3

s. t. S2(g2-f2) + S3(g3-f3) >= c,

Sj^ >= for all i,

where c is the cost of effort. Given the linearity of this problem
the optimal scheme can pay compensation in just one state of
nature. The optimum is found by finding the state or states (other
than state 1) for which g^/fi is a maximum and paying enough
compensation in that state to satisfy the incentive compatibility
constraint. If g2/f2 ~ 93/^3' compensation can be spread across
both states; otherwise a linear payment schedule is not optimal.

Effort and Choice
We modify this model by assuming that expending effort

generates a set of possible distributions of gross revenues. The
agent is then free to (costlessly) choose any element in the set.
This structure is meant to capture the idea that effort generates
an array of possible strategies for the firm, from which the agent
selects one - with all strategies requiring roughly equal managerial
effort to execute.

To analyze this problem, we work backwards, beginning with
the agent's choice of the probabilities of payoffs. Denote the
probability of state two by g. We assume that g is a choice
variable (within some range) , with h(g) (h'<0, h"<0) being the
(maximal) induced probability of state three. Over the feasible
range of values of g, we assume that h' varies sufficiently to
result in an interior solution. The probability vector of the three
states is [l-g-h(g), g, h(g)]. Since there is no payoff in state 1, the
payoff to the agent is S2g+S3h(g) = S3 ( (s2/s3)g+h(g) ) .^ Thus, the
agent's choice depends only on the ratio of payoffs in states two
and three which we denote by s=S2/S3. Let us write the chosen
level of g as g*(s). Then g*(s) maximizes sg+h(g) and is defined by
the first order condition

(2) s + h'(g*) = 0.

Differentiating (2) , we see that g* is monotonically increasing in s.

8 With the assumption that h is concave, the maximization
problem of the agent is concave and there is a unique solution.
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Conditional on effort being expended, we can write expected
gross revenue as a function of the relative payoffs, R(s) , as

(3) R(s) = X2g*(s) +X3h(g*(s)).

Differentiating (3) and using (2) , we note that R' is zero if and
only if s gives a linear payoff, s=X2/X3.

(4) R'(s) = X2g*'(s) + X3h'(g*(s))g*'(s)

= (X2 - X3S)g*'(s).

Thus the expected gross revenue, x^g + X3h(g) , is maximized at s
equal to X2/X3. A deviation from linearity results in a loss in
expected gross revenue. In this sense, a deviation from linearity is
similar to a distorting tax. We note that with proportional
increases in X2 and X3, we have a proportional increase in R'

.

If no effort is made by the agent, the probability vector is [1-
^2~^3' ^2' ^3]* We assiime that it is worthwhile to induce effort.
Effort can be induced by using payoffs to the agent that give the
agent an expected return at least as large as the cost of making
effort, c.

(5) S2g*(S2/S3) + S3h(g*(S2/S3) ) - S2f2 - S3f3 >= c.

Thus we can induce effort with any payoff ratio, s, that satisfies

(6) sg*(s) + h(g*(s)) - sf2 - f3 > 0.

That is, for a given ratio, s, that satisfies this inequality, there is
a value of S3 sufficiently large so that the effort inducement
constraint (5) is satisfied. For payoff ratios satisfying the
condition in (6) , by using (5) , the expected cost of just inducing
effort can be written as:

(7) C(s) = S2g*(s) + S3h(g*(s))

= c[sg*(s) + h(g*(s))]/[sg*(s) + h(g*(s)) - sfa - ±3]

.

We note that C(s) and C (s) are proportional to c.

We can now state the optimal incentive problem as

(8) Maximize R(s) - C(s)

.

We assume that there is a unique internal solution to this problem.
Then, the first order condition is

(9) R'(s*) = C'(s*).

As noted above, preserving the ratio of X2 and X3, R' is
proportional to X3, while C is proportional to c. Thus, as the ratio
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of the cost of effort to gross revenues, C/X3, decreases to zero,
C'(s)/R'(s) tends to zero unless s converges to X2/X3. Thus, s* tends
to X2/X3; the optimal incentive structure converges to a linear
structure. With the cost of inducing effort going to zero (relative
to gross payoffs) , both s*2/X2 and s 3/X3 tend to zero, but their
ratio is well-defined, tending to one.^

Note that the result depends on the ratio C/X3, which can
become small either by having c become small or by having X3
become large. For example, if choices affect the profits of a large
firm with profits in the billions, but effort can be induced by
expected payoffs in the millions, the cost of effort can be large in
absolute terms, while the ratio of cost to gross payoff is small.
Note also that the result is that the optimal schedule converges to
linear, not that the additional cost of a linear schedule becomes
small relative to X3 (compared with the optimal schedule)

.

II Generalizations

Four states
In the three state model analyzed, there is a single variable

describing choice for the agent and a single relative payment
control variable for the principal. This structure prevents the
principal from having additional degrees of freedom for
encouraging effort beyond the incentive for choice. It is the
restriction in the dimensionality of agent choice in some
formulations that results in a basically different structure of
incentives. To examine this balance between the choice variables
of the agent and the control variables of the principal we contrast
two different formulations of the four state problem.

Now assume that there are 4 states. Assume that the gross
payoffs satisfy x^^ = 0, X4 > 0, i=2, 3, 4. Similarly, assume that s^^ =

0, Sj^ >= 0, i=2, 3,4. If we assume that the range of choice of the
agent has full dimensionality (given the constraint that
probabilities add to one) , then we assume that the agent can
choose probabilities in two states. That is, the agent can choose
both go and g3. For any choice in the feasible range (and it is
assumed that there is a positive range for each variable) there is
an implied (maximal) level of probability of state 4, written as
h(g2» 93) • We further assume that the shape of this function is
such that the optimum involves a unique interior choice. Then we
have the same first order conditions as before and the argximent

9 If we did not assume risk neutrality for the agent, we would be
examining the utilities associated with each state rather than just
the payoff in each state. These utilities might be state-dependent,
Uj^(Sj^), for example if the agent has career concerns and different
states impacted differently on future opportunities. As long as
the cost of bearing risk associated with the agent's risk aversion is
small relative to gross payoffs, we would expect a similar sort of
convergence for utilities.
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goes through in the same way, leading to the conclusion that the
optimal choices of S2/S4 and S3/S4 converge to X2/X4 and X3/X4.

In contrast, if we assume that there is a single control
variable for the agent, g2, then the probabilities in the other states
are all functions of this variable, h3(g2) and h4(g2). That is, in the
case examined just above, the four probabilities are [l-g2-g3-h(g2,
93)/ 92' 93' ^(92' 93)]* -^^ ^^® case of a single control variable, the
probabilities are [l-g2"h3 (g2)-h4 (g2) / 92 ^ h3(g2), h4(g2)]. In the case
where the control variables do not span the space of states of
nature, the principal has another degree of freedom in setting
payments for the agent, and the argument above does not go
through. That is, choice depends on the sum S3h3(g2) + S4h4(g2),
not on the two terms separately. Thus, there is a continuum of
values of So and S4 that result in the same choice and the selection
of the particular combination of S3 and S4 is made solely to
minimize the cost of inducing effort.

Formal argument^^
The contrast between the results with and without full

dimensionality is striking. This raises the question of the
underlying mathematical structure for this result. The intuitive
logic follows; a formal proof is given in Appendix A. As the cost
of effort goes to zero the set of optimal relative payoffs at each
cost converges to the set of optimal relative payoffs when the cost
of effort is exactly zero. If the latter set contains a unique
optimum, then the optima converge to the linear schedule, which
is always an optimum with no cost of effort. However, if the set
of optima at zero cost contains other solutions besides the
proportional schedule, then the convergence to the set of optima
may not involve convergence to the linear schedule. The set of
optima with zero cost is the set of supports to the set of available
distributions at the point that maximizes expected gross payoffs.
With full dimensionality and a lack of kinks, the support for the
set of distributions at the point that maximizes expected gross
returns will be unique. Then the argument in the text goes
through. However, without full dimensionality, there is not
uniqueness in the set of supporting prices and convergence will
not generally hold.

Relative performance
The model can be extended to a situation where information

is available on the performance of other firms in the industry.
The critical question remains that of dimensionality - whether the
agent has the ability to modify the correlation between the returns
to the principal and the returns to other firms. When full
dimensionality remains present, the linearity argument goes
through, implying that the optimal incentive scheme converges to
one that ignores relative performance.

10 This argument was made by Jim Mirrlees.
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To review this formally, assume that the gross payoff to the
principal can be high or low and the gross payoff to the industry
can be high or low. Thus there are four states, given by the two-
by-two matrix of low and high returns for the principal and the
industry. With a zero payment in the event that the principal's
payoff is low while the industry payoff is high, the principal has
three controls, or two relative controls. If the agent's action space
is of full dimensionality, the agent can choose two payoff
probabilities. In this case the argument above goes through, with
the same result, that in the limit the payoff schedule should
ignore the performance of the industry. The problem with trying
to use such information to hold down the cost of inducing effort
is that it affects the expected gross payoff as the agent responds
to the incentive structure by altering the correlation of the
principal's payoff with that of the industry.

Perks
The model above does not have explicit representation of

decisions by the agent that directly affect the agent's utility at the
cost of expected gross returns. Excessive numbers of limousines
and jets are representative examples of such actions. More
expensive are new corporate headquarters, or relocation of
corporate headquarters for the pleasure of the agent. Even more
expensive might be empire building. Since there is no limit on the
ability to waste and since it is inevitable that top management
will have only a small share of the variation of returns in a large
firm, the presence of such possible actions calls for attempts to
monitor them directly. Thus, just as the principal sets the cash
reimbursement schedule of the agent and needs to check that the
agent does not receive more cash compensation than the agent is
entitled to, so the principal needs to monitor the noncash
reimbursement of the agent. With sufficiently effective
monitoring, the argument above should remain, so that
complicated reimbursement schedules, as called for by the model
with only effort, remain unnecessary, and possibly ineffective.

Another decision that involves large returns is that of
replacement of the agent by another agent. The model above has
not considered such a possibility, one that complicates the analysis
by having nonfinancial returns associated with replacement.

Ill Fair gambles and insurance

In the usual formulation of the principal-agent problem, (1)

,

the optimal schedule selects the state (or states) for which gi/fi is a
maximum and pays enough compensation in that state to induce
effort. If state i is the lowest cost state, then, paralleling the
argximent leading to (7), the cost of inducing effort is cqj^/ (g^-fi) =

c(gi/fi) / ( (gi/fi)-l) . Note that the function cz/(z-l) is decreasing in
z. Thus, the principal rewards the agent in the state where gi/f^ is
largest. Only if <32^^2 ~ 93/^3' ^^^ ^^® optimum include
compensation in both states.
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V Concluding remarks

In many settings, the cost of inducing managers to work hard
is far less important than encouraging them to make the right
choices from the set made available by their hard work. For
example, the managers of large firms have effort costs which are
very small compared to the range of possible profits of the firms,
which can be in the billions. In modelling this situation, it was
assumed that agents were risk neutral, but could not be paid a
negative amount. This structure was designed to capture several
aspects of large firms. One is that the wealth of management is
indeed small relative to the value of the firm. Thus there is no
way that the payoff to management can vary as a significant
fraction of gross payoffs to the firm without having very large
expected payoffs to the management. Thus the focus is on the
structure of payoffs to the agent relative to gross payoffs, not the
level of the ratio. Convergence of the payoffs to the agent to
zero, relative to gross payoffs, is an implication of large firms
without a large enough set of suitably wealthy individuals.

One assumption of the basic model is that agents make
optimal choices. If the variation in returns were sufficiently
small, agents might not bother making optimal choices, since
choosing might not be costless, as was assumed. The convergence
of the optimal schedule to one that is linear with positive slope,
rather than to a flat salary, makes this concern not seem
important

.

Assuming the agents are well-enough paid in the worst state to
be risk neutral reflects two presumed aspects of a more basic
model. One is that it is probably efficient for a large firm to
absorb the risk of agents as a way of holding down the cost of
inducing a supply of suitable agents. Second is that the risk
aversion of agents will lead to poor choices for a risk neutral
principal. Thus significant minimal payoff takes care of the risk
aversion problem (except that of losing the job) at relatively small
cost to the firm. Given the assumptions made, a proportional
payoff schedule (in utilities) will be nearly optimal. If, as also
assumed, managers are paid sufficiently well to be risk neutral,
then a proportional payoff schedule will be nearly optimal.

The second argviment made in the paper is that the ability of
managers to alter the probability structure of expected payoffs
gives management an opportunity to take advantage of some
nonlinearities in the payment schedule, implying that a nonlinear
structure would result in higher expected costs to the principal.
Thus, when the ability to manipulate probabilities is large enough,
the proportional schedule is optimal even if the cost of inducing
effort is significant.
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Appendix A: Proof of convergence^^

The argument in the text for the convergence of the optimal
schedule to a linear schedule was made in calculus terms in a
model with three states of nature. We now sketch a noncalculus
proof of the same argument, without the restriction to three states
of nature. We will see that the argument goes through when there
is a unique revenue maximizing schedule, but not necessarily
otherwise. We assume that it is worthwhile to induce effort.

Assume n states of nature, and write as G the n-1 dimensional
choice set (omitting state 1) of the agent, assuming effort. We
assume that G is a convex set. Let us define C(s) as the cost to
the principal of the optimal choice of g by the agent in the
presence of a reward schedule s:

Al C(s) = Maximum g.s for g in G.

Note that C(s) is homogeneous of degree 1 in s. We define G(s) as
the set of probabilities that achieve this maximum:

A2 G(s) = { g I

g.s = C(s) }.

We note that the set G(s) is homogeneous of degree zero in s.

Similarly, we define the gross revenue generated by a reward
schedule, s, assuming that indifference on the part of the agent
results in a choice that maximizes gross revenue for the principal.

A3 R(s) = Maximum g.x for g in G(s) .

Note that R(s) is maximized over s when s is proportional to x
since G(s) is a subset of G and maximal revenue over G comes
from a choice in G(x)

.

Define as S the set of rewards that result in selection of the
revenue maximizing probabilities over the entire set G.

A4 S = { S
I
R(S) = R(X) }

We note that the set S is homogeneous of degree zero in s. If G
has a unique supporting hyperplane at the revenue maximizing
probabilities, then S contains only the point x and its scalar
multiples. If G is not of full dimension, then there will be
additional points in S.

We can now write the principal's problem as choosing g and s
to:

A5 Maximize g.x - C(s)

12 This approach and proof were provided by Jim Mirrlees.
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subject to C(s) - f.s = c, g in G(s), s>=0.

Equivalently, ,we can consider the problem of choosing relative
rewards, s, constrained to add to one, and a scalar multiple, z.
Thus we restate the principal's problem as choosing g, s and z to:

A6 Maximize g.x - zC(s)
subject to z[C(s) - f.s] = c, g in G(s), s>=0, l.s = 1.

Using the moral hazard constraint to eliminate z, we can restate
the principal's problem when c>0 as choosing g and s to:

A7 Maximize g.x - cC(s)/[C(s) - f.s]
subject to C(s) > f.s, g in G(s) , s>=0, l.s = 1.

In order to make the limit argument, we now consider a
sequence of solutions to this problem as c varies. Consider a
sequence of values of c, Cj^, which converges to zero. For each Cj^,

select a pair of values of g and s, gj^ and s^, which maximize the
principal's net revenue, that is solve A7. Next consider a
subsequence of values of c (retaining the same notation) for which
the subsequence Sj^ converges to some value, named t. Next,
consider a subsequence of this subsequence (retaining the same
notation) for which the subsequence q^ converges to some value,
named h. We will have completed the proof if we show that t is
in S. That is, we will have shown that as c decreases to zero,
every convergent sequence of optimal rewards converges to a point
in S. If there is a unique supporting hyperplane to G at the
revenue maximizing point, then the limit point t is proportional to
X.

Lemma 1. Lim sup R(Sj^) <= R(t)

.

From the optimality of Sj^ and gj^, we have g^-Sj^ >= g.Sj^ for all g
in G. Passing to the limit we have h.t >= g.t for all g in G. Thus
we have h in G(t) , implying that h.x <= R(t) . With Sj^ converging
to t, we have g^.x converging to h.x, completing the proof.

Lemma 2. Lim sup R(Sj^) >= R(x) .

Let X' be proportional to x and satisfying l.x'=l. From the
optimality of Sj^ and gj^, we have R(s^) - cC(Sj^) / [C(sj^) - f.Sj^] >= R(x')
cC(x' ) / [C(x') - f.x']. Taking the limit as c goes to zero completes
the proof.

Thus we have shown that R(t) = R(x) , implying that s^
converges to one of the points in S. If G has a unique supporting
hyperplane, then Sj^ converges to proportionality with x, that is, t is
a linear payoff schedule. If G does not have a unique support,
because of a kink or less than full dimensionality, then the limit
of Sj^ need not be proportional to x.
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Appendix B: Continuous effort

The discussion above was made simpler by the discrete nature
of the effort choice. In this section, I briefly turn to the case of a
continuous adjustment of effort. Let us denote effort by e and its
cost to the agent by ce. First we review the problem if there is no
choice variable, only an effort variable. In this case, we write the
probabilities as functions of effort, h.j^(e). In this setting, the agent
maximizes S2h2 (e) + S3h3 (e) - ce. This gives the first order
condition for the agent's choice

Bl S2h'2 + S3h'3 = c.

From the first order condition, we can write the chosen level of
effort as a function of the payments, e*(S2, S3). We note that the
derivatives of e* with respect to payments are proportional to the
values of h'

:

B2 e*i = -h'i/(S2h"2 + S3h"3)

.

We can now state the principal's problem as

B3 Max (X2 - S2)h2(e*(S2, S3)) + (X3 - S3)h3(e*(S2, S3)).

The first order conditions for the optimal incentive schedule are

B4 -h2 + (X2-S2)h'2e*2 + (X3-S3)h'3e*2 = 0,

-h3 + (X2-S2)h'2e*3 + (X3-S3)h'3e*3 = 0.

Using (Bl) , we can rewrite the first order conditions, {B4) , as:

B5 -h2 + (X2h'2 + ^3h'3 - c)e*2 = 0,

-h3 + (X2h'2 + X3h'3 - c)e*3 = 0.

or, using (B2)

:

B6 -h2(S2h"2 + S3h"3) + (X2h'2 + 5C3h'3 - c)h'2 = 0,

-h3{S2h"2 + S3h"3) + (X2h'2 + ^S^'s " c)h'3 = 0.

Thus, unless h'^/hj^ is the same for both states, the optimum offers
a payment in only one state of nature. This is similar to the
situation with a discrete choice of effort level.

Now let us assume that the probability of state three is a
function of both the effort undertaken and the choice of
probability of state two, h(g,e).^^ In this setting, the agent

13 We are ignoring the impact of effort on the available range of
values of g.
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maximizes S2g + S3h(g,e) - ce. This gives the pair of first order
conditions for the agent's effort and choice:

B7 S3hg = c,

S2 + S2hg = 0.

From the first order conditions, we can write the choice variables
as functions of the payments, g (S2, S3) and e*(S2, S3).

We can now state the principals problem as

B8 Max (X2 - S2)g*(s2, S3) + (X3 - S3)h(g*(s2, S3), e*(s2, S3)).

The first order conditions for the optimal incentive schedule are

B9 -g* + (X2-S2)g*2 + (X3-S3) (hgg*2+hee*2) = 0,

-h(g*,e*) + (X2-S2)g*3 + (X3-S3) (hgg*3+hee*3) = 0.

Following the same tack as previously, let us group the first order
conditions between terms relating to choice and those relating to
effort:

BIO X2g*2 + X3hgg*2 = g* + S2g*2 + S3(hgg*2+hee*2) - X3hee*2,

^29*3 + X3hgg*3 = h(g*,e*) + S2g*3 + S3 (hgg*3+hee*3) - X3hee*3.

Now using the first order conditions for the agent's problem, we
can write this as:

Bll (X2 - X3 (S2/S3) )g*2 = g* + S3hee*2 - X3hge*2,

(X2 - X3(S2/S3))g*3 = h(g*,e*) + S3hee*3 - X3hee*3.

or

B12 (X2 - X3(S2/S3))g*2 = g* + (S3 - X3)hee*2,

(X2 - X3(S2/S3))g*3 = h(g*,e*) + (S3 - X3)hee*3.

If the right hand sides of these two equations go to zero, then
S2/S3 converges to X5/X3. But the right hand sides of equations
(B12) are precisely the first order conditions for the agent's
efforts in the model without choice, equation (B4) . So, we have a
similar conclusion to that above - when the variation in the cost
of inducing optimal effort becomes small relative to gross payoffs,
the incentive schedule converges to linear.

The exploration of sufficient conditions for the effort choice
not to be important at the margin is more complicated when effort
is a continuous variable than when it is a zero-one variable, and I

will not examine it in detail. In the latter case, it was sufficient
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to have the cost of effort become small relative to gross payoffs,
c/Xo go to zero. In this case, one needs to have assumptions that
limit the increase in effort, since ce/X3 need not go to zero when
C/X3 does. Thus, we would want to make the plausible assumption
that hg goes to zero at a finite level of e. We might also want to
rule out the possibility that changes in effort have important
effects on the slope of the tradeoff between probabilities in both
states. That is, we might also want to assume that hgg goes to zero
as well.
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In this formulation, expending effort changes the probability
vector of the gross returns from [l-f2-f3, f^/ £3] to [l-g2-g3/ 92' ^3]
In the analysis above, we added a choice variable that was only
available if effort was expended. We now consider the case where
choice is available whether or not the agent expends effort.
However, we now assume that the choice set of the agent is
defined by the ability to take all possible fair gambles and fair
insurance policies (or hedging possibilities) . That is, we assume
the agent can rearrange the probabilities of the different states in
any way that preserves the expected gross payoff to the principal.

Proposition. Assume that there are n states, with
0=X2<X2<X3<. . .<Xj,. Assiame that whether effort is exerted or not,
the agent has access to all fair gambles and insurance. Then the
linear schedule costs no more than any other schedule.

We proceed by first examining schedules that pay the agent in
just one state, then considering all alternatives.

Payoff in one state
Let us denote the mean gross payoffs without and with effort

by TRf and m-. With a proportional payoff schedule, gambles that
do not change the expected return to the principal, do not change
the expected payoff to the agent. Thus we can ignore fair
gambles in evaluating the proportional schedule and note, from
the argument leading to (7) , that the cost of inducing effort with
the proportional schedule is

(10) C = cmg/(mg-mf) = c(mg/mf ) / ( (mg/mf )-l)

.

Next consider a payoff schedule that gives compensation only
in state i. The agent wants to concentrate as much probability as
possible on this state. If Xj^ exceeds the mean return, the agent
maximizes the expected payoff by taking gambles so that all
probability is concentrated on states i and 1. If Xj^ is less than the
mean return, the agent maximizes the expected payoff by taking
gambles so that all probability is concentrated on states i and n.
Let us denote the probabilities of payoffs after such gambles by f
and g' in the cases that effort is not and is expended. Then we
have two cases (ignoring the state with a payoff precisely equal to
the mean, in which case the probability of such a state can be set
to 1) .

(11) If Xi > mf, then f'i = m^/x^.

If Xi < mf, then f'^ = (x^-mf ) / (x^-x^)

.

The same rule holds for g.

To induce effort using a schedule that pays A in state i, we
note that A must satisfy

(12) A(g'i-f'i) = c.
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Thus, the expected cost satisfies

(13) C = Ag'i = cg'i/(g'i-f' i) = c(g'i/f 'i) / ( (g'i/f i)-l) .

We noted that the cost, C, is decreasing in q' /f .

We have three cases as Xj^ exceeds nig, lies between mf and in„,

and is less than nif. In these three cas^s, we have:

(14) If Xi > mg > mf, g'i/f'i = mg/mf.

If mf < Xi < nig, g'i/f'i = (Xn-mg)Xi/ (Xn-Xi)mf < mg/iiif.

If Xi < Bf < mg, g'i/f'i = (Xn-ing)/(Xn-inf) < mg/mf.

Comparing (13) and (10) and using (14) , we conclude that costs are
at least as high with payoff to the agent in a single state as with
proportional payoffs. In the first case, where the payoff is in a
state with high return, we have the same cost for the schedule
paying in the single state as for the schedule with proportional
payoffs. In the other two cases, costs are higher with the payoff
in a single state than with proportional payoffs. Thus, with fair
gambles, the agent is relatively better able to take advantage of
gambles when there is the lower expected return without effort.
For example, in the case Xj^ < mf < mg, the ratio of probabilities of
collecting, g'^/f'^, converges to one as Xj^ rises without limit. The
convergence of the probabilities makes it expensive to induce
effort with this schedule.

General case
Schedules that pay the agent in just one state are at least as

expensive as the proportional schedule. We extend the argument
to more complicated schedules using the following argument. First
we argue that the linearity of this problem implies that an
optimum can be found where the agent puts probability weight on
no more than two states. In turn, this implies that costs are not
increased and effort not discouraged by setting payoffs equal to
zero in states in which the agent puts no probability if effort is
taken. An argument directly comparing costs, parallel to that
above, completes the proof.

We begin with the agent's problem after exerting effort:

(15) Maximize q' 2^2"^^' 2^2"^' ' ''^^' n^r\

subject to g
'
2^2+9

'
3X3+. . .+g'nXfj = mg,

g'2"^9'3+.-.+g'n <= 1'

g'j^ >= for all i.

This is a linear programming problem. We can conclude that an
optimum can be found by the agent in which probability is put on
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no more than two states. In order to preserve the mean payoff to
the principal, these two states, i and j, say, must lie on either side
of m^:

(16) Xi < mg < Xj.

Denote the probability placed on state i by g', with the probability
on state j being 1-g'. Then, from the constraint on expected gross
returns, we have

(17) g' = (Xj-mg)/(Xj-Xi)

.

The mean return without effort, m^, might lie in the interval
between Xj^ and xj , or might be less than Xj^. In the former case,
denoting the no-effort probabilities by f and l-f, we have:

(18) f = (Xj-mf)/(Xj-Xi).

In this case, the cost of just inducing effort is

(19) Sj - (Sj-Si)g',

where

(20) (Sj-Si)(f'-g') = c.

Thus the cost of just inducing effort using payoffs only on states
i and j is

(21) Sj - (Sj-Si)g' = Sj - cgV(f'-g').

This is minimized at Sj = 0, implying we are back in the case with
payment in a single state, which does not cost less than the
proportional schedule.

In the remaining case, m^ < Xj^. If Sj^/x^ < Sj/Xj, after exerting
effort, the agent will do at least as well using states 1 and j rather
than states i and j. But this involves a payoff in just one state,
and does not cost less than the proportional schedule. Thus we are
left with the case that there are positive payoffs in two states and
the state with the lower gross payoff has at least as high a relative
payoff as the state with the higher gross payoff. Note that with
effort, the agent puts probability on states i and j, while without
effort, the agent puts probability on states 1 and i. In this case,
we have

(22) f = mf/x1'

while g' satisfies (18) . The cost of effort is equal to the
difference between expected returns with and without effort,
while the expected cost to the principal of inducing effort is the
expected return with effort, which equals the cost of effort plus
the expected return without effort.
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(23) C = c + Sj^nif/x1*

Thus lowering s^ while raising s-; to preserve the incentive for
effort lowers expected cost to the principal. This argument holds
as long as the relative payoff is higher on state i. Thus we have
not raised the cost to the principal by going to a schedule with the
same relative payoffs. But this case is covered by the argument
just above.

Thus we can conclude that when the set of alternative choices
available to the agent is the set of all fair gambles and hedges, the
proportional payoff schedule does at least as well as any other
schedule. Note that in this case, there are many equally good
schedules. The linear schedule is one of these, but so, too, are the
schedules that pay in just one state of nature, provided that the
state with the payoff has a gross return at least as large as the
mean return when making effort.

IV Fair Gambles and the Monotone Likelihood Property

In the argument above, we have assumed no restriction on the
ability of the agent to move probability across the states of nature
other than preserving the mean. This assumption might be viewed
as a rich set of alternative investments that have a frontier with
this property. Alternatively, the ability to move probability can
be viewed as coming from the availability of both fair gambles
and fair insurance. There is an asymmetry between gambles and
insurance in that the former can be done after the agent knows
the realized before-gamble return, while the latter requires ex ante
arrangements. Thus it is natural to consider the case where the
agent can take any fair gamble, but has no insurance available at
all. That is, we assume that decreasing the probability in some
state requires increasing the probabilities in states with both
higher and lower returns. This implies that probability can be
moved out of any state except the ones with the highest and
lowest returns.

With just this assumption, it is not the case that the linear
schedule can do as well as any other schedule. Consider a three
state model where without the availability of gambles, the unique
optimum is to pay the agent only in state 2. Then, with this
payoff schedule, the availability of gambles does not alter what
the agent will do, with or without effort. Thus, this remains the
unique optimal schedule. To analyze this situation further, we
also assume the monotone likelihood ratio property. ^^

Proposition. Ass\ime that there are n states with
0=X3^<X2<X3<. . .<Xj^. Assume that all states have positive probability
without and with effort: fj^>0, gi>0. Assume that

11 For analysis of this problem without gambles, see Innes, 1990,
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g^^/f ]^<g2/f2<g3/^3'^* • •'^^n/fn* Assume that whether effort is exerted
or not, the agent has access to all fair gambles, but no insurance.
Then the linear schedule costs no more than any other schedule.

The proof proceeds in three steps. First we observe that the
linear schedule costs exactly the same as the schedule that pays
only in state n. Second, we show that the schedule paying only in
state n is strictly better than the schedule paying only in one state
other than state n. Third, we argue that any schedule with a
relative payoff in some state higher than that in state n can be
improved upon.

With a payoff only in state n, the absence of insurance is of
no consequence and the argument is the same as that used above.
Similarly, we note that any schedule that has no state with a
higher relative payoff than in state n costs the same as the
schedule with payoff only in state n. This follows from the fact
that with such a schedule, the agent would shift all probability to
states 1 and n.

Now consider the schedule with a payoff only in state i>l.
The agent will take gambles so there is no probability on any state
between 1 and i. Thus, the probabilities of receiving payoffs, f'j^

and g'j^ satisfy

(24) f'i = (fiXi+f2X2+f3X3+...fiXi)/Xi,
g'i = (giXi+g2X2+g3X3+...+giXi)/xi.

Thus we see that g'^/f'i is increasing in i. Since the cost is
decreasing in g' ^/f ^, as we saw above, this completes the second
step in the proof.

Now consider an arbitrary payoff schedule which has a
higher relative payoff in some state than in state n. Let state i be
the state with the highest index (highest gross payoff) that has a
higher relative payoff than does state n, Sj^/Xj^ > Sj^/Xj^. Since
relative payoffs on states between i and n are lower than those at
i and n, gambles are taken until there is no probability on states
between i and n. For any state with index below i, none of the
probability is moved to state n. These statements hold both with
and without effort. Thus, there is more probability placed on
state n with effort than without effort. Consider slightly raising
Sj^ and lowering all other payoffs, with the decreases in other
payoffs proportional to gross payoffs, x^, and done so that the
payoff with effort is unchanged. The payoff to gambles not
transferring probability to state n is unchanged. Thus there are
no changes in gambles, and the inducement to effort now exceeds
the cost of effort, allowing a reduction in all payoffs, and so in
the cost of the schedule.

From the argument, we see that all schedules for which the
relative payoff in every state is no larger than the relative payoff
in the highest state have the same cost. This includes the linear
schedule. This observation completes the proof.
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