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i ABSTRACT

This paper studies reputation effects in games with a single long-run

player whose choice of stage-game strategy is imperfectly observed by his

opponents. We obtain lower and upper bounds on the long-run player's payoff

in any Nash equilibrium of the game. If the long-run player's stage -game

strategy is statistically identified by the observed outcomes, then for

generic payoffs the upper and lower bounds both converge, as the discount

factor tends to 1, to the long-run player's Stackelberg payoff, which is the

most he could obtain by publicly committing himself to any strategy.

Keywords: Reputation effects, commitment, Stackelberg, imperfect

observability

JEL Classification: Cll, C70, C72, D74

Proposed Running Head: Reputation and Imperfect Observability.



1. Introduction

Ve consider "reputation effects" in a game in which a single long-run

player faces a sequence of short-run opponents, each of whom plays only once

but is informed of the outcomes of play in previous periods. A number of

papers have studied such models since the idea was introduced by Kreps-

Wilson [1982] and Milgrom-Roberts [1982] in their studies of the chain-

store game. Put briefly, the idea is that if a player continually plays the

same action, his opponents will come to expect him to play that action in

the future. Moreover, if the opponents are myopic, as for example the

short-run entrants in the chain-store game, then once they become convinced

that the long-run player is playing a fixed stage-game strategy they will

play a best response to that strategy in subsequent periods. Foreseeing

this response, the long-run player may choose to "invest in his reputation"

by playing the strategy even when doing so incurs short-run costs, provided

the costs are outweighed by the long-run benefit of influencing his

opponents' play.

Intuitively, one might expect that the benefits of investing in

reputation will outweigh the costs when the long-run player is sufficiently

patient. This intuition is most clear if the long-run player's stage-game

strategy is perfectly observed by his opponents, for then the long-run

player's investments have a direct and predictable effect on the evolution

of his reputation. In many situations of interest, though, the long-run

player's stage-game strategy is imperfectly observed. This is the case if

the long-run player uses a mixed stage-game strategy, or if he is subject to

moral hazard, or if his stage-game strategy prescribes actions for contin-

gencies that need not arise when the stage game Is played. In all of these

cases the short-run players must try to infer the long-run player's past



play from the observed information, so that the link between the long-run

player's choices and the state of his reputation is weakened. However,

since even imperfect observations do provide some information, one might

expect that reputation effects still have some force in these cases. Our

goal in this paper is to explore the implications of reputation effects with

imperfectly observed strategies , and to determine when and how the intuition

for the observed- strategy case needs to be modified.

To model reputation effects, one assumes that the short-run players are

not completely certain about the long-run player's payoff function. Follow-

ing Harsanyi [1967], this uncertainty is represented by a prior probability

distribution over "types" of the long run player. In particular, it is

assumed that the short-run players assign positive prior probability to the

long-run player being a "commitment type" who will play the same stage-game

strategy in every period. While the early papers on reputation effects

solved for the set of sequential equilibria for a given prior distribution,

our approach here and in our [1989] paper is to find bounds of the long-run

player's payoff that hold uniformly over a range of prior distributions and

over all of the Nash equilibria of the game.

In that paper, we obtained a lower bound on the long-run player's

payoff that depended only on which "commitment types" have positive prior

probability, and not on the relative probabilities of these types or on

which other types were in the support of the prior distribution. For simul-

taneous-move stage games without moral hazard, that lower bound converges

(as discount factor goes to 1) to the highest payoff the long-run player can

obtain by publicly committing himself to any strategy for which the corres-

ponding commitment type has positive prior probability. (If the short-run

players are indifferent between several best responses, they are not



required to choose the response that the long-run player likes the best.)

In particular, if every pure-strategy commitment type has positive prior

probability, the lower bound converges to the highest payoff the long-run

player can get by committing himself to a pure strategy.

Our [1989] paper also considered sequential -move stage games, where the

observed outcome need not reveal the long-run player's choice of a stage-

game strategy. Here the lower bound is in general weaker, as the play of

the short- run players may not give the long-run player a chance to build the

reputation he desires. However, in some sequential -move stage games, such

as the chain- store game considered by Kreps -Wilson and Milgrom-Roberts, the

lower bound turns out to be as high as if the game had sequential moves.

This paper improves on our earlier one in three ways. First, the lower

bound we obtain is in general higher, as we now consider the possibility of

maintaining a reputation for mixed strategies. For example, in the Milgrom

and Roberts version of the chain store game, in which some of the entrants

are "tough" and will enter regardless of how they expect the incumbents to

play, the most preferred commitment is to fight with the minimum probability

required to deter the weak entrants. Given that reputation effects can

allow the incumbent to commit to the pure strategy of always fighting, it

seems interesting to know whether reputation effects can go farther and

support the mixed strategy that the incumbent prefers. An additional reason

for interest in mixed- strategy reputation is that they allow the short- run

players to update their beliefs in a way we find more plausible: If the

only commitment types are those who always fight, then if the incumbent ever

accommodates he is thought to be weak, regardless of how many times he has

fought in the past. We find it more plausible that an incumbent who has

fought in almost every previous period will be expected to fight again with



high probability, and our model allows that conclusion.

The second improvement over our earlier paper is that we now allow for

the possibility that the outcome of play is only statistically determined by

the long-run player's action, so that the long-run player is subject to

"moral hazard" in trying to maintain his reputation. One example of this is

the model of Cukierman-Meltzer [1986], where a long-run central bank is

trying to maintain a reputation for restraint in the control of the money

supply. Individuals do not observe the bank's action, which is the rate of

money growth, but instead observe realized inflation, which is influenced by

money growth and also by a stochastic and unobserved shock. Thus unexpect-

edly high inflation could either mean that the shock was high or that the

bank increased the money supply more rapidly than had been expected, which

might seem to make it more difficult for reputation effects to emerge. Our

results show that the addition of moral hazard does not change the basic

reputation- effects intuition in that the limiting value of our payoff bounds

is independent of the amount of noise in the system, so long as the outcome

permits the "statistical identification" at the long-run players play.

(However, the noise can lower the long-run player's equilibrium payoff for a

fixed value of the discount factor.)

Note that the generalizations to mixed- strategy reputations and to

games with moral hazard are quite similar in a formal sense, as in both

cases the complication is that the observed outcome reveals only imperfect

information about the long-run player's unobserved strategy: In the case

where actions are observed, as in the chain-store game, the long-run

player's realized action will not reveal the randomizing probabilities that

the long-run player used. This is why it is natural to consider the two

generalizations in the same paper.



A third way this paper improves on our earlier work is that we now

obtain an upper bound on the long-run player's payoff in addition to the

lower bound. The upper bound converges, as the long-run player's discount

factor approaches one, to the long-run player's "generalized Stackelberg

payoff", which is a generalization of the idea of the Stackelberg payoff.

The generalized Stackelberg payoff can be greater than the limit of the

lower bound of the long-run player's equilibrium payoff, and in general

games reputation effects do not always lead to sharp predictions. However,

if the stage-game has simultaneous moves (or on even a weaker condition we

call "identified"), and the prior distribution has full support on the set

of all commitment types (including those corresponding to mixed strategies)

then for the generic payoffs the upper and lower bounds both converge to the

Stackelberg payoff, and reputation effects have very strong implications

indeed. This conclusion emphasizes the difference between games such as the

chain-store example, with a single long-run player, and games with several

long-run players, such as the repeated prisoner's dilemma considered by

Kreps et al. [1982]: With several long-run players the limit set of

equilibrium payoffs with reputation effects need not be a singleton, and can

depend on the relative probabilities of various "commitment types" (Aumann-

Sorin [1989], Fudenberg-Maskin [1986]).

Here is an intuition for our results for games in which the realized

stage-game strategies are observed, that is, simultaneous -move games without

moral hazard. Fix a Nash equilibrium a of the game, and suppose that the

long-run player (of whatever type) decides to play the equilibrium strategy

<7-(w) of a type w in the support of the prior distribution. Since the

* -
short-run players are myopic, they will play a best response to a- («) in

any period where they expect player l's stage -game strategy to be close to



a. (w) . Conversely, if the short-run players do not play a best response to

* -

a. (w) , then one would expect them to be "surprised" if that strategy is

indeed played. That is, we would expect them to increase the probability

they assign to the long-run player being type w. This is reflected in the

fact that when a. (w) is a pure strategy, the posterior probability that

* -

w - u increases in any period where the forecast differs from a. (w) . If

a. (w) is a mixed strategy (or, more generally, the long-run player's stage-

game strategy is not directly observed) the analogous statement is that

there is a non-negligible probability that the outcome causes the short-run

players to revise their beliefs by a non-negligible amount. More precisely,

the martingale convergence theorem implies that for any e there is a K(e)

such that with probability (l-O the short-run players will expect player

1 to play a- (w) in all but K(e) periods.

To obtain the desired payoff bounds, we must strengthen this assertion

by finding an upper bound on the K(e) that holds uniformly over all Nash

equilibria for a given discount factor and also over all discount factors.

Then, when the long run player is very patient, what his opponents play in

the fixed number K(e) of "bad" periods is unimportant.

Finally, we get an upper bound on payoffs by taking w to be the long-

run player's true type, while we get a lower bound by taking u> to be a

"type" committed to playing the Stackleberg strategy.

2. The Model

The long-run player, player 1, plays a fixed stage game against an

infinite sequence of different short- run player 2's. In the stage game

player 1 selects an action a.. from a finite set A- , while that period's

player 2 selects from a finite set A„. Denote action profiles by



a € A « A. x A.. The stage game is not required to be simultaneous move,

but is allowed to correspond to an arbitrary game tree, so that the "act-

ions" should be thought of as contingent plans or pure strategies for the

stage game. At the end of each period, the players observe a stochastic

outcome y which is drawn from finite set Y according to the probability

distribution p(«|a). This outcome is defined to include all of the

information players receive about each others' actions. The case where

actions are directly observed is modelled by identifying a distinct outcome

y(a) with each action profile, then setting p(y(a)|a) - 1.

There are two reasons that the outcome y need not reveal the action

profile. First, if the profile represents a strategy in an extensive form

stage game, then even if the outcome y is deterministic it will not reveal

how players would have played at information sets' that were not reached

under a. This possibility is illustrated in Figure 1, where the outcomes

are identified with the terminal nodes of the stage game. Here the outcome

"no sale" does not reveal the quality that would have been sold if the

consumer had bought.

[Figure 1 About Here]

Second, even if the actions are uncontingent choices, the distribution

of outcomes for a fixed action profile may be stochastic, so that the

outcome gives only imperfect statistical information about the actions.

This is the case for the example in the Cukierman-Meltzer [1986] paper on

inflation and monetary policy.

Corresponding to the A. are the spaces A. of mixed actions; when

the mixed action profile is a € A- x A the resulting probability of y

is



P(y|°) - ) P(y|a)a
1
(a

1
)a

2
(a

2
)

aeA

(Note that this formulation includes the special case where A and Y are

isomorphic.

)

We wish to define the outcome y to contain all of the information the

short-run players receive about the long-run player's choice of action a-.

Accordingly, we require that their payoff depend on a- only through its

2
influence on the distribution of y. The short- run players all have the

same expected utility function u • Y X A_ -» R. Let

v
2
(a) - \ u

2
(y,a

2
)p(y|a)o

1
(a

1
)a

2
(a

2
)

a€A,yeY

denote the expected payoff corresponding to the mixed action a. Each

period's short-run player acts to maximize that period's expected payoff.

All players know the short -run players' payoff function. On the other

hand, the long-run player knows his own payoff function, but the short-run

players do not. We represent their uncertainty using Harsanyi's [1967]

notion of a game of incomplete information. The long-run player's payoff is

identified with his "type" w e 0, where is a metric space. It is

common knowledge that the short-run players have (identical) prior beliefs

3
H about u>, represented by a probability measure on O. As with short-

run players, we suppose that the per period payoff of the long-run player

depends on the action a„ of his opponent only through its influence on the

distribution of y. We allow this utility u.(a. ,y,w,t) to be non-station-

ary, and assume that is bounded uniformly, so that for some u < u,

u i u
1
(a.,y,w,t) ^ u for all w and t. The overall utility is the

expected average discounted value



E (l-S) V «
t " 1

u
1
(a

1
(t),y(t), W ,t)

t-1

where OS { < 1. The normalization by (1-5) place per-period and repeated

game payoffs on the same scale. As in the case of the short- run player, we

may define the expected payoff to a mixed action:

v^a.w.t) - \ u^a^y.u.t) p(y|a) a^a^a^a^ .

aeA.yeY

Both long-run and short- run players can observe and condition their

play at time t on the entire past history of the realized outcomes. The

long-run player can also condition his play on his private information and

on his own past actions. Let H denote the set of possible public histor-

ies (of outcomes) through time t, including the null history h... A pure

strategy for the period- t player 2 is a map s • H
1

-* A„ , while the set

of all such strategies is denoted S- . Let H denote the set of player

l's possible private histories (the past realizations of a
1

) through time

t. A pure strategy s.. for any type w of player 1 is a sequence of maps

s. : H - x H - -» A- , specifying his play as a function of history; the set

of all such s. is denoted S. .

Let E- and E_ be the sets of probability distributions over S-

t • t
and S„, let 5L. X , S

?
. Each a e E.. x E„ gives rise to a probability

distribution over sequences of actions and outcomes. Consequently we let

E denote the expectation with respect to this distribution, and define
a

at

U^a.w) - E
a
(l-«) £ *

t " 1
u
1
(a

1
(t),y(t),w,t)

t-1

to be the expected utility to player 1.
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Strategies for the long-run players must also account for the fact that

there are many types. Since we wish to allow ft to he infinite, we follow

Milgrom-Weber [1985] in considering distributional strategies s. e S-

.

These are joint probability distributions over ft x S- with the property

that the marginal on O equals ft. Each s. and 0' c with p(fl') >

gives rise to conditional strategies s.(Q') e Z. through integration: If

s{ s s
1

, s
1
(0')(S[) - ^(Q'xsp/pCO').

A Nash equilibrium can now be defined as a pair s- ,<7„ e S. x E„ so

that <j„ is a best response to s. (ft) and so that if (u,s.) e support s.
,

then s- is a best response to a- by type u>.

Each a € Z
1

x E„ induces a probability distribution over H, the

public histories of infinite length. Moreover, each h € H may be

identified with the subset of h e H that coincide with t through time t.

In this way, we may view the H (which are finite sets) as sub-sigma

algebra's of the Borel sets in H, and view random variables on H as

CO

stochastic processes on ((H } ,,H). We shall adopt this point of view

frequently in the sequel.

Since our main concern will be the evolution of the posterior

probabilities over the long-run player's type, it is convenient to have a

special notation to express the likelihood function for the event that u>

lies in various subsets of 0. Fix s. , <7_ and a subset CO, with

ji(f}
+

) > 0. Let 0" - n\0 be the complement of fl . We let a. - s. (0)

,

a. - s- (Q ) and ct- - s. (Q ) be the induced probability distribution over

strategies corresponding to all types, types in n and types in Q

respectively. We also set a — a. X a_, a — a. x a a - a^ x a.. The

corresponding probability distributions on outcomes at time t conditional on

h - are denoted p(h .), p (h
1
) and p (h

1
) respectively. These are
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families of random vectors on H. Similarly, we can set a- (h -), a. (h .),

and a
1

(h ) to be the time-t probabilities of actions by player 1 given

h ., and set ^(h,. -i) to be the conditional probability of actions by

player 2. Note that ao(h.. ,) a„(h -) is independent of a... Since the

expected conditional expectation equals the expectation, we may calculate

CO

U^a+.w) - E
+
Y «

t " 1
v
1
(a*(h

t_^ ,<*
2(\ . 1

),w.t).

Finally, the conditional probability of a type in under a given h

is denoted /i(0 |h .. )

.

The power of reputation effects depends on which reputations are a

priori feasible and this depends on which types have positive prior probab-

ility. To model reputations for always playing a particular pure action, we

use "commitment types" who prefer to always play that action. There are

several ways of constructing the model so that the long-run player has the

option of trying to maintain a reputation for playing a mixed action. The

simplest way to do this supposes there are "commitment types" who like to

play specific mixed actions. While this may not be completely implausible,

it has the awkward feature that such types cannot be expected utility

maximizers. Alteratively, reputations for mixed actions can be modelled in

an expected utility framework with the following technical device. Let

0. c be the "irrational types". We identify 0. with A. x A™, the

product of mixed actions with the space of sequences of actions . (The

CO

latter is a compact space in the product topology.) If w - (a- , {a., (t) ) .)

then u-(a
1
,y,w,t) - u if a- - a-(t) and ^(a^-.y.w.t) - u if

CO

a. r* a-(t), so that almost surely type w will play (a..(t)} , in a Nash

equilibrium of the repeated game. Note that irrational types are expected
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utility maximizers, but have non- stationary time -additive preference: each

strictly prefers a particular sequence of actions to all others. We let

fl(a-) be the set {wGQ- |« - (a,, (a.(t) } ,) for some (a-Ct)}™.). Given

fi, probabilities conditional on the sets fl(a, ) exist for almost all a

On the other hand, playing a. independently in each period by Kolmogorov's

Theorem induces a unique probability distribution on 0(a
1

) . We assume that

H is such that the conditional probabilities on 0(a. ) are equal to this

distribution almost surely. In this sense 0(a, ) can be viewed as a kind

of "commitment type": conditional on u lying in this set, the unique

dominant strategy leads to a probability distribution over actions for the

long-run player, that is "as if" he mixed independently following a..

The prior /i induces a measure rj on the set of mixed actions by

r)(J\L) - /j({U
fl
,n(a.))). If the part of t) that is absolutely continuous

with respect to Lebesgue measure is non-zero and has a density that is

uniformly bounded away from 0, we say that commitment types have full

support .

As an example, to model a single type who likes to randomize with a
1

equals H-4 between actions H and T, we introduce a set of types 0(a.

)

corresponding to sequences (H,H,H,...) (T,H,H,...), (H.T.H.T, . . . ) and so

forth, together with the induced probability distribution from i.i.d. coin

flips.

3. Self-Confirming Responses and Equilibrium Payoffs

This section develops a theorem on the upper and lower bound of the

long-run player's Nash equilibrium payoffs. The proof uses a result about

Bayesian inference, proved in the next section, that provides uniform bounds

on how often the short- run players can be "substantially wrong" in their
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forecast of the long-run players play.

Fix fi., a- and with fi(Q ) > 0. Note that p(h .) is the

forecast the period-t player 2, makes about period-t outcomes, knowing

s. x a». By way of contrast p (h .) is what he would forecast if he knew

that the long-run player's type is in ft . If p is a probability distrib-

ution over outcomes, m - 1.....M, define ||p| max |p ||
. In the next

section we prove the following result.

Theorem 4.1 : For every « > 0, A
Q
> and ft with /j(0 ) > there Is

a K depending only on these three numbers such that for any s- and a ,

under the probability distribution generated by s. (ft ), there is probabil-

ity less than e that there are more then K periods with

|p
+

(h
t . 1

)-p(h
t . 1 )l

> V
Loosely speaking, if ft is true, the short -run players forecast the

outcome y about as well in almost every period as they would if they knew

that ft was true . (This is loose because p and p depend on the

short-run player's action a„).

This section uses Theorem 4.1 to characterize the long-run player's

equilibrium payoffs. To begin, we define what it means for the short-run

player's action to be a best response to approximately correct beliefs about

the distribution over outcomes , as opposed to beliefs about the long-run

player's action . Because we will assume that commitment types have full

support, all mixed actions by player 1 have positive probability in any Nash

equilibrium. Thus no player 2 will ever choose a weakly dominated strategy,

and we exclude these strategies in our definition of a best response.
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Definition : A mixed action a. Is an e -confirmed best response to a. If

4
(1) a. is not weakly dominated

(2) there exists a' such that

(a) e«
2

solves max^, v^a^.a'^) , and

(b) Dp(.|(o
1
.«

2
)) - Pi'\(ct[,a

2
))^ < €.

We let B (a..) denote the set of all e -confirmed best responses to

a
1

. Note that Bn (a.) is not the same as the set of all (undominated) best

responses to a.. , as there may be distinct strategies a- and a' with

p(«
|
(a.. ,a„)) - p('\(a'a„)) , and B

Q
(a-) then contains best responses to

both a. and a' For example, in the game of Figure 1, "buy" is the

unique best response to "high quality", but "don't buy" is also in

B
fi

(high quality) as "don't buy" is a best response to "low quality", and

the profiles (high quality, don't buy) and (low quality, don't buy) lead to

the same terminal nodes. In the terminology of our [1989] paper the

elements of B
f
.(a

1
) are generalized best responses .

We now relate this to Nash equilibrium payoffs. First note that a Nash

equilibrium exists in each finite-horizon truncation of the game (see Mil-

grom-Weber [1985]). Compactness and the fact that preferences are uniformly

continuous in the product topology then implies the existence of a converg-

ent sequence of truncated equilibria whose limit is an equilibrium in the

infinite game. (See Fudenberg-Levine [1983], for example.) For a long-run

player of type w, if /*( (<>)) > 0, we can define N..(S,w) and N. (£,(>)

to be the infinum and supremum of his payoff in any Nash equilibrium.

In equilibrium, if the commitment types have full support, the fact that

short-run players play myopically implies that ao(h , ) e B
n
(o- (h ..)).

Moreover, if ||p (h . ) - p(h .)| < A. , as in the conclusion of Theorem
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4.1, then in equilibrium «
2
(h

t-l ) € B
A ^l^t-l^'

We now focus our attention on a particular class of long-run players.

Type u>
Q

is time -stationary if u^a^y.Wg, t) - u^a^y.Wg, t' ) for all

t,t'. For such a type v. is time-stationary as well. Our main theorem

provides bounds on the equilibrium payoff of time -stationary types in terms

of the "e -least" and "e -greatest" commitment payoffs, which we will now

define. The t - least commitment payoff is

vl(u,o - sup^ inf
a2eB£ (ai ) Var«V w) " £ -

This is € less than the least type w gets by committing to any fixed

strategy when the short-run player plays an e -confirmed response. Note that

the definition allows player 2 to choose the response player 1 likes least

whenever he is indifferent between two or more responses. This is a pessi-

mistic measure of the power of commitment. The e -greatest commitment payoff

is

vl(w ,o - sup^ «P«2eB- (.
1

) V°r<V w) -

Obviously

v^w.e) > v^w.e).

For e - we call v.(u,0) the generalized Stackelberg payoff . Since the

supremum is taken over all generalized best responses to a. , instead of

only the best responses, the generalized Stackelberg payoff is at least as

large as the usual Stackelberg payoff (modulo our restriction to undominated

responses)

.

If the observed outcomes correspond to the terminal nodes of an

extensive form stage game, then the generalized Stackelberg payoff is the

same as the usual one. To see this, recall that if a„ is a generalized
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best response to a., then there is an a' such that (a' a„) and

(o
1
,a_) generate the same probability distribution over outcomes. Thus, if

outcomes correspond to terminal nodes, (a' a.) and (a.,aj generate the

same distribution over terminal nodes and hence give player 1 the same

expected payoff. Thus player 1 can do as well by playing a' and having

player 2 play a best response to player l's true action.

However, when the outcomes do not correspond to the terminal nodes, the

generalized Stackelberg payoff can be strictly greater than the usual one.

As an example, consider a simultaneous move game in which player 1 chooses

U or D, and player 2 chooses L or R. There are three outcomes that

occur in a deterministic manner: If (U,L) or (D,L) is played the out-

come is y 1
, if (U,R) is played the outcome is y„ , while (D,R) leads

to y_. Player l's payoff function is u..(U,y..)- 2; u..(D,y..) - 0;

u
l^** y2^

" °' "l/*'^ " 1> Plaver *-' s payoffs are u
2
(L,«) - 1;

u (»,y_) - 2 and u„(«,y.) - 0. The strategic form is shown in Figure 2.

[Figure 2 About Here]

Here the generalized Stackelberg payoff is 2, which is attained by player 1

playing U, and player 2 playing L. L is a generalized best response to

U, as L is a best response to D, and p(»|(U,L)) - p(»|(D,L)). In

contrast, the Stackelberg payoff is only 1, which is attained by

a- - (WU.HD). We now state our main result.

Theorem 3.1 : If w
fi

is a stationary type with >i({cc> }) > 0, and commit-

ment types have full support, then for all e > there exists K so that,

for all 6,
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S (l-e)«
K v^Mq.O + [1-(1- £ )«

K
]G.

Proof : As we remarked earlier, because commitment types have full support,

player 2 never plays a strategy that is weakly dominated by any mixed

strategy. Consequently, in any Nash equilibrium (s. ,<0 , if

||p

+
(h

t . 1
)-P (ht . 1 )B

* A , a^j G B
Ao

(a^(h
t . 1

)).

To establish the upper bound, take n - {«n ). We have

00

U
l(

a
+

,a, ) - E
+
<l-« Y «

t
"Sct(bt . 1

).«
2
Ch

t . 1
) i . )

fel

as the payoff to w.. Choosing A. - e , we conclude from Theorem 4.1 that

there is a K such that with probability (1-e), player 2's equilibrium

action a„(h -) lies in B (a, (h .)) in all but K periods. Since
2 t-1 e 1 t-1 r

a.(h
1
) is the expected play of type w. given history h

1
(averaging

over the different private histories h .. consistent with h .), we

conclude that type <•> 's expected equilibrium payoff is bounded by

v. («_,«) in all but the K "exceptional" periods. Since payoffs in the

exceptional periods are bounded above by u, and the present value is

maximized if the payoffs u occur in the first K periods, the upper bound

follows.

To establish the lower bound choose c' > so that if |a*-a
|
< «'

then flv^a^a^.Wg) - v^a^.o^.Wg)
||
< e and

||p(.|(a^,a
2
)) - p(.|(alt a2 ))|l

< e/2 for all a^ (Such an «' exists

since v and p are continuous functions on compact sets.) Fix an a.. ,

and take Q to be the union of fi(a' ) over |a'-a..| < e'. Note that
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since a-i(h ,) is a convex combination of ai satisfying |a'-a.| ^ «',

|a.(h -)-a.| <t £'. Note also that since the commitment types have full

support, /*(fl ) is bounded below by a n > that is independent of a

(but in general depending on e ' ) . Consequently we may find a K as in the

conclusion of Theorem 4.1 that is independent of a..

Suppose that type a>
n

adopts the strategy a., associated with Q .

Choosing A. - «/2 we see that under a there is probability at least

(1-e) that in all but K exceptional periods <*
2
(h .) e B .-(a-(h .)).

Since ||o*(h
t _ 1

)-o
1 ||

<, «', ^(o*^^) ,a
2
,« ) - v^o^.o^.Wg)

||
< e,

and so except in the exceptional periods, w_ gets at least

min _ . . v.(a.,a„,u>n ) - «. The lower bound now follows from taking the
Q^GB (CU- ) 1 1 c U

supremum over a. € ».

.

I

It might be thought that the upper bound is too weak, and in particular

that when actions are observed, for any discount factor the highest equilib-

rium payoff should be the Stackelberg payoff v.Cw.O). However, this is not

the case. For a fixed discount factor a type may receive "information rents"

from the possibility of other types that give it a payoff higher than the

Stackelberg level. Consider for example the matrix game in Figure 3, where

player 1 chooses rows, player 2 chooses columns, and the matrix gives the

payoffs of type w- of player 1 and player 2

.

[Figure 3 About Here

J

Here type w 's Stackelberg payoff is 1, and he would like to commit

himself to U. Type w- would not like to commit himself to play D,

because that strategy is strictly dominated. However, type w would like

player 2 to believe that he was playing D, for this induces the response

of L, and allows him a payoff of 2. If the prior distribution places high
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probability on player 1 being a type who usually plays D, then player 2

will play 2 at least in the first few periods. Thus if S is small, type

w_ could obtain a payoff of almost 2 by playing U while player 2 played

L. However, to obtain this payoff player 1 must "fool" player 2. The

intuition for the upper bound is that the short- run players cannot be fooled

infinitely often.

One example from the literature where the long-run player does do better

than his Stackelberg payoff for small S is Benabou-Laroque [1988]. They

consider a model of an informed "insider" who knows if the state is "good" or

"bad", and who can send a possibly dishonest report of his information to the

market. The "sane" insider would like to mislead the market, but this cannot

occur in equilibrium when his type is known; the sane type's commitment payoff

corresponds to revealing no information. However, if the market believes

there is positive probability that the insider will always report honestly,

the sane type can play a mixed strategy that announces "good" when the state

is "good" with probability less than 1/2, but such that marginal distribution

of reports, averaged over the insider's type, is that an announcement of

"good" means the probability that the state is good exceeds 1/2. Hence the

market price will rise when the insider announces "good", and the "sane"

insider can earn a rent by misleading the market. Benabou-Laroque are

concerned with the nature of the equilibrium strategies for a fixed S and

not in the sorts of payoff bounds that we develop. However, it is interesting

to note that our theorem implies that the sane type's payoff converges to the

no communication payoff as 5 converges to 1, regardless of the prior

probability that the speculator is honest.

We now formalize the idea information rents should vanish in the limit

as 8-1. Let N-Cw) be the lim inf of N (5,w) and let N-(w) be the
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lim sup of N., ($,w) .

Corollary 3.2 : If w_ is a stationary type with /({«-)) > and the

commitment types have full support,

Proof : Letting S -» 1 and then « -» In Theorem 3.1 shows that we need

only establish that 11m inf v^w^.e) £ v^w^.O) and

11m sup v
1
(wn ,«) 3 v-Cw-.e). This in turn follows from the upper hemi-

continuity of B (a.) in «; that Is e -» 0, a„ e B (a
1
) implies that

£

any limit point a„ of a- lies in Bn (cO. I

When is the bound tight; that is, when are the lower and upper bounds

equal? Roughly speaking, two conditions are required: The short-run play-

ers should care about how the long-run player plays, and the outcome y

must reveal "enough" statistical Information about the long-run player's

action.

To see how the v. and v.. can differ if the short- run player does

not care about the actions of the long-run player, consider a game in which

A- is a singleton and A- - (0,1). The short-run player's payoff is zero

no matter what he plays, while ui( a i
,a

2
,w

o^
™ a2" Clearly N. (w

Q ) -

and N.. (wn ) " 1 regardless of the discount factor or the presence of

commitment types.

For the two bounds to be equal we need to exclude this type of game

.

The games we exclude are degenerate In the sense that they are non- generic

in the space of payoff functions. The game is non- degenerate if there is no

undominated pure action a_ e A„ such that for some a_ r* a„

,

v(«,a
2
) - v(.,o

2
).
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This condition rules out the degenerate example above, but is satisfied

for an open dense set of payoffs: If a„ is undominated and

v
2
(»,a

2
) - v

2
(»,a

2
) with a

2
+ a-, then in the game with

U2<y» a2> " u2^v ' ap for a
2
* a2' and u

2
(y ,a2^ " u2^' a2^ ' €

'
a
2

is

weakly dominated by a
?

. (It can also be shown that non- degenerate games

have full measure in the space of payoff functions
.

)

Next, to see what can happen when the outcome does not reveal sufficient

information about the long-run player's action, consider the following qual-

ity choice game adopted from Fudenberg-Levine [1989] (see also Figure 1).

The long-run player chooses a- £ {high quality, low quality), and the short-

run player may play a„ e {do not buy, buy). The possible outcomes are

Y - {no sale, buy high quality, buy low quality), corresponding to the 3

terminal nodes of the extensive form. If the short -run player buys, the

outcome is buy high quality or buy low quality according to a.. . If he does

not buy, the outcome is no sale regardless of a. . The short-run player gets

1 if he buys high quality, -1 if he buys low quality and if no sale.

Consider a type w of long-run player who gets 1 if he sells high quality,

2 if low and if no sale. Clearly v..(w,0) - 1.5, for if w mixes h-h

between high and low, the short-run player is still willing to buy. If

M(«) £ .5, however, then It is a Nash equilibrium for the long-run player to

play low quality, and for the short-run player to not buy, implying

v(w,0) - (which is the individually rational payoff). The long-run player

cannot build a reputation for producing high quality because the short-run

player never buys and so never observes the long-run player's action.

To rule out this possibility, we use the following condition: The game

is identified if for all a_ that are not weakly dominated,

p(«|a..,a
2
) - p(»|a'a.) implies a. - a* This condition requires that
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distinct actions of the long-run player induce distinct distributions over

outcomes. Clearly the game is identified if the long-run player's actions

are observed, so that, for every y there is a unique a., independent at

a„ such that p(y|a. ,a
2
) > 0. This is the case if the stage game is a one-

shot simultaneous move game, and there is no moral hazard.

Even if there is moral hazard, the game may be identified. Let R(a.)

be the matrix with columns corresponding to outcomes y, rows corresponding

to actions a- for the long run player, and entries R - p(y|a
1
,a ).

l a^y 1 2

Since p(»\a^,a„) - a^RCa.), if R(a
2

) has full row rank for all undomina-

ted a„, the game is identified. It might seem that if player 1 has no

more actions than there are outcomes, this condition is generically true in

simultaneous move games. However, this is somewhat deceptive, while it is

true that if the number of outcomes is at least the number of actions by the

long run player R(eO will generically have full row rank for all pure

strategies, R(eO will generically have full row rank only for almost all

mixed strategies.

As an example, consider a game in which both players have two actions,

heads H and tails T, and there are two outcomes, also called H and T.

If o_ - H, y - a- . If a. - T, then the outcome is the opposite of

whatever player 1 chose, that is, (H,T) produces outcome T, while (T,T)

produces outcome H. Thus R(o„) has full rank except for a„ - (HH.HT):

in this case each outcome has probability h regardless of how the long-run

player plays, so the game is not identified. Moreover, perturbing the

information structure slightly will not make the game identified. Fortunat-

ely, many simultaneous -move economic games have information structures

satisfying natural monotonicity assumptions that rule out this type of

singularity.
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A more interesting economic example is that of a repeated signalling

game. Here the long-run player (worker) draws a type ("high productivity,"

"low productivity") r. from a finite set each period in an i.i.d. manner.

He then makes a decision d
1

("go to school", "do not go to school") based

on his type. An action a- is a map from types to decisions d. - a.(r-).

The short run player (firm) moves second and observes the decision of the

long-run player, but not his type. He then makes a decision d„. An action

a,, for the short-run player is a map from long-run player decisions to

short-run player decisions d„ - a„(d..). At the end of the period, after

the short-run player's decision is final, the current type of long-run

player r- is revealed to the current and all subsequent short-run players.

Clearly, the game is identified, since any mixture over maps from types to

decisions induces a unique distribution over pairs (r,,d..), both observed

ex post . Our result below implies that in the repeated signalling game, the

worker can do as well as by committing to any map from type to schooling.

In contrast, if the long-run player moves after the short-run player

and has more than one information set, the game will typically fail to be

identified. Even if players observe the terminal node, so the short-run

player observes the way the long-run player played, this will not reveal the

stage-game strategy he chose. This is reflected in a non-generic R(o.)

matrix. In the game in Figure 1, if the short run player plays "do not

buy," the only possible outcome is "no sale," and the corresponding 2x3

matrix R(a„) has rank one.

On the other hand, we have assumed that the long-run player has many

types, and that his type is private information. It may be reasonable to

suppose that the same is true of the short- run players. If these types are

also chosen independently from period to period, and there are sufficient
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variety of types, every sequence of moves of the short-run player will have

positive probability. In this case, if the terminal node is observed, it is

clear that the game is identified, although for some o
?

, R(a-) may not

have full row rank, and indeed, may not even have more rows than columns.

Theorem 3.3 : In a non- degenerate game that is identified, then for any

stationary type w
Q

, v^Wq.O) - v^Uq.O).

Proof : Recall that Bn (a.) is the set of weakly undominated a„ such that

there exists an a' with p(«|a' a-) - p(«|a
1
,a.) and such that at„ Is a

best -response to al . Since the game is identified the only such a' is

a so B (a ) is simply the undominated best responses to a

Therefore, it suffices to show that for a„ e Bn (a.) there exists a

sequence a- -» a. such that B
fi
(a

1
) - (a„). Now a„ is by definition

undominated and, by the hypothesis of non- degeneracy, does not yield the

same vector of payoffs to player 2 as any other mixed strategy. Thus there

exists an q^ such that a„ is a strict best response to a' . Then,

however, it is a strict best response to Aa.. + (l-A)a' for all < A < 1.

Let < A
n
< 1 with A

n - 1. Then a" - A
n
a + (1-A

n
)a' - a and a.

is the unique best response to o. . I

4. Bayesian Inference and Active Supermartingales

We now demonstrate Theorem 4.1, stated in the previous section, that it

is unlikely that forecasts of y are wrong in many periods. We do so via

several lemmas analyzing the odds ratio [l-/i(0 |h )]/j»(Q |h ) for arbit-

rary sets . If this odds ratio is low, Q is likely to be true, so

conditional forecasts of y under a are close to those under a. On the

other hand, when conditional forecasts of y are different under a than

under a, the odds ratio has a good chance of falling substantially if the
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true strategy is a . Because the odds ratio is a supermartingale, it

converges almost surely. Moreover, it is well known that the odds ratio

sampled only at periods where the forecasts of y are different under a

and a is a supermartingale that converges to zero (see, for example,

Neveu [1975]). We strengthen this observation to show that for a fixed

difference between the conditional forecasts p (h
1

) and p(h .), the

odds ratio converges to zero at a uniform rate, independent of the

particular distributions p and p.

We begin by defining families of scalar random variables

(P^(h).p^(h)). Set P* ~ Pm (h
t .!)

and Pt " Pm
(h

t-1 ) if y(t) is the ^
element of Y. (Recall that h e H is the finite history that coincides

with h through and including time t.) Define another family of random

variables L (h) as follows:

L
Q
(h) - l*ffiX

/*<0 >

?'
t
W

L
t<

h) -^-T L
t-i<

h >-

Pt
(h)

It is well known that L (h) - [l-/i(fl |h )]/a»(0 |h ), which is the poster-

ior odds ratio at the end of period t under a that player 1 is not in

. It is also well known that this odds ratio is a supermartingale under

the distribution a . We give a proof for completeness.

Lemma 4.1 : L
t
(h) - [l-n(Cl |h

t
)]//i(n |h

t
) and (I^.iy is a

supermartingale under a .

Proof : The first claim is by definition true for L_. Imagine it is true

for L then
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[l-^(0
+
|h

t
)]//i(Q

+
|h

t
) - p;[l-/i(0

+
|h
t>1)]/[p^(0

+
|h

t x
)\

To see that L (h) is a supermartingale, recall that p (h .) Is the

conditional probability over y from a so that

E tLtl Lt-r ht-il " L
t-i

s p>t-i> fVht-i>/P>t-i>>
m

" L
t-1

S P.<ht-1> * L
t-1'

'

m

Let A(h ,) - ||p (h ,) - p"(h )|| be the distance between the distribu-

tions over outcomes corresponding to O and - 0\fl . Note that

||p (h -) - p(h -)| < A(h .) since p(h .) is a convex combination of

P (\_i>
and P*<ht .i>-

Next we show that the odds ratio L is likely to fall substantially

when A(h
1
) > A

Q
.

Lemma 4.2 : If h . has positive probability and A(h . ) > A_ then under

a
+

, Pr[(L
t
(h)A

t . 1
(h)) - 1 < -A

Q
/M] > A

Q
/M.

Proof : Note first that L
t/
L
t .i - P^/P*- which is Pi^t-l^Pl^t-l^ witn

probability P]/*^.!); p2^ht-l^p2^ht-l*
with Probabilltv P2*ht-1^'

and

so forth for those indices m for which p * 0. Consequently, it suffices

to show for some m,

Pm
(h

t-l)/pm
(h

t-l> * X " V" and P>t-1> " V*'

By hypothesis, A(htl > - max
m IPm <h

t . 1
) " Pm (h

t .i>l
- A

o'
SuPPose

without loss of generality that this maximum occurs at m — 1. If

P
i
(h

t-i ) " Pi
(h
t-i ) ~ A

o
then pi - A

o
and

l - pi(
tl
t .i)/Pi(

n
t .i) - A

c/pi^
h
t-i^ ~ A

o*
so we are done

-
If

>
on the otner
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hand, Pitt^) - Pi(ht.i> * V then ) (pa
(h
t-l ) " Pm^t-l^ fe V

m>l

Consequently M max . (p (h .) - P(ht i) ^ A
*

and> ^or m " 2 say* we

have P^^V *) " P^^t-l^ ^ ^f/**'
A8ain «

we conclude Po^ nt-l^ ^ ^o^
1* and

1 P2
(h
t-1)/P2

(h
t-1 > * V1 - '

Lenma 4.2 shows that in the periods where the conditional distribution

over outcomes induced by the actions of types in — Q\0 differs signi-

ficantly from that corresponding to O , the likelihood ratio is likely to

jump down by a significant amount. Of course, in periods where A(h -) is

small, the likelihood ratio need not change very much. The key to our

result is to show that there is high probability that there are few periods

in which both the odds ratio is high and A(h .) > A_. To prove this, we

introduce a new supermartingale which includes all of the periods where

A(h . ) > An from the supermartingale L(h)

.

We first define a sequence of stopping times relative to a given

supermartingale L - L(h) and a distance A
Q

. Set r
Q

- 0. If

r. ,(h,A ) - «>, set T
k
(h,A

Q
) - « as well. If rkl (h,A ) is finite, set

r. (h,A
Q ) to be the first time t > r.

1
(h,A

Q ) such that either

(1) Pr[||L
t
/Ltl -l|| < A

Q
/M] > A /M, or

(2) L./L - 1 * V2M
«

or
C Vl

(3) if no such time exists, set r, (h,An ) - <».

Lemma 4.2 shows that this sequence of stopping times picks out at least all

the date-history pairs for which A(h - ) > A
fl

.

The faster process L, relative to L and A_ is defined by

r, - <*>. Since the r.
k k

L, - L for r, < », and L. - for r, - «. Since the r, are
k
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stopping times, L Is a supermartingale, with an associated filtration

whose events we denote h, . Moreover, we will show that L is an "active"

supermartingale in the following sense:

Definition : A positive supermartingale (L ,h, ) is an active

supermartingale with activity ^ if

for almost all histories h, such that L, > 0.

Lemma 4.3 : For any O with /i(0 ) > 0, and any A- > 0, the associated

faster process L, is an active supermartingale under a with activity

A
Q
/2M.

Proof : Since the r, are stopping times, by Lemma 4.1 L, is a

supermartingale. Next, we claim that if h is such that L, . > 0,

PrUli^/L^-lD > A
Q
/2M Ih^] > A

Q
/M.

To see this, let s - r, .(h), which is a constant with respect to h, .
;

r. (h, - ) is a random variable. We will show that

Pr[||L
r
/L

s
-l|| > A

Q
/2M |h

g
] > A

Q
/M.

k

One of the three rules in the definition of the r's must be used to choose

r, . We will show that this inequality holds conditional on each rule, and

thus that it holds averaging over all of them. Conditional on h , if rule

(2) or (3) is used, then with probability one |L /L -l| > A
Q
/2M. If rule

k

(1) is used,

PrfL /L. ..-1 < -An/M |h , {rule 1 used)] > A./M,
1 r' (r, -1) ' s 0'

and also since rule (2) was not used at the date r. - 1 just before r,,
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L
(Vi)/

L
.

• l < V2*-

Combining the last two Inequalities shows that

PrL /L
s

- 1 < -(Aq/2M + A
2
/2M

2
)| h

s
, {rule 1)1 > A

Q
/M.

L
jf

J

Since -(A
Q
/2M + A

2
/2M

2
) < -A

Q
/2M, we conclude that

Pr[|L
f
As

-1( > V2M
' V {rule 1}

1
> A /M -

The remainder of Theorem 4.1 follows from the fact that active

supermartingales converge to zero at a uniform rate that depends only on

their initial value and their degree of activity.

Theorem A.l : Let i_ > 0, e > 0, and ^ e (0,1) be given. For each L,

< L < &n, there is a time K < «> such that

Pr[sUp
k>K VL] * l

•
€

for every active supermartingale L. with L - in and activity r/>.

This theorem is proved in the Appendix using results about upcrossing

numbers . The key aspect of the Theorem is that the bound K depends only

on i and ^, and is independent of the particular supermartingale

chosen.

We can now conclude:

Theorem 4.1 : For every e > 0, A
Q
> and with ^(0 ) > there is

a K depending only on these three numbers such that for any s. and a.,

under the probability distribution generated by s. (0 ), there is probabil-

ity less than c that there are more then K periods with

Bp
+
(h

t _ 1
)-p(htl)| > A

Q
.

Loosely speaking, if is true, the short-run players forecast the
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outcome y about as well in almost every period as they would if they knew

that ft was true. (This is loose because p and p depend on the

short-run player's action a„).

This section uses Theorem 4.1 to characterize the long-run player's

equilibrium payoffs. To begin, we define what it means for the short-run

player's action to be a best response to approximately correct beliefs about

the distribution over outcomes , as opposed to beliefs about the long-run

player's action . Because we will assume that commitment types have full

support, all mixed actions by player 1 have positive probability in any Nash

equilibrium. Thus no player 2 will ever choose a weakly dominated strategy,

and we exclude these strategies in our definition of a best response.

Proof : Set L - A /(1-A
Q

) and L
Q

- (l-/i(0 ))//i(0 ). Since by Lemma 4.2

the faster process omits only observations when A(h .) < A-, we conclude

form Lemma 4.3 and Theorem A.l that there exists K, depending only on Ln

and An , so that with probability 1-e under a in all but K periods

either A(h . ) 2 A. or L - <, L. By Lemma 4.1, we conclude

Ltl - [l-/i(n
+
|htl )]//x(n

+
(h

t ml
) < A /(l-A ), implying either M\_{) * A

Q

or /i(Q
+
|htl)) > 1-A

Q
. Since ||p

+
(h

t _ 1
)-p(htl )|| < A(htl ) , the former

implies Ip
+
(h ,)-p(h ,)| < A

Q
, while the latter implies

»P
+
(h

t . 1
)-p(h

t _ 1 )fl

-
||p

+
(h

t _ 1
)-[M(n

+
|h

l; _ 1
)p
+
(h

t x
) + [i-/i(n

+
|h

t _ 1
)]p-(htl )]||

< [l-M0
+
|htl )]|| P

+
(htl ) - p"(htl )||

< i - M (n
+
|htl ) < a

q
. i
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NOTES

Recall that the set of sequential equilibria is not robust to small

changes in the prior (Fudenberg, Kreps, and Levine [1988]).

2
An alternative interpretation is that the outcome y is defined to

include the short-run player's payoff as well as a "signal".

3
Throughout the paper all of our measure spaces are topological spaces

endowed with the Borel a-algebra.

4
An action a„ is weakly dominated if there exists a' such that

v„(a
1
,a') > v„(a

1
,a-) for all a. e 0- , with strict inequality for at

least one a-

.

We thank an anonymous referee for pointing this out to us.
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APPENDIX: Active Supermartingales

Our goal is to prove

Theorem A.l : Let i
Q
> 0, e > 0, and V e (0,1) be given. For each L,

< L < <* . there is a time K < • such that

Pr[suPk>R Lj^L] il-(

for every active supermartingale L with L- - I- and activity 0. I

For a given martingale the above is a simple consequence of the fact

that L converges to zero with probability one. The force of the theorem

is to give a uniform bound on the rate of convergence for all supermartin-

gales with a given activity \f> and initial value i...

Throughout the appendix we use L to denote any supermartingale that

satisfies the hypotheses of Theorem A.l. To prove the theorem, we will use

some fundamental results from the theory of supermartingales, in particular,

bounds on the "upcrossing numbers" which we introduce below. These results

can be found in Neveu [1975], Ch. II.

Fact A.

2

: For any positive supermartingale, Pr[sup L,^c l ^ niin(l,L /c) .

Next, fix an interval [a,b] , < a < b < «>, and define U, (a,b) to

be the number of upcrossings of [a,b] up to time k; let U (a,b) be the

total number of upcrossings (possibly equal to «)

.

Fact A.

3

: For any positive supermartingale,

Pr[U
a)
(a,b)>N] <, (a/b)

N
min(L /a,l).

This is known as Dubin's inequality. (See, for example, Neveu [1975], p.

27).
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Next we observe that since L has activity j>, it makes a jump of

size $ with probability at least ^ in each period k where L is

nonzero. Consequently, over a large number of periods either L has jumped

to zero or there are likely to be "many" jumps. Specifically, define J,

to be the number of time k' < k that |(L. ,-/!., )-l| > \f>.

Lemma A.

4

: For all e and J there exists a K such that

PrHJ^} or (1^-0}] a: 1-e.

Proof : Because L has activity ^, in each period k' , either L, ,
—

or the probability of a jump of size ij> at time k' exceeds \f>. Define a

sequence of indicator functions I, by 1,-1 iff {L.-0 or

||L,/L. ,-l| > tf), and set S, - £.<-, I.. Each I, has expectation at

least if>, so for some K sufficiently large, Prob[S,>J] > 1-e. Now if

S > J, then either L„ - for some k < K, in which case L, - as

well, or there have been at least J jumps by time K. I

We have now established that most paths of L

(1) do not exceed c for c large, (Fact A. 2)

(2) make "few" upcrossings of any positive interval [a,b] (Fact A. 3), and

(3) either make "lots of jumps" or hit zero (Lemma A. 4).

We will use these three conditions to show that for K large, most paths

remain below L. from K on. To do so, we first argue that most paths will

pass below c by time K.

Divide the interval [c,c] into I equal subintervals with endpoints

e- — c, . . . ,e_ - — c. Then define the events

E
l

if maX
k<K \ *

'

C '
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E„ If at least one of the' interval
[
e «» e *+il is upcrossed N or more

times by time K;

E
3

If J
R
< J and 1^ > 0,

E
4

if min
k<K

t
k
< ^

By judicious choice of c, I, K, N and J, we will insure that

e£ c E
1
U E

2
U E

3
and that Pr^) ,Pr(E

2
) ,Pr(E

3
> £ «/4. This will yield

our preliminary conclusion that

Prtmin^ \ < Z] - Pr(E
4

> > l-(3e/4).

If we then choose

c - (e/4)L,

fact A. 2 implies that

Pr[maX
k<K he

> L I
min

fc<K \ < ~ ] S ^~ ~ e/4

and we get the desired conclusion that

Pr
t
max

k>K K > L] -

Pr[maX
k>K \ > L I

min
k<K hi

K £l * Pr[min
k<K \ < £] +

Pr[maX
k>K \ > L I

min
k<K 4 * £l * Pr[min

k<K he * £l

:S («/4) • 1 + 1 - (3e/4) - «.

Turning first to E
1

, we can again use Fact A. 2 to choose

c - (4/Oi

and insure that Pr(E-) - Pr(Ma:c^ L > c) £ e/4. Note for future

reference that this is true, regardless of how we pick K.

In the range above c, when ||L, /L --lj > $, ||L -L , ||
> ^c. Thus,

if we choose
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I fc 2c/c> + 1

then the width of each subinterval is less than fe/2. This means that each

jump of relative size $ in a path that remains between c. and c must

cross one of the subintervals [e. ,e. .]. Moreover, if such a path has J

or more jumps across subintervals, it must cross at least one subinterval

(J-1)/2I - 1 times. Consequently if we choose

(*) N <. (J-D/2I - 1

then E, c E- U E„ u E, as required. In other words, a path that does not

go above c, that does not upcross any subinterval in [c,c] N or more

times, and jumps K or more times, must fall below c. By Fact A. 3, we

know that for any given subinterval, the probability of N or more

upcross ings is not more than

(1+0)

"

N
i
Q
/c.

Consequently, the probability that some subinterval is upcrossed N or more

times is no more than

I(1+0)"
N

i
Q
/c.

To make Pr(E„) ^ e/4 we should choose

4Ii /c«
N ;>

log(l+*)

This determines J by (*) above

J - 2I(N+1) + I.

Finally, choose K by Fact A. 4 to make Pr(E_) 3 e/4.
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