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The Theory of Implementation in Nash Equilibrium: A Survey

The theory of implementation concerns the problem of designing game

forms (sometimes called "mechanisms" or "outcome functions") the equilibria

of which have properties that are desirable according to a specified

criterion of social welfare called a social choice rule . A game form, in

effect, decentralizes decision-making. The social alternative is selected

by the joint actions of all individuals in society rather than by a central

planner.

Formally, a social choice rule assigns a set of alternatives to each

profile of preferences (or other characteristics) that individuals in

society might have; the set consists of the "welfare optima" relative to the

preference profile. A game form is a rule that specifies an alternative (or

outcome ) for each configuration of actions that individuals take. A game

form implements (technically, fully implements) a social choice rule if, for

each possible profile of preferences, the equilibrium outcomes of the game

form coincide with the welfare optima of the social choice rule. Of course,

the equilibrium set depends on the particular solution concept being used.

Implementation theory has considered a variety of solution concepts,

including equilibrium in dominant strategies, Bayesian equilibrium, and Hash

equilibrium. Other chapters of this volume treat the first two equilibrium

concepts. In the .main, this article is confined to implementation in Nash

equilibrium, although it relates this theory to those of other solution

concepts, dominant strategies in particular.

Nash equilibrium is the noncooperative solution concept par excellence ,

and so it is not surprising that implementation theory should have employed

it extensively. Nonetheless, one reason often advanced for the desirability



of decentralization is that information is incomplexe, and so it may seem

strange to use a solution concept of complete information (I am

distinguishing here between Mash equilibrium in its original sense, c.f.

Nash (1950), and the incomplete information extension due to Harsanyi

(1967), commonly called "Bayesian equilibrium"). There are at least three

alternative justifications for so doing.

First, as the work of Hurwicz (1972) and Groves and Ledyard (1977) at

least implicitly assumes , a Nash equilibrium can be viewed as a stationary

point of an iterative adjustment process. In such a process, players may

have incomplete information but continually revise their actions imtil a

point is reached where unilateral deviation no longer pays. Such a point is

a Nash equilibrium-

There are several difficulties with this interpretation. If an

individual believes that others play "naively" in the sense of always

adjusting their actions optimally, assuming that the distribution of current

actions will continue to prevail, then it will, in general, pay him to act

as a Stackelberg leader and allow others to adapt to an action that he does

not adjust. But if one or more players attempt to behave as Stackelberg

leaders, there is no longer any reason to suppose that a stationary point of

the process is a Nash equilibrium.

There are two cases where we might be able to rule out such Stackelberg

behavior. One is where society is sufficiently large so that one

individual's effect on others is slight enough as to have no appreciable

effect on their actions. In that case, the individual would best play in

"Hash-like" fashion (see, for example, Roberts and Postlewaite (1976)). The

other is where the individual believes that any given iteration is the last

(at least with very high probability), in which event, from his perspective.



there is no opportunity for influencing future behavior.

Clearly, though, these cases are highly restrictive. When they do not

apply, we cannot expect naive behavior. But if all individuals are

"sophisticated" then each must realize that, when adjusting his action, he

may affect others' (probabilistic) beliefs about his preferences. Since

these beliefs, in turn, may affect their behavior, individuals may, again,

be induced to behave in a non-Nash-like way.

The second reason for using Nash equilibrium is more satisfactory game

theoretically. There are many circumstances where the planner (game form -

designer) can be thought of as having highly incomplete information, whereas

individuals themselves are well-informed. For example, the individuals may

be firms that are experts in research and development and know a great deal

about each other, whereas the planner may be the government, who knows next

to nothing about R&D but wants to influence firms' behavior. Alternatively,

the planner might be a "constitution-designer," who must devise the

procedural rules (the game form) by which committee members make decisions

long in advance of any particular application. Indeed, the planner may not

literally exist as a physical entity; rather he may simply stand for the

committee as a whole. But, by the time, any particular decision has to be

made, committee members may be well aware of each other's preferences.

In either of these two examples, Hash equilibrium is the appropriate

solution concept. • It is important in the examples that individuals have

good information about each other; otherwise, Bayesian rather than Hash

equilibrium pertains. It is equally necessary that the planner have poor

information; otherwise, he could simply impose a welfare optimal social

alternative by fiat.



Finally, implementation in Nash equilibrium may be thought of as a

positive theory. To the extent that the theory can characterize the set of

implementable social choice rules, it can predict the kinds of outcomes that

can rise as equilibria of already existing (complete information) games.

This article is divided into nine sections. The first introduces

notation and the basic concepts. The second presents the fundamental

theorem characterizing the set of implementable social choice rules. This

theorem is cast in terms of two properties, monotonicity and weak no veto

power. Section 3 discusses the so-called "revelation principle" with

respect to implementation in Nash equilibrium and several other equilibrium

concepts. We clarify the relevance for Nash implementation of the

principle, as usually stated, and propose an alternative formulation.

Section 4 discusses the connection between implementability and several

common properties of social choice rules, viz., weak no veto power,

neutrality, and individual rationality. Section 5 exposits the relationship

between Nash and dominant strategy implementation. Section 6 treats

implementation in a much-studied special case, where preferences are of a

"quasilinear" form.

Through Section 6, all analysis assumes noncooperative behavior on the

part of individuals. Section 7, however, allows for collusion and studies

implementation in strong equilibrium. Section 8 considers an implementation

concept, double implementation, that accommodates both noncooperative and

cooperative behavior simultaneously. Finally, Section 9 briefly discusses

two concepts related to Nash implementation.

1 . Notation and Basic Concepts

Let A be a set of social alternatives (A can be either finite or

infinite). A utility function, u, on A is a real-valued function



u: A -^ R,

where R denotes the real numbers. Let U. be the set of all utility-

functions. For each i = 1,...,n, let U. be a subset of U . . Then, an n-

person social choice rule (SCR) on (U,,...,U ) is a correspondence

f : U,x. ..xU » A.^
1 n

For any profile (u,,...,u ) of utility functions, one interprets

f(u. ,...,u ) (sometimes called the choice set and which we assume to be

nonempty) as the set of welfare otpimal alternatives. Common examples of

social choice rules include the Pareto correspondence, which selects all

Pareto optima corresponding to a given profile, and the Condorcet

correspondence, which selects all alternatives for which a majority does not

prefer some other alternative. Notice that, in principle, we allow the SCR

to select two different choice sets for two utility profiles that correspond

to the same preference orderings. That is, the choice set may depend on

cardinal properties of utility functions. This flexibility will be

eliminated below when we discuss implementation. However, our formulation

enables the ordinal nature of an implementable SCR to be proved (albeit

trivially) rather than postulated.

Given action spaces S. ,...,S for each individual, an n-person game

form g is a mapping

g: S.X.. .xs -> A.^ 1 n

If individuals 1 through n play the action configuration (s.,...,s ), the

outcome is alternative g(s,,...,E ).

For a game form g, let NE (u. ,...,u ) be the set of Nash equilibrium
& I 11

' In this chapter we shall suppose throughout that preferences alone
constitute the relevant data about individuals. See the chapter by
Postlewaite in this volume for a treatment that allows for other information
(e.g., endowments) as well.



outcomes corresponding to the profile (u , ...,u ). Slightly diverging from

the terminology of Dasgupta, Hammond, and Maskin (1979), we shall say that

the game form g weakly implements the SCR f in Nash equilibrium if, for

every (u^,...,u^) e U^x..,xU^

(1) NE (u,,...,u ) is nonempty

(2) NE (u.,...,u )Cf(u.,...,u ).
g 1 n — 1 n

Thus, if g weakly implements f, an equilibrium always exists, and all

equilibria lie in the social choice set.

Requirements (l) and (2) are, by now, the standard requirements in

Nash-implemenxation theory. We shall see below, however, that the analogue

of (2) is not always imposed in the corresponding theories for other

solution concepts.

If for all (u. ....jU ) c U.X...XU and all a c f(u<,...,u ) there
1

' n 1 n ^ 1
' ' n

exists a game form g that weakly implements f and for which

a e NE (u, ,...,u ), then we say that f is implementable (in Nash

equilibrium). The difference between weak and ordinary implementability is

that the latter requires every element of every choice set to arise as a

Hash equilibrium of some implementing game form. An ostensibly still

stronger requirement is that a single game form yield all these equilibria.'

We shall say that the game form g fully implements the SCR f if for all

(u^,.-.,u^) E U^x...xu^,

(3) NE(u^,...,u^)' = f(u^,...,u^).

We shall see below (Section 4) that, in fact, implementability and full

implementability are equivalent.

2. The Fundamental Characterization Theorem

To characterize those SCR's that are implementable, we must first

define two properties of SCR's. We shall argue that the first of these is

in many circumstances extremely weak.
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Weak No Veto Pover : An SCR f sat^-sfies weak no veto power if, for all

(u u ) e U,x...xU and a e A, a e f(u. ,...,u ) whenever there exists i
^

1 n 1 n I n

such that for all i * ± and all b e A u.(a) _> u (b).

In words, an SCR satisfies weak no veto power if whenever all

individuals except possibly one agree that an alternative is top-ranked -

i.e., no other alternative is higher in their preference orderings - then

that alternative is in the social choice set; the remaining individual

cannot veto it. The hypothesis that the alternative be top-ranked is what

distinguishes this property from other no veto conditions and what makes it

so weak. Indeed, in many circumstances the hypothesis cannot be satisfied

at all. Suppose, for example, that we equate a social alternative with an

allocation of goods across consumers. Assume also that at least one of

these goods is a divisible private good that all individuals find desirable.

Then no two individuals will agree that any given alternative is top-ranked,

since each would like all the private good to himself. Thus if there are at

.least three individuals, our weak no veto power condition is satisfied

vacuously.

Our other condition is considerably stronger, although quite standard.

It sometimes goes under the name "strong positive association" (see Muller

and Satterthwaite (l977) and Moulin and Peleg (1982)).

Monotonicity : An SCR f is monotonic if, for all (u. , . .
. ,u ), (u. ,...,u ) e

U. X...XU and a z ^, a z f(u. ,— ,u ) whenever (i) a e f(u. , . .

.

,u ) and,

(ii) for all b e A and i, u.(a) >_ u.(b) implies u.(a) >_ u.(b).

In words, an SCR is monotonic if, whenever an alternative a is in the

choice set for a profile of preferences, and then those preferences are
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altered in a way such that a does not fall in anyone's preference ordering

relative to any other alternative, it remains in the choice set.

Clearly, monotonicity is a purely ordinal property, and an SCR that

satisfies it will reflect only ordinal properties of utility functions.

That is, if, for all i, u. = h. o u. , where h. : R -> R is strictly

increasing, then a monotonic f satisfies f(u,,...,u ) «= f(u,...,u ). Thus
1 n n

monotonicity rules out the interpersonal comparisons inherent in, say,

utilitarianism or the Rawlsian difference principle. Moreover, as we shall

see below (see section 5), it amounts to something very close to

independence of irrelevant alternatives in the sense of Arrow (1951 )•

Nonetheless it is satisfied by such common SCR's as the Pareto and Condorcet

correspondences and, in economic contexts, by the correspondence that

selects core allocations.

Monotonicity does not require that all Pareto optimal alternatives be

in the choice set (the Condorcet correspondence is a covmterexample) , but,

if f is onto A, it does imply that a subset of Pareto optimal alternatives

is in the choice set, namely, those that are top-ranked by all individuals:

LeTTiTTip 1 : Suppose that f is monotonic and onto A. For any (u, ,...u ) e

U.>'...xU and a e A if, for all b and i, u.(a) > u.(b), then a e
1 n '2.-2.

f(u^ ,...,u^).

Proof : Because, by assumption, f is onto A, there exists (u-,...,u ) e

Ux.-.xU such that a c f(u, ,...,u ). If, for all i and b, u.(a) > u.(b),
1 n 1 n 1—1

then, from monotonicity, a t f(u', ,...,u ).

Q.E.D.



We can now state the fundamental characterization result.

Theorem 1 : (Maskin (1977)): Suppose that f is an n-person SCR. If f is

implementable in Nash equilibrium, then it is monotonic. Furthermore, if

n > 3 and f satisfies weak no veto power and monotonicity, then it is fully

implementable

.

Proof : To see that implementability implies monotonicity, suppose that f is

not monotonic. Then there exist (u.,...,u ) and (u,,...,u ) e U, x. . . xU andin 1 n 1 n

a E A such that a c f(u,,...,u ) and, for all b e A and all i,In
(4) u^(a) >_ u^(b) implies u^(a) >_ u^(b)

but

(5) a / f(u^ , .. -fU^)

.

Now, if f is implementable, there exists a game form g: S, >«...xS ->• A and a

configuration of strategies (s*,...,s*) such that g(s*, . .
. ,s*) = a and

(s*,...,s*) is a Nash equilibrium for profile (u.,...,u ). But from (4),

(Et,...,s*) is also E Hash equilibrium for (u>,...,u ), which, in view of

(5), contradicts (2). Hence, f is not implementable.

Ve only sketch the proof that weak no veto power and monotonicity imply

that f is fully implementable. For the omitted details see Maskin (1977).

For any a e A and u. e U. let

L(a,u.) = {b E A|u.(a) >_ u.(b)}.

L(a,u. ) is the lower contour set of u. at a, i.e., the set of alternatives
1 1

that someone with 'utility fxinction u. does not prefer to a. For each i, let

(6) S^ = {(u^ , . .
. ,u^,a) I

(u^ , ..
. ,u^) E U^x.,.xU^ and a e f(u^ , ..

. ,u^) }

.
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That is, each player's action consists of announcing a profile of utility-

functions and an alternative that is in the choice set with respect to that

profile. Define g: S.x...xS -^ A so that:

(7) if s^ = ... = s^ = (u^ ,.. .,Uj^,a), then g(s^,...,s^) = a;

(8) if B .
= (u.,...,u ,a) for all 2*1, then

{b c A|b = g(s^,7_^), s^ e S^} «= L(a,u^)2

and

(9) if, for given i, there exist j and k, with j ^ i * k, such that "b .t "b ,

then

{b z A|b = g(s^,B_^), 8^ E S^} = A.

That there exist game forms satisfying conditions (6)-(9) is demonstrated in

Maskin (1977). ¥e claim that any such game form fully implements f.

To see this, first choose (u<,...,u ) e U, >^. . . xU and a e f(u<,...,u ).'

1 n 1 n 1 n

From (7), if all individuals take the action (u, ,...,u ,a), the outcome is
1 n

a. Furthermore if (u,,...,u ), in fact, are individuals' utility functions,

then, from (8), each individual cannot obtain an alternative he prefers to a

by varying his action unilaterally. Hence, all individuals'

taking the action (u, ,...,u ,a) is a Hash equilibirum for the profile

(u. , . . . ,u ). This establishes that for all (u. , . . . ,u ), f(u, ,...,u )^

NE^(u. ,...,u ).
g 1 n

To establish the opposite inclusion, suppose that (s,,...,e ) is a Nash

equilibirum of g for the profile (u, ,...,u ) and that a = g(B>,...,E ). We

The notation "g(s.,s .)" is shorthand for g(E>,...,E. . ,s. ,e. _^. , • . . ,e )

.
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must establish that a e f(u^,...,u ). There are three cases to consider:

(a) s, " ... " s ; (p) there exist i and action s such that for all j ^ i

s^. = s but B. * s; and (y) all other configurations.

Consider case (a) first. Suppose that b. " (u.,...,u ,a) for all i.

We have already observed that, from (7) and (8), g(s,,...,B ) *= a and that

(s. ,...,B ) is a Nash equilibrium for the profile (u, ,...,u ). For any i

consider b such that u.(a) _>. u.(b), i.e., such that b e L(a,u.). Prom (8)

there exists s. e S. such that g(B.,E .) " b. Hence u.(a) >_u.(b);

otherwise, s. could not be an equilibrium action for utility function u.

,

contrary to our assumption. Therefore, the hypotheses of the monotonicity

condition are satisfied, and we conclude that a t f(u,,...,u ), as required.

Kext, consider case (p). Suppose that, for all j * i, s. «=

(u^,...,u ,a) and that s. t (u^,...,u ,a). Since, for each k * i, s, ^ b.

and n >_ 5i (9) implies that, for all j * i and all b e A, there exists

s. E S. such that g(s.,s .) = b. Hence, because (s.,...,s ) was assumed to

be a Hash equilibrium for (u. ,...,u ), we can conclude that u.(a) _> u.(b)

for all j '' i and all b e A. Our weak no veto power condition then implies

that a E f(u, ,...,u ), as reauired.In
Finally, in case (y), for all i, there exist j. and k, with j ;' i i^ k,
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such that B. t s, . Hence, as in case (p), weak no veto power implies that

a e f(u.,...,u ), completing the proof.

Q.E.S.

The proof of Theorem 1 is constructive. Given an SCR satisfying weak

no veto power and monotonicity, we produce a game form that fully implements

it. It may be helpful to summarize the construction in words. An action

consists of announcing a profile of utility functions and an alternative

that is in the choice set for that profile. Condition (7) says that if all

individuals announce the same profile (u. ,...,u ) and alternative a, then a

is the outcomme. Condition (8) says that if all individuals but one play

the same action (u^,...,u ,a), then, by varying his action, the remaining

individual can "trace out" the entire lower contour set corresponding to the

utility function the others announce for him and to the alternative that

they announce. Condition (9) stipulates that if, in a configuration of

actions, two individuals' actions differ, then any third individual can

trace out the entire set A by varying his action.

As we have noted, the Pareto correspondence is monotonic Also, it

obviously satisfies weak no veto power. Theorem 1 implies, therefore, that

the Pareto correspondence is implementable for n 2. 3, even when the U.'s are

unrestricted (i.e., equal to U.)- This result, however, does not obtain

when n = 2, as Theorem 2 demonstrates.

Pareto Optimality : An SCR f: U. x— xU ->• A is Pareto optimal if for all

(u. ,...,u ) E UX...XU and all a c f (u, , — ,u ) , a is weakly Pareto optimal
1 n 1 n In

with respect to (u.,...,u ), i.e., there does not exist b e A such that, for

all i, u. (b) > u. (a)

.

Dictatorship: An SCR f: U x...xU -* A is dictatorial if there exists an
*-

1 n
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individual i such that, for all (u. ,...,u ) e U. x.,.xU and all a e A, u.(a)
I n 1 n 1

>_u.(b) for all b e A if a e f(u.,...,u ). That is, an SCR is dictatorial

if there exists an individual (the dictator) who always gets his way.

Theorem 2 ; Let f: U. x U. -*• A be a two-person, Pareto optimal SCR. Then f

is implementable in Nash equilibrium if and only- if f is dictatorial.

Proof : See Maskin (1977) and Hurwicz and Schmeidler (1978).

The hypothesis that the U. 's are equal to U is crucial to the validity

of Theorem 2. As we shall see in Section 7, many two-person, Pareto

optimal, and nondictatorial SCR's on restricted domains are implementable.

Given a set of SCR's satisfying the hjrpotheses of Theorem 1, we can

generate new implementable SCR's:

Corollary to Theorem 1 : For n >_ 3, suppose that {f^jfj,-..} is a sequence

of n-person monotonic SCR's. Then, if one of the f.'s satisfies no veto

CD

power (_/ f. is fully implementable in Nash eauilibrium, and if each of f.'s
i=1 ^

* ^

satisfies weak no veto power (1 f. is fully implementable (assuming /O
i=1

^

f.(u. ,...,u ) is nonempty for all profiles)

i=1 ^ i=1

Proof: The proof simDly consists of verifying that [^ f. and /^ f. both
i=1 ^ i=1 ^

satisfy monotonicity, that [^ f . satisfies weak no veto power if one of
i=1 ^

CD

f.'s does, and that^ .'_!. f. satisfies weak no veto power if all the f.'s do.
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3. The Revelation Principle

Let us temporarily broaden the idea of an SCR. Rather than limiting

its domain to sets of utility functions, we shall define it to be a

correspondence on 9, x...x0 where 0. is individual i's space of possible
1 n 1

"characteristics." A characteristic 9. not only describes i's preferences,

but perhaps also his endowment, information about others, and whatever else

might be relevant.

Suppose that the SCR f: Q>x...x0 -> A is weakly implemented by a game

form g: S.x...xS -* A according to some noncooperative solution concept.

Thus we require the analogues of (l) and (2) to hold for the solution

concept under consideration. Because the solution concept is

noncooperative, we can write each individual's equilibrium action as a

function st(e.) of his characteristic. Hence, for all profiles (9. ,...,9 ),

(s*(9, ) , . .
. ,s*(9 ) ) is an equilibrium. Now, define the induced game formlinn

g*: 0,x...xe -* A
I n

so that, for all (9,,..., 9 ),
1 n

e*(e^,...,9^) = g(s*(e^),...,s*(9^)).

Notice ,that for all (9.,..., 6 ), the actions (9,,..., 9 ) constitute an
1 n 1 n

equilibrium^ for the profile (9.,..., 9 ) and that, furthermore,

g*(9,,...,9 ) E f(9,,...,9 ). This is the revelation principle (see Gibbard

(1973), Dasgupta, Hammond, and Maskin (1979), Myerson (1979), (1982), and

(1983) and the references cited in this last paper): the observation that

^Actually this assertion is a bit too strong. It is true only for solution
concepts that have the property that an individual's best action does not
change when one deletes from the action spaces of other individuals all
actions that are never equilibirum actions for any possible characteristic
they might have. This property holds for dominant strategy, Bayesian, and
Nash equilibrium, but not for, say, maximin equilibrium. However it does
hold for a modified version of maximin equilibrium (see Dasgupta, Hammond,
and Maskin (1979)).
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if a game form implements an SCR, then there exists a "direct revelation"

game form whose action spaces coincide with the characteristic spaces and

which has the properties that (1 ) playing one's true characteristic is

always an equilibrium action and (2) such a "truth-telling" equilibrium is

in the choice set.

Although the revelation principle is a useful technical device, we must

stress that g* does not necessarily implement f. That is because, although

g*(9,,...,9 ) is in the choice set for (G, ,...,G ), there may be other

equilibrivim outcomes that are not, even if g (the original game form) does

implement f. .

Thus, we cannot conclude from the revelation principle that all one

ever need consider are direct revelation game forms. Unfortunately, one may

draw that incorrect conclusion from reading much of the literature on

implementation in dominant and Bayesian equilibria. For the most part, this

literature has implicitly used an implementation concept different from (the

analogue of) (l) and (2), viz., namely "truthful implementation"** which

requires only that the truthful equilibrium of a direct revelation game form

be in the choice set. Although the connection between truthful and ordinary

implementation has been (partially) elucidated for the case of dominant

strategy equilibrium, almost nothing is known about it for Bayesian

equilibrium. In any case, the Nash implementation theory is the sole

implementation literature where much attention has been given to the issue

of multiple equilibria.. Indeed that is the aspect that lends the literature

interest, since for any SCR, it is extremely easy to contruct a direct

revelation game form for which, for each profile, the truthful equilibrium

^See Dasgupta, Hammond, and Maskin (1979), Laffont and Maskin ( 1982a), and
Sections 5 and 6 below.

'
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IS in the choice set. All we have to do is satisfy (7), which is possible

for anj;; SCR.

There _is, nonetheless, a version of the revelation principle that is

consistent with our definition of Nash implementation. When Nash

equilibrium is the solution concept, an individual needs to know not just

his own preferences but the preferences of everyone else in order to

determine his equilibrium action. Therefore, in the framework of Sections 1

and 2, a characteristic of an individual is an entire profile of utility

functions. Indeed, if instead we interpreted individual i's characteristic

to be u. alone, we would, in effect, be requiring dominant strategies (see

Theorem 7.1.1 of Dasgupta, Hammond, and Maskin (1979))-

Notice that having individuals announce utility profiles is,

essentially, what the game forms in the proof of Theorem 1 do (individuals

also announce alternatives, but that is only because f may be multivalued;

if f were single-valued, the strategy spaces could be taken to be

U^x...xU ). Thus these game forms may be thought of as ones of direct
I n

revelation. Now, as we shall see in Section 4, not all implementable SCE's

satisfy weak no veto power. Therefore, Theorem 1 does not quite completely

characterize the set of implementable SCE's. Nevertheless, the kind of game

form constructed in the proof, only slightly modified, is capable of fully

implementing any SCE that can be implemented at all. Thus, in this sense,

we need consider only a "canonical" class of SCE's.

Suppose that f is an implementable SCR. For each i and u. e U. let

N.(u.) = {a e A| there exists u . such that, for all j * i and all b e A,

u.(a) > u.(b) but a i f (u, , . .
. ,u )}. That is, the set K.(u.) consists of2—2 '

\ n 11
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all the alternatives a that individual i can veto if he has utility function

u. even if a is a top-ranked alternative for everyone else. Clearly, N.Cu.)

is empty if f satisfies weak: no veto power. As in the proof of Theorem 1,

let

(6). S^ = {.(.U|,^. ..„,Uj^,a) |(u^ , .. .,Uj^) e U^x...xU^ and a e f (u^ , . . . ,u^) }

.

Define g: S x,..xs -»• A to satisfy (7),

(8*) if s .
= (u.,...,u ,a) for all i * 1, then

{b E A|b = g(s^,B_^), s^ e S^} = L(a,u^) - K^(a,u^),

where M.(a,u.) = {b e aI there exists u. e U. such that b e N.(u.) and u.(b)11 11 111
>^u.(c) for all c e L(a,u.)}, and

(9*) if, for given i, there exist j and k, with j ^ i ^^^ k, such that S. t

S, , then
k

{b E A| b = g(s^,B_^), B^ E S^} = A - ?,

where P = {a e aI there exists (u>,...,u ) such that u.(a) > u.(b) for all i
' in 1—1

and b but a / f(u. ,...,u )}. From Lemma 1, if a e P, then a is not in the
/

'
n

range of f. Therefore P is empty if f is onto A. To see that such a

construction is possible, see Maskin (1977)-

Condition (8*) says that if all individuals but i take the same action

(u.,...,u ,a), then, by varying his action, i can trace out the lower

contour set corresponding to u. and a except for those alternatives b for

which there exists a profile (u^,...,u ) such that (a) b is top-ranked by

all individuals other than i, (p) individual i (with utility funciton u.

)
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prefers b to all alternatives in the lower contour set corresponding to

L(a,u.), and (y) t is not in the choice set corresponding to (u, , .
. , iT ).

1 in
Condition (9*) requires that if, in a configuration of actions, two

individuals' actions differ, then any third individual, by varying his

action, can trace out the entire set A except for those alternatives a for

which there exists a profile in which a is top-ranked by everyone but not in

the choice set.

Theorem 3 : The Revelation Principle: Suppose that, for n >_ 5. f is an n-

person SCR that is implementable in Nash equilibrium. Then a game form

satisfying (6), (7), (8*), and (9*) exists. Furthermore, f is fully

implementable by any such game form.

For the details of the proof, see Maskin (1977). Here we give only an

indication of the idea behind the proof by way of an example.

The construction in Theorem 1 will not serve to implement all

implementable SCE's. This is because an implementable SCR may fail to

satisfy weak no veto power (however some implementable SCE's that violate

weak no veto power can be implemented by the Theorem 1 construction, e.g.,

the individual rationality correspondence of Section 4 below). For example,

consider the SCR f that chooses alternative c as optimal unless c is Pareto

dominated. If b Pareto dominates c, b is chosen, unless a, in turn, Pareto

dominates b, in which case a is chosen. This SCR is clearly monotonic, but

it does not satisfy weak no veto power because if individuals 2 and 3 (in a

three-person society) both prefer a to b and b to c, and individual 1

prefers b to a and a to c, then b is chosen, even though two out of three

individuals top-rank a. Moreover, the construction of Theorem 1 does not

implement the SCR.
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To see this, suppose, for instance, that individuals' preferences are

as just described. However, suppose, in the Theorem 1 construction, that

individuals 2 and 3 both play the strategy consisting of announcing the

profile

'"-^^
-_1_ -2 5 " -

b c c

(*) c a aabb
and the alternative c If individual 1 does the same, then the outcome is

c, since this is the f-optimal alternative. By playing some alternative

strategy s', furthermore, individual 1 can obtain alternative a, since a

lies in the lower contour set of 1 's preference ordering as specified by

(*). Individual 1 cannot, however, obtain alternative b. Therefore, a

strategy triple where individual 1 plays s' and individuals 2 and 3 each

play (*) is a Nash equilibrium with respect to individuals' (true)

preferences. Because the corresponding outcome, a, is not optimal for those

preferences, we conclude that the game form does not implement f.

However, f _is_ implementable by a game form satisfying (6), (7), (8*),

and (9*)' Specifically, (8*) guarantees that a non-optimal equilibrium as

above cannot arise because, starting from a configuration where all

individuals play the same strategy, an individual cannot trace out the whole

lower contour set and, in particular, cannot obtain, for any profile of

preference, any alternative that is top-ranked by all others and, within his

lower contous set, top-ranked for him. Thus, in the example, if individuals

2 and 3 play (*), individual 1 cannot obtain a (in this example, we did not

have to invoke (9*), which applies only to SCE's that permit non-Pareto

optimal outcomes).
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Notice that Theorem 3 establishes that implementability implies full

implementability, as we claimed earlier. The theorem can be used to extend

the corollary to Theorem 1 to the case of SCR's that do not necessarily

satisfy weak no veto power.

Corollary 1 : Suppose that, for n
2i 3, f]^,f2f-»' is a sequence of monotonic

SCE's. Suppose one of the f.'s is implementable in Nash equilibrium. Then

CD

(^ f. is implementable also.

<^

It remains an open question whether (^ f . is necessarily
i=1 ^

implementable. However, a case in which the intersection of two

implementable SCR's ±s_ implementable is where one of the f. 's is the Pareto

correspondence

.

Corollary 2 : Por n 2. 3, i^ ^i is an implementable SCR and ^2 i^ ''-^^ Pareto

correspondence, then f, /if, is implementable if it is nonempty for all

profiles.

Closely related to Corollary 2 is the observation that the "Pareto

frontier" of an implementable SCE is implementable.

Pareto Frontier of an SCR ; The Pareto frontier of an SCR f is the SCR

PF(f)(u^ ,...,-u^) = {a e f(u^ ,...,u^)lfor all b e f(u^ ,---,u^), u^(a) >_ u^(b)

for some i}

.

Corollary 3 '- For n 2. 3, if f is an implementable SCR, then the Pareto

frontier PF(f) is .also implementable.

The proofs of Corollaries 1-3 are straightforward applications of

Theorem 3 (see Maskin (l977)).
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4. No Veto Power, Individual Rationality, and Neutrality

We have already mentioned that weak no veto power is not necessary for

implementability. One prominent example of an implementable SCR that

violates this property is the individual rationality correspondence. Let Bq

be an element of A. We interpret &q to be the "status quo
•

" The individual

rationality correspondence, f-r-Tji selects all alternatives that weakly Pareto

dominate a^, i.e.

fjp(u^ , ...,u^) = {a E A|u^(a) >_ u^C^q) for all i).

Clearly, f-T, does not satisfy weak no veto power on all domains of utility
IK

functions, because every individual must be guaranteed at least the utility

he derives from a^ . Nonetheless it is a simple matter to fully implement

f^Tj. For instance, the construction of Theorem 1 will do the trick. For a

simpler example, let S. = A for all i. Define the game form g: S.x...xS ->

A so that

s, if E^ = ... = s^

(10) g(s^,...,s^) = <

a.Q, otherwise

That is, each individual chooses an alternative as an action. If the

alternatives agree, the common alternative is the outcome; otherwise, Bq is

the outcome. It is immediate that g fully implements f-pn- Notice that this

is true even for n = 2.

The SCR f jTj iB implementable not only by itself but in conjunction with

other implementable SCR's.

Corollary 4 to Theorem 3 : Suppose that, for n >_ 5, f is an n-person SCR

that is implementable. Then f I IfTu ^s implementable too.

The individual rationality correspondence is highly "non-neutral"; it

treats the alternative ap very differently from all others. But, just as it

is imDlementable , so is anv neutral and monotonic SCR.
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Neutrality : An SCR f: U x...xU A is neutral if for any permutation u:

A -* A and any profile (u. ,...,u )

f(u, n,...,u Ti) = 11 f(u,,...,u ).in In
Neutrality simply says that an alternative's labelling is irrelevant.

Notice that in the formal statement, we have defined f on the unrestricted

domain. This is to ensure that f is defined on the permutation profile

(u. ii,...,u on). The following result is another simple application of

Theorem 3-

Theorem 4 (Maskin (1977)): For n >^ 3, an n-person SCR that is monotonic and

neutral is implementable in Nash equilibrium.

Theorem 4 and Corollary 4 raise the question of whether weak no veto

power is a redundant condition for implementability when n >_ 3» In fact,

the following example demonstrates that it is not, by exhibiting a three-

person monotonic SCR that is not implementable.

Example 1 (Maskin (1977)) A nonimplementable, monotonic SCR: Let n = 3 and

A = {a,b,c}. For each i, let U. consist of all utility functions

corresponding to strict preference orderings (i.e., u. (a) = u. (b) implies a

= b). Define the SCR f: U^ x U2 x U3 -^ A so that for all (u^Uj^Ug) e U^^ x

U2 X U3 and all x, y e A, x e f(u2,U2,U3) if and only if

(11) X is Pareto optimal

(12) if X E {a,b} u^(x) > u^(y) for all y * x

(13) if X = c, there exists y c A such that u^(x) > u,(y).

It is easy to see that f is monotonic. Choose (u*,Up,;i^), (uf*,U2*»u¥*)

,

and ( u*** , u^** , u?** ) e U^ x U2 x Ug so that

u*(b) > u*(c) > u*(a)

u*(c) > u*(a) > u|(b)

u*(c) > u*(a) > u*(b)
3 3 3
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u**(a) > u^(b) > u|»(c)

u**(c) > u^(b) > u**(a)

u**(c) > u»*(a) > u|*(b)

U***^^?)"^ u***(a) > uf**(c)

u^(a) > u***(b) > u^(c)

u?**(a) > u?**(b) > u***(c).

Then

(U) f(u»,u*,u*) - {b,c}

(15) f(u^,u|*,u^) = {a}

(16) f(u***,u***,u*^) •= {b}.

If f is implementable, there erists a weakly implementing game form g: Sj^ ^

S2 >< S3 •*• A and a vector of actions (sj^jSjrSj) such that g(B2,B2,B3) •= c and

(s^.SjtSg) is a Nash equilibrium for the profile (utjuS.u?) • Because u1^(b)

> ut(c), there does not exist sV t S. such that g(B'',B_,s_) = b. If there

exists s' E S, such that g(s',Sp,s_) = a, then (s',s„,s_) is a Nash

equilibrium for (u"?**,ut**,u?**) , contradicting (16). If there does not

exist s[ E S, with g(s',Sp,s_) = a, then (s.,Sp,s_) is an equilibirum for

(u**,u**,u?*) , contradicting (15)« Hence f is not implementable

.

5- Nash versus DoTninnnt Strategy Implementation

A dominant strategy ie an action that an individual is willing to take

regardless of the actions of others. Formally, we have

Dominant Strategy : In a game form g: S>x...xS -»- A, an action s. is a

dominant strategy for individual i with utility function u. if for all s. e

S . and s . E n S

.
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The definition of implementability in dominant strategies is analogous

to that for Nash equilibrium. The game form g: S. x. . . xS -A weakly-

implements the SCR f if for all profiles (u,,...,u )

(17) DSE (u.,...,u ) is nonempty.

and

(18) DSE (u^ ,.. .,u^) C f(u^ ,...,u^),

where DSE (u. ,...,u ) consists of all dominant strategy equilibium outcomes

corresponding to (u,,...,u ). If ( 18) is an equality, g fully implements f.

As we suggested in Section 3. however, the literature on dominant

strategies has emphasized not this definition but rather the concept of

truthful implementation. For dominant strategies, a direct revelation game

form is a mapping

g: U X. . .xU -^ A.''In
The game form g truthfully implements f in dominant strategies if, for all

(u. ,...,u ), the actions (u. ,...,u ) constitute a dominant strategyin. In
equilibrium with respect to the utility functions (u. ,...,u ) and

g(u^,...,u^) t f(u^ , ...,u^).

Clearly, if f is weakly implemenxable in dominant strategies, it is

truthfully implementable. However, it is eas/ to give examples where the

converse does not hold (e.g.. Example 4-. 1.2 in Dasgupta, Hammond, and Maskin

(1979))' Nonetheless, there is an important case in which we can deduce the

converse; viz., where the U. 's contain only strict preferences.

Lemma_2: Suppose the U. 's contain only strict preferences. If the SCE f

:

U.X...XU -> A is truthfully implementable, then it is weakly implementable

in dominant strategies.
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Proof ; See Daegupta, Hammond and Maskin (1979)'

?or much of the rest of this section, we vlll concentrate on SCH'e that

are single-valued, i.e., whose choice sets contain only a single element.

For such sen's (denoted "SSCR's" for Bingl»-valued social choice rules) we

can characterize tinithful implementabillty in terms independent person-by-

person monotonicity.

Independent Person-by-Person Honotonicity (IPM) ; An SSCR f satisfies IPM if

for all (u^,...,u ) E U.X...XU , all i, all u, e U. and all a, b e A such

that a E f(u.,>*.,u ) and u. (b) > u. (a), it must be the case that b /
I n 1 1 '

f(u^fU_^).

Lemma 3 : An SSCR f: U, X...U • A is truthfully implementable if and only if

it satisfies IPM.

Proof ; See Dasgupta, Hammond, and Maskin (1979)»

We should point out that IPM does not, in general, imply monotonicity.

That is, truthful implementability (even full implementability) in dominant

strategies does not imply Nash implementability.

Example 2 ; Let A {a,b,o,d} and n - 3« Suppose that each U. consists of 4

utility functions: u^, u^ , u , u°, where

u^a) > u^(b) > u^(d) > u^(o)

u^^(a) - u^^b) > u^^o) > u^^(d)

u^(b) > u^a) > u^(d) > u^o)

u°(o) > u°(d)'> u°(a) > u°(b).

Define the SSCR f : Uj_ >« Uj x U3 A so that
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{c}, if u. •= u for some i and
1

a majority prefers c to d.

{d}, if u. = u for some i and

a majority prefers d to c.

f(u^ rUjtUg) =
<

{b}, if at least two individuals have

utility function u and no one

has u .

{a} , otherwise

One can verify straightforwardly that f is truthfully implementable in

dominant strategies. In fact, the direct revelation game form corresponding

to f fully implements f (and has the strong property that, truth-telling is

dominant even for coalitions). However, f is not monotonic because, for

example, f(u ,u ,u ) = {b} but f(u ,u ,u ) = {a} even though, for all x e

A, u (b) >_ u (x) implies u (b) >_ u (x). Thus f is not implementable in

Kash equilibrium. This may seem odd, because the concept of dominant

strategy equilibrium is much more demanding than that of Nash equilibrium.

The apparent paradox is resolved by remembering that, to implement an SCR,

one not only has to ensure that the elements of the choice set can arise as

equilibrium outcomes , one has to prevent the existence of equilibrium

outcomes outside the choice set. It is easier to meet this second

requirement when dominant strategies are the solution concept, since by the

very stringency of a dominant strategy equilibrium, a nonoptimal equilibrixun

is less like to arise.
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Nonetheless, when preferences are strict, dominant strategy

implementability does imply Hash implementability:

Theorem 5 (Dasgupta, Hammond, and Maskin (1979)): If the U. 's contain only

strict preferences, then an SSCR f that is truthfully implementable in

dominant strategies is also monotonia.

Proof : Prom Lemma 3, an SSCR that is truthfully implementable satisfies

IPM. Consider (u2^,...,u ), (u^,...,u ), and a e A such that

a e f(u^,...,u ) and, for all b e A and i, u (a) > u.(b) implies u.(a) >

u. (b). Suppose that c t f(u. ,u_ , . .
. ,u ) for some c e A. If c ^ a, then IPM

implies that U2^(c) > u^(a) and u^(a) > u^Cc). But u^(a) > Uj^(c) implies

u^Ca) > Uj^Cc), by hypothesis. Therefore a"c, and so a e f (u^jUj, • • • rU ).

Continuing iteratively, a e f(u,,...,u ).

Q.E.D.

Not surprisingly, monotonicity does not in general imply IPM. Still,

there is a large class of oases where the implication holds. To discuss

this class, we need the following definition.

Monotonically Closed Domain^: A class U of utility functions is a

monotonically closed domain if, for all pairs {u,u'} C U and {a,b} ^A such

that (i) u(a) >_ u(b) implies u'(a) _> u' (b) and (ii) u(a) > u(b) implies

u'(a) > u-'(b), there exists u" t U such that for all c e A (iii) u(a) >_ u(c)

implies u"(a) >_u"(c), and (iv) u'(b) ^ u'(c) implies u"(b) _> u"(c).

One way of generating a u" satisfying the requirements of the

definition is by taking minimums: if u(a) = u'(a) and u(b) = u'(b), then u"

= min(u,u') will suffice.

^A monotonically closed domain is called a "rich domain" in Dasgupta,
Hammond, and Maskin (1979).
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Clearly, the iinrestricted domain U. is monotonically closed.

Trivially, any domain consisting of a single utility function is also

monotonically closed. Suppose that A is the set of allocations across

individuals of fixed stocks of m divisible commodities. If U consists of

all utility functions corresponding to continuous, strictly, monotone,

strictly convex, selfish (i.e., no externalities) preferences over A, then,

as shown by Dasgupta, Hammond, and Maskin (1979), U is monotonically closed

as well.

Theorem 6 (Dasgupta, Hammond, and Maskin (1979)): If U. is monotonically

closed for all i, then if the SSCR f is implementable in Nash equilibrium,

it is truthfully implementable in dominant strategies.

Proof : If f is implementable in Nash equilibrium, then it is monotonic. If

f violated IPM, there would exist (u^j.-.fU ), u., a, and, b such that a t

f(u,,...,u ) and u.(a) > u.(b) but b e f(u.,u .). From the monotonicin 1 1 1 -1

closure of U. , however, there exis-cs u. e U. such that for all c
1 11

and

u.(a) > u.(c) implies u.(a) > u.(c)1—1 ^ 1—1

u. (b) 2. ii- (c) implies u. (b) _> u. (c)

.

Prom monotonicity applied to (u. ,u .) and (u.,u .), we have a z f (u. ,u .).

But from monotonicity applied to (u. ,u .) and (u. ,u .), b e f(u. ,u .), a
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contradiction of f's single-valuedness. Therefore, f satisfies IPM and so

is truthfully implementable in dominant strategies.

Q.E.D.

Theorem 6 implies that if a planner wishes to implement a single-valued

SCR , he"wriirget no extra mileage from using the ostensibly weaker concept

of Nash implementation if the domain of utility functions is monotonically

closed. In particular, we have the following negative result.

Corollary 1 (Dasgupta, Hammond, and Maskin (1979), Roberts (1979): Suppose

that A contains at least three elements and that f : U -^ A is an n-person

SSCR that is onto A. If f is implementable in Nash equilibrium, it is

dictatorial.

Proof : Because U is monotonically closed, Theorem 6 implies that f is

truthfully implementable in dominant strategies. But then, from the Gibbard

(1973)/Satterthwaite (1975) theorem on dominant strategies, f is

dictatorial

.

Q.E.L.

Roberts (1979) extends Corollary 1 to the case of "conjectural"

equilibria, where, rather than taking other players' strategies as given, an

individual conjectures that others will respond to his strategy choice.

This result is, in turn, closely related to one of Pattanaik (1976).

Another implications we can draw "from Theorem 6 is a set of conditions

under which an implementable f can be thought of as maximizing a social

aggregation function.

Social Aggregation Function : Let B. be the class of all complete,

reflexive, binary relations on A. A social aggregation function (SAF) is a

mapping

F: U X...XU -i- B.

.

1 n A
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If the range of F consists of acyclic relations, F is called a social

decision function, and if these relations are also transitive, F is a social

welfare function. F satisfies the Pareto property if whenever all

individuals strictly prefer a to b (i.e., u.(a) > u.(b) for all i) then

F(u. ,...,u ) ranks a above b. F satisfies nonnegative response if, for all

{a,b} and { (u. , . . . ,u ) , (u. , . . . ,u )} , if, for all i, u.(a) >_ u.(b) implies

u. (a) >^ u. (b) and u. (a) > u. (b) implies u. (a) > u.(b), then that a is ranked

weakly (strictly) above b by F(u. ,...,u ) implies that a is ranked weakly

(strictly) above b by F(u. , . .
. ,u ).

The SSCR f maximizes F if, for all (u, ,...,u ), a e f(u. ,...,u )In In
implies that, for all b ^ a, a is striclty preferred to b by F(u, ,...,u ).

Corollary 2 : Suppose that the U! s are monotonically closed and consist only

of strict preferences , the SSCR f is implementable in Nash equilibrium if

and only if there exists an SAF F satisfying nonnegative response such that

f maximizes F. Furthermore, if f is onto A, F satisfies the Pareto

property.

Proof : See Dasgupta, Hammond, and Maskin (1979)

Nonnegative response implies independence of irrelevant alternatives

(IIA) in the sense of Arrow (l95l)- Corollary 2, therefore, illustrates the

close relationship among monotonicity, IPM, and IIA.

6. Quasilinear Preferences

So far, the only particular domain of utility functions that we have

discussed in any detail is the unrestricted domain U,. We next consider an

important restricted domain: the class of quasilinear preferences.

Suppose that a social alternative consists of a public decision d

(which is an element of some set D) and a vector (t,,...,t ) of transfers of
1 ' n
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some private good (the t. 's are real numbers). Individual i's preferences

are quasilinear if his utility function u takes the form

(20) v(d) + t^.

Let U. be the class of all preferences of form (20). This class has been

the object of much study in the dominant strategy implementation literature

(see, for example, Clarke (1971), Groves (1973), Green and Laffont (1979))-

Rather less has been done with it in the Nash implementation literature

(see, however, Laffont and Maskin ( 1982a) and (1982b) and Roberts (1979))-

QL
It is readily verified that the domain U. is not monotonically closed.

Therefore, Theorem 10 does not apply, and we cannot conclude that the sets

of Nash- and dominant strategy-implementable SSCR's are the same.

Nevertheless, as Roberts (1979) has shown, the public decision parts of the

SSCR's are identical.

In view of (20) we can express an SSCR as a function of the public

parts of individuals' utility functions. Write

f(v.,...,v ) = (d(v. , ... ,v ), t(v. ,... ,v ), . .. ,t (v. , ... ,v )),in 1 n 1 n n i n

where u. = v. + t.

.

Ill
Theorem 7 : Suppose that D, the public decision space is finite. Let f:

OL OL / \

U; x...xu^ -> A be an SSCR such that d( ) is onto B. Then if f is either
1 n

Hash-implementable or truthfully implementable in dominant strategies, there

n
exist VfiiD ->• R and numbers a. , . .

. , a such that c. > for all i and I a. =
" ^

1
' ' n 1 — . , 1

1=1

1 such that d(v. ,...,v ) = arg max(vQ(d) + Z a^. v^. (d))

d i=1

n
01- . .

,

1 1
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Proo f: See Roberts (1979).

Laffont and Maskin ( 1982a) place more structure on the problem by-

assuming that

D = [0,1]

and that the individuals' v. functions are concave and differentiable and

take their maxima in the interior of D. Let V be the class of such

functions. They also assume that the public decision function d( ) is

weaklv efficient (if v, =...= v , then d(v, ,...,v ) = arg mar v.), and
'

1 n 1 n ^ 1
'

neutral (d(v , ...,v ) = d(v , ...,v ) + c, where for all i, v.(d) = v.(d-c)).

Theorem 8 : Let f be an SSCE oe Vx..,xV that is either Nash-implementable or

truthfully implementable in dominant strategies. If d is weakly efficient

and neutral then

(i) there exists a continuous and semi-strictly increasing^ function h:

R -*• R such that h(0,...,0) = and d(v, ,...,v ) solves h(v' (d) , • . . ,v' (d)) =

0, where primes denote derivatives;

(ii) if f is Nash implementable, t. is a function of the numbers

d(v^,...,v^) and v^ (d(v^ , . .
.
,v^)) , . .

.
,v^(d(v^ , . .

.
,v^) )

;

(iii) if f is truthfully implementable in dominant strategies, then

d(v^ ,' ••.\)

t = - / h (v:(t))dt + H (v ),
1 1-1

where h.: IR •* IE satisfies

^By "semi-strictly increasing" we mean that if x is bigger in evry component
than y, then h(x) > h(y)

.
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h(h (a ), B. ) "0, if there exists a. with h(a. ,a . ) =

h.(a .) •= 0, otherwise.

Proof: See Laffont and Maskin ( 1982a).

Notice that the set of implementahle public decisions is defined by-

varying h, whether it be Nash or dominant strategy implementation. When,

n

for example, h = Z ^^v.' .

i=1

the public decision becomes

n

d(v.,...,v ) = arg max Z \.v.(d).
1 n "^ , .,11

d i'=1

The form of the transfers, however, depends on the type of implementation.

Nash implementation demands that the transfers be a function of the optimal

public decision and the derivatives of individuals' utility functions

evaluated at the optimum. Dominant strategy implementation requires that an

individual's transfer be the sum of two terms: a term depending on the

derivitives of the utility functions and the public decision, and a term

depending only on the utility functions of the other individuals

.

7. Strong Equilibrium

Hash equilibrium is a noncooperative concept; it implicitly assumes

that individuals do not act in concert. When individuals can collude,

strong equilibrium may be a more appropriate solution concept.

Strong Equilibium : A strong equilibrium for the game form g: S.x. ..xS -»- A

with respect to the profile (u. ,...,u ) is a configuration (s^,...,e ) such

that for all coalitions CC {1,...,n} and all s„ z U S. there exists i e C

such that u^(g(s)) >_ u^(g(sp,s"_p))

.
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By analogy with Nash equilibrium, a game form g fully implements the f

in strong equilibrium if for all profiles (u.,...,u )

SE„(u, , ..
. ,u ) = f(u ,...,u ),

g 1 n 1 n

where SE (u, ,...,u ) consists of the strong equilibrium outcomes of g for

the profile (u, ,...,u ).
1 n

We should note that if g fully implements f in strong equilibrium, it

does not necessarily implement f in Nash equilibrium. The reason for this

apparent anomaly is that g may possess Nash equilibria that are not strong

and which, futhermore, do not lead to outcomes in the choice set. For

example, consider the following two-person game form, where individual 1

chooses rows as actions, and individual 2, columns:

a a

a b

This game form fully implements the SSCR f*: U2^xU2-^{a,b}in strong

equilibria, where the U. 's contain the strict preferences on {a,b} and

b, if both individuals prefer b to a

•f* (u2,U2) = <

a, otherwise.

However, the game form does not implement f* in Hash equilibrium, because

(3^,82) is a non-f*-optimal Nash equilibrium when both individuals prefer b

to a.

We have seen that monotonicity is a necessary condition for

implementability in Nash equilibirum. The same is true for strong
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Theorem 9 : (Maskin ( 1979b): If an SCR f is implementable in strong

equilibrium, it is monotonic

On the other hand, weak no veto power, which played an important role

in establishing positive results for Nash implementation, prevents

implementation in strong equilibrixim when the number of individuals does not

exceed the number of alternatives and the domain is unrestricted.

Theorem 10 : If the n-person SCR f: U x...xU - A is onto A, n is less than

or equal the cardinality of A but greater than or equal to three, and f is

implementable in strong equilibrium, f does not satisfy weak no veto power.

Proof : The proof consists of considering a "cyclic" profile of preferences

(u^ , . .
. ,u ) , where

u^(a^) > u^(a2) >...> u^(a^)

U2(a2) > U2(a3) >...> U2(a^)

u (a ) > u (ai) >...> u (a ,).
n n n -^ n n-1

Such a profile exists because there are at least as many alternatives as

individuals. But then it is a straightforward to show that no alternative

can be a strong equilibrium, since no single individual has veto power. For

the details, see Maskin ( 1979b).

Q.E.I.

Theorem 10 is false if the number of individuals exceeds the number of

alternatives, as the following example shows.

Example 3 : Let n = 3, A = {a,b}, and U. consist of the strict preferences

on A. Let f be majority rule, i.e., an alternative is in the choice set if

and only if it is top-ranked by two or more individuals. The following game

form implements f:
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a a

a b

a b

b b

where individual 1 chooses rows, 2 columns, and 3 matrices. A large class

of other examples has been constructed by Moulin and Peleg (1982).

Clearly if an SCR f is onto its range and fully implementable , it must

be Pareto optimal. In Section 4 we demonstrated that the SCR that selects

all Pareto optimal and individually rational alternatives is implementable

in Nash equilibirum. In fact, this is the only individually rational SCR on

the unrestricted domain that is fully implementable in strong equilibrium.

Individually Rational SCR: If an e A is the status quo, an SCR f: U, x...xU
1 - '

1 n

•^ A is individually rational if for all (u. ,...,u ) and all a t f(u. ,...,u )

u.(a) > u.(an) for all i.

Theorem 11 (Maskin (l979b)): Let f„ : U x...xU. ^- A be the SCC such that
Q A A

for all (u. , . .
. ,u )

I n

f-(u, ,...,u ) = {a E Alfor all j u.(a) > u.(an) and, for all i, and for

all b E A, there exists i such that u.(a) >_u.(b)}.

Then f^^ is the iinique individually rational SCC on U.x...xU, that is

implementable in strong equilibrium.

Proof : It is immediate to verify that f^ is fully implemented by the game

form (10) (which, interestingly, also implements the individual rationality

correspondence in Nash equilibrium) . That f-^ is the only implementable

individually rational SCR on the unrestricted domain follows from an

argument in Maskin ( 1979b).
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8. Double Implementation

Whereas implementation in Nash equilibrium ignores the possibility of

collusion, implementation in strong equilibrium may, in effect, require

coalitions to form. To see this, consider the game form (10). In order to

obtain any alternative other than Bq, all individuals have to take the same

action. Clearly, there are many (non-strong) Nash equilibria in which

different individuals take different actions, and to avoid ending up in one

of these presumably involves some coordination. That is, collusion is

necessary.

Because the game form designer may not know the extent to which

collusion can or will take place, it is desirable to have an implementation

concept that does not posit any particular degree of collusion. One

possibility is to require a game form to fully implement simultaneously in

both strong and Nash equilibrium. This game form would yield optimal

outcomes regardless of collusion. We shall say that such a game form

(fully) doubly implements the SCR.

Of course, double implementation is a very demanding requirement. Hot

very surprisingly, when the number of alternatives is at least three and the

domain of utility functions is unrestricted, the only SCE's that are onto A

and doubly implementable are dictatorial.

Theorem 1

2

(Maskin 1979a): Suppose A contains at least three elements and

f: U.><...>«U. -* A is an n-person SCE that is onto A. If f is doubly

implementable, then it is dictatorial.

The results are more encouraging, however, when preferences are

restricted. Suppose, in particular, that there exists (at least) one

divisible and transferable private good that all individuals find desirable

and that does not create externalities (i.e., one individual's allotment of
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this good does not affect any other's utility). Let us express a social

alternative a as (b,t, , . . . ,t ) , where t. is the transfer of this private

good to individual i, and b represents all other social decisions inherent

in a. We shall call b the "public decision," although it may itself entail

the allocation of private goods. Denote the status quo, blq, by

(bg ,0, . .
. ,0) . Suppose that the private good is sufficiently desirable (and

that consumers have enough of it in the status quo so that, for all i and

all public decisions b, there exist (t.,...,t ) such that

(21) (b,^, ,... ,"t ) E A and, for all t. < "t. and all u., u.(an) >In 1 1 iiO
u. (b,t

.
,t . )

.

1 1 -1

Condition (21) provides for the existence of "punishments." It says that

regardless of the public decision, it is always possible to take away enough

of the private good from individual i to make him worse off than under the

status quo. ¥e have the following result.

Theorem 13 : Assum.e the existence of a desirable and divisible private good

.

If (21) is satisfied, then any individually rational and Pareto optimal SCR

is fully doubly implementable.

Proof ; See Maskin (1979a).

9. Related Concepts

This paper has discussed Hash, strong Nash, and "double"

implementation. We should, however, mention two related lines of work.

Farquharson (1969) proposed the concept of a "sophisticated"

equilibrium. This is a refinement of Hash equilibrium in which weakly

dominated strategies are successively eliminated. For example, consider the

following two player game:
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2,2 1,1 1,1

0,G 1,1 2,1

0,0 1,2 0,0

The strategy configurations (a,d), (b,e), (c,e), and (b,f) are all Nash

equilibria. However, strategies c and f are weakly dominated for players I

and II. If we delete them, the game becomes

d e

2,2 1,1

0,0 1,1

notice that here strategies b and e are weakly dominated. Once these are

deleted, the players have one strategy each. Hence (a,d) forms a

sophisticated or dominance solvable equilibrium.

The theory of implementation in dominance solvable equilibrium has been

developed largely by Moulin (see Moulin (l979a), (l979b), (1979c), (1980),

(1981 )). Although a full characterization of the implementable SCR's is not

available, there are by now many examples of Pareto optimal, neutral, and
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anonymous SCR'b that can be implemented, including some that are not Nash

implementable

.

An SSCR can itself be thought of a a game form; a player's strategy is

the announcement of a utility function (not necessarily his true one) and

the outcome is the alternative optimal with respect to the announced

preferences. An SSCR is said to be consistent if for any profile of (true)

preferences there exists a strong equilibrium of the SSCR (when viewed as a

game form) whose outcome is optimal with respect to those (true)

preferences. Notice that the qualification about optimality is not

superfluous since the strategies played in equilibrium may themselves be

untruthful. The concept of consistency is due to Peleg (1977). Besides

Peleg, contributors to the subject include Butta and Pattanaik (1978).
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