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Abstract

This paper studies the computational complexity of Bayesian and quasi-Bayesian esti-

mation in large samples carried out using a basic Metropolis random walk. The framework

covers cases where the underlying likelihood or extremum criterion function is possibly non-

concave, discontinuous, and of increasing dimension. Using a central limit framework to

provide structural restrictions for the problem, it is shown that the algorithm is computa-

tionally efficient. Specifically, it is shown that the running time of the algorithm in large

samples is bounded in probability by a polynomial in the parameter dimension d, and in

particular is of stochastic order d" in the leading cases after the burn-in period. The reason

is that, in large samples, a central limit theorem implies that the posterior or quasi-posterior

approaches a normal density, which restricts the deviations from continuity and concavity

in a specific manner, so that the computational complexity is polynomial. An appfication

to exponential and curved exponential families of increasing dimension is given.
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1. Introduction

Markov Chain Monte Carlo (MCMC) algorithms have dramatically increased the use

of Bayesian and quasi-Bayesian methods for practical estimation and inference.'^ Bayesian

methods rely on a likelihood formulation, while queisi-Bayesian methods replace likelihood

by other criterion functions. This paper studies the computational complexity of a basic

MCMC algorithm as both the sample and parameter dimension grow to infinity at appro-

priate rates. The paper shows how and when the large sample asymptotics places sufficient

restrictions on the likelihood and criterion functions that guarantee the efficient - that is,

polj'nomial time - computational complexity of these algorithms. These results suggest

that at least in large samples, Bayesian and Quasi-Bayesian estimators can be computa-

tionally efficient alternatives to maximum likelihood and extremum estimators, most of all

in cases where hkelihoods and criterion functions are non-concave and possibly non-smooth

in parameters of interest.

To motivate our analysis, consider the M-estimation problem, which is a common method

of estimating various kinds of regression models. The idea behind this approach is to

maximize some criterion function:

n

QnW = -^m(r, -(7,:(X^,e)), eeecM'', (1.1)

)=1

where Yi is the response variable, X, is a vector of regressors, and g,; is a regression function.

In many examples, the problem is nonlinear and non-concave, implying that the argmax

estimator may be difficult or impossible to obtain. For instance, in risk management a major

problem is that of constructing the estimates of Conditional Value-at-Risk. In particular, the

problem is to predict the a-quantile of a portfolio's return Yi tomorrow, given today's and

past available information [Xi, Xi-i, .

.

.). This problem fits in the M-estimation framework

by taking function ?n(-) to be the asymmetric absolute deviation function''

m{u) = {a — l{u < 0))u.

To reflect dependence on all past data and accurately capture GARCH-like dependencies,

leading research in this area^ considers recursive models of the form qi = f{Xi, qi^i,qi^2, ',d)

for instance, f{Xi, qi-i,qi-2, •••; d) = X'^j + piqi-i + p2qi-2- This implies a highly non-linear,

^See e.g. books of Casella and Robert [6], Chib [9], Geweke [15], Liu [29] for detailed treatments of the

MCMC methods and their apphcations in various areas of statistics, econometrics, and biometrics.

''See Koenker and Bassett (1978).

^E.g. Engle and Maganelli (2005). ,
. .. , '. :., ,..•, •



recursive specification for the regression function qi{-; 9), which in turn implies that the cri-

terion function used in M-estimation defined in (1.1) is generally non-concave. Furthermore,

in this example, the function Qn{S) is non-smooth. As a consequence the argmax estimator

e & &vgmaxQn{e) (1.2)

may be very hard to obtain. Figure 1 in Section 2 illustrates other kinds of examples where

the argmax computation becomes intractable.

As an alternative to argmax estimation, consider the Quasi-Bayesian estimator obtained

by integration in place of optimization:

6'exp{Q„(

(1-3)

L

eMQn[0')]de'

This estimator may be recognized as a quasi-posterior mean of the quasi-posterior density

TT-niO) DC expQ„(6'). (Of course, when Qn is a log-likelihood, the term "quasi" becomes

redundant.) This estimator is not affected by local discontinuities and non-concavities and

is often much easier to compute in practice than the argmax estimator; see, for example,

the discussion in Chernozhukov and Hong [8] and Liu, Tian, and Wei [28].

This paper will show that if the sample size n grows to infinity and the dimension of the

problem d does not grow too quickly relative to the sample size, the quasi-posterior

exp{Q„(g)}

e-XY>{Qn{0')]de'
^^'^^

/e

will be approximately normal. This result in turn leads to the main claim: the estimator

(1.3) can be computed using Markov Chain Monte Carlo in polynomial time, provided

the starting point is drawn from the approximate support of the quasi-posterior (1.4).

As is standard in tlie literature, we measure running time in the irumber of evaluations

of the numerator of the quasi-posterior function (1.4) since this accounts for most of the

computational burden.

In other words, when the central hmit theorem (CLT) for the quasi-posterior holds, the

above estimator is computationally tractable. The reason is that the CLT, in addition to

implying the approximate normahty and attractive estimation properties of the estimator

0, bounds non-concavities and discontinuities of Qn{d) in a specific manner that imphes

that the computational time is polynomial in the parameter dimension d. In particular,

the bound on the running time of the algorithm is Op{d^) in the leading cases after the



so-called burn-in period. Thus, our main insight is to bring the structure implied by the

CLT into the computational complexity analysis of the MCMC algorithm for computation

of (1.3) and sampling from (1.4).

Our analysis of computational complexity builds on several fundamental papers studying

the computational complexity of Metropolis procedures, especially Applegate and Kannan

[1], Pi'ieze, Kannan and Poison [14], Poison [34], Kannan, Lovasz and Simonovits [24], Kan-

nan and Li [23], Lovasz and Simonovits [30], and Lovasz and Vempala [31, 32, 33]. Many

of our results and proofs rely upon and extend the mathematical tools previously devel-

oped in these works. We extend the complexity analysis of the previous literature, which

has focused on the case of an arbitrary concave log-likelihood function, to nonconcave and

nonsmooth cases. The motivation is that from a statistical point of view, in concave set-

tings it is typically easier to compute a maximum likelihood or extremum estimate than a

Bayesian or quasi-Bayesian estimate, so the latter do not necessarily have practical appeal.

In contrast, when the log-likelihood or quasi-Hkelihood is either nonsmooth, nonconcave, or

both, Bayesian and quasi-Bayesian estimates defined by integration are relatively attrac-

tive computationally, compared to maximum likelihood or extremum estimators defined by

optimization.

Our analysis also relies on statistical large sample theory. We invoke limit theorems for

posteriors and quasi-posteriors for large samples as n —> oo. These theorems are necessary to

support our principal task - the analysis of computational complexity under the restrictions

of the CLT. As a preliminary step of our computational analysis, we obtain a new CLT

for quasi-posteriors and posteriors which generalizes the CLT previously derived in the

literature for posteriors and quasi-posteriors for fixed dimension. In particular, Laplace c.

1809, Bickel and Yahav [4], Ibragimov and Hasminskii [19], and Bunke and Milhaud (1998)

provided CLTs theorems for posteriors. Chernozhukov and Hong [8] and Liu, Tian, and

Wei [28] provided CLTs for quasi-posteriors formed using various non-likehhood criterion

functions. In contrast to these previous results, we allow for increasing dimensions. Ghosal

[17] also previously derived a CLT for posteriors with increasing dimension, but only for

concave exponential families. We go beyond such canonical setup and establish the CLT

for non-concave and discontinuous cases. We also allow for general criterion functions in

place of hkelihood functions. The paper also illustrates the plausibility of the approach

using exponential and curved exponential families. The curved families arise for example

when the data must satisfy additional moment restrictions, as e.g. in Hansen and Singleton



[18], Chamberlain [7], and Imbens [20]. The curved famihes fall outside the log-concave

framework.

The rest of the paper is organized as follows. In Section 2, we establish a generahzed

version of the Central Limit Theorem for Bayesian and Quasi-Bayesian estimators. This

result may be seen as a generahzation of the classical Bernstein-Von-Mises theorem, in

that it allows the parameter dimension to grow as the sample size grows, i.e. d —
> oo

as n —> DO. In Section 2, we also formulate the main problem, which is to characterize

the complexity of MCMC sampling and integration as a function of the key parameters

that describe the deviations of the quasi-posterior from the normal density. Section 3

explores the structure set forth in Section 2 to find bounds on conductance and mixing time

of the MCMC algorithm. Section 4 derives bounds on the integration time of the MCMC
algorithm. Section 5 considers an application to a broad class of curve.d exponential famihes,

which are possibly non-concave and discontinuous, and verifies that our results apply to

this class of statistical models. We verify that high-level conditions of Section 2 follow from

primitive conditions for these models.

2. The Setup and The Problem

Our analysis is motivated by the problems of estimation and inference in large samples.

We consider a "reduced-form" setup formulated in terms of parameters that characterize

local deviations from the true statistical parameter. ® The local parameter A describes

contiguous deviations fi-om the true parameter and we shift it by a first order approximation

of the extremum estimator s. That is, for 9 denoting a parameter vector, 9o the true value,

and s — ^/n{9 — 6o) the normalized extremum estimator (or a first order approximation to

it), we have the local parameter A defined as

A = ^i{9 - 9o) - s.

The parameter space for 9 is 0, and the parameter space for A is therefore A = \/n(9 —

^o) - s.

The corresponding localized likehhood (or localized criterion) function is denoted by ^(A).

For example, suppose Ln{9) is the original Hkelihood function in the hkelihood framework

or, more generally, Ln{9) is exp{nQ„(6)} where Qn{9) is the criterion function in extremum

Examples in Section 5 further illustrate the connection between the localized set-up and the non-localized

set-ups.



framework, then

e{X) = L„(0o + (A + s)/M/Lnm-

The assumptions below will be stated directly in terms of ^(A). (Section 5 provides more

primitive conditions within the exponential and curved exponential family framework.)

Then, the posterior or quasi-posterior density for A takes the form (impUcitly indexed by

the sample size n)

/(A) = ryrhrr (2.5)

and we impose conditions that force the posterior to satisfy a CLT in the sense of approach-

ing the normal density

(j){X) = ^ — exp
I

-^A'JA
(27r)'i/2det(J-i)^/2 V 2

More formally, the following conditions are assumed to hold for ^(A) as the sample size

n —
> 00. These conditions, which in the following we will call the "CLT conditions,"

explicitly allow for an increasing parameter dimension d (d —> oo):

CI. The local parameter A belongs to the local parameter space A e A C M'^. The vector

s is a zero mean vector with variance 0, whose eigenvalues are bounded above as

n -> oo, and A = Jf U K'=, where is' is a closed ball 5(0, ||fs:||) with \\K\\ = CVd
such that fj^ fiX)dX > 1 - Op(l) and Jj. 4>{X)dX > I - o{l)J

C2. The lower semi-continuous posterior or quasi-posterior function i{X) approaches a

quadratic form in logs, uniformly in K, i.e., there exist positive approximation errors

ei and £2 such that for every X G K,

\n^{X)-l^-h'JX^ < ei 4- £2 • A'JA/2, (2.6)

where J is a symmetric positive definite matrix with eigenvalues bounded away

from zero and fi'om above. Also, we denote the ellipsoidal norm induced by J as

IK'lli := WJ'^M-

C3. The approximation errors ei and £2 satisfy £1 = Op{l), and £2 • |lA'||j = Op(l).

These conditions imply that

i{X)=g{X)-m{X)

''Note that \\K\\ := sup{|ja|| ; a G K}. The constant C need not grow due to the phenomenon of

concentration of measure under d —> 00 asymptotics.



r?0^.
-^K

Figure 1. This figure illustrates how ln<'(A) can deviate from ln(;((A) in-

cluding possible discontinuities on In^(A).

ln5(A) = --A'JA,

over the approximate support set K where

(2.7)

-ei - e2A'JA/2 < Inm(A) < ei + e2A'JA/2. (2.8)

Figure 1 illustrates the kinds of deviations of lnl{X) from the quadratic curve captured by

the parameters ei and €-2, and also shows the types of discontinuities and non-convexities

permitted in our framework. Parameter ei controls the size of local discontinuities and

parameter es controls the global tilting away from the cjuadratic shape of the normal log-

density.

Theorem 1. [Generalized CLT for Quasi-Posteriors] Under the conditions stated above,

the density of interest

£(A)

approaches a normal density (p{X) with variance matrix J in the following sense:

I 1/(A) - 0(A)|dA = / 1/(A) - cj>{X)\d\ + Op(l) = Op(l).

JA JK

Proof. See Appendix A.

(2.9)

(2.10)

D

Comment 2.1. Theorem 1 is a simple preliminary result. However, the result is essen-

tial for defining the environment in which main results of this paper - the computational



complexity results - will be developed. The theorem shows that in large samples, provided

some regularity conditions hold, Bayesian and Quasi-Bayesian inference has good large sam-

ple properties. The main part of the paper, namely Section 3, develops the computational

implications of the CLT conditions. In particular, Section 3 shows that polynomial time

computing of Bayesian and Quasi-Bayesian estimators by MCMC is in fact implied by the

CLT conditions.

Comment 2.2. By allowing increasing dimension (d -^ cx)) Theorem 1 extends the CLT

previously derived in the hterature for posteriors in the likelihood framework (Bickel and

Yahav [4], Ibragimov and Hasminskii [19], Bunker and Milhadu [5], Ghosal [17]) and for

quasi-posteriors in the general extremum framework, when the likehhood is replaced by

general criterion functions (Chernozhukov and Hong [8], Liu, Tian, and Wei [28]). The

theorem is more general than the results in Ghosal [17], who also considered increasing

dimensions but limited his analysis to the exponential likelihood family framework. In

contrast, Theorem 1 allows for non-exponential families and allows quasi-posteriors in place

of posteriors. Recall that quasi-posteriors result from using quasi-hkehhoods and other

criterion functions in place of the likelihood. This expands substantially the scope of the

applications of the result. Importantly, Theorem 1 allows for non-smoothness and even

discontinuities in the Ukehhood and criterion functions, which are pertinent in a number of

apphcations listed in the introduction.

The Problem of the Paper. Our problem is to characterize the complexity of obtaining

draws from /(A) and of Monte Carlo integration J g{X)f{X)dX, where /(A) is restricted to

the approximate support K. The procedure used to obtain the basic draws as well as to

carry out Monte Carlo integration is a Metropolis (Gaussian) random walk, which is a

standard MCMC algorithm used in practice. The tasks are thus:

I. Characterize the complexity of sampling from /(A) as a function of [d, n, ei, £2, K);

II. Characterize the complexity of calculating J g{X)f{X)dX as a function of {d, n, £i, £2, K]

III. Characterize the complexity of sampling from /(A) and performing integrations

with /(A) in large samples as d, ?z —» oo by invoking the bounds on (d, n, ei, e2. A')

imposed by the CLT;

IV. Verify that the CLT conditions are apphcable in a variety of statistical problems.

This paper formulates and answers this problem. Thus, the paper brings the CLT re-

strictions into the complexity analysis and develops complexity bounds for sampling and

integrating from /(A) under these restrictions. These CLT restrictions, arising by using



large sample theory and imposing certain regularity conditions, limit the behavior of /(A)

over the approximate support set K in a specific manner that allows us to establish poly-

nomial computing time for sampling and integration. Because the conditions for the CLT

do not provide strong restrictions on the tail behavior of /(A) outside K other than Cl,

our analysis of complexity is limited entirely to the approximate support set K defined in

C1-C3.

Comment 2.3. By solving the above problem, this paper contributes to the recent liter-

ature on the computational complexity of Metropolis procedures. Early work was primary

concerned with the question of approximating the volume of high dimensional convex set's

where uniform densities play a fundamental role (Lovasz and Simonovits [30], Kannan,

Lovasz and Simonovits [24, 25]). Later the approach was generalized for the cases where

the log-likelihood is concave (Fi'ieze, Kannan and Poison [14], Poison [34], and Lovasz and

Vempala [31, 32, 33]). However, under log-concavity the maximum hkelihood estimators

are usually preferred over Bayesian or quasi-Bayesian estimator from a computational point

of view. In the absence of concavity, exactly the settings where there is a great practical

appeal for using Bayesian and quasi-Bayesian estimates, there has been relatively less, if

any, analj'sis. One important exception is the paper of Applegate and Kannan [1], which

covers nearly-concave but smooth densities using a discrete Metropolis algorithm. ® In

contrast to Applegate and Kannan [1], our approach allows for both discontinuous and

non-concave densities that are permitted to deviate fi^om the normal density (not from an

arbitrary log-concave density, like in Applegate and Kannan [1]) in a specific manner. The

manner in which they deviate from the normal is motivated by the CLT and controlled

by parameters ti and e2, which are in turn restricted by the CLT conditions. The CLT

restrictions provide a congenial analytical framework that allows us to treat a basic non-

discrete sampling algorithm frequently used in practice. In fact, it is known that the basic

Metropolis walk analyzed here does not have good complexity properties (rapidlj' mixing)

for arbitrary log-concave density functions, in opposition to other random walks like hit-

and-run^. Nonetheless, the CLT conditions imply enough structure that the random walk is

in fact rapidly mixing. Moreover, only Subsection 3.2 depends on the particular form of the

walk while all the remaining results are valid in a considerably more general setting. This

suggests that the same CLT approach can be used to establish polynomial bounds for more

sophisticated schemes. As is standard in the literature, we assume that the starting point

The discrete Metropolis algorithm facilitates the analysis, but they are are not frequently used in practice.

See Lovasz and Vempala [33] for a discussion.



of the algorithm is in the approximate support of the posterior. Indeed, the polynomial

time bound that we derive applies only in this case because this is the domain where the

CLT provides enough structure on the problem. Our analysis does not apply outside this

domain.

3. Sampling from / using a Random Walk

3.1. Set-Up and Main Result. In this section we bound the computational complexity of

obtaining a draw from a random variable approximately distributed according to a density

function / as defined in (2.5). (Section 4 builds upon these results to study the associated

integration problem.) By invoking Assumption CI, we restrict our attention entirely to

the approximate support set K and the accuracy of sampling will be defined over this set.

Consider a measurable space {K,A). Our task is to draw a random variable according to a

measurable density function / restricted to K (this density induces a probability distribution

on K denoted by Q, i.e., Q{A) = J^ f{x)dx/ Jj^ f{x)dx for all A e A). Asymptotically, it is

well-known that random walks combined with a Metropolis filter are capable of performing

such task. In order to prove our complexity bounds, we will concentrate on a commonly

used random walk induced by a Gaussian distribution. Such random walk is completely

characterized by an initial point uq and a fixed standard deviation cr > 0, and its one-

step move. The latter is defined as the procedure of drawing a point y according to a

Gaussian distribution centered on the current point u with covariance matrix cr"/ and then,

with probability mm{f{y)/f{u), 1} = imn{£{y)/i{u), 1} move to y; otherwise stay at u (see

Casella and Robert [6] and Vempala [39] for details). In the complexity analysis of this

algorithm we are interested in bounding the number of steps of the random walk required

to draw a random variable from / with a given precision. Equivalently, we are interested

in bounding the number of evaluations of the local Ukelihood function ( required for this

purpose.

Next we review definitions of important concepts relevant for our analysis. The defini-

tions of these concepts follow Lovasz and Simonovits [30] and Vem.pala [39]. Let q{x\u)

denote the density function associated with a random variable N{u, a"!), and luiA) be the

indicator function of the set A. For each u £ K the one-step distribution P^, the probability

distribution after one step of the random walk starting fi'om u, is defined as

Pu{A)= I m:iiA^4r\A\q{x\u)dx-V0lu{A) (.3.11)



where

e = 1 - f mm\^,l\ q{x\u)dx (3.12)

Jk [fW J

is the probabihty of staying at u after one step of the ball walk from u. A step of the

random walk is said to be proper if the next point is different from the current point (which

happens with probabihty 1—9).

The triple (K,A, {Pu u G K}), along with a starting distribution Qo, defines a Markov

chain in K. We denote by Qt the probability distribution obtained after t steps of the

random walk. A distribution Q is called stationary on {K,A) if for any A G A,

Pu{A)dQ[u) = Q{A). (3.13)

Given the random walk described earher, the unique stationary probabihty distribution Q
is induced by the function /, Q{A) = /^ f{x)dx/ Jj^ f{x)dx for all A £ A, see e.g. Casella

and Roberts [6] . This is the main motivation for most of the MCMC studies found in the

literature since it provides an asymptotic method to approximate the density of interest.

As mentioned before, our goal is to properly quantify this convergence and for that we need

to review additional concepts.

The ergodic flow of a set A with respect to a distribution Q is defined as

^{A) = / Pu{K\A)dQ{u)
JA

It measures the probabihty of the event {u G A,u' ^ A) where u is distributed according

to Q and u' is obtained after one step of the random walk starting from u\ it captures the

average flow of points leaving A in one step of the random walk. It follows that Q is a

stationary measure if and only if ^{A) = $(A'\A) for aU A e A since

Pu[K \ A)dQ{u) = / (1 - Pu{A)) dQ{u) = Q{A) -
f Pu{A)dQ[i

JA JA

Pu{A)dQ{u) - f Pu{A)dQ{u) = ^[K \ A).

$(A)

A Markov chain is said to be ergodic if ^[A) > for every A with < Q{A) < 1, which

is the case for the A-Iarkov chain induced by the random walk described earlier due to the

assumptions on /.



In order to compare two probability distributions P and Q we use the total variation

distance^°

IIP - QWtv = sup \P{A) - Q{A)\. (3.14)
ACK

Moreover, P is said to be a M-warm start with respect to Q if

sup ^<M. (3.15)

The key concepts in the analysis are the conductance of a set A, which is defined as

^^
' mm{Q{A),Q{K\A)y

and the global conductance, defined as

, . .,,, . HA) .
UPuiK\A)dQ{u)

(p = mm (p{A) = mm = mm -^ -—

—

.

A 0<QiA)<l/2Q{A) 0<QiA)<l/2 Q{A)

Lovasz and Simonovits [30] proved the connection between conductance and convergence for

the continuous space setting. This result extended an earlier result of Jerome and Sinclair

[21, 22], who connected convergence and conductance for discrete state spaces. Lovasz and

Simonovits' result can be re-stated as follows.

Theorem 2. Let Qq be a M-warm start with respect to the stationary distribution Q. Then,

WQt ~ QWtv < ^1 U -

Proof. See Lovasz and Simonovits [30].
,

D

The main result of this paper provides a lower bound for the global conductance of the

Markov chain 4> under the CLT conditions. In particular, we show that 1/0 is bounded by

a fixed polynomial in the dimension of the parameter space.

Theorem 3. (Main Result) Under Assumptions Cl, C2, C3, and setting the parameter

a for the random walk as defined in (3.17), the global conductance of the induced Markov

chain satisfies

l/0 = o(de4^>+^^^ll^'l!').

In particular, the random, walk requires at most .

N, = Op[ e«^i+8''^ll^'ii5 (-Y ln(M/e:

^'^This distance is equivalent to the O (K) distance between the density functions associated with P and

Q since sup^gK \PiA) - Q[A)\ = \ J^ \dP - dQ\.



steps to achieve WQ^e ~ QWtv ^ £• Invoking the CLT restrictions, ei = o(l), £2 • ||-^'^'||j =

0(1), vue have that 1/0 = Op{d) and the number of steps N^ is bounded by

Op {d^ ln(M/£)) .

Proof. See Section 3.2. D

Comment 3.1. In general, the dependence on ei and eo is exponential and this bound does

not imply polynomial time ("efficient") computing. However, the CLT fi-amework implies

that ei = 0(1) and £2 \\I'^\\j = o(l), which by Theorem 3 in turn imphes polynomial time

computing.

Next we discuss and bound the dependence on M, the "distance" of the initial distribution

Qo from the stationary distribution Q as defined in (3.15). A natural candidate for a starting

distribution Qq is the one-step distribution conditional on a proper move from an arbitrary

point u e K. We emphasize that, in general, such choice of Qq could lead to values of

M that are arbitrary large. In fact, this could happen even in the case of the stationary

density being a uniform distribution on a convex set (see [33]). Fortunately, this is not the

case under the CLT framework as shown by the following lemma.

Lemma 1. Let u G K and P^ be the associated one-step distribution. With probability at

least 1/3 the random walk makes a proper move. Conditioned on peiforming a proper m,ove,

the one-step distribution is a M-warm start start for f, where

InM = 0(dln(\/d||/^||) + |jA'||5 + ei + e2\\K\\-j).

Under the CLT restrictions, e2\\K\\j = o(l) and \\K\\j = 0[\/d), so that

\nM = 0{d\nd).

Proof. See Appendix A.
'

.

' D

Combining this result with Theorem 3 yields the overall (burn-in plus post burn-in)

running time

Op{d^\iid).



3.2. Proof of the Main Result. The proof of Theorem 3 uses two auxihary results: an

iso-perimetric^' inequality and a geometric property of the particular random walk. The

first is an analytical result and is of independent mathematical interest. After the connection

between the iso-perimetric inequality and the ergodic flow is established, the second result

allows us to use the first result to bound the conductance from below. In what follows we

provide an outline of the proof, auxiliary results, and, finally, the formal proof

3.2.1. Outline of the Proof. The proof follows the arguments in Lovasz and Vempala [31].

In order to bound the ergodic flow of A £ A, consider the particular disjoint partition

K = 5i U 5^2 U 53 where Si C A, 5^ C K \ A, and S3 consists of points in A or K \A for

which the one-step probability of going to the other set is at least a fixed constant c (to be

defined later). Therefore we have

HA) - X4 Pu(K \ A)dQ{u) = i
/^ P„(/i \ A)dQ{u) + 1

/^.^^ Pu{A)dQ{u)

> i 4 P„(A- \ A)dQ(«) + i4 P„(.4)dQ(a) + f Q(53).

where the second equality holds because $(A) = ^{K \A).

Since the first two terms could be arbitrarily small, the result will follow by bounding

the last term from below. This will be achieved by an iso-perimetric inequality which is

tailored to the CLT framework and is derived in Section 3.2.2. This result will provide a

lower bound on QiS^), which is decreasing in the distance between S\ and 52. Therefore

one still needs to bound the distance between these sets.

Given two points u G Si and v £ 52, we have Pu{K\A) < c and Pv{A) < c. Therefore, the

total variation distance between their one-step distributions \\Pu - Py\\ > \Pu{A) - Pv{A)\ >

1 — 2c. The geometric properties of the random walk are used to ensure that this condition

imphes that \\u — v\\ is also bounded from below (see Section 3.2.3). Since u and v were

arbitrary points, the sets Si and 52 are "far" apart. Therefore 53 cannot be arbitrarily

small, i.e., Q(53) is bounded from below.

This leads to a lower bound for the global conductance. After bounding the global

conductance from below. Theorem 3 follows by invoking CLT conditions and Theorem 2.

The iso-perimetric problem has a long history in mathematics. It consists of finding the set that

minimizes a certain criterion within a particular family of sets. A famous and familiar example of an iso-

perimetric problem is the following: among all sets with unit volume, find the one that has the smallest

surface area.



3.2.2. An Iso-perimetric Inequality. We start by defining a notion of approximate log-

concavity. A function / : R" —> IR is said to be log-/?-concave if for every a € [0,1],

x,y E IR", we liave

/(a.T + (l-a)y)>/?/(xr/(j/)i-"

for some /3 £ (0, 1]. / is said to be logconcave if P can be talcen equal to one. The class

of log-/?-concave functions is rather broad, for example, including various non-smooth and

discontinuous functions.

Together, the relations (2.7) and (2.8) imply that we can write the functions / and i as

the product of e~^^ '^^ and a log-/?-concave function:

Lemma 2. Over the set K the functions /(A) := i(X)/ J,^({\)d\ and ({X) are the product

of a Gaussian function, e~'^ , and a p -log- concave function whose parameter (3 satisfies

ln/3>2-(-ei-e2-||A'||}).

Proof. It foUows from (2.8). D

In our case, the larger is the support set K, the larger is the deviation from log-concavity.

That is appropriate since the CLT does not impose strong restrictions on the tail of the prob-

ability densities. Nonetheless, this gives a convenient structure to prove an iso-perimetric

inequality which covers even non-continuous cases permitted in the framework described in

the previous sections.

Lemma 3. Consider any measurable partition of the form K = 5'i U 52 U Ss such that the

distance between S\ and 5*2 is at least t, i.e. d{Si,S2) > t. Let Q{S) = J^ fdx/ Jj^ fdx.

Then for any lower semi-continuous function f{x) = e~ll^ll m{x), where m is a log-P-

concave function, we have

Q{S2) > /3^^^^ min {Q(5i), QiS.)}

Proof See Appendix A. D

Comment 3.2. This new iso-perimetric inequality extends the iso-perimetric inequality in

Kannan and Li [23], Theorem 2.L The proof builds on their proof as well as on the ideas

in Applegate and Kannan [1]. Unhke the inequality in [23], Lemma 3 removes smoothness

assumptions on /, for example, covering both non-log-concave and discontinuous cases.



The iso-periraetric inequality of Lemma 3 states that, under suitable conditions, if two

subsets of K are far apart, the measure of the remaining subset should be comparable to

the measure of at least one of the original subsets. The following corollary extends the

previous theorem to cover cases with an arbitrary covariance matrix J

.

Corollary 1. Consider any measurable partition of the form K = Si U SsU S2 such that

d{Si, S2) > t, and let Q{S) = J^ fdx/ /^ fdx. Then for any lower semi- continuous function

f{x) = e~2^ '^^m{x), where m is a log-P-concave function, we have

QiSs) > P ie-^-"''/8 y'^^ j^in {q(^Si), Q{S2)}
,

where Xmin denotes the minimum, eigenvalue of the positive definite matrix J.

Proof. See Appendix A.
' D

3.2.3. Bounds on the Difference of One-step Distributions. Next we relate the total varia-

tion distance between two one-step distributions with the Euclidean distance between the

points that induce them. Although this approach follows the one in Lova^z and Vempala

[31, 32, 33] there are two important differences which call for a new proof. First, we no

longer rely on log-concavity of /. Second, we use a different random walk. We start with

the following auxiliary result.

Lemma 4. Let g : IR" —> IR 6e a function such that Ing is Lipschitz luith constant L over

compact set K . Then, for every x e K and r > 0,

,
:,, inf [g{y)/g[x)\>e-'^\

yeB{x,r)nK

Proof The result is obvious. D

Given a compact set K, we can bound the Lipschitz constant of the concave function Ing

defined in (2.7) by

L < sup ]|Vln5(A)|| < sup ||JA|| < Xmax\\K\\ = (Vd) . (3.16)

Lemma 5. Let u,v e K := B{0, ||A'|1), cr^ <
jg^j;^, and suppose that jr^ < j^ and \\u —

v\\ < ^ where L is the Lipschitz constant of Ing on the set K. Under our assumptions on

f as defined in (2.5), we have

||Pu-p.||tv<i-^.

Proof. See Appendix A. ' D



The converse of Lemma 5 states that if two points induce one-step probability distribu-

tions that are far apart in the total variation norm, these points must also be far apart in

the Euclidean norm. This geometric result provides a key ingredient in the application of

the iso-perimetric inequality as discussed earher.

3.2.4. Proof of Theorem 3. Consider the compact support for f as K — B{0, \\K\\),

where ||ii'|| = 0{\/d/Xmin) from Assumption CI. We define

a = min {l/4VdL, \\K\\/V2{)d\ . (3.17)

Therefore the assumptions of Lemma 5 are satisfied. Moreover, under the assumptions of

the theorem, using (3.16) it follows that

cj> =
.

, (3.18)
l20\raaxVd\\K\\

Fix an arbitrary set A e ^ and denote hy A'^ = K\A the complement of A with respect

to K. We will prove that

HA) = j Pu{A')dQiu) > ^a^%~mm{Q{A),QiA')}, (3.19)

which implies the desired bound on the global conductance (j). Note that this is equivalent

to bounding #(A'^) since Q is stationary on {K,A).

Consider the following auxiliary definitions:

Si^LeA: Pu{A') <-^Y
S2 = lveA': P„(A) < ^ | , and S^ = K\{Si U S2).

First assume that Q{Si) < Q{A)/2 (a similar argument can be made for 52 and A''). In

this case, we have

$(A) = / P,{A')dQ{u) > f P^[A^)dQ{u) > f fdQiu) > ^Q{A\S,) > ^Q{A),
JA Ja\Si JA\Si 6e 6e 12e

and the inequahty (3.19) foUows.

Next assume that QiSi) > Q{A)/2 and Q{S2) > QiA'')/2. Since $(A) = ^{A') we have

that

^A) = j P„{A')dQ{u) = lJ^Pu{A')dQ{u) + lJ^,P,,{A)dQiv)

A\Si ^ "^^ ;^^\^J -r 2 Ja<=\S2

2 J53 G^dQiu) — j^(> Us.ldQ{u)^4-Q{S^),



where we used that ^3 = K \ {S\ U 52) = (^ \ ^i) U [A" \ 52). Given the definitions of the

sets Si and 5^2, for every u £ S\ and t; e 52 we have

\\Pu - PvWtv > Pu{A) - Py{A) = 1 - Pu{A') - Pv{A) > 1 - ^-

In such case, by Lemma 5, we have that ||u — i'|| > | for every u € Si and v G 52. Thus,

we can apply the iso-perimetric inequahty of CoroUary 1, with d{Si,S2) > cr/S, to bound

(5(53). We obtain

J
Pu{A^)dQ{u) > g|e-i^-"-/64 y2^min{Q(5i),Q(52)}

> ^%^ min{Q(A),Q(A^)}.

where tire second inequahty also used that Xmin'^'^ < A^j„ ,|'
^y^

< '^/d under our defini-

tions. Therefore, using relation (3.18) and \\K\\ = 0{\Jd/\min)^ we obtain

i/4> = o f/j-^^d) =o(d e'^^+'^-mA

since the eigenvalues are assumed to be uniforml}^ bounded from above and away from zero.

The remaining results in Theorem 3 follow by invoking the CLT conditions and applying

Theorem 2 with the above bound on the conductance. D

4. Complexity of Monte Carlo Integration

This section considers our second problem of interest - that of computing a high dimen-

sional integral of a bounded real valued function g:

ixg = / g{\)!{\)d\. (4.20)
Jk

The integral is computed by simulating a dependent (Markovian) sequence of random points

A"*, A^, . . ., which has / as the stationary distribution, and taking

1 ^
/^3 = ]^Eff('\') (4.21)

1=1

as an approximation to (4.20). The dependent nature of the sample increases the sample

size needed to achieve a desired precision compared to the (infeasible) case of independent

draws from /. It turns out that as in the preceding analysis, the global conductance of the

the Markov chain sample will be crucial in determining the appropriate sample size.



The starting point of our analysis is a central limit theorem for reversible Markov chains

due to Kipnis and Varadhan [26] which is restated here for convenience. Consider a re-

versible Markov chain on K with stationary distribution /. The lag k autocovariance of the

stationary time series {s'(A')}^^j, obtained by starting the Markov chain with the stationary

distribution / is defined as

7fc = Cov/(g(A^),5(V+'^-)).

Let us recall a characterization of 7^ via spectral theory following Kipnis and Varadhan

[26] : Let T denote the transition operator of the Markov chain induced by the random walk.

In our case, since the chain is reversible, T is a linear bounded self-adjoint operator in the

Hilbert space Lr{K,A,Q), see [30]. Let Eg denote the measure on Borel sets of (—1,1)

induced by the spectral measure of T applied to g, as in [16]. With these definitions, one

has that for any k

7fc= f J'^kEa

We are prepared to restate the central hmit theorem of Kipnis and Varadhan [26] needed

for our analysis.

Theorem 4. For a stationary, irreducible, reversible Markov chain, with 'p.g and fig defined

as (4.21) and (4.20),

+00

k—— oo

almost surely. If cr^ is finite, then \fN{flg —fig) converges in distribution to N{Q,a'l).

Proof. See Kipnis and Varadhan [26]. D

In our case, 70 is finite since g is bounded. The next result, which builds upon Theorem

2, states that cr^ can be bounded using the global conductance of the Markov chain.

Corollary 2. Let g be a square integrable function with respect to the stationary measure

Q. Under the assumptions of Theorem. 4, we have that

7fc < I
1 - y I 70 and o-g < 70 I -2

Proof. See Lovaasz and Simonovits [30].



We will use the mean square error as the measure of closeness for a consistent estimator:

MSEiflg) = E\fig - Mg]2.

Many approaches are possible for constructing the sequence of draws in (4.21); we refer

to [16] for a detailed discussion. Here, we will analyze three common schemes:

• long run (Ir),

• subsample (ss),

• multi-start (ms).

Denote the sample sizes corresponding to each method as A';,., A^ss, and Nms- The long

run scheme consists of generating the first point using the starting distribution and, after

the burn-in period, selecting the Ni^ subsequent points to compute the sample average

(4.21). The subsample method also uses only one sample path, but the Nss draws used

in the sample average (4.21) are spaced out by S steps of the chain. Finally, the multi-

start scheme uses Nms different sample paths, initializing each one independently from the

starting distribution /o and picking the last draw in each sample path after the burn-in

period to be used in (4.21).

There is another issue that must be addressed. All schemes require that the initial

points are drawn from the stationary distribution /. We therefore need to compute the so

called "burn-in" period B, that is, the number of iterations required to reach the stationary

distribution / with a desired precision, beginning at the starting distribution /q.

Theorem 5. Let /o be a M-warm start with respect to f, and g := sup;^^;^; |5('^)|- Using

the notation introduced in this section, to obtain MSE{fig) < e it is sufficient to use the

following lengths of the burn-in sample. B, and post-burn in samples, Nij.,Nss,Mms-

Tif
In

and

^^r = -:|, A^.. = — {unth S = {2/<p^) In (670/e)), A^^. = |^.

The overall complexities of Ir, ss, and ms methods are thus B + Ni,., B+ SN^s, and B x Nms-

Proof. See Appendix A. . . D

For convenience Table 1 tabulates the bounds for the three different schemes. Note

that the dependence on M and g is only via log terms. Although the optimal choice of

the method depends on the particular values of the constants, when £ \ 0, the long-run



Table 1. Burn-in and Post Burn-in Complexities

Method Quantities Complexity

Long Run B + iV,, ^ An ^^vfal^U ^ (lio)

Subsample B + N.^ S ;^
(in f^^^ j) -f ^ (^ In (^))

Multi-start B x N^^ ^ In ((^^^) )
x ^

Table 2. Burn-in and Post Burn-in Complexities under the CLT.

Metliod Burn-in Complexity Post-burn-in Complexity

Long Run Op(dHnd IriE-'^) +Op{d'^-£-^)

Subsample Op{dHnd Ine''^) + Op{d'^ e''^ Ine-'^)

Multi-start Op((i^ Inrf Ine"!) x Op(£"^)

algorithm has the smallest (best) bound, while the the multi-start algorithm has the largest

(worst) bound on the number of iterations. Table 2 presents complexities impUed by the

CLT conditions, namely |jA'|| = 0{Vd), ei -^ 0, and £2||-ft^P -^ 0. The table assumes 70

and g are constant, though it is straightforward to tabulate the results for the case where 70

and g grow at polynomial speed with d. Finally, note that the bounds apply under a slightly

weaker condition than the CLT requires, namely that ei = Op(l) and e2||A'|P = Op{l).

5. Application to Exponential and Curved-Exponential Families

In this section we verify that our conditions and analysis apply to a variety of statistical

problems. We begin the discussion with the canonical log-concave cases within the expo-

nential family. Then we drop the concavity and smoothness assumptions to illustrate the

full applicability of the approach developed in this paper.

5.1. Concave Cases. Exponential families play a very important role in statistical esti-

mation, cf. Lehmann and Casella [27], especially in high-dimensional contexts, cf. Portnoy

[35], Ghosal [17], and Stone et al. [37]. For example, the high-dimensional situations arise



in modern data sets in technometric and econometric applications. Moreover, exponen-

tial familes have excellent approximation properties and are useful for approximation of

densities that are not necessarily of the exponential form, cf. Stone et al. [37].

Our discussion is based on the asymptotic analysis of Ghosal [17]. In order to simplify

exposition, we invoke the more canonical assumptions similar to those given in Portnoy [35].

El. Let xi, . . . ,Xn be iid observations from a d-dimensional canonical exponential

family with density

f{x;e)=exp{x'9-i>n{0)),

where 6' E is an open subset of IR , and d —> oo as n —
> oo. Fix a sequence

of parameter points 9q £ Q. Set fx = 'fp'i&o) and F = ip"{Oo), the mean and

covariance of the observations, respectively. Following Portnoy [35], we implicitly

re-parameterize the problem, so that the Fisher information matrix F = I.

For a given prior n on 0, the posterior density of over conditioned on the data takes

the form
n

TTniO) oc tt{9) [|/(.x,;6I) = n{e) exp {nxO - nij{9)) .

2= 1

The local parameter space is ^/ri{Q — 9o). It will be convenient to associate every point 9

in the parameter space with an element of A, a translation of the local parameter space,

A = ^i{9 - 9o} - s,

where s = y/n{x — /i) is a first order approximation to the normalized meLximum likeli-

hood/extremum estimate. By design, we have that E[s\ — and E [ss'] = Id- Moreover,

by Chebyshev's inequahty, the norm of s can be bounded in probability, ||s|] = Op{'\/d).

Finally, the posterior density of A over A = x/n(0 — 9q) — s is given by /(A) =
r }(x)d\ '

where, for x = X]"=i Xi/n,

^(A) = exp (x'(^/^(A + s)) + n{4>{9o + (A + s)/^i) - ^(^o))) ^(^o + (A -I- s)/0I).

We impose the following regularity conditions, following Ghosal [17] and Portnoy [35]:

E2. Consider the following quantities associated with higher moments in a neigh-

borhood of the true parameter 9o:

Bin(c) := sup{Ee|o'(.'c, - ii)\^ : a G IR^ ||a|| = 1, ||^
- ^ojl^ < cd/n},

e.a

B2nic):=sup{Ee\a'{x,~^i)\'^:aeU'^,\\a\\ = l,\\9-9of<cd/n}.
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For any c > and all n there are p > and cq > such that

Bin{c) <co + d' and S2n(c) < cq + d".

E3. The prior density n is proper and satisfies a positivity requirement at the true

parameter

supln[7r(6i)/7r(6'o)] = 0{d)
eee

where 9o is the true parameter. Moreover, the prior n also satisfies the following

local Lipschitz condition

\\mr{e) -lm:{9o)\ <V{c)^\\e ~ eoW

for all 6 such that ||^
— 9q\\" < cd/n, and some V{c) such that V{c) < cq + c^, the

latter holding for all c > 0.

E4 The following condition on the growth rate of the dimension of the parameter

space is assumed to hold:

d^/n -^ 0.

Comment 5.1. Condition E2 strengthens an analogous assumption of Ghosal [17]. Both

assumption are imphed by the analogous assumption made by Portnoy [35]. Condition

E3 is similar to the assumption on the prior in Ghosal [17]. For further discussion of this

assumption, see [3]. Condition E4 states that the parameter dimension should not grow too

quickly relative to the sample size.

Theorem 6. Conditions EI-E4 imply conditions C1-C3.

Proof. See Appendix A. D

Combining Theorems 1 and 6, we have the asymptotic normality of the posterior,

\f{X)-4>{X)\d\= / |/(A)-0(A)|<iA + Op(l)=Op(l).
A Jk

Furthermore, we can apply Theorem 3 to the posterior density / to bound the convergence

time (number of steps) of the Metropohs walk needed to obtain a draw from / (with a fixed

level of accuracy); The convergence time is at most

Opid')

after the burn-in period; together with the burn-in, the convergence time is

Opid^nd).



Finally, the integration bounds stated in the previous section also apply to the posterior /.

5.2. Non-Concave and Discontinuous Cases. Next we consider the case of a d-dimen-

sional curved exponential family. Being a generaHzation of the canonical exponential family,

its analysis has many similarities with the previous example. Nonetheless, it is general

enough to allow for non-concavities and even various kinds of non-smoothness in the log-

likelihood function.

NEl. Let xi, . . . ,Xn be iid observations fi'om a d-dimensional curved exponential

family with density

/(.T;e)=exp(x'0(77)-V„(0(r?))),
,

.

where ^ £ 0, an open subset of IR , and d —> oo as n -^ oo.

NE2. The parameter of interest is 7/, whose true value rjo lies in the interior of

a convex compact set ^f c IR^^ The true value of 6 induced by rjo is given by

^0 = ^(%)- The mapping rj h^ 9(7]) takes values from IR''^ to IR'' where c-d < di < d,

for some c > 0. Moreover, assume that rjo is the unique solution to the system

9{'q) = 6q and that 1|0(?7) - r/(6'o)|| > eo!!?/ - '/oil for some eo > and all ?/ G *.

Thus, the parameter 9 corresponds to a high-dimensional linear parametrization of the

log-density, and rj describes the lower-dimensional parametrization of the density of interest.

There are many classical examples of curved exponential families; see for example Efron

[12], Lehmann and Casella [27], and Bandorff-Nielsen [2]. An example of the condition that

puts a curved structure onto an exponential family is a moment restriction of the type:

rn{x,a)f{x,9)dx = 0.

This condition restricts 9 to lie on a curve that can be parameterized as {9{rj),i] £ ^},

where component rj = (a,/3) contains a as well as other parameters 0. In econometric

apphcations, often moment restrictions represent Euler equations that result fi-om the data

X being an outcome of an optimization by rational decision-makers; see e.g. Hansen and

Singleton [18], Chamberlain [7], Imbens [20], and Donald, Imbens and Newey [10]. Thus, the

curved exponential framework is a fundamental complement of the exponential fi-amework,

at least in certain fields of data analysis.

We require the following additional regularity conditions on the mapping 9{-).

NE3. For every k, and uniformly in 7 £ B(0,K.\/(i), there exists a linear operator

G : IR''' -^ IR'^ such that G'G has eigenvalues bounded from above and away from



Figure 2. This figure illustrates the mapping 9{-). The (discontinuous)

solid line is the mapping while the dash line represents the linear map induced

by G. The dash-dot line represents the deviation band controlled by ri„ and

r2n-

zero, and for every n

v^ (0(770 + 7/\/H) - d{vo)) = rm + {Id + R2n)G-f,

where j|rin|| < 5i„ and ||i?2n|j < <52n- Moreover, those coefficients are such that

^inVa^O and 52nd --*0.

Thus the mapping rj i—> 9{i]) is allowed to be nonlinear and discontinuous. For example,

the additional condition of Ji„ = implies the continuity of the mapping in a neighborhood

of 770- More generally, condition NE3 does impose that the map admits an approximate

linearization in the neighborhood of rjo whose quality is controlled by the errors Sin and

S2n- An example of a kind of map allowed in this framework is given in the figure.

Again, given a prior tt on 0, the posterior of rj given the data is denoted by

n

Mv) « 7r(0(r/)) • H fixi; rj) = 77(^(77)) exp {ni'e{ii) - ni>{9{T]))) .

i=l

In this framework, we also define the local parameters to describe contiguous deviations

from the true parameter as

J = y/niv - Vo) - s, s = {G'G)~^G'\/n{x - 11),



where s is a first order approximation to the normalized maximum likehhood/extremum

estimate. Again, similar bounds hold for s: E[s] — 0, E[ss'] = {G'G)~^, and ||s'|| = Op(Vd).

The posterior density of 7 over T, where F = ^{'^ - 'i]o) - s, is /(7) = ,- /Z!^ ,
where

£(7) = exp {nx'{e{r,o + (7 + s)/V^) - e{r]o)) + n^iOim + (7 + s)/07)) - niid{^o)))

^n{d{rio + h + s)/V^)).

(5.22)

The condition on the prior is the following:

NE4 The prior n{rj) <x 77(^(77)), where Tr{9) satisfies condition E3.

Theorem 7. Conditions E2-E4 arid NEI-NE4 imply conditions C1-C3. ,

;

Proof. See Appendix A.
,

lH

As before, Theorems 1 and 7 prove the asymptotic normality of the posterior,

/"
1/(7) - 0(7)M7 =/ 1/(7)- <A(7)|rf7 + Op(l)=Op(l),

-
; "

where

<t^[l)
= ^-

77^ exp f
-^7'(G'G)7

(27r)^/2det((G'G)-i)i/2
'

\ 2' "^

Theorem 3 implies further that the main results of the paper on the polynomial time

sampling and integration apply to this curved exponential family.
'

'

' 6. Conclusion

Tlris paper studies the computational complexity of Bayesian and quasi-Bayesian esti-

mation in large samples carried out using a basic Metropolis random walk. Our framework

permits the parameter dimension of the problem to grow to infinity and allows the underly-

ing log-likelihood or extremum criterion function to be discontinuous and/or non-concave.

We establish polynomial complexity by exploiting a central hmit theorem framework which

provides structural restrictions for the problem, i.e., the posterior or quasi-posterior density

approaches a normal density in large samples. ,,' ..',,.'.,,
. ; _

The analysis of this paper focused on a basic random walk. Although it is widely used

for its simplicity, it is not the most sophisticated algorithm available. Thus, in principle

further improvements could be obtained by considering different kinds of random walks

(or variance reduction schemes). As mentioned before, essentially only one lemma of our



analysis relies on the particular choice of the random walk. This suggests that most of the

analysis is apphcable to a variety of different implementations.

Appendix A. Proofs of Other Results

Proof of Theorem 1. Prom CI it follows that

f \f{X)-4>{X)\dX < f \f{\)-4>W\dX+ f {f{X) + 4>iX))dX

= / |/(A)-^(A)|a!A + Op(l)
Jk

where the last equahty follows from Assumption Cl."^^

.T J ^ (27r)'^/2det(J-i)i/2
.

JNow, denote C^ = ?
—-—r-; and write

m
<P{X)

- 1 ^{X)dX = Cn exp[ In e{X)- (~-A'JA l\(p{X)dX

Combining the expansion in C2 with conditions imposed in C3

/(A)

0(A)
-1 (j){X)dX < Jj^\Cn-exp{ei + e2X'JX)-l\4>{X)dX

+ jj. \Cn exp (-ei - ezA' JA) - 1| <^(A)dA

< 2 / |c„-e°p(^)-lU(A)dA
Jk ' '

< 2|C„e°p(i) - 1|

The proof then follows by showing that Cn -^ 1- We have that R = \\K\\ = 0{\/d), and by

assumption Cl

C„
|A||<fl

e{X)dx
.iVJAg-ei-f(A'JA)^;^

(1+0(1))/ g{X)dX (1 + 0(1))/ e-2^''^dX
Jm<fi Jm<R

-iA'(J+£2J)A

det(J) 7iiA|l<fi
(2^)'^/2 det((J + eo^J)-')'/^

dX

(1+0(1)) V det(J + e2J)

l|Ai|<fl(27r)^/2det(J-i)V2
dX

For the case of 4>! it follows from the standard concentration of measure arguments for Gaussian

densities, see Lovasz and Vempala [31].



Since £2 < 1/2, we can define W ~ yV(0, (1 +62)"^^"^) and V~ N{Q,J-'^) and rewrite our

bounds as

1 /||A||<fi^(^)^'^ > e-2^1 f 1 Y/^P{\\W\\<R)

l+o(l)J^|A||<fl5(A)rfA - {l+o{l))\l+e2j P{\\V\\<R)

(1+0(1)) Vl+e2

1
d/2

where the last inequality follows from P{\\W\\ < R) > P{\\./r+l^_W\\ < R) = P{\\V\\ < R).

Likewise,

<^n /||;,|]<^fi(A)rfA Vl-e2,

Therefore Cn —^ i since ei —> 0, €2 c' —* 0. D

Proof of Lemma 2. The result follows immediately from equations (2.7)-(2.8). D

Proof of Lemma 3. Let M := P ^^^
r-— . We will prove the lemma bj' contradiction.

Assume that there exists a partition of K = Si U ^2 U S3, with d{Si, S2) > t such that

{Mls,{x) ~ ls,(x))f{x)dx > 0, for i = 1,2.

We will use the Localization Lemma of Kannan, Lovasz, and Simonovits [24] in order to

reduce a high-dimensional integral to a low-dimensional integral.

Lemma 6 (Localization Lemma). Let g and h he two lower semi-continuous Lebesgue

integrable functions on IR such that

g{x)dx > and / h{x)dx > 0.

Then there exist two points a,b £ M.^, and a linear function 7 : [0, 1] -^ IR-i- such that

T~{t)g{{l-t)a + tb)dt>0 and / f'-^(t)hi{l~t)a + tb)dt>0,
Jo

where ([a, 6], 7) is said to form a needle.

Proof. See Kannan, Lovasz, and Simonovits [24].

By the Localization Lemma, there exists a needle (0,6,7) such that

i''~\-u-)f{{'^ -u)a + ub){Mls.^{{l -u)a + ub) - ls:,{i.l -u)a + ub))du > 0,



for i = 1,2. Equivalently, using 7(u) = l{u/\\h - a\\) and v := {h - a)/\\b - a\\ where

||6
— a\\ > t, we have

\\b-a\\

1 {.u)f{a + uv) (Mls^ia + uv) - Is-^ia + uv)) du > 0,

for i — 1,2. In turn, this last expression can be rewritten as, for i = 1, 2,

/[|6-a|| r

M 'y'^-\u)f{a + uv)ls,{a + uv)du> ^'^-'^{u)ls^{a + uv)f{a + uv)du. (A.23)

In order for the left hand side of (A.23) be positive for i = 1 and i = 2, the line segment

[a,b] must contain points in Si and ^2. Since d{Si,S2) > t, we have that ^3 n [a, b] contains

an interval whose length is at least t. We will prove that for every uj e IR

Y {u)f{a+uv)du> M mm
<^

Y-\u)f{a + uv)du, / -f'^-\u)f{a + uv)du\

(A. 24)

which contradicts relation (A.23) and proves the lemma.

First, note that f{a+ uv) — e~ll''+™ll m{a^uv) ~ e~""+'"i""''''''m(a+ ui') where t\ :— 2a'v

and tq := -||a|p.

Next, recall that m(a + uv)7'^~^(t() is still a unidimensional log-/3-concave function on u.

By Lemma 7 presented in Appendix B, there exists a unidimensional logconcave function in

such that 0m.{u) < m{a + uv)^'^''^{u) < m(u) for every u. Moreover, there exists numbers

So and si such that m(w) = sqb^^'^ and m(w + t)— soe'^'^"'"'^ Due to the log-concavity of

?n, this implies that

m(u) > soe^'" ioT u £ {w.w + t) and iri{u) < soe^^^ otherwise.

Thus, we can replace m{a + uv)'y'^~^{u) by Soe*^" on the right hand side of (A. 24) and

replace m{a + uv)f'^~''^{u) by /3soe*^" on the left hand side of (A. 24). After defining ri =

i . Ti + si and To := tq + In sq, we have ^

r+t . „ ^ f /•« , „ . f\\b-a\\ , ^ _ 1

/3 /
e-""+''i"+''odu> MminM e-"'+''i "+'''' du, / e~""+'"i"+''"(iu

^
(A.25)

Jw \Jo Jw+t
J

which is equivalent to

rw+t f f2 ( fw -
f2 p\\b-a\\ - ?- 1

P e-("-^)'+^°+^du>MminM e^^""^) +^°+^du, / e-^'^-i'^'+^^+^du} .

Jw \^Jo Jw+t
J

(A.26)



Now, cancel the term e^^^"^^!^ on both sides and; since we want the inequahty (A. 26) holding

for any w, (A. 26) is impUed by

e'^^'du > ^"^
^ min

<j / e'""'du, / e """du I (A. 27)

holding for any w. This inequality is Lemma 2.2 in Kannan and Li [23]. For brevity, we

will not reproduce the proof.

Proof of Corollary 2. Consider the change of variables x = '^ Z^ . Then, in x coordinates,

/(.t) = e^'^m{\/2J~^/~x) satisfies the assumption of Lemma 3 and d{Si,S2) > t\/Xmin/2.

The result follows by applying Lemma 3 with x coordinates. D

Proof of Lemma 5. Define K := B{0, R), so that R is the radius of K; also let r := 4\/da

(where a~ < jqJjji), and let q{x\u) denote the normal density function centered at u with

covariance matrix a'^I. We use the following notation: Bu = B{u,r), By = B{v,r), and

Au,v — B^jHSyn K. By definition of r, we have that /^ q[x\u)dx = f^ q{x\v)dx > 1—\.

Define the direction w = {v — u)/\\v — u\\. Let Hi = {x £ B^nBy : w'{x — u) > Hu — w]]/2},

H2 = {x G Bu n By : w'{x — u) < \\v — u\\/2}. Consider the one-step distributions fi-om u

and V. We have that

\\Pu-Pv\\tv < 1-/ mm{dPu,dPy}
J Au.v

:

= 1-^^ min|.7(.rl.)min|^,l|,g(x|i>)min|^,lUdx

< 1 - Pe~^'' mm{q{x\u),q{x\v)}dx
/ JAu.v

,

,.'
,

< l-/3e-^'"(/ q{x\u)dx+ f q{x\v)dx-)

where \\u — v\\ < a/S. Next we will bound from below the last sum of integrals for an

arbitrary u € K.

We first bound the integrals over the possibly larger .sets, respectively H\ and Ho- Let

h denote the density function of a univariate random variable distributed as N{0,a~). It

is easy to see that h{t) = J^,,_s_^q{x\u)dx, i.e. h is the marginal density oi q{.\u) along

the direction w (up to a translation). Let //s = {x : —\\u — v\\/'2 < w'{x - u) < \\v — u\\/2}.

Note that B^ C HiU {Ho — \\u — v\vS) U iJa where the union is disjoint. Armed with these



observations, we have

q{x\u)dx + / q{x\v)dx = / q{x\u)dx + / q{x\u)dx
Jh2 J Hi JH2-\\u-v\\w

> I q{x\u)dx — / q{x\u)dx
JBu JH3

r r\W-v\\/2

= / q{x\u)dx — I h{t)dt
JBu J-\\u-v\\/2

> 1 - 4 -
/ ^ dt

e y_||„_^||/2 \/2na

> l---\]u-v\\^^>l~^ =>4A.28)
e^ 8^/2n 10

1 „ „ 1 . . 1 1

/27r cr

where we used that \\u — v\\ < a/8 by the hypothesis of the lemma.

In order to take the support K into account, we can assume that u,v G dK, i.e. ||m|| =

||w|| = R (otherwise the integral will be larger). Let z = {v + u)/'2 and define the half space

Hz = {x : z'x < z'z} whose boundary passes through u and v (Using ||u|| = \\v\\ = R it

follows that z'v = z'u = z'z/2).

By the symmetry of the normal density, we have

q{x\u)dx = -^ q{x\u)dx.
HiHH^ ^ JHi

Although HidH. does not he in K in general, simple arithmetic shows that HinlH^ — ^jrliT ) Q
fill

A'.
13

Using that /„ w„ r^^ , '?(^|^') = Jn h{t)dt, we have

q{x\u)dx > I
^

q{x\v)dx > I q{x\u)dx — / h{t)dt

1 f
.rV«e-*'/2-=

> -
/

q{x\u)dx -
/

dt
^ JHi Jo \J2i\a

"Indeed, take y £ Hi n (if; - 5?" "Fir ) • We can write y = y^. \\^A + s, where ||s|| < r (since

||j/- lilii (m)| < lly -
-II = lly - ^11 < \\y - "11 + IIIJ' ~ '^11 ^ '') ^"^ s is also orthogo-

nal to z. Since y 6 ('^i ""
a" irfir)'

^"^ ^^^^ \^^ < ^h ~ ^ ~ H^H ~ ^ - ^ ~ ^' Therefore,

Ibll = /(fST^NP < ^{R-ff+r^ = ^JR' - 2Hf + ^ + r2 < R.



where we used that j^ < —^ since r — 4^/du and -^ < j^.

By symmetry, the same inequahty holds when u and Hi are replaced by v and H2

respectively. Adding these inequalities and using (A. 28), we have

f \ 9 4
q{x\u)dx +

/
q{x\v)dx > — - 777^ ^ V3-

HiHK JH2nK J -^U 15\/27r

Thus, we have

\\Pu-PA<\- P-Lr
3

and the result follows since Lr <\. D

Proof of Lemma 1. Starting from an arbitrary point in K, assume that the random

walk makes a proper move. If this is the case note that

max^:Q(^)>o,.4e.4 §4! < mB.^,eK0^ {-iirf- Aet{J-')eh-'J-e^^^+'-^--'^-

The result follows by invoking the CLT restrictions.

Next we show that the probability p of making a proper move is at least a positive

constant. We will use the notation defined in the proof of Lemma 5. Let u be an arbitrary

point in K . We have that

p = j^mmi^^y l^q{x\u)dx>l3e-^'' ^g^^i^q{x\u)dx

^ /^e-^'- Sb^^h^ q{x\u)dx - /;'/^ h{t)dt > i.

D

Proof of Theorem 5. Consider the sample mean defined by

1 ^

i= l

with the underlying sequence (A^'-^, A^'-^, ..., A^'-^) produced by one of the schemes (lr, ss,

ms) as follows:

• for lr, A*'^ = A'"*"^, where A'^-^ is produced by iterating the chain B + i times

starting with an initial draw fi-om /q. Define the density after B steps of the chain

starting with /o by T^/q. Thus A^ has the distribution T^/o, and A*+^ has the

distribution T'+^/o.

• for ss, A*''^ = A^^^, where 5 is the number of draws that are "skipped".

• for ms, A*'^ are i.i.d. draws from T^ fo, i.e. each i-th draw is obtained bj' sampling

an initial point from /o and iterating the chain B times. .
•



We have that

MSE{-[1b,n) = Etbj^ [M5£(/2b,jv|A^ = A)] = Ej

= Ef [MSE{11b,n\>'^ = A)] + Ef

< Ef [MSE{j1b,n\X'^ = A)] + fEf

= {a%/N) + 2g^T''fo-f\\TV,

MSE{J1b,n\X^ = \)
r^/o(A)

MSE{i2b,n\>^^ = A)

r%(A)

/(A)

r^/o(A)

/(A)
- 1

/(A)
- 1

where cr^ yy is the variance of tlie sample average under the assumption that X^ is distributed

exactly according to /. (We also used the fact that \\T^ fo - fWrv = \\\T^k - /lUi-)

The bound on cr~ j^ will depend on the particular scheme, as discussed below.

We require that the second term is smaller than ?/3, which is equivalent to imposing

that \\T^ fo — fWrv < «% Using Theorem 2, since /o is a M-warm start for /,

x/Mfl-C

2

B >

< VMe~

< In
QVMg-

In
Q\/Mg-

Next we bound cr'^y- Specifically, we determine the number of post-burn iterations Ni^,

Ngs, or A^ms needed to set the overall mean square error less than e.

To bound Nir, note that a^ j^ < <Jg < Jo-§i where the last inequality follows from Corol-

lary 2. Thus, Nij. = 2a 6 ^^-^^ q ^^^ above suffice to obtain MSE{j1b,n) < £

To bound Nss, we first must choose a spacing S to ensure that the autocovariances 7^

71n < 70 + 2Af7i < 70 + 2iV7o (
1

f-

where we used Corollary 2 and that A''-^ and A'+^'^ are spaced by S steps of the chain. By

choosing the spacing S as

2\5
< e"'^^ < .,..e.S,l,„(^)



and using Nss = , the mean square error for the ss method can be bounded as
e

MSE{j1b,n) < j^ (70 + 2Ar,37i) + 25^^/0 -/IItk

To bound Nms, we observed that 7/,- = for all /c 7^ implying that A'ISE{'p,B^j\!) <

^ + £/3 < £ provided that Nr,is > 2jo/{3e). D

Proof of Theorem 6. Given

A' = B(0, IJA'II) where ||A'f = erf,

our condition Cl is satisfied by the argument given in proof of Ghosal's Lemma 4. Further,

our condition C2 is satisfied by the argument given in the proof of Ghosal's Lemma 1 with

£1=0 and

1
/ fed ^ ,^. cd ^ ,

,^2=0 \ —Bin{0) + —B2n{c)
6 \\ n n

and our condition C3 is satisfied since by E3 and E4

02\\Kf-Q. D

Comment A.l. Ghosal [17] proves his results for the set K' = B{0,C\/d\ogd). His

arguments actually go through for the set A' = B(0,CVd) due to the concentration of

normal measure under d ^ 00 asymptotics. For details, see [3].

Proof of Theorem 7. Take K = B{0, \\K\\), where \\Kf = Cdi for some C sufficiently

large independent of d (see [3] for details). Then condition Cl is satisfied by the argument

given in the proof of Ghosal's Lemma 4 and NE3. Further, condition C2 is satisfied by the

argument given in the proof of Ghosal's Lemma 1 and NE3 with

£1 = Op (C + (1 + 52n)SlnVd?j ,

£2 = Op
f

<52. + <5.?„ + ( A&1„(0) + —B2n{C)

and condition C3 is satisfied since by E3, E4, NE3, and NE4,

e2\\Kf^0. a

Comment A. 2. For further details and discussion, see [3].



Appendix B. Bounding log-/?-concave functions

Lemma 7. Let / : IR —> IR 6e a unidimensional log-P-concave function. Then there exists

a logconcave function 5 ; IR -^ IR such that

Pgix) < f[x) < g{x) for every a; € IR.

Proof. Consider h{x) = lnf{x) a (ln/3)-concave function. Now, let m be the smallest

concave function greater than h{x) for every x, that is,

{k k k -^

^\rh{yi) : fc e N,A e IR'',A > 0,^A, = l,^A,yi = x\ .

1=1 1=1 i=\ J

Recall that the epigraph of a fuirction w is defined as epi^, = {{x,t) : t < w{x)}. Using

our definitions, we have that epim = conv(epi^) (the convex hull of epi/j), where both sets

he in IR". In fact, the values of m are defined only by points in the boundary of conv(epi/i).

Consider {x,m{x)) e epim, since the epigraph is convex and this point is on the boundary,

there exists a supporting hyperplane H on (x, m{x)). Moreover, [x, m{x)) G conv {epijiOH).

Since H is one dimensional, (a;,?7i(a;)) can be written as convex combination of at most 2

points of epifi.

Furthermore, by definition of log-/?-concavity, we have that

lnl//?> sup Xh{y) + {l~X)h{z)-h{Xy + {l-X)z).
\e[0,l],y,z

Thus, h{x) < m{x) < h{x) +ln(l//?). Exponentiating gives f{x) < g{x) < 4/(a;), where

g{x) = e'"^^) is a logconcave function. D

References

[1] D. Applegate and R. Kannan, Sampling and Integration of Near Logconcave Functions, Proceedings

23th ACM STOC, 156-163, 1993.

[2] O. Barndorff-Nielsen, Information and exponential families in statistical theory. Wiley Series in

Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1978.

[3] A. Belloni and V. Chernozhukov, On the Asymptotic Normality of Posterior Distribu-

tions of Curved Exponential Families under Increasing Dimensions, IBM Research Report,

http://web.mit.edu/belloni/www/curvexp.pdf.

[4] P. J. BiCKEL and J. A. Yahav, Some contributions to the asymptotic theory of Bayes solutions, Z.

Wahrsch. Verw. Geb 11, 257-276 (1969).

[5] BUNKE, O., MiLHAUD, X., 1998. Asymptotic behavior of Bayes estimates under possibly incorrect mod-

els. The Annals of Statistics 26 (2), 617-644.

[6] G. Casella AND C. P. Robert, Monte Carlo Statistical Methods, Springer Texts in Statistics, 1999.



G. Chamberlain, Asymptotic efficiency in estimation with conditional moment restrictions. Journal

of Econometrics 34 (1987), no. 3, 305-334

V. Chernozhukov and H. Hong, An MCMC approach to classical estimation, Journal of Econometrics

115 (2003) 293-346.

S. Chib, Markov Chain Monte Carlo Methods: Computation and Inference, Handbook of Econometrics,

Volume 5, by J.J. Heckman and E. Learner, 2001 Elsvier Science.

S. G. Donald, G. W. Imbens, W. K. Newey, Empirical likelihood estimation and consistent tests

with conditional moment restrictions. Journal of Econometrics, 117 (2003), no. 1, 55-93.

R. Dudley, Uniform Cental Limit Theorems, Cambridge Studies in advanced mathematics (2000).

B. Efron, The geometry of exponential families, Annals of Statistics, 6 (1978), no. 2, 362-376.

G. S. FiSHMAN, Choosing sample path length and number of sample paths when starting at steady state,

Operations Research Letters, Vol. 16, No. 4, November 1994, pp. 209-220.

A. Frieze, R. Kannan and N. Polson, Sampling from log-concave functions. Annals of Applied

Probability 4, pp. 812-834.

J. Geweke and M. Keane, Computationally Intensive Methods for Integration in Econometrics, Hand-

book of Econometrics, Volume 5, by J.J. Heckman and E. Leamer, 2001 Elsvier Science.

C. J. Geyer, Practical Markov Chain Monte Carlo, Statistical Science 1992, Vol. 7, No. 4, 473-511.

S. Ghosal, Asymptotic normality of posterior distributions for exponential families when the number

of parameters tends to infinity. Journal of Multivariate Analysis, vol 73, 2000, 49-68.

L. P, Hansen and K. J. Singleton, Generalized instrumental variables estimation of nonlinear ra-

tional expectations models, Econometrica 50 (1982), no. 5, 1269-1286.

L Ibragimov and R. Has'minskii, Statistical Estimation: Asymptotic Theory, Springer, Berlin (1981).

G. W. Imbens, One-step estimators for over-identified generalized method of moments models. Rev.

Econom. Stud. 64 (1997), no. 3, 359-383.

M. Jerrum and A. Sinclair, Conductance and the rapid mixing property for Markov chains: the

approximation of permanent resolved. Proceedings of the 20th Annual ACM symposium on Theory of

Computing (1988), 235-244.

M. Jerrum and A. Sinclair, Approximating the peimanent, SIAM Journal on Computing, 18:6 (1989),

1149-1178.

R. Kannan and G. Li, Sampling according to the multivariate normal density, 37th Annual Symposium

on Foundations of Computer Science (FOGS '96), pp. 204.

R. Kannan, L. Lovasz, and M. Simonovits, Isoperimetric Problems for Convex Bodies and a Local-

ization Lemma, J. Discr. Comput. Goem., volume 13, (1995), pp. 541-559.

R. Kannan, L. Lovasz, and M. Simonovits, Random walks and an 0'{n^) volume algorithm, for

convex bodies, Random Structures and Algorithms, volume 11, (1997), pp. 1-50.

C. KiPNIS AND S. R. S. Varadhan, Central limit theorem for additive functionals of reversible processes

and applications to simple exclusions, Comm. Math. Phys., 104, 1-19.

E. L. Lehmann and G. Gasella, Theory of point estimation. Second edition. Springer Texts in

Statistics. Springer-Verlag, New York, 1998.

J.S. Liu, L. Tian and L.J. Wei Implementation of estimating-function based inference proced.ures with

MCMC samplers. Journal of American Statistical Association, to appear.



[29] J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, New York 2001.

[30] L. LOVASZ AND M. SiMONOVlTS, Random Walks in Convex Bodies and an Improved Volume Algorithm,

Random Structures and Algorithm, 4:4 (1993), 359-412.

[31] L. LoVASZ AND S. Vempala, The Geometry of Logconcave Functions and Sampling Algorithms, To

appear in Random Structures and Algorithms.

[32] L. LoVASZ and S. Vempala, Hit-and-Run is Fast and Fun, Technical report MSR-TR-2003-05, 2003.

Available at http://www-math.mit.edu/ vempala/papers/logcon-hitrun.ps.

[33] L. LovASZ and S. Vempala, Hit-and-Run from a Comer, Proc. of the 36th ACM Symp. on the

Theory of Computation (STOC'04)(2004), pp. 310-314.Available at http://www-math.mit.edu/ vem-

pala/papers/start.ps.

[34] N, POLSON, Convergence of Markov Chain Monte Carlo Algorithms, Bayesian Statistics 5, pp. 297-321

(1996).

[35] S. PoRTNOY, Asymptotic behavior of likelihood methods for exponential families when the number of

parameters tends to infinity. Ann. Statist. 16 (1988), no. 1, 356-366.

[36] G. O. Roberts and R. L. Tweedie, Exponential Convergence of Langevin Diffusions and Their

Discrete Approximations Bernoulli, 2, (1996), pp. 341-364.

[37] C. J. Stone, M, H. Hansen, C, Kooperberg, and Y. K. Truong, Polynomial splines and their

tensor products in extended linear modeling. With discussion and a rejoinder by the authors and Jianhua

Z. Huang. Annals of Statistics, 25 (1997), no. 4, 1371-1470.

[38] A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes Spring Series

in Statistics (1996).

[39] S. Vempala, Geometric Random Walks: A Survey, Combinatorial and Computational Geometry, MSRI

Publications Volume 52, 2005.

3521 83










