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ABSTRACT: This paper derives a form of the Lagrange hultiplier

statistic for nonlinear regression models that does not assume

conditional homoskedasticity under the null hypothesis. In addition

to the initial nonlinear least squares estimation, computation of

the statistic requires only two linear least squares regressions.

The problems of computing tests of exclusion restrictions and tests

for serial correlation in dynamic linear models with unt:nown

heterosliedastici ty ^re presented as simple applications.





1 . Introduction

This pap^f" modifies the Lagrange Multiplier ( Ltl) (or efficient

5coi-e) testing procedure to allow correct inference in the presence

of heteroskedastici ty of unknown form. The test statistic is

computable from linear least squares regressions, and is applicable

to both cross section and time series models that have been

estimated by nonlinear least squares ( NLLS ) . The cost of the

heterosl: edastici ty-robust procedure is one linear least squares

regression. Simple regression-based procedures for computing tests

of e;;clasion restrictions and tests for serial correlation in

dynamic linear models with conditional heteroskedastici ty of unk;nown

foriT, Are presented as applications.

2. The Robust Lagrange Nul tipl ier Test

. 4- .< ,- Vl_t^^ - I >
0- ' -- 4-

h— 1 } be a sequence of observable random

variables with Y^ a scalar. 2 a 1 ;; L vector. For each t > 1, let
I- t

f
7 V 7

^^t- t-1- ^t-1
Y 2 ) denote the 1 ;; L+(t-l)(L+l) vector of

prt=-determined variables. The purpose of the analysis is to test

predetermined variables X^, t(Yj_|X^). For cross section

so that E(Y_^|X_^) = E(Y |2_^); in this case, replace X, by 2,
- w t t t I-

throughout. For time series data it is assumed that interest lies

in tLsstiing hvpcchsses aPout the expectation concitional on curren"L

exogenous variables and all past information. Consequently, a

correctlv specified conditional expectation necessarilv excludes the

existence cf serial correlation.



The starting point is a correctly specified parameterized

'ersion of the conditional mean:

E(Y. |X. ) = m. (X,,cv. ,p ) a € A, p € B, t-1,2 (2.1)tt: Ltioo D o

P Qwhere A <c K , B c K , and m^ is a known real-valued function defined

on
Q^L+Ct-l) (L+1)

^^ ^ ^^ g^ ^^^ ^ ^ (c<',p')' and A = A :•; B. Among

other regularity conditions, it is assumed that A is compact and

that m (:•;,• ) is twice continuously dif ferentiable on the interior

^ , ^ K „L+(t-l)(L+l)
of A for each ;; e K

For simplicity, assume that the hypothesis of interest can be

expressed as

H . : 3 = . (2.2)
U "^o

The LM statistic is based upon the sample covariance of the NLLB

residuals obtained under the null hypothesis and the gradient of m

with respect to p evaluated under the null hypothesis. More

precisely, let oc_ be the NLS estimator of a under H., so that cx^. is
1 o O I

a solution to

T
min 2 {\\ - m (X\,o'.,0))-. (2.3)

o-.^A t=l "

Define the residual function as U (c;) = Y^ - m (X^.c-i.O). Let U =

m^(X^.. -^.0), V m^ = V m_^ ( X_^ , ct_. ) and V,,m = V^,m_^ ( X^ , c-c^ , )

The true residuals under H. a^r^ U'^ = U
, ( a ). Note that under H.,Otto o-

[U : t=l ,2, . . , } is a martingale difference sequence with respect to

the cr-fieids [cjC Y_^ , X_^ ) : t= l , 2 , . . . > .

The LM statistic is a quadratic form in the Qxl vector

T . .

E 7 n.;U (2.4)
t=l "^ ^



If. in addition to H^.^ , it is assumed that V(Y [X ) a^ for some o^
o o

> 0, then asymptotical 1 V equivalent versions of the LM test (under-

appropriate regularity conditions) are computed as T times the

uncentered R^ from one of the followmq two regressions:

U, on V m
, , V^m

.

ex t p t
t = l T (2.5)

or

on V m^U. , V_,m^U.
0-. t t p t t

t=l T, (2.6)

Under H and conditional homoskedastici ty , the resulting statistics

have limiting y*! distributions. The statistics differ in the

estimators used for the asymptotic covariance matri:; appearing in

the LM statistic.

As emphasi-ed by White ( 19B0a . b , 19E2 , 1984 ) and White and

Domowitz [1984], the statistic obtained by (2.5) generally does not

have a limiting >^ distributions under H. in the presence of

heteroskedastici ty . The same is typically true of the TR" statistic

obtained from (2.6). Therefore, if the variance of Y conditional

on Xj_ is not constant, these regression procedures can lead to

inference with the wrong asymptotic size concerning the null

hvDothesis of interest, H.. Moreover, the standard procedures can

have Door cower properties if heteroskecasziciTiv is oreser." unoer

local alternatives.

In closely related contexts. White ( 1930a , b , 19S2 , 1934 )

,

Dcmowitz and White (19S2), and White and Domowitz (1934) have

derived statistics for testinq H, that are robust in the presence of

cf unk;nown form. Com.putstion of these statisticsh =f t =; r w' = k (=d a s t i c i t

'

?cuir t=s special programming. Moreover, the estimated covar . c\t i w e



matrices used in computing the statistics are not always positive

semi-definite. This paper proposes a regression— based method for

testing H^ without imposing homoskedasticity

.

- "

To motivate the procedure, consider the regressions in (2.5)

and (2.fc). Note that in each regression the first term appearing on

the right hand side is, by construction, orthogonal to the dependent

variable in sample, i.e.

T

J^V^^t - •=' (2.7)

Equation (2.7) is simply the first order condition for ex . For

derivation of the robust form of the test, interest centers on

equation (2.5). Given (2.7), the uncentered R~ from the regression

in (2.5) is equal to the uncentered R^ t-esulting if V m is first
p t

projected onto V m, and the resulting residuals are used as the only
oc t

regressors in (2.5). More formally, let F be the PxQ matri:-; of

regression parameters from a multivariate regression of V m on
p t

V m^:
ex t

r T
,.., _..._

-1 T
r^ = r V m'V m^ T V m; V^m^
T l^^^ ex t oc tj ^^^ o: t p t

(2.B)

from the req:

U, on ( V m - V mi )

p t a t T
t=l, . . . ,T (2.9)

is equivalently based on the D:cl vector

? (^p-t - Vt"T''^'t (2.10)
t=l

which is identical, again by (2.7), to (2.4). The advantage of

working with (2.10) instead of (2.4) is that, under H. and



regularity conditions, it can be shown that (see the appendiK)

5^ . T-l'^^E^(7^;; - V^„\?^)-G^ (2.11)

where V m° = V m,(X^.o- ,0), V^fn° = V^m^(X.,a ,0), and
ex t ex t t D P t 3 t t' O

^ t=l ^ t=l

The term appearing on the right hand side of (2.11) is a function of

the data and unt.nown parameters. A useful interpretation of (2.11)

is that the limiting distribution of this random vector is

unaffected when the unknown parameters are replaced by VT—consistent

estimators. This feature yields a simple derivation of the

regression-based robust test.

Under H.. , the right hand side of (2.11) has a limiting normal

distribution with mean zero and covariance matri;-;

T_-l o^o

,

o^o

,

*-—

1

Note that /\_^ is the correct expression whether or not the

conditional second moment of Y_^ is constant. As pointed out by

White (1930a, b, 19S2, 19S4) , A° is consistently estimated by

_, T ...^ ...

i'S-_ = T TUCvm - \7 T' '^ ^ ' < "7 rr. -VrnT).
i .^t'^t ocrT gt 0-. tT

(2.12)

Thus, under H ,

(2.14)

in the presence of fairly arbitrary forms of heteroskedastici ty

.

From a computational viewpoint, it is useful to note that the



statistic in (2.14) is T times the uncentered R^ from the regression

1 on (^off^4- - "^ ni\-r^-r)Ll' t = l,...,T. (2.15)
P t oc t T t

The procedure for testing H. can be summarized:

(i) Estimate c^_p by NLLS imposing p =0. Compute the

^. -^ ^-

constrained residuals U^ , and the qradients V m^ = V m^(aL^,0) and
t "

ex t a t T

(ii) Perform a multivariate regression of V_m, on "7 m. and
p t at

keep the residuals, V m = V m - V m F , where P is given by
p t P t O' t I

'

1

(2.8) ;

(iii) Run the regression

1 on V fii U t=l,...,T
P t t

and use TR" as asymptotically XZ under H .

R^ is of course the uncentered r—squared . Equivalen tly , use T

- SSR where SSR is the sum of squared residuals from the regression

in (iii). For time series applications, T might be replaced by the

actual number of observations used in the regression in (iii).

The above procedure yields computationally sim.pl e, robust

inference for nonlinear regression. Although previously recommended

Bts.tistics are net restrictive! y difficult to program, they

sometimes involve estimared covariance matrices that are not

positive semi—definite. Moreover, the regression approach is

available to researchers using standard econometrics packages, and

is likely to lead to fewer progre.mming errors.

In the linear case, the above procedure produces a statistic

that is numerically identical to what would be obtained by applying



Theoram 4.32 in White (1934) to the cbsb of heteroskedastici ty

.

Therefore, in the linear case, the above procedure can be viewed as

a computional 1 y simple method for calculating the White robust L!i

test. . '
.

Before giving a specific eKample, it is interesting to compare

the LM procedure based on (2.5) to the robust procedure just

outlined. Suppose that, instead of estimating A by A , the

o
conditional homoskedasticity assumption is maintained and A is

estimated by

A-^ = ar T
J] (V m - V m r )'(V^m. - V m r ).

I T ^_iPt cr. tl pt ex tl (2.16)

--1
T

where a = T E '-'4- ' Using A in place of A yields the statistic
t= l

\LA^ P . This statistic is numerical Iv' equivalent to TR^ from the
I T T 7 M

regression in (2.5). Therefore, under H and homoskedasticity, the

robust statistic is asymptotically equivalent to the usual LM

statistic. Because the statistics only differ in their estimates o"

the moment matrix appearing in the quadratic for of the LM

statistic, they are asymptotically equivalent under local

alternatives and homoskedasticity. The robust form remains

asymptotically noncentral 'X^ for local alternatives under

"i=t=;; o =ktuastici t>' . When heteroskedastici tv' is present, thicz" : LJ bus-

form will frequently have better power properties rhan the usual LM

statistic.

linear model

^(Y^IX^) = X^^cx^ ^ X_3^ *- -1. ^ — «

where l;iP vector and X , is a l;cG vector, both of which may



contain laaged values of Y and current and lagged values of

ele^Tients of Z . Applying the methodology developed above leads to a

very simple heteroskedastici tv-robust test of H.; B = 0:
• ' U o

(i) Run the regression

\ on X^^

and save the residuals, L).

t=l

(ii) Run the multivariate regression

^t2 °" ^tl
t=l,...,T

ind save the residuals, X .

(iii) Run the regression

t=l, . . . ,T

and use TR~ as asymptotically 'Xi under H-.

1 on
>^t2^t

The regression in step (ii) is the cost to the researcher for

being robust to heteroskedasticity . One application of Example 2.1

is testing for Granger causality in time series models without

imposing constancy of the conditional second moment of the dependent

variable. Because noncausality in mean implies nothing about

conditional second moments, standard approaches can lead to

inference with the wrong asymptotic size under the null hypothesis

The above .usthodol oc v alleviates this problem.

when u = 1, so that X is a scalar, -1-.—, cr-*-z:"*-"i^=*-''-— ^T-j-v/TM-vit-hciH K\/

steps (i)-(iii) is the square of the LM form of the White

hstsrcsksiasti-ity-robust t-statistic. Note that the regression in

step (ii) is now a standard OLS regression. Consequently, an

asymptotically equivalent version of a White (19B0a) t-statistic can

be computed by three OLS regressions.



Example 2.2 : ( LM test for AR ( 1 ) serial correlation): Consider a

linear model i-^ith AR ( 1 ) serial correlation:

E(Y|X)= X cx +C(Y -X cx:
t' t ti o ^o t-1 t-1.1 o

(2.17

where Ip I < 1 and X,, is a 1 :-; K subvector of X. . X,, may contain
~a tl t tl

lagged values of Y as well as current and lagged values of Z . The

null hypothesis is

H.. PrO ' a

In the above notation, p = p, V m. = X^, , and V m, = U, , where CU.

}

' cx t tl P t t—

1

t

are the DLS residuals from the regression of Y on X . The

following procedure is valid for testing H in the presence of

heteroskedastici ty

:

(i) Run the regression

't "" ^tl ^ ^' ,T

and save the residuals U

(ii) Run the regression of U on W^ , and keep the
t 1 k_

residuals, sav U
t-1

(ii) Perform the regression

on ^t-l^t

and use ( ;—1)R^ from this regression as asymptotically 'k7 under H .

R~ is the uncentered r—sauared .

Several features of this example Brs worth emphasizing. First,

the robust procedure follows from a straightforward modification of

the LM principle, and the test is asymptotically equivalent to the

usual LM statistic for AR ( 1) serial correlation under

homoskedastici ty . Also, there are essentially no restrictions on

what X^^ can include, so that the procedure allows specification



testing for dynamic regression models. The usual LM approach also

has this feature, but the above procedure is valid in the presence

of conditional heteroskedastici ty and computationally is almost as

simple as the usual LM test. Because certain economic time series

exhibit conditional heteroskedasticity (see, for example Engle

(1982) and Bollerslev (1986)), the heteroskedasticity-robust

approach should be a useful innovation. If the conditional mean is

the primary interest of the researcher, then it may be undesirable

to explicitly model the second moment. The above procedure allows

for asymptotically correct inference without worrying about the

mechanism determining the second moments.

As pointed out by White (1985), if the procedure used in

Example 2.2 rejects H., it is not necessarily true that (2.17)

represents the true conditional expectation of Y given X . The

test for AR ( 1 ) serial correlation may be detecting some other form

of dynamic misspecif ication . In general, the statistic wxll reject

for certain deviations from

H. : E(Y, |X^) = X^^a , t=l,2
o t t tl o

although the test is not consistent for every alternative to H (see

Eierens ( 19E2 , 19S4 ) )

.

This section concludes with a formal result. The regularity

conditions imposed are not the weakest possible; in particular, it

is assumed that moment matrices are stablized after normalization by

— 1
T . These assuiTiStiops rule out manv nonstationa.rv time series.

They could be generalized along the lines of Wooldridge (1986) to

allow far deterministic trends (this would not at all change the

testing procedure) , but the theorem cannot be expected to extend to

10



certain time series models with unit roots.

A definition simplifies the statement of the theorem.

Definition 2.1 : A sequence of random functions Lq.(Y ,X ,©): 6 s ©,

t=l,2,...j, where q.(Y ,X ,) is continuous on © and © is a compact

subset of K , is said to satisfy the Uniform Uleak Law of Large

Numbers ( UWLLN ) and Uniform Continuity ( UC ) conditions provided that

(i) sup |T~^ Z q.(Y ,X e) - ECq (Y X e)]| 5

Ae© t=l ^ ^ ^ t t: c

and

-1 "T

(11) [ T
Y. EEq (Y^,X 6)3 : e s ©, T = l,2,...} is

t=l ^ - c

continuous on © uniformly in T.

In the statement of the theorem, the argument 3 is often

e;;cluded when it is equal to 0. The dependence of functions on the

predetermined variables X^ is suppressed for notational convenience.

Theorem 2.1 : Suppose the following conditions hold under H :

(i) A is compact.

(ii) Cm (;•;,.-5) : ;c ^ K , 6 •= A} is a sequence of

real—v'alued functions such that

(a) m (,£) is Barel measurable for each <S <= A and

\- u
;r a.i. ;.'^j ~ — ^, — ,...;

(b) m^(;; , •) is twice continuously dif f eren tiable on the

interior of A for all •; ^ , t=l,2....;

(iii) (a) -[ (m, ( D:)-m. (' ex )
)~} and [ ( ( m . ( (x) -m . ( a ))U~']-

t r o t t. o t.

satify the WULLN and UC conditions:

T
(b) T~^ J^ LU^~ - E(u^~): 5 0;

t=l ^

11



(c) ex is the identifiably unique minimizer (see Bates

and White (1985) ) of

-1 ^
2

T "
J: EC(m. («) - m, (« )

)^];
t=l ^ to-

(iv) ex is in the interior of A;
o

(v) (a) C V m. (cx)'V m. («) }, C V m («) ' V m
.

( oc) }, C V m.(cx) },cxt Oct cxt pt cxcx t

and C V ^ni^(cx) } satisfy the WULLN and UC conditions;
«P t

J
(b) T"-"" y E[V m^(o; )'7 m^(a )] is 0(1) and uniformly

j^ « t a cc t o

positive definite;

-1 T

(c) T C E[V m. (ex )'V-m. (a )] is 0(1);
. _^ ex t o p t o

(vi) (a) CV m^(cx)'U^(cx)}, {V ^m^ ( a) ' U^ ( a) } and [V m
. ( ex) ' U. ( a) }

c<cx t t cxp t t ex t t

satisfy the WULLN and UC conditions;

-1 - "^
r,

(b) T ^'- T 7 m,(c< )'U° = (1);^ ex t o t p

(vii) (a) i uj(a) (V^m^(cx) - V m^ ( ex) D '
( V.m . ( ex) - V m.(cv)r) }

t pt ext pt oc t

satisfies the WULLN and UC conditions;

r ^° -
P t ex t T' ' 3 t ex t T

(b) A° = T~^r ECU°-(V m° - Vm°r°)'(V^m° - V.m°r°)] ii
i , . *_ B t

t=i

0(1) and uniformly positive definite;

o— 1 /o — 1 z"? o " o d
(c) A^ -"'^ T E (^..m° - '7.mrr°)'U° ° N(0,I^)

len

P t ex t T' t

iOz'i. 3 >a

where 5 is given by (2.11) and A_ is defined in (2.13).

Though the list of regularity conditions is long, the theorem

is widely applicable. The WULLN and UC requirements hold under very

general conditions on the process C ( Yj_ , Z_^ ) T . See Andrews (1987),

12



Gallant and White (19S6) and Newey (19S7) for general treatments.

The asymptotic normality assumed in (vii:c) can be established by

application of the martingale central limit theorem discussed in

Wooldridge (1986). Overall, the conditions of Theorem 2.1 Br&

fairly weak, and can be expected to hold in many cases where the

data are weakly dependent.

3 . Cone 1 us ion 5 and ' Further Appl ications

The approach to specification testing taken in this paper leads

to simple robust inference for regression models that contain

unknown forms of heteroskedastici ty . The procedure should be useful

for both cross section data and for time series data for which

interest lies in correct dynamic specification of the regression

function. Although it was assumed that the restrictions being

tested BTB zero restrictions, a similar analysis shows that the

procedure is valid when the F'-i-Q ;; 1 vector G can be expressed as O
a a

- r ( ex ) under H^ , where ex is a P ;c 1 vector and r is a
o o

P P+Ddif f erentiable function from K to [R

The approach developed here has several other applications. In

Wooldridge (1937a), it is used to derive a class of regression-based

conditional moment tests (Newey (1985), Tauchen (1984)) for

conditional expectations estimated by GMLE . The resulting

regression-based tests include the LM test discussed here, Hausman

tests which do not assume relative efficiency cf either estitr:ator,

and nonns = ted hypotheses tests that s.rB robust to second moment

^ ' - = -^ -; nr. : .-,H = .Tiisspecification und the null hypothesis. Slightly modifying the

»ppr^c(_h yields a sim.ple regression White test for

13



heteroskedastici ty which does not assume constancy of the

conditional fourth moment of the errors. This test is derived in

Wooldridge (1987a) for the more general class of QMLE ' s assuming

only that the first two conditional moments are correctly specified

under the null hypothesis.

14



Appendix

For convenience, a leiTima is included which is used repeatedly

in the proof of Theorem 2.1.

LeiTifTia A. 1 : Assume that the sequence of random functions '

[Q (W ,e): e e ©, T=l,2,...], where (W , •) is continuous on

and © is a compact subset of K , and the sequence of nonrandom

functions [Q (©): © e ©, T=l,2,...}, satisfy the following

conditions:

(i) sup |Q (W ©) - Q (©)]| 5 0;
©e© 111

(ii) •CQy(©): e € ©, T=l,2,...} is continuous on ©

uniformly in T.

Let © be a sequence of random vectors such that © — ©_ -> where

i© } c ©. Then

0^(W^,©^) - 0^(e*) 2 0.

Proof: see UJooldridge (19S6, Lemma A.l, p. 229)

Proof of Theorem 2.1 : The major task of the proof is establishing

the validity of equation (2.11).

ciy i_i rs i_i it weak consistency analoQ of Bates and Wmte

(19S5, Theorem 2.2), assumptions (i), (ii) and (iii) imply that

'--'-^ " •'^_- i-o-sistency of c--_ and (iv) imply that
i LJ i

T ^ .

L t=l °= ^ -
-» 1 as T -» 00. (a.l)

T
Now J'v'^' ~ \ '-"'^•-^n-^^^ '-t-.s-

0(1) .

Ne;-;t, consider equation (2.11). Now

.ciently large T



t=l t=l

But by (a.l), the Becond term on the right hand side equals zero

with probability approaching one, so that the second term on the

right hand side of (a. 2) has no effect on the limiting distribution

1 / r? '^

of ?T-. Given (v:a,b) and (vi:b), T ^(oc^ - a ) = (1). Using this
I Top

fact and the mean value expansion for random functions (Jennrich

(1969, Lemma 3)), expand the first term on the right hand side of

(a. 2) about ex and apply Lemma A.l to get

^ = "^

1/2 0„D
,

J^CVpm, - Vt^^'^t "

*- t=i

"^

E[(V^ m° - V <r°)'U°] - T-^ E EHV m° - V m°r° )
' V m°]l

pa t acx t T t ^ pt atT octj

• T^'^'^Ca^ - ex ) + o (1) . {.3..Z.)To p

Under H., ECV^ m°'U°] = E[V m°'U°] = 0, and, by definition of r°
O pDC t t cxcx t t T'

Z E[(V-m° - V m°r°)'7m°] = 0.
t=l P ^ ex t T t

1/2 '
Because T ( cv - ex ) =0 (1), the second term on the riqht handTop-
side of (a. 3) IS o (1). This shows that (2.11) holds.

P
o-i ''2'- dBy (viiib.c), .V^ ? -» N(0,lp^). Condition (vii:a) ensures

that A^ 1. a consistent estimator of A^ , an d (vii:b) ensures that it

^T^
I'V.p 5^ - XT, and this completes the proof,

b t)0 <c

16
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