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Introcuction

In the following paper we discuss some properties of the op-

(..•i<..il path Lit. the multiple capital goods case. We denote by k

the n-dimensional veciOr of per capita capital and by k the

rates of change par unit of time. We ass;ame that the aim is to max-

imize fe ^(k,k)dt where V gives the maximum utility obtained
i'

from c:onsumption with given k and k, and 6 is the rate of dis-

count. This is the case discussed in numerous papers and here

we focus our attention on the behavior of the Euler differential

equations around the steady state.

Samuelson [5] has proved that for the case 6=0 we have, at

an optimal steady state, a saddle-point with the characteristic

roots coming in pairs of X and ~X . For the analogues discrete

model he has proved [6,7] that the roots come in reciprocals X

and ?. Thus, in both cases the behavior of the path around the

steady state is that of a saddle-point. We refer to this situation

as "stability in the saddle-point sense".

Kurs [1] has generalised this Samuelson-Poincare theorem by

considering the case of <S > 0, that is the case of positive dis-

count rate. Kurz proves for this case that it is impossible for

the optimal path to be^'^^table one; either we have a saddle-point

around the steady state ofV^IHstability. Thus an optimal steady

* We T7ish to acknowledge NSF grants GS-253 for the first author and GS-1812

for the second author.

1) . .

See Similar formulation in Samuelson and Solow [4]

.
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2)
state may be stable or unstable xn the saddle-point sense.

Kurz's presentation is different from that of Samuelson since his

treatnent is based on a generalized system which includes the shadow

prices.as wel^i..

>^^/ cand considerably simpler^
In this paper we give^lternativ^V^roof to the Kurz theorem

within the framework of classical calculus of variations, as

Samue.-son is using, without introducing dual variables. We prove

for ;) > that if X is a characteristic root then -X+6 is

also a characteristic root. '

Another problem which we take up in this paper concerns the

possibility of having purely imaginary roots X and -X for the case

6=0. If this were possible then it would imply lack of saddle-

point stability for an optimal steady state with 6=0, which

seems very strange. Indeed <, Samuelson 's writings seem to imply

[5,7] that for the case 6=0 and concave production function and

utility function (that is strictly concave V) it is impossible

for the characteristic roots to be purely imaginary. That is,

his conjecture is that when the integrand is strictly concave in

e

k and k it is always the case that the optimal path has a

saddie-point behavior. Kurz, on the other hand, raised the pos-

sibi.lity of total instability for the case 6=0. Kurz does not

state, however, whether he is discussing the case of a concave in-

tegrand or not. In this paper, we prove as Samuelson conjectures,

that when 6=0 the optimal path around the steady state has in-

2) Tne case of total instability is connected with multiple optimal

steady state in which some are saddle-points and some are unstable

[2,3].



~ 3 -

deed the saddle-point behavior for strictly concave V.

All the theorems are proved also for the discrete time model.

Zr.i this case,, the aim is to maximize j; 3 v(k^k, ,) where k
t=0 ^

is n-vect-or of per capita capitals at t, 3 is the discount factor

(0 < 3 g 1) and V is a 2n arguments function giving the max-

imum utility of consumption for known k and k , . We prove

that the characteristic roots come in pairs of X and ^r . In

the case 3=1 and V strictly concave it is impossible for any

of the roots to be of absolute value 1 and we always have a

saddle-point. This is the discrete time counterpart of the theo-

rem stating that in continuous-time models we cannot have purely

imaginary roots when 6=0 and V strictly concave.

2. The Continuous and Discrete Models.

In the continuous case we wish to maximize fe \;'(k,k)dt .

As shown in [4] and [5] the Taylor's expansion o± Euler Equations

around the steady state (k=0) yields

(1) (V^.^.)(y) + HVj^
3^

)-(V3^
j^

)-6(V3^
j^

)] y - [(V,,.k.)+6Vj^ j^
](y) =

13 13 31 13 13 13

whera y = k-k* are n-vectors of deviations from optimal steady

state values and where (V^ ^ ) , (V^ , ) , (V, ^ ) , (V, , ) , with
k^kj k^kj k^kj k^kj

i,j = l,...,n f are notations for the nxn matrices composed of

the appropriate partial derivatives evaluated at an optimal steady

state. Denote A = (Vj^ ^ ) ^ S =
^^k j^ ) ^ ^ " ^\ k ^ ' ^^'^ "®

i j i j i J

observe B' = (V^ , ) (prime denotes the transposed matrix) . The
3 2.

characteristic equation of this system iss



(2) ' IJAX^ + (B-B'-(SA)X - (C+dB^I! = .

A BUnder the assumption of strict concavity the matrix (_ , _)
B C

is negative definite,

For the discrete case, as mentioned, the aim is to maximize
00

t
Z 3 V(k ,k. ,) where V gives max itial utility for given k. ,k. ,,

Taylor expansion of the system of Eu ^er-like difference equations

• 1^ 3)yields:

(3) 3(V
.)(^'t+2^ ^ ^^\i^j>-^^^V 1.3 )5(^t^l^-^

^t-l^t Vt ^t-l^t-1

+ (V . . ) (x. ) =0
Ic V'^

where x. are n-vectors of deviations from optimal steady state

values, i.e., x. = k.-k*.

We denote {V ^ A = h , {V ^ . ) = B , (V ^ . )=C andW W~i ^t-i^t-1

observe V . . = B'« The characteristic equation of the Euler-
kj -I K.'j_

t— i c.

like system of difference equations is

(4) iJgB'X^ + CA+3C)A + B|J = .

Characterizations of the Optimal Path

Theorem 1. If X is a characteristic root of the polynomial equa-

tion (2) then -X+6 is a root as well.

Proof. Let us substitute -X+6. This yields with trivial calculations

A{6-X)^ + (B-B'-6A)(6-|^) - (C+6B} = AX^ -S- (B-B •+6A) (-X) - (C+6B')

3)
See the analogous case in Samuelson [5,7] with characteristic

equation of the same form.
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However, we already know that ' |jAX^ + (B-B''-6a)X - (C+6By
||
= and

as transposing does not change the value of the determinant, we

find that -X+6 is also a root. This theorem gives Kurz's con-

clusions that the only possibilities are either saddle-point or

complete instability. We cannot have complete stability since if,

say, the real part of X is negative then the real part of the

related root -X+& cannot be negative too.

In the following theorem, we show that in the case 6=0 we

always have a saddle-point, that is purely imaginary characterixtic

roots are impossible.

Theorem 2

.

The characteristic equation ' |}AX + (B-B')X - i\\ posesses

no purely imaginary root.

Proof. Assume X = 10 to be a characteristic root. The matrix

2
AX -s- (B-B')X - C possesses a non-trivial solution

2
(AX + {B-B')X - C) (x+iy) = where x and y are n-dimensional

real vectors not both zero. Multiplying this equation by (x-iy)

'

we get

(5) (x-iy) ' [AX^ + (B-B')X - C] (x+iy) = .

Let us now compute the following quadratic form (defining X

to be the conjugate of X)

:

(6) [X (x-iy) ', (x-iy) 'I (^ ^') L^^+iy^^ ^ = XX(x-iy) 'A(x+iy) +

+ X (x-iy) 'B (x+iy) + X (x-iy) 'B' (x+iy) + (x-iy) 'C (x+iy) .

As X is purely imaginary X = -X and we obtain for (6)

(7) -(x-iy) 'A (x+iy) X^ + (x-iy) ' (B'-B) (x+iy) X + (x-iy) 'C (x+iy) .

Thus, we see that:
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(8) [X(x-iy);x-iy]' (^ ^')
[^^^^J^^]

=

= -(x-iy)'[AX^ + (B-B')X - C] (x+iy) =

where the equality to zero follows from (5)

.

A B

'

However, the matrix (» _ ) is a symmetric negative definite

matrix and for any negative definite symmetric matrix H, the

quadratic for z'Hz", as in (5), is negative for z ^^ 0. Hence, the

left hand side of (8) should be negative, a contradiction. It

follows that all the roots of this characteristic equation must

have non-vanishing real parts.

Theorem 3

.

(The discrete case) , If X is a solution of equation

1
(4) then yq ^^ also a solution.

Proof. By substitution in (4) we obtains

&B' (^)2 + (A+BC)^ -}- B .

2Multiplying all the elements by BX the determinant of this ma-

trix is multiplied by B^X^^ and we get B' + (A+BC) X + BBX^.

2Transposing, we finally have BB'X + (A+BC) X + B. However, we

already know that ^|(BB'X^ + (A+BC) X + ^|j = 0. Thus, ^ is also

a root.*

We find then that it is impossible for both roots to be within

the unit circle. In the case 1 < [Xj < ^ both roots will be

outside the unit circle and we shall obtain the unstable case. In

the case of no discounting, B=l t the only conceivable case of

non-saddle-point is the case of |XJ =1. However, the following

Ail this assumes that X j^ or that ^

j^H f^ i we neglect this

singular case.



- 7 -

theorem shows that in the strictly concave case this is impossible.

Theorem 4. The equation ^|jB'X + (A+C) X + b(| = possesses no

roots on the unit circle.

Assume that this equation possesses a root on the unit circle,

i.e., X is a root with X-X =1.
2As B'X + (A+C) X + B is a singular matrix, there is a non-

trivial solution to the system.

[B'X^ + (A+C)X + B] (x+iy) = .

Multiplying on the left side with X(x-iy) ° and using XX = 1 we

find

(9.! (x-iy)'[B'X + (A+C) + BX] (x+iy) = .

Let us look at the following quadratic form

(10) [X(x-iy)',(x-iy)'] (^, ^) [^(^tiy)]
= (x-iy) ' (A+C) (x+iy) +

(x-iy) 'B(x+iy)X + (x-iy) 'B' (x+iy) X =

(x-iy) '[B'X + (A+C) + bX] (x+iy) = .

A B ... . .

However, as ( , ) is negative definite symmetric matrix

multiplied on both sides by conjugate vectors it should be nega-

tive, a contradiction. Thus, also for this case, we find that

3=1 is always a case of saddle-point and again, complete instabi-

lity is impossible in the case where V is strictly concave.
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