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1. Introduction

Statistical models of unobserved components seem destined for an

increasing role in econometric work. Especially in cross-sections, the

differences in the values of the left-hand variables among observations

with identical values of the right-hand variables are sufficiently large

to justify careful analysis of the apparently random component of the

behavior under study. The simple characterization of randomness implicit

in the stochastic specification of the regression model seems inadequate

when the right-hand variables in a problem account for only a small portion

of the dispersion of the left-hand variable. Many recent authors have

sought to attribute part of the randomness in their samples to variations

within the population of characteristics that are not observed. For

example, Griliches (1973) assigns part of the dispersion of earnings

conditional on education to the unobserved differences in ability of

individuals with equal amounts of education. Domencich and McFadden (1974)

hypothesize a distribution of tastes within the population to explain

choices of modes of transportation by individual commuters. The present

paper takes up the following question: What can be discovered about the

underlying distribution of characteristics from the observed body of data?

Are the assumptions about the distributions of unobserved characteristics

made by previous authors verifiable, or must they be accepted on pure faith?

A general statistical model suitable for this discussion is the

following
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y = h(x,e,u) (1.1)

where y is the scalar left-hand variable, assumed to be qualitative

(taking on only a finite number of integer values ) , x is a vector of

observed characteristics, 6 is the unobserved characteristic, and u is

a disturbance whose distribution may depend on x and 6. Apart from the

presence of 0, this would be a regression model if the distribution of

u did not depend on x and 6; in the qualitative case especially, however,

this dependence is critical. Uur discussion concerns the untangling of

the separate effects of 6 and u, vjhere the role of x is subsidiary, so

until Section 6 we con3ider the case of sampling from a population whose

members are observationally identical , where it is appropriate to suppress

x:

y = h(e,u) (1.2)

All observations from the same individual are assumed to correspond to

the same Q, but each one involves a new drawing from the distribution

of u. Finally, we assume prior knowledge of h(e,u) and of the distribution

of u. The last assumption should become more plausible as the discussion

progresses.

Models of unobserved components are particularly important in

the study of the distribution of income. The major theme of the most

influential recent vrork on income distribution, Christopher Jenck's book.

Inequality (1972) , is exactly that observed differences among individuals

account for very little of the dispersion of income among them: "Neither

If the left-hand variable is continuous, y can be defined by a

set of intervals of values of the variable.
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family background, cognitive skill, educational attainment, nor

occupational status explains much of the variation in men's incomes.

Indeed, when we compare men who are identical in all these respects, xvre

find only 12 to 15 percent less inequality than among random individuals.

How are we to explain these variations among men who seem to be similarly

situated?" (p. 227). Jencks replies that unmeasured differences in

motivation, ability, and especially luck account for the bulk of the

dispersion in income. His discussion is limited bj' his failure to

distinguish between unobserved differences among individuals, on the one

hand, and differences in the experience of the same individual at

different points in time, on the other. In the context of measuring

income, this distinction is familiar to economists in Milton Friedman's

notion of the permanent and transitory components of measured income.

Jencks alludes briefly to the distribution of permanent income (footnote

1, p. 233) but the distinction has no role in his discussion.

The class of statistical models studied here provides a general

framework for separating the two sources of the apparently random

differences among individuals at a point in time. Systematic differences

among individuals are indexed by the random variable 9 , and differences

in the experiences of a single individual by the random variable u.

Friedman's model is a special case of the general model in which 9 and

u are simply added together

y = e + u (1.3)

Here 9 is permanent income and u is transitory income. If y is observed

for a fev7 successive years, then it is tempting to estimate permanent
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income for an individual as the average income over the years:

e = i
I y (1.4)

t=l

The difficulty is that the distrioution of 6 among the members of the

population has more dispersion than the distribution of 6. This problem

arises most critically in Jencks' data, where T is 1, but even where T

is 3 or 4 one does not know now much the distribution of tells about

the distribution of 6. Wiiat is needed, and what this paper supplies,

is a method for extracting as much reliable information as possible

about the distribution of 9.

Oae of the most carefully studied models of the kind treated in

this paper is the mover-stayer model used by sociologists in analyzing

industrial and other forms of mobility. Most mover-stayer models posit

only tV70 kinds of individuals, movers and stayers (two values of 9 in

the notation of this paper). In these models, the randomness in

individual experience over time governed by u follows a Markov process.

In Section 5, we indicate briefly how the methods of this paper can be

applied to a rather general version of the mover-stayer model.

2 . Mixtures of Probabilities

Suppose that for an individual of type 9, the distribution of y

is the vector of probabilities a(9)

:

Prob [y = i|9] = a. (9) (2.1)

We observe the average of this probability over all individuals:



(f)^
= Prob [y = i] = a^(0)dF(6)

, (2.2)

where F(0) is the cumulative distribution of types of individuals in

the population, that is, the fraction whose type is lower than 6. There

is a substantial statistical literature dealing with problems of this

form. In the vocabulary of that literature, equation 2.2 is a mixture .

The distribution a(6) is the kernel and F(0) is the mixing distribution .

A survey of the statistical theory of mixtures appears in Maritz (1970) ,

Chapter 2. In addition, there is an important body of mathematical

thought about problems of the sort considered here. In the mathematical

literature, equation 2.2 is called a Tcnebycheff system (see Karlin

and Studden (1966), Chapters I through V). It appears that statistical

and mathematical work in this area has proceeded almost completely

independently. The mathematical theory is substantially more general

and more fully developed, so it forms the basis for this paper.

Our problem is to obtain information about the distribution of

the unobserved component, F(9) ,
given the observed probability (j) and the

known kernel a(e). In this section we present theorems that give a

fairly precise characterization of the limits of knowledge about F(0).

Most of these theorems are simply re-interpretations of results of Krein

(1951) and other mathematical students of Tchebycheff systems.

We begin with the

Assumption of Distinct Types : The matrix [a(e^) , . . .
,a(e )

]

has rank ?! for any distinct set of types 6 ,...,8,,

This assumption is the defining characteristic of a Tchebycheff system.
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It rules out models where the probabilities associated with one

particular type of individual can be expressed as a linear combination

of the probabilities associated vjith M - 1 or fewer other types. This

assumption does not seem unduly strong, and it is satisfied by the

applications studied in this paper.

Next we define two useful constructions. First,

,1

$ = {(j) satisfying 4>
=

(
a(0)dF(e) for some F(e)}. (2.3)

Here we consider all F(e) that are non-decreasing, continuous from the

left, and have a finite number of discontinuities. $ is the set of all

possible observed probabilities consistent x\7ith a given problem as

defined by a(G). Second,

.1

V((fi) = {F(e) satisfying
(
a(e)dF(0) = <}>}. (2.4)

V((()) is the set of all distributions of unobserved types in the

population that are consistent v/ith a particular observed probability,

()). The essence of the problem is that V((|)) may contain a variety of

distributions. Our characterization of the limits of knowledge about

F(e) deals, therefore, with the extremal members of V((J)).

The first theorem establishes that no observed probability proves

that there are more than (M + 2)/2 different types in the population

(proofs and references appear in the appendix to this section)

:

Theorem 2.1 : For any (() e 0, there exists a cdf,

F(G) e V((j)) , with no more than (H + 2)/2 points of increase.



If we let f. be the mass at one of the points of increase, 9., then Theorem
-J J

2.1 shows that it is always possible that i}* is a discrete mixture:

N

* = I f . a(e ) (2.5)
j=l ^ ^

with N _< (M + 2)/2. Here f . is the fraction of the population having

type 6.. This result appears independently in the statistical literature

on mixtures in the form of an identification theorem: Given (j) , one can

calculate unique f. and 6. satisfying

N

I f a(e.) = <^ (2.6)

j=l ^ ^

only if N jl 1 + M/2. See Teicher (1963), p. 1269.

The second theorem shows that for any observed ^ (with one class

of exceptions) we cannot rule out the possibility that a positive

fraction of the population has an arbitrary type, 9*:

Theorem 2.2 : Suppose ^ is in the interior of <i> and

suppose 9* is an arbitrary type in [0,1]. Then there is

a cdf, F(9), in V(4i) x^Tith positive mass p(9*) at 9*.

This result imposes a limitation on the form of knowledge about F that

V7e can deduce from (}> : Except in borderline cases, we will never be able

to state that any particular type, or any range of types, is non-existent

in the population. On the other hand, p(9''0 may be close to zero; the

ttieorera does not prevent us from finding useful bounds on the fraction

of the population of a certain type or range of types.

The next theorem provides a bound on the fraction of the population
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of type 0*:

Theorem 2.3 : Consider the problem of finding probabilities

^l'""'^N ^^^ types
6
J,..., 6.^ obeying

N

I f a(e ) =
(}. (2.7)

j=l ^ ^

where 6 = 6* and N, 6„, 6„ and J take on one of the

following sets of values: If N is odd, either N =

1 + (M - l)/2, J = 2, or U = 2 + (K - l)/2, J = 4,

62 = 0, e^ = 1; if :i is even. In' = 1 + M/2, J = 3, and

either 6- = or 6. = 1. Then this system has a unique

solution and f is the maximal mass at 6* for any

F e V((j)).

Thus the problem of finding the distribution of types that is most

concentrated at 6''' is simply one of solving a system of U equations in

M unknowns: N values of f. and N - J + 1 values of . . The solution
J J

is called the canonical representation of (fi involving 6*.

A related problem is to find bounds on the fraction of the

population whose type is less than some value B*:

Theorem 2.4 (Markov-Kre in Theorem)

:

I f . £ F(6*) 1 I f

.

i^e <e* -• 196. <e* -^

for all F E V((t)) (2.8)

where f. and G. are the canonical representation
J J

involving Q*.
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The Markov-Krein theorem shows that the canonical representation is

extremal not only v/ith regard to the mass at 6* but also witli regard to

the mass below 0*. The upper and lower bounds on F(9*) differ by precisely

the maximal mass, f .

Unfortunately, the mathematical theory of Tchebycheff systems does

not provide bounds on the fraction of the population betvjeen two arbitrary

types. We would like to be able to answer the following question:

Suppose we have a pair of types 9 and 6 , and we let P = F(e ) - F(e-),
Li H n Li

the fraction of the population between 9 and . '^'hat are the largest
L n

and smallest values of P consistent with a particular (J)? The Tchebycheff

inequality answers this question for the particular case where (p gives

the first two moments of F(9). There is an extensive mathematical

literature on generalizations of the Tchebycheff inequality (summarized

in detail in Karlin and Studden (1966) , chapters XII-XIV) , but it does

not contain any results of sufficient generality for our purposes.

Mathematicians have been concerned exclusively vjith sharp bounds on P,

that is, bounds that are attained by some F e V(<))) , or at least that are

approached arbitrarily closely by members of V((}i).

Before going on to our approach to the problem of bounds on the

probability in an interval on the 6 axis, which involves non-sharp hounds,

we need to deal with the fundamental problem of identiflability . IJhat

conditions are required for it to be possible to find out anything about

the fraction of the population in an interval? There has been a good

deal of work on the identiflability of mixtures (see Maritz (1970), pp.

20-35), all using a strict definition of identif lability : A mixing

distribution is said to be identifiable if its exact form can be deduced
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from the value of ^. Strong assumptions about F(6) are required for

identif iability. A leading result in the statistical literature has

already appeared here as Theorem 2.1.

A much weaker notion of identif iability seems appropriate in this

paper:

Definition : The probability P is identifiable if there

is some (j) in the interior of * such that V(^) contains

no distributions with P = 0.

We gain information about P if we can show that it is positive, that some

fraction of the population has types between and 6 . A problem, as

defined by a(9) , has an identifiable P if there is some observed outcome

$ for which P must be positive. It is a remarkable fact that no additional

assumptions are needed to ensure identifiability in a Tchebycheff system;

Theorem 2.5 : Every P is identifiable.
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Appendix to Section 2

General remark . Proofs of the results in this section are all

taken from Karlin and Studden (1966) (hereafter K & S). They deal with

a somewhat more general problem in which F(0) is not required to obey
'1

dF(e) = 1 and a(6) is not required to satisfy Ea.(e) = 1. In their
.

1

exposition, $ is a convex cone, while under our assumptions it is a convex

subset of the unit simplex. However, the results invoked here apply

without modification, because our $ is simply the intersection of their

<I> and the unit simplex.

Proof of Theorem 2.1 : If tj) is on the boundary of $, apply Theorem

II. 2.1, K & S. Otherwise, apply their Corollary II. 3.1. If M is odd,

N = (M + l)/2.

Proof of Theorem 2. 2: The appropriate cdf, F(0) , can be taken

as defined in Theorem 2.3. K & S, Theorem II. 3.1, establish that the

mass is positive.

Proof of Theorem 2.3 : K & S, Tneorem II. 4.1 (attributed to Krein

(1951)), show that the canonical representation involving 9* assigns

maximal mass to 0*. Existence and uniqueness of the canonical representation

follovj from their Theorem II. 3.1 and Corollary II. 3. 2, respectively.

Proof of Theorem 2.4 : See K & S, Theorem III. 2.1.

Proof of Theorem 2.5 : We need to exhibit a 4) such that all

F e V((fi) have positive mass in the interval [G ,e,J . Define 9 =

^ ~
!^

'^ ^
9, + ^^— e„. If M is odd, let N = (M + l)/2 and

N L rt ri

N

* =~ I a(G ): (.\2.1)
^ k=l '^
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otherwise, let N = (M + 2)/2 and

a(0) (A2.2)

N

I
k=l

1

N+1

For this ^, the values of 6 and f = — or -—r are a canonical

representation. By K & S's Lemma II. 3.1, every F(6) e V(<})) assigns

positive mass to [6-_i.9,J> so clearly P must be positive. Finally,

K & s's Theorem II. 2.1 establishes that (j) is in the interior of $.
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3. Bounds for intervals

The theory of the previous section gives bounds on the fraction

of the population within a prescribed interval only when the interval

starts at or ends at 1. In this section we discuss a method for

deriving bounds for an interval beginning at 9 and ending at 9 , that

is, bounds on F(e ) - F(e^ ) over all F(e) e V(i}j) . Our strategy is the

follov/ing: We define a set V ((}),D ) that encloses V((j)) ; V„ contains all
V l\

distributions consistent with ^ and some others as well. V is

mathematically tractable and from it we can derive '"outside bounds" as

the maximiim and minimum of F(e ) - F(e ) within V . These are true
H L

bounds on the fraction of the population between and , but they
L H

understate the amount of information available because they are taken

over a set that includes false distributions. We show that as the index

of computational effort, N, rises, more and more of the false distributions

are excluded from V , and the bounds derived from it become sharper and

sharper. In fact, as N approaches infinity, V (;J>,D ) approaches V(<|))

,

and the bounds approach the sharp bounds taken over V(<|))

.

We also define a set V ((j),D ) that is enclosed by V((|)). It

contains no false distributions but excludes some true distributions, so

the "inside bounds'" derived from it are uniformly too optimistic. The

reason for computing them is that the difference between the outside and

inside bounds is a measure of the pessimism of the outside bounds. Again,

the inside bounds converge to the exact bounds as N increases.

In constructing V and V , we make use of a partition, D , of the

6-axis

:
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D,^ = {[9p,6^],[e^,62],...,[e,j_.^,e,j]} (3.1)

v/here 0^ = and 6 = 1. Throughout, V7e will consider an arbitrary

sequence of D s with the properties that higher numbered partitions are

refinements of lower numbered ones

:

\ ^ °N+1 '
^1^ " (3.2)

and that the partition becomes finer and finer;

. , max
I

- -

J:;fj=i....,.l«j-^3-i ] = (3.3)

Further, we require that the 9. include 6 and :

D^ = {[0,6^],[e^,6jj],[ej^,l]} (3.4)

We begin our derivation of the outer bounds by defining

mm
- - a. (9)
'- G. , < e < 9.

J-1 - - J

(3.5)

max ._.
1. .

=
_ a (9)

^'^ 0. , < 9 < 9.
J-1 - - J

(3.6)

Now

(e)dF(9) > I

0.
^*

f J

a.

j=l ^
-i,J

dF(9) =
I a. .

J-1
i = l

i.J J
(3.7)

and

i.(e)dF(9) <_ I
"-

j=l '

In ^ J _ N
a. .dF(9) =

I a^ .p.
i.J

j-1
j-1 i.J 3

(3.8)

These are the lower and upper Stieltjes sums of the integral with
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respect to U (see Apostol (1957), p. 203). Defining A and A in the

oDvious way, v/e nave

Ap £ (f <_ Ap (3.9)

In addition, we require Y.-p . = 1 and p. > 0, all i. The set of solutions

to this system of inequalities, S,((Ji,D ), is a convex polyhedron anu can

be represented riost compactly as the convex hull of its vertices.

Calculation of tiic vertices is discussed in tlie appendix to this section.

The set S^(d),D,) contains all the probabilities consistent v;ith the
W

original probleni and possibly some others as ';-7ell. Our next step is to

compare the information about F(6) contained in the computable S ((|),D )

with the Information in the uncomputable V((j)) . To put S^((;),D,,) in a

comparable form, we define

v^(4),D, ) = {r(e)|F(o.) - F(e. ,) = p. , j = i,...,n

for some p e S^(4),D^,)} (3.10)

V contains all the distributions that have the appropriate mass in

each interval. Then, from the construction of V
,

V(<|)) C VQ((i>,a^) , any D,^ (3.11)

Our procedure understates the information available about F(9) , in that

it suggests that some distributions are compatible with the observed

probabilities ^ vmen in fact they are not. It never makes the opposite

mistake.

What are the costs and benefits of using a finer set of endpoints?

The only costs arc computational; adding a refinement to the endpoints
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can never reduce the precision of our bounds: ^^n^'^'^-^^i^ ^
'*'',-i

(
't' > ^

,
) •

Breaking an interval into txjo intervals not only helps localize the

probability within the original interval but refines the bounds on

other probabilities as well, by reducing the imprecision introduced in

formulas 3.7 and 3.8.

Finally, v/e show that the true set V((j)) can be approximated

arbitrarily closely by using a sufficiently large set of intervals:

00

V((i)) = n Vq(<!..D^^) (3.12)
N=3

That is, if F(e) is not in V(({i) , there is some set of endpoints, D ,

such that the fact is revealed: F(e) is not in V ((j),D ) either.

The results of this section show that the mathematically simple

S ((}),D ) provides information about F(0) that has a rigorous interpretation,
U N

becomes more precise as the set of endpoints becomes more refined, and

converges to the information in the mathematically intractable Vi<i>) .

Since the cost of computing S ((j),D ) rises rather sharply v/ith 'A,

it is useful to have information about the amount of imprecision introduced

by a given partition, D , to evaluate the prospective benefits of using

a finer partition. For this purpose we develop a set of bounds that are

known to be attained (and are usually exceeded) in V((j)). These bounds

set a lovjer limit on the looseness of the outside bounds already

discussed.

Among the members of V(())) are some distributions that assign

probability only at the points e^,...,0 . Such a distribution obeys
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(3.13)

where p. = F(e.) - F(0._p. In matrix form

((> = Ap (3.14)

This equation, together with the requirement that p is non-negative,

defines a set of probabilities, S ((j),D ). Again, this is a convex

polyhedron and is fully characterized by its set of vertices. Every

vector p in S corresponds to a distribution in V((fi) that assigns

probability only at tae points 6 , ...,9 . We define V (4),D ) as the

set of distributions corresponding to the set of probabilities, S (<J),D );

each probability contributes only one distribution. Then V((j)) encloses

V (((>,D ), so the extremal members of V meet our purpose of indicatingIN I

how closely the outside bounds can be attained. As the partition becomes

finer, V becomes richer, and ultimately converges to V.

The metliods and conclusions of this section are summarized in

the following theorem:

Theorem 3.1; Let

V^(<1.,D,.) = {F(0)|F(e) = I P,

for some p e S (<|),D )} (3.15)

and

Vq(*,D,^) = {F(e)|F(e^) -
F(9j_i) = V. ,

j = 1,...,N, for some p e Sq((1),D^^^) } (3.16)
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Then the following three properties hold:

(i) Enclosure: V (<J),D ) C V(<t>) C V^((t),D„) (3.17)

(ii) Monotonicity: ^ ((|.,D ) C ^j-CfjijO ) and

00

(iii) Convergence: fl V_(((-,D,,) = V((|i) =

N=3 ^ ^

OO

nV(<^,D) (3.19)
N=3

(The precise meaning of - is explained in the proof.)

The final task of this section is to show how to find bounds on

r = F(e ) - F(e ) once a suitably refined partition, D , has been

selected and the vertices p ,...,p of S (<}i,D ) calculated. For any

F(e) e Vq(<|.,D^),

P =
I P. (3.20)

JeJ ^

where J= (jls < 6. < 0}. Since P is a linear function on a polyhedron,
L —

J
— h

it attains its extreme values at the vertices. Thus we define

X , . . . ,IN. .J J

and

max r (k)

jeJ -"

so

We can define inside bounds V^ and P by a similar computation on the
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vertices of S (i}),D ). Then from Theorem 3.1,
I N

lo - -? - -I - ^I - ^ - ^0 (3.24)

where P^ and P are the exact bounds over V(4)). Note that when 6=0
or 6„ = 1, P and P can be computed exactly by the methods of Section 2.

H
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Appendlx to Section 3

Computing the vertices of S (()),D) Each vertex of S (<J),D) is

a non -negative solution to

A

-A

I
V

' *

p
=

-<l,

<l^

I J [ 1

(A3.1)

where v is a vector of N ones and ij; is a vector of 2M slack variables.

Further, to be a vertex, no more than 2M + 1 elements of p and
'J/

together

may be nonzero. Suppose K of the elements of p are nonzero and

2M + 1 - K of the elements of ii are nonzero. Then

A

A* -I

^P^

I ^

f

(A3. 2)

where A contains the columns of A, -A and v corresponding to the nonzero

probabilities, p, and contains the rows of A and -A for the zero values

of the slack variables. The last row of A is v. A* contains the

remaining rows of A and -A. 4* contains the nonzero slack variables.

<}> consists of the elements of (}>, with appropriate sign, for rows with

zero slack variables and 0* consists of the remaining elements of 4" and

-(j). Since the system is block-triangular, it has the recursive solution

p = A (j) (A3. 3)

4) = A*p

p contains tne non-zero elements of a vertex of S ((}),D ) if p >^ and
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ij; > 0. The vertices of the set of all solutions can be calculated by

generating systematically the solutions for all possible choices of the

elements of p and ij;.

Proof of Theorem 3.1 :

(i) Enclosure

(a) Consider F(e) c V ((^ ,D ) . Then since Ap = ij),

1

a(e)dF(e) =
<f

and F(e) e V{<^)

.

(b) Consider F(e) e V(4)) , Let p. = F(e.) - F(e._ ). From

formulas (3.7) and (3.8), p e Sq(((>,D^), so F(e) e V^(^,U^).

(ii) Monotonicity

(a) Consider F(e) c V (({),D ) and let p ,...,p be theIN IN
associated vector of probabilities. VJitnout loss of

eeneralitv, assume that D„., differs from D, bv its 0., ,.

Then

N-1

I a(e )p + a(e,^)p^ =
(j) (A3. 5)

This shows that the vector

p= [p^,. ..,p^_^,0,p^^^]' (A3. 6)

is in S^((j),D^_^^), so F(e) e V^ ((}>,D^_^^)

.

_ N _ ?^+i

(b) Consider F(0) e V^(<f> »\t+i) • ^et 9. and 6 / be the

N -N N+1 -N+1
points of the two partitions, let A , A , A , and A

be the corresponding matrices calculated from a(0) , let

P." = F(e.'^') - F(-e.^^), J = 1,...,N and p.'^'-^^ = 7(6.'^^) ^

- W+1 -
F(e._ ), j = 1,...,N + 1, and let B and B be matrices

N -K
obtained by duplicating the column in A and A
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that corresponds to the interval containing the point in

D„,, but not in D,, . Nov;
N+1 N

A p 5_ 4) S A p . (A3. 7)

i'urtner, B^ ^ A and B >^ A by their constructions, so

Bp''^"^-'" ±<\> ± Bp""*"^ (A3. 8)

, ^ . N+1 ,N r. ^ - N+1 tN N
iut up = A D and Ep = A p , so

A p 1 <i) 1 A p (A3. 9)

and p'^ e S (c}),D ). We conclude that r(0) e V (((i.D ),

(iii) Convergence

(a) By =, vje mean

U U V (v,D ) = U V(.]/) (A3. 10)

[4;-(t>|<£ N=3 Iv-^he

for any e > 0. For some (j) on the boundary of $, V (cJijU )

CO

may be empty for all N, so it is impossible that 1) V ((j),D )

N=3
V((j)) in all cases.

00

(1) Consider F(e) e U Jv (il;,D ). Then there

|ii;-())|<e N=3

is a ijj and an N* such that |ip-(j)|<e and i|) e V (<J;,D ) for

N > N*. Thus

^ =
I a(§.)(F(e.) - F(e._^)) , all N > N* (A3. 11)

But the rignt-hand side of (A3. 11) converges to the

corresponding integral (see Apostol (1957), Exercise 9-4,
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* =

,1

a(e)dF(e)

'o

(A3. 12)

and F(e) e VW.

(2) Consider F(e) e U V(i(j). Then
U-<ti|<e

'
a(e)dF(e) -

(t)|
= n < e (A3. 13)

There exists a partition D., such that

a(6)dF(e)| < e - n (A3. 14)

wnere

it

^l>
=

I a(e )(F(e.) - F(6._ ))
-i=l J J J

(A3. 15)

so F(e) € V (4),D ). Now

k-<j>| <n + e-n = E (A3. 16)

so F(0) e U V^(ijj,D„) as required.

(b) In viev/ of monotonicity , we need only shox; that
oo

.}^. V^(<}>,D^J CIV(())). Consider F(e) e VA((j),D ), all N.

Let

i U
..(F,D^J =

I a\ .p. (A3. 17)

and
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lim L^(F,D^,) = lim U.(F,D^) =

-24-

- N N
"!<'.»«> IJi.i^i

(A3. 18)

a(e)dF(e) (A3. 19)

But L.(F,D ) <_ (}) and U.(F,D^) >^ (j) , for all N, so

,1

a(e)dF(e) = 4> , (A3. 20)

and F(e) e ¥(((.).
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4. The Sex Composition of Families

The following example illustrates the nature of the information

about the distribution of an unobserved component in a simple case.

Suppose that we observe a large number of apparently identical families

v;ith two children, and suppose further that a fraction ()> of the families

have no girls, ((>„ have one girl, and ()>_ have two girls. Eacli family

has a probability 6 that a given child v/ill be a girl. In terms of the

general model given earlier, if y is the number of girls in a family,

y = h(e,u)

= u, where u is binomial of order 2 with parameter 9. (4.1)

If all families have the same Q, then (\) will be the binomial distribution:

(j)^ = (1 - 6)^; 4>2 = 20(1 - e); and ^^ = 6^ (4.2)

2
If 9 varies among families, then <)) will be the mixed binomial.

*1
=

*2
=

(1 - O)^dF(O)
; (4.3)

1

26(1 - 6)dF(9) ; (4.4)

(

0^dF(9) . (4.5)

2
This possibility has been discussed in the literature on

mathematical demography (for example, Goodman (1961) and Weiler (1959)).

This treatment of the sex composition of families is only an example and
does not consider other aspects of the problem, especially the effects
of the efforts of parents to influence the composition through stopping

rules. On this, see Ben Porath and VJelch (1972).
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In our earlier notation, the kernel is:

? ^

a(e) =

(1 - e)'

2e(i - e) (4.6)

Ben Porath and Welch (1972) report the folloving distribution for the

sexes of the first two cnildrea of American families: <^^ = 0.262,

<l>2
= 0.497, and (ji, = 0.241. The mean of this distribution is 0.979,

suggesting that if G had a single value, it would be half the mean,

0.489. However, tne binomial distribution with parameter = 0.489 is

[0.261, 0.500, 0.239], wnich has somev.mat less dispersion than the

observed ()) . No single value of 6 can explain the observed distribution

of sexes, so we are forced to consider a distribution of the propensity

to have girls, 6, within the population.

The theory of Tchebycheff systems discussed in Section 2 focuses

attention on the canonical representations involving alternative values

of G*, a preassigned type. Since M is 3 for this problem, either N = 2

and J = 2, in which case the canonical representation requires solving

for f , f „ , and 6„ , or N = 3 and J = 4, in which case the canonical

representation requires solving a linear system for f , f „ , and f„. In

both cases f is the upper bound on the fraction of the population that

has probability Q* of having a girl, by Tneorem 2.3. Further, from

Theorem 2.4, when N = 2 and 6* < G^, f^ is the upper bound on the fraction

of the population with less tlian 6*, F(G*) ; when N = 2 and Q'''- > 0„ , f

is the upper bound on the fraction of the population with G at or above
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0*, 1 - F(e*), and vjhen N =3, f-, + £2 is the upper bound on F(e*) and

f, + f- is the upper bound on 1 - F(0*). Table 1 presents canonical

representations for a variety of values of 9*. For 0* outside a short

interval enclosing 0.439, the canonical representation has only one

additional type, e„. Tlie first part of Table 1 shov7s a variety of

representations of this kind, \7hen 6* is extreme, the representation

gives a low weight (f*) to 0* and a higa weight to a Q„ that is close to

0.489. As 0* approaclies 0.489, it receives higher weight and the second

type, 6 becomes more extreme. At the critical points 0" = 0.4868 and

0* = 0.4923, 0^ reaches 1, and we enter the region where the representation

gives weight to three values of 0: the two extremes, 0=0 and 0=1,

Table 1

Canonical Representations for the Jiixed Binomial

Model of the Sex Composition of Families

0* 0„

0.0 .4923

0.30 .4968

0.40 .5050

0.48 .6358

0.50 .3571

0.60 .4769

0.70 .4829

1.00 .4868

=-^=ri:=.=-=^^.-=^=.-==.-.-===^

0* f.

f* '2

0058 .9942

0372 .9628

1479 .8521

9390 .0610

9265 .0735

1022 .8978

0304 .9696

0053 .9947

f* '3

(0 = 0) (0 = 1)

,49 .0034 .9944 .0022
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and 9 = 6*. One such representation is shovm in the second part of

Table 1. According to this representation, the observed distribution

of sex compositions could be generated by a population in which 99 A4/100%

of couples had a probability of 0.49 of having girls, 0.34% had nothing

but boys, and 0.22% had nothing but girls.

From Table 1 we can derive the Markov-Krein bounds P^ and P for

the fraction of the population V7ith between and . These bounds
H

are presented in Table 2, along with the outside and inside bounds

calculated by the methods of Section 3. All of the bounds agree that it

is quite possible that no couple has a probability of having a girl

below 0.48 and also possible that none has a probability above 0.50 (but

Table 2

Bounds on the Fraction of the Population with betv/een and 6

'n ^ P
^I ^I

P ^0

0.30 .0236 .0372 .0375

0.40 .1018 .1479 .1500

0.48 .7545 .9390 .9543

0.49 .0033 .0034 .0038 .9853 .9966 .9979

0.50 .0530 .0735 .0742 1.0 1.0 1.0

. 0.60 .8720 .8978 .8990 1.0 1.0 1.0

0.70 .9657 .9696 .9697 1.0 1.0 1.0

Explanation

:

P, P:

P P •

-I' I

"^larkov-Krein exact bounds, derived from Table 1.

Outside bounds, wita endpoints 0, .15, .25, .30, .35, .33,

.40, .42, .47, .48, .485, .49, .495, .50, .52, .53, .60,

.62, .65, .70, .75, .85, 1.00. S^ has 2776 vertices.

Inside bounds; same points as above. S has 368 vertices.
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there raust be some couples with probabilities either below 0.48 or

above 0.50). There may be as many as 3.72% with probabilities below

0.30, as many as 14.79% below 0.40, and as many as 93.90% below 0.43.

At least 0.34% and possibly as much as 99.66% of the population have

probabilities below 0.49. At least 7.35% have probabilities below 0.50,

at least 89.78% below 0.60, and at least 96.96% below 0.70. The upper

outside bound P^ and the lower inside bound P^ perform well as approximations

to the sharp bounds. P^ does well except at 0.50, where it is quite

pessimistic (although, of course, still a true bound). P is alx^ays much

too small. Recalculation of the inside bounds with a finer partition

would remedy this problem.

Table 3 presents bounds for various intervals that do not begin

at zero. No Harkov-Krein sharp bounds are available for these intervals.

Table 3

Bounds on the Fraction of the Population Tjith 6 between and 8

\ On !« ^I h ^0

0.30 0.70 .9625 .9697 1.0000 1.0000

0.40 0.60 .8500 .8851 1.0000 1.0000

0.40 0.50 .9955 1.0000

0.40 0.48 .7545 .9543

0.48 0.50 .9944 .9954

0.48 0.49 .9853 .9953

0.49 0.50 .9943 .9944

0.50 0.70 .9258 .9470

For explanation, see Table 2.
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so the only way to judge the sharpness of the outside bounds is through

the inside bounds. At least 96.25% of all couples have probabilities

between 0.30 and 0.70, and we knov; that there exists a distribution

consistent with
(J)

in which only 96.97% of the population lies between

0.30 and 0.70. On the other hand, it is possible that 99.54% of the

population has G between 0.48 and 0.50, and we know for sure that

99 44/100 % can be in this interval.

A fairly wide variety of distributions of the propensity to have

girls is consistent v/ith the observed data on the distribution of the

number of girls among the first two children. Although little can be

done to localize the distribution in the vicinity of 0.5, our methods

give fairly specific information about the fraction of the population

with extreme propensities. The data are not consistent with any

distributions with large fractions of the population having extreme

values of 0. An increase in the number of times each unit is observed,

in this case the number of children, would refine our knowledge considerably.

A study of sex composition that examined more than the first tv/o children

would need to deal explicitly with the problem of stopping rules, however.

5. Mixed Markov Processes and the Mover-Stayer Model

This section illustrates the application of the methods discussed

earlier to a problem of considerable interest in the study of social

mobility. Suppose there are two states that an individual may occupy

in each period; poor or not poor, employed or not employed, lower class

or middle class, or some other dichotomy. Suppose further that a Markov

process governs transitions between the states: there is a probability
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that an individual in the first state in one period will move to the

second state in the next period, and a probability 6 that an individual

in the second will move to the first. The probabilities of remaining

in the states are then 1-0 and 1-6 respectively, Models of this

kind fitted to data on observed transitions of individuals under the

assumption that and 5 are the same for all of them have suffered from

an important defect: They understate the probability that an individual

will remain for many successive periods in the same state, even though

they predict correctly the probability that an individual chosen at

random from the inhabitants of one state will move to the other state

in the next period (Blumen, Kogan, and McCarthy (1955)).

The mover-stayer model resolves this paradox by assuming that

there are actually two kinds of people, movers, who have positive 6, and

stayers, whose Os are zero. The probabilities of observed transitions

are the mixture of two different Markov processes. Methods for

estimating the parameters of the two processes and the single mixing

probability have been developed by Goodman (1960) . Recently Spilerman

(1972) has proposed an extension of the model in which the observed

probabilities are treated as the mixture of all of the powers of a

particular transition matrix. None of the literature on the mover-stayer

model takes advaiitage of the statistical theory of mixtures, however.

A natural generalization of the mover-stayer model is the mixture

of all Markov processes. To keep within the confiiies of the theory

developed in this paper, however, we will suppose tliat individuals differ

only with respect to their probability of upv/ard mobility, 0, and that

6 is knov7n and constant \/ithin the population. Then it is appropriate
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to study the distribution of the number of spells in the second state

over a certain number of periods, T. Individuals with high values of G

will tend to nave more spells than do those with low 0. Ue define the

observed probability, ip , in the followiag way:

<))^
= fraction of the population with no spells

(J).
= fraction v/ith i - 1 spells

(p = fraction with M - 1 or more spells

Data on spells of unemployment during a year are reported by the U. S.

Census Bureau in precisely this form, with M = 4.

We define a. (6) as the probability of i - 1 spells in T periods

induced by a Markov process with parameters and 6 . There is no simple

closed form for a.(0), but it can be calculated from the following

recursion: Let Q(t,i,j) be the probability of having i - 1 spells in t

periods and of finishing in state j at time t. Then

Q(t+l,i,l) = (1 - 0)Q(t,i,l) + 90(t,i,2)

0(t+l,i,2) = 6Q(t,i-l,l) -I- (1 - 6)Q(t,i,2) (5.1)

with

Q(0,i,j) =0 if i 5« 1

Q(0,1,1) = p*

0(0,1,2) = 1 - p*

Q(t,-l,l) = , t = 1,...,T (5.2)

Here p* is the probability of being in the first state at time and
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might reasonably be taken as the steady-state probability of being in

the first state:

Finally,

a^(e) = Q(T,i,l) + Q(T,i,2) , i = 1,...,M - 1 (5.4)

a^j^(6) = 1 - a^(e) - ... - a,^j_j^(e) (5.5)

This puts the mixture into our standard form,

<}. = a(e)dF(9) . (5.6)

All of our earlier techniques can be applied to obtain information about

the distribution of the probability of upward mobility among the

population. The mover-stayer model is the special case where F(0)

concentrates all its probability at 9 = and at one other value of 6.

From Theorem 2.1, if our data distinguish only among no spells, one

spell, and two or more (M = 3), then there is always a simple mover-stayer

model that explains ;:he observed ^, namely the canonical representation

involving 6* = 0. Other distributions will also be consistent with (j),

however, and if the data on the number of spells are richer, the simple

mover-stayer model will not generally be able to explain (fi. In any case,

the assumption that there are exactly two types of people is a highly

restrictive one; our methods provide a workable method for relaxing it.
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6. Extensions

Many investigators are likely to be willing to make restrictive

assumptions about the form of the distribution of the unobserved

component in order to tighten the results by ruling out implausible

distributions. This can be done through the conventional device of

confining the distribution to a family indexed by a limited number of

parameters. If the number of parameters is equal to the number of

observed probabilities, then it is often straightforward to calculate

F(9) from (}). For example, if a(e) is binomial and F(0) is a beta

distribution, then the parameters can be calculated directly from <));

see Haritz (1970), pp. 22-23. On the other hand, a weak parametrization

that imposes nothing more than smoothness on F(0) will usually have

more than >I parameters, so more than one member of the parametric family

of distributions v/ill be consistent with the observed ^. The problem

then is essentially similar to the problem treated in this paper. In

particular, if the family is linear in its parameters, the set of parameters

consistent with (j) is mathematically the same as the set S derived in

Section 3. The family of distributions whose densities are step functions

is an important example of such a family.

Second, in practice we do not observe the probabilities (j) but

only the corresponding frequencies, say 4). If we apply our methods to

(}) , tnen our bounds become random variables that estimate the bounds but

are not truly bounds themselves. A confidence region enclosing <p induces

a confidence interval for each bound. The only serious problem in

dealing v;ita
(J)

arises wnen it does not lie in $. For example, in a small
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population it is possible that every family has one girl and one boy,

but there is no mixture of binomial distributions that gives rise to

the corresponding set of probabilies. Fortunately, if ij) is in the

interior of <I>, the probability that
(J:

lies outside $ approaches zero as

the sample size increases.

Third, in many applications the probabilities of alternative

outcomes depend on the observed characteristics of the individual as

well as on his unobserved type. The easy way to incorporate this

dependence in our model is to let F(6;x) be the distribution of 6 within

the subpopulation of individuals with characteristics x. Then the

observed mixture also depends on x:

,1

c|)(x) = a(e)dF(e;x) (6.1)
'0

Given <j)(x) for a particular x, we can then apply our methods to derive

information about F(e;x). In practice, we specify (("(x) as a multinomial

probability depending on x in a reasonably flexible way, using a

multinomial logit or other convenient specification. Note that (f) (x)

does not have the same structure as a(0)--for example, the study of mixed

Markov processes does not involve the estimation of the parameters of a

Markov process. From (l)(x) , we calculate bounds on F(Q;x) for representative

values of x.

7. Concluding Remarks

Unobserved differences among individuals are an important source

of diversity in their observed behavior. For the case in which the
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probability distribution among the alternatives is a la^own function of

the unobserved type, this paper has sho^-ra that exact but not complete

knowledge of the distribution can be obtained. The assumptions of

previous authors about these distributions can, in fact, be tested.
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