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Abstract

This paper systematically analyzes the observational learning paradigm of

Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992). We first

relax the informational assumption that is the linchpin of the "herding' re-

sults, namely that individuals' private signals are uniformly bounded in their

strength. We then investigate the model with heterogeneous preferences, and

discover that a 'twin' observational pathology generically appears: Optimal

learning may well lead to a situation where no one can draw any inference

at all from history! We also point out that counterintuitively. even with a

constant background "noise" induced by trembling or crazy individuals, public

beliefs generically converge to the true state of the world.

All results are cast within a simple dynamic mathematical framework that

is (i) rich enough to describe a rich array of observational learning dynamics;

and (ii) amenable to economic modifications that hinder or abet informational

transmission, and sometimes permit full belief convergence to occur.
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1. INTRODUCTION

Suppose that a countable number of individuals each must make a once-in-a-lifetime

binary decision
1 — encumbered solely by uncertainty about the state of the world. As-

sume that preferences are identical, and that there are no congestion effects or network

externalities from acting alike. Then in a world of complete and symmetric information,

all would ideally wish to make the same decision.

But life is more complicated than that. Assume instead that the individuals must decide

sequentially, all in some preordained order. Suppose that each individual may condition

his decision both on his (endowed) private signal about the state of the world and on all

his predecessors" decisions, but not their private signals. The above simple framework was

independently introduced in Banerjee (1992) and Bikhchandani et al. (1992) (hereafter

denoted BHW). Their perhaps surprising common conclusion was that with actions and

not signals publicly observable, there was a positive chance that a 'herd' would eventually

arise: Everyone after some period would make the identical less profitable decision.

This is a compelling "pathological' result: Individuals do not eventually learning the

true state of the world despite the more than sufficient wealth of information. So let's

seriously analyze the model whence it arises. For we believe that learning from others'

actions is economically important, and perhaps encompasses the greater part of individ-

ual information acquisition that occurs in society at large. As such, from a theoretical

standpoint, it merits the scrutiny long afforded the single-person learning results, and the

rational expectations literature.

In this paper, we attempt a systematic analysis of the above observational learning

paradigm on two fronts: First, we develop a simple dynamic mathematical framework

rich enough to describe a rich array of observational learning dynamics. This offers key

insights into the probabilistic foundations of observational learning, and that allows us to

relatively painlessly generalize the economics at play. Second, we refer to the results of

Banerjee (1992) and BHW as the standard herding story, and proceed to spin alternative

more economic stories which question the robustness of their pointed conclusion. We in

fact find that herding is not the only possible 'pathological' outcome. For not only is it

possible that all individuals may almost surely end up taking the correct action, but under

just as plausible conditions, social dynamics may well converge to a situation where no one

can draw any inference at all from history! We relate this 'confounded learning' outcome

to a result due to McLennan (1984) from the single-person experimentation literature. We
then argue that the twin pathologies of herding and confounded learning are essentially

the only possible ways in which individuals eventually fail to learn the truth.

On Herding and 'Cascades'

While 'herding' certainly has a negative connotation, BHW in fact pointed out that

everyone would almost surely eventually settle on a common decision. For this reason,

they introduced the arguably more colorful terminology of a cascade, referring to any

such infinite train of individuals who decide to act irrespective of the content of their

1 Economic examples include whether to invest in a newly opening and soon to be closing market. A

historical instance might have been the decision to enjoy the maiden voyage of the Titarnj.



signal. While we find this terminology useful and shall adopt it. we still succomb to the

herd in denoting these works and those that followed them the 'herding* literature. The
common thread linking these papers is the herding "pathology" that arises under sequential

decision-making when actions and not information signals of previous decision makers are

observable. 2

This definition indirectly rules out the model of Lee (1993). who allows for continuous

action spaces which together with a continuous payoff function can perfectly reveal (at

least a range of) private signals!
3 That no herding arises in Lee*s context should come as

little surprise — at least to those that read this paper. Indeed, herding pathologies were

absent from the rational expectations literature for this very reason. 4
since the Walrasian

price can adjust continuously. As a result, with one-dimensional information at least,

marginal changes in individuals' private signals all have impact on the publicly-observed

price. It is necessary in some sense that the entry of new information be endogenouslv

"lumpy" for herding to occur (so that it can eventually be choked off altogether).

A Tour of the Paper
We first focus on the key role played by the informational assumptions underlying the

standard story. A crucial element is that the individuals cannot get arbitrarily strong pri-

vate signals, so that their private likelihood ratio is bounded away from zero and infinity.

For in that case, a finite history can provide such a strong signal, that even the most

doctrinaire individual dare not quarrel with its conclusion. When this "bounded beliefs''

assumption is relaxed, incorrect herds cannot arise — and in fact, eventually all individuals

will make the correct choice.
6 That result is an application of the Borel-Cantelli Lemma,

since if individuals were herding on a wrong action, then there would with probability one

appear an individual with so strong a private belief that he would take another action,

thereby revealing his very strong information and overturning the herd. Indeed, casual

empiricism suggests that individuals who are arbitrarily tenacious in their beliefs do exist.

But this assumption is largely a modelling decision, and therein lies its ultimate justifica-

tion. For it provides us with a richer model than possible in the standard story, allowing

us to consider natural economic modifications that hinder informational transmission, and

ask if convergence still (almost surely) occurs. This natural approach to robustness was

simply not possible in the framework of Banerjee (1992) and BHW.
That a single individual can 'overturn the herd' turns out to be the key insight into the

nonexistence of herding with unbounded beliefs. So our first key economic innovation is

to prevent this from happening, and introduce noise into the model. Counterintuitively,

2
It is noteworthy that by this definition, herding was discovered in some veiled form in a concluding

example in Jovanovic (1987).
3 Contrast, for a moment Banerjee's (1992) model which had a continuous action space but a discon-

tinuous payoff function.
4 To be perfectly clear, we are referring to the literature on dynamic price formation under incomplete

information. For a good take on this field, see Bray and Kreps (1987).
5 This assumes that individuals can continuously adjust their trading quantities. If not, Avery and

Zemsky (1992) have shown that a temporary herd may arise.

6 This idea, not as cleanly expressed, was introduced in Smith (1991), which this paper and Smith and

Sorensen (1994) now supersede.



even with a constant inflow of crazy individuals, we still find that learning is complete

in the sense that everyone (sane) eventually learns the true state of the world. We then

turn to a parallel reason why the actions of isolated individuals need not matter, namelv
multiple individuals' types. That is, we relax the assumption that all individuals have the

same -preferences. This obviously was a crucial underlying tenet for the herding results

of Banerjee (1992) and BHW. For instance, suppose on a highway under construction,

depending on how the detours are arranged, that those going to Chicago should merge
right (resp. left), with the opposite for those headed toward St. Louis. If one knows that

roughly 75% are headed toward Chicago, then absent any strong signal to the contrary,

those headed toward St. Louis should take the lane 'less traveled by'. That the resulting

dynamics might converge to a totally uninformative inference even with arbitrarily strong

private signals is the surprising content of Theorem 8.

We conclude with a brief discussion of costly information and payoff externalities. We do

not study endogenous timing, as we have little to add to the recent findings of Chamley and

Gale (1992). In a separate more involved work in progress, we investigate what happens

when individuals do not perfectly observe the order of previous individuals' moves. This

is yet another (more typical) reason for why contrary actions of isolated individuals might

have very little effect. Lmfortunately. standard martingale results cannot be applied, and

therefore it falls outside the scope of this paper.

Identifying the appropriate stochastic processes that are martingales turns out to have

been a crucial step in our analysis. The essential analytics of the paper build on the fact

that public likelihood ratio is (conditional on the state) a martingale and a homogeneous

Markov chain. The Markovian aspect of the dynamics allows us (just as it did Futia

(1982)) to drastically narrow the range of possible long run outcomes, as we need only

focus on the ergodic set. This set is wholly unrelated to initial conditions, and depends

only on the transition dynamics of the model. By contrast, the Martingale property of

the model — which is unavailable in Futia (1982) — affords us a different glimpse into

the long run dynamics, tying them down to the initial conditions in expectation. As it

turns out. this allows us to eliminate from consideration the not implausible elements of

the ergodic set where everyone entertains entirely false beliefs in the long run.

Section 2 outlines the basic mathematical framework within which we are operating.

Section 3 takes a brief mathematical detour, developing some key generic insights on the

underlying probabilistic dynamics. We return to the characterization of when herding oc-

curs in section 4, and explore the robustness in sections 5, 6, 7. An appendix, among other

things, derives some new results on the local stability of stochastic difference equations.

This result, whose absence from the literature (to our knowledge!) greatly surprised us,

ought to prove widely applicable across economics and the mathematical (social) sciences

in general.



2. THE STANDARD MODEL
2.1 Some Notation

We first introduce a background probability space (Q.£,v). This space underlies all

random processes in the model, and is assumed to be common knowledge.

An infinite sequence of individuals n = 1.2,... sequentially takes actions in that exoge-

nous order. Individuals observe the actions of all predecessors. There are two states of

the world (or more simply, states), labelled H ('high") and L ('low'). Formally, this means
that the background state space Q is partitioned into two events QH and Q L

, called H
and L.' The results derived below will go through with any finite number of states, but

the notation becomes considerably harder. Therefore we stick to the two states case, and

later explain carefully how we can modify the analysis to more states. Let the common
prior belief be that v{H) = u(L) = 1/2. That individuals have common priors is a stan-

dard modelling assumption, see e.g. Harsanyi (1967-68). Also, a flat prior over states is

truly WLOG. for it will turn out that more general priors will be formally equivalent to a

renormalization of the payoffs, as seen in section 2.2 below.

Individual n receives a private random signal, o~n £ E, about the state of the world.

Conditional on the state, the signals are assumed to be i.i.d. across individuals. It is

common knowledge that in state H (resp. state L), the signal is distributed according

to the probability measure p.
H

(resp. fx
L

). Formally, we mean that an : Q —> E is a

stochastic variable, and /j,

H = vH o a~ l and \i
L = vL o cr"

1
, where vH (resp. uL ) is the

measure u conditioned on the event QH (resp. QL
). To ensure that no signal will perfectly

reveal the state of the world, we shall insist that n
H and n

L be mutually absolutely

continuous. 8 Consequently, there exists a positive and finite Radon-Nikodym derivative

g = dfj.
H
jd[i

L
: I! —¥ (O.oc) of (x

H
w.r.t. n

L
. And to avoid trivialities, we shall rule out

g = 1 almost surely,
9 so that /i

H and fi
L are not the same measure; this will ensure that

some signals are informative about the state of the world.

Using Bayes' rule, the individual arrives at what we shall refer to as his private belief

p{a) = g(a)/(g(a) + l) € (0, 1) that the state is H. Conditional on the state, private beliefs

are i.i.d. across individuals because signals are. In state H (resp. state L), p is distributed

with a c.d.f. FH (resp. c.d.f. FL
) on (0, 1). The distributions FH and F L are subtly linked.

In Appendix A, we prove among other things that FH and FL have the same support, 10

and that FL -FH
increases (weakly) on [0, 1/2] and decreases (weakly) on [1/2, 1]. Denote

the common support of FH and FL by supp(F). The structure of supp(F) will play a

major role in the definition of herds. Observe that the common support of FH and FL
,

which we shall denote supp(F), coincides with the range of p(-) on E.
11

It is therefore

7 For later reference, refer to the restricted sigma fields as £H and £L ,
respectively.

"Recall that n
H

is absolutely continuous w.r.t. \i
L

if (jl
l (S) = => n" (S) = VS £ S, where 5 is

the CT-algebra on I. By the Radon-Nikodym Theorem, there exists then a unique g € L 1
(ijl

l
)
such that

M"(S) = fs gdn
L

for every 5 € 5. See Rudin (1987).
9Note that with \x

H and fi
L mutually a.c, "almost sure" assertions are well-defined without specifying

which measure.
10Recall that the support of a probability measure is any measurable set accorded probability 1. But

throughout the paper, 'the' support is well-defined modulo measure zero equivalence. -
^

1 ' While the Radon-Nikodym derivative g is only determined with probability one, we canselect a version



important to observe that the underlying results are ultimately driven by the probability

measures n
H and n

L
, which are the primitive of the model.

By construction, co(supp(F)) = [6,6] Q [0. 1] with < 6 < 6 < l.
12 We shall say that

the private beliefs are bounded if < 6 < 6 < 1. If co(supp(F)) = [0, 1], we simply call the

private beliefs unbounded.

Each individual can choose from a finite set of actions (ami m G M), where M =
{1 M}- Action am has a (common) payoff uH (am ) in state H and u L {am ) in state L.

The objective of the individual is to take the action that maximizes his expected payoff.

We assume WLOG that no action is weakly dominated (by all other actions), and to avoid

trivialities we insist that at least two such undominated actions exist. Before deciding upon

an action, the individual can observe the entire action history. We shall loosely denote the

action profile of any finite number of individuals as h. Exactly how the individual uses

that history is considered in the next subsection.

2.2 Preliminary Results

Action Choice

Given a posterior belief r 6 (0, 1) that the state is H, the expected payoff of action a

is ruH (a) + (1 — r)uL (a). Figure 1 portrays the content of the next result.

Lemma 1 The interval (0, 1) partitions into relatively closed subintervals I\, . .

.

, Im over-

lapping at endpoints only, such that action am is optimal when the posterior r 6 Im .

Proof: As noted, the payoff of each action is a linear function of r. Hence, because by

the assumption that action am is strictly best for some r, there must be a single open

subinterval of (0. 1) where action am strictly dominates all other actions. That this is

a partition follows from the fact that there exists at least one optimal action for each

posterior r E (0,1).

We now WLOG strictly order the actions such that am is optimal exactly when the

posterior r € [fm-i,fm ]
= Im , where = f < fi < • • • < f\f = 1. Let us further introduce

the tie-breaking rule that individuals take action am , and not am+i, whenever r = fm .

Note that action a a,/ (resp. a x ) is optimal when one is certain that the state is H (resp. L).

Indeed, perfect information leads one to take the correct action, and with more actions

than states, we might think of it as one of the 'extreme' actions; however, as decisions are

generally taken without the luxury of such focused beliefs, an 'insurance' action may well

be chosen.

We can now see how unfair priors are equivalent to a simple payoff renormalization, as

asserted earlier. For the characterization in Lemma 1 is still valid, since reference is only

made to the posterior beliefs; moreover, the key defining indifference relation fm u
H
(am ) +

(1 - fm )u L {am ) = fmuH(am+i) + (1 - fm )uL {am+ i) implies that

1 - fm u"{am )
- uH (am+l )

posterior odds = —z = —n—^

T7 T
rm uL {am )

- uL {am+ i)

of it such that the above holds.

'-'Here, co(.4) denotes the convex hull of the set A.
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Figure 1: Example Payoff Frontier. The diagram depicts the payoff of each of five

actions as a function of the posterior belief r that the state is H. The individual simply

chooses the action yielding the highest payoff.

Since unfair priors merely serve to multiply the posterior odds by a common constant, the

thresholds f ,

.

.
.

, fM are all unchanged if we merely multiply all payoffs in state H by the

same constant.

Individual Learning
We now consider how an individual's optimal decision rule incorporates the observed

action history and his own private belief. In so doing, we could proceed inductively, and

first derive the first individual's decision rule as a function of his private belief; next, we

could describe how the second individual bases his decision on the private belief and on

the first individual's action, and so on. Instead, we shall collapse this reasoning processes,

and simply say that individual n knows the decision rules of all the previous agents, and

acts accordingly. He can use the common prior to calculate the ex ante (that is, as of

time-0) probability of any action profile h in either of the two states. We shall denote

these probabilities by 7r
H
(h) and ir

L
{h), and let the resulting likelihood ratio that the state

is L (that is, low and not high) be £(h) = ir
L
(h)/ir

H
{h). Similarly, let q(h) be the public

belief that the state is H, i.e.

q(h) =
n*(h)

ir
H(h)+irL (h)

= l/(l + e(h)).

Think of q(h) as the belief an individual facing the history h would entertain if he had a

purely neutral private belief. Given the one-to-one relationship between q and £ = (l—q)/q,

we may also loosely refer to the likelihood ratio as the public belief.



A final application of Bayes rule yields the posterior belief r (that the state is H) in

terms of the public signal — or equivalently the likelihood ratio ((h) — and the private

belief p:

pirH (h) p 1

r =
P 7T

H (h) + (1 - P) 7T
L (h) P + (1 - p) £(h) "

1 + V-^£(h)

Lemma 2 (Private Belief Thresholds) After history h is observed, there exist thresh-

old values pm (h) G (0, 1), such that am is chosen exactly when the private belief satisfies

p G (pm-\{h),pm{h)], where pM(h) = 1 and for all m = M - 1.

Pm(h) fm
-t{h) (2)

1 - Pm(h) 1 - fr

The proof is simple. The thresholds simply come from a well-known reformulation of (1)

as posterior odds (1 — r)/r equal the private odds (1 —p)jp times the likelihood ratio ((h).

The strict inequalities are consequences of the tie-breaking rule, and the fact that (1) is

strictly increasing in p.

Observe that corresponding to f (h) = and fM (h) = 1, we have po(h) = and

P.\f(h) = 1 after any history h. Later, when referring to (2) and elsewhere, we shall

suppress the explicit dependence of £(h) on h whenever convenient, and write pm (£) instead

of pm(h). This is not entirely unjustified because the likelihood ratio is a sufficient statistic

for the history. Written as such, £ •->• pm (£) is an increasing function.

Corporate Learning

We.shall denote the likelihood ratio and public belief confronting individual n as £n and

qn . respectively. 13 Since the first agent has not observed any history, we shall normalize

£i = 1. As signals, and thereby actions, are random, the likelihood ratio (£n ) =̂l and

public beliefs (qn )^=i are both stochastic processes, and it is important to understand

their long-run behavior.

First, as is standard in learning models, 14 the public beliefs constitute a martingale. 10

Lemma 3 (The Unconditional Martingale) The public belief (qn ) is a martingale,

unconditional on the state of the world.

Proof: Individual n's action only depends on the history through £n , or equivalently

qn = 1/(1 -I- £n ). Think of his private belief as being realized after this observation. Ex

ante to this realization, let a^(gn )
(resp. a^(qn )) be the conditional probability that action

am is taken in state H (resp. state L). Then the conditional expectation of the next public

belief is

E[qn+ i | <?i, . .
. , qn ]

= E[qn+ i | qn ]

13Throughout the paper, m subscripts will denote actions, and n subscripts individuals.

14 For instance, Aghion, Bolton, Harris and Jullien (1991) establish this result for the experimentation

literature.

15We really ought to specify the accompanying sequence of cr-algebras is the stochastic process, in order

to speak about a martingale; however, these will be suppressed because they are simply thrones generated

by the process itself.
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w

'i+«.^tej

m^M 9nQ^(<7n) + (1 ~ 9n)o^,(9n)

This martingale describes the forecast of subsequent public beliefs by individuals in the

model, since they do not. of course, know the true state of the world: Prior to receiving

his signal, individual ns best guess of the public belief that will confront his successor is

the current one. But for our purposes, an unconditional martingale tells us little about

convergence. For that, we must condition on the state of the world, and it is well-known

that will render the public belief (qn ) a su6martingale in state H (and a .supermartingale in

state L). i.e. E[qn+\ \
H. q\, . .

.

, qn ]
> qn . This will follow from Lemma 4 below. Essentially,

the public beliefs are expected to become weakly more focused on the true state of the

world — a result much weaker than we seek.

Given that (qn ) is expected to increase in state H, we at least find it rather surprising

(if easy to prove) that (£n ) = ((1 + qn )/qn) remains constant in expectation.

Lemma 4 (The Conditional Martingale) Conditional on the state of the world H
(resp. state L), the likelihood ratio (£n )

(resp. (l/£n )) is a martingale.

Proof: Given the value of £n , the next individual will take one of the available actions,

depending on his prior belief. In state H, action am is taken with some conditional prob-

ability Q^(£n ), while in state L, the chance is a^(£n ). Thus, the conditional expectation

of the likelihood ratio in state H is

E[tn+l \HJ. l ....in}= E[£n+l |
H, in ]

= Y, *m(4) In ^Jf{ = L £ a£(/B ) = £n

meM 0im\''n) meM

Lemma 5 In state H (resp. state L), the likelihood ratio (£n )
(resp. (l/£n )) converges

almost surely to a limiting stochastic variable which takes on values in [0, oc).

Proof: This follows directly from the Martingale Convergence Theorem, as found for

instance in Breiman (1968), Theorem 5.14.

That the limiting likelihood ratio (if it exists) cannot place positive weight on oo was

clear anyway clear, for the martingale property yields E^^
\
H, £i] = £\ = 1. This crucially

precludes individuals (eventually) being wholly mistaken about the true state of the world.

In the sequel, our goals are two-fold. Suppose the state is H. First, we wish to establish

general conditions guaranteeing that £n -» 0, so that all individuals with unconcentrated

beliefs eventually learn the true state of the world. Whenever £ is very close to 0, only

individuals with very strong signals will take a suboptimal action. Second, we also wish

to prove that eventually all individuals will almost surely take the optimal action. While

such a result is perhaps more straightforward, it does not lend itself to the, more general

framework we shall later consider.

8



More States and Actions

The analysis goes through virtually unchanged with a denumerable action space. Rather

than a finite partition of [0, 1] in Lemma 1, we get a countable partition, and thus a

countable set of posterior belief thresholds f.
16 In this way. Lemma 2 will yield the

threshold functions p just as above. The martingale properties of the model are preserved.

We can also handle any finite number S of states. Given pairwise mutually absolutely

continuous measures /i
5
for each state, we could fix one reference state, and use it to define

5—1 likelihood ratios. Again, each likelihood ratio would be a convergent conditional

martingale. The complication is largely notational, as the optimal decision rules become

rather cumbersome. Rather than the simple partitioning of [0, 1] into closed subintervals.

we would now have a unit simplex in K5_1
sliced into closed convex polytopes. We leave it

to the reader to ponder the optimal notation, but we simply assert that the above results

would still obtain.

Herding, Cascades, and Complete Learning

We are now positioned to define some fundamental concepts. We find it best to think

of all dynamics as occurring on two different levels. From an observational point of view,

we wish to use the popular street language of a herd, as adopted in Banerjee (1992). Say

that a herd arises if for some n all agents starting at the nth choose the same action.

But in the more general framework with multiple types and noise that we soon consider,

herds need not arise and yet convergence in beliefs may still obtain. For this notion we

first appeal to BHW's term cascade. We say that a cascade arises if for after some stage

n, supp(F) C {pm-\(£n ) , Pm{£n)} for some m. But even this notion is not sufficient for our

purposes. Adopting the terminology introduced in Aghion et al. (1991), we shall call the

learning complete so long as individuals' posterior beliefs eventually become arbitrarily

focused on the true state of the world: that is, if the interval (pm-i(4):Pm(4)] converges

to a set that contains supp(F) as n —>• oo, where action am is optimal. Otherwise, if

posterior beliefs do not eventually become arbitrarily focused on the true state of the

world, then we shall say that learning is incomplete. Observe that complete learning will

not imply a cascade with unbounded beliefs, for they exist some individuals with signals

so strong as to not wish to ignore them; conversely, if there is a cascade on the optimal

action, then complete learning obtains.

It is easy to see the equivalence of cascades and herds. Indeed, if a cascade on action

am arises at stage n in the above sense, then by Lemma 2, individual n + 1 will (irrespec-

tive of the state) necessarily take action am ; therefore, £n+i = t-m and so a cascade on

action am exists at stage n + 1. Thus, all private belief thresholds are unchanged by (2),

and supp(F) C (pm-i(4+i),pm(Cn)] too. The original intuition of BHW or Banerjee

(1992) obtains: Each individual takes an action which does not reveal any of his private

information, and so the public belief is unchanged.

16 This may mean that we cannot necessarily well order the order the belief thresholds, nor as a result

the actions.



3. DISCRETE DYNAMICAL SYSTEMS

Before tackling the main theorems, we shall step back from the model, and consider a

mathematical abstraction that will encompass the later variations. The general framework

that we introduce includes, but is not confined to, the evolution of the likelihood ratio (£„)

over time viewed as a stochastic difference equation. 1 '

The context is as follows. Given is a finite set M., and functions ip(-
, •) : .M x R+ —> K_

.

and c(-
|
•) : M. x R+. —» [0. 1] meeting two restrictions. First, w{-

\
(!) must be a probability

measure for all £ € R^ , or

£ v(m\£) = 1.

Second, the following "martingale property' must hold for all £ € R+:

Y. v(m\£) <p(mj) = £ (3)

Finally, equip R+. = [0, oo) with the Borel cr-algebra B, and define a transition probability

P : Rl x B -> [0. 1] as follows:

P(LB) = Y, VM?) (4)

for any B 6 B. For our immediate application, one can think of %j){m\£) as the chance that

the next agent takes action m when faced with likelihood £, and <p(m, £) as the resulting

continuation likelihood ratio.

Suppose for definiteness that we are given a (measurable) Markov stochastic process

(( n )n=i on {Sl
H
,£
H .v"). where for each n, £n :

Q" -> R+. Transition from £n to £n+l

is described by the transition probability P. We assume that E£\ < oo; in applications

we shall always assume that £\ is identically 1, so this is not restrictive.
18 Denote by

Tn the cr-field in (Q
H
,£

H
)
generated by (£i,...,£n ). Clearly, £n is jFn-measurable, and it

follows from (3) that (£n ,^n) is actually a martingale, 19 thus justifying our earlier casual

description of property (3). Indeed,

E[£n+l \£ l ,...,£n ]
= E[£n+l \£n}= f tP(£n,dt)= £ 1>(m\en)<p{m,

£

n ) = £n

Since (£n ) is a martingale on R+ , we know from the Martingale Convergence Theorem that

it converges almost surely in R+ . Denote the limiting stochastic variable by £. We now

characterize the limit.

17 Arthur, Ermoliev and Kaniovski (1986) consider a stochastic system with a seemingly similar structure

— namely, a 'generalized urn scheme'. Their approach, however, differs fundamentally from ours insofar

as here it is of importance not only how many times a given action has occurred, but exactly when it

occurred. But while we cannot apply their results, we owe them a debt of inspiration.

18 Notice that the system has a discrete transition function; therefore, if ^i has a discrete distribution

the process will be a discrete (in fact, countably infinite) Markov chain. One might think that it would

be possible to apply standard results about the convergence of discrete Markov chains, but in fact such

results are not useful here. While the state space is certainly countable, all states (which will soon be

interpreted as likelihood functions) are in general transitory, and so standard results are "Useless.

l9No ambiguity arises if we simply say that (£„) is a martingale.
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Theorem 1 (Stationarity) Assume that for all me M. the two functions t -» ~{m . t)

and 1 1—> w(m\£) are continuous. Suppose that £n
—

> £ almost surely. Then for all m e M
and for all £ 6 supp(^), stationarity obtains, i.e.

u>{m\£) > => <p(m,l) =£ (5)

As this theorem will follow from the next theorem, its proof is deferred. That implication

(5) is truly a stationarity condition is best seen — by means of (4) — in its alternative

formulation P{L {£}) = 1.

The intuition behind Theorem 1 is rather simple. Since £n converges almost surely to

('. it also converges weakly (in distribution) to £. As the process is also a Markov chain.

it is intuitive that the limiting distribution is invariant for the transition P. as described

in Futia (1982). In fact, we can prove Theorem 1 along these lines, but the continuity

assumptions are subtly hard-wired into the final stage of the argument to prove that the

limiting distribution is invariant. As we wish to do away with continuity, we establish an

even stronger result. Motivated by the fact that (5) is violated for m exactly when neither

t'(m\£) nor ip(m,£) — £ is zero, we have

Theorem 2 (Generalized Stationarity) Assume that the open interval I C R+ has

the property

3e > W e / 3m € M : il>{m\i) > 5, \<p{m, £) - £\ > e (•)

Then I cannot contain any point from the support of the limit, £.

Proof: Let / be an arbitrary open interval satisfying (•) for e > 0, and suppose by way

of contradiction that there exists I 6 / n supp(^). Let J = {£ - e/2,£ + e/2) n /. By

(*). for all £ € ./, there exists m 6 M. such that ip(m\£) > s, and <^{m,£) & J. Because

I 6 supp(£). there is positive probability that £n € J eventually. But whenever £n € •/.

there is a probability of at least e that £n+\ & J Since (£n ) is a Markov process, the events

{£n 6 J, £n+ \ £ J} =̂ i
are independent. Thus, by the (second) Borel-Cantelli Lemma, the

process (£n ) must almost surely leave J infinitely often — contradicting the claim that

with positive probability it is eventually in J. Hence, £ cannot exist. <C>

Corollary Assume that £ 6 supp(£). Then for each m € M, either £ •-> <p(m, £) or

t >—> w{m\ £) is discontinuous at £, or the stationarity condition (5) obtains.

Proof: If there is an m such that £ does not satisfy (5) and both £ h-> ^(m, £) and

f •-> v(m\£) are continuous, then there is an open interval / around £ in which ip{m\£)

and iy?(m, £) — £ are both bounded away from 0. This implies that (•) obtains, and so

Theorem 2 yields an immediate contradiction.

Finally, it is obvious that Corollary implies Theorem 1.

More States and Actions

Once again, we could easily have handled a countable action space M, as the finiteness

ofM was never used. Also, given any finite number 5 > 2 states of the world, all results

still obtain. For (£n ) would then be a stochastic process in R5_1 , and we need only refer

to the open intervals / and J in Theorem 2 (and its proof) as open balls.

11



4. THE MAIN RESULTS

We are now ready to characterize exactly when either cascades or herding arises. To do
so. we shall recast the model of section 2 in the language of section 3. Fix the likelihood

ratio £, and assume WLOG that the state is H. By Lemma 2. the individual takes action

am exactly when his private belief is in the interval {pm-i(£),pm {£)]. Since this occurs with

chance FH (pm {£)) - FH
(pm _ l {£)) in state H. and with chance F L

{pm {£)) - FL
(pm _

[ {£))

in state L. we have

v(m\n = FH (pm (£))-F
H
(pm^(()) (6)

F L
(Pm(n) ~ F^p^ii))

:(m, £) = £
F«{pm(i))-F"(pm- l (e))

in the notation of section 3.

We know from Lemma 5 that £oc = limn-,.^ £n almost surely exists. We now apply

Theorem 2 to get a precise characterization of the limiting stochastic variable. Recall that

co(supp(F)) = [6,6]. The crucial question is whether the individuals can have arbitrarily

informative private signals or not, i.e. whether [6,6] = [0, 1] or [6,6] C (0. 1).

4.1 Bounded Beliefs

Assume that the private beliefs are bounded. Our approach is two-fold. We first exhibit

"action absorbing basins', each corresponding to an action choice, in which all learning

stops, and individuals act irrespective of their signals. We then argue that in fact the

dynamics eventually almost surely end up in one of these basins, i.e. that cascades must

occur.

Lemma 6 (Action Absorbing Basins) There are (possibly empty) intervals Jx J^
in [O.oc), where Jm = {£

| [pm-i(^)>Pm(0] Q SUPP{F)}. su°b that almost surely when

t G Jm the individual takes action am , and the next likelihood ratio will still be in Jm .

Moreover,

(1) not all intervals are empty, as J\ = {£. oc) and Jm = [0, £] for some < £ < £ < oc;

(2) the intervals have disjoint interiors, and are in fact inversely ordered in the sense that

all elements of Jmj are strictly smaller than any element of Jmi when ni2 > m^.

Proof: Since pm {£) is increasing in m by Lemma 2, \pm-i(£),Pm(£)] is an interval for all

£. Then Jm is the closure all £ that fulfill

ftn-l(0<fi and Pm(t)>b (8)

Then disjointness is obvious. Next, if Jm ^ then FH {pm-x{£)) = and FH {pm {£)) = 1

for all £ € Jm . The individual will choose action am a.s., and so no updating occurs;

therefore, the continuation value is a.s. £, as required.

With bounded beliefs, it is clear that we can always ensure one of the inequalities in (8)

for some £, but simultaneously attaining the two may well be impossible. As Lemma 2

yields p {£) = and p lU {£) = 1 for all i, it follows that we musthave Jfj = [0.£] and

Jx
= [£, oc), where < £ < £ < oc satisfy pM-\{L) = b and p x {£) = b.

12



Finally, let m 2 > mi. with £\ € Jmi and £2 E Jm,. Then

Pm2 -l(^l) > Pm,(*i) > b > 6 > pm2 (£2 ) > prn2 _i(£2 )

and so £2 < ?i because pm2 _i is strictly increasing in £. <)

By rearranging an expression like (2), one can show that £ satisfies (8) precisely when

f-^
b_ +{1

-.m and
h + (l-h)^

fSl i m

This can surely also obtain for nonextreme (insurance) actions, and is less likely the smaller

is b. the larger is 6, and the smaller is the interval [fm_i,fm ].

Theorem 3 (Cascades) Assume the private beliefs are bounded, and let £„ —> L Then

i E J\ U • • U J\t almost surely.

Proof: Suppose by way of contradiction that £n —> £ ^ J\ U • U Jm with positive

probability. Assume WLOG the state is H. Then for some m we have < FH
(pm (£)-) < 1,

so that individuals will strictly prefer to choose action am for some private beliefs and am^
for others. Consequently, pm {£) > 6, and since po{£) = < 6, the least such m satisfying

Pm(£) > b is well-defined. So we may assume FH (pm-i(£)-) = 0.

Next. FH (pm {£)) > in a neighborhood of I. There are two possibilities:

Case 1. FH (pm (l)) > FH (pm^(l)).
Here, there will be a neighborhood around £ where FH (pm (P)) — FH (pm-\(l)) > e for some

s > 0. We see from (6) that in this neighborhood il>(m\£) is bounded away from 0, while

(7) reduces to ip(m..£) = £FL {pm {£))/

F

H
(pm (£)), which is also bounded away from I for i

in a neighborhood oil. Indeed, pm (£) is in the interior of co(supp(F)), and so Lemma A.

2

guarantees us that F L
(pm (£)) is bounded above and away from FH (pm {£)) for £ near £

(recall that pm is continuous). By Theorem 2, £ E s\ipp(£) therefore cannot occur.

Case 2. F ff
(pm (£)) = FH (pm. l (£)).

This can only occur if FH has an atom at pm_x(£) = 6, and places no weight on (b,pm (£)\.

It follows from F^{pm-i{£)-) = and pm_ 2 < pm_i, that FH (pm-2 {t)) = for all £ in a

neighborhood of £. Therefore, ip(m - 1\£) and <p(m - 1,£) - £ are bounded away from

on an interval [£,£ + tj), for some rj > 0. On the other hand, the choice of m ensures that

v(m\£) and <p{m, £) — £ are bounded away from on an interval (£ — n', £], for some n' > 0.

So, once again Theorem 2 (observe the order of the quantifiers!) proves that £ £ supp(£). <>

Theorem 4 (Herds) Assume the private beliefs are bounded. Then a herd on some

action will almost surely arise in finite time. Absent extreme belief thresholds fx and ?m.

the herd can arise on an action other than the most profitable one.

Proof: First note that if r
L
> b (resp. fM < b) then the first and thus all subsequent

individuals a.s. ignore their private signals and take action a^ (resp. aM ). Now suppose

this does not occur, and assume WLOG the state is H. Whenever £ £ [0,£], we know that

FH {pM - l (£)) > so that some action other than aM is taken with positive probability.

Claim 1: With positive chance, £n € JM in a fixed finite number of steps.

Consider the following Tastest ascent' of the likelihood ratio. Suppose that whenever two or

13



more actions can be taken with positive probability, private beliefs are such that the lowest

numbered action is taken. This will have the effect of pushing the public belief toward state

L. Then the likelihood will evolve according to in+l = £nFL
{pm {£n ))/

F

H
{pm (£n )) > £n .

But this can happen only a finite number of times before £n > I. This follows from

Lemma A. 3. and the fact that £n e [£,!], and so pm {£n ) G \pm {£),pm {£)) C (0, 1). Indeed,

we have

4+1 = enFL
(Pm (£n ))/F

H
(Pm (£n )) > en(l-pm (tn))/Pm(in),

which proves that the step size is bounded below. So, if the likelihood ratio does not start

in [0. £] then it ends up there with a probability strictly less than 1.

Claim 2: f.„ e J\ U • • u J\f almost surely in finite time.

Because (£n ) is not simply a finite state Markov chain, Theorem 3 does not immediately

imply convergence in finite time — for we could conceivably have tn —> Jy U • • • U J.vr but

£„ $. J\ U • • • U J\i for all n. But in fact this cannot occur, because if the convergence took

an infinite number of steps, then the (second) Borel-Cantelli Lemma would imply that the

upcrossing' of Claim 1 would happen sooner or later, as the events {£n+\ > ^n}^=\ are

independent, conditional on ~
(
Jx U • • U Jm) and on the state of the world H

.

(}

So the bottom line is that all individuals eventually stop paying heed to their private sig-

nals, at which point the herd begins. Furthermore, herds are either 'correct' or 'incorrect',

and arise precisely because it is common knoledge that there are no private beliefs strong

enough to overturn the public belief. This is essentially the major pathological learning

result obtained by Banerjee (1992) and BHW, albeit extended to M > 2 actions.
20

While we do not assert how fast the convergence occurs, it is easy to see that for £

outside J\ U • • U Jm, (log(£n )) follows a random walk, albeit on a countable state space.

Still, with absorbing barriers after a fixed number of the same parity jump, results in

Billingsley (1986). pp. 128-130, will imply that convergence must be exponentially fast.

4.2 Unbounded Beliefs

Next we present the counterpart to Theorem 3 that was not considered in Banerjee

(1992) and BHW. Strictly bounded beliefs turns out to have been the mainstay for their

striking pathological herding results. Then

Theorem 5 (Complete Learning) // the private beliefs are unbounded then almost

surely £n —¥ in state H, and £n —> oo in state L.

Proof: As usual, let I denote the limit of (£n ) and assume WLOG the state is H. As

Lemma 5 tells us that supp(£) 6 [0, oo), it suffices to prove that

Claim: supp(£) n (1/JV, N) = for any natural number N > 1.

Let IN = (1/N,N). First note that with unbounded private beliefs, i'(l\£) = FH {p x {£)) is

bounded away from on IN . Next recall that by Lemma A. 2, FL
{r) - FH (r) is increasing

on [0. 1/2) and decreasing on (1/2, 1]; therefore, FL
{p [ {£)) - FH (p 1 (£)) is bounded away

from on /,v , as is

'FL
{p,{£))

<e(i,i)-t = e
F»(Mt))

- 1

J0The analysis of BHW also handled more states. We soon address this generalization.
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It then follows from Theorem 2 that I\ does not contain any point from supp(£). Finally,

let .V —> cc to prove that supp(0 =0.

So if beliefs are unbounded, then eventually everyone becomes "convinced' that of the

true state of the world. That is, it becomes ever harder for a partially revealing private

signal to induce an individual to take any other action than the optimal one. Crucially

observe that belief cascades cannot possibly arise with unbounded beliefs. This follows both

from the earlier definition, and the fact that ignoring arbitrarily focused private signals

cannot possibly be an optimal policy. Consequently, we cannot (yet) preclude that an

infinite .subsequence of individuals may get a string of sufficiently perverse signals to lead

each to take a suboptimal action.

It is noteworthy that whenever an individual takes a contrary action, subsequent indi-

viduals have no choice but to conclude that his signal was very strong, and this is reflected

in a draconian revision of the public belief. We say that the herd has been overturned by

the unexpected action. We shall more carefully formulate this as the overturning principle.

as it proves central to an understanding of the observational learning paradigm. Assume

individual n chooses action am . Then individual n+1 should, before he gets his own private

signal, find it optimal to choose action am because he knows no more than individual n,

and because it is common knowledge that n rationally chose am . So, the likelihood ratio

after individual n's action, £(h, am ), satisfies

ir
H
(h,am )

= 6 (fm_i,fm ],
1 + t(n, am )

which is the content of the next lemma.

Lemma 7 (The Overturning Principle) For any history h, if an individual optimally

takes action am , then the updated likelihood ratio must satisfy

i(h,am) €
fm fm-l J

The proof is found in Appendix B.

Together with Theorem 5, the overturning principle implies that herds in fact do occur

— but only of the nonpathological variety.

Theorem 6 (Correct Herds) // the private beliefs are unbounded, then almost surely

all individuals eventually take action the optimal action.

Proof: Assume WLOG that the state is H, so that aM is optimal. Theorem 5 asserts that

f.n -> a.s., and so £n is eventually in the neighborhood [0,
1T^~ 1

) of 0. But by Lemma 7,

whenever any other action than action aM is taken, we exit that neighborhood.

More States and Actions

The convergence result Theorems 3 and 5 do not depend on the action space being

denumerable. In the proof of Theorem 3, a technical complication arises, as our choice of

the least m such that pm (£) > b was well-defined because there were only finitely many-

actions. Otherwise, we could instead just pick m so that pm is close enough to b such that

15



all the "bounded away" assertions hold. Similarly, in the proof of Theorem 5. we could

substitute a minimum action threshold pi by one that is arbitrarily close to 0.

Complications are more insidious when it comes to Theorems 4 and 6. First note that

with XI = oc, both results still obtain without any qualifications provided a unique action

is optimal for posteriors sufficiently close to and 1, for then the overturning principle is

still valid near the extreme actions. But otherwise, we must change our tune. For instance,

with Theorem 6, there may exist an infinite sequence of distinct optimal 'insurance' action

choices made such that the likelihood ratio nonetheless converges. This obviously requires

that the optimality intervals Im shrink to a point, which robs the overturning argument of

its strength. Yet this is not a serious nonrobustness critique, because the payoff functions

of the actions taken by individuals must then converge!

By contrast, incorporating more than two states of the world is rather simple, and the

modifications outlined at the end of section 2 essentially apply here too.

5. NOISE

We now turn to the economic robustness of the existing theory, by striking at its central

underpinnings. The key role played by the overturning principle is in many ways unsettling:

It does not seem ' reasonable' that such large weight be afforded the observation of a single

individual's action. For this reason, we first introduce noise into the system, whereby a

small fixed flow of individuals either deliberately (that is, they are a 'crazy' type), or by

accident (i.e. they "tremble') do not choose their optimal action. Consequently, no action

will have drastic effects, simply because the 'unexpected' is really expected to happen

every now and then.

Two theses then seem plausible at this point:

1. The statistically constant nature of noisy individuals does not jeopardize the learning

process of the rational informed individuals in the long run, as it can be filtered out:

If the likelihood ratio has a trend towards zero without the noise, that trend will be

preserved as the underlying force even with the additional noise.

2. The learning will be incomplete, as the stream of isolated crazy individuals making

contrary choices will eventually be indistinguishable from the background noise, and

the public belief will thus not tend to an extreme value.

We show in this section that in fact the first intuition is correct, so that Theorems 3 and 5

will still hold. We then turn to the more thorny issue of herding.

Two Forms of Noise

Just to be clear, we assume that whether an individual is noisy is not public information,

and is distributed independently across individuals.

Craziness. We first posit the existence of crazy individuals in the model. Assume that

with probability rm , individual n will always take action am ,
regardless of history. To avoid

trivialities, we assume a positive fraction r = l-£m=i rm >Q of 'sane' individuals. In the

language of section 3, the dynamics of the likelihood ratio in state H are now described

16



as follows:

V>(m\t) = 'm + r{FH (pm (£)) - FH
(pm_^))} (10)

/>

rw + r[F t
(pm(0)-F £

(pw- 1 (0)]

rm + T{F"(pm (£))-FH (pTn _ l (£))}

Am,t) = c ^
-

- ™, -;rr,> hd

Trembling. In the second manifestation of noise, all individuals are rational, but some
may -tremble', in the sense of Selten (1975). In particular, individuals randomly take a

suboptimal action with probability r(£) when the likelihood ratio is £\ for simplicity, assume

that in this event, all other M - 1 actions are equally likely. With M = 2. individuals'

actions are wholly uninformative when r(£) — 1/2, so assume that t(£) is boundedly

smaller than 1/2. On the other hand, to avoid completely trivializing the noise, we further

insist that r(£) be bounded away from 0. In state H the dynamics are now

r(£)

I -

-I r(0] [F
H
(pm (£)) - F"(pm _ x (£))] + -^- [l - F»(pm (£)) + FH {pm. l (i))](12)

f(m|0 = [l - r(£)} [F
H
(pm (f.)) - FH

(pm .
l
(i))] + jj^- £ [FH (p^)) - FH

' (p^{t))

r(£)

M - 1 L

and

,
[1 - t{£)\ [FL

(Pm(£)) - FL
(Pm-i(£))} + ffr [l - FL

{pm (£)) + FL
(pm^(£))}

[1 - r(*)] [F*(ft,W) " F"(pm^(£))} + {$ [1 - F*(ft»(0) + F«(pm. 1 (£))i

'Noise Traders '. We could imagine a third form of noise whereby a fraction of individuals

receive no private signal, and therefore simply free-ride off the public information. These

are analogous to the 'noise traders' that richly populate the financial literature. But they

require no special treatment here, as they are subsumed in the standard model outlined

in section 2. For if p,
H and /j.

l have a common atom accorded the same probability under

each measure, then FH and FL
will each have an atom at 1/2. Since a noise trader is

precisely someone who has the private belief equal to the common prior, namely 1/2. all

results from section 4 now carry over.

Asymptotic Learning

We are now ready to investigate the effects of noise. Observe that with bounded beliefs,

the interval structure of the action absorbing basins Ji,...,Jm in [0, oo) obtains just as

before. The mere existence of action absorbing basins deserves some commentary. For one

might intuit that the likelihood ratio can no longer settle down: Eventually some noisy

individual will apppear and take an action so unexpected as to push the next likelihood

ratio outside the putative action absorbing basin. The flaw in this logic is that precisely

because the action was unexpected, the individual will be adjudged ex post to have been

noisy, and his action will thus be ignored.

We now show that Theorems 3 and 5 go through unchanged.



Theorem 7 (Convergence) Augment the standard model by one of the first two types

of noise, and assume the_ state is H. Then (n -» ( for some random variable I. If the

beliefs are bounded, then I <E J\ U • U JM almost surely, while if the beliefs are unbounded.
('. = almost surely.

Proof: Since (£„) is still a martingale in state H, the Martingale Convergence Theorem
assures us that £ exists, and is almost surely finite. Let £ € supp(£).

Case 1: Crazy Agents.
Here, the transition dynamics are given by (10) and (11), and so t/'(m|£) is bounded away
from 0. since rm > by assumption. On the other hand.

[m,£)-£ = £ t
F L

(pm (£))-F
L
(Pm-i(£))} - [FH (pm (0) - FH

(pm^U)
u.-\m\£)

and so ^{m. £) — £ = is satisfied under exactly the same circumstances as in the proofs

of Theorems 3 and 5. because r ^ 0. Some consideration reveals that those proofs go

through just as before.

Case 2: Trembling Agents.
As with the first type of noise, all actions are taken with positive probability, and so v(m\£)

is indeed bounded away from by (12). We wish to argue once more that (p(m, £) — £ =
is satisfied under exactly the same conditions as in the proofs of Theorems 3 and 5. We
can then use (13) to rewrite <f(m,£) = £ as follows:

[l-T(t)}FL (pm (e))+
1̂
L [i _ FL

{pm {t))\ = [l- T {£)}F
H
{pm {£))+^-

i

[l - F"(pm (l))}

which is equivalent to

1-rW- rM
A/-1

or simply r{£) = 1 — 1/M. But this violates the assumption t(£) < 1/2. Therefore, the

proof of Theorem 3 obtains once again when t(£) < 1/2, while *p{l,£) — £ is bounded away

on I^, and so Theorem 5 goes through just as before also. <C>

The above theorem argues that whether individuals eventually learn the true state of

the world is surprisingly unaffected by a small amount of constant background noise. But

the corresponding purely observational results on herding, namely Theorems 4 and 6, can

no longer obtain without modification. Indeed, it is impossible that all individuals take

the same action.

Let's only ask that all rational individuals take the same action in a herd. With such

a redefinition, Theorem 4 is still valid: Herds will arise with positive probability under

bounded beliefs, as £ must reach an action absorbing basin in finite time. But as the

proof of Theorem 6 critically invokes the (now invalid) overturning principle, we cannot

guarantee that a herd (correct or not) will almost surely arise.

This turns on the speed of convergence of the public belief. For a herd is tantamount

to an infinite string of individuals having private beliefs that are not strong enough to

counteract the public belief. Suppose that the state is H, so that we know^that qn -> 1

a.s. by the previous theorem. Then a correct herd arises in finite time so long as there is
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not an infinite string of 'herd violators' (individuals with private beliefs below p.\f {i)). In

light of the (first) Borel-Cantelli Lemma, this occurs with zero chance provided

T FH
{

^-1n)r.M \
< ^

n=i \{l-qn)rM+qn{l-rM )J

At the moment, we cannot determine whether this inequality occurs almost surely or even

with positive probability. But if the public belief converges at. say. an exponential rate,

then because FH has no atom at or 1 by assumption, the sum will be finite.

More States and Actions

With a denumerable action space, the only subtlety that arises is with the trembling

formulation, where we shall insist upon a finite support of the tremble from any L with

all those destination actions equilikely.

With more than two states the arguments go through virtually unchanged.

6. MULTIPLE INDIVIDUAL TYPES

6.1 Introduction and Motivation

Parallel to the Experimentation Literature

The results so far bear some similarity to the stylized predictions of the single-person

learning theory, but are analytically much simpler. For inasmuch as individuals may
ignore any future ramifications of their actions, the resulting decision problem they solve

is trivial by comparison. 21 And while it is the value of information that sustains individual

experimentation, observational learning by contrast is bolstered solely by the diversity of

signals that subsequent individuals may entertain. There is therefore no need for ad hoc

and involved methods of control theory that has dogged the experimentation literature,

and greatly restricted its applicability.

Recall first an early result of this genre due to Rothschild (1974). He considered a classic

economic illustration of the probabilist's 'two-armed bandit': An infinite-lived impatient

monopolist optimally experiments with two possible prices each period. Rothschild showed

that the monopolist would (i) eventually settle down on one of the prices almost surely,

and (ii) with positive probability settle down on the less profitable price. We wish to draw

some parallels with our bounded support beliefs case: The first result above corresponds

to the belief cascades of Theorem 3 — for in both learning paradigms, the likelihood ratio

enters an action absorbing basin, after which future signals are ignored. The second more

striking pathological result corresponds to the possibility of misguided herds, as described

in Theorem 4: simply put, there is always one action absorbing basin that leads individuals

to adopt the most unprofitable action.

21 Even more difficult is the marriage of the observational and experimental paradigms. For instance,

while Smith (1991) explicitly tried to avoid this problem, Bolton and Harris (1993) have recently blended

the two paradigms, to investigate the interplay between these forms of learning. Most notable among their

findings is that when long-lived individuals' experimentation is publicly observable, there* is an additional

dynamic incentive to experiment, namely the desire to 'encourage' future experimentation by others.
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This analogy is not without independent interest, as it foreshadows our next principal

finding. For with heterogeneous preferences, an interesting new twist is introduced. As
with the noise formulation, we assume that an individual's type is his private information.

Yet everyone will be able to extract information from history by comparing the proportion

of individuals choosing each action with the known frequencies of preference types. So

long as all types do not have the same frequency, this inference intuitively ought to be

fruitful. Surprisingly, however, the learning dynamics may in fact converge upon a wholly

uninformative outcome, in which each action is taken with the same probability in all

states. We shall argue that this 'twin pathology', which we dub confounded learning.

arises even with unbounded private beliefs — that is, even when herding cannot occur.

The essential requirement for confounded learning is that there be at least as many states

of the world as actions. For otherwise, there will generically always be an action which is

not taken with the same probability in each state.

Barring confounded learning, a 'herd' may arise: By this, we now mean that everyone of

the same preference type will take the same action. Provided some types' vNM preferences

are not identical, the overturning argument will (sometimes) fail here just as it did with

noise: Unexpected actions need not radically affect beliefs, because the successors will also

entertain the hypothesis that the individual was simply of a different type.

A Simple Example of Confounded Learning

There are several issues we wish to investigate, and thus find it most convenient to just

consider the simplest possible specification of this model.

Assume that there are M = 2 actions and two preference types, labelled A and B.

Individuals are of type .4 with chance ta , where the preferences of A are just as before;

namely, in state H action a2 is preferred over a,\, and conversely so in state L; type .4

individuals will be indifferent when their private belief equals pf(^). Type B individuals

have the opposite preferences, preferring a\ to o2 in state H, and conversely in state L.

and having the private belief threshold pf(£). If we assume WLOG that the state is H.

then the dynamics are described by

0(110 = rAFH (pt (£)) + (1 - rA )
[l - FH (pf(i))} (14a)

w(2\£) = rA [l- F"(pt((>))} + (1 - TA)F
H
(p* (£)) (14b)

and

M
TAFL {p?(t)) + {l-TA)[l-FL

lp?W)]
*(i. n - e

TAFH {P
A
{i)) + (i _ Ta) [i _ F« {P

Bm i
oa)

JA. , [l-FL(pt(l))\+(l-TA)F
L {p?(l))

'P(2
'

} " rA [1 - F"(pf(l))} + (1 - TA )F»(rf(l))

For now, let us sidestep belief cascades as the source of incomplete learning, and simply

assume that private beliefs are unbounded. Together with (14a) and (14b), this implies

that 0(1|£) and 0(2|£) are bounded away from for all t. It is also elementary to verify

that given (15a) and (15b), the two stationarity conditions <p{\,£) = £ and p(2J) = I
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reduce to one and the same requirement: that one action (and thus the other) is be taken

with equal chance in each of the two states, or

TAFL
(pt (£)) + (1 - rA ) [l - F L

(p? (C)j\ = rAFH
(pt (£)) + (1 - rA )

[l - FH (p? (£))] (16)

Intuitively, this asserts that no action reveals anything about the true state of the world,

and therefore individuals simply ignore history: the private belief thresholds of the two

types are precisely balanced so as to prevent successive individuals from inferring anything

from history. We shall say that a solution t to (16) is a confounded learning outcome, if

the inferiority condition FH
{p^(f:)) £ (0. 1) additionally holds.

22 This simply excludes the

degenerate non-interior solutions to (16) in which the beliefs are so strong and perverse

that both types are wholly convinced of their beliefs. Since a confounded learning outcome

will almost surely not arise in finite time, we shall say that confounded learning obtains if

( n —> f. where f is a confounded learning outcome.

Observe the following nice distinction between a belief cascade and confounded learning.

In a cascade, individuals disregard their own private information and are wholly guided

by the public belief. Conversely, with confounded learning, individuals (in the limit)

disregard the public information and rely solely on their private signal. But while cascades

and confounded learning really are different phenomena, both are pathological outcomes:

Social learning stops short of an arbitrarily focused belief on the true state of the world.

In the first case, the termination is abrupt, while in the second, learning slowly dies out.

Have we catalogued all possible learning pathologies? One might also imagine an alto-

gether different conclusion of the learning dynamics. Indeed, since we have a difference

equation with an interior stable point, there might perchance also exist a stable cycle, i.e.

a finite set of at least two non-stable points such that the process once in the cycle would

stay within the cycle. But we know that such a stochastic steady state cannot possibly

occur because the likelihood ratio is known to converge: That (f.n ) is a martingale in

addition to a markov process is truly a useful property!

The Experimentation Literature Revisited

We now return to our earlier analogy to the experimentation literature. An interest-

ing sequel to Rothschild (1974) was McLennan (1984), who permitted the monopolist the

flexibility to charge one of a continuum of prices; he assumed for definiteness that the

demand curve was one of two linear possibilities, either q = a + bp or q = A + Bp. 23 To

avoid trivialities, he assumed that neither curve dominated the other, i.e. they crossed at

some interior and feasible pair (p, q). He showed that under certain conditions, the optimal

price may well converge to p, at which point, no further learning occurs. Intuitively, this

corresponds to confounded learning in the observational learning model. The likelihood

ratio is tending to an isolated stationary point outside the action absorbing basins. Fur-

thermore, it could only arise because the action space was continuous, and thus the level

of experimentation (in the sense of charging an informative price) could slowly peter out.

—It is easily verified that when i is a confounded learning outcome if FH {p?{t)) € (0,1) then

FH {PiW) € (0,1) likewise.

'-'Here, p is the price and q is the probability that this period's consumer buys, b, B < 8.
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We shall comment on the possibility of using some of McLennan's insights in the dis-

cussion and example later in this section. But by our earlier remarks, we may adduce

one implication already for single person learning theory. Since the likelihood ratio clearly

must also constitute a conditional martingale in that paradigm too. McLennan"s paper

captured all possible pathological outcomes of a pure experimentation model.

6.2 Towards a Theory

We are now confronted with some key questions:

1. Must confounded learning outcomes exist in our model? Are they unique?

2. Even if a confounded learning outcome i exists, does confounded learning actually

obtain (i.e. f.n
—

> f)?

3. With unbounded beliefs, is there still a positive probability of complete learning, i.e.

C.n
—

> in state H and In —» oc in state LP. If so, do correct herds arise?

For now. we can only offer partial answers to these questions. For the search for an-

swers shall carry us into relatively uncharted territory on the local and global stability of

stochastic difference equations.

Theorem 8 (Confounded Learning) Assume there is more than one preference type.

(1) Suppose that there are at least as many states of the world as actions, and that FH and

F L are not entirely discrete distributions. Then confounded learning outcomes generically

may exist, and when they do, confounded learning obtains with positive probability, and

complete learning with chance less than 1. Yet with unbounded beliefs incorrect herds

almost surely do not arise.

(2) // there are more actions than states, or if FH and FL
are discrete distributions, then

generically no confounded learning outcome exists, and learning is almost surely complete.

Proof: We focus first on the simple case of two states, two actions, and two types, for

which there are no more actions than states. We shall later argue that everything we say

holds with more states, actions, and types, and in particular we shall prove our claims

about the number of states and actions.

Observe that (16) is equivalent to

FL
ffi(l)) - FH (pt (Q) 1 - r

FL(pf(£))-F»(p?(e))

Here we can see why a confounded learning outcome generically exists precisely when the

distribution functions have continuous segments. Simply fix any payoff assignment (and

by implication the functions pf and pf ), and fix L Then calibrate r so that I solves (17).

Of course, this turns the process on its head; r should be held fixed while £ is varied.

But if FH and FL vary continuously with p at the given £, and if the left side of (17) is

not locally constant in P. (which will be shown later), then around the solution we have

just computed, there will exist a r-neighborhood in which a confounded learning outcome
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exists. For the partial converse, if FH and F L are entirely discrete, then the left side

of (17) will only assume a finite number of values, and confounded learning outcomes will

not be generic.

We shall not prove generally that confounded learning obtains with positive probability,

but rather shall rely upon a later proof-by-example.

With unbounded private beliefs incorrect cascades cannot occur for the same reason as

outlined in Lemma 5. Similarly, incorrect, herds cannot occur. The only candidates for

stationary points is £ — (that is, when the state is H), where all individuals take the

correct action, and any confounded learning outcome where there is no herd.

Finally, with A/ > 2 actions, and any number of preference types, the confounded

learning outcome will solve M — 1 independent equations in one variable £ so that

nonexistence will be generic. More generally, with multiple states of the world, the number

of likelihood ratios will equal the number of states minus one. Hence, Theorems 3 and 5

can fail if there are at least as many states as actions (i.e. confounded learning may arise

with positive probability), while they hold if there are more actions than states.

Let us now discuss what is not addressed by the above theorem.

Consider the uniqueness of the confounded learning outcome. Note that with discrete

distributions confounded learning outcomes £ are not unique when they exist, for (as seen

in example below) there will in fact be an interval around £ of confounded learning out-

comes simply because FH and FL are locally constant. Whether the confounded learning

outcomes are unique modulo this exemption remains to be seen.

We now touch on the issue of whether learning in complete with at least as many states

as actions. As complete learning and confounded learning are mutually exclusive events, we

cannot yet prove that there is even a positive probability of the former. If the confounded

learning outcome is very close to the initial belief I = 1, it is not at all implausible that

it would attract all the mass. Also, with more than two states of the world, the dynamics

are multidimensional, and these concerns become even more difficult to address.

Finally, we have until now focused on the learning dynamics rather than on the action

choices. With bounded beliefs, we actually cannot be too ambitious in our assertions. For

instance, in the trivial case above where both types eventually choose the same action, any

limiting likelihood ratio £ satisfies FH {p*{£)) = 1 - FM (pf(£)). The overturning argument

will hold and so a herd must arise in finite time. But if the two types take different actions

in the limit, whether a herd arises is uncertain.

The Example Revisited: Local Stability

We now show that a confounded learning outcome will "attract mass" locally (that is,

nearby likelihood ratios tend there with positive probability), in our simple model with

two states, two actions, and two types.

If density functions f
H and f

L
exist, then y?(l, £) and <^(2, £) are differentiate in I. It is

then fairly straightforward to see that if t satisfies the stationarity criterion (17), we get

t/.(i|r)^(i,n + ^(2|r)^(2,r) = i.

Or. in words, near the confounded learning outcome the expected next £ is approximately

the current £. This turns out (see Appendix C) to be the crucial ingredient for the local
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stability of the confounded learning outcome.

In the specific example that we consider. p.
H
{a) = (1 - \fa)j\fa while /j

L
{a) = 1 for

a G (0, 1). It is possible to then deduce quite simply that FH (p) = p
2 and F L

{p) = 2p-p2
.

Suppose that action a2 is the default option of no investment, yielding a payoff equal

to with certainty, while action ay is an investment that is profitable in state H and
unprofitable in state L, with the following payoffs:

Payoff of ay State H State L

Type A u -1

Type B -1 V

where u. v > 0.

It is now easy to calculate the belief thresholds p*{£) = £/(u+ £) and pf(£) = v£/(\ + v£).

We wish to show that there exists a unique confounded learning outcome I that is locally

stable in a certain weak stochastic sense. We shall apply Proposition C.l of Appendix C
to prove the stability claim. Observe that

FHP-Ht))-F"(p?(£)) u(l + v£)
2 _

FL (p?(e))-F"(p?(£)) v{u + £)
2
~ m}

The behavior of the function rj is now critical. Let's ignore the degenerate case uv = 1

in which r\ = 1; for then a confounded learning outcome only exists if r = 1/2. which

is the trivial case in which no inference from history is ever possible. It is fairly easy to

see that r\ is strictly monotone if uv ^ 1. Assume for definiteness uv < 1, so that at

most one confounded learning outcome exists. In fact, as the range of r\ is (uv, l/uv), a

confounded learning outcome £ definitely exists for all r close enough to 1/2. It is now a

simple algebraic exercise to confirm that <pi(l,£) = iPe(2.£) > 0, and so Proposition C.l

now applies: There is a neighborhood around £ such that if £n is in that neighborhood,

then there is a positive chance that £n —> £.

Global Stability?

To be sure, we would prefer a "global stability" result.
24 Because a confounded learning

outcome locally attracts mass, there are non-trivial specifications under which it attracts

mass globally. Even if a stationary point is locally stable we must ensure that the dynamics

can actually enter the stable region from outside: This is by no means trivial, as the

stochastic process might oscillate across the stable region without ever landing there. But

global properties of dynamical systems are in general notoriously hard to deduce, so that

one ought to expect little progress on this latter front. Progress here is intertwined with a

comprehension of the complicated asymptotic properties of stochastic difference equations.

24To the best of our knowledge, and much to our surprise, stability theory for stochastic difference equa-

tions really does not exist, and so we are coining terms here. We call a fixed point y of a stochastic difference

equation locally stable if Pr(limn_too y„ = y) > whenever y € .Vs , a small enough neighborhood about

y. If Prtlimn.+oo yn
- y) > for all yQ , then y is globally stable. Finally, if for every neighborhood A's of

y. there is a smaller neighborhood ,V
5
* of y in A's such that ?x{yn € A's Vn | y G Ag ) > 0, then we simply

call y stable. One might also wish to preface each of these labels by 'almost sure' if the probabilities are

1, but we shall not have occasion to make such assertions.
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Yet McLennan managed to establish global stability for certain parameter specifications

in his model. In a nutshell, his basic idea was to argue that whenever Cn is on one side of

the confounded learning outcome, then £n+1 must be on the same side. We unfortunately

can find no reason to expect that such a wonderful monotonicity property obtains here.

For the example, it would suffice to prove (which we cannot) that globally y>*(m, •) > for

m = 1,2. For in light of <p{m, I) = I, that would imply y{m, £)£ for tl.

Signals about Types?
We have maintained in this section the working hypothesis that types were unobserv-

able — for with perfectly observed types the analysis of section 4 applies. But consider

the middle ground. Suppose, for simplicity, that after individual n moves, subsequent

individuals receive an informative binary public signal as to his type. Then the dynamics

are now modified, as there will be four different possible continuations, namely one for

each of the possible combinations of individual n's action and of the type signal value. A
confounded learning outcome will then have to solve three independent equations rather

then one, and so generically confounded learning will not arise. We anticipate that the

results of section 4 will obtain here, with appropriate modifications.

7. COSTLY INFORMATION

We now reconsider the theory under the reasonable assumption that information is

costly to acquire. As we shall see, it is not only important whether this means the public

or the private information, but also what the exact timing of the signal acquisition is. One
might imagine variations on this theme allowing for endogenous information quality, but

we shall avoid such side issues. Overall, costly signals will make incomplete learning, and

thus incorrect herds, more likely.

1. Costly Public Information

First, assume that no information is revealed before the signals are acquired, and

assume that the private signal is free, while the public information (the observation of all

predecessors' actions) costs c. Then early individuals may not buy the public information

and thus will wholly follow their own signal, the action history will eventually become very

informative. Sooner or later an individual will find it worthwhile to buy the information.

As the public information only (weakly) improves over time, all subsequent individuals

will decide likewise. We have now arrived at the old model, and so the existing theory

obtains.

Next suppose that the individuals can observe their private signal before they decide

whether to buy the public information25 — which they will do whenever its option value

justifies its cost. But by the previous logic, the public information can only become more

focused over time, and therefore it gets still more attractive, and therefore more and more

25While in the previous formulation, it did not matter whether the decision to acquire information was

observable, it does now (since this decision reveals something about the individual's private signal too).

But this variation is inessential for the qualitative description that follows, and so we do npt further nuance

here.
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individuals will decide to buy it along the way. For each n, everyone with private beliefs in

[0n . 1 - n ]
will buy the signal, and others will not. where the threshold n -> 1. So. with

bounded private beliefs all individuals will eventually buy the public information, and a

herd almost surely arises. With unbounded private beliefs, the public belief in state H
will converge to 1. and so full learning obtains.

2. Costly Private Information

Now suppose that the public information is free, but the private signal is at cost.

Assume first, that the purchase decision occurs before the public history is observed. Of
course, private signals must be sufficiently worthwhile that the first individual is willing to

buy the private signal at the cost c. By similar arguments, everyone after some individual

.V will not purchase private signals, and therefore the public information will not improve.

A herd will begin, even with unbounded beliefs! Interestingly enough, N is known ex ante

it is not stochastic. That fact stands in contrast to all other herding results we have

seen so far.

If individuals may first observe history before buying their private signal, then such

purchases will continue until the public information reaches a certain threshold. The
above result obtains, only this time the herd starts at a stochastic individual.

3. Costly Private and Public Information

Finally, consider the combination where both public and private information is costly.

It is not hard to extrapolate from the above analysis: Individuals will initially only buy

the private signal, but not the public one. After a while, they will start to find the public

information attractive, and finally the public information will become so good that they

will no longer buy the private signal. Of course, timing is an issue, and so the decision to

buy the public information may or may not be predicated on the content of the private

signal. This story of how the information is generated by the first agents, while later

agents are free-riding on the public knowledge, captures an essential characteristic of the

herding phenomenon.

A. CONSEQUENCES OF BAYES UPDATING

We originally derived all results in this Appendix by proofs other than the presented

ones.
26 We consider the proofs offered here easier and more direct. Inspiration for the

current formulation was found in the exercises to Chapter 8 in DeGroot (1970).

The setup is taken from section 2.1, except that now we assume that the prior chance

that the state is H is £ € (0, 1). Hence, the private belief p e (0, 1) satisfies

( s
&(g >

Pia) =
&(*) + (!-«

Lemma A.l FH and FL have the same support.

- 6One may derive our lemmas through the Law of Iterated Expectations, which for us says that applying

Bayes' rule more than once is redundant. That gives rise to a quite strong characterization of the Radon-

Nikodym derivative of FH w.r.t. FL
, but we omit the details.
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Proof: Note that p(a) is in the support of FH (resp. F L
) exactly when a is in the support

of n
H

(resp.
fj.

L
). But /j,

H and p,
L

are mutually a.c. and thus have the same support.

Lemma A. 2 The function FL
(p) — FH {p) is weakly increasing for p < £ and weakly

decreasing for p > £. Moreover, F L
{p) > FH (p) except when F L

(p) = FH (p) = or

F L
(p) = FH (p) = 1.

Proof: Observe that for all a in the support of p,
H and ji

L we have

p(o) < £« g(a) < Zg(a) + (1 - <= g(a) < 1

Now. when if Radon-Nikodym derivative g = dp.
H
/dy,

L < 1 on a set of signals, then that

set is accorded smaller probability mass under FH than F L
. So F L grows strictly faster

than FH on (0.£) because its derivative is larger when it exists, and because it has larger

atoms: similarly. F L grows strictly slower than FH on (f . 1). Finally, in order that the

above strict assertions obtain. FL > FH necessarily in the interior of supp(F).

Lemma A. 3 Assume £ = 1/2. For any p € (0, 1), we have the inequality

FH
(P ) < t^-Fl

(p)
1 -p

Proof: First observe that for any p G (0, 1) we have

p(a) <p<^ f[
a)

- <p^ g(a) < P

g{a) + 1
-

' " 1 - p

Simple integration then yields the desired

FH (P)= I g(a)d»L(a)<-^FL
(P )

Jp(<T)<P 1 - P

B. OVERTURNING

This appendix is devoted to the proof of Lemma 7.

Lemma B.l (The Overturning Principle) For any history h, if an individual opti-

mally takes action dm, then the updated likelihood ratio must satisfy

£{h,am ) €
! 7*m •* Tm— 1 \ ('\R\

I'm ^m— 1 /

Proof: Let the history h be given. Individual n uses the likelihood ratio i{h) and his

private signal an to form his posterior odds C(h)/g{an ) for state L. Since he optimally

chose action am , we know from the definition of the fm 's and the tie-breaking rule, that

fm- 1 <
1 + 1(h)/g(on )

~ fm
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or. rewritten.

T^XW/JW^ (19)

Denote by T,(h) the set of signals an that satisfy (19) for a given h.

To form i(h. am ), individual n + l must calculate the probability that individual n would
take action am . conditional on h. Individual n+l knows that his predecessor would take

action am exactly when his an € H(h). So he can calculate

<*Z(h)= I gdvL
(20a)

o£(/i) = [ dfx [20b)

and form the likelihood ratio

Hh.am ) = m^nr, (2i:

f27But by definition of E(/i), we also know that 2

/ gdli
L >-^-i{h)f V

ys(h) l - rm _! ys(h)

/ gdnL <-^Uh) [ dn
L

Ji.{h) 1 - rm 7e(/.)

Finally. (20a). (20b). (21), and the above imply that

1 - rm _i »,, . 1 — r„
> £{n,am ) > —

—

'm-l

just as claimed. <0>

C. STABILITY OF A STOCHASTIC DIFFERENCE
EQUATION

In this appendix, we first develop a global stability criterion for linear difference equa-

tions. We then use that result to derive a stability criterion for linear dynamics. Finally,

we derive a result on local stability of a nonlinear dynamical system.

Consider linear stochastic difference equations of the following form. Let an i.i.d. stochas-

tic process (yn ) be given, such that Pr(yn = 1) =p — 1 — Pr(yn = 0). Define the stochastic

process (n on R as follows: £ is given, and

. _ I a£n -i if yn = 1 ^o)
tn ~

1 64-i if Vn =
K

'

27 Notice that the strict inequality only survives the integration under the assumption that E(/i) has a

positive measure under [i
L

. Otherwise, both sides equal zero.
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where a and b are fixed real constants. If Yn = YX=\ lln- then the solution to the difference

equation is described by

£n = aYn b
n-y"£

(23)

The following result is a rather straightforward generalization of the standard stability

criterion for linear difference equations:

Lemma C.l (Global Stability) // |a|
p
|6|

1_p < 1 then tn -> almost surely, while if

|a| p |/;|

1
~ p > 1 then \£n \

—> oc almost surely.

Proof: The essence of the proof lies in the fact that by the Strong Law of Large Numbers.

a.s. i. *n
p = lim —

n-HX> n

But if |a| p |6|
l_p < 1 and Yn/n —> p. then there exists s > and some N such that for all

n > A*.

\a\ " |o| » < 1 — e

Now. use (23) to see that

\en \
= \a^bn

- Ŷ
\
= (\a\^\b\^)

n

\£Q
\

which in turn implies that £n —> a.s. The rest of the lemma follows similarly.

This criterion deserve a few comments. One might imagine that the arithmetic mean,

and not the geometric mean, of the coefficients, namely pa + (1 —p)b, would determine the

behavior of a linear system. In the standard theory of difference equations p = 1. and so

these two averages coincide. If we reformulate the criterion by first taking logarithms, as

plog(|a|)) + (l-p)log(|6|))<0,

then this is reminiscent of stability results from the theory differential equations, and

it is common for the logarithm to enter when translating from difference to differential

equations.

It is straightforward to generalize Lemma C.l to the case of more than two continuations,

i.e. where (/„ has arbitrary finite support. The analysis for multidimensional £n is also of

some interest, but unfortunately in that case only one half of Lemma C.l goes through.

Indeed, let £n G Rn and assume

_ f A£n- X
if yn = 1

n
~\£4-i ifyn = o

where A and B are given real n x n matrices. Let ||.4|| and ||£|| denote the operator

norms of the matrices.28 Then the following half of Lemma C.l goes through, with nearly

unchanged proof: If ||^||
p ||S||

1 -p < 1 then ln -> a.s. Since this is the only part of

Lemma C.l that is used in the sequel, our local stability assertions will also be valid in a

multidimensional space, too.

Next we shall provide a different stability result, which is helpful for the later charac-

terization of non-linear systems. We consider system (22) once more.

28 That is. ||.4|| = suP|l
|

=1 |Ax|.
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Lemma C.2 // |a| p |6|
l p < 1 and .\f is any open neighborhood about 0. then there is a

positive probability that yn G .A/o for all n, provided y G M .

Proof: First, if a or b is 0. then there is a positive probability ofjumping to immediately,

and the system will stay there. So. assume now that a, b, £ / 0. We already know from

the previous lemma that ln —> almost surely. To be explicit, this means that for all

.V G N. we have

Pr
( U n {-en":||4||<l/:V}) =1
\M€?i n>.\f J

There must then be some M G N such that

Pr ({w G Q"
: Vn > M, ||^|| < l/.V}) >

In particular, so long as £ A/ G (
— l/.V. 1/A

r

). there is a positive chance of tn G (
— l/.V, l/.V)

for all n > .\/. Also, for given f. , supp(£,\f) is finite, and (:Q ^ implies ^.w / 0; therefore,

there exists lM G (-1/-V, 1/.V)\{0} such that £n G (-1/.V, 1/JV) for all n > M if lM = £.w .

The proof is closed by appealing to two simple invariance properties of the problem.

First, time invariance allows us to conclude that tn G {
— \/N, l/.V) for all n if £ = &m-

Second, the equations are linear, so that if £ < Im then tn G (
— (to/£\r)/N, {£q/£m)/N)

for all n. But finally notice that from any point of a large neighborhood, one can reach the

inner neighborhood in only a finite number of steps, which occurs with positive probability

too. This completes the proof. <C>

We next use these results to investigate the local stability of non-linear stochastic dy-

namical systems. While we have so far has proceeded on a very general level, we now take

advantage of the far more special assumptions relevant for the application in section 6.

This is only slight overkill, since the appendix does not require the martingale property.

In the notation of section 3. the system is now described by

_ f v?(l,4-i) if 2/n = l ,9d)tn -\ ^(2.^.0 ifyn =0
lZ4j

where y(l, ) and <p(2, •) are given functions, and £<j is given. Moreover, we shall now

abandon the i.i.d. assumption on the stochastic process (yn ), and posit instead that

Pr(yn = 1) = v(l|*»-0 = 1 " Pr(2/n = 0)

We are concerned with stationary points I of (24). namely the solutions to

<p(l,i) = iand<p(2,t) = i (25)

Proposition C.l (Local Stability) Fix a stationary point £ given by (25). Assume

that at £, ^(1, •) and ip(2, ) are both continuously differentiate, while w{\\-) is continuous.

Suppose also that I satisfies 0(1|£) G (0,1), ip t {l,l) > 0,<Pt(2,i) > 0, <p(lj) # <p(2J),

and ip{l\£)ife(lj) + (1 - 0(1|£))<^(2,£) = 1. Then there is a neighborhood around I, such

that from any point in this neighborhood there is a positive probability that £n -> t.
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Proof: We proceed as follows. First, we linearize (and majorize) the nonlinear dynamical

system around £ by a linear stochastic difference equation of the form just treated (that

satisfies the conclusions of Lemma C.2). Next we argue that the conclusion of Lemma C.2

must apply to the original non-linear dynamical system.

Since 0(1|£)^(1,O + (1 - i'(l\£))w{2.£) = 1 and (pt {l,i) # -M2,i), the arithmetic

mean-geometric mean inequality yields

^(lJ)* (1| ')

V?«(2,0
a~*(1|')) < 1. (26)

By the continuity assumptions on <pi(l,-) and <^(2, ), this inequality obtains in a neigh-

borhood of £. As ^(1.^) ^ ipe(2,l) and their average is 1, we may assume WLOG that

We now claim that there are constants a.b.p > 0. and a small enough neighborhood

A'U) around L such that for all £ G M"(£):

apb l -p < 1

< ipe(l,e) < a < 1 < yt(2,l) < b

<p< ip{l\£)

This may not be obvious, so let us spell it out. Over any compact neighborhood of £ we

can separately maximize <pe(l,t),<pi(2,t) and —ip(l\£). If we substitute the three maxima
a, 6, and —p respectively, in (26), then continuity tells us that its left side converges to

(<Mi,-))p
(^(2,-))

(1-p)

as the compact neighborhoods get small enough.

Fix £q G M{£). There clearly exists a sequence of i.i.d. stochastic variables (crn ), each

uniformly distributed on [0, 1], such that yn = 1 exactly when an < w{l\£n -i) and yn =
otherwise. Introduce a new stochastic process (yn ) defined by yn = 1 when an < p. and

yn = otherwise. Use this to define a new stochastic process (£n ) by £ = £q — £. and

i -£={ a ^"
n_1 ~ ^

if ^n = 1

We now argue that the linear process (£n ) majorizes the non-linear system (£„). Observe

that (yn ) are independent because (an ) are. Thus Lemma C.l is valid, and tells us that

£n -> £ a.s., while Lemma C.2 asserts that there is a positive probability that £n G M(£)

for all n. So consider just such a realization of (an ) whereby £n G M{£) for all n and

In -¥ 0. Because y{l\l) > p when £ G Af{l), we have yn = 1 =» Vn = 1 • Thus

< <fii(l,t) < a < 1 < <fi{2,£) < b yields the desired majorization for all n (in this

realization), namely

\\in-i\\>\\t»-i\\

For no matter what is the outcome of t/n , ln is always moved further away from £ than

is £n (as seen in figures 2 and 3). So, for any such realization of (an ), £n -+ L We thus

conclude that £n -> £ with positive probability.
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Figure 2: Dominance Argument I. This depicts how an iteration under r~(l.-) brings

the image closer to the stationary point I than an iteration under the linearization with

slope a, when tpt(l, •) < a.

diagonal

Figure 3: Dominance Argument II. This depicts how an iteration under ip(2, •) moves

the image point closer to the stationary point £ than an iteration under the linearization

with slope 6, when <^(2, •) < b.

line, slope b
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