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Abstract

What form of intellectual property rights (IPR) policy contributes to economic growth?

Should technological followers be able to license the products of technological leaders? Should

a company with a large technological lead receive the same IPR protection as a company

with a more limited lead? We develop a general equilibrium framework to investigate these

questions. The economy consists of many industries and firms engaged in cumulative (step-by-

step) innovation. IPR policy regulates whether followers in an industry can copy the technology

of the leader and also how much they have to pay to license past innovations. With full

patent protection, followers can catch up to the leader in their industry either by making the

same innovation(s) themselves or by making some pre-specified payments to the technological

leaders.

We prove the existence of a steady-state equilibrium and characterize some of its properties.

We then quantitatively investigate the implications of different types of IPR policy on the

equilibrium growth rate. The two major results of this exercise are as follows. First, the

growth rate in the standard models used in the (growth) literature can be improved significantly

by introducing a simple form of licensing. Second, we show that full patent protection is not

optimal from the viewpoint of maximizing the growth rate of the economy and that the growth-

maximizing policy involves state-dependent IPR protection, providing greater protection to

technological leaders that are further ahead than those that are close to their followers. This

form of the growth-maximizing policy is a result of the "trickle-down" effect, which implies that

providing greater protection to firms that are further ahead of their followers than a certain

threshold increases the R&D incentives also for all technological leaders that are less advanced

than this threshold.
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1 Introduction

How should the intellectual property rights of a company be protected? Should a firm with

a large technological lead receive the same intellectual property rights (IPR) protection as a

company with a more limited technological lead? These questions are central to many discus-

sions of patent policy. A recent ruling of the European Commission, for example, has required

Microsoft to share secret information about its products with other software companies (New

York Times, December 22, 2004). There is a similar debate about whether Apple should make

iPod's code available to competitors that are producing complementary products. Central to

the debate about Microsoft and iPod is the fact that they have a substantial technological

lead over their rivals. This implies that the analysis of many of the relevant policy and acad-

emic questions requires a framework for the analysis of state-dependent patent/IPR protection

policy. By state-dependent IPR policy, we mean a policy that makes the extent of patent

or intellectual property rights protection conditional on the technology gap between different

firms in the industry. Existing work has investigated the optimal length and breadth of patents

assuming an IPR policy that does not allow for licensing and is uniform. In this paper, we make

a first attempt to develop a framework that incorporates both licensing of existing patents and

state-dependent IPR policies.

Our basic framework builds on and extends the step-by-step innovation models of Aghion,

Harris and Vickers (1997) and Aghion, Harris, Howitt and Vickers (2001), where a number of

(typically two) firms engage in price competition within an industry and undertake R&D in

order to improve the quality of their product. The technology gap between the firms determines

the extent of the monopoly power of the leader, and hence the price markups and profits.

The purpose of R&D by the follower is to catch up and surpass the leader (as in standard

Schumpeterian models of innovation, e.g., Reinganum, 1981, 1985, Aghion and Howitt, 1992,

Grossman and Helpman, 1991), while the purpose of R&D by the leader is to escape the

competition of the follower and increase its markup and profits. As in racing-type models in

general (e.g., Harris and Vickers, 1985, 1987, Budd, Harris and Vickers, 1993), a large gap

between the leader and the follower discourages R&D by both. Consequently, overall R&D

and technological progress are greater when the technology gap between the leader and the

follower is relatively small.
1 One may expect that full patent protection may be suboptimal in

a world of step-by-step competition; by stochastically or deterministically allowing the follower

Aghion, Bloom, Blundell, Griffith and Howitt (2005) provide empirical evidence that there is greater R&D
in British industries where there is a smaller technological gap between firms. See O'Donoghue, Scotchmer and

Thisse (1998) for a discussion of how patent life may come to an end because of related innovations.



to use the innovations of the technological leader, the likelihood of relatively small gap between

leaders and followers, and thus the amount of R&D may be raised.
2 Based on this intuition, one

may further conjecture that state-dependent IPR policy may also be useful and should provide

less protection to firms that are technologically more advanced relative to their competitors.

There are two problems with this intuition. First, existing growth models (including those

mentioned above) do not allow licensing of the leading-edge technology and the presence of

licensing changes the trade-offs underlying the above intuition.
3 Second, the above intuition is

derived from models with uniform IPR policy, without a systematic study of the implications

of state-dependent IPR policy on R&D incentives.

To investigate these issues systematically, we construct a general equilibrium model with

step-by-step innovation, potential licensing of patents and state-dependent IPR policy. In our

model economy, each firm can climb the technology ladder via three different methods: (i)

by "catch-up R&D," that is, R&D investments applied to a variant of the technology of the

leader; (ii) by "frontier R&D," that is, building on the patented innovations of the technological

leader for a pre-specified license fee; and (iii) as a result of the expiration of the patent of the

technological leader. The second feature is not present in any growth model that we are aware

of, but is essential for understanding how IPR policy works in practice.

The combination of these policies allows a variety of different policy regimes. The first is full

patent protection with no licensing, which corresponds to the environment assumed in existing

growth models (e.g., Aghion, Harris, Howitt and Vickers, 2001) and provides full (indefinite)

patent protection to technological leaders, but does not allow any licensing agreements (it sets

the license fees to infinity). The second is full patent protection with licensing, which allows

technological followers to build on the leading-edge technology in return for a license fee. We

refer to this regime as "full patent protection" because patents never expire and followers have

to pay a patent fee equal to the gain in net present value resulting from the use of the leading-

edge technology. 4 The third regime is uniform imperfect patent protection, which deviates

from the previous two benchmarks by allowing either expiration of patents and/or license

fees that are less than the full benefit to the follower. The adjective uniform indicates that

2
This is conjectured, for example, in Aghion, Harris, Howitt and Vickers (2001).

3
See Scotchmer (2005) for the importance of incorporating these types of licensing agreements into models

of innovation.
4 The alternative would be for the followers to pay a fee equal to the damage to the technological leader,

resulting from the loss of the leader's monopoly power after their licensing and further innovation. In practice,

licensing fees or patent infringement fees reflect both the benefits to the firm using the knowledge and the

damage to the original inventor (see, e.g., Scotchmer, 2005). In our analysis, we allow the license fees to be set

at any level, thus incorporating both possibilities.



in this policy environment all industries are treated identically irrespective of the technology

gap between the leader and the follower. The final and most interesting policy regime is

state-dependent imperfect patent protection, which deviates from full patent protection as a

function of the technology gap between the leader and the follower in the industry (i.e., it

allows technologically more advanced firms to receive more or less protection) . Each of these

policy regimes captures a different conceptualization of IPR policy and is interesting in its own

right. Note however that the last regime is general enough to nest the other three.

We first prove the existence of a stationary (steady-state) equilibrium under any of these

policy regimes and characterize a number of features of the equilibrium analytically. For

example, we prove that with uniform IPR policy, R&D investments decline when the gap

between the leader and the follower increases.

We then turn to a quantitative investigation of growth-maximizing ( "optimal" ) IPR policy,

by providing a number of simulations of the equilibrium for plausible parameter values and for

different forms of IPR policies.
5 Our quantitative investigation leads to two major results:

1. Allowing for licensing of patents increases the equilibrium growth rate of the economy

significantly. Intuitively, without such licensing, a large part of the R&D effort goes to

duplication, and followers' R&D does not contribute to the growth rate of the economy.

Licensing implies that R&D by all firms—not just the leaders—contributes to growth

and also increases the R&D incentives of followers. In our benchmark parameterization,

allowing for licensing increases the steady-state equilibrium growth rate of the economy

from 1.86% to 2.58% per annum.

2. Growth-maximizing IPR policy is state dependent. In particular, because of the disin-

centive effect of relaxing IPR protection on R&D, uniform IPR policy (either by ma-

nipulating license fees or the duration of patents) has minimal effect on the equilibrium

growth rate. In contrast, state-dependent IPR policy can significantly increase innova-

tion and growth in the economy. For example, in our baseline parameterization, optimal

state-dependent IPR policy increases the growth rate to 2.96% relative to the growth

rate of 2.63% under uniform IPR policy. More important than the quantitative effect

of growth-maximizing state-dependent IPR policy is its form. We find in all cases that

" Throughout, we simplify terminology by using the terms "optimal" and "growth-maximizing" interchange-

ably. It is well known that welfare-maximizing and growth-maximizing policies need not coincide, and in fact,

in models with quality competition, the equilibrium may involve excessive innovation and growth (e.g., Aghion

and Howitt, 1992). Nevertheless, when the discount rate is small, welfare and growth-maximizing policies will

be close, which justifies our use of the term "optimal" in this context.



optimal state-dependent IPR policy provides greater protection to technological leaders

that are further ahead than those that have only a small lead relative to their followers.

The reason for this result is the trickle-down of R&D incentives. In particular, when a

particular state for the leader (say being n* steps ahead of the follower) is very profitable,

this increases the incentives to perform R&D not only for leaders that are n* — 1 steps

ahead, but for all leaders with a lead of size n < n* — 1. Notably, the trickle-down effect

can be powerful enough to increase—rather than reduce—the R&D investments by tech-

nological leaders relative to the benchmark with full patent protection. Thus, reducing

the IPR protection of leaders that are few steps ahead while offering a high degree of

protection to firms that are sufficiently advanced relative to their competitors increases

R&D incentives. Consequently, in contrast to existing models, imperfect state-dependent

IPR can increase R&D investments relative to full protection. Moreover, contrary to the

conjecture above, the trickle-down effect implies that the optimal state-dependent IPR

policy should provide greater protection to firms that have a larger technological lead.

Overall, our analysis illustrates the different effects of IPR policy on the equilibrium growth

rate of an economy. It shows that allowing for licensing can increase growth significantly and

that optimal state-dependent IPR policy can also increase the growth rate of an economy

relative to uniform IPR policy. Consequently, the benefits of considering a rich set of IPR

policies could be substantial in practice. Our analysis also suggests that the structure of optimal

IPR may depend on the equilibrium industry structure (which determines the technology gap

between leaders and followers as a function of the underlying technology of the industry). A

more detailed analysis of the relationship between industry structure and the optimal form of

IPR policy is an area for future research.

Our paper is a contribution both to the IPR protection and the endogenous growth liter-

atures. The industrial organization and growth literatures emphasize that ex-post monopoly

rents and thus patents are central to generate the ex-ante investments in R&D and technological

progress, even though monopoly power also creates distortions (e.g., Arrow, 1962, Reinganum,

1981, Tirole, 1988, Romer, 1990, Grossman and Helpman, 1991, Aghion and Howitt, 1992,

Green and Scotchmer, 1995, Scotchmer, 1999, Gallini and Scotchmer, 2002, O'Donoghue and

Zweimuller, 2004).
6

Much of the literature discusses the trade-off between these two forces to determine the

optimal length and breadth of patents. For example, Klemperer (1990) and Gilbert and Shapiro

J
Boldrin and Levine (2001, 2004) or Quah (2003) argue that patent systems are not necessary for innovation.



(1990) show that optimal patents should have a long duration in order to provide inducement to

R&D, but a narrow breadth so as to limit monopoly distortions. A number of other papers, for

example, Gallini (1992) and Gallini and Scotchmer (2002), reach opposite conclusions. Another

branch of the literature, including the seminal paper by Scotchmer (1999) and the recent

interesting papers by Llobet, Hopenhayn and Mitchell (2001) and Hopenhayn and Mitchell

(2001), adopts a mechanism design approach to the determination of the optimal patent and

intellectual property rights protection system. For example, Scotchmer (1999) derives the

patent renewal system as an optimal mechanism in an environment where the cost and value

of different projects are unobserved and the main problem is to decide which projects should

go ahead. To the best of our knowledge, no other paper in the literature has considered state-

dependent patent or IPR policy, which is the focus of the current paper. As a first attempt, we

only look at state-dependent patent length and license fees (though similar ideas can be applied

to an investigation of the gains from making the breadth of patent awards state-dependent)

.

Our paper is most closely related to and extends the results of Aghion, Harris and Vickers

(1997) and Aghion, Harris, Howitt and Vickers (2001) on endogenous growth with step-by step

innovation. ' Although our model builds on these papers, it also differs from them in a number

of significant ways. First, we allow licensing agreements whereby followers can pay a pre-

specified license fee for building on the leading-edge technology developed by other firms. We

show that such licensing has significant effects on the equilibrium growth rate of the economy.

Second, our economy incorporates a general IPR policy that can be state dependent. Third,

in our economy there is a general equilibrium interaction between production and R&D, since

they both compete for scarce labor. 8 Finally, we provide a number of analytical results for the

general model (with or without IPR policy), while Aghion, Harris, Howitt and Vickers (2001)

focus on the case where innovations are either "drastic" (so that the leader never undertakes

R&D) or very small. They also do not prove the existence of a steady state or characterize the

properties of the equilibrium in this class of economies.

Finally, our results are also related to the literature on tournaments and races, for example,

Fudenberg, Gilbert, Stiglitz and Tirole (1983), Harris and Vickers (1985, 1987), Choi (1991),

Budd, Harris and Vickers (1993), Taylor (1995), Fullerton and McAfee (1999), Baye and Hoppe

7
Segal and Whinston (2005) analyze the impact of anti-trust policy on economic growth in a related model

of step-by-step innovation.
8 This general equilibrium aspect is introduced to be able to close the model economy without unrealistic

assumptions and makes our economy more comparable to other growth models (Aghion, Harris, Howit and

Vickers, 2001, assume a perfectly elastic supply of labor). We show that the presence of general equilibrium

interactions does not significantly complicate the analysis and it is still possible to characterize the steady-state

equilibrium.



(2003). and Moscarini and Squintani (2004). This literature considers the impact of endogenous

or exogenous prizes on effort in tournaments, races or R&D contests. In terms of this literature,

state-dependent IPR policy can be thought of as state-dependent handicapping of different

players (where the state variable is the gap between the two players in a dynamic tournament).

To the best of our knowledge, these types of schemes have not been considered in this literature.

The rest of the paper is organized as follows. Section 2 presents the basic environment.

Section 3 characterizes the equilibrium under uniform IPR policy. Section 4 extends these

results to the case in which IPR policy is state dependent. Section 5 quantitatively evaluates

the implications of various different types of IPR policy regimes on economic growth and

characterizes the growth-maximizing state-dependent IPR policies. Section 6 concludes, while

the Appendix contains the proofs of all the results stated in the text.

2 Model

We now describe the basic environment. The characterization of the equilibrium under the

different policy regimes is presented in the next section.

2.1 Preferences and Technology

Consider the following continuous time economy with a unique final good. The economy is

populated by a continuum of 1 individuals, each with 1 unit of labor endowment, which they

supply inelastically. Preferences at time t are given by

/oo

Et exp (-p(s-t)) log C{s)ds, (1)

where Ej denotes expectations at time t, p > is the discount rate and C (t) is consumption

at date t. The logarithmic preferences in (1) facilitate the analysis, since they imply a simple

relationship between the interest rate, growth rate and the discount rate (see (2) below).

Let Y (t) be the total production of the final good at time t. We assume that the economy

is closed and the final good is used only for consumption (i.e., there is no investment), so that

C (t) = Y (t). The standard Euler equation from (1) then implies that

, . C(t) Y(t)
^*)3 cw

=
yW

= r
'

(t)_p
' (2)

where this equation defines g (t) as the growth rate of consumption and thus output, and r (t)

is the interest rate at date t.



The final good Y is produced using a continuum 1 of intermediate goods according to the

Cobb-Douglas production function

\nY(t)= f \ny(j,t)dj, (3)

Jo

where y (j, t) is the output of jth intermediate at time t. Throughout, we take the price of the

final good as the numeraire and denote the price of intermediate j at time t by p (j, t) . We

also assume that there is free entry into the final good production sector. These assumptions,

together with the Cobb-Douglas production function (3), imply that each final good producer

will have the following demand for intermediates

Y (t)y^ =
p-{jjy

^e[0,l). (4)

Each intermediate j 6 [0, 1] comes in two different varieties, each produced by one of two

infinitely-lived firms. We assume that these two varieties are perfect substitutes and these

firms compete a la Bertrand. 9 Firm i = 1 or 2 in industry j has the following technology

y(j,t) = qi {j,t)h(j,t) (5)

where k(j,t) is the employment level of the firm and qi(j,t) is its level of technology at

time t. The only difference between two firms is their technology, which will be determined

endogenously.

Each consumer in the economy holds a balanced portfolio of the shares of all firms. Con-

sequently, the objective function of each firm is to maximize expected profits.

The production function for intermediate goods, (5), implies that the marginal cost of

producing intermediate j for firm i and industry j at time t is

MGiU,t)-=^r (6)

where w (t) is the wage rate in the economy at time t.

When this causes no confusion, we denote the technological leader in each industry by i

and the follower by —i, so that we have:

Qi {j, t) > q-i (j, t)

.

Alternatively, we can assume that these two varieties are imperfect substitutes, for example, so that the

output of intermediate j is given by

y (j, t) = [<pyi ti, t) " + (i - <p) yz (j, t) •

with a > 1. This generalization has no effect on any of our qualitative results, but increases notation. We
therefore prefer to focus on the case where the two varieties are perfect substitutes.



Bertrand competition between the two firms implies that all intermediates will be supplied by

the leader at the "limit" price:
10

w (t)
&(3,t)=

n );.y (7)

Equation (4) then implies the following demand for intermediates:

v(M-.*ffiY®. (8)

2.2 Technology, R&D and IPR Policy

R&D by the leader or the follower stochastically leads to innovation. We assume that when

the leader innovates, its technology improves by a factor A > 1.

The follower, on the other hand, can undertake R&D to catch up with the frontier tech-

nology or to improve over the frontier technology.
11 The first possibility, catch-up R&D, can

be thought of as discovering an alternative way of performing the same task as the .current

leading-edge technology (applied to the follower's variant of the product). We assume that

because this innovation is for the follower's variant of the product and results from its own

R&D efforts, it does not constitute infringement of the patent of the leader, and the follower

does not have to make any payments to the technological leader in the industry. Therefore, if

the follower chooses the first possibility, it will have to retrace the steps of the technological

leader (as applied to its own variant of the product), but in return, it will not have to pay a

patent fee. For follower firm —i in industry j at time t, we denote this type of R&D by

a-i U, t) = 0.

The alternative, frontier R&D, involves followers building on and improving the current

leading-edge technology. If this type of R&D succeeds, the follower will have improved the

leading-edge technology using the patented knowledge of the technological leader, and thus

will have to pay a pre-specified patent fee to the leader.
12 We specify the patent fees below.

10
If the leader were to charge a higher price, then the market would be captured by the follower earning

positive profits. A lower price can always be increased while making sure that all final good producers still

prefer the intermediate supplied by the leader i rather than that by the follower — i even if the latter were

supplied at marginal cost. Since the monopoly price with the unit elastic demand curve is infinite, the leader

always gains by increasing its price, making the price given in (7) the unique equilibrium price.

A third possibility is for the follower to climb the technology ladder step-by-step, meaning that, for example,

when the current leader is at some technology rung n;, (t) and the follower itself is at n- %j (t) < nl} (t) — 1,

it must first discover technology n-i3 (t) + 1, et cetera. We have investigated this type of environment with

"slow catch-up" in a previous version of the paper. Since the general results are similar, we do not discuss this

variation to save space.
12

Clearly, the follower will never license the technology of the leader for production purposes, since this would

lead to Bertrand competition and zero ex post profits for both parties.



This strategy is denoted by

a-i(jyt) = !•

Throughout, we allow a_; (j, t) G [0, 1] for mathematical convenience, thus a should be inter-

preted as the probability of frontier R&D by the follower.

R&D by the leader, catch-up R&D by the follower, and frontier R&D by the follower

may have different costs and success probabilities. Nevertheless, we simplify the analysis by

assuming that all three types of R&D have the same costs and the same probability of success.

In particular, in all cases, we assume that innovations follow a controlled Poisson process, with

the arrival rate determined by R&D investments. Each firm (in every industry) has access to

the following R&D technology:

XiO,t) = F{hi(j,t)), (9)

where x, (j, t) is the flow rate of innovation at time t and hi (j, t) is the number of workers

hired by firm i in industry j to work in the R&D process at t. This specification implies that

within a time interval of At, the probability of innovation for this firm is x* (j, t) At + o (At).

We assume that F is twice continuously differentiable and satisfies F' (•) > 0, F" () < 0,

F'(O) < oo and that there exists h G (0, oo) such that F' (h) = for all h r
> h. The

assumption that F' (0) < oo implies that there is no Inada condition when hi (j, t) — 0. The

last assumption, on the other hand, ensures that there is an upper bound on the flow rate of

innovation (which is not essential but simplifies the proofs). Recalling that the wage rate for

labor is w (t), the cost for R&D is therefore w (t) G (xj (j,i)) where

G(ii (j\t)) = F-\(? .0",*)), (10)

and the assumptions on F immediately imply that G is twice continuously differentiable and

satisfies G' (•) > 0, G" (•) > 0, G" (0) > and limx_s G' (x) = oo, where

x = F(h) (11)

is the maximal flow rate of innovation (with h defined above).

We next describe the evolution of technologies within each industry. Suppose that leader i

in industry j at time t has a technology level of

qi (j,t) = Xn^, (12)

and that the follower — i's technology at time t is

q- i (j,t) = \n-<^, (13)



where mj (t) > n-ij (t) and riij (i), n-ij (t) £ Z+ denote the technology rungs of the leader and

the follower in industry j. We refer to rij (t) = riij (t) —n^ij (t) as the technology gap in industry

j. If the leader undertakes an innovation within a time interval of At, then its technology

increases to qi (j, t + At) — Anyt+1 and technology gap rises to rij (t + At) = rij (t) + 1 (the

probability of two or more innovations within the interval At will be o(At), where o(At)

represents terms that satisfy lim&
t^o o (At) /At).

When the follower is successful in catch-up R&D (i.e., a_, (j,t) = 0) within the interval

At, then it catches up with the leader and its technology improves to

q^(j,t + At) = X
n^,

and the technology gap variable becomes njt+At — 0. In contrast, if the follower is successful

in frontier R&D and pays the license fee (i.e., a_j (j, t) = 1), then it surpasses the leading-edge

technology, so we have

q. l (j,t + At) = X
n^ +1

and the technology gap variable becomes rijt+At = 1
(
and from this point onwards, the labels

i and —i are swapped, since the previous follower now becomes the leader).

In addition to catching up with or surpassing the technology frontier with their own

R&D, followers can also copy the technology frontier because IPR policy is such that some

patents expire. In particular, we assume that patents expire at some policy-determined Poisson

rate 77, and after expiration followers can costlessly copy the frontier technology, jumping to

q- l (j,t + At) = \n»K 13

This description makes it clear that there are two aspects to IPR policy: (i) the length of

the patent; (ii) license fees. In our most general policy regime, we allow both of these to be

state dependent, so they are represented by the following two functions:

7] : N -> R+

and for all t > 0,

C(t) : N -» R+ U {+00} .

Here r\ (n) = r\n < 00 is the flow rate at which the patent protection is removed from a

technological leader that is n steps ahead of the follower. When 7?n = 0, this implies that there

is full protection at technology gap n, in the sense that patent protection will never be removed.

13
Alternative modeling assumptions on IPR policy, such as a fixed patent length of T > from the time of

innovation, are not tractable, since they introduce a form of delayed-differential equations.

10



In contrast, r\n
—» oo implies that patent protection is removed immediately once technology

gap n is reached. Similarly, £ (n, t) = Cn {t) denotes the patent fee that a follower has to pay in

order to build upon the innovation of the technological leader, when the technology gap in the

industry is n steps.
14 Our formulation imposes that 77 ={77^ 772,'...} is time-invariant, while

£ (£) = {Cx (t)
, (2 (*) i

••} is a function of time. This is natural, since in a growing economy,

license fees should not remain constant. Below, we will require that £ grows at the same rate

as aggregate output in the economy.

When £n (t) — 0, there is no protection because followers can license the leading-edge

technology at zero cost.
15 In contrast, when (n (t) = 00, licensing the leading-edge technology

is prohibitively costly. Note however that C,n < 00 does not necessarily imply that patent

protection is imperfect. In particular, in what follows we will interpret a situation in which

the license fee is equal to the net extra gain from surpassing the leader rather than being neck-

and-neck (i.e., being at a technology gap of 0) as "full protection". 16 We also refer to a policy

regime as uniform IPR protection if both 77 and £ (t) are constant functions, meaning that

intellectual property law treats all firms and industries identically irrespective of the technology

gap between the leader and the follower (i.e., rj
uni= {77, 77, ...} and C

um
(t) = {( (t)

, £ (t) , ...}).

We also assume that there exists some n < 00 such that r)n = "qn and (n (t) = (n (t) for all

n > n.

Given this specification, we can now write the law of motion of the technology gap in

14 Throughout, we assume that £ is a policy choice and firms cannot contract around it. An alternative

approach would be to allow firms to bargain over the level of license fees. In this case, it is plausible to presume

that the legally-specified infringement penalties or license fees will affect the equilibrium in the bargaining game,

so the effect of policies we investigate would still be present. We do not allow bargaining between firms over

the license fees in order to simplify the analysis.
11 Throughout, we interpret f„ (t) = as £n (t) '= e with e J. 0, so that followers continue not to license the

new technology without innovation (recall the comment in footnote 12).
16
In other words, we interpret "full protection" to correspond to a situation in which £n (t) = V\ (t) — Vo (t),

where Vi refers to the net present value of a firm that is one step ahead of its rival and Vo is the value of a firm

that is neck-and-neck with its rival (naturally, £n (t) > Vi (t) — Vo (t) would also correspond to full protection,

since in this case no follower would choose to license). Alternatively, full protection could be interpreted as

corresponding to the case in which the follower pays a license fee equal to the loss of profits that it causes for

the technology leader (see Scotchmer, 2005). In our model, this would correspond to £n (t) = Vo (t) — V-i (t),

where V-i is the net present value of a firm that is one step behind the technology leader. This expression

applies, since without licensing the follower would have made its own innovation, in which case the leader would

have fallen to the state of a neck-and-neck firm rather than being surpassed by one step. In all equilibria we

compute below, we find that the second amount is significantly less than the first, thus our interpretation of full

protection licensing fee is large enough to cover both possibilities. In any case, what value of £ is designated

as "full protection" does not have any bearing on our formal analysis, since we characterize the equilibrium for

any £ and then find the growth-maximizing policy sequence.
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industry j as follows:

Xi (j, t) At + a-i (j, t) x_,
: (j, t)At + o (At)

n-j (t + At)= <

nj (t) + 1 with probability

with probability ((1 -<*-* (jY*)) x-i-Oi*) + Vnj (i))
At+ °(At)

nj (t) with probability i _ fx . ^ t ) + x_. ^ t ) +^ N Ai _
(
Ai))

(14)

Here o (At) again represents second-order terms, in particular, the probabilities of more than

one innovations within an interval of length At. The terms Xj (j,t) and X-i (j,t) are the flow

rates of innovation by the leader and the follower; a_i (j, t) € [0, 1] denotes whether the follower

is trying to catch up with a leader or surpass it; and rjn ./
t
\ is the flow rate at which the follower

is allowed to copy the technology of a leader that is rij (t) steps ahead. Intuitively, when

a-i (j,t) — 1, the technology gap in industry j increases from rij (t) to rij (t) + 1 if either the

leader is successful (flow rate Xj (j,t)) or if the follower is successful (flow rate x_j (j,t)).

2.3 Profits

We next write the instantaneous "operating" profits for the leader (i.e., the profits exclusive

of R&D expenditures and license fees). Profits of leader i in industry j at time t are

w(t) w(t) \ Y(t)

q-i(j,t) qi(j,t)J Piti't)

l-A-M^F^)
(
15

)

where rij (t) = n^ (£)—n_jj (t) is the technology gap in industry j at time t. The first line simply

uses the definition of operating profits as price minus marginal cost times quantity sold. The

second line uses the fact that the equilibrium limit price of firm i is p7; (j, t) = w (t) /q-i (j, t)

as given by (7), and the final equality uses the definitions of qi (j,t) and q-i (J,t) from (12)

and (13). The expression in (15) also implies that there will be zero profits in an industry that

is neck-and-neck, i.e., in industries with rij (t) = 0. Also clearly, followers always make zero

profits, since they have no sales.

The Cobb-Douglas aggregate production function in (3) is responsible for the form of the

profits (15), since it implies that profits only depend on the technology gap of the industry

and aggregate output. This will simplify the analysis below by making the technology gap in

each industry the only industry-specific payoff-relevant state variable.

12



The objective function of each firm is to maximize the net present discounted value of net

profits (operating profits minus R&D expenditures and plus or minus patent fees). In doing

this, each firm will take the sequence of interest rates, [r(i)] t>0 ,
the sequence of aggregate

output levels, [Y (t)]t>0 , the sequence of wages, [w (t)]
t> , the R&D decisions of all other firms

and policies as given.

2.4 Equilibrium

Let fi (t) = {/in (£)}^Lo denote the distribution of industries over different technology gaps, with

S^Lo^n (*) = 1- For example, /j, (£) denotes the fraction of industries in which the firms are

neck-and-neck at time t. Throughout, we focus on Markov Perfect Equilibria (MPE), where

strategies are only functions of the payoff-relevant state variables.
17 This allows us to drop

the dependence on industry j, thus we refer to R&D decisions by xn for the technological

leader that is n steps ahead and by a_„ and x_„ for a follower that is n steps behind. Let

us denote the list of decisions by the leader and follower with technology gap n at time t

by fn(*) =
(
xn{t),Pi{j,t),yi{j,t)) and £_„ (t) = {a-n (t) ,X-n {t))P Throughout, £ will

indicate the whole sequence of decisions at every state, £ (£) = {£„ {t)}' =̂_ 00 We define an

allocation as follows:

Definition 1 (Allocation) Let (rj, [C(*)]t>o) ^e ^e ^^ P°^CV sequences. Then an allo-

cation is a sequence of decisions for a leader that is n = 0,1,.. .,oo step ahead, [£n (t)] t>0 ,

a sequence of R&D decisions for a follower that is n — l,...,oo step behind, [£-7iW]t>o j
a

sequence of wage rates [w (t)] t>0 , and a sequence of industry distributions over technology gaps

[MOW

For given IPR sequences r\ and [£ (i).]t>o> ^PE strategies, which are only a function of the

payoff-relevant state variables, can be represented as follows

x : Zx R2_-> R+,

a : Z_\ {0} x R2.-» [0, 1]

.

17MPE is a natural equilibrium concept in this context, since it does not allow for implicit collusive agreements

between the follower and the leader. While such collusive agreements may be likely when there are only two

firms in the industry, in most industries there are many more firms and also many potential entrants, making

collusion more difficult. Throughout, we assume that there are only two firms to keep the model tractable.
1 The price and output decisions, Pi{j,t) and yi{j,t), depend not only on the technology gap, aggregate

output and the wage rate, but also on the exact technology rung of the leader, riij (t). With a slight abuse of

notation, throughout we suppress this dependence, since their product p; (j,t)yi {j,t) and the resulting profits

for the firm, (15), are independent of n^ (t), and only the technology gap, n3 (£), matters for profits, R&D,
aggregate output and economic growth.
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The first function represents the R&D decision of a firm (both when it is a follower and when

it is a leader in an industry) with an n step technology gap (n e Z), and the aggregate level of

output and the wage ((Y,w) £ K+). The second function represents the decision of a follower

(as a function of the level of output and the wage in the economy) of whether to direct its

R&D to reaching or surpassing the leading-edge technology (or more precisely, it represents

the probability with which the follower will choose to undertake R&D to surpass the leading

edge technology) . Consequently, we have the following definition of equilibrium (below we will

define a steady-state equilibrium in terms of a solution to maximization problems):

Definition 2 (Equilibrium) Given an IPR policy sequence (77, [C(0]t>o)> a Markov Per-

fect Equilibrium, is given by a sequence [£* (t) , w* (t) , Y* {t)] t>0 such that (i) \pl {j, t)] t>0

and [y* (j,t)] t>0 implied by [£* {t)]t>0 satisfy (7) and (8); (ii) R&D policies [a* (t) , x* {t)] t>0

are best responses to themselves, i.e., [a* (t) ,x* (t)] t>0 maximizes the expected profits of firms

taking aggregate output [Y* (t)] t>0 , wages [w* (t)] t>0 ,
government policy (77, [C(i)]

t> )
and

the R&D policies of other firms [a* (i) ,x* (t)] t>0 as given; (Hi) aggregate output [Y* (i)]t>0 is

given by (3); and (iv) the labor market clears at all times given the wage sequence [w* (t)]t>0 .

2.5 The Labor Market

Since only the technological leader produces, labor demand in industry j with technology gap

nj (t) = n can be expressed as

In (t) =
X n

^
(t)

for neZ+ . (16)
w(t)

In addition, there is demand for labor coming for R&D from both followers and leaders in all

industries. Using (9) and the definition of the G function, we can express industry demands

for R&D labor as

f G(xn (t)) + G(x-n (t)) if neN
K (t)={

, (17)

{ 2G{x (t)) if n =

where n < refers to the demand of a follower in an industry with a technology gap of n.

Note that in this expression, X-n (t) refers to the R&D effort of a follower that is n steps

behind (conditional on its optimal choice of a_n (t) 6 [0, 1]). Moreover, this expression takes

into account that in an industry with neck-and-neck competition, i.e., with n = 0, there will

be twice the demand for R&D coming from the two firms.

The labor market clearing condition can then be expressed as:

1

!>£>„(*)
n=0

u (t) X

14

- + G(xn (t)) + G(x-n (t)) (18)



and u> (t) > 0, with complementary slackness, where

is the labor share at time t. The labor market clearing condition, (18), uses the fact that total

supply is equal to 1, and the demand cannot exceed this amount. If demand falls short of 1,

then the wage rate, w (£), and thus the labor share, w (t), have to be equal to zero (though

this will never be the case in equilibrium). The right-hand side of (18) consists of the demand

for production (the terms with co in the denominator), the demand for R&D workers from the

neck-and-neck industries (2G (xq (t)) when n = 0) and the demand for R&D workers coming

from leaders and followers in other industries (G (xn (£)) + G (x-n (£)) when n > 0).

Defining the index of aggregate quality in this economy by the aggregate of the qualities

in the different industries, i.e.,

lnQ(t)= [ \nq(j,t)dj, (20)
Jo

the equilibrium wage can be written as:
19

w{t) = Q{t)\-^=° n^ t\ (21)

2.6 Steady State and the Value Functions

Let us now focus on steady-state (Markov Perfect) equilibria, where the distribution of in-

dustries n(t) = {fin (£)}^L *s stationary, oj (t) defined in (19) and g, the growth rate of the

economy, are constant over time. We will establish the existence of such an equilibrium and

characterize a number of its properties. If the economy is in steady state at time t = 0, then

by definition, we have Y (t) — Y^e9
*
1 and w (t) = woe9 ', where g* is the steady-state growth

rate. The two equations also imply that u (t) — oj* for all t > 0. Throughout, we assume that

the parameters are such that the steady-state growth rate g* is positive but not large enough

to violate the transversality conditions. This implies that net present values of each firm at all

point in time will be finite and enable us to write the maximization problem of a leader that

is n > steps ahead recursively.

First note that given an optimal policy x for a firm, the net present discounted value of a

leader that is n steps ahead at time t can be written as:

exp (-r- (s - t)) [II (s) +Z(s)-w (s) G (x (a))] ds

19 T9 Note that In Y (t) = JQ \nq(j,t) I {j,t)dj = L lniji (j,t) + In ^JA nj
dj, where the second equality uses

(16). Thus we have In Y (t) = J [In qt (j, t) + In Y (t) — In w (t) — rij In A] dj. Rearranging and canceling terms,

and writing exp / n3
; In Xdj = A

_ ^"=° nM " (t)
, we obtain (21).
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-exp(-r(t + At) At)

20
Clearly, this value function could be written for any arbitrary sequence of R&D policies of other firms. We

set the R&D policies of other firms to their equilibrium values, x*_ n (t) and ol„ (t), to reduce notation in the

main body of the paper.

> .

where IT (s) is the operating profit at time s > t, Z (s) is the patent license fees received (or

paid) by a firm which is the leader and w(s)G(x(s)) denotes the R&D expenditure at time

s > t. All variables are stochastic and depend on the evolution of the technology gap within

the industry.

Next taking the equilibrium R&D policy of other firms, x*_n (t) and a*_n (t), and equilibrium

wage rate, w* (t), as given, this value can be written as:
20

Vn (t) = max {[nn (i) - w*(t)G(xn (t))] At +o (At) (22)
xn (t)

{xn {t) At + o {At)) Vn+1 (t + At)

+ (r)nAt + (l - a*_ n (t)) x*_n (t) At + o (At)) V {t + At)

+ {a*_n (t) x*_n (t) At + o (At)) (T/_a (t + At) + CJ

+ (l - xn (t) At - rjnAt - x*_n (t) At-o (At)) Vn (t + At)

The first part of this expression is the flow profits minus R&D expenditures during a time

interval of length At. The second part is the continuation value after this interval has elapsed.

Vn+i (t) and Vo (t) are defined as net present discounted values for a leader that is n + 1 steps

ahead and a firm in an industry that is neck-and-neck (i.e., n = 0). The second part of the

expression uses the fact that in a short time interval At, the probability of innovation by the

leader is xn (t) At + o (At), where o (At) again denotes second-order terms. This explains the

first line of the continuation value. For the remainder of the continuation value, note that the

probability that the follower will catch up with the leader is (l — a*_n (t)) x*_n (t) At + o (At);

in particular, if a*_n (t) = 1, this eventually will never happen, since the follower would be

undertaking R&D not to catch up but to surpass the leader. This explains the third line,

which applies when a*_n (t) = 1. There are two differences between the second and third lines;

(i) in the third line, conditional on success by the follower, a leader moves to the position

of a follower rather than a neck-and-neck firm (V-\ instead of Vq); (ii) it receives the state-

dependent patent fee (n . Finally, the last line applies when no R&D effort is successful and

patents continue to be enforced, so that the technology gap remains at n steps.

Next, subtract Vn (t) from both sides, divide everything by At, and take the limit as At —» 0.
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This yields:

r(t)Vn (t)-Vn (t) = maxIp^-^WG^^+XnWlK+iW-KW] (23)
xn (t)

+ ((1 - a*_n (i)) x*_n (t) + r,n )
[V (t) - Vn [*)]

+ (a*_„ (t) x*_n (t) + Vn ) [C„ + T/ (*) - V-i (t)]},

where V^ (i) denotes the derivative of Vn (t) with respect to time. In steady state, the net

present value of a firm that is n steps ahead, Vn (i), will also grow at a constant rate g* for all

neZ+ . Let us then define the normalized values as

Vn{t) = YV (24)

for all n € Z, which will be independent of time in steady state, i.e., vn (t) — vn . Similarly, in

what follows we assume that license fees are also scaled up by GDP, so that

f. = Cn(*)
tn Y ^ -

which will ensure the existence of a (stationary) steady-state equilibrium (the use of £n (t) for

the original patent fees and Cn f°r the scaled-up fees should not cause any confusion).

Using (24) and the fact that from (2), r (t) — g (t) + p, the recursive form of the steady-state

value function (23) can be written as:

pvn = max{ (l - A"n )
- u*G (xn ) + xn \vn+1 - vn ] , (25)

+ [(1 - a*_n ) x*_n + rjn] [up - v^ + a*_n x*_n [y-i -vn + Cn]} for neN,

where x*_n is the equilibrium value of R&D by a follower that is n steps behind, and ui* is the

steady-state labor share (while xn is now explicitly chosen to maximize vn ).

Similarly the value for neck-and-neck firms is

pvQ = max {-oj*G (x ) + x [v\ - v
] + x* [v-\ - v ]} , (26)

XQ

while the values for followers are given by

pv-n = max {-ui*G (x-n ) + [(1 - a_n ) x-n + rjn]
[v - v-n] (27)

C—n )0>—n

+a_„x_n [vi - V-n - Cn ]
+ xn [V-n-l - U~n]} for 71 <E N,

which takes into account that if the follower decides to build upon the leading-edge technology

it will become the new leader, but will have to pay the patent fee Qn .
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For neck-and-neck firms and followers, there are no instantaneous profits, which is reflected

in (26) and (27). In the former case this is because neck-and-neck firms sell at marginal cost,

and in the latter case, because followers have no sales. These normalized value functions

emphasize that, because of growth, the effective discount rate is r(t) — g (t) = p rather than

r(t).

The maximization problems in (25)- (26) immediately imply that any steady-state equilib-

rium R&D policies, (o*,x*), must satisfy:

= 1 if vi - (n > vq

€ [0, 1] if vi - Cn = vo (28)

= if Vl - Cn < Vq

and

< = max {G'-^ [Vn+1

u:
Vn]

),o\ (29)

1 - a*_ n )
[vq - v-n ] + a*_n [vi - v^n - („]

ur
,0 (30)

[Vl ~ Vq]
,o|,x* = max^g- 1 l±

\
UJ

,0 , (31)

where G ~
(•) is the inverse of the derivative of the G function, and since G is twice continuously

differentiable and strictly concave, G'~ l
is continuously differentiable and strictly increasing.

These equations therefore imply that innovation rates, the rc*'s, will increase whenever the

incremental value of moving to the next step is greater and when the cost of R&D, as measured

by the normalized wage rate, u*, is less. Note also that since G' (0) > 0, these R&D levels can

be equal to zero, which is taken care of by the max operator.

The response of innovation rates, x* , to the increments in Values, vn+ \ — vn ,
is the key

economic force in this model. For example, a policy that reduces the patent protection of

leaders that are n + 1 steps ahead (by increasing r/n+1 or reducing Cn+i) wm make being

n + 1 steps ahead less profitable, thus reduce vn+ \ — vn and x*n . This corresponds to the

standard disincentive effect of relaxing IPR policy. In contrast to existing models, however,

here relaxing IPR policy can also create a positive incentive effect. This positive incentive

effect has two components. First, as equation (30) shows, weaker patent protection in the

form of lower license fees (lower Q may encourage further frontier R&D by the followers,

directly contributing to aggregate growth. Second and perhaps somewhat more paradoxically,

lower protection for technological leaders that are n+1 steps ahead will tend to reduce vn+ \

,

thus increasing vn+2 — vn+ \ and x* +1 . We will see that this latter effect plays an important
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role in the form of optimal state-dependent IPR policy. Finally, relaxing IPR protection

may also create a beneficial composition effect; this is because, typically, {vn+ i
— vn}^Lo *s a

decreasing sequence, which implies that x*_j is higher than ir* for n > 1 (see Propositions

4 and 5 below). Weaker patent protection (in the form of shorter patent lengths) will shift

more industries into the neck-and-neck state and potentially increase the equilibrium level of

R&D in the economy. 21 The optimal level and structure of IPR policy in this economy will be

determined by the interplay of these three forces.

Given the equilibrium R&D decisions (a*, x*), the steady-state distribution of industries

across states /j.* has to satisfy the following accounting identities:

«+l + Z-n-l + Vn+l) Mn+l = <Mn for n e N
' (

32
)

oo

{x\ + llj + T]^ Ml = 2x^0 + Yl a-nx-nVn,
.

(33)

n=l

oo

2sSM0 = E ( i
1 - a~n) X~n + In)< (34)

n.=l

The first expression equates exit from state n+ 1 (which takes the form of the leader going one

more step ahead or the follower catching up for surpassing the leader) to entry into the state

(which takes the form of a leader from the state n making one more innovation) . The second

equation, (33), performs the same accounting for state 1, taking into account that entry into

this state comes from innovation by either of the two firms that are competing neck-and-neck.

Finally, equation (34) equates exit from state with entry into this state, which comes from

innovation by a follower in any industry with n > 1.

The labor market clearing condition in steady state can then be written as

J_ + G{x *

n) + G (
x *_

n )kAT
and u* > 0, (35)1>EX

n=0

with complementary slackness.

The next proposition characterizes the steady-state growth rate. As with all the other

results in the paper, the proof of this proposition is provided in the Appendix.

Proposition 1 Let the steady-state distribution of industries and R&D decisions be given by

(/x*, a*, x*), then the steady-state growth rate is

g* = \n\ 2V0X + Yl& (
X« + a-nX-n)

71=1

(36)

21 Weaker patent protection also creates a beneficial "level effect" by affecting equilibrium prices (as shown in

equation (7) above) and by reallocating some of the workers engaged in "duplicative" R&D to production.
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This proposition clarifies that the steady-state growth rate of the economy is determined

by three factors:

1. R&D decisions of industries at different levels of technology gap, x* = {^^j^L.^.

2. The distribution of industries across different technology gaps, fj,*
= {f^^^Lo-

3. Whether followers are undertaking R&D to catch up with the frontier or to surpass the

frontier, a* = {a*}"!.^.

IPR policy affects these three margins in different directions as illustrated by the discussion

above.

We now define a steady-state equilibrium in a more convenient form, which will be used to

establish existence and derive some of the properties of the equilibrium.

Definition 3 (Steady-State Equilibrium) Given an IPR policy (77, £), a steady-state equi-

librium is a tuple (fx*, v, a*, x*, u*, g*) such that the distribution of industries ll* satisfy

(32), (33) and (34), the values v = {vn }n=-oo satisfv ffi), (%6) and (2V> th^ R&D decisions

a* and x* are given by (28), (29), (30) and (31), the steady-state labor share u* satisfies (35)

and the steady-state growth rate g* is given by (36).

We next provide a characterization of the steady-state equilibrium, starting first with the

case in which there is uniform IPR policy.

3 Uniform IPR Policy

Let us first assume that the only available policy option is uniform IPR policy, whereby nn =

r) < 00 and Cn = C < °° f°r an n E N, which we denote by r]
um and £

um
. In this case,

(27) implies that the problem is identical for all followers, so that v-n = V-\ for n G N.

Consequently, (27) can be replaced with the following simpler equation:

pv-i = max {-u*G{x-i) + [(l-a-i)x-i+ii\[vo-v-i] + a-iX-i[vi-v-i-£]}, (37)
X— 1 ,a_ 1

implying optimal R&D decisions for all followers of the form

xU = max JG'-
1

(
m&X ([t

'° =
V~ l]

J
Vl

-
V~ l ~ C])

) , 0] . (38)

Let us denote the sequence of value functions under uniform IPR as {vn }'^L_ 1
. We start

with a number of results that characterize the form of a steady-state equilibrium in this econ-

omy.
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Proposition 2 Consider a uniform IPR policy (r)
uni

, £
un1

^ and suppose that

<(^z*, v, a!_
l5

x*, u>*, g*) is a steady-state equilibrium. Then, v-\ < vq and {vn} =̂0 forms a

bounded and strictly increasing sequence converging to some positive value v^.

The next result shows that we can restrict attention to a finite sequence of values:

Proposition 3 Consider a uniform IPR policy (r)
un%

,
c\
um

^ and a corresponding steady-state

equilibrium (fi*-, v, a!_ 1; x*, u*, g*\. Then, there exists n* £ N such that x* = for all

n> n*.

The next proposition shows that x* = {x^} =̂1 is a decreasing sequence, which implies that

technological leaders that are further ahead undertake less R&D. Intuitively, the benefits of

further R&D are decreasing in the technology gap, since greater values of the technology gap

translate into smaller increases in the equilibrium markup (recall (15)).

Proposition 4 Consider a uniform IPR policy rj
um and £

um
. Then in any steady-state equi-

librium with uniform IPR, x^+1 < x*n for alln £ N and moreover, £*
+1 < £* if x*n > 0.

-"A final comparison is between the R&D levels of neck and-and-neck firms, Xq, and the

R&D investments of followers and leaders in industries with a technology gap of n = 1, x*_j

and x\. The next proposition shows that Xq > x\ and x^ > x\, so that without licensing,

neck-and-neck industries are "most R&D intensive".

Proposition 5 Consider a uniform IPR policy r)
um and £

um
. Then Xq > x\ and Xq > x*_

1
.

Moreover, if G'~
l ((l - A" 1

) / {p + r])) > and C > 0, then x* > x*_v

The condition G'~ l
((l — A

-1
) / (p + rj)) > here ensures that there will be positive R&D

in the steady-state equilibrium (see Remark 1 below and Lemma 1 in the Appendix).

Next, we prove the existence of a steady-state equilibrium (//*, v, a*_ 1} x*, u>*
,
g*) with

ui* < 1. A steady state with with ui* < 1 is economically more interesting, since when uj* = 1,

there are no profits, thus it must be the case that (j,q = 1 (so that all firms are neck-and-neck

and there are no markups). Equation (36) together with jig = 1 and x*n — for all n £ Z+

would then imply that there is no economic growth, i.e., g* = 0.

Establishing the existence of a steady-state equilibrium in this economy is made compli-

cated by the fact that the equilibrium allocation cannot be represented as a solution to a

maximization problem. Instead, as emphasized by Definition 3, each firm maximizes its value

taking the R&D decisions of other firms as given; thus an equilibrium corresponds to a set of
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R&D decisions that are best responses to themselves and a labor share (wage rate) lu* that

clears the labor market. We establish the existence of a steady-state equilibrium in a number

of steps.

First, note that each xn belongs to a compact interval [0, x], where x is the maximal flow rate

of innovation defined in (11) above. Now fix a labor share u G [0, 1] and a sequence (a_i,x) of

(Markovian) steady-state strategies for all other firms in the economy, and consider the dynamic

optimization problem of a single firm. Our next result characterizes this problem and shows

that given some z = {Co, a_i,x), the value function of an individual firm is uniquely determined,

while its optimal R&D choices are given by a convex-valued correspondence. In what follows,

we denote sets and correspondences by uppercase letters and refer to their elements by lowercase

letters, e.g., a_i (z) G A-\ [z], xn (z) e Xn [z].

Proposition 6 Consider a uniform IPR policy (r)
um

, £
um

^ and suppose that the labor share

and the R&D policies of all other firms are given by z = (<D,a_i,x). Then the dynamic opti-

mization problem of an individual firm leads to a unique value function v [z] : {-1}UZ+ —» R+
and optimal R&D policies A-\ [z] C [0,1] and X [z] : {— 1} U Z+ =1 [0, x] are compact and

convex-valued for each z G Z and upper hemi-continuous in z (where v [z] = {vn [z]}^__
1
and

X [] = {*«[«]}"_!;}.

Now let us start with an arbitrary z = {Co, a_i, x) 6 Z = [0, 1] x [0, x]°°. From Proposition

6, this z is mapped into optimal R&D decision sets A-i [z] and X [z], where a_i 6 A-\ [z] and

xn [z] E Xn [z]. From R&D policies (d_i,x), we calculate /x [a_i,x] = {p,n [a-i,x],}°L using

equations (32), (33) and (34). Then we can rewrite the labor market clearing condition (35)

as

,,im OjAl yT + G (xn ) u + G {x-n )

(39)

where due to uniform IPR, x*_n = x*_
1
for all n > 0. Next, define the mapping (correspondence)

<!> [z] = ((p (z) , A^i [z] , X [z]), which maps Z into itself, that is,

$: Z =J Z. (40)

That $ maps Z into itself follows since z G Z consists of a_i G [0, 1], x G [0, x]°° and w G [0, 1],

and the image of z under $ consists of a_i G [0, 1] and x G [0,x]°°, and moreover, (39) is

clearly in [0,1] (since the right-hand side is nonnegative and bounded above by 1). Finally,
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from Proposition 6, A-\ [z] and Xn [z] are compact and convex-valued for each z 6 Z, and also

upper hemi-continuous in z, and <p is continuous. Using this construction, we can establish:

Proposition 7 Consider a uniform IPR policy (r)
un%

, £
UTU

^ and suppose that

G"
_1

((l — A
-1

) / (p + 77)) > 0. Then a steady-state equilibrium (/n*, v, al l5
x*, to*, g*)

exists. Moreover, in any steady-state equilibrium u* < 1. In addition, if either n > or

x*_
t
> 0, then g* > 0.

Remark 1 If the assumption that G'
_1

((l — A
-1

) / (p + 7?)) > is relaxed, then there exists

a trivial equilibrium in which x* — for all n G Z+, i.e., an equilibrium in which there is no

innovation and thus no growth (this follows from Lemma 1 and from Propositions 4 and 5,

which imply that Xq > x*n for all n^O). Moreover, if 77 > 0, then this equilibrium would also

involve jjLq = T, so that in every industry two firms with equal costs compete a la Bertrand

and charge price equal to marginal cost, leading to zero aggregate profits and a labor share

of output equal to 1. The assumption that G'~ l
((l — A

-1
) / (p + 77)) > 0, on the other hand,

is sufficient to rule out /j,q — 1 and thus oj* = 1. If in addition the steady-state equilibrium

involves some probability of catch-up or innovation by the followers, i.e., either 77 > or

x*_
x
> 0, then the growth rate is also strictly positive. A sufficient condition to ensure that

x*_i > when 77 = is that G'" 1
((l - A

-1
) /p - C) > 0.
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An immediate consequence of Proposition 3, combined with (32) is that pn = for all

n > n* (since there is no innovation in industries with technology gap greater than n*). Thus

the law of motion of an industry can be represented by a finite Markov chain. Moreover,

because after an innovation by a follower, all industries jump to the neck-and-neck state (when

a!_! = 0) or to the technology gap of one (when a*_
x
= 1), this Markov chain is irreducible (and

aperiodic), thus converges to a unique steady-state distribution of industries. This is stated

and proved in the next proposition.

Proposition 8 Consider a uniform IPR policy (r)
uni

, £
uni

^ and a steady-state equilibrium

sequence of R&D decisions (a*_
ly

x*). Then, there exists a unique steady-state distribution of

industries /j,* .

22 To see why this condition is sufficient suppose that 7? = and also that zLj =0. Then (37) immediately

implies v-i = and (25) implies vi > (l — A
-1

) /p. Moreover, from (38) and the fact that u>* < 1, we have

x-i > G'- 1

(ui - v-i - C) > G'~ l

((1 - A
-1

) /p'-t). Therefore, G''
1
((l - A" 1

) /p - C) > contradicts the

hypothesis that ilj = 0, and implies xlj > 0. The reason why 77 > can, under some circumstances, contribute

to positive growth is related to the composition effect discussed above.
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4 State-Dependent IPR Policy

We now extend the results from the previous section to the environment with state-dependent

IPR policy. The main results from the previous section generalize, but the argument is slightly

modified.

It is no longer necessarily the. case that the sequence of values {^nj^L-oo is increasing, since

IPR policies could be very sharply increasing, making a particular state very unattractive for

the leader. 23 For this reason, we do not have the equivalent of Proposition 2. Nevertheless, it

can be established that only a finite number of states will have positive weight in the steady-

state distribution:

Proposition 9 Consider the state-dependent IPR policy (77, 0, and suppose that

(fi*, v, a*_i, x*, u* , <?*) is a steady-state equilibrium. Then there exists a state n* G N

such that jj,*n — for all n> n*

.

Because of the reasons highlighted in footnote 23, Proposition 4 may not necessarily hold

with state-dependent IPR. Nevertheless, the proofs of these propositions make it clear that

as long as (77, £) is not too far from uniform IPR, the conclusions in these propositions will

continue to hold. In fact, our numerical results with optimal state-dependent IPR always verify

the conclusions of Proposition 4 (but interestingly not those of Proposition 5; see Figure 5 in

Section 5).

Our next result is a generalization of Proposition 6, which shows that each individual firm's

maximization problem is well-behaved with state-dependent IPR.

Proposition 10 Consider the state-dependent IPR policy (77, £) and suppose that the labor

share and the R&D policies of all other firms are given by z = (<I>, a, x). Then the dynamic

optimization problem of an individual firm leads to a unique value function v [z] : Z —> R+

and optimal R&D policies A [z] : Z^\{0} =4 [0,1] and X [z] : Z =J [0, x] are compact and

convex-valued for each zgZ and upper hemi-continuous in z (where v [z] = {vn [z]}^L_
1 ,

A [z] = {An [z]};Loo ^d X [z] = {Xn [*]}« _, ).

Finally, the next result generalizes Proposition 7 and establishes the existence of a steady-

state equilibrium with positive growth.

'For example, we could have r)n — an^ Vn+i ~* °°> which would imply that v„+i — v„ is negative.
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Proposition 11 Consider the state-dependent IPR policy (77, £) and suppose that

G'~ l
((l - A

-1
) / (p + Tyj)) > 0. Then a steady-state equilibrium (/j,*, v, a*_

1 , x*, oj*, g*)

exists. Moreover, in any steady-state equilibrium ui* < 1. In addition, if either n^ > or

x*_
x
> 0, then g* > 0.

Although the analysis so far has established the existence of a steady-state equilibrium

and characterized some of its properties, it is not possible to determine the optimal state-

dependent IPR policy analytically. For this reason, in Section 5, we undertake a quantitative

investigation of the form and structure of optimal state-dependent IPR policy using plausible

parameter values.

5 Optimal IPR Policy: A Quantitative Investigation

In this section, we investigate the implications of various different types of IPR policies on

the equilibrium growth and R&D rates using numerical computations of the steady-state equi-

librium. Our purpose is not to provide a detailed calibration of the model economy, but to

highlight the broad quantitative characteristics of the model and its implications for optimal

IPR policy under plausible parameter values. As we will see, the structure of optimal IPR pol-

icy and the innovation gains from such policy are relatively invariant to the range of parameter

values we consider.

5.1 Methodology

We take the annual discount rate as 5%, i.e., pyear — 0.05 and without loss of generality, we

normalize labor supply to 1 . The theoretical analysis considered a general production function

for R&D given by (9). The empirical literature typically assumes a Cobb-Douglas production

function. For example, Kortum (1993) considers a function of the form

Innovation (t) = Bq exp (nt) (R&D inputs)7 , (41)

where Bq is a constant and exp (nt) is a trend term, which may depend on general technological

trends, a drift in technological opportunities, or changes in general equilibrium prices (such as

wages of researchers etc.). The advantage of this form is not only its simplicity, but also the

fact that most empirical work estimates a single elasticity for the response of innovation rates

to R&D inputs. Consequently, they essentially only give information about the parameter 7

in terms of equation (41). A low value of 7 implies that the R&D production function is more

concave. For example, Kortum (1993) reports that estimates of 7 vary between 0.1 and 0.6
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(see also Pakes and Griliches, 1980, or Hall, Hausman and Griliches, 1988). For these reasons,

throughout, we adopt a R&D production function similar to (41):

x = Bh"< (42)

where J3, 7 > 0. In terms of our previous notation, equation (42) implies that G (x) — [x/B]~i w,

where w is the wage rate in the economy (thus in terms of the above function, it is captured by

the exp (tit) term). 24 Equation (42) does not satisfy the boundary conditions we imposed so far

and can be easily modified to do so without affecting any of the results, since in all numerical

exercises only a finite number of states are reached. 25 Following the estimates reported in

Kortum (1993), we start with a benchmark value of 7 = 0.35, and then report sensitivity

checks for 7 = 0.1 and 7 = 0.6. The other parameter in (42), B, is chosen so as to ensure

an annual growth rate of approximately 1.9%, i.e., g* ~ 0.019, in the benchmark economy

which features indefinitely-enforced patents and no licensing. This growth rate together with

Pyear = 0-05 also pins down the annual interest rate as ryear = 0.069 from equation (2).

We choose the value of A using a reasoning similar to Stokey (1995). Equation (36) implies

that if the expected duration of time between any two consecutive innovations is about 3 years

in an industry, then a growth rate of about 1.9% would require A = 1.05.
26 We take A = 1.05

as the benchmark value, and check the robustness of the results to A = 1.01 and A = 1.2

(expected duration of 1 year and 12 years, respectively). This completes all of the parameters

of the model except the IPR policy.

As noted above, we begin with the full patent protection regime without licensing, i.e.,

(77 = {0, 0, ...} , C, = {00, 00, ...}). We then compare this to an economy with full patent pro-

tection and licensing, i.e., (77 = {0, 0, ...} ,£ = {CiCj •••})> where ( = v\ — vq.
27 After this,

24 More specifically, (42) can be alternatively written as

Innovation (t) = Bui (t) " (R&D expenditure)'1
'

,

thus would be equivalent to (41) as long as the growth of w (i) can be approximated by constant rate.
25 For example, we could add a small linear term to the production function for R&D, (42), and also make it

flat after some level h. For example, the following generalization of (42),

x = min {Bh? + eh; Bh1 + eh}

for e small and h large, makes no difference to our simulation results.
26

In particular, in our benchmark parameterization with full protection without licensing, 24% of industries

are in the neck-and-neck state. This implies that improvements in the technological capability of the economy

is driven by the R&D efforts of the leaders in 76% of the industries and the R&D efforts of both the leaders and

the followers in 24% of the industries. Therefore, the growth equation implies that we have g ~ In A x 1.24 x x,

where x denotes the average frequency of innovation in a given industry. A major innovation on average every

three years implies a value of A ~ 1.05.
27 For the interpretation of full patent protection as C = vi — vo, recall the discussion in footnote 16. Note also
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>-umwe move to a comparison of the optimal (growth-maximizing) uniform IPR policy r]
um

,

£"

to the optimal state-dependent IPR policy. Since it is computationally impossible to calcu-

late the optimal value of each r\n and (n , we limit our investigation to a particular form of

state-dependent IPR policy, whereby the same V and C applies to all industries that have a

technology gap of n = 5 or more. In other words, the IPR policy matrix takes the form:

(Vl, Cl) (172. C2) 073> C3) ('74. C4) (V5> Cs)

IPR policy —s- none ^^ ^s^ ,—^~, ,-^, ,
">

Technology gap: n —

>

1 2 3 4 56789 10 11

We checked and verified that allowing for further flexibility (e.g., allowing 775 and 7]e or £5 and

C6 to differ) has little effect on our results.

The numerical methodology we pursue relies on uniformization and value function iteration.

The details of the uniformization technique are described in the proof of Proposition 6. On

value function iteration, see Judd (1999). In particular, we first take the IPR policies 77 and £

as given and make an initial guess for the equilibrium labor share uj*. Then conditional on w*,

we generate a sequence of values {^nl^L-oo (
or {un}^l_i depending on whether there is state-

dependent IPR policy or not), and we derive the optimal R&D policies, {x* }^=_ OQ ,
{an }nL-<x>

and the steady-state distribution of industries, {/^}^Lo- After convergence, we compute the

growth rate g*
, and then check for market clearing in the labor market from equation (18).

Depending on whether there is excess demand or supply of labor, w* is varied and the whole

process is repeated until the entire steady-state equilibrium for a given IPR policy is computed.

The process is then repeated for different IPR policies.

In the state-dependent IPR case, the optimal (growth-maximizing) IPR policy sequences,

77 and £, are computed one element at a time, until we find the growth-maximizing value for

that component, for example, r)y. We then move the next component, for example, T]2 - Once

the growth-maximizing value of 772 is determined, we go back to optimize over rj-y again, and

this procedure is repeated recursively until convergence.

We now present our simulation results. We start with the parameter values A = 1.05 and

7 = 0.35, and then show how the results change when we vary these parameters.

5.2 Full IPR Protection Without Licensing

We start with the benchmark with full protection and no licensing, which is the case that the

existing literature has considered so far (e.g., Aghion, Harris, Howitt and Vickers, 2001). In

that at a license fee of £, followers are indifferent between a = and a = 1, and in computing the equilibrium

in this case we always suppose that they choose o = 1. Thus alternatively one might wish to think that

C = v 1 — vo — e for e J.
0.
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terms of our model, this corresponds to r]n = for all n and £n — co for all n. Equation

(28) implies that a*_n = for all n. We choose the parameter B in terms of (42), so that the

benchmark has an annual growth rate of 1.86%.

The value function for this benchmark case is shown in Figure 1 (with the solid line). The

value function has decreasing differences for n > 0, which is consistent with Proposition 4,

and features a constant level for all followers (since there is no state dependence in the IPR

policy). Figure 2 shows the level of R&D efforts for leaders and followers in this benchmark

(again with the solid lines). This figure shows that the R&D level of a leader declines as the

technology gap increases. Moreover, consistent with Propositions 4 and 5, the highest level of

R&D is for firms that are neck-and-neck (i.e., at the technology gap of n — 0). Since there is

no state-dependent IPR policy, all followers undertake the same level of R&D effort, which is

also shown in the figure.

Figure 3 shows the distribution of industries according to technology gaps (again the solid

line refers to the benchmark case). The mode of the distribution is at the technology gap of

n = 1, but there is also a concentration of industries at technology gap n = 0, because a*_n =

implies that innovations by the followers take them to the "neck-and-neck" state.

The first column of Table 1 also reports the results for this benchmark simulation. As noted

above, B is chosen such that the annual growth rate is equal to 0.0186, which is recorded at

the bottom row. The table also shows the gap between x*Q and x*_
l

(0.029 versus 0.018), the

frequencies of industries with technology gaps of 0, 1 and 2. The steady-state value of u> is

0.952. Since labor is the only factor of production in the economy, lo* should not be thought

of as the labor share in GDP. Instead, 1 — u* measures the share of pure monopoly profits in

value added. In the benchmark parameterization, this corresponds to 5% of GDP, which is

reasonable. 28
Finally, the table also shows that in this benchmark parameterization 3.2% of

the workforce is working as researchers, which is also consistent with US data. 29

5.3 Full IPR Protection With Licensing

We next turn to full IPR protection with licensing. As specified above, we think of full IPR

protection with licensing as corresponding to r]n = for all n (so that patents never expire)

and Cn
= C — v i

~ vo for all n (so that the license fee for making use of a leading-edge

technology is equal to the net present discounted value gap between being a one step ahead

28 Bureau of Economic Analysis (2004) reports that the ratio of before-tax profits to GDP in the US economy

in 2001 was 7% and the after-tax ratio was 5%.
29
According to National Science Foundation (2006), the ratio of scientists and engineers in the US workforce

in 2001 is about 4%.
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leader and a neck-and-neck firm). Figures 1-3 show the corresponding value functions, R&D

effort levels and distribution of industries for this case (with the dashed lines) . Since there is no

state-dependent policy the general pattern is similar to that in the economy without licensing.

There is no longer a spike in R&D effort at n = 0, however, since now firms always prefer to

pay the license and jump ahead of the leading-edge technology. This makes the neck-and-neck

state no longer special (in fact, as column 2 of Table 1 shows in equilibrium there will be no

industries in the neck-and-neck state). More importantly, the level of R&D by followers is

considerably higher than in the benchmark case. In particular, xl x
is now 0.021 rather than

0.018. The resulting growth rate is 2.58% instead of 1.86% in the benchmark. The boost to

growth comes not from the increase in the R&D effort overall, but from the fact that the R&D

of the followers now also advances the technological frontier of the economy since they can

license and build on the leading-edge technology (recall equation (36)). In fact, column 2 of

Table 1 shows that this considerably higher growth rate is achieved with a lower fraction of

the workforce, only 2.6%, working in the research sector.

This result, which is robust across different parameterizations of the model, is the first

important implication of our analysis. Relative to existing models of step-by-step innovation,

such as Aghion, Harris, Howitt and Vickers (2001), which do not allow for the possibility of'

licensing, here the R&D effort by followers can directly contribute to economic growth and this

increases the equilibrium growth rate of the economy.

5.4 Optimal Uniform IPR Protection

We next turn to optimal (growth-maximizing) IPR policy with licensing. That is, we impose

that r)n = rj and Cn = C f°r au n > and look for values of 77 and £ that maximize the growth

rate. Column 3 of Table 1 shows that the growth-maximizing values of 77 and £ are both equal

to in the benchmark parameterization. This corresponds to zero license fees and indefinite

life of patents, so that followers can never copy the leading-edge technology without R&D, but

they can always advance one step ahead of the leader when they are successful in their R&D

efforts (without paying any license fees).

The resulting value function, R&D effort levels and industry distributions according to

technology gaps are shown in Figures 4-6 (with the solid lines).

The figures and column 3 of Table 1 show that the growth-maximizing IPR policy discour-

ages leaders (which can be seen from the fact that v\ — vq declines significantly), but encourages

R&D effort by the followers, since when successful they do not have to pay the license fee. The

optimal uniform IPR increases the growth rate by only a little, however. While the growth
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rate of the economy with full IPR protection with licensing was 2.58%, it is now 2.63%. This

increase is associated with a very modest rise in the share of the labor force working in research

(from 2.6% to 2.7%).

5.5 Optimal State-Dependent IPR Without Licensing

We next turn to our second major question; whether state-dependent IPR makes a significant

difference relative the uniform IPR. We first investigate this question without licensing (so that

the comparison is to the benchmark case in column 1). In particular, we set (n — oo for all n

and look for the combination of {77^ ...,775} that maximizes the growth rate. The results are

shown in column 4 of Table 1.

Two features are worth noting. First, the growth rate increases noticeably relative to

column 1; it is now 2.03% instead of 1.86%. Nevertheless, this increase is quite small relative

to the benefits of licensing. Therefore, state-dependent IPR policy with no licensing is not a

substitute for licensing.

Second, we see an interesting pattern (which is in fact quite general in all of our quantitative

investigations). The optimal state-dependent policy {77 l7 ..., T75} provides greater protection to

technological leaders that are further ahead. In particular, we find that the optimal policy

involves rj^ = 0.054, 7?2 = 0.005, and 773 = 774 = t] 5
= 0. This corresponds to very little patent

protection for firms that are one step ahead of the followers, which can be seen by comparing

77 ! = 0.054 to x*_.j
= 0.010. This comparison implies that firms that are one step behind

followers are more than five times as likely to catch up with the technological leader because

of the expiration of the patent of the leader as they are likely to catch up because of their own

successful R&D. Then, there is a steep increase in the protection provided to technological

leaders that are two steps ahead, and ?72 is l/10th of 77^ Perhaps even more remarkably, after

a technology gap of three or more steps, there is full protection and patents never expire.

This pattern of greater protection for technological leaders that are further ahead may

go against a naive intuition that state-dependent IPR policy should try to boost the growth

rate of the economy by bringing more industries with large technology gaps (where leaders

engage in little R&D) into neck-and-neck competition. This composition effect is present, but

it is dominated by another, more powerful force, the trickle-down effect. The intuition for the

trickle-down effect is as follows: by providing secure patent protection to firms that are three

or more steps ahead of their rivals, optimal state-dependent IPR increases the R&D effort of

leaders that are one and two steps ahead as well—despite the fact that these firms now face

less secure protection of their own intellectual property. In fact, this is precisely because of
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low protection for technological leaders that are one or two steps ahead combined with the

promise of much greater protection once they reach a technology gap of three steps or more.

Mechanically, high levels of ^ and r\2 reduce v\ and V2, while high IPR protection for more

advanced firms increases vn for n > 3. Consequently, it becomes more beneficial for leaders

that are one or two steps ahead to undertake R&D to reach the higher level of IPR protection.

This pattern of increased R&D for leaders under state-dependent IPR contrasts with uniform

IPR, which always reduces R&D by all technological leaders. The possibility that imperfect

state-dependent IPR protection can increase R&D incentives is a novel feature of our approach,

since previous models have not considered state-dependent IPR policies.

5.6 Optimal State-Dependent IPR With Licensing

Finally, we turn to the most general policy choice within the context of our approach and

investigate which combinations of {r7 l5 ..., ??5 } and {Cii—jCs} maximize the growth rate and

the contribution of the optimal state-dependent IPR policies to economic growth. The results

of this exercise are shown in column 5 of Table 1. Now the comparison should be to the optimal

uniform IPR policy with licensing in column 3, where uniform IPR policies r\ and C were chosen

to maximize the aggregate growth rate. The value functions, R&D efforts and the industry

distribution over different levels of technology gaps in this economy are shown in Figures 4-6

(with the dashed lines).

We see in column 5 that growth-maximizing IPR policy involves rjn = for all n, so that

patents never expire. Nevertheless, IPR protection for technological leaders is not full. In

particular, the growth-maximizing policy involves £i = 0, which implies that followers can

build on the leading-edge technology that is one step ahead of their own knowledge without

paying any license fees. From there on, £ increases to £2 = 0.82, which is still less than full

patent protection. After three or more steps, however, we have £3 = 1.94 and C4 — Cs — 1-95,

which are very close to full patent protection (since v\ — vq = 1.96). The resulting growth rate

of the economy is 2.96%, which is significantly higher than the growth rate under uniform IPR

policy, 2.63% in column 3. This shows that state-dependent policies can increase the growth

rate of the economy significantly.

State-dependent policies again achieve this superior growth performance by exploiting the

trickle-down effect, which we already saw in the case without licensing. In particular, £n is

an increasing sequence, which implies that technological leaders that are further ahead receive

greater protection. As in the previous subsection, this pattern of IPR is used as a way of

boosting the R&D effort of technological leaders that are one or two steps ahead of their
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rivals (see Figure 5) . Since these leaders receive little protection and understand that they can

increase both their profits and their IPR protection by undertaking further innovations, they

have relatively strong innovation incentives and undertake high levels of R&D. This increases

the fraction of the labor force working in R&D to 3.9% (which is greater than all the other cases

in Table 1) and again illustrates how imperfect state-dependent IPR protection can increase

R&D incentives relative to full protection.

The growth rate of the economy also receives a boost from the R&D effort of the follow-

ers that are one step behind the leaders, since, thanks to licensing, followers' R&D directly

contributes to the advancing the technological frontier of the economy. Figure 5 shows that

followers that are one step behind the frontier now have a higher R&D effort than even in the

case with growth-maximizing uniform IPR (which involved (n — for all n). The reason for

this pattern of R&D efforts is that the growth-maximizing IPR policy and the trickle-down

effect have increased the value of being a technological leader. In contrast, the R&D level of

followers that are more than once step behind is lower than in the economy with uniform IPR.

Overall, the results show that state-dependent IPR policies can increase the equilibrium

growth rate of the economy substantially and that the trickle-down effect is powerful, not only

when we consider the economy without licensing, but also in the presence of licensing.

5.7 Robustness

Tables 2-5 show the robustness of the patterns documented in Figures 1-6 and in Table 1.

In particular, each of these tables changes one of the two parameters A and 7 (increasing or

reducing A to 1.2 or 1.01, and increasing or reducing 7 to 0.6 or 0.1) and show the results

corresponding to each one of the five different policy regimes and discussed so far. In each

case, we change the parameter B in equation (42) so that the growth rate of the benchmark

economy with full IPR protection without licensing is the same as in Table 1, 1.86%.

Notably, the qualitative, and even the quantitative, patterns in Table 1 are relatively robust.

In all cases we see a significant increase in the growth rate when we allow licensing. The

smallest increase is when 7 = 0.6, presumably because with limited diminishing returns to

R&D, incentives were already sufficiently strong without licensing. As a result, in this case,

the growth rate increases only from 1.86% to 1.98%. In all other cases, allowing for licensing

increases the growth rate to above 2.5%, which is a very large increase relative to the baseline

of 1.86%.

Moreover, in all cases, moving to state-dependent IPR policy increases the growth rate

further, though the extent of the increase varies depending on parameters. The most modest
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gain comes when 7 = 0.1, because in this case the economy with full protection and licensing

already achieves a very high growth rate of 2.78%, and thus there is only little room left for

an increase in growth rate from state-dependent IPR. In all other cases, the increase in the

growth rate is quite substantial.

Perhaps, more noteworthy is the fact that in all cases, growth-maximizing state-dependent

IPR is shaped by the trickle-down effect. In all of the various parameterizations we have

considered, there is little or no protection provided to technological leaders that are one step

ahead, but IPR protection grows as the technology gap increases. This is the typical pattern

implied by the trickle-down effect.

We therefore conclude that both the substantial benefits of licensing in models of tech-

nological competition and the benefits of state-dependent policies, mostly coming from the

trickle-down effect, are robust across different specifications.

6 Conclusions

In this paper, we developed a general equilibrium framework to investigate the impact of the

extent and form of intellectual property rights (IPR) policy on economic growth. The two

major questions we focused on are whether licensing, which allows followers to build on the

leading-edge technology in return of a license fee, has a major impact on the equilibrium growth

rate and whether the same degree of patent protection should be given to companies that are

further ahead of their competitors as those that are technologically close to their competitors.

In our model economy, firms engage in cumulative (step-by-step) innovation. Leaders can

innovate in order to widen the technology gap between themselves and the followers, which

enables them to charge higher markups. On the other hand, followers innovate to catch up with

or surpass the technological leaders in their industry. Followers can advance in three different

ways. First, the patent of the technological leader may expire, allowing the follower in the

industry to copy the leading-edge technology. Second, each follower can undertake catch-up

R&D to improve its own variant of the product to catch up with the leader. Third, each

follower can undertake frontier R&D, building on and improving the leading-edge technology;

in this case, when successful, it will have to pay a license fee to the technological leader.

In the model economy, IPR policy regulates whether licensing is possible and how costly

it will be far followers, and also the length of the patents. We characterized the form of the

steady-state equilibrium and proved its existence under general IPR policies. We then used this

framework to investigate the form of "optimal" (growth-maximizing) IPR policy quantitatively.
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The major findings of this quantitative exercise are as follows:

1. A move from an IPR policy without licensing to one that allows for licensing has a signif-

icant effect on the equilibrium growth rate. For the benchmark parameterization of our

model, licensing increases the growth rate from 1.86% to 2.58% per annum. This sub-

stantial increase in growth rate is robust to a large range of variation in the parameters.

2. State-dependent IPR also leads to a significant improvement in the equilibrium growth

rate. In our benchmark parameterization, the growth rate of the economy increases from

2.57% under the growth-maximizing uniform IPR policy to 2.93% under state-dependent

IPR policy. Perhaps more interesting than this substantial impact on the equilibrium

growth rate is the form of the optimal state-dependent IPR policy. Contrary to a naive

intuition, we find that the growth-maximizing IPR policy provides greater protection to

firms that are further ahead of their rivals than those that are technologically close to

their competitors. Underlying this form of the optimal IPR policy is the trickle-down

effect. The trickle-down effect implies that providing greater protection to sufficiently

advanced technological leaders not only increases their R&D efforts, but also raises the

R&D efforts of all technological leaders that are less advanced than this level, because

the reward to innovation now includes the greater protection that they will receive once

they reach this higher level of technology. Our results suggest that the trickle-down effect

is powerful both with and without licensing, and its form and magnitude are relatively

insensitive to the exact parameter values used in the quantitative investigation.

The analysis in this paper suggests that a move to a richer menu of IPR policies, in

particular, a move towards optimal state-dependent policies with licensing may significantly

increase innovation and economic growth. The results also show that the form of optimal

IPR policy may depend on the industry structure (and the technology of catch-up within the

industry). Nevertheless, these conclusions are based on a quantitative evaluation of a rather

simple model. It would be interesting to investigate the robustness of these results to different

models of industry dynamics and study whether the relationship between the form of optimal

IPR policy and industry structure suggested by our analysis also applies when variation in

industry structure has other sources (for example, differences in the extent of fixed costs). The

most important area for future work is a detailed empirical investigation of the form of optimal

IPR policy, using both better estimates of the effects of IPR policy on innovation rates and

also structural models where the effect of different policies on equilibrium can be evaluated.
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Appendix: Proofs

Proof of Proposition 1. Equations (19) and (21) imply

«>(t) Q(i)A-£-° n/i" (1)

Y(t)
' (t) u (t)

Since u> (t) = w* and {/^}^L are constant in steady state, Y (t) grows at the same rate as Q(t).

Therefore,

, ,.
In <?(£ + At)- In Q(i)

q = lim .

At-o At

Now note the following: during an interval of length At (i) in the fraction /i* of the industries with

technology gap n > 1 the leaders innovate at a rate £*At + o(At); (ii) in the same industries, the

followers innovate at the rate a*_nx*_ nAt+o {At); (iii) in the fraction Pq of the industries with technology

gap of n = 0, both firms innovate, so that the total innovation rate is 2x$ At + o (At)); and (iv) each

innovation increase productivity by a factor A. Combining these observations, we have

\nQ(t + At) = ln<2(£) +lnA 2p*x* At + J2&<A * + 9 (At) + JT a*_nx*_nAt + o (At)

Subtracting \nQ (t), dividing by At and taking the limit At —> gives (36).

Proof of Proposition 2. Let (a_i, {xn }^°__ 1 }
be the R&D decisions of the firm and {vn }'^'__

l

be the sequence of values, taking the decisions of other firms and the industry distributions, {xn}™=-i>

{/OnL-i' w * anc^ 5' as given - By choosing xn = for all n > —1, the firm guarantees vn > for all

n > — 1. Moreover, since flow profit satisfy nn < 1 for all n > — 1, i>„ < 1/p for all n > — 1, establishing

that {wn }^= _ 1
is a bounded sequence, with vn £ [0, 1/p] for all n > — 1.

Proof of v\ > vq : Suppose, first, i>i < ^o, then (31) implies Xq = 0, and by the symmetry of the

problem in equilibrium (26) implies vq = v\ = 0. As a result, from (30) we obtain xlj = 0. Equation

(25) implies that when x*_
x
= 0, V\ > (l — A

-1
) / (p + rj) > 0, yielding a contradiction and proving that

v\ > v .

Proof of v-i < vq ' Suppose, to obtain a contradiction, that u_i > vq.

If v\ — C, < vq, (30) yields x*_
Y
— 0. This implies i>_i = 771J0/ (p + 77), which contradicts v-i > Vq

since 77/ (p + 77) < 1. Thus we must have vi — £ > vq, which implies that a*_
x
= 1. Imposing a*_

x
= 1,

the value function of a neck-and-neck firm can be written as:

pv = max{-u*G(x ) +x {vi-v ]+x °[v^i -v }}

,

(43)
Xq

> ma,x {-gj*G (x ) + x [vi - v }} ,

XQ

> max{-w*G(x ) + x [vi - v-\ - £]} ,

XQ

> -u*G (xlj) + x*_
l \vi - V-l - C] + 7? [v - V-i]

,

= pV-l,

which contradicts the hypothesis that tj_i > vq and establishes the claim.

Proof of vn < vn+ i : Suppose, to obtain a contradiction, that vn > vn+\. Now (29) implies x*n = 0,

and (25) becomes

pvn = (1 - A"n
) + xla

[a*_! (u-i + C) + (1 - all) ^o - f„] + V bo - t>n] (44)
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Also from (25), the value for state n + 1 satisfies

pvn+i > (1 - A""- 1

) + x*_
x

[a'_
1 (vj-i + C) + (1 - ali) ^o - ^n+i] + t? [vo - vn+i]

.

(45)

Combining the two previous expressions, we obtain

(1 - A"n ) + as!.! [a* j (u_! + C) + (l - all) v - vn ] + r\ [v - vn ]

> 1 - \-n~ l + xl
1
[at! (v-i + C) + (1 - all) ^o - «h+i] + VN - «*ti] •

Since A
_n_1 < A~

n
, this implies un < nn+i, contradicting the hypothesis that vn > vn+i, and es-

tablishing the desired result, vn < vn+i- Consequently, {vn}^__ 1
is nondecreasing and {vn}^L *s

(strictly) increasing. Since a nondecreasing sequence in a compact set must converge, {vn }'^'__
1
con-

verges to its limit point, v^o, which must be strictly positive, since {vn }^L is strictly increasing and

has a nonnegative initial value. This completes the proof.

Proof of Proposition 3. The first-order condition of the maximization of the value function

(25) implies:

G' (x-n) > — and xn > 0,

with complementary slackness. G' (0) is strictly positive by assumption. If (vn+\ — vn ) /ui* < G' (0),

then xn = 0. Proposition 2 implies that {vn }'^__ l
is a convergent and thus a Cauchy sequence, which

implies that there exists 3n* € N such that vn+ i
— vn < u>*G' (0) for all n > n* . u

Proof of Proposition 4. From equation (29),

5n+ i
= vn+x -vn <vn

- vn_i = 6n (46)

is sufficient to establish that xn+l < x*n .

Let us write:

pvn = max{(l - A~n
)
- u>*G(xn ) + x*,-[vn+i ~'Vn] +^-i [all (.V-i + + (l - a*_

x ) v ]
+tjv } ,

(47)

where p = p + x*_
x
+ r\. Since xn+1 , x* and x*n_ Y

are maximizers of the value functions vn+ i, vn and

vn-!, (47) implies:

pun+ l = 1 - A
-™" 1 - W*G«+1 ) + <+i Kn-2 - Un+l] + X*-\ [«-l (^-1 + '+ (l ~ a-l) ^o] + TO),

(48)

pvn > 1 - A"n - u'G (x* +1 ) + x*n+l [vn+ i
- Vn] + x*_! [all («-i + C) + (l - all) vQ] + tjvq,

pvn > 1 - A"n - uj*G «_x) + <_i K+i - vn ] + x*_i [al
x (v_i + C) + (l - a*-i) v ] + TO),

pVn-x = 1 - A"n+1 - LJ*G «_ x ) + X*n_! [Vn - Vn-i] + itj. [alj {V-i + C) + (1 - ali) Wb] + TO-

Now taking differences with pvn and using the definitions of <5n 's, we obtain

pSn+i < A~ n
(l - A

-1
) + xn+1 (<5n+2 - Sn+i)

P5n > A-^^l-A-^+^.i^n+l-^)-

Therefore,

(P + <-i) (<Wi - 5n ) < -kn + xn+1 {5n+2 - Sn+ i) , (49)

where

kn = (A-l)
2
A-

n_1 >0.
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Now to obtain a contradiction, suppose that <5„+i — 5n > 0. From (49), this implies <5n+ 2 — 6n+ i >
since kn is strictly positive. Repeating this argument successively, we have that if 5n '+ \ — 8n i > 0,

then 5n+ i
— 5n > for all n > n' . However, we know from Proposition 2 that {vn }^L Q

is strictly

increasing and converges to a constant vx . This implies that 5n J. 0, which contradicts the hypothesis

that <5n+ i
— Sn > for all n > n' > 0, and establishes that x* +1 < x^- To see that the inequality is

strict when x* > 0, it suffices to note that we have already established (46), i.e., 6n+ i
— 5n < 0, thus if

equation (29) has a positive solution, then we necessarily have x* +1 < x*n .

Proof of Proposition 5. Proof of Xq > x*_
1

: Suppose first that C > v\ - vq. Then (28) implies

al
x
=0, and (26) can be written as

pv = -lj*G (xq) + Xq [v-i +vi- 2v )

.

(50)

We have vq > from Proposition 2. Suppose i>o > 0. Then (50) implies Xq > and

V-i+vi-2vq > (51)

V\ -v > Vq- V-i.

This inequality combined with a"_
1
= 0, (31) and (38) }delds Xq > x"L±. Suppose next that vq = 0.

Inequality (51) now holds as a weak inequality and implies that Xq > x*_
x

. Moreover, since G () is

strictly convex and Xq is given by (31), (50) then implies Xq = and thus x*_
x
=0.

We next show that when £ < v\ — vo, Xq > x'L 1
. In this case, a*_

1
= 1 is an optimal policy, so that

pv = -uj*G(xI)+Xq[vi-vo]+Xo[v-i-vo\

pv-i > -uj*G{xq)+x*q [vi-V-i -C} + v[vo -v-i}.

Subtracting the second expression from the first, we obtain

P [v ~ U_i] < X*Q [V-i + C - Vq] + {X* + Tj) [V-l ~ Vq]
,

and therefore

[vq -v-i] < [v-i +C-t'o]-

Proposition 2 implies that v_\ < vo, and therefore V-i + C > vq. Next observe that with a*_
l
= 1,

(31) and (38) imply that Xq > x*_
x

if and only if v\ — Vq > V\ — V-\ — Q, or equivalently if and only if

u_i + C > vq. Thus we have established that Xq > x*_ x
both when £ > v\ — vq and when C < vi — vq.

Lemma 1 and proof: We next first prove a lemma, which will be used in the rest of the Appendix.

Lemma 1 Suppose that G'^ 1
((l - A^ 1

) / (p + -q)) > 0, then Xq > and v > 0.

Proof of Lemma: Suppose, to obtain a contradiction, that Xq = 0. The first part of the proof

then implies that x*_
1
= 0- Then (25) implies

pv\ > 1 - A + j] [vq - vi]

.

Equation (26) together with Xq = gives vq = 0, and hence

1-A" 1

v1 -v >

Combined with this inequality, (31) implies

P + V

naxfG'-1
(

1
.

A
. i

.n

maxJG'-M -
A

-
)

n

r {p + rf)

A"

P + V
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where the second inequality follows from the fact that ui* < 1. The assumption that

G'~ l
((l — A

-1
) / (p + r/)) > then implies Xq > 0, thus leading to a contradiction and establishing

that x^ > 0. Strict convexity of G () together with Xq > then implies vq > 0M

Proof of Xq > x*_! when G'~ l
((l - A

-1
) / (p + w)) > and C > 0: Given Lemma 1,

G'" 1
((l - A" 1

) / {p + r))) > implies that Xq > 0. Then the first part of the proof implies that

when £ > vi — vo, Xq > x'L
1

. Next suppose that < C < v i
— vo- Then the same argument as above

implies that Xq > x*_
1

if and only if vi — vq > vi — V-i — £, or equivalently if and only if v^i + £ > vq.

Suppose this is not the case. Then from the first part of the proof, we have that Xq = x*_
x
= 0, and

thus v-x = vq = 0, which implies u_i + (, > vq and thus Xq > x*_
1

. This yields a contradiction and

completes the proof that Xq > x*L
x
when £ > and G/_1

((l — A" 1

) / (p + 77)) > 0.

Proof of Xq > x\ : To prove that Xq > x\, let us write the value functions v2 , t>i and vq as in (48)

in the proof of Proposition 4:

pv2 = 1- \~ 2 -u*G{x*2)+X2lv3 -v2}+xt 1
[a*_

1 {v-i+C,) + (l-a*_
1
)vo}+r)v

,

~pv x > 1 - X" 1 -oj*G{x 2 ) + x*2 \v2 -v{\ + x*_
1 [alj (v-i + + (l -a*-i)vQ ] +Vvo,

pv x > 1- A"
1 -uj*G{x* )+x*q[v2 -v1}+x*_ 1 [al^-i + C) + (l - alj v

] + nvo,

pv = -LJ*G(xq) + Xq [Vl - Vq] +nVQ + X*_
x Vo + Xq [V-i - Vq] .

Now taking differences with pvn and using the definitions of <5n 's as in (46) in the proof of Proposition

4, we obtain

p5 2 < X- 1
(I - X- 1

) + xl(5 3 - 52 )

,

(52)

ph > (1 - A
-1

) + xq {5 2 - b~i) + xl
l
.[al

l
(u-i + C) + (1 - a*_ x ) v - v ] -x^[v-i-.v ],

pSi > (l-X- 1)+x '(52 -5 1 ) + x*_
1a*-i(+ {x*-ia*-i-xZ)[v-i-vo\,

p5i > (l - A
-1

) +Xq (6 2 - 5i) + (x*_
1
a*_

1
- Xq) [u_i - v ]

.

Next note that Proposition 2 implies that tu.i — vq < 0. Moreover, the first part of the first part

of the proof has established that x*_
x
— Xq < 0. Combining this with a*_

x
< 1 establishes that

[x*_± — xo\ [v-i — Vq] > 0, and the last inequality then implies

pSi> (1-
A" 1

) +x* {52
-

<5i).

Now combining this inequality with the first inequality of (52), we obtain

(p + x* ) (62 - <5i) < - (1 - A" 1

)

2
+ x2 {S3 - 6 2 )

. (53)

Proposition 2 has established 62 > S3, so that the right-hand side is strictly negative, therefore, we

must have 52 — 5\ < 0, which implies that Xq > x\ and completes the proof.

Proof of Proposition 6. Fix z = (uj, {.Tn}^= _ 1 ,
{an }~=_ 00 ), and consider the optimization

problem of a representative firm, written recursively as:

pvn= max { (1 - A~n )
- uG {xn ) + xn [vn+1 - vn )

x„e[o,x]

+ x-i (a_i [v-i - vn + C] + (1 - a_i) [v - vn]) + v[vo -vj) for n 6 N

Pvq = max {-loG (xq) +x [vi -v ]+ x [v-i -v }}
io£|0,i]

pv-i = max {—u>G(xo) + x-.i(a-i[vi—v-i-Q + (l-a-i)[vo-v-i])
i_i€[0,x], a_i£[0,l]

+t][vq -v-i]}.
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We now transform this dynamic optimization problem into a form that can be represented as a

contraction mapping using the method of "uniformization" (see, for example, Ross, 1996, Chapter

5). Let I = ({xn}~ _ 1
,{an }n=_ c

and Pn,n> (« I I) be the probability that the next state will

be n' starting with state n when the firm in question chooses policies £ = ({xn )^__ l ,
{an }n_

and the R&D policy of other firms is given by £. Using the fact that, because of uniform IPR
policy, (x-n ,a-n ) = (i_i,a_i) for all n £ N, these transition probabilities can be written as:

p-lo €l€
(l-Q-l)z_i+7)

X-1+I7

po,-i«K =j^
Pn,-1 (£ I £J

— Xn+i_,+ n

P-a,iUI£ = X_!+7)

po.ikk, Xo+Xq

Pn,0 £
I £

(l-q-i)x_i+7;
xn +£_i+77 Pn,n+1 I I £ = Hx-i+t;

Uniformization involves adding fictitious transitions from a state into itself, which do not change the

value of the program, but allow us to represent the optimization problem as a contraction. For this

purpose, define the transition rates tpn as

4'n (* I
t)

xn + X-i+T] for n e {1,2, ...}

x-i + r\ for n = — 1

2xn for n =

These transition rates are finite since ipn I £ | £ ) < ip = 2x + rj < 00 for all n, where x is the maximal

flow rate of innovation defined in (11) in the text (both x and 77 are finite by assumption).

Now following equation (5.8.3) in Ross (1996), we can use these transition rates and define the new
transition probabilities (including the fictitious transitions from a state to itself) as:

Pn,n' (t I I)

V'nQsie)fw 1

1 if n 7^ n'

if n = n'

This yields equivalent transition probabilities

P_ 1 ,_ 1 (^IC) = 1-^ P-1,0 (« 1 e) = (1 - B

a£,-
1+" „ (e

I

?"\ o_-is_i
P-1,1 (s 1 tj ' 2x+r,

P0.-1 (€ \l) = 2§bj Po.o(«l€)=l-^ po,i (€ 1 i) =^
Pn,0 (€ 1 g) = (1- a^ 1+T;

P~n,n (« ||) = 1 - ^fe^ Pn,n+1 ( £ I £
J
— 2J+r) Pn,-1 (fi I 1) =

5-ii-i
22+7)

and also defines an effective discount factor /3 given by

ip 25 + 77

/3 =
p + V" p + 2x + 77

Also let the per period return function (profit net of R&D expenditures) be

n fT l- J P+2S+7,
u " ^ 1

—
,

'
,

otherwise

Using these transformations, the dynamic optimization problem can be written as:

max I Iln (x„) + P^2pn ,n' Un \ I) *V > , for all n G Z,

(54)

(55)

Tvn , for all n£Z.
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where v={vn }^L_ 1
and the second line defines the operator T, mapping from the space of

functions V = {v : {^1} U Z+ —» M+ } into itself. T is clearly a contraction, thus, for given

z = (<I>, a_i, {in}^L_i), Possesses a unique fixed point v* = {v*
l }

Q

=̂_ l
(e.g., Stokey, Lucas and Prescott,

1989).

Moreover, xn G [0,5], a^\ G [0, 1], and vn for each n = -1, 0, 1, ... given by the right-hand side of

(55) is continuous in an and xn (an applying only for n = —1), so Berge's Maximum Theorem (Aliprantis

and Border, 1999, Theorem 16.31, p. 539) implies that the set of maximizers (Al
x ,

{X^}'^'__
1 ) exists,

is nonempty and compact-valued for each z and is upper hemi-continuous in z = (w,a_i, {xn }^L_-
i
).

Moreover, concavity of vn in an and xn for each n = —1, 0, 1, ... implies that (A*_ 1; {X*}^L_ 1
\ is also

convex-valued for each z, completing the proof.

Proof of Proposition 7. We first show that the mapping $: Z4 Z constructed in (40) has a

fixed point, and then establish that when G'
_1

((l - A
-1

) / (p + ??)) > this fixed point corresponds

to a steady state with u>* < 1.

First, it has already been established that 3> maps Z into itself. We next show that Z is compact

in the product topology and is a subset of a locally convex Hausdorff space. The first part follows

from the fact that Z can be written as the Cartesian product of compact subsets, Z = [0, 1] x [0, 1] x

n^L-i [OjS]. Then by Tychonoff's Theorem (e.g., Aliprantis and Border, 1999, Theorem 2.57, p. 52;

Kelley, 1955, p. 143), Z is compact in the product topology. Moreover, Z is clearly nonempty and also

convex, since for any z, z' £ Z and A G [0, 1], we have Az+ (1 — A) z' € Z. Finally, since Z is a product

of intervals on the real line, it is a subset of a locally convex Hausdorff space (see Aliprantis and Border,

1999, Lemma 5.54, p. 192).

Next, if is a continuous function from Z into [0, 1] and from Proposition 6, A_i (z) and Xn (z) for

n G { — 1} U Z+ are upper hemi-continuous in z. Consequently, <& = (p [z] , A-i [z] , X [z]) has closed

graph in z in the product topology. Moreover, each one of <p{z), A-i (z) and Xn (z) for n = —1,0, ... is

nonempty, compact and convex-valued. Therefore, the image of the mapping $ is nonempty, compact

and convex-valued for each z G Z. The Kakutani-Fan-Glicksberg Fixed Point Theorem implies that if

the function $ maps a convex, compact and nonempty subset of a locally convex Hausdorff space into

itself and has closed graph and is nonempty, compact and convex-valued z, then it possesses a fixed

point z* G $(z*) (see Aliprantis and Border, 1999, Theorem 16.50 and Corollary 16.51, pp. 549-550).

This establishes the existence of a fixed point z* of $.

To complete the proof, we need to show that the fixed point, z*, corresponds to a steady state

equilibrium. First, since an (ui* , a*_
l ,

{i*,}^L_
1 )

= a*-\ and xn (ui*, alj, {x*n }'^'= _ 1 )
= x*n for n G

{ — 1} U Z+ , we have that given a labor share of ui*
,
(a!_j, {x*

l }

c
^'= _ 1 ) constitutes an R&D policy vector

that is best response to itself, as required by steady-state equilibrium (Definition 3). Next, we need to

prove that the implied labor share ui* leads to labor market clearing. This follows from the fact that the

fixed point involves w* < 1, since in this case (39) will have an interior solution, ensuring labor market

clearing. Suppose, to obtain a contradiction, that u>* = 1. Then, as noted in the text, we must have

Hq = 1. From (32), (33) and (34), this implies x*n = for n € { — 1} U Z+ . However, Lemma 1 implies

that this is not possible when G'~ l
((l — A" 1

) / (p + r])) > 0. Consequently, (39) cannot be satisfied

at ui* = 1, implying that w* < 1. When u* < 1, the labor market clearing condition (35) is satisfied

at ui* as an equality, so ui* is an equilibrium given {x*
l
}'^L_ 1 , and thus z* = (ui*, a*_ lt {a;* }^__ 1 ) is a

steady-state equilibrium as desired.

Finally, if rj > 0, then (34) implies that p,*, > 0. Since Xq > from Lemma 1, equation (36) implies

g* > 0. Alternatively, if x*_
l
> 0, then g* > follows from (36), completing the proof.

Proof of Proposition 8. We will establish that there exists n* such that £*. = and a;* > for

all n > n* , which will imply that the states n < n* are transient and can be ignored, and that {Pn) n=o
forms a finite and irreducible Markov chain over the states n = 0, 1, ..., n*.

First, recall that Proposition 2 has -established that {vn }n€z is strictly increasing. Then it follows

from the proof of Proposition 3 that there exists a state n** G N such that a;** = for all n >
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n**. Now let n* = minne { ,...,n--} {n S N:un+ i
— vn < oj*G' (0)}. Such an n* exists, since the set

{0, ...,n**} is finite and nonempty because of the assumption that G'~ l
((l — A

-1
) / (p + 77)) > 0.

Then by construction x* > for all n < n* and x*. = as desired. Now denoting the probability of

being in state n starting in state n after r periods by PT
(n, n), we have that limT_>00 PT

(n, n) = for

all n > n* and for all n. Thus we can focus on the finite Markov chain over the states n = 0, 1, ...,n*

,

and {Mn}"=o ^s the limiting (invariant) distribution of this Markov chain. Given a*_
x
and {x*}™__

1 ,

{Mn)n=o *s uniquely defined. Moreover, the underlying Markov chain is irreducible (since x* > for

n = 0, 1, ...,n* — 1, so that all states communicate with n = or n = 1). Therefore, by Theorem 11.2

in Stokey, Lucas and Prescott (1989, p. 62) there exists a unique stationary distribution {aC}^1 .

Proof of Proposition 9. There are two cases to consider. First, suppose that {vn }n£Z is

strictly increasing. Then it follows from the proof of Proposition 3 that there exists a state n* g N
such that x* = for all n > n* , and as in the proof of Proposition 8, states n > n* are transient (i.e.,

limT_ 00 PT
(n, n) = for all n > n* and for all n), so /a* = for all n>n*.

Second, in contrast to the first case, suppose that there exists some n** 6 Z+ such that iv >

vn—+\. Then, let n* = minn6 {o,...,n"} {n £ N :fn+i — vn < ui*G' (0)}, which is again well defined.

Then, optimal R&D decision (29) immediately implies that x* > for all states with n < n*, and

since x* . = 0, all states n > n* are transient and lmv^oo PT
(n, h) = for all n > n* and for all n,

completing the proof.

Proof of Proposition 10. The proof follows closely that of Proposition 6. In particular, again

using uniformization, the maximization problem of an individual firm can be written as a contraction

mapping similar to (55) there. The finiteness of the transition probabilities follows, since ipn (£
| £j <

tp = 2x + maxn {rjn } < 00 (this is a consequence of the fact that x defined in (11) is finite and

maxn {r)n } is finite, since each rjn 6 K+ and by assumption, there exists n < 00 such that r\n = r\^).

This contraction mapping uniquely determines the value function v [z] : Z —> M+ .

Berge's Maximum Theorem (Aliprantis and Border, 1999, Theorem 16.31, p. 539) again implies

that each of An (z) for n € Z_\ {0} and Xn (z) for n G Z is upper hemi-continuous in z = (w, a, 5c),

and moreover, since vn for n € Z is concave in an and xn , the maximizers of v [z], A = {^4-n }^Li and

X = {^n}^^^) are nonempty, compact and convex-valued.

Proof of Proposition 11. The proof follows that of Proposition 7 closely. Fix

z = (*, KKLoo , {«n}i-oo>. and define Z = [0, 1]
x IT=-i [0, 1]

x ir=-oo [0,x]. Again by Ty-

chonoff's Theorem, Z is compact in the product topology. Then consider the mapping $: Z =3 Z
constructed as $ =

(v?, A, X), where ^ is given by (39) and A and X are defined in Proposition 10.

Clearly $ maps Z into itself. Moreover, as in the proof of Proposition 7, Z is nonempty, convex, and

a subset of a locally convex Hausdorff space. The proof of Proposition 10 then implies that $ has

closed graph in the product topology and is nonempty, compact and convex-valued in z. Consequently,

the Kakutani-Fan-Glicksberg Fixed Point Theorem again applies and implies that $ has a fixed point

z* € $ (z*). The argument that the fixed point z* corresponds to a steady-state equilibrium is identical

to that in Proposition 7, and follows from the fact that within argument identical to that of Lemma 1,

G'" 1
((l — A

-1
) / (p + ??i)) > implies that Xq > 0. The result that u* < 1 then follows immediately.

Finally, as in the proof of Proposition 7, either rj
1
> or x!_

x
> is sufficient for g* > 0.
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Table 1. Benchmark Results

Full IPR
Protection

without

licensing

Full IPR

Protection

with

licensing

Optimal

Uniform

IPR
with

licensing

Optimal

State

Dependent

without

licensing

Optimal

State

Dependent

with

licensing

A 1.05 1.05 1.05 1.05 1.05

7 0.35 0.35 0.35 0.35 0.35

Vi 0.054

V2 0.005

Vz

Vi

V5

Ci CO 3.52 CO

C2
CO 3.52 CO 0.82

C 3 CO 3.52 CO 1.94

C 4 CO 3.52 CO 1.95

Cs CO 3.52 CO 1.95

V\ - Do 2.70 3.52 1.71 1.59 1.96

zil 0.018 0.021 0.023 0.010 0.026

x 0.029 0.033 0.023 0.022 0.024

Mo 0.238 0.440

Ml 0.326 0.481 0.506 0.195 0.446

M2 0.189 0.253 0.253 0.135 0.232
' W* 0.952 0.931 0.936 0.961 0.937

Researcher

ratio
0.032 0.026 0.027 0.028 0.039

9* 0.0186 0.0258 0.0263 0.0203 0.0296

Note: This table gives the results of the benchmark numerical computations with p = 0.05, A = 1.05,

7 = 0.35 under five different IPR policy regimes. It reports the steady-state equilibrium values of

the difference in the values V\ — vq\ the R&D rate of a follower that is one step behind, X*_±; the

R&D rate of neck-and-neck competitors, xj$; fraction of industries in neck-and-neck competition, ^ij-J;

fraction of industries at a technology gap of n — 1; the value of "labor share," U)*; the ratio of the labor

force working in research; and the growth rate, g*. It also reports the growth-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 2. A = 1.01

Full IPR
Protection

without

licensing

Full IPR
Protection

with

licensing

Optimal

Uniform

IPR
with

licensing

Optimal

State

Dependent

without

licensing

Optimal

State

Dependent

with

licensing

A 1.01 1.01 1.01 1.01 1.01

7 0.35 0.35 0.35 0.35 0.35

m 0.272

% 0.017

V3

V4

%
Ci oo 0.19 CO

C2 CO 0.19 CO 0.04

C 3 CO 0.19 CO 0.10

C4 CO 0.19 CO 0.10

Cs CO 0.19 CO 0.10

v 1 -v 0.14 0.19 0.09 0.08 0.10

*U 0.090 0.106 0.107 0.053 0.126

x 0.139 0.162 0.107 0.103 0.115

Mo 0.245 0.452

Mi 0.330 0.496 0.501 0.191 0.455

M2 0.186 0.251 0.251 0.137 0.232

CJ* 0.991 0.987 0.987 0.993 0.988

Researcher

ratio
0.008 0.007 0.007 0.007 0.010

5* 0.0186 0.0257 0.0257 0.0203 0.0293

Note: This table gives the results of the benchmark numerical computations with p = 0.05, A — 1.01,

7 = 0.35 under five different IPR policy regimes. It reports the steady-state equilibrium values of

the difference in the values V\ — vq; the R&D rate of a follower that is one step behind, x*_^\ the

R&D rate of neck-and-neck competitors, Xq\ fraction of industries in neck-and-neck competition, //j-j;

fraction of industries at a technology gap of n = 1; the value of "labor share," ui*\ the ratio of the labor

force working in research; and the growth rate, g*
. It also reports the growth-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 3. A = 1.2

Full IPR
Protection

without

licensing

Full IPR
Protection

with

licensing

Optimal

Uniform

IPR
with

licensing

Optimal

State

Dependent

without

licensing

Optimal

State

Dependent

with

licensing

A 1.20 1.20 1.20 1.20 1.20

7 0.35 0.35 0.35 0.35 0.35

Vi 0.014

V2 0.002

m 0.001

V4

V 5

Ci CO 24.85 CO

C2 oo 24.85 CO 5.69

C 3 CO 24.85 CO 12.25

C4 CO 24.85 CO 14.75

C 5 oo 24.85 CO 14.98

Vi -V 20.11 24.85 13.69 12.40 14.99

xU 0.005 0.006 0.007 0.003 0.008
*x 0.008 0.010 0.007 0.006 0.007

Mo 0.221 0.418

Ml 0.318 0.452 0.523 0.206 0.445

fJ-*2 0.199 0.260 0.261 0.142 0.236

U* 0.806 0.743 0.783 0.847 0.760

Researcher

ratio
0.068 0.056 0.070 0.058 0.090

9* 0.0186 0.0261 0.0284 0.0200 0.0306

Note: This table gives the results of the benchmark numerical computations with p — 0.05, A — 1.2,

7 = 0.35 under five different IPR policy regimes. It reports the steady-state equilibrium values of

the difference in the values v\ — vq; the R&D rate of a follower that is one step behind, x*_i\ the

R&D rate of neck-and-neck competitors, Xq\ fraction of industries in neck-and-neck competition, /ig;

fraction of industries at a technology gap of n = 1; the value of "labor share," uj*; the ratio of the labor

force working in research; and the growth rate, g* . It also reports the growth-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 4. 7 = 0.1

Full IPR
Protection

without

licensing

Full IPR
Protection

with

licensing

Optimal

Uniform

IPR
with

licensing

Optimal

State

Dependent

without

licensing

Optimal

State

Dependent

with

licensing

A 1.05 1.05 1.05 1.05 1.05

7 0.1 0.1 0.1 0.1 0.1

^71 0.291

V2

V3

V4

V5

Cl 00 3.11 00

C2 00 3.11 00 0.77

C3 00 3.11 00 1.90

C4 00 3.11 00 1.90

C5 .

00 3.11 00 1.90

V\ -Vq 2.20 3.11 1.64 0.48 1.90

»i'i 0.022 0.023 0.024 0.016 0.025

x 0.024 0.026 0.024 0.021 0.024

Mo 0.314 0.777

Ml 0.333 0.497 0.501 0.096 0.492

M2 0.172 0.251 0.251 0.058 0.248

W* 0.944 0.916 0.917 0.981 0.917

Researcher

ratio
0.008 0.007 0.008 0.003 0.010

9* 0.0186 0.0278 0.0280 0.0220 0.0286

Note: This table gives the results of the benchmark numerical computations with p — 0.05, A = 1.05,

7 = 0.1 under five different IPR policy regimes. It reports the steady-state equilibrium values of the

difference in the values v\ — vq; the R&D rate of a follower that is one step behind, x*_^\ the R&D

rate of neck-and-neck competitors, Xq\ fraction of industries in neck-and-neck competition, /1q; fraction

of industries at a technology gap of n = 1; the value of "labor share," to*; the ratio of the labor

force working in research; and the growth rate, g*. It also reports the growth-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details..
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Table 5. 7 = 0.6

Full IPR
Protection

without

licensing

Full IPR
Protection

with

licensing

Optimal

Uniform

IPR
with

licensing

Optimal

State

Dependent

without

licensing

Optimal

State

Dependent

with

licensing

A 1.05 1.05 1.05 1.05 1.05

7 0.6 0.6 0.6 0.6 0.6

Vi 0.070 0.007

V2 0.019

Vz 0.007

V4 0.003

V5

Ci 00 5.24 5.24 00

C2 00 5.24 5.24 00 0.59

Cs 00 5.24 5.24 00 1.69

C4 00 5.24 5.24 00 2.13

Cs 00 5.24 5.24 00 2.35

Vl - v 4.38 5.24 5.24 2.25 . 2.35

s-1 0.011 0.015 0.015 0.002 0.027

x* 0.053 0.070 0.070 0.020 0.021

Mo 0.092 0.327 0.037

Mi 0.257 0.413 0.413 0.094 0.242

M2 0.193 0.252 0.252 0.074 0.128

w* 0.942 0.937 0.937 0.9320 0.9307

Researcher

ratio
0.073 0.044 0.044 0.087 0.010

5* 0.0186 0.0198 0.0198 0.0230 0.0303

Note: This table gives the results of the benchmark numerical computations with p = 0.05, A = 1.05,

7 — 0.6 under five different IPR policy regimes. It reports the steady-state equilibrium values of the

difference in the values V\ — vq\ the R&D rate of a follower that is one step behind, x*_^\ the R&D

rate of neck-and-neck competitors, Xq\ fraction of industries in neck-and-neck competition, /j,q\ fraction

of industries at a technology gap of n — 1; the value of "labor share," oj*; the ratio of the labor

force working in research; and the growth rate, g* . It also reports the growth-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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