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Abstract

Choice models with nonlinear budget sets are important in econometrics. In

this paper we propose a nonparametric approach to estimation of choice models

with nonlinear budget sets. The basic idea is to think of the choice, in our case

hours of labor supply, as being a function of the entire budget set. Then we can ac-

count nonparametrically for a nonlinear budget set by estimating a nonparametric

regression where the variable in the regression is the budget set. We reduce the

dimensionality of this problem by exploiting additive structure implied by utility

maximization with convex budget sets. This structure leads to a polynomial con-

vergence rate for the estimator. We give asymptotic normality results also. The
usefulness of the estimator is demonstrated in Monte Carlo and empirical work,

where we find it can have a large impact on estimated effects of tax changes.
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1. Introduction

Choice models with nonlinear budget sets are important in econometrics. They

provide a precise way of accounting for the ubiquitous nonlinear tax structures

when estimating demand. This is important for testing economic theory and

formulating policy conclusions when budget sets are nonlinear. Estimation of

such models presents formidable challenges, because of the inherent nonlinear-

ity. The most common approach has been maximum likelihood under specific

distributional assumptions, as exposited by Hausman (1985). This approach pro-

vides precise estimates when the assumptions of it are correct, but is subject to

specification error when the distribution or other aspects of the model are wrong.

Also, the likelihood is quite complicated, so that the MLE presents computational

challenges as well.

In this paper we propose a nonparametric approach to estimation of choice

models with nonlinear budget sets. This approach should be less sensitive to

specification of disturbance distributions. Also, it is computationally straightfor-

ward, being based on nonparametric modeling of the conditional expectation of

the choice variable. The basic idea is to think of the choice, in our case hours of

labor supply, as being a function of the entire budget set. Then we can account

nonparametrically for a nonlinear budget set by estimating a nonparametric re-

gression where the variable in the regression is the budget set. Assuming that

the budget set is piecewise linear, the budget sets will be characterized by two or

more numbers. For instance, a linear budget constraint is characterized by the

intercept and slope. More generally, a piecewise linear budget constraint will be

characterized by the intercept and slope of each segment. Nonparametric regres-

sion on these slopes and intercepts should yield an estimate of how choice depends

on the budget set.

A well-known problem of nonparametric estimation is the "curse of dimension-

ality," referring to the difficulty of nonparametric estimation of high dimensional

functions. Budget sets with many segments have a high dimensional character-

ization, so for nonparametric estimation to be successful it will be important to

find a more parsimonious approach. One feature that is helpful is that under

utility maximization with convex preferences, the conditional expectation of the

choice variable will be additive, with each additive component depending only on

a few variables. This feature helps reduce the curse of dimensionality, leading

to estimators that have faster convergence rates. We also consider approximat-

ing budget constraints with many segments by budget constraints with only a



few segments (like three or four). Often in applications there will be only a few

sources of variation in the data, which could be captured by budget constraints

with few segments.

An advantage of nonparametric estimation is that it should allow utility con-

sistent functions that are more flexible than some parametric specifications, where

atility maximization can impose severe restrictions. For instance, it is well known

that utility maximization with convex preferences implies that the linear labor

supply function h = a + bw + cy + e must satisfy the restrictions b > and

c < b/H, where w is the wage, y nonlabor income and H is the maximum num-

ber of hours. Relaxing the parametric form for the labor supply function should

substantially increase its flexibility while allowing for utility consistent functional

forms. In the paper we do not impose utility maximization, but we can test for

utility consistency using our approach.

The rest of the paper is organized as follows. In section two we present a

particular data generating process and derive an expression for expected hours of

work. The estimation procedure we propose is described in section 3. Asymptotic

properties of the estimator are discussed in section 4 and small sample properties,

based on Monte Carlo simulations, in section 5. In section 6 we apply the method

to Swedish data. We use estimated labor supply functions to calculate the effect

of income tax reform in section 7. Section 8 concludes.

2. Data generating process and expected hours of work

Our estimation method is to nonparametrically estimate the conditional mean of

hours given the budget set. That is, if hi is the hours of the \
th individual and Bi

represents their budget set, our goal is to estimate

E[hi
\
Bi] = h(Bi).

This should allow us to predict the average effect on hours of changes in the

budget set that are brought about by some policy, such as a change in the tax

structure. Also depending on the form of the unobserved heterogeneity in hi , one

can use h{Bi) to test utility maximization and make utility consistent predictions,

such as for consumer surplus.

In comparison with the maximum likelihood approach, ours imposes fewer

restrictions but only uses first (conditional) moment information. This comparison

leads to the usual trade-off between robustness and efficiency. In particular, most

models in the literature have a labor supply function of the form



hi = h(Bi,Vi) +e{ ,

where V{ represents individual heterogeneity, and Si is measurement error. The

typical maximum likelihood specification relies on an assumption that Vi and £j

are normal and homoskedastic, while all that we would require is that Vi is inde-

pendent of Bi and E[ei \
B{] = 0, in which case h(Bi) = J h(Bi,v)G(dv). This

should allow us to recover some features of h(B,v) under much weaker conditions

than normality of the disturbance. Of course, these more general assumptions

come at the expense of efficiency of the estimates. In particular maximum likeli-

hood would also use other moment information, so that we would expect to have

to use more data to get the same precision as maximum likelihood estimation

would give.

Our approach to estimation will be valid for quite general data generating

processes. In particular, it is neither necessary that data are generated by utility

maximization nor that the data generating budget constraints are convex. How-

ever, without imposing a simplifying structure on the expected hours of work

function it will in general be infeasible to estimate the function due to a severe di-

mensionality problem. We will therefore derive expressions for expected hours of

work given the assumption that data are generated by utility maximization sub-

ject to piece wise linear convex budget constraints. This will help in constructing

parsimonious specifications for h(B) and in understanding utility implications of

the model. These restrictions can then be tested, as we do in the empirical work.

Assume data are generated by utility maximization with globally convex pref-

erences subject to a piecewise linear budget constraint. To simplify the exposition,

let us consider a budget constraint with three segments defining a convex budget

set. We show such a budget constraint in Figure 1. The budget constraint is

defined by the slopes and intercepts of the three segments. These segments also

define two kink points. The kink points are related to the slopes and intercepts

as: l\ = (y2 - y\)/{w2 - w^ and £2 = (yz - y2)/(w3 - w2 ).

We will derive an expression for expected hours of work given this data gen-

erating process. Let desired hours of work for a linear budget constraint be given

by hj = 7r(yj,Wj) + v, where v is a random preference variable. Let g(t) be the

density of v, G{y) the c.d.f of v, H(v) = J^tg^dt and J(v) = H(y) - vG(v).

We assume that H(oo) = 0, i.e., E(v) = 0. We further assume labor supply is

generated by utility maximization with globally convex preferences. Then desired

hours will equal zero if 7rj + v < 0. Desired hours will fall on the first segment



if < 7TJ + v < t\ and be located at kinkpoint £\ if 7r(yi,Wi) + v > £ls and

7T (3/2,^2) + u < ^1 i-e - ^ ^1
—

^(yij^i) < ^ < 4 _ K(y2 ,w2 ). Desired hours will

be on the second segment if £\ < Tv(y2 ,w2 ) + v < £2 , etc. This implies that we can

write expected hours of work as:

E(h*) = O-G(-tTi)

+ [G(*l - TTj) - G(-7Tj)] X{7T, + £?(«)
!

-TTa < V < lx - TTx}
» w .,

probability that /i* is on first segment

+ ^.[G^-TTaJ-G^i-Trx)]
' v '

probability that desired hours are at kinkpoint £1

+ [G(£2 - 7T2 )
- G{li - 7T2 )] X {7T! + £?(«)

|
^ - 7T2 < V < l2 ~ 7T2 }

v v '

probability that h* is on the second segment

+ £2 [G(£2 -tv3)-G(£2 -tt2 )}

+ [1 - G(£2 - 7T3 )] x {tt3 + E(v)
I

w > l2 - 7T3 }
v v

probability that desired hours are on third segment

(!')

We see from this expression that E(h*) is a continuous, differentiable function in

l\i Tf\, £2 tt2 , £3, TT3.
1 Since 7Tj is differentiable in y;, Wi it follows that E(h*) is

continuous and differentiable in £1, w^, yi, £2 , w2 , £3, u>3, 2/3.

Using the J(v) notation and setting £q = we can rewrite (1') as:

E(h*) = -J(-7n) + £[J(4 - 7T
fc )
- J(4 - 7Tfc+1 )] + 7T3 (2.1)

fc=l

This expression generalizes straightforwardly for the case with more segments.

The particular form of expression (1) follows from the assumption that hours of

work are generated by utility maximization with globally convex preferences. For

particular c.d.fs of v we can derive properties of the J(y) function. For example,

if v is uniformly distributed J[v) will be quadratic. Independent of the form of

the c.d.f. for v, J(v) will always be decreasing and concave and lie below its

Expression (1') is derived under the assumption that there is no upper limit H for hours of

work. If we introduce an upper limit H for hours of work, we would get one more term, and the

last term would be slightly different. If H is set at a high value, say, 6000 hours a year, it would

not matter for empirical applications whether we use expression (1) or an expression with an

upper limit H included.



asymptotes which is if v goes to minus infinity and a line through the origin

with slope -1 for v going to plus infinity.

There are two important aspects of expression (1) that we want to emphasize.

One is that the strong functional form restrictions implied by utility maximiza-

tion and a convex budget set, as shown in equation (1), can be used to test the

assumption of utility maximization. For example, we can test the utility maxi-

mization hypothesis by testing the separability properties of the function shown

in equation (1).

The second aspect is that equation (1) suggests a way to recover the underlying

preferences when utility maximization holds. If the budget constraint is linear we

can regard this as a piecewise linear budget constraint where the slopes and virtual

incomes of the budget constraint are all equal. This implies that all the ix^ are

equal, and equation (1) simplifies to 7r — J(—7r). Also, if the probability of no

work is zero then the hours equation becomes 7r. This can occur if the support of

v is bounded. Furthermore, if the probability of zero hours of work is very small,

then setting all of the virtual incomes and wages to be equal will approximately

give 7r.

This aspect does not depend on the convexity of the budget sets, since identical

virtual incomes and wages will give the expected hours for a linear budget set.

What it does depend on is that there is at least some data where the budget

constraint is approximately linear. Consistency of a nonparametric estimator at

any particular point, such as a linear budget constraint, depends on there being

data in a neighborhood of that point. In practice, the estimator will smooth over

data points near to the one of interest, which provides information that can be

used to estimate expected hours at a linear budget constraint. Thus, data with

approximately linear budget constraints will be useful for identification. Standard

errors could be used to help to determine whether there is sufficient data to be

reliable, because the standard errors will be large when there is little data.

It can be computationally complicated to do a nonparametric regression im-

posing all the constraints implied by expression (1). A simpler approach is to

only take into account the separability properties implied by utility maximiza-

tion. Going back to (1') we note that there is additive separability so we can

write expected hours of work as

E(h*)=f1 (£1 ,w1 ,y1)+f2 (£1 ,w2 ,y2 ) + f3 (£2 ,w2 ,y2 ) + fi {£2 ,w3 ,y3 ). (2.2)

That is, there are four additive terms, with l\ appearing in two terms and £2

6



appearing in two terms.

Alternatively we can write expected hours of work as:

E{h") = 71 (Zi,wi,yi) + 72(^1, 4,w2 ,y2) + %{£2 ,w3 ,y3 ) (2.3)

Noting that L — y' +1 ~ yi we can also write E(h*) as

E(h*) =01(2/1,^1,2/2,^2) +^2(2/2, w2 , y3 ,w3 ) (2.4)

That is, by giving up some of the separability properties we can reduce the di-

mensionality of the problem from 8 to 6. It is worth noting that if we use (2)

or (3) there is an exact (nonlinear) relationship between some of the independent

variables.

Equation (1) gives an expression for expected desired hours. However, we
would normally expect that there also are measurement and/or optimization er-

rors. If these errors are additive it is simple to take these errors into account. Let

observed hours be given by: h = h* + e, where E(e
\
x,v) = 0. It follows that

the expectation of observed hours will be the same as the expectation of desired

hours.

The expressions above were derived under the assumption of a convex budget

set. If the budget set is nonconvex we can do a similar, but somewhat more

complicated derivation. The separability properties will weaken, but it is still true

that expected hours of work is a function of the net wage rates, virtual incomes

and kink points. We have also assumed that v is distributed independently of the

budget sets and utility maximization holds. This condition will generally require

that v have a bounded support.

3. Estimation method

If data were generated by a linear budget constraint defined by the slope w and

intercept y, the expected hours of work would be given by E(h
|
w,y) = g(w,y).

If we do not know the functional form of g(), we can estimate it by, for example,

kernel estimation. A crucial question is: how can we do nonparametric estimation

when we have a nonlinear budget constraint. From the previous section we know
that if the data-generating process is utility maximization with globally convex

preferences, then the expected value of hours of work can be written as equation

(1). If we do not know the functional form of (1) we can in principle estimate

(1) by kernel estimation. However, because of the curse of dimensionality, this



will usually be impossible in practice. In the study by Blomquist and Hansson-

Brusewitz (1990) Swedish data with budget constraints consisting of up to 27

segments were used. To describe such a budget constraint we need 54 variables!

Nonparametric estimation using actual budget constraints consisting of 27 seg-

ments would require a huge amount of data. To obtain a practical estimation

procedure we therefore have to reduce the dimensionality of the problem.

Another reason to look for a more parsimonious specification is that when

there are many budget segments relative to the sample size there may not be

sufficient variation in the budget sets to allow us to estimate separate effects for

each segment. That is, there may be little independent movement in the virtual

incomes and wages for different segments. Therefore it is imperative that we distill

the budget set variation, so that we capture the essential features of the data.

The estimation technique we suggest is a two-step procedure. In the first step

each actual budget constraint is approximated by a budget constraint that can be

represented by only a few numbers. In the second step nonparametric estimation

via series approximation is applied, using the approximate budget constraints as

data.

We consider two approaches to the first step of the estimator, the approxima-

tion of the true budget set by a smaller dimensional one.

L The least squares method. Take a set of points hj,j = 1,...,K. Let C(hj)

denote consumption on the true budget constraint and C(hj) consumption

on the approximating budget constraint. The criterion to choose the ap-

proximating budget constraint is Mm^2AC(hj) — C(hj)} 2
.

ii. Interpolation method. Take three values for hours of work: hi, h2 and h$. Let

w(hj), be the slope of the true budget constraint at hj. Define linear budget

constraints passing through hj and with slope w(hj). The approximating

budget constraint is given as the intersection of the three budget sets, defined

by the linear budget constraints. The approximation depends on how the

hi are chosen and on how the slopes w(hj) are calculated.2

With the budget set approximation in hand we can proceed to the second

step, which is nonparametric estimation of the labor supply function carried out

as if the budget set approximation were true. The nonparametric estimator we

2 One can, of course, use many other methods to approximate the budget constraints. One
procedure would be to take the intercept of the budget constraint and 3 other points on the

budget constraint and connect these points with linear segments.



consider is a series estimator, obtained by regressing the hours of work on several

functions of the virtual income and wages. We use a series estimator rather than

another type of nonparametric estimator, because it is relatively easy to impose

additivity on that estimator.

To describe a series estimator let x = (yi,Wi,...,yj,wj)' be the vector of

virtual incomes and wage rates, and let p
K
(x) = (pik(x),---,Pkk(x ))' be a vec-

tor of approximating functions, each of which satisfies the additivity restrictions

implied in equations (2), (3), or (4). For data (xi,hi), (i = l,...,n), let P =

(p
K
(xi), ...,p

K (xn ))' and H = (hi, ...hn )' . A series estimator of g(x) = E(h
\
x) is

given by

g(x) = p
K
(x)'P (3.1)

p = (p'pyp'H,

where B~ denotes any symmetric generalized inverse.

Two types of approximating functions that can be used in constructing series

estimators are power series and regression splines. In this paper we will focus on

power series in the theory and application. For power series the components of

p
K
(x) will consist of products of powers of adjacent pairs of the kinkpoint, virtual

income, and wages. We also follow the common, sensible practice of using lower

powers first.

Even with the structure implied by utility maximization there are very many
terms in the approximation even for low orders. To help further with keeping the

equation parsimonious it is useful to take the first few terms from a functional

form implied by a particular distribution. Suppose for the moment that the budget

approximation contains three segments, as it does in the application. Suppose also

that the disturbance v was uniformly distributed on [—u/2,u/2]. Then, as shown

in Appendix A,

h(B) = [£i(tti - tt2 ) + £2 (n2 - tt3 )] + (tt3 + uf/(2u).

Also suppose that n(y,w) = 71 + 72Z/ + 73W. Then for dy = £i(yi — y2 ) +
4(2/2 - 2/3) and dw = £i(wi - w2 ) + £2 (w2 - w3 ),

h(B) =j3i+ p2dy + p3dw + /?4 2/3 + P5W3 + (56yl + faw\ + f3sy3w3 , (3.2)

where the coefficients of this equation satisfy, for c = 71 + u,

9



/?i = c
2/2u, P5 = cy3 /u,

Pi = 12/u, Pe = W/2U,
Ps = lz/u, P7 = (73)

2
/2«,

Pa = CY2/U Ps = l2lz/u.

This function satisfies the additivity properties discussed earlier. We use this

function by specifying the first eight terms in the series estimator to be one of

the eight functions on the right-hand side of equation (6). Further flexibility is

then obtained by adding other functions of virtual income and wages to the set

of approximating functions. The estimator attains nonparametric flexibility by

allowing for higher-order terms to be included, so that for large enough sample

size the approximation might be as flexible as desired.

To make use of the nonparametric flexibility of series estimators it is important

to choose the number of terms based on the data. In that way the nonparametric

feature of the estimator becomes active, because a data-based choice of approxima-

tion allows adaptation to conditions in the data. Here we will use cross-validation

to choose both the number of terms and to compare different specifications. The
cross-validation criteria is

CV(K) = l^SSE{K)/[E1=i(hi-h) 2
],

SSE(K) = Y,U[hi-9{xi)f/[l-p
K
{xl)\PP)-pK {xi )]\

The term SSE(K) is the sum of squares of one-step ahead forecast errors, where

all the observations other than the i
th

are used to form coefficients for predicting

the \
th

. It has been divided by the sample sum of squares for h to make the criteria

invariant to the scale of h. Cross-validation is known to have optimality properties

for choosing the number of terms in a series estimator (e.g. see Andrews, 1991).

We will choose the order of the series approximation by maximizing CV(K), and

also compare different models using this criterion.

4. Econometric theory

The estimator we have proposed is based on series estimation with virtual incomes

and wages from a budget set approximation. This estimator uses two approxi-

mations. One is piecewise linear approximation of the true budget. The other

10



is approximation of labor supply by a series regression. Here we derive conver-

gence rates that account for both approximations. We also develop asymptotic

normality results for the case where the budget set is exact.

For the budget set approximation we will focus on the case where the true

budget sets are smooth and convex. Piecewise linear approximation of smooth

budget sets seems a useful way to model the case in our empirical work where there

are many linear segments that are being approximated by only a few segments.

Also, the leading non-smooth budget set case is the piecewise linear one, where the

budget set approximation error simply disappears when the number of segments

is large enough. We restrict attention to the convex budget set case because the

nonconvex case is inherently more difficult. Labor supply will no longer have the

additive structure described earlier, so that the series approximation may require

many more terms. However, if the non-convexities are not too pronounced, the

convex approximation should be satisfactory. For example, in our empirical work

the results were not affected much by convexifying the budget constraints. Also,

the asymptotic normality results assume piecewise linear true budget sets, and do

not rely on convexity of the budget sets.

The labor supply specification we consider is that of equation (1). We also

focus on the nonparametric model described in Section 2, where the labor supply

for a linear budget set is Tv(y,w) + v, where n(y,w) is an unknown function and

v is distributed independently of the budget set. This is a quite general model,

subsuming many from the literature, and has enough structure to allow us to

derive precise results.

4.1. Mean square convergence and the budget set approximation

We first derive convergence rates for the estimator while accounting for the budget

set approximation. A fundamental property of h(B) that is important in control-

ling the budget set approximation error is that it is Lipschitz in B. To state that

result we need some extra notation. Here we limit attention to convex budget

sets where the budget frontier, B(£),£ € £ = [0,£] is concave and continuous. A
concave function always has a right derivative B^(£) and a left derivative B^(£)

at each £, with Bf(£) < Bj {£). Define a norm of the budget frontier to be

||B||=sup(|5(£)| + |B+(^)| + |S7(^)|).
eec v u

With this notation the labor supply function is given by the solution £(B,v)

to

11



tt(B(£) - £B^(£), B~{£)) + v>£> tt{B(£) - £B+ (£), B+ {£)) + v,

where Bg(0) is anything greater than -6/(0) and Bf{£) anything less than B~[ {£).

This condition reduces to the equality £ = n(B(£) - Be (£)£, Be (£)) + v when B{£)

is differentiable at £. There B(£) — Bt(£)£ and Be (£) are the virtual income and

wage. A solution with Bf{£) < ^"(^corresponds to a kink point. A solution will

generally exist under weak conditions, e.g. if dn(y, w)/dy < 0. Here we will just

assume that the solution exists.

To derive the results it is useful to impose some regularity conditions on the

budget sets and the labor supply function ir(y, w) + v.

Assumption 1: n(y, w) is continuously differentiable with bounded derivatives.

Also, there is a set B of concave budget frontiers B : [0,1] —> 3?, and sets y, W,
and V such that V contains the support of v, yxW contains (B(£)— £B^(£), Bf(£))

and (B(£)-£Bz(£),Be(£)) for all B E B and £ € [0,4 and 7v(y,w)+v satisfies the

Slutzky condition TTw (y,w) — [iv(y,w)-{- v]ny (y,w) > 0, for all (y,w,v) € ^xWxV.

The Slutzky condition is helpful for bounding the effect of the budget set on labor

supply. Here this economic restriction helps determine the continuity properties

of labor supply.

Lemma 4.1. If Assumption 1 is satisfied and B{£) is twice continuously differ-

entiable with B G B, then there is a constant C such that for any B 6 B and

veV, \£(B,v) - £{B,v)\ < C\\B - B\\.

This result says that the labor supply is Lipschitz in the budget set, in terms

of the norm ||J3||. It follows immediately from this result that h(B) — h{B) <

C\\B — B\\. Thus, average labor supply at a general, smooth and convex budget set

will be approximated by average labor supply at a close piecewise linear set, with

an approximation error that is the same order as the budget set approximation

error.

The budget set approximation can be combined with a series approximation

of labor supply to obtain a total approximation error. Consider the formulation

in equation (4), where labor supply is a sum of four dimensional functions of the

triples

(wj, Vj, Wj+i, Vj+i), U = 1, -, L - 1).

12



Let xL = (uiiyi,...,wL ,yL ) and let p
K (xL ) denote a K x 1 vector of approximating

functions, each of which depends only on one of the (L — 1) quadruples above.

Here we assume that p
K
(x

L
) is a four-dimensional power series, although it could

be a tensor product spline. Assuming that the polynomials have comparable order

for each j the order of the entire polynomial will be (K/L) 1^4
. By Lorentz (1986,

Theorem 8) it follows that the approximation error of an s-times differentiable

function will be of the order {K/L)~ s^. Combining this result with the budget

set approximation rate leads to a rate of approximation of the true labor supply.

Suppose that the following condition holds.

Assumption 2: J(v) and 7r(y, w) are s times continuously differentiable and for

the subset B2 of B consisting of twice differentiable functions the derivative B^{tj

is uniformly bounded.

We now obtain the approximation rate result:

Lemma 4.2. If Assumptions 1 and 2 are satisfied, then there is a constant C
and for each K a vector fix such that for every B £ B2 there is a piecewise

linear budget set with associated x^ such that supB6fi2 h(B) — p
K
(x^)'fii <

(i +
*(*)"**c

This approximation rate result leads to a mean-square error (MSE) convergence

rate for the nonparametric estimator. The following condition is useful for deriving

that rate:

Assumption 3: (hi,Xi), ..., (hn ,xn ) are i.i.d. and Vav(h\B) is bounded.

The bounded conditional variance is standard in the series estimation literature,

and relaxing this condition would be difficult. Let hi = p(xb)'Pl and hi = h(Bi).

Theorem 4.3. If Assumptions 1-3 are satisfied then for each i there is x\. such

that E^ft - hif/n = p (f + £ + L2

(f
)"

2s/4

).

The K/n term in the statement of the theorem is a variance term. The other two

terms are bias terms that correspond to Lemma 2. These terms depend on both

K and L. The best attainable convergence rate is obtained by choosing them so

that each term converges to zero at the same rate. When this is done we obtain

JT(hi ~ hf/n = p(n-^^).
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Here we find that the convergence rate is a power of n, in spite of the infinite

dimensional nature of the budget set. As the number of derivatives of the supply

function (i.e. its smoothness) increases, the convergence rate increases, approach-

ing n -1 /3 as s grows. This bound on the rate is smaller than the usual one of

n-1/2
, being limited by the use of a piecewise linear approximation to the budget

set and its derivative. In particular n-1
' 3 is the best rate that could be attained by

a linear spline approximation of a function and its derivative, as in Stone (1985).

Applying this result in practice would requires choosing a piecewise linear

budget set approximation that satisfies the conditions of Lemma 2. This could be

done by choosing the approximate budget set Bf so that \\B^ — Bi\\ was within

1/L of its infimum. The least squares approximation used in the empirical work

is a way of implementing such an approximation, because mean-square error and

supremum norms are equivalent for functions with uniformly bounded derivatives,

and when convex functions are close in a supremum norm their derivatives are

also close.

4.2. Asymptotic Normality

In deriving asymptotic normality results it is difficult to account for the budget

set approximation. The difficulty is a technical one, due to the relatively slow

approximation of the true budget set by a piecewise linear one. The best available

series asymptotic normality results, in Newey (1997), have upper bounds for K
that do not allow the bias to shrink fast enough. This difficulty could be overcome

by using other kinds of budget set approximations, leading to different empirical

methods. We leave these extensions to future work.

The following conditions are useful for the asymptotic normality results:

Assumption 4: The support of a; is a Cartesian product of compact connected

intervals on which x has a probability density function that is bounded away from

zero.

This assumption can be relaxed by specifying that it only holds for a component

of the distribution of x (which would allow points of positive probability in the

support of x) , but it appears difficult to be more general. It is somewhat restric-

tive, requiring that there be some independent variation in each of the individual

virtual incomes and wages. Also, it requires that the upper bound and lower

bounds for the virtual incomes not overlap with each other.

These conditions allow us to derive population MSE and uniform convergence

rates that complement the rates given above. These rates are for different criteria

14



than above, but do not allow for the budget set approximation. Let X denote the

support of x, and Fq(x) the distribution function of Xj.

Theorem 4.4. If Assumptions 2-4 are satisfied and K3/n —* then

f{g(x)-g (x)}
2dF (x) = Op(- + K^)

J n

suV \g{x)-gQ {x)\ = Op(K[J- + K-'A
])

xex V n

This result gives mean square and uniform convergence rates for the estimated

expected labor supply function. The different terms in the convergence rates

correspond to bias and variance. If the number of terms is set so that the mean
square convergence rate is as fast as possible, with K proportional to n2^s+2

\ the

mean square convergence rate is n~ s^s+2\ This rate attains Stone's (1982) bound

for the four-dimensional case, that is, the rate is as fast as possible for a four-

dimensional function. Thus, the additivity of the expected-hours equation leads

to a convergence rate which corresponds to a four-dimensional function, rather

than the potentially very slow 2J dimensional rate.

To show asymptotic normality we need to be precise about the object of esti-

mation. Also, an important use of these results is in asymptotic inference, where a

consistent estimator of the asymptotic variance is needed. Suppose that a quantity

of interest can be represented as 9q = a(go) where a(g) depends on the function g
and is linear in g. For example, a(g) might be the derivative of the function at a

particular point, or an average derivative. The corresponding estimator is

= a(g).
'

(4.1)

A standard error for this estimator can be constructed in the usual way for least

squares. Let A= (a(piK ), ...,a(pKK ))' and

V = A'Q-tQ-A,

Q = P'P/n, (4.2)

£ = it^MfWlk -ft*)]*/*
i=I
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This estimator is just the usual one for a function of least squares coefficients,

with Q~YiQ~ being the White (1980) estimator of the least-squares asymptotic

variance for a possibly misspecified model. This estimator will lead to correct

asymptotic inferences because it accounts properly for variance, and because bias

will be small relative to variance under the regularity conditions discussed below.

Some additional conditions are important for the asymptotic normality result.

Assumption 5: E[{h — g (x)} \x] is bounded, and Var(/i|x) is bounded away

from zero.

This assumption requires that the fourth conditional moment of the error is

bounded, strengthening Assumption 1.

Assumption 6: a(g) is a scalar, there exists C such that |a(<?)| < C supx6A- |#(a;)|,

and there exists Qk(x) = P
K

(
X

) P such that E[gK (x)
2

]
—» and a(gK ) is bounded

away from zero.

This assumption says that a(g) is continuous in the supremum sense, but not

in the mean-square norm (E\g{x) 2
])

1 !2
. The lack of mean-square continuity is a

useful regularity condition and will also imply that the estimator 9 is not y/n-

consistent. Another restriction imposed is that a(g) is a scalar, which is general

enough to cover many cases of interest.

To state the asymptotic normality result it is useful to work with an asymptotic

variance formula. Let a2
{x) = Var(/i

|
x). Let

VK = A'Q-'XQ-'A, (4.3)

Q = E\pK(x)p
K

(x)'},

E = E\pK (x)p
K
(x)'a(x)

2
}.

Theorem 4.5. If Assumptions 3-6 are satisfied, K3/n —> 0, and y/nK~ s^ —*

then 9 = 0o + Op{K
3'2Jy/n) and

Vn~VK
1/2(9-9 )^N(0,l),

Vn~VK
1,2

{9 - 9 ) ± N(0, 1).

This result can be used to construct an asymptotic confidence interval of the form

(9 — Za/2yV,9 + za/2\jV)i where zaji is the 1 — a/2 quantile of the standard

normal distribution. The two rate conditions are those of Newey (1997). The first

ensures convergence in probability of the second moment matrix of the approxi-

mating functions, after a normalization. The second ensures that the bias is small
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relative to y/n. The existence of K satisfying both conditions requires s > 6, a

smoothness condition that is somewhat stronger than for asymptotic normality of

other nonparametric estimators. The convergence rate for 9 is only a bound, so

it may be possible to derive more precise results. In particular, one obtains \fn

consistency under slightly different conditions.

The following condition is crucial for y^n-consistency.

Assumption 7: There is v(x) with E\v(x)v (x)'\ finite and nonsingular such that

a(g ) = E[v (x)g (x)], a(pkK) = E[v(x)pkK (x)}, for all k and K, and there is (3K
with E[\\v(x) -pK (x)'PK \\

2
}
-» 0.

This condition allows for a(g) to be a vector. It requires a representation of a(g)

as an expected outer product, when g is equal to the truth or any of the approxi-

mating functions, and for the functional v (x) in the outer product representation

to be approximated in mean-square by some linear combination of the functions.

This condition and Assumption 6 are mutually exclusive, and together cover most

cases of interest (i.e. they seem to be exhaustive). A sufficient condition for As-

sumption 7 is that the functional a(g) be mean-square continuous in g over some

linear domain that includes the truth and the approximating functions, and that

the approximation functions form a basis for this domain. The outer product

representation in Assumption 7 will then follow from the Riesz representation

theorem. The asymptotic variance of the estimator will be determined by the

function v(x) from Assumption 7. It will be equal to

V = E[v(x)v(x)'Vax{h\x)]. (4.4)

Theorem 4.6. IfAssumptions 2 - 5 and 7 are satisfied, K3/n —> 0, and y/nK~ s^ -

then

v^(0-0o)^iV(O,n (4.5)

5. Sampling Experiments

There are three questions we want to study. First, suppose we do not have to

approximate budget constraints, how well would then an estimation method that
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regresses hours of work on the slopes and intercepts of the budget constraint

work? Second, how much "noise" is introduced in the estimation procedure if we

instead of actual budget constraints use approximated budget constraints. The
answer to the second question depends on how the approximation is done. Hence,

we would like to study the performance of the estimation procedure for various

methods to approximate budget constraints. Third, we would like to know how
well a nonparametric labor supply function can predict the effect of tax reform.

We have studied these three questions using both actual and simulated data. To

judge the performance of our suggested estimation procedure we use the cross-

validation measure previously presented.

Evaluation of budget approximation methods using actual data

We have performed extensive estimations on actual data from 1973, 1980 and

1990 to compare the relative performance of the least squares and the interpolation

methods where performance is measured by the cross-validation criteria. For

the least squares method we must specify the set of points hi: i = 1, .., K. We
have subdivided this into the choice of the number of points to use, the type of

distribution from which the hi are chosen and the length of the interval defined by

the highest and lowest values for the hi. We tried three types of distributions: a

uniform distribution, a triangular distribution and the square root of the observed

distribution. For the interpolation method we must specify three points hi, /i2 >

/13 and how to calculate the slope of the actual budget constraint at the chosen

points. We have used a function linear in virtual incomes and net wage rates to

evaluate the various approximation methods.

Using data from 1981 one particular specification of the interpolation method

works best of all methods attempted. Unfortunately, this specification works

quite badly for data from 1990. Hence, the interpolation method is not robust

in performance across data generated by different types of tax systems. Since

we want to use our estimated function to predict the effect of tax reform this is

a clear disadvantage of the interpolation method. The least squares method is

more robust across data from different years. We have not found a specification of

the least squares method that is uniformly best across data from different years.

However, the least squares method using a uniform distribution over the interval

0-5000 hours and represented by 21 points has a relatively good cross-validation

performance for data from all years. This is the approximation method we use in

the rest of the study.

Monte Carlo Simulations

We perform two sets of Monte Carlo simulations. In the first set of simulations
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we use data from only one point in time, namely data from LNU 1981. For 864

males in ages 20 to 60 we use the information on their gross wage rates and non-

labor income to construct budget constraints and generate hours of work using the

preferences estimated and reported in Blomquist and Hansson-Brusewitz (1990).

It should be noted that for a majority of individuals the budget sets are nonconvex.

The basic supply function is given by: h* = 1.857 + v + C.0179u; - 3.981 *

10" 4
y + 4.297 * 10" 3AGE + 2.477 * 10" 3iVC, where v ~ N(0, 0.0673), hours of

work are measured in thousands of hours, the wage rate is given in 1980 SEK
and the virtual income in thousands of 1980 SEK. AGE is an age dummy , NC a

dummy for number of children living at home and SEK is a shorthand for Swedish

kronor. Observed hours of work is given by h = h* + e, where e ~ N(0, 0.0132).

We use the following four types of data generating processes (DGP):

i. Fixed preferences; no measurement error. (That is we assume all individuals

have identical preferences.)

ii. Fixed preferences and measurement errors;

iii. Random preferences; no measurement error.

iv. Random preferences and measurement errors.

The simulations presented in Table 1 show how well the procedure works if we

use actual budget constraints in the estimation. Hence, when generating the data

we use budget constraints consisting of three linear segments. These budget con-

straints were obtained as approximations of individuals' 1981 budget constraints.

The constructed data are then used to estimate labor supply functions. The same

budget constraints that were used to generate the data are used to estimate the

nonparametric regression. The following 5 functional forms were estimated: 3

1. linear in Wi, yi, i = 1,2,3.

2. linear in w{ , y^ i = 1, 2,3 and £j and £2 -

3. quadratic form in Wi, yi, i = 1,2, 3.

4. quadratic form in i^, jfe, i = 1, 2,3 and linear in l\ and £2

We also tried some other functions. Adding more terms, like squares of the kink points

and more interaction terms increase the coefficient of determination but yields a lower cross

validation measure.
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5. linear form in const., dy, dw, w3 , y3 , w\, y\.

In the first row we present results from simulations with a DGP with no random

terms. The variation in hours of work across individuals only depends on the

variation in budget constraints. The reason why the coefficient of determination is

less than one is that we use an incorrect specification of the function relating hours

of work as a function of the net wage rates, virtual incomes and kink points. As we

add more random terms to the DGP the values for the coefficient of determination

and the cross validation measure decrease. Looking across columns, we see that in

terms of the coefficient of determination the functions containing many quadratic

and interaction terms do well. However, looking at the cross validation measure

the simpler functional forms containing only linear terms perform best. For the

DGP with both random preferences and measurement error function 2 performs

slightly better than function 1.

Tablel. Evaluation of Estimation Method using constructed '

'actual" budget constraints

Coefficient of determination and Cross validation used as performance meaure.

Average over 500 replications.

function function function function function

DGP 1 2 3 4 5

No random Average R2 0.601 0.604 0.644 0.658 0.450

terms Average CV 0.581 0.576 0.556 0.536 0.392

Measurement Average R2 0.215 0.218 0.245 0.252 0.163

error Average CV 0.194 0.190 0.136 0.123 0.128

Random Average R2 0.125 0.137 0.167 0.184 0.083

preferences Average CV 0.103 0.106 0.010 0.013 0.052

Random pref Average R2 0.098 0.107 0.135 0.149 0.066

-t-meas. error Average CV 0.075 0.078 -0.016 -0.015 0.037

Suppose data are generated by budget constraints consisting of z number of

segments. How well does our method do ifwe use approximated budget constraints

in the estimation procedure? The simulations presented in Table 2 show how well

the procedure works if we generate data with budget constraints consisting of up

to 27 linear segments, but in the estimation use approximated budget constraints

consisting of only three segments. We use the OLS procedure described above to

approximate the actual data generating budget constraints. The weight system

is a uniform distribution over the interval 0-5000 hours. We use 21 points to

represent the distribution. We use the same functional forms as in Table 1.
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Compaxing the results presented in table 2 with those in Table 1 we find,

somewhat surprisingly, that the R2
s and CVs in Table 2 in general are higher

than those in Table 1. This is especially so for the case when there are random
preferences but no measurement error. The fact that we in the estimation use ap-

proximated budget constraints does not impede the applicability of the estimation

procedure.

Table 2. Evaluation of Estimation Method using approximated budget constraints in the esl

Coefficient of determination and Cross validation used as performance meaure. Averages ove

500 replications.

DGP function function function function function

1 2 3 4 5

No random Average R2 0.746 0.757 0.781 0.785 0.668

terms Average CV 0.738 0.748 0.715 0.671 0.633

Measurement Average R2 0.183 0.187 0.209 0.212 0.165

error Average CV 0.165 0.165 0.100 0.084 0.139

Random Average R2 0.420 0.428 0.480 0.481 0.372

preferences Average CV 0.398 0.400 0.325 0.314 0.320

Random pref Average R2 0.157 0.161 0.195 0.196 0.141

+meas. error Average CV 0.136 0.135 0.059 0.049 0.107

Why are the R2
s and CVs higher in Table 2 than in Table 1, especially when

there are random preferences? We provide the following explanation. If the

budget constraint is linear, the effect of random preferences is the same as the

measurement error. If there is one sharp kink in the budget constraint, desired

hours will be located at this kink for a large interval of v. That is, the kink

will reduce the dispersion in hours of work as compared with a linear budget

constraint. In the DGP used for the simulations presented in Table 2 we use

budget constraints with up to 27 linear segments. The presence of so many kinks

greatly reduces the effect of the random preferences on the dispersion of hours

of work. It is true that for the three-segment budget constraints used for the

simulations presented in Table 1 the kinks are more pronounced. On balance it

turns out that the DGP used in Table 2 is affected less by the random preferences

than what is the DGP used for the simulations presented in Table 1.

Looking across rows in Table 2 we see that adding more of random terms to the

DGP decreases both the jR
2
s and CVs. However, while in Table 1 the inclusion of

random preferences reduced the R2
s and CVs most, in Table 2 it is the inclusion of

measurement error that decreases the R2
s and CVs most. Looking across columns
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and approximating functions we find that the coefficient of determination increases

as we include more squares and interactions, while the cross validation decreases.

In terms of the cross validation measure a linear form in virtual incomes, net wage

rates and the kink points shows the best performance. This is the same result as

in Table 1.

Much of the interest in labor supply functions stems from a wish to be able to

predict the effect of changes in the tax system on labor supply. We have therefore

performed a second set of simulations to study how well a function estimated with

the estimation procedure suggested can predict the effect of tax reform on hours

of work. For these simulations we use data from three points in time:

i. We use individuals' actual budget constraints from 1973, 1980 and 1990 in com-

bination with the labor supply model estimated and presented in Blomquist

and Hansson-Brusewitz (1990). (See the labor supply function shown on pp.

19 above.) This model contains both random preferences and measurement

errors. Thus, the data-generating process is utility maximization subject to

nonconvex budget constraints.

ii. The generated data are used to estimate both parametric and nonparametric

labor supply functions. We estimate eight different functional forms for the

nonparametric function.

iii. We perform a tax reform. We take the 1991 tax system as described in

Section 7 and appendix D to construct post-tax budget constraints for the

1980 sample. Using the labor supply model from Blomquist and Hansson-

Brusewitz (1990) we calculate "actual" post tax hours for all individuals in

the 1980 sample.

iv. Approximating the post-tax reform budget constraints we then apply our

estimated function to predict after tax reform hours.

Let

Hbtr = actual average hours of work before the tax reform.

Hatr — actual average hours of work after the tax reform.

Hbtr — predicted before tax reform average hours of work.

Hatr = predicted after tax reform average hours of work.

The actual percentage change in average hours of work is given by

22



M = (Hatr — Hbtr)/Hbtr-

We can calculate the predicted percentage change in hours of work in two ways

Ml — {HATR — HBTR)/HBTR ,

Ml = (Hatr — HBtr)/HBtr-

The average value of M is 0.0664. In table 3 we show the average values of Ml,
M2 and the CV over 100 iterations.

When researchers predict the effect of tax reform the before tax reform hours

are usually known. In actual practice a measure like M2 is often calculated. There

are proponents for a measure where the before tax reform hours also are predicted.

In this simulation, as is common in actual practice, the predicted before tax reform

hours is a within-sample prediction, whereas the after-tax-reform prediction is an

out-of-sample prediction. It is not shown in the table, but the predicted before-

tax-reform hours are predicted quite well. The error in the after tax reform hours

is larger.

Table 3. Average values of Ml, M2 and CV over 100 iterations

Model Ml M2 CV
function 1 const., dy,dw -0.0171 0.0044 0.0121

function 2 above and w3 , y3 0.0554 0.0538 0.1147

function 3 above and y\ 0.0546 0.0532 0.1147

function 4 above and w\ 0.0506 0.0521 0.1189

function 5 above and w3 ,y3 0.0506 0.0521 0.1183

function 6 above and llt £2 0.0517 0.0530 0.1157

function 7 above and y2 , wu w2 0.0511 0.0517 0.1328

function 8 above and £j, l\ 0.0625 0.0621 0.1416

Maximum likelihood

estimate 0.0784 0.0704

According to Table 3, function 8 performs on average best. In fact, in 99 of the

iterations function 8 achieved the highest CV. In one iteration function 7 had a

slightly higher CV than function 8. We see that the nonparametric estimation

method can predict the effect of the tax reform quite well. The actual change
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in hours of work is 6.64% while the predicted change on average is 6.25%. The
maximum likelihood based prediction slightly over predicts the effect.

In Table 4 we use the same DGP as in table 3, except for the measurement

error. The measurement error used to generate data for Table 4 is a simple

transformation of the random terms in the previous DGP. The measurement

error x 1S given by x — £
2
/5. The likelihood function used is the same as

for Table 3. This means that the likelihood function is misspecified. We see

that the nonparametric estimates in Tables 3 and 4 are very close. However,

the maximum likelihood estimate over predicts the effect of tax reform when the

likelihood function is incorrectly specified. In Table 4 the ML estimate predicts

an increase in hours of work of 11.40% as measured by Ml and 9.72% as measured

by M2 although the true increase is 6.64%.

Table 4.

Model Ml M2 Average CV
const, dy, dw -0.0172 0.0433 0.0204

above and W3, 2/3 0.0554 0.0538 0.1852

above and yf 0.0547 0.0532 0.1853

above and w\ 0.0507 0.0521 0.1924

above and ^3,2/3 0.0507 0.0521 0.1916

above and £\, £2 0.0515 0.0527 0.1879

above and 2/2, v>i, w2 0.0511 0.0517 0.2171

above and £\, £\ 0.0627 0.0622 0.2324

Maximum likelihood

estimate 0.1140 0.0972

6. Estimation on Swedish data

6.1. Data source

We use data from three waves of the Swedish "Level of Living" survey. The data

pertain to the years 1973, 1980 and 1990. The surveys were performed in 1974,

1981 and 1991. The 1974 and 1981 data sources are briefly described in Blomquist

(1983) and Blomquist and Hansson-Brusewitz (1990) respectively. The 1990 data

is based on a survey performed in the spring of 1991. The sample consists of

6,710 randomly chosen individuals aged 18-75. The response rate was 79.1%.

Certain information, like taxation and social security data, were acquired from
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fiscal authorities and the National Social Insurance Board. 4Sample statistics are

provided in appendix B.

In the estimation we only use data for married or cohabiting men in ages 20-60.

Farmers, pensioners, students, those with more than 5 weeks of sickleave, those

who were liable for military service and the self employed are excluded. This

leaves us with 777 observations for 1973, 864 for 1980, and 680 for 1990.

The tax systems for 1973 and 1980 are described in Blomquist (1983) and

Blomquist and Hansson-Brusewitz (1990). The tax system for 1990 is described

in Appendix C. Housing allowances have over time become increasingly important.

For 1980 and 1990 we have therefore included the effect of housing allowances on

the budget constraints. The housing allowances increase the marginal tax rates

in certain intervals and also create nonconvexities.

The fact that we pool data from three points in time has the obvious advantage

that the number of observations increases. Another important advantage is that

we obtain a variation in budget sets that is not possible with data from just one

point in time. The tax systems were quite different in the three time periods

which generates a large variation in the shapes of budget sets.

6.2. Parametric estimates

We pool the data for the three years and estimate our parametric random prefer-

ence model described in, for example, Blomquist and Hansson-Brusewitz (1990).

The data from 1973 and 1990 were converted into the 1980 price level. We have

also convexified the budget constraints for data from 1980 and 1990. We show the

results in equation (14). The elasticities Ew and Ey are calculated at the mean
values of hours of work, net wages and virtual incomes. The means are taken over

all years, t-values are given in parenthesis beneath each coefficient.
5

'

h= 1.914 +0.0157™ -8.65*10- 4
y -9.96 * 10~ 3AGE -3A6*1Q- 3NC

(62.09) (8.96) (-5.95) (-0.53) (-0.44)

(6.1)

4 Detailed information on the 1990 data source can be found in Fritzell and Lundberg (1994).
5The variance-covariance matrix for the estimated parameter vector is calculated as the

inverse of the Hessian of the log-likelihood function evaluated at the estimated parameter vector.

We have had to resort to numerically calculated derivatives. It is our experience that the

variance-covariance matrix obtained by numerical derivatives give less reliable results than when
analytic derivatives are used.
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6.3. Nonparametric estimates

Below we report results when we have pooled data for the three years. 6 We use

a series estimator. As our criterion to choose the estimating function we use the

cross validation measure presented earlier. We have used two different procedures

to approximate individuals' budget constraints. In the first procedure we apply

the least squares approximation to individuals' original budget constraints. In the

second procedure we first convexify the budget constraints by taking the convex

hull and then apply the least squares approximation. The budget constraints from

1980 and 1990 are nonconvex, so the two procedures differ. To approximate the

budget constraints we have used the least squares method with the span from

to 5000 hours and with 21 equally-spaced points. It turns out that the results are

very similar whether we approximate the original or the convexified constraints.

As shown in Table 5 the cross validation measure is a little bit higher for the best

performing approximating functions when we approximate the original budget

constraints without first convexifying. In the following we therefore only report

the results for the functions estimated on approximated budget constraints from

original budget constraints. We only report results for functions estimated on

approximated budget constraints consisting of three piece-wise linear segments.

We have also tried approximations with four segments, but these approximations

yielded lower cross validation measures.

In Table 5 we present a partial listing of how the cross validation measure

varies w.r.t. the specification of the estimating function. In Table 6 we report the

estimated coefficients for the two specifications with the highest cross-validation

measure.7 We have also used the data to test restrictions implied by utility

maximization with convex budget sets. This test was performed by estimating a

function allowing for interactions between the regressors that violates the separa-

bility properties. (See the discussion on p. 6.) These interaction terms were not

significant.

6We have also estimated nonparametric functions for individual years. However, the standard

errors are considerably larger for the individual years as compared to when we pool the data.
7We note that the functional form with the highest CV differs between Table 5 and, say,

Tables 3 and 4. This is not surprising since the DGP for the actual data presumably is different

from the one used in the simulations presented in Tables 3 and 4. We also see that the functional

form with the highest CV differ between Tables 1 and 2 versus Tables 3 and 4. However, Tables

1 and 2 are based on only the 1980 data, while Tables 3 and 4 use data from all three years,

and one would expect that the form with highest CV might have more terms in the larger data

sets.
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Table 5. Nonparametric estimation on all years. Cross-validation values

Variables included Original budget con- Original budget con-

straints nonconvex straints convexified

const., dy, dw 0.0073 0.0057

above and w3 , 2/3 0.0323 0.0291

above and y\ 0.0373 0.0350

above and w\ 0.0366 0.0341

above and w3y3 0.0360 0.0340

above and 4,

4

0.0358 0.0336

above and y2 , wu w2 0.0278 0.0310

above and ^, ^ 0.0268 0.0288

It would be of interest to have a summary measure of how these functions

predict hours of work to change as budget constraints change. For data gener-

ated by linear budget constraints one often reports wage and income elasticities.

These are summary measures of how hours of work react to a change in the slope

and intercept of a linear budget constraint. Can we calculate similar summary
measures for the functions reported in Table 6? The functions reported in Table

6 are estimated on nonlinear budget constraints, and are useful for predicting

changes in hours of work as such constraints change. However, we could regard a

linear budget constraint as a limiting case of a nonlinear one. If the wage rates

and virtual incomes for the three segments approach a common value the budget

constraint approaches a linear one. It turns out that if the wage rates and virtual

incomes are the same for all three segments the terms dw and dy drop out of

the functions. We are left with the w3 and y3 terms. The coefficients for these

terms can be used to calculate wage and income elasticities.. The elasticities re-

ported are calculated at the mean of hours of work, the wage rate and virtual

income. The means are taken for the segments where individuals are observed

and calculated over all three years. Hence, all elasticities are evaluated at the

same values for the wage rate, virtual income and hours of work. The fact that

the first three functions include a term with the wage rate squared implies that

the wage elasticity measure is very sensitive to the point at which the elasticity

is evaluated.

In comparison with the parametric estimates, the nonparametric ones show

less sensitivity of the hours supplied to the wage rate, and more sensitivity to

nonlabor income. Both the elasticity and coefficient estimates show this pattern.
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The nonparametric elasticity estimate is smaller than the parametric one for the

wage rate and larger for non-labor income. Also, for the nonparametric estimates

in the first column of Table 6, the coefficient of w3 is smaller than is the wage

coefficient for the parametric estimate in equation (14). As previously noted,

the coefficient of W3 gives the wage effect for a linear budget set, because dw is

identically zero in that case.

The wage and income elasticities are evaluated at the mean of the net wage

rates and virtual incomes from the segments where individuals observed hours

of work are located.
8 Of course, the wage and income elasticities are summary

measures of how the estimated functions predict how changes in a linear budget

constraint affect hours of work. None of the budget constraints used for the

estimation are linear, and we actually never observe linear budget constraints. It is

therefore of larger interest to see how the predictions differ between the parametric

and nonparametric labor supply functions for discrete changes in nonlinear budget

constraints. In section 7 we use the estimated functions to predict the effect on

hours of work of Swedish tax reform.

8Ackum Agell and Meghir (1995), using another data source and an instrumental variables

estimation technique, present wage elasticities that are quite similar to those presented here.

28



Table 6. Nonparametric estimates using pooled data

Variables Best function Next-best function

Const. 2.064 2.097

(49.85) (39.69)

dy -0.00210 -0.00204

(-4.37) (-4.28)

dw -0.00145 -0.00131

(-1.16) (-1.06)

V3 -0.0036 -0.0037

(-3.95) (-4.01)

w3 0.00964 0.00560

(6.61) (1.40)

vl 1.98xl0^ 5 2.00xl0" 5

(3.40) (3.42)

w\ 1.16xl0~ 4

(1.01)

wage elasticity 0.075 0.074

(6.61) (6.60)

income elasticity -0.038 -0.040

(-4.31) (-4.37)

Cross validation 0.0373 0.0366

R2 0.0435 0.0440

^-values in parentheses. The delta method was used

to calculate the ^-values for the elasticities.

In Table 7 we report estimates of the basic supply function ir(y, w) when we im-

pose the functional form for the conditional mean implied by utility maximization

and specific distributions of individual heterogeneity. The estimates are obtained

by estimating equation (1) given an assumption on the distribution of v. We re-

cover 7r(-) from the relation E{h*) = 7t—J(tv), which shows expected hours of work

if data are generated by a linear budget constraint. Surprisingly, the coefficient

estimates for both the wage and nonlabor income are substantially lower for the

parametric regression specification in Table 7 than for either the maximum like-

lihood or the nonparametric estimation procedure. This provides some evidence

against the distributional assumptions that are imposed on the estimates in Table

7. The standard errors for the Gaussian conditional mean estimates are not re-

ported because they were implausibly large. For the uniform estimates, assuming
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homoskedasticity leads to a simple Hausman test of the distributional assumption.

Comparing the coefficient of w3 in the first column of Table 6 with the coefficient

of w in the first column of Table 7 gives a Hausman statistic 6.53 that should be a

realization of a standard normal distribution. This is an implausibly large value,

providing evidence against the uniform distributional model.

7. Tax reform

In this section we use the estimated functions to predict the effect of recent changes

in the Swedish income tax.
9 The purpose is not to give a detailed evaluation of

Swedish tax reform, but rather to see the difference in predictions across estimated

functions.
10 Around 1980 the Swedish tax system reached a peak in terms of high

marginal tax rates. Then, gradually during the '80's the marginal tax rates were

lowered with a quite large change in the tax system between 1990 and 1991. We
will use the actual distribution of gross wage rates and non-labor income from the

1980 data set to calculate the effect of the changes in the tax system between 1980

and 1991. The 1980 income tax system is described in Blomquist and Hansson-

Brusewitz (1990). We present the most important aspects of the 1991 income tax

system in Appendix D.

The income tax consists of two parts. There is a proportional local income

tax which has been largely unchanged since 1980. The average local income tax

rate has increased from 29.1% to 31%. The federal income tax consists of two

important parts. First, the marginal tax rates have fallen significantly. Secondly,

in 1980 interest payments were fully deductible against labor income, while in 1991

30% of interest payments were deductible from other taxes. We will study the

effect of the change in the income tax schedule, but we will not take account of

the change in deduction rules. There have also been changes in the VAT and

the payroll tax. These changes are of course also important for the shape of

individuals' budget constraints. We could model the effect of the change in VAT
and the payroll tax as a change in the real wage rate. However, we have chosen

to represent it as a change in the proportional income tax rate. In Appendix D
9There exist alternative approaches to evaluate the effect of tax reform on labor supply.

Blundell et. al. (1998) and Eissa (1995) use difference in differences estimators to estimate the

effect of tax reform on female hours of work.
10 Agell et al. (1995) contain a broad evaluation of the Swedish tax reform. Aronsson and

Palme (1995) also contain a description of tax reform in Sweden. They present labor supply

functions derived from a household model and estimated by a maximum likelihood technique.
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we describe how this is done. Taking account of the change in VAT and payroll

taxes the income tax reform implies a decrease in the highest federal tax rate from

58% to 25%.

Predictions based on parametric and nonparametric labor supply functions

We use the labor supply function estimated on pooled data from 1973, 1980

and 1990 by the maximum likelihood method and shown as equation (14). The
estimation method used assumes the budget sets are convex, so the function is

estimated on convexified budget sets. However, since we estimate a well-defined

direct utility function we can when we calculate the effect of tax reform either

use the original nonconvex budget sets or convexified ones. It turns out that the

difference in predictions is negligible. Using the original nonconvex budget sets

the prediction is that average hours of work increase by 6.1%, from 2073 to 2200.n

Table 8 gives the predictions for various nonparametric specifications along

with standard errors. We find that the prediction is not very sensitive to func-

tional form specification. The functions shown in Table 8 are estimated on ap-

proximated budget constraints where some of the original budget constraints are

nonconvex. We have also estimated supply functions on approximated budget

constraints where we first have convexified the original budget constraints. The
results are very close. For example, for the specification in Table 8 that predicts

an increase in hours of work of 2.98% the prediction obtained using convexified

original budget constraints is 2.43%. The standard error for both predictions is

around 0.009. Hence, the difference in the predictions is slightly more than half a

standard deviation. It does not seem to be important whether we use the original

nonconvex or convexified budget constraints in our estimation procedure. The
prediction obtained from the nonparametric labor supply function is considerably

lower than that obtained from the parametric labor supply function.

The nonparametric estimates of the policy shift are less than half the size of

the parametric estimates. We can construct a Hausman test statistic to check

for statistical significance of this difference. Under a null hypothesis that the

parametric model is correct the parametric estimator of the policy shift will be

the MLE of the policy shift, by invariance of MLE, and is therefore an efficient

estimator. Under the alternative of misspecification the nonparametric estimator

will be consistent and is also asymptotically normal because it is an average like

that considered in Theorem 3. Therefore, we can construct a test statistic from the

difference of the parametric and nonparametric estimators divided by the square

11The averages are taken over 20 simulations with different drawings of the random preference

terms in each simulation. The standard error of the simulation error is estimated to 0.0065.
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root of the difference of their variance estimates.

We constructed a standard error for the parametric prediction by using the

delta method, with numerical derivatives of the prediction with respect to the

likelihood parameters. The standard error was sensitive to the finite differences

chosen for the numerical derivative, ranging from .0073 to .013. The larger val-

uer are bigger than thj nonparametric standard error, making it impossible to

construct the Hausman statistic in those cases (and providing further evidence

of misspecification). Nevertheless, it is easy to bound the possible values of the

Hausman statistic. It can be shown that under general conditions it is possible to

construct a standard deviation for an efficient estimator that is less than the stan-

dard deviation for the inefficient estimator. The Hausman statistic constructed in

this way will be no smaller in absolute value than the difference of the estimators

divided by the standard error of the inefficient estimator. In our case this bound

is -3.4, which is a large value for a standard normal. Alternatively, the value of the

Hausman test at the smaller standard error of .0073 is -5.7, which rejects the null

hypothesis of correct specification even more soundly. Thus, this Hausman test of

parametric versus nonparametric models provides evidence against the parametric

specification.

The difference in the nonparametric and parametric estimates seems too large

to be explained away by the downward bias of the nonparametric estimates and

upward bias of the parametric estimates that was found in the Monte Carlo results.

The size of the bias found in Table 3 is much smaller than that. On the other hand,

the differences between parametric and nonparametric estimates are comparable

with the biases found in Table 4, where the maximum likelihood specification is

incorrect. In Table 4, the maximum likelihood estimator of the shift is slightly

over twice the size of the nonparametric estimator, as in the Swedish data. A
feature of Table 4 that is not shared by the Swedish data results is the size

of the nonparametric estimates. The empirical estimates of the policy shift are

much smaller than those of the Monte Carlo. Of course, that is consistent with

misspecification of the likelihood in the empirical application.
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Table 8.

Ml STD T cv
const., dy, dw -0.0214 0.0062 -3.45 0.0073

above and W3, y$ 0.0247 0.0091 2.73 0.0323

above + y\ 0.0298 0.0091 3.27 0.0373

above + w\ 0.0278 0.0090 3.10 0.0366

above + w^y% 0.0278 0.0093 3.00 0.0360

above and l\, £2 0.0251 0.0099 2.52 0.0358

above and yi, Wi, w-i 0.0247 0.0105 2.36 0.0278

above and £\, (\ 0.0262 0.0145 1.80 0.0268

8. Conclusion

In this paper we have proposed a nonparametric model and estimator for labor

supply with a nonlinear budget set. The estimator is formed in two steps: 1)

approximating each budget set by a piece-wise linear set with a few segments; 2)

running a nonparametric regression of hours on the parameters of the piecewise

linear set. We exploit the additive structure implied by utility maximization by

imposing the additivity on the nonparametric regression. This estimator is not

based on a likelihood specification, and so is relatively simple to compute and

robust to distributional misspecification.

We apply our nonparametric method on Swedish data and use the estimated

nonparametric function to predict the effect of recent Swedish tax reform. We
compare our method with a parametric maximum likelihood method. The dif-

ferences between the maximum likelihood and nonparametric estimates provide

an example where the flexibility of nonparametric estimation has a substantial

impact on the conclusions of empirical work. Here we find that the nonparamet-

ric policy prediction is less than half the parametric one, and the difference is

statistically significant. The designed flexibility of our nonparametric approach

to allowing for nonlinear budget sets lends credence to the idea that the maxi-

mum likelihood estimates overstate the size of the effect of Swedish tax reform.

More generally, the simplicity of our approach, together with its flexibility, should

make it quite useful for sensitivity analysis for maximum likelihood estimation

with nonlinear budget sets. A simple, powerful adjunct to, or even replacement

of, maximum likelihood estimation would be nonparametric estimation using the

approximation to the budget sets that is described here.
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Appendix A. Expected hours of work for a special case

Suppose data are generated by utility maximization subject to a convex budget

constraint consisting of three piece-wise linear segments. Suppose further that the

basic supply function is linear and that there is an additive random preference

term that is uniformly distributed, i.e. the pdf for the random preference term is

given by:

\ ( u u\

The expression for expected hours of work will then take the form:

u u 2u

If we know expected hours of work has this form but we do not know the

parameters of the basic supply function, the estimating function would take the

form:

h = const. + bidy + b2dw + b3y3 + bAw3 + bby\ + b6wl + b7w3y3 ,

where dy = ^i(yi - y2 ) + h{vi - 2/3) and dw = £i(wi - w2 ) + h(w2 - w3 ).

Appendix B. Sample statistics.

Hours of work are measured in thousands of hours, virtual income in thousands

of SEK and the wage rate in SEK. The marginal wage rates and virtual incomes are

calculated at observed hours of work for each individual. The economic variables

are expressed in the 1980 price level.
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Variable Mean Variance

1973

# of observations: 777

Hours of work 2.133 0.0656

Marginal wage rate 16.27 19.67

Virtual income 36.34 331.06

1980

# of observations: 864

Hours of work 2.098 0.0605

Marginal wage rate 14.90 31.02

Virtual income 69.19 840.48

1990

# of observations: 680

Hours of work 2.120 0.1067

Marginal wge rate 19.77 30.27

Virtual income 55.51 399.43

All years combined

# of observations: 2321

Hours of work 2.116 0.0760

Marginal wage rate 16.55 27.93

Virtual income 54.18 731.79
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Appendix C. The Swedish 1990 income tax and transfer system

Income tax.

Note that the figures below are expressed in the 1990 price level. In our cal-

culations we have deflated all figures to the 1980 price level. We use the following

income definitions. Gross income refers to the individuals income before tax and

deductions. Assessed income is defined as the gross income, minus deductions of

income related costs. Taxable income is defined as assessed income, minus per-

sonal allowances. Finally, Capital income is the income from rents, dividends,

interest etc., minus capital losses and interest payments.

The income related deductions are the registered deficits in income sources,

plus a standard deduction of 10% of earned income (at maximum 3000 SEK). The
personal allowances equal 10000 SEK and there is a standard capital allowance

equal to 1600 SEK.

The standard federal and local taxes are levied on taxable income. The local

taxes vary across municipalities, but are in general close to 30%. The standard

federal marginal tax rate equals 3% on taxable income between zero and 75000

SEK and 10% on taxable income above 75000 SEK. In addition to the standard

federal tax there is an additional federal tax levied on taxable income omitting the

deductions relating to deficits in capital income. The additional federal marginal

tax rate is 14% on the modified taxable income between 140000 and 190000 SEK
and 25% on the income above 190000 SEK.

Housing allowance

Housing allowances are only granted households with children and households

where the head is no more than 28 years old. The housing allowance is calcu-

lated in two steps. First, the maximum allowance is calculated and second, the

allowance is reduced depending on the economic status of the applicant. The
maximum allowance is based on the monthly housing costs and the family com-

position. The monthly housing cost is defined as the monthly rent payments

or a calculated standard monthly cost for owned-occupied homes. The monthly

housing costs for owner-occupied homes (and tenant-owned flats) are based on

the operating costs, the implicit income to the owner, the leasehold right etc.

The calculations also account for the tax effects of deficits in capital incomes due

to mortgages. Table C.l. presents the lower, middle and upper bounds of the

monthly housing costs that serve as base for the calculation of the allowance. The
monthly allowance equals 80% of the monthly costs between the lower and middle

bound, and 60% of the costs between the middle and upper bound.

Table C.l. Interval bounds of monthly housing costs.
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80% 60%
No. of children Lower bound Middle bound Upper bound

700 2400 2400

1 1000 2400 2600

2 1000 2400 2900

3 1000 2600 3200

4 1000 2600 3500

>4 1000 3125 3800

Furthermore, a household with children receives an additional housing al-

lowance according to Table C.2.

Table C.2. Additional annual housing allowance to households with

children
No. of children Additional allowance

1 3180

2 6360

3 9540

4 7920

>4 3180

It should be noted that the decrease in housing allowance for a household with

many children is compensated by an increase in child allowance.

The reduction of the allowance is based on the assessed income of the household

in 1987. If, however, the applicant's economical status in 1990 differs substan-

tially from the status 1987, then the calculations are based on a modified income

definition. In particular, for households with children, if the household earned

income in 1990 increased by more than 75000 SEK or decreased by more than

15000 SEK, then the allowance is based on the household estimated assessed in-

come 1990 (minus a deduction of 30000 SEK if there was an increase in earnings).

For households without children the increase (or decrease) refers to the difference

in assessed income 1987 and estimated assessed income 1990 of the household.

Furthermore, an amount of 20% of the household wealth exceeding 180000 SEK
is added to the assessed income. The allowance is reduced by 33.3% of the house-

hold income above 38000 SEK for households without children and by 20% of the

household income above 63000 SEK for households with children. It should be

noted that the construction of the housing allowance creates non-convexities as

well as non-continuities.

Appendix D. 1991 Income tax system
The local income tax was roughly as in 1980. In the federal income tax schedule

there was a basic standard deduction of SEK 10,000. For taxable income up to
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SEK 180,000 the federal tax was zero. For taxable income above 180,000 the

federal tax rate was 20%. Denoting labor income by x, taking account of the

standard deduction and deflating to the 1980 price level gives the tax schedule.

x Marginal tax

-77661

77661- 0.20

Between 1980 and 1991 there was also a base broadening for the VAT and an

increase of the VAT rate from 21.34% to 25%. 12 In credue terms assuming the

increase in the VAT tax is completely rolled over onto consumers, the combined

effect of the base broadening and increase in the VAT tax rate is equivalent to an

increase in proportional income tax with four percentage points. There was also a

change in payroll taxes from a rate of 35.25% in 1980 to 37.4% in 1991. The rates

are in terms of income net of the payroll tax. Expressed as a percentage of gross

labor income the percentages are 26.06% and 27.26% respectively. In Sweden

there is a discussion of whether the payroll taxes should be fully regarded as taxes

or if some part should be treated as a fee for insurance. Here we treat the payroll

taxes as taxes. In crude terms the change in payroll taxes between 1980 and

1991 is equivalent to an increase in a proportional income tax with 1.2 percentage

points. The combined effects of the change in VAT and payroll taxes is hence

equivalent to an increase of a proporational income tax with 5 percentage points.

We treat the changes in the VAT and the payroll tax in a simplified way and

represent the changes as an increase by five percentage points in a proporational

income tax. We then obtain the following tax schedule.

Tax schedule including the effect of increased VAT and payroll taxes.

x Marginal tax

-77661 0.05

77661- 0.25

12 There was a change of the VAT rate in 1980. 21.34% is a weighted average for thge year.
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Appendix E: Proofs of Theorems
Proof of Lemma 1: Let

f(£) = £-ir(B(£)-£Be (£),Be (£)),

f+{£) = £-*(§(£) -£B+(£),B+(£)),

By the chain rule, f{£) is differentiable and

fe (£) = 1 - MB(£) - £Be (£),Bt(£)) {-£) + nw (B(£) - Be (£), Bt {£))} Bu (£).

By the Slutzky equation, the term in square brackets is equal to the derivative

of the Hicksian (utility-constant) labor supply, and hence is positive. Since B{£)

is concave, Bu {£) < so that fe(£) > 1. For £ = £(B,v), the mean-value theorem

gives f{£) = }{£) + fe{£)(£ - £), so equation (7) gives

f
+
(i) < f(i) + fifty - i) < r(i).

It then follows by subtracting f{£) from both sides, by 1/^(^)1 > 1, by taking

absolute values, and by n(y, w) Lipschitz, that

|*-*| < |T^ max {|/
+W-/ft|.|rW-/W|} < C\\B-B\\. Q.E.D.

Proof of Lemma 2: By equation (1) and s-times continuous differentiability of

J(v) and ir(y,w), the derivatives of the additive components h(BL (B)) with re-

spect to xL are bounded uniformly in L. It follows by Theorem 8 of Lorentz (1986)

that each component has an approximation error C (^ J
. Summing these

gives an approximation error of CL (y J
. Furthermore, \h(BL (B)) — h(B) <

C\\BL(B) - B\\. Select BL (B) so \\B
L (B) - B\\ < \, using spline approximation

results. The triangle inequality then gives the result. Q.E.D.

Proof of Theorem 3: Choose xf satisfying the conclusions of Lemma 2 and let

Xi be xf for the ith individual. Let Pi = p
K

(xj), P = \pi,...,pn],h = (hi,...,hn )',

and h_= (hx , ...,hn)'. Then h = Qy for Q =_P(FP)~F. Note that h - h =
Q(y-h)_- (I-Q)h = Qe- (I-Q)h tor e = y-h, so that E7=i(hi-hi)

2/n = (h-
h)'(h — h)/n = e'Qe/n + h'(I — Q)h/n. By the conditional variance of e bounded,
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E[e'Qe\B l ,...,Bn ]
= tr(QE[ee'\B1> ...,Bn }) < CK, so that e'Qe/n = Op(K/n).

Also, by Lemma 2 and I — Q idempotent,

h'(I-Q)h/n = {h-PPL)'{I-Q){h-PpL)fn<{h-P(5Ly{h-Pt3L)/n

The conclusion then follows by the triangle inequality. Q.E.D.

Proof of Theorem 4: Assumptions 2, 3, and 4 correspond to Assumptions 9,

1, and 8 respectively of Newey (1997). The conclusion of Theorem 4 of Newey

(1997) for r = 4 then gives the conclusion.

Proof of Theorem 5: Assumptions 2, 3, 4, 5, and 6 correspond to Assumptions

9, 1, 8, 4, and 6 of Newey (1997) The conclusion of Theorem 5 of Newey (1997)

for r = 4 then gives the conclusion.

Proof of Theorem 6: Assumptions 2, 3, 4, 5, and 7 correspond to Assumptions

9, 1, 8, 4, and 7 of Newey (1997) The conclusion of Theorem 6 of Newey (1997)

for r = 4 then gives the conclusion.
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