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Abstract

With an annual production of more than 20 billion tons a year, concrete continues to be the world's
dominating manufacturing material for a foreseeable future. However, this ubiquity comes with a
large ecological price as concrete stands as the third largest culprit to the torrent of CO; after
transportation and electricity generation. Despite several decades of studies, fundamental questions
are still unsettled on the structure and properties of the smallest building block of concrete, Calcium-
Silicate-Hydrate (C-S-H). Given the variable stoichiometry and morphology of C-S-H, no accurate
models were ever developed that could link electronic information at one end to the C-S-H molecular
properties at the other end.

This thesis develops a new modeling toolbox that enables unraveling the interplay between structure,
composition, morphology and mechanical properties of this "liquid stone" gel. First, using ab-initio
calculations we characterize the structural and mechanical properties of several mineral analogs of C-
S-H (tobermorite family and jennite). We show tobermorite as a class of layered materials that unlike
the common intuition, is not softest along the interlayer direction. Instead, the mechanically softest
directions are two inclined regions forming a hinge mechanism. This feature sheds light on the
complex mechanics of the realistic C-S-H layers. It occurs when the electrostatic interlayer
interactions become comparable to the iono-covalent intralayer interactions.

Next, to pass information to the next hierarchical level, we start by benchmarking the predictive
capabilities of two commonly used force field potentials for C-S-H minerals against ab-initio
calculations. While both potentials seem to give structural properties in reasonable agreement with
the ab-initio results, the higher order properties such as elastic constants are more discriminating in
comparing potentials with regards to predicting mechanical properties. Based on this finding, we use
ab-initio structural and elasticity data in tandem to develop a new force field potential, CSH-FF, well
customized and substantiated for the C-S-H family. This simple, yet efficient force-field is used in
conjunction with statistical mechanics to analyze a series of molecular C-S-H models. Our simulation
results predict a range of compositions and corresponding mechanical properties of solid C-S-H
molecules that are consistent with real cement paste samples. This confirms our bottom-up multi-
scale approach with the model parameters linked to electronic structure calculations. The
combination of these techniques and findings paves a path toward a predictive computational design
strategy to improve the core properties of cement hydrate while reducing its negative environmental
1mmpact.
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displacements at the stress drops (1)—(4) in panel (a). Only atoms with displace-
ment larger than 0.5 A arc shown, and the arrows indicate the displacements.

Dashed lines correspond to the C-S-H layers. (¢) Magnified view of regions (A)

and (B) that are marked as red boxes in panel (b). . . ... ... ... ... ...

This figure shows how indentation modulus. A, of C-5-H models scales linearly

with density. . . . . . . oL s
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Chapter 1

Introduction

1.1 Industrial Context

Concrete is the most widely used manufacturing material on the planet. The current worldwide
concrete production stands at more than 20 billion tons, enough to produce more than one cubic
meter of concrete per capita and year. The key strengthening ingredient in concrete is cement.
the production of which expends a considerable amount of energy and contributes to 5-10%
of anthropogenic COy emissions and significant levels of harmful NOx worldwide. On the
other hand, there is no other bulk material on the horizon that could replace concrete as the
backbonc material for our socictal needs in housing, shelter. infrastructure, and so on. There is
thus a need to rethink concrete for the age of global warming to make it part of the sustainable

devcelopment of our societies.

1.2 Research Motivation

Although concrete is considered to be the third largest climate-change culprit outside of trans-
portation and electricity-generation. it is the only sustainable solution for the construction
sector. This is mainly because the concrete raw materials including limestone, sand and aggre-
gate are readily available and affordable practically everywhere. Additionally, its flexible shape.
high compressive strength. fire resistance and high thermal mass make concrete most attractive

for architects, engincers and end-uscers. Concrete is a highly heterogencous material presenting
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Figure 1-1: Hierarchical structure of concrete. Image credits: level 11 from [114]. level IIT from
[106] and level IV from [81].

different structural features across wide length scales (Fig. 1-1). At a macroscale, concrete is
composed of aggregates, cement and water. At a microscale, the cement paste (mix of water
and cement) itself is heterogencous and composed of several hydration products, the principal
products being the Calcium-Silicate-Hydrates (C-S-H) phases. At a mesoscale. the different
C-S-H phases are a mix of solid particles/lamella and mesopores. At a nanoscale, C-S-H is
made of molecules and nanoporosities in between the molecules.

Though concrete has been in widespread use since the Roman Empire. and has become
recently the focus of a multibillion-dollar industry under pressure to be eco-friendly. the inter-
play between the structure, composition and physical properties of its smallest building block.
C-S-H. across different scales is essentially unexplored. This complexity is recognized to stem
from the lack of reliable structures for C-S-H at the fundamental levels. As an example. the
density of C-S-H at the atomistic scale was recently revealed in 2007 [4]. However, the C-S-
H structure has been classically investigated at the micro/macro scale for engineering design

purposes (see e.g.[153]). The complete chemical processes of C-S-H formation including cement
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clinker dissociation, precipitation and setting is still unknown, because there were not neither
reliable molecular models of C-S-II nor accurate enough experimental probes at the atomistic
level to enable such studies.

We will refer to the backbone of the C-S-H structurc and its nanopores at the nano level as
solid C-S-H. In contrast, at a scalc above, we will refer to the spatial organization of the C-S-H
molecules and mesopores in between them as the mesotexture of C-S-H. Given the characteristic
size of the C-S-H solid (a few Angstroms or nanometers), the classical top-down approach of
engineering research is quite daunting if not impossible. In contrast, here, we will use a bottom-
up approach to explore and build the C-S-H solid phases. and give perspectives on how to link
their structures to the higher scales. This fundamental approach is crucial to explore the
heart of cementitious materials and upscale their very propertics from the atomistic level into
engincering application. For instance, onc promising approach derived from analogy to Galilco’s
analysis of weight-strength relation is to achieve increased specific strength of this material: the
weight and COgy emissions of cement increase with the volume of required material, whereas
the strength increases proportionally to the cross-sectional area. Hence, as one increases the
strength of a material by a factor of X. one reduces the environmental footprint by 1-X ! for
pure compressive members such as columns. arches and shells. 1-X —2/3 for beams in bending.
and 1-X~1/2 for slabs.

This rescarch aims to answer the following scientific questions: What is the C-S-H backbone
structure? And how do clastic. strength and morphological propertics of solid C-S-H relate to

the electronic properties?

1.3 Research Objectives

A comprehensive bottom-up approach is presented to address the scientific questions. The ap-
proach is composed of first-principles calculations, atomistic modeling via Molecular Dynamics
and Monte-Carlo methods. The approach is guided by the following three research objectives:

Objective 1: Develop a benchmark data useful for solid C-S-H via first-principles calculations
on known C-S-H minerals. There are a number of natural minerals that are akin to C-S-H in

terms of chemical composition and structure. We shall study their atomistic structure, interlayer



interactions and elastic properties based on accurate first-principles calculations. This study will
serve as a benchmark for the next objective to calibrate interatomic interaction for molecular
C-S-H phases.

Objective 2: Develop an accurate and cfficient force field potential to predict C-5-H atomistic
interactions. Current force ficld potentials for C-S-H atomistic intcractions arc cither inaccurate
or computationally very expensive to predict C-S-H physical properties. Here, we develop an
efficient force field, CSH-FF, which enables decoding the structure and mechanical properties
of variety of solid C-S-H phases. This development will serve as the prerequisite for the next
objective.

Objective 3: Develop a bottom-up toolbox to secamlessly link the electronic properties of C-
S-H to higher scales. The ultimate goal of this rescarch is to implement the shift of paradigm
in matcrials science to concrete structures, that is, to pave the path to pass information from

electrons to higher scales.

1.4 Industrial and Scientific Benefits

Associated with the research objectives are important industrial and scientific benefits. They

include:

e FFundamental understanding of the smallest building block of concrete which lay the foun-

dation for achicving never-scen-before mechanical propertics.

e Assessment of upscaling various chemical compositions, which impact energy and envi-

ronmental footprints of cement.

e Quick insights on stability and mechanics of incorporation of new cco-friendly clements

as fecedstocks into molecular C-S-H phases.

1.5 OQOwutline of Thesis

This thesis is divided into five Parts. The first Part deals with the presentation of the topic.
Part IT deals with a general introduction to cement and modeling and is composed of

two Chapters. First, Chapter 2 deals with introducing the hicrarchical structurc of cement
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hydrate. This Chapter discusses various mineral analogs of C-S-H and the challenges ahead
for constructing an accurate model that is consistent with the experimental observations at the
nano level. Chapter 3 presents an overview of common multi-scale computational modcling
techniques by summarizing the theorics. fundamentals, hypotheses and cquations of scveral
modeling techniques from ab-inito calculations to Atomistic Simulations (Molecular Dynamics
and Monte-Carlo simulations).

Part III focuses on benchmarking several mineral analogs of C-S-H such as tobermorite fam-
ily and jennite via first-principles calculations. In Chapter 4, structural. elastic and strength
properties of these C-S-H mineral are characterized. Then inter/intra layer competitive interac-
tions are discussed, which may lead to uncommon deformation mechanism and fracture features
in C-S-H mincrals. Chapter 5 is centred around acoustic tensor analyses of these mincrals by
which a new statistical averaging scheme for bulk modulus and shear modulus of anisotropic
materials is derived.

In contrast to Part III, Part IV is devoted entirely to Statistical Mechanics and Atomistic
Simulation methods and is composed of three Chapters. First, Chapter 6 focuses on systematic
comparison of common empirical field fields for C-S-H. Based on the ab-initio results of Part
I11, a new simple. yet efficient force-field. CSH-FF. is developed. which is well customized and
substantiated for cementitious materials. Next, in Chapter 7, the first consistent molecular
modcl of the C-S-H, c¢CSIH, is proposcd that is validated against scveral experiments at the
molecular and atomistic level. Finally. in Chapter 8. the results and concepts of Chapter 6 and
7 are utilized to decode the molecular structure of series of distinct C-S-H phases with realistic
Ca/Si ratios and mechanical properties.

The fifth Part, i.e., Chapter 9, summarizes the results of this study and gives perspectives

on how to link molecular-scale properties to C-S-H mesotexture.
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Introduction to Cement hydrate and

Modeling
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Chapter 2

Multi-Scale Model of Cement
Hydrate

The aim of Part II is to give a general background on cement hydrate, and computational
multi-scale modeling techniques. It is composed of two Chapters: The first reviews the current
understanding of hierarchical levels of the cement hydrate and discusses several complexities
observed in C-S-H systems. In particular, this Chapter focuses on different atomistic and mor-
phological models postulated for the C-S-H gel at the nano scale. The sccond Chapter reviews
sceveral computational modeling techniques that arc cach appropriate for different length-scale
and physical properties. Together. these two Chapters provide a basis for the comprehensive
investigation of the structure and mechanics of C-S-H minerals and the developments of a new

force field. which enables tackling larger systems in the forthcoming Chapters.

2.1 Introduction

Portland cement concrete is used more than any other man-made material on the planet. As a
consumed material, it is only second after water. On average each person uses more than 3 tons
of concrete a year. Concrete is perhaps the oldest construction material used by humankind.
The first usage of concrete goes back to Egyptian civilization. which used a mix of mortar
in their buildings. But Romans advanced the simple mortar by inventing the first hydraulic

cement from fly-ash and lime. The cement modern history started by John Smeaton in 1754
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to repair the Eddystone lighthouse in England. However, the first actual patent of Portland
cement belongs to Joseph Aspdin who set out the combination of limestone, clay, and their
manufacturing process [84].

Nowadays, ccmentitious materials are the absolute lcaders in consumption and investment
in the construction scctor. As an example, cement production is currently more than 2.4 billion
metric tons a year. Cement is an infrastructure key commodity whose production and use
is directly correlated with any country’s GDP growth. Majority of the cement production is
located in the four BRIC countries with half of the world’s production in China. Although
cement has several advantages such as mass availability, low manufacturing cost, high compres-
sive strength over other construction materials, it is considered to be the third greatest culprit
(after transportation and clectricity gencration) to the climate change by producing 5-10% of
global CO, cmissions and significant levels of NO,, and other harmful particulates. About 60%
of these greenhouse gas emissions comes from decarbonation of raw materials and 40% from
fuel burning at high temperatures. ~ 1500°C, to produce a so called clinker phase that form
cement when mixed with water at room temperature.

Among different types of cement, Ordinary Portland Cement (OPC) is the most common
one. It is produced by heating clays and limestone (CaCOg3) up to ~ 1500°C, which af-
ter a series of chemical transformations result in a coarse phase clinker. A cement clinker
contains scveral crystalline phases, the most prominent being Alite (C3S). Belite (C2S) and
Tricalcium Aluminate (C3A). Note that here cement chemistry is used to symbolize S=5i0,,
C=Ca0 and A=A1,035. When a milled clinker, cement powder, is put in contact with water.
a myriad of chemical reactions. phase transformations, and thermodynamic processes takes
place whose complete details are quite complex due to the large number of involved variables.
The main products of cement hydration are Calcium-Silicate-Hydrate, portlandite, ettringite,
monosulphoaluminates [152] (Fig. 2-1).

In contrast to its ubiquity and common availability, and despite the most people belief, ce-
ment is a complex heterogenous materials with a hicrarchical structure. Thus cement rescarch
is, in fact. a multidisciplinary rescarch involving studying the intrinsic nature of chemical reac-
tions of materials to manufacturing process and optimizing the engineering applications. Here,

in this report we focus on the most important hydration product. Calcium-Silicate-Hydrate
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Calcium-Silicate-Hydrate (C-S-H)
+~" 60% of the paste

Figure 2-1: A magnified image of major cement hydration products. [Courtesy of Dr. James
Beaudoin and Dr. Aalizadeh, National Research Council of Canada).

(C-S-H) that gives cement remarkable mechanical properties.

2.2 Hierarchical Structure of Cement Hydrate

Among concrete ingredients - aggregate, sand, cement and water - cement is the most essential
component. Cement paste (cement mixed with water) is a complex, porous, multi-component
hierarchical material, which plays the role of a glue to bind all ingredients together. In a cement
paste, several crystalline hydration products co-exist with unhydrated clinker particles with dif-
ferent size and shapes, surrounded by the C-S-H gel. Because of the intrinsic heterogeneity from
the random distribution and composition of clinker phases, cement hydrate has different levels
of organization across different scales. Each scale is a random composite with a characteristic
size and pore structure, which together present different structural features.

The multi-scale structure and micormechanical properties of concrete are studied earlier
(see e.g. [26], [162]). In this report, we focus on the hierarchical structure of cement hydrate

from macro to nano scale.

2.2.1 Macro Scale

At the macro scale (> 10~%m), cement hydrate is usually considered as a homogeneous material

with bulk physical properties and structural characteristics. At this scale, all hydration products

26



Capillary -3
pore

CH"

CS-H-
gel pores

cemment

Figure 2-2: A micrograph of a cement paste with different hydratin products co-existing with the
unreacted clinker particles and pore distribution (Courtesy of Dr. Hamiln Jennings, Concrete
Sustainability Hub, MIT)

and unreacted clinkers particles are present and pores with diameters between 0.1 to 5 mm co-
exist. These pores are usually originated from accumulation of trapped air bubbles during the
hydration process, and are natural hosts for several chemical attack, which contribute negatively

to mechanical properties including strength and durability (101].

2.2.2 Micro scale

At this scale (between 107 to 107%m), the heterogeneous structure of cement hydrate mani-
fests itself clearly (Fig 2-2). The most common approach to investigate and study this scale is
electron microscopy technique [125]. Among different cement hydration products, the C-S-H
gel constitutes more than 60% of the volume. At this scale, C-S-H is an amorphous compound,
which encompasses all the other particles/phases. Several morphologies are attempted to de-
scribe the C-S-H structure including: needles, foils, honey-comb, flakes and unshaped grains
[152]. These morphologies are each based on different initial parameters such as water to cement
ratio (w/c) , cement types, hydration stage and available pore size [73],[132).

The most common classification of C-S-H in the light of microscopy images recognizes C-
S-H gel as inner and outer products [20],(53],(84],[135],[152]. The inner product grows radially

towards inside the unreacted product in contrast to the outer product, which grow away from
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the boundaries of the anhydrous clinker phases towards the outer space filled with water. The
inner product is denser and more amorphous than the outer product, which form needle types
or fiber-like structures fluxing outward from clinker grains. However, both the inner and outer
products have similar compositions although a few reports point out otherwise by measuring
larger Ca/Si ratio in inner products [134]. Among different crystalline phases, Portlandite,
Ca(OH)z, can reach several micrometers in size, hence clearly distinguishing itself at the micro-
scale cement hydrate. Portlandite can grow with the outer space and in ideal conditions, its
preferred grow direction forms hexagonal plates.

At this scale, the pore structure includes capillary pores or meso pores, which are created
as a result of hydration which displaces the initial cement and water with products and empty
spaces. The higher the w/c, the more porosity. Thus as the hydration advances, the pore
volume decreases and the initial network of connected pores faces a percolation transformation
to creates disconnected pores [19],(74],[101]. Although the capillary pores may reach to 5 um
in diameter, in well-cured sample they are usually between 10 nm to 50 nm [101].

Under heating or aging, cement hydrate, which is largely composed of Portlandite, C-S-H
gel and reactive SiO, entities, all converts to a variety of hydrated Calcium Silicates such as
tobermorite, jennite, afwillite, hillebrandite, foshagite, xonotlite, reyerite, gyrolite and truscot-
tite. This family of C-S-H minerals differ in their atomic structure, Ca/Si ratio and the number
of OH and H»O groups [153] and each relates to a real C-S-H phase with different temperature

and hydration conditions.

2.2.3 Meso Scale

As the complex cement hydrate structure passes elegantly through scales, we consider an in-
termediate meso scale, as a bridging scale, which links the nanometers to micrometer features.
Thus it ranges from a few tens of nanometers to less than 1 um. At this scale C-S-H is the
most prominent phase controlling the majority of cement hydrate properties. Whether C-S-H
is a matrix or a granular particulate material is a controversial subject in cement literature.
However, recent experimental techniques such as accurate nanoindentation probing [27] and
perhaps small angle neutron scattering measurements (SANS) [4] hint towards a granular par-

ticle behavior with (still) unknown shapes, sizes and packing distribution of particles. These
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characteristics together with C-S-H particle interactions are still open subjects in the cement

community.

2.2.4 Nano Scale

At this scale, (< 107? m) C-S-H pores are intrinsic to the gel structure (so called gel poros-
ity) and significantly control the high surface area, creep, shrinkage and many other physical
processes. But the quantitative characterization of such pore volumes is quite difficult. For in-
stance, water loss measurement by drying the cement paste is flawed by the presence of adsorbed
water [31]. Thus characterization of C-S-H at this scale is not straightforward and several exper-
iments including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM),
Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), SANS, Small An-
gle X-ray Spectroscopy (SAXS), and sorption experiments can not fully elucidate the complex
details of the C-S-H structure [125]. Even after decades of intensive research, understanding
the atomic arrangement of C-S-H gel and properly predicting its mechanical properties is far
from satisfactory. Due to the importance of this scale as the next frontier in cement science,

we discuss C-S-H gel in length in the next section.

2.3 C-S-H Gel

By mixing water and cement, a so-called gelatious phase, C-S-H (Calcium-Silicate-Hydrate),
precipitates as nanoscale clusters of particles which is the primary binding product of cement
hydration [153]. Here cement chemistry notation is used for C=CaO, S=SiOy, H=H50. C-S-H
is a nonstoichiametric compound and the hyphenated expression refers to different combination
of C, S and H. In 1905, le Chatelier suggested Ca0.Si0.Aq as a variable composition for the
C-S-H gel [86]. C-S-H is considered to be the smallest building block of concrete and it is the
principal source of strength and durability in all Portland cement concretes.

As elucidated earlier, due to its complexity, the exact structure of C-S-H gel at the nanoscale
is still unresolved. The insufficient accuracy of microscopic techniques can not explore the small
sizes of the disordered C-S-H gel. Thus indirect approaches are the only available techniques

to investigate the C-S-H. For instance, SANS measurements estimates the average Ca/ Si ratio
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a b

Figure 2-3: TEM images of C-S-H. a) A synthesized C-S-H with Ca/Si=0.9. The layered
strucutre is similar to tobermorite (image from [52]), b) True clusters of C-S-H gel with
Ca/Si=1.7 [ Image credit: courtesy of A. Baronnet, CINaM, CNRS and Marseille Univer-
sité, France]. Note the difference in Ca/Si ratios and the longer, organized connectivity of the
silica chains in the synthesized C-S-H.

in C-5-H to be 1.7 [4], with local values measured by TEM between ~0.6 to ~2.3 (175]. High
resolution #*Si and 170 nuclear magnetic resonance (NMR), X-ray adsorption spectroscopy,
IR spectroscopy and Raman spectroscopy, nanoindentation and gas sorption reveal important
information on C-S-H structures [23],[72],[125]. Figure 2-3 shows a TEM image of the C-S-H
gel.

Even though C-S-H gel is amorphous but it has some short-range order at sub-nanometer
scales. Much of the findings at this level is obtained through comparison with fully crystalline
Calcium-Silicate Hydrate minerals. Different models define C-S-H gel as calcium oxide sheets
connected to silicate chains to form a layered structure. The interlayer space is comprised of
water molecules and ions such as Ca™2 or Nat! [131],[132],[133],[135),[152]. In essence, it is
widely accepted that C-S-H has a layered structure akin mostly to that of tobermorite and
jennite minerals. Variety of experimental techniques are deployed to characterize these C-S-H
layers /chains [125]. Among these methods NMR renders valuable information about the silica
chains. These chains are Wollastonite type or Dreierketten with finite lengths of 2,5,8,..,3n-
1, where n is an integer; hence the minimum length of the repeating unit containing three

tetrahedra (Fig. 2-4). Two of tetrahedra share an oxygen in a dome-type pattern and are called
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paired tetrahedra while the third tetrahedron, which is in a different chemical site and its vortex
points out of the calcium layer, is called bridging tetrahedron [131],[132],[152]. Each repeating
unit is an orthosilicic acid group, Si(OH),, which has polymerized via condensation reactions to
form the silica chains [95]. In C-S-H gel, the bridging tetrahedron in a Wollastonite chain does
not make a bond (by sharing oxygen on the vortex) with other bridging tetrahedra from an
adjacent layer, and thus is called single silica chain. In a young OPC paste, dimers constitute
most of the chains but the chain length continue growing. For a 23 year old OPC cement
paste, the mean silica chain length is reported 4.8 [139]. Richardson et al, proposed a growth
model to explain the discontinuous silica chain lengths (2,5,8, ...) [131], [133], [135], [137]. This
model consider chains growth by accumulation of two dimers via a bridging monomer to form a
pentamer as apposed to forming a trimer via dimer and monomer and so forth. However, such
models are still under development and much of current knowledge on C-S-H at the nanometer

scales comes from natural mineral analogs of C-S-H, which we will describe in the next section.

2.4 Mineral Analogs of C-S-H Gel

There are at least thirty crystalline minerals that are similar in composition to C-S-H [136]. For
instance at standard conditions, afwillite is a thermodynamically C-S-H phase in equilibrium
with water and Portlandite [92]. However, high resolution TEM observations indicate that

C-S-H gel contain tobermorite and jennite-like structures [166], [175].

2.4.1 Tobermorite Minerals

The tobermorite natural minerals have structure and crystal chemistry that are not only appeal-
ing because of their close similarity to C-S-H phases, but they have also potential application
as excellent cation exchangers for nuclear and hazardous waste disposal materials [80]. Tober-
morite group are layered structure and can be classified based on their different basal spacing
as 9.3 A, 11.3 A and 14 A [100] which are usually referred toas 9 A, 11 A and 14 A [15]. This
interlayer spacing distance represents the degree of hydration of tobermorite, which changes by
heating. The thermal behavior of tobermorite and their corresponding synthetic minerals are

studied by various techniques such as electron diffraction, electron microscopy, X-ray diffrac-
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Bridging
tetrahedron Pair tetrahedrons

Figure 2-4: a) Top view of a typical tobermorite. b) a side view of a layered tobermorite with
single silica chains. ¢) a side view of a layered tobermorite with double silica chains. d) [010]
view showing the dangling bridging tetrahedra. Pink pyramids represent silicon tetrahedra and
green ribbons indicate calcium layers.

tion, and NMR solid state spectroscopy [24],[80],[94],[100],[169][174]. Due to non hydroxylated
oxygen atoms in the bridging silicon tetrahedra, tobermorite layers are negatively charged. But
the overall electroneutrality of the cells is maintained through the existence of interlayer ions
Cat2,

These studies show tobermorite 14 A transforms into tobermorite 11 A by heating up to
80°-100° C. Further heating up to 300° C for a few hours causes transformation to tobermorite
9 A. Tobermorite 11 A has two different structures: Hamid structure which is a Reitveld refine-
ment that depicts tobermorite as independent layers [58] and Merlino structure which presents

tobermorite as chemically bonded layers [103].

Merlino Structure

In Merlino type tobermorite ( including 14 A, 11 A and 9 A) there are two modular units:
A calcium polyhedra with the smallest repeat unit length of 3.65 A and a Wollastonite chain
with typical length of 7.3 A. Figure 2-4a shows a top view of the connection of silica chains to
calcium ribbon in two equivalent ways shifted by 3.65 A in b crystal direction. The silica chains

are connected to calcium layers from both top and bottom. Figure 2-4b shows a side view of
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tobermorite with two layers. The interlayer distance in general contain water molecules and Ca
cations (or other cations) depending on the hydration degree and chemical environment.

If the bridging tetrahedron is dangling in the interlayer distance (Fig. 2-4b) or share an
oxygen with the interlayer calcium ions, then this silica chain is called single silica chain.
Otherwise head-to-head connection of bridging tetrahedra (such as in Fig. 2-4c) forms an iono-
covalent Si-O-Si bond with the upper/lower layeres [119]. This direct interlayer links changes
the 2D layered structure of tobermorite into a strong 3D network by making ring-type structures
along the chains. This form of silica chains is called double silica chain. Figure 2-4d shows a
[010] view of tobermorite and the flanking bridging tetrahedra. Merlino tobermorite 14 Aand9
A have single silica chains while Merlino tobermorite 11 A is comprised of double silica chains.
There are some specimens of tobermorite 11 A that do not shrink to 9 A upon heating and are
called anomalous tobermorite to distinguish them from "Normal" tobermorite which shrink to
9 A. A possible reason for such peculiar behavior has been recently hypothesized in [103]. A
detailed study on natural and synthetic tobermorite minerals and procedures to produce them

can be found in [14] and references therein.

Hamid Structure

This class of tobermorite only belongs to interlayer distance of 11 A and has characteristics
analogous to Merlino tobermorite 11 A but with a main difference that it contains only single
silica chains (i.e. independent layers). Figure 2-5a shows a layer of this tobermorite along
with its side view (Fig. 2-5b). While this backbone layer is structurally unchanged, Hamid
tobermorite can have three different Ca/Si ratios, namely 0.67, 0.83 and 1. This is feasible
by adding calcium cations in the interlayer distance in the following way: for each addition of
calcium cations two protons must be removed from the hydroxyl groups of the layers to ensure

the cell neutrality.

2.4.2 Jennite

Jennite is a rare mineral analogous to C-S-H crystalline tobermorites that is believed to be

closely related to the structure of cement at late stages of hydration process [153]. 29Si NMR
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Figure 2-5: a) A layer of tobermorite 11 A (Hamid structure) which has single silica chain. b)
its [010] view. Pink pyramids represent silicon tetrahedra and green ribbons indicate calcium
layers.

Figure 2-6: a) A layer of jennite shown with a unit cell. b) A [100] view of jennite. Pink
pyramids represent silicon tetrahedra and green ribbons indicate calcium layers.

indicates that it has single silica chains [80] with Ca/Si=1.5. Its crystal structure is solved and
refined in [16]. Similar to tobermorite, jennite losses water upon heating and transform into
another phase called meta-jennite. Unlike the tobermorite family, the bridging tetrahedra of
the silica chains in jennite are connected to the calcium-oxide layers as well. As in tobermorite,
the negatively charged layers in jennite are counterbalanced by Ca'? ions located in the in-
terlayer space. Fig 2-6a shows a layer of jennite along with its unit cell. Note that the side
distance between silica chains in jennite is around 10.7 A which is much larger than that in all

tobermorite family (about 7 A). Figure 2-6b shows a side view of jennite in the bc plane.
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2.4.3 C-S-H type I and II

C-S-H (1) is a result of ill-crystalline product during the synthetic of tobermorite 14 A. Mainly,
the lack of bridging silicon tetrahedra in tobermorite is what is known as C-S-H (I). Thus,
the chains follow the (3n-1) rule and the Ca/Si increases spanning from 0.8 to 1.5 [84], [153].
The X-ray power diffraction patters indicate that the basal spacing in C-S-H (I) decreases with
increasing Ca/Si.

Similarly, under certain thermodynamic conditions and water excess, a second ill-crystalline
product may be formed that is called C-S-H (II). In this product with multiple imperfections
the Ca/Si ratio can reach up to 2. X-ray diffractograms show lattice parameters similar to those
found in jennite. Thus C-S-H (II) is as an disordered version of jennite and/or tobermorite with

finite silicate chains following the 3n-1 rule.

2.5 C-S-H Gel Models

2.5.1 Models for the Atomic Structure

Imperfect version of crystalline minerals such as tobermorite, jennite or portlandite provide a
appropriate framework to propose numerous models explaining the atomic structure of C-S-H.
Two detailed review papers on this subject can be found in [132], [136]. In what follows, we
briefly discuss the main features of these models.

Earlier models used portlandite structure in conjunction with monomeric silicate groups
[57], [145]. Tobermorite models were suggested in 1952 after X-ray power diffraction studies
on hydrated alite pastes [13]. This paper sets tobermorite family as a base for many models
proposed afterwards. However, the main drawback of these models was its low Ca/Si, which
was 0.83 while the average Ca/Si in real C-S-H was around 1.7 (Fig 2-7). Hence, some authors
proposed a model based on a solid solution of tobermorite and portlandite [44], or tobermorite
like layers sandwiched in between the portlandite sheets [76], or tobermorite models with more
Ca*? and OH™! ions in between the layers [83].

Thus, all these models had a higher Ca/Si ratio but their silica chain was either all monomeric
or infinite, neglecting the finite chain lengths of C-S-H gel. To resolve this issue, Taylor sug-

gested to replace partial bridging SiO2 units with interlayer Ca ions to achieve higher Ca/Si
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ratios [154]. Hence, partial chain lengths were created by this approach. Later, other researchers
extended this concept to two versions of C-S-H gel: one based on entirely dimeric silica chains
and the other one based on polymeric silicate chains. Both versions had variable amount of
ions in the interlayer distance to ensure the charge neutrality [149]. About three decades later,
Taylor revised his first model to put forward the possibility of jennite like structures accounting
for large Ca/Si ratios [152].

Perhaps the most general and comprehensive model belongs to Richardson and Groves [131],
[132], [135], [134] who proposed a two-fold classification to clarify C-S-H chemistry. This clas-
sification references so-called tobermorite/jennite (T/J) models on one hand and tobermorite-
calcium hydroxyl (T/CH) models on the other hand. The T/CH class considers models that are
solid solutions of tobermorite layers sandwiching calcium hydroxide, hence providing a means
to achieve a larger Ca/Si ratio than the one of tobermorite. The T/J class considers C-S-H as
an assembly of tobermorite regions followed by jennite domains. While the T/CH class was
found to be relevant for hydrated KOH-activated metakaolin Portland cement, more common
water activated Portland cement pastes can be only partly described by the T/J or the T/CH

approaches.

2.5.2 Models for the Nanostructure and Morphology

So far we have discussed the nature of the atomistic structure of the C-S-H gel as a combina-
tion of disordered tobermorite-jennite like crystals. But how these models grow and rearrange
themselves to develop hardened C-S-H colloids is an important topic, which is still not well
understood. Indeed, there are certain contradictions between the nature of crystalline (from to-
bermorite/jennite models) versus colloidal C-S-H gel at the nano level. The concept of colloidal
nature in C-S-H gel was first introduced in 1909 [105]. Today this model is widely accepted as

descriptive model for the C-S-H gel behavior at the nano level.

Power-and-Brownyard 1948 Model

This model is a benchmark in cement community to quantitatively describe the colloidal struc-
ture of C-S-H gel [122]. It provides an extremely simple model calibrated with water content

and pore volume data. This model estimates an interlayer space of 1.8 nm and a constant
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Frequency

Ca S1 Ratio

Figure 2-7: Ca/Si ratio frequency histogram in Portland cement pastes, measured by TEM
microanalyses of C-S-H free of admixtures with other phases [135]. For comparison, the Ca/Si
ratios for tobermorite minerals and jennite are also shown with wide and narrow rectangular
boxes respectively.

porosity of 28% for the C-S-H phase. But now it is well-known that porosity changes during

the hydration period.

Feldmann-Sereda Model

Feldman and Sereda proposed a morphological modification to the Power-Brownyard model to
better explain the nanostructure of C-S-H gel structure [40]. This model depicts C-S-H particles
as a group of a few tobermorite layers with interlaminar water in between them (Fig. 2-8). This
model has the following features: i) The missing of water in between the layers causes the layers
to get closer to each other and create local disorders, ii) free surfaces that are not in contact
with other layers can have adsorbed water iii) the interlayer space varies from 0.5 to 2.5 nm.
This model was rather qualitative than quantitative and was later modified by Daimon el al by
incorporation of some internal pore structures with the pores in between the C-S-H particles

suggested by Feldman-Sereda model [31].
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Figure 2-8: Feldman-Sereda model for the C-S-H gel nanostructure. The interlayer waters are
shown by (x) while the physically adsorbed waters are represented by (o) [adapted from [95]].

Jennings Model

Perhaps the most successful model for quantitative consideration of morphology of C-S-H phases
so far is due to Jennings and co-workers who resolved different inconsistent experimental data
on the surface area, density and water contents [66], [155]. This model resolved contradictory
results of the previous works on surface area measurements, i.e samples with the higher surface
area exhibit lower gel porosity [66]. But one would expect the opposite if C-S-H had a single
porosity. One way to resolve this was to consider several densities for the C-S-H gel. Thus new
Specific Surface Area (SSA) measured by SANS [158] together with better interpretation of the
Ny sorption data, resulted in identifying the existence of two different C-S-H types, which differ
only on porosity. However, a model with more than two C-S-H phases could equally justify the
experimental data.

In this model, known as CM-I, the smallest building blocks were spheres with a characteris-
tic radius of ~s1 nm and density ~2.8 g/cm?®. These spheres tend to agglomerate to form larger
structures so called "globules". The new feature of this model was that the globules could pack
in two different ways, known as Low Density (LD) and High Density (HD), which respectively
correspond to the outer and inner products suggested earlier. The parameters of this model
(size, density, porosity) were fitted to an extensive set of experimental data on density, com-
position, surface measurements to obtain globules of approximately 2.5 nm in radius with an

interglobule porosity of ¢ = 18% and density ~2.4 g/cm?.(Fig. 2-9). The LD C-S-H and HD
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Gel porosity Nanoporosity

2.2nm

Basic Building blocks
18% nanoporosity

HD C-S-H (structural water)

24% gel porosity

Figure 2-9: Jennings model of C-S-H, CM-I.

C-S-H were found due to the interglobular porosities of ¢; 5 = 37% and ¢4, = 24%, with vari-
able densities depending on the water content, p;p, = 1.44 — 1.93 g/cm3and pgp = 1.75—2.13
g/cm?. This is, however, inconsistent with the SANS scattering data because there is a large
particle size distribution with an overlap between them. Later Constantidines and Ulm [27]
pointed out that the corresponding packing density (i.e. one minus porosity) of LD C-S-H and
HD C-S-H is in fact very close to the limit packing densities of spheres, namely 5 ~ 0.64 for
the random packing density of spheres [35],[64], which relates to LD C-S-H and n ~ 0.74 for
the maximum packing of spheres [146], which relates to HD C-S-H and can be formed via two
ways: the ordered-faced centered cubic (fcc) and hexagonal closed-packed random packing.
Based on the pore structures and surface configurations on LD and HD and the relation
between the SSA measured by SANS with the degree of hydration, the authors suggested LD

C-S-H gel as an appropriate model for the early stages of hydration, and HD C-S-H gel for late
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stages of hydration (diffusion). Ulm and coworkers [25], [27], [162] performed extensive nanoin-
dentation experiments on different cement paste samples, which showed a bimodal distribution
of elastic properties, confirming the presence of LD C-S-H and HD C-S-H phases. Their results
were based on extrapolation of elastic properties by correcting for the effect of interparticle
porosity, via particle packing density, 1, and determine the C-S-H particle indentation modu-
lus, ms = Eg/ (1 — z/g), where E is the Young’s elastic modulus, and v, is the Poisson’s ratio.
Recently, Van Damme and Ulm proposed the existence of a third (rare) phase as Ultra High
Density C-S-H [162].

Refinement to the CM-I model was proposed by Jennings and co-workers, after obtaining
a new set of data about C-S-H particles by SANS and SAXS [4],[72]. It was found that the
density of the basic building blocks of C-S-H particles is ~2.604 g/cm?® with an average chemical
formula of (Ca0);.7(Si02)(H20); g. In the new model, called CM-II, the globules were modified
to include some features of Feldman-Sereda model (i.e tobermorite-jennite like layers) while
the concept of LD C-S-H and HD C-S-H were still present due to the packing of globules. In
this refined model, the water can be in several locations: interlaminar water, which fill the
intraglobule space, or adsorbed water on the surface of globules or interglobules water located

in between the globules (Fig 2-10).

2.6 Chapter Summary

The aim of this Chapter was to present the complexity and levels of hierarchy in cement
hydrate with a traditional top-down zoom going from macro to nano scale. We showed that
the core of the cement hydrate structure is a gelatious phase, so called, C-S-H, which is the
principal source of strength and mechanical properties in all Portland cement concretes. While
many crystal minerals such as tobermorite, jennite, portlandite or their natural or disordered
combinations are postulated as models to explain the different structural pattern and properties
of C-S-H, the structure itself is not fully resolved yet, in particular at the nano scale. Major
inconsistencies lie in the Ca/ Si ratio, the length of the C-S-H silica chains, the structure of the
gel-porosity, and also in the intimate local order at the scale of the layers because XRD does

indicate disordered glassy materials compared to tobermorite. Thus, satisfactory prediction of
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Figure 2-10: Refined Jennings model, CM-II, for the C-S-H gel nanostructure (from [4]).

fundamental physical properties such stiffness and strength at the atomistic level is far beyond
the reach.

Several models attempted to shed light on the C-S-H gel morphology and density. Among
others, the concept of various densities and globules stemmed from different porosities and SSA
measurements were the most reliable approach in defining and linking the C-S-H morphologies
to the experimental data. However, exploring the inside of the buildings blocks below the
nano scale remain a formidable challenge, which will most likely have a tremendous impact
on cement science. At this stage due to the insufficient atomistic resolution of experimental
probes, or their prohibitive expenses, the implementation of computational materials science
paradigms into the atomistic structure of C-S-H seems the only viable approach to address
this challenge. In the next Chapter, we will introduce several atomistic modeling techniques,
which will be incorporated in Part III and IV to develop a computational toolbox suitable for

a comprehensive investigation of the C-S-H gel structure and properties.
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Chapter 3

Overview of Computational

Modeling Techniques

This Chapter is centered around the most common methods in computational materials sci-
ence that are applicable to cement-based materials. We review the basic hypotheses, theories
and equations of several methods such as first-principles calculations, Molecular Mechanics,
Molecular Dynamics (MD), Monte-Carlo simulations, and coarse graining as a means to study
dynamics and equilibrium properties of a system. Different levels of the theories were employed
and each focuses on solving specific equations within their capabilities. In this Chapter, we also
introduce two commonly used force fields for hydrated oxides, ClayFF and core-shell model.
The force fields and methods presented in this Chapter will be extensively used in the next Parts
where more simulation details for each problem will be given. In particular, first-principles cal-
culations in Part III benchmarks the C-S-H crystal data. MD method in conjunction with
Statistical Mechanics and Monte-Carlo simulation results in realistic molecular C-S-H models

in Part IV.

3.1 Introduction to Atomistic Modeling Methods

Nowadays atomistic modeling of material has become an essential research tool to study various
problems such as organic chemistry, drug design, DNA (un)folding and so forth. One of the

first models applicable to the concept of atoms and molecules was the kinetic theory of gases
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developed in the second half of the XIX century by Clausius, Maxwell and Boltzman. Other
than a few simple systems such as ideal gases, this model was unable to calculate the properties
of a real system [42]. In general, the Statistical Mechanics equations can be written but hardly
solved analytically because of the complexity introduced in the interparticle interactions.

" The emergence of computers made it possible to numerically solve the Statistical Mechanics
equations. The first use of computers for simulations was carried out in Los Alamos in 1953
to study the interaction of liquids by Monte-Carlo (MC) method [104]. Three years later,
Molecular Dynamics (MD) simulation of hard spheres was reported [2]. These simulations were
based on classical Newtonian Mechanics to describe the atomic behavior. However, earlier in
the past century, Planck, Einstein, Dirac, Pauli, Born, Schrédinger and others showed that
the classical mechanics is not valid at the very small scales and established the framework of
quantum mechanics. Following the previous works, Schrodinger in 1926 discovered a partial
differential equation for the time evolution of the hydrogen atoms. The Schrodinger equation,
named after him, is analogous to the Newton’s second law for classical systems. This equation
accurately describes the dynamics of the systems under the size of molecules and atoms and is

based on wave functions that include all the information of a system.

3.2 First-Principles Method

First-principles or the Latin word ab-initio refers to a method that is entirely independent of
any empirical input and is solely based on the electronic properties of a mater. The frontier
between Classical and Quantum Mechanics is defined by the De Broglie Thermal Wave Length

parameter

h
P — 3.1
A V2rmkyT (3-1)

In Eq. (3.1), h and kp are the Planck and Boltzman constants, respectively and m and T
are the mass and temperature of the particle. For a given temperature, when the De Broglie
Thermal Wave Length is much less than the interparticle distance, the Classical Mechanics
governs. Otherwise when A is on the order or larger than the interparticle distance, Quantum

Mechanics will dominate. There are different flavors to include the relativistic effects and
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electronic correlations but the common platform is as follows: A stationary electronic state

¥, (7) is described by a wavefunction satisfying the time-independent Schrédinger equation

HU; (7) = EV; (T) (3.2)

where H is the Hamiltonian operator and FE; is the system energy at a state ¢. For a given
system of N electrons and M nuclei, in the absence of external fields, the Hamiltonian can be

written [85]:

ﬁ:fe’f‘fn'i‘f}en'f‘f/\vee"'vnn (33)

where T and V stand for the kinetic and potential energy of the system and the subscript e , n
refers to electrons and nuclei, respectively. Thus, T. shown the total energy of all electrons and
Ven total potential energy of the all interacting electrons with nuclei, and so on. These energy

terms constitute the total energy of the system of electrons and nuclei and can be written as

1 N

7oLy gz ,
5 ;:1 \% (3.4)
1 M

~ \

T, = -§A§—1VA (3.5)

M M
Van=3_ > ZaZp (3.8)

In above equations, Z4 is the atomic number of the nucleus A, and r is the distance. The
wavefunction ¥, (7°) is not an observable, hence it doesn’t have a physical meaning, but its
square indicate the probability distribution of finding the system at the determinate state <.

Except for a few simple systems, the analytical solution of the Schrodinger equation is
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impossible [87]. However, the variational approach provides a convenient path to this end, and
states that for any given trial wave function Wypiq (?), E\rigr will only be minimal, (i.e. ground
state energy) if Wyniq (7) is the ground state wave energy. Thus the basis of constructing a
wave function is minimizing the system energy as much as possible to get closer to the ground
state energy.

For molecules, the Schrodinger equation can be simplified by Born-Oppenheimer approxima-
tion [17], which is mainly based on the assumption that nuclei are much heavier than electrons
and thus move much slower. According to this approximation, the wave function of a system

can be separated into electronic (®.) and nuclear (®,) functions, hence Eq. (3.2) simplifies to

H®, (7) 8, (T) = Erotar®e (T) ©n (7) (3.9)

In Eq. (3.9), nuclei are first assumed to be frozen with respect to the motion of electrons,
then the electronic arrangement are studies. In other words, the essence of Born-Oppenheimer
approximation is that electrons can instantaneously adjust to the nuclei positions for any move-

ment.

3.2.1 Density Functional Theory

In the previous Section, the central quantity was the wavefunction, and the information about
the energy and electron density was derived from it. In Density Functional Theory (DFT), the
central quantity is the electron probability density, p (7), itself, as a function of the position
7. The energy, E, is a function of p(7) and is written as E[p]. This simply means that
there is a single energy, E, corresponding to the entire function p (7). This notion provides
an alternative to manipulation of wave functions. In fact, stemmed from the Thomas-Fermi
model, Hohenberg-Kohn [61] put DFT on a firm theoretical footing by the two Hohenberg-Kohn
theorems (H-K):

e The first H-K theorem demonstrates that the ground state properties of a many-electron
system are uniquely determined by an electron density that depends on only 3 spatial
coordinates. This theorem can be extended to the time-dependent domain to develop

time-dependent density functional theory, which can be used to describe excited states.
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e The second H-K theorem defines an energy functional for the system and proves that the

correct ground state electron density minimizes this energy functional.

Although the H-K theorems prove that the energy functional exist, it does not determine
its form. The exact form of the functional is still unknown and contemporary DFT methods
constitute various approximations to it.

The exact ground state energy functional of an n-electron system reads

Elp] = Exelp] + Enelpl + Egylp] + Exclpl (3.10)

In Eq. (3.10), the first term is the kinetic energy of the electrons and its functional form is
not known directly. However, by re-introducing the concept of wave function Kohn and Sham

[78] were able to express the kinetic energy of electrons as

2 n
Bxsldl = 5 3 [ 41 (F) Vs (F) a7 (3.11)

In above, the one-electron orbital, 1, (?), are the Kohn-Sham molecular orbitals. They are
related to, but different from, the ground state charge density, ¥; (7), introduced in the
previous Section. The 1, (") orbitals are the solutions to the Kohn-Sham Equations discussed

below. The ground state charge density can be obtained from

="l (7)) (3.12)
1

The second term in Eq. (3.10) is the electron-nuclear interactions:

E 7)dTr :
NE 2/471'80'7'—7'1] (T)d'f' (313)

where the sum runs over all i nuclei; the |7 — ?i| is the separation of point 7 and nucleus
1; €9 is the dielectric constant in vacuum and e is the charge of an electron.
The third term is the classical coulombic energy between the electron densities at point 7,

and point 73 :
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Eg,lp| = E/Mdﬁdﬁ' (3.14)
En 2 47r60|5“:—?b| @ )

This term is usually referred to as the "Hartree energy", because it correspond to the
coulombic interactions between average electron densities.

The last term is Eq. (3.10), Exc[p], is the reason the form of the complete functional is not
known. This term modifies the energy to account for the fact that the motion of each electron
is influenced by the motions of all the other electrons. Exc|p] is also a function of the electron
density and is called the Exchange-Correlation energy of the system.

It was mentioned above that the kinetic energy of the electrons is given in terms of the

Kohn-Sham orbitals, v, (7) , which are found by solving the Kohn-Sham equations:

2 n 2 —_— 2
<_ O ) PP / pT)e dﬁdﬁ?wxc(?’)) ¥ (7) = ey (7)

2me im1 47T80|_'F)—7)¢| 47r€0|ﬁ—7b|
(3.15)

where the ¢; are the orbital energies and the exchange-correlation potential, Vx¢, is simply

Vol = 2232 (3.16)

The Kohn-Sham equations are solved iteratively and self-consistently since the solution,
p (7)), itself is a part of the Hamiltonian on the left hand side of Eq. (3.15). The process
starts by making a guess at the charge densities, often by superimposing the atomic densities.
Assuming a functional form is available for Ex¢, the electron density can be used to solve Egs.
(3.15) to give an initial set of Kohn-Sham orbital %, (7). From these orbitals, an improved
electron density can be found via Eq. (3.12), which can then be re-inserted into the Kohn-Sham
equations. This iterative process can be continued until the electron density and Exc have
converged. Then, the total energy can be obtained from Eq. (3.10).

In principle, the process described so far is exact. However, the exact form of exchange-
correlation functional, Exc[p], is unknown and must be approximated. The simplest approxi-
mation is the Local-Density Approximation (LDA), which is based upon exact exchange energy

for a uniform electron gas, which can be obtained from the local values of the electron density
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at that point, or from fits to the correlation energy for a uniform electron gas. However, for a
molecule the electronic density is obviously not uniform. Hence, as the refinement of LDA, the
General Gradient Approximation (GGA), uses functional forms that are dependent on both the
local electron density and its gradient at that point.

There are different approaches to obtain the one electron states such as the use of Atomic
Orbitals, Grid Sampling and Plane Waves (PW). In solid states physics, PW are common since
the concept of the periodic boundary condition is indirectly implemented. PW are not only at
nuclei but they are extended in all space to provide the solutions of the Schrédinger equation
for a free electron particle [98]. In this method, each orbital wave function is expressed as a

linear sum of 3D planes waves

VE(T) = aipyg e HOT (3.17)
g

where k, i, g are respectively the wave vector, the imaginary number and the reciprocal lattice
vectors in a periodic cell. In theory, PW are a complete basis set. Thus as the number of planes
waves increases, the basis set approaches the ground state energy. However, their computational
cost can be higher when it comes to accurate results for the core orbitals localized around the

nucleus.

3.3 Molecular Mechanics Method

Molecular mechanics can be used to study small molecules as well as large biological systems
or material assemblies with many thousands to millions of atoms with low computational costs.

There are two main assumptions in Molecular Mechanics:

e The configurational system energy can be calculated as a function of nuclei positions only
with the electrons around them in an optimal distributions [85] through effective simple

analytical functions called "Potential Functions" or "Force Fields".

e The Newtonian mechanics, which allows to study nuclei as classical particles where the
presence of electrons are implicitly incorporated in the definition of particles. In this

case, the temperature is assumed 0 K and equilibrium configuration can be obtained by
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minimization of the system energy.

The potential energy of all systems in Molecular mechanics is calculated using force fields.
If the force field parameters describe well the system, the accurate information on structure,
thermodynamic properties and mechanical properties can be obtained. On the other hand, if
the employed force field is not a good representative of the interatomic interactions, then all the
subsequent results may be misleading although seemingly the system may function properly.
Thus, unlike the first principles results, what is usually most taken as a reliable output from
Molecular Mechanics is the general trend of the system versus a particular observation rather
than the actual values of the output.

Furthermore, the set of interatomic functional forms, known as force field, developed to
describe a system, are usually derived based on fitting to ab-initio or experimental results. The
transferability of a force field to other environments is a crucial issue in Molecular Mechanics.
In Chapter 6, we will discuss this issue in detail with two commonly used force fields in C-S-H

systems.

3.3.1 Potential Functional Forms

The system energy in Molecular Mechanics is the sum of all interatomic interactions. The
explicit functional forms between two atoms or a group of atoms are usually chosen based
on physical insights to the nature of covalent or non-covalent bonding between atoms. The
exact parameters of the functionals are fitted to ab initio or experimental results. In what
follows, we briefly review the most common functional forms that are applicable in cement and

cement-related systems. A larger set of general functional forms can be found in [45].

Coulombic Interaction This interaction is mainly essential in ionic solids, and its functional

form for the energy is based on the Coulomb’s law:

UQolum — _g_lq]_ 1
K 47‘(’607‘1']' (3 8)

where g¢; is the partial charge of atom i, ¢ is the dielectric constant in vacuum and r;; is the

interatomic distance between atoms ¢ and j. Eq (3.18) shows that the energy decays with the
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inverse of distance, r;;, hence Coulombic interactions are considered long range interactions.
This may cause difficulties in systems with low symmetry when it comes to practical sum of all
Coulombic terms due to he convergence issue. Because the number of ions increases proportional
to the surface of a sphere, 4772, while the interatomic distance decrease according to % Hence,
the energy increases rather than decreases. There are different methods proposed to resolve
this issue [42]. Among them Ewald’s summation is the most widely used in computations [39]
in which using the Laplace transformation, the Coulomb term is divided into two parts: one

converges rapidly in the real space while the other one is in the reciprocal lattice space.

Dispersive Interaction

Dispersive interactions, also known as London’s dispersive interactions or van der Waals in-
teractions, are the second long range interactions [91] and are usually significant in systems
where the Coulombic interactions are not large such as molecular crystals. Dispersive forces
are not due to permanent dipole or induced permanent dipole interactions on the molecules
as in ionic interactions, but are due to time-dependent quantum fluctuations of the electronic
density. It may be imagined that an instantaneous picture of a molecule/solid would show
various arrangements of nuclei and electrons having dipolar and higher multipolar moments
[42]. For spherical atoms, these rapidly varying multipolar moments when averaged over a
large number of configurations would give a resultant of zero. However, at any instant they
would offer electrical interactions with another particle described by a series of terms increasing
with the inverse of the 6th, 8th, 12th, ..nth power of the interatomic distance. However, dipolar
moments are the leading contributors to dispersive interactions and usually the first term of

the series is considered sufficient:

Dis __

ro.

. (3.19)
ij

where C' is a parameter, which can be obtained from fitting.
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Repulsive Interaction

At short interatomic distances, repulsive energies arise from overlapping electronic clouds. This
interaction is perhaps easier to imagine compared to dipersive interactions. The most com-
mon functional form to explain such physical interatomic behavior is exponential functions or
terms which are proportional to ,Lm where m is typically larger than 10. Usually the dispersive
and repulsive interactions are combined to give a single functional form. For example, the

Buckingham functional form is written as

_Tij C
A G e | (3.20)
ij
or Lennard-Jones (LJ) functional from reads
C C
gkl =22 _ =2 3.21
%] T{? Tiﬁj ( )

where the A, p,C in Eq. (3.20) and C,, C, in Eq. (3.21) are parameters to be adjusted against
ab-initio or experimental results. These potentials have a minimum at a certain interatomic
distance. Away from this minimum point, the energy increases smoothly and rapidly at long
and short distances. The extension of LJ potential for non-spherical particles is achieved by
the Gay-Burn potential [51] that is much more complicated than simple LJ forms and contains
angle dependence. In this case, the functional form takes into account the aspect ratio of the
particles, 3D directional vector of each particle and several empirical parameters, which must

be fitted via considering the particles in different distances and orientations.

Bonding Interaction

The covalent bonds between a pair of atoms or a group of atoms can be represented by a

functional form known as the More Potential

2
UiJJ\(Ior =D |:(1 _ e—a(’f'ij—ro)> — 1:| (322)

where 7y is the equilibrium bond distance, D is the energy of the bond at rg and « is the

curvature of the potential around the minium equilibrium distance. An alternative functional
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form representing directional bonding is the harmonic potential, which penalizes the energy for

any deviations from the optimum distance rg :

1
UHB = 51{3 (r —ro)? (3.23)

where Kp is the stretching force constant. Since the bonding functional forms describe in
an effective way all the different contributions to the chemical bond, usually the Coulombic
interactions are subtracted within a bonded group.

In some cases, the hybridization of the covalent bonds results in specific shapes, such as
tetrahedra bonds in carbon or silicon. For such cases, the bonding potential must consider
the effect of more than two atoms. Similar to harmonic bonding terms, a three-body potential

representing an angle energy is usually defined by
1
UfA = SKa( - 6o)* (3.24)

where 6 is the optimum angle between the three atoms and K 4 is the bending force constant.
In what follows, we specifically described two commonly used force fields for hydrated oxides.
Rigorous comparison of the prediction capabilities of these force fields will be discussed in

Chapter 6.

3.3.2 Potential Force Fields for Hydrated Oxides
ClayFF Potential

ClayFF is a force field suitable for molecular simulations of hydrated crystalline compounds and
their interfaces with liquid phases [30]. It is based on an ionic-covalent description of metal-
oxygen interactions associated with hydrated phases. To represent water, ClayFF considers the
flexible simple point charge (SPC) water model [12]. In ClayFF, all atoms are represented as
point charges and are allowed complete translational freedom. Metal-oxygen interactions are
based on a simple 12-6 Lennard-Jones potential combined with Coulombic interactions.

The empirical parameters are optimized using known mineral structures. Partial atomic
charges are obtained from cluster and periodic density functional theory, quantum chemical

calculations of simple oxide, hydroxide, and oxyhydroxyle model compounds with well defined
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structures. Oxygen and hydroxyl charges vary depending on their occurrence in water molecules,
hydroxyl group and bridging environment. Harmonic terms are included to describe the bond
stretch and bond angle (three-body) terms associated with water molecules and hydroxyls.
The total energy is the sum of coulombic (electrostatic) interactions, short-range interactions

(named as Van der Waals, VDW), and bonded (stretching/angular) interactions:

Eiot = Ecoul + ELJ + Estretch + Eangle (325)

For proximate intramolecular interactions, the coulombic and VDW interactions are ex-

cluded. The coulombic energy is represented as:

€\ ad

- 3.26
47r60 Tij ( )

coul =

The VDW interactions are represented with the conventional 12-6 Lennard-Jones function

that includes the short-range repulsion and the attractive dispersion energy:

Ep; =) _ Dy l(R"j)m -2 (ﬁ)s} (3.27)

Tij Tij
In Eq. (3.27), D;; are R;; are parameters derived from the fitting of the Clay-FF model
to a number of observed structural property data for oxides, hydroxides and oxy-hydroxides.
The interaction parameters between the unlike atoms are calculated according to the arithmetic
mean rule for the distance parameter, R;;, and the geometric mean rule for the energy parameter
Dy;:

_Ri+ Ry

. (3.28)

Ri;

Dij = DiDj (329)

Bond stretching energy is considered between O and H of either a hydroxyl or a water

molecule and is described by a simple harmonic term as:

Estreten = Z Ky (rij — roi)” (3.30)
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Species | Partial Charge (e) | D (Kcal/mole) | R (A)
Water Hydrogen (Hw) 0.41 - -

Hydroxyl Hydrogen (Ho) || 0.42 - -

Water Oxygen (Ow) -0.82 0.1554 3.5532
Hydroxyl Oxygen (Oh) | -0.95 0.1554 3.5532
Bridging Oxygen (O) -1.05 0.1554 3.5532
Silicon (1) 2.1 18466 3.7064
Calcium (Ca) 1.05 5.03E-6 6.2428

Table 3.1: ClayFF partial charges and nonbonded parameters .

where K is twice the force stretching constant and ry;; represents the equilibrium bond
length, both values taken from the flexible version of the SPC water model [12]. To improve the
description of the vibrational (librational) motion of hydroxyl groups, a bending (three-body)

term is introduced in form of a harmonic relationship:

Eangte = Y _ K2 (Bij — Ooisk)” (3.31)

where K3 is twice the force bending constant, 8, is the bond angle for the hydrogen-oxygen-
hydrogen, and fg;; refers to the equilibrium bond angle between the three atoms. Table 3.1 and
Appendix A show ClayFF partial charges and other non-bonded potential parameters for species
relevant to C-S-H systems. Note that as shown in Table 3.1, the hydrogens in water molecules
and hydroxyl groups in ClayFF do not have any Lennard-Jones parameters, indicating the
effective character of the approach. Hence, they are considered not to exhibit VDW interactions
with other species since they are assumed to have very small dipole polarizability. However,
they have bond energies within a hydroxyl or water molecule. All the original parameters of

the ClayFF potential are given in Appendix A.

Core-shell Potential

In contrast to the simple point charge force field, the core-shell model uses formal atomic
charges and allows an extra degree of freedom between the core and shell of the anions. While
the components of the total energy is essentially analogous to Eq. (3.25), their particular forms
are different for short range energy ( £L;) and bonded energy ( Esiretch)-

The core-shell model is based on Born model description [45] for ionic and iono-covalent
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core

Figure 3-1: The core-shell model for an anion interact via a harmonic oscillator with a spring
constant Kgg.

crystal structures. Point charges interact by means of electrostatic and short range semi-
empirical potential functions. An essential ingredient for the transferability of the core-shell
approach is the use of formal ionic charges for ionic species. As with ClayFF potential, the
electrostatic (Coulombic) interactions are evaluated using the Ewald sum technique expressed

by two convergent series in the real and reciprocal space [39]:

-G2
N &) "
Ui = v oz Z Z 4:iq;j €xp (—zG.?’ij) (3:32)
G i
1 qiqj 1/2
Usui = 3 Z Z et clr/riy) (3.33)

where erfc is the complementary error function, G is a reciprocal space vector (G # 0), g; is
the ionic charge of atom i. V' is the volume of the unit cell and 7 a parameter that controls the
division of work between real and reciprocal spaces. Note that i) the total electrostatic energy

now refers to the ionic self-energy given by

self = Z qa, 1/2 (334)

that is constant in canonical conditions (fixed number of ions, N); (ii) the choice of 5 controls

the number of &G vectors to be chosen for a given convergence accuracy; in this work it was set
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Atomic species | Core charge (e) | Shell charge (e) | Coupling constant (eV AZ)

Ca 2 -
Si 4 -
H 0.426 -

Oh-0.8 0.86902 -2.29502 74.92
0-2 0.86902 -2.86902 74.92

Ow-0.8 1.25 -2.05 209.45
Hw 0.4 -
Cw 2 -

Table 3.2: coulombic interaction parameters within the core-shell model.

to 1075 eV [47].

In modeling oxygen in silicate materials, electronic polarizability effects are taken into ac-
count by splitting the anion into two entities: a core and a massless shell, the (formal) ionic
charge (q: = gs+q.) being shared between these two species [45]. The core and the shell interact
via an harmonic oscillator with a spring constant Kcg (see Fig. 3-1). The shell polarizability
is then expressed by:

y=—— % (3.35)

(Kcs + Fs)

where Fg is a force acting on the shell and due to the local environment. During energy
minimization process, the shell is allowed to relax relatively to its core, creating a local in-
stantaneous dipole mimicking ion polarizability. Thus far, the explicit inclusion of polarization
in the core-shell approach is the main difference with core-only potential based-model such as
ClayFF. Table 3.2 shows the atomic charges for cores and shells and the coupling constant.

The short range interactions are described by a Buckingham potential which combine an
exponential repulsive and an attractive dispersive term, Eq. (3.20). When using formal ionic
charges in the case of iono-covalent systems such as silicates, a three body harmonic term similar
to Eq. (3.31) is considered in order to mimic the correct angle O-Si-O distribution. The bonded
O-H interactions in water and hydroxyl are simulated by Morse potential, Eq. (3.22).

All potential parameters used in this thesis are listed in Appendix A in which Cw is the
interlayer calcium species, Ow and Hw are components of water, Oh corresponds to layer oxygen

linked to a hydrogen. "Buck", "Lennard", and "Morse" stands for Bukingham, Lennard-Jones
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and Morse potential functions as given above. "Three" denotes three-body interactions in the
form of a harmonic bending term. "Inter/intra" marks the difference between inter and intra
atomic potentials, i.e, when a pair of atoms is defined as chemically bonded, the electrostatic
coulombic interaction is not calculated between them unless otherwise specified (this is the
case for HoO, see [34] ). All these parameters in core-shell model are optimized to describe
simple crystalline mineral oxides and their surface and water adsorption properties (see e.g.

(22],[34],[171]).

3.4 Statistical Mechanics

There are two very different views of an equilibrium system namely "macroscopic" and "mi-
croscopic". The macroscopic state of a system is defined by a few everyday quantities such
as temperature and pressure, whose magnitudes are measurable and steady in an equilibrium
state. On the other hand, the microscopic state of a system relates to atomic or molecular
state. It is defined, at a given moment, by the properties of the particles in the system (usually
positions and velocities). Even at equilibrium, the microscopic state of a system is a constant
flux, changing from instant to instant as the particles move and interact. The task of Statisti-
cal Mechanics is to relate the chaotic, dynamic, microscopic states of the system to the steady,
everyday, macroscopic states.

The macroscopic state of a gas can be defined by three parameters: the temperature, the
pressure and the volume. The microscopic state of a gas, comprised of N molecules, can, at a
given time, be defined by 6N variable (three positions and three velocities for each molecule).
It is clear that there is a huge loss of information in moving from the microscopic to the
macroscopic description of a system. Hence, Statistical Mechanics is centered on relating the

macroscopic properties to the averages of the microscopic properties.

3.4.1 Ensemble Averages and The Ergodic Hypothesis

Assume a sample of a gas at pressure P,;s. As the molecules in the gas bombard the walls of the
container, the pressure, at a given instant, can be calculated from sum of the molecular forces

exerted on the wall divided by the area of the wall container. The molecules strike the wall
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with random motions, so the pressure, p, fluctuates with time. If the instantaneous pressure is
averaged over a sufficiently long time, 7, then the average value must be both independent of

the starting time and be equal to the observed pressure:

1 [t=(n+L)7r
[ bttt = P (3.36)
t

T Jt=nr

where n is any integer number. More generally, if we define some observable property
Fops, then the macroscopic value is expected to be the long-time average of the instantaneous
microscopic value, F'(t). Statistical Mechanics, reposes this observation in terms, not of a time
average, but of an ensemble average.

An ensemble is a large imaginary collection of systems that have different instantaneous
values of some quantity, F, but share the same long-time average value of F. Thus the system
in an ensemble is microscopically diverse, but macroscopically identical. The ensemble average

of a quantity, F, is defined as

N
1
<F>=g ; Fj (3.37)

where N is the number of systems in the ensemble and F} is the value of the property in

system j. There are two central postulates in statistical mechanics:

e As the number of states in a system tends to infinity, the ensemble average of a quantity

becomes equal to the long time average of that quantity

N t=T1
%ZFj(t) = %/ F(t)dt (3-38)
=1 ‘

=0

where N — oo and 7 — o0
e All possible microscopic states are equally probable.

Thus, if the two postulates are combined, they imply that any isolated system, over a long
time, spends equal amounts of time in all the available microscopic states. This is known as

ergodic hypothesis.
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3.4.2 The Canonical Ensemble

In the canonical ensembles, the volume, V, the number of molecules, N, and the temperature,
T, are fixed in each system. The walls surrounding each system are impermeable to molecules
but are perfectly thermally conducting, and the system is surrounded by a fictitious infinite
heat reservoir at temperature 7'

To build the model of the ensemble, we take a large number, N, of individual systems, and
couple them together such that the heat can flow throughout. The ensemble is then coupled
to an infinite heat bath at temperature T, which will be the temperature of the ensemble at
equilibrium too. The constraints on the ensemble are the total energy, E; and number of

systems, N, in the ensemble:

> ni=N (3.39)

1

> niE; = E, (3.40)
1

In Egs. (3.39-3.40), n; refers to the number of individual systems with an identical energy
E;. There are many different distributions consistent with these constraints, and each appear

with a probability P%* defined by

g

Pdis _
¢ N

(3.41)

On the other hand, the number of possible ensemble states, Q%5 consistent with a given

energy distribution ni, ng, ng, ... is given by a combinatorial formula

('m +ng +n3 + )' . N!

Qdis _
nl!ng!n3!... HTLZ'

(3.42)

Thus, in principle, a formula for a probability of a system in the canonical ensemble having

an energy E; reads
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Z Qdispdis
i dis
P = _RIZ—Q (3.43)
dis

It is clear that the above formula requires a sum over a potentially infinite number of
possible energy distributions that are consistent with the constraint. However, this problem
can be solved by allowing N to tend to infinity. It can be shown that at very small values of N,
one energy distribution is considerably more probable than the rest. As N rises, the probability
of the most prevalent distribution rapidly grows, until, as N tends to infinity, the probability
of the most likely energy distribution, P%?  tends to one. This means that for a system of

macroscopic proportions, there is negligible error in summing Eq. (3.43) only over the single

most probable distribution, and so:

. Qdis_,max pinax
¢ _ Sfmax'* -
Pi= NOS N (3.44)

where n;"** is the number of systems with energy E; in the most probable energy distribution
of the ensemble. This concept is the essence of the Central Theorem in Statistical Mechanics.

The method of undetermined multipliers gives the most probable distribution as

n"** = Nexp(—a) exp(—SE;) (3.45)

where o and 3 are the undetermined multipliers. Substituting Eq. (3.45) into the constraints
on the total number of systems in the ensemble, Eq. (3.39), and the total energy, Eq. (3.40),

gives
exp(a) = Zexp(—ﬁEi) (3.46)

Z E; exp(—BE;)
< E>= Zexp(—ﬁEi) (3.47)

where the < E > is the ensemble average energy. Note that we no longer need the number
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of systems in the ensemble, N, as it cancels out. In fact, it can be shown that the ensemble

average of any quantity, F, that depends on the state of the system can be found from

> Fiexp(—Ei(N,V)/kT)

<F>=- SNV T (3.48)

where Q(N, V,T) is the canonical ensemble partition function:
Q(N,V,T) = Zexp J(N, V) /Ky T) (3.49)

3.4.3 The Grand-Canonical Ensemble

The canonical ensembles discussed so far is based on constant total number of particles, N.
However, is some systems, one may need to know the average number of particles as a function
of external conditions. For instance, in adsorption studies one is interested to know the amount
of adsorbed materials as function of the pressure or temperature of the reservoir with which
the system is in contact with. A careful choice of an ensemble can greatly reduce the computa-
tional efforts. In this example, for adsorption studies, a natural ensemble to use in the Grand
Canonical Ensemble (uVT'), in which the temperature, volume and the chemical potential, u,
are fixed. The criteria for equilibrium is that the chemical potential and temperature of the gas
inside and outside the adsorbent must be equal, whereas the number of particles can fluctuate
during the simulations [42].

Analogous to the canonical ensemble, there maybe many possible distributions satisfying

the following constraints in a VT ensemble:

Y =N (3.50)
1
> niE; = E, (3.51)
1
> niNi= N, (3.52)

61



where the N; is the total number of particles. Once more, the most probable distribution
swamps all the rest as N tends to infinity. The most probable distribution is given by
ni®™ = Nexp(—a) exp(—BE;) exp(—yN;) (3.53)

where «, 8 and v are undetermined multipliers. Again « is eliminated and it can be shown
that the probability of a system in the grand canonical ensemble containing N; particles and

having an energy F; is:

exp(—E;/kyT + N;u/kpT)

Pi(p,V,T) = — 3.54)
V1) =0 V,T) (
where Z(u, V, T') is the grand canonical ensemble partition function:

E(1,V,T)) =Y exp(—Ei/keT + Nips/ ko T) (3.55)

For a more details and discussion on different ensembles and their physical importance, see

(3],[42],.

3.5 The Monte Carlo Method

Monte Carlo (MC) methods are a class of computational algorithms that rely on repeated
random sampling to compute a system property. MC simulation methods are especially useful
in studying systems with a large number of coupled degrees of freedom, such as fluids, disordered
materials, strongly coupled solids, and cellular structures. More broadly, MC methods are
useful for modeling phenomena with significant uncertainty in inputs, such as risk analysis. A
classic use of MC method is in mathematics for the evaluation of definite integrals, particularly
multidimensional integrals with complicated boundary conditions.

Within the context of materials simulations, MC method calculates system properties at the
equilibrium configuration whereas MD can be employed for both the equilibrium configuration
and the dynamical time evolution of the system to get to the equilibrium configuration. Hence,
if only properties at equilibrium are sought, then MC might be more efficient. Additionally,

compared to MD simulations, MC methods are less prone to be stuck behind a energy barrier.
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3.5.1 Sampling Schemes

We have seen that the ensemble average, < F' >, of a quantity is given by:

<F>=)_PF, (3.56)
i

One approach to solving this equation would be to generate random molecular configurations
of the system, then calculate the probabilities, and finally < F' > . Such a technique is often
known as "naive sampling" and although correct, it does not give good results as most of the
states have low probability. A better sampling scheme would be one in which we could generate
the molecular configurations based on their probability. In other words, the probability of
generating state ¢ is actually given by F;. This approach is called" importance sampling" since

each configuration is sampled according to its importance.

3.5.2 The Monte Carlo Method

The means of achieving the importance sampling is to set up an irreducible Markov chain of
states of the system. The quantity of interest is then averaged over the states in the chain,
rather than all possible states. A Markov chain is sequence of states in which each new state,
N, depends only on the current state (M), and belongs to a finite number of possible states.
A Markov chain is characterized by a fixed transition probability for any pair of states, 7%,
which is the probability of the next state in the chain being N, if the correct states is M. By
defining this quantity for all the pair of states, we build a B x B matrix called the transition
probability matrix, 7. Since the probability of staying in the same state, or moving to another

state, must adds up to one, the rows of the transition probability matrix must also adds up to

one:

B
> oMV =1 (3.57)
N

Let us denote the probability of state M occurring in the Markov chain, as p™ defined for
example in a canonical ensemble. Finding such a probability for all B states leads to a vector

of probabilities, p. The value of this vector will depend on the values of the 7. We wish to find
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a transition probability matrix such that

exp(—En /kyT)

M _ pM -
P =PEINYD = = w v T

(3.58)

where Ej; is the energy of state M. Suppose from an initial state M, we generate a new
possible state N. We can then use the appropriate row of the transition probability matrix
to decide whether we move to our new trial state or not. If we repeat the process, we then
generate a Markov chain of states. Now as we move along the chain, we collect the average of
the quantity, F, that we were interested in. It can be shown that the average F', taken over
each of the 7 states in the chain, converges to the average taken over the limiting distribution
of the chain provided two criteria are met [42]. Firstly, for each state, there is a finite chance
of getting to any other state in a finite number of steps. Secondly, the probability of seeing a
state, N, is the chain must be equal to the sum of the probability of moving from every other

state, M, weighted by the probability of state M :

ZpMWMN =pV (3.59)
M

Metropolis et al. was able to find a transition probability matrix that characterizes a Markov
chain with the ensemble probability of states as it limiting distribution [104]. Setting up such
a chain to calculate F, will result in the ensemble average.

The 7 matrix elements derived by Metropolis et al. are given by three equations:

N = oMV oy > pps M # N (3.60)
TMN = MNPN < prs M # N (3.61)
Pm
AN =1 3" MM =N (3.62)
N#M

The transition matrix, with elements a™¥, is often termed the underlying matrix of the

Markov chain. For the Metropolis transition probability to satisfy Eq. (3.59), the matrix «
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must be symmetric. This means that the way we generate trial states should be such that the
probability of generating a trial M — N is the same as N — M.

The first equation tells us if the trial state is more probable than (or as probable as ) the
old one (py > pas), we should make the transition with a probability of a™®. Since this was
the probability of generating this particular trial anyhow, we should accept the transition.

The second equation tells us if the new trial state is less likely than the old one (py < pys), we
should make the transition with a probability of (™ %). Since the probability of generating
the state in the first place was o™ ¥ there should be a (f;\”;) chance to make the transition.
Finally, the third equation indicates that the old state of the system should be taken as the new
state whenever the transition is not made. The Metropolis algorithm outlined above are general
and applicable to any ensemble. In what follows, we illustrate how this efficient algorithm can

be implemented in different ensembles

3.5.3 Canonical Ensemble Monte Carlo

In view of the transition probability matrix, for a canonical ensemble the (%) can be written:

exp(—EnN /ky T
NV,T
PN M = QYD) o (Ex — Ear)/ksT) (3.63)

T exp(—Em/kpT)
Q(N,V,T)

Note that since the partition function cancels out, this makes the Monte Carlo method very
tractable. In order to ensure we accept a transition with the above probability, the following

acceptance/rejection criteria is helpful [42],[3]

Paee = min |1, exp ———(EN_—EM) (3.64)

kyT
Thus if the energy of the new system is less than the old system (Enxy < Ej), then
exp (—%) is always greater than one, therefore we accept the transition. Physically

this makes sense since the new state is energetically more stable. Otherwise, if Exy > Ey,
we accept the transition by the probability of exp (—LEN%;?M)) which is less than one. To do
so, we throw a random number between 0 and 1. If the random number is less than or equal
to exp (—LEN,%_#Z) , we accept the transition, otherwise we reject it. Note that in this way,

even the new trial states with larger energies are likely to be sampled; hence enabling the MC
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method to overcome energy barriers once in a while.

3.5.4 Grand Canonical Monte Carlo (GCMC)

To generate a Markov chain in the grand canonical ensemble, two new moves should be added
that generate trial states with differing number of molecules. Thus, at every step in the chain,
we decide at random whether to move a molecule, create a new molecule or destroy an existing
molecule. In order to satisfy the symmetry in the underlying transition matrix, it is required
that the probability of creating a molecules is the same as the probability of destroying it im-
mediately. For a Grand Canonical ensemble, the acceptance/rejection probability in Metropolis
algorithm is much more complex than that Eq. (3.64). It can be shown that for creation of a

new molecule Eq. (3.64) becomes (see [42])

(b= En(N+1)+ EM(N)M

oT (3.65)

. v
Pacc = min 1, —m exp (—

where . is the target (reservoir) chemical potential and N is the number of molecules while

V is the system volume. Similarly, the acceptance condition for "deletion" of a molecule in

uVT ensembles reads (see [42])

Py, = min [1’ AN exp (_ (b + Unew(N +1) - Uold(N))] (3.66)

v kyT

3.6 Molecular Dynamics Methods

Molecular dynamics (MD) is a form of computation that allows following interacting atoms
and molecules in time. MD gives the motion of the particles based on the Newton’s 2nd law
at finite temperatures. Then, the properties are defined according to the Statistical Mechanics
averages. MD has also been termed "statistical mechanics by numbers" and "Laplace’s vision
of Newtonian mechanics" of predicting the future by animating nature’s forces [143]. MD,
although constrained by numerical strategies, lets scientists peer into the motion of individual
atoms in a way which is not possible in laboratory experiments. This method elucidates detailed
time and space resolution into representative behaviors in phase space.

For a given system, any state can be entirely described by the positions, q, and momentum,
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p, of all the particles within the system.

q-= (?1)727"'777@) (367)
P= (?17 ?27 ey ?n) (368)

The two set of vectors, q and p, represent each single point in the phase space whose
evolution trajectory can be tracked. Most of the system thermodynamic properties in MD can
be averaged over different ensembles using q and p. For instance, for a system property, say A,

at equilibrium, the ensemble average reads

<A>= / A(q,p)P(q, p)dpdq (3.69)

In Eq.(3.69), P(q, p) is the probability of the system to be at the phase space point (q, p),
and A(q, p) is the system property value at that point.
In MD, all the system properties can be computed from q and p and classical thermodynamic

relations. For example, the temperature can be calculated via equipartition principle

3
“kpT = ~<mvi> (3.70)

To track the time evolution of the system in MD, one only needs to track the evolution
of the q and p. The time evolution of the particles in MD is based on the classical Newton’s
motion equation :

32%

Fi=ms

(3.71)

Here, the De Broglie wave length parameter must be on the order or larger than the inter-
particle distances; hence justifying the choice of classical mechanics. In MD, forces are obtained
from the derivative of the interatomic energies, which are usually described by force field poten-
tials. One can envision implementing quantum calculations in MD simulations. One common
such method is the Car-Parrinello method [18], which is the combination of MD and DFT

calculations where forces are calculated from DFT rather than Molecular Mechanics. Hence,
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electronic degrees of freedom are considered as fictitious dynamic variables to solve coupled
equations for both nuclei and electrons.

For large systems, in the favor of computational costs, hybrid quantum mechanics MD are
used to treat part of the system with ab-initio MD and the rest with classical MD. Long MD
simulations are mathematically unstable, generating cumulative errors in numerical integra-
tion that can be minimized with proper selection of algorithms and parameters. This issue is

discussed next.

3.6.1 Integrating the Equation of Motion

To numerically solve the system of partial differential equations in Eq. (3.71), many algorithms
have been proposed [42]. Perhaps the most common algoritﬁm is due to Verlet [165] who
proposed a simple, yet efficient method to integrate Eq. (3.71). In Verlet algorithm, the initial
velocities are usually adjusted to a desired kinetic energy to conserve the zero value of the
momentum. Next, both the backward (¢t — At) and forward (¢ + At) Taylor expansion of the
particles coordinates are written around the time step, At, up to the fourth term. Summing
both backward and forward Taylor expansions gives
F(t)

q(t + At) = 2q(t) — q(t — At) + 7“2 + 0 (At (3.72)

where F, m and t are the forces acting on the particle, mass of the particle and the current
time, respectively. In Verlet algorithm, to calculate the next positions, only the past and current
positions are needed and not the velocities. However, analogous to positions, velocities can be

obtained from the rest of the Taylor expansion for both backward and forward directions:

(1) ~ WD) 2;‘5“ —2 1 o (an) (3.73)
From Eqgs (3.72) and (3.73), it appears that the numerical error in positions and velocities scales
with At* and At? respectively.

Alternative algorithms to Verlet include Euler, the Leap-Frog, the velocity Verlet algorithms,

or Predictor-Correction algorithms, which use higher order terms in Taylor expansion. More

details on all these schemes can be found in [42] and the references therein.
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3.7 Coarse-Graining Method

At the other end of the multi-scale methods are coarse-grained and lattice models. In coarse
graining method, instead of explicitly representing every atom of the system, one uses "pseudo-
atoms" or "united atoms" to represent groups of atoms. For instance, "united-atoms" employed
in many simulations represent a collection of atoms such as methyl and methylene groups as
a single particle, or large protein systems are commonly simulated using a "bead" model that
assigns two to four particles per amino acid. This is particularly helpful for very large systems
because MD simulations on these systems may require such large computer resources that they
cannot easily be studied by traditional all-atom methods.

Similarly, simulations of processes on long time scales (beyond about 1 microsecond) are
computationally quite expensive. In these cases, coarse-grained models or reduced representa-
tions provide a viable way to tack the problem via the mean field theory to provide an effective
averaged interactions. Examples for coarse graining (CG) methods are discontinuous molecular
dynamics [147] and Go-models [117].

The fitting of the parameters of the coarse-grained models must be done empirically, by
either matching the behavior of the model to appropriate experimental data or to all-atom
simulations. Ideally, through these parameters both enthalpic and entropic effects should be
accounted for in free energy. However, when coarse-graining is performed at higher levels, the
accuracy of the dynamic description of the system may be less reliable. Several coarse-grained
models with different potential functional form have been used successfully to study a wide

range of questions in computational material science, particularly in structural biology.

3.8 Chapter Summary

Introducing several atomistic modeling schemes applicable to the amorphous C-S-H systems
was the aim of this Chapter. We reviewed basic hypotheses, fundamentals and equations of a
variety of methods that are each customized for different length- and time-scales. In general,
as the system size under study becomes larger, the accuracy decreases while the length- and
time-scales both increases. Thus, there is a trade-off on what method to choose although for

very large systems, the ab-initio methods is currently prohibitive.
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MC methods that are carefully adjusted for the system ensemble are an efficient approach
to examine the properties of a system near equilibrium. For detailed investigation of dynamical
trajectory of a system before and at equilibrium, MD methods provide useful information,
although the limited time scale of the MD is still a major drawback in rendering realistic
physical observations On the other hand, in favor of time and length scales, coarse-grained
models are useful to condense all the atomistic information of a group of atoms into a single
particle information.

Seamlessly linking different scales to pass information from one to another is a difficult
task. In both force field potentials and coarse-grained models, the challenge remains how to
accurately and reliably parametrize the system functional forms from ab-inito or experimental
data. In the next Part, we will use DFT method to study several C-S-H crystals, and use those

results to parametrize a force field potential in Part IV.
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Part 111

Benchmarking C-S-H Crystals

71



Chapter 4

First-Principles Study on Structural
and Mechanical Properties of C-S-H

Crystals

With increasing interests in mineral analogs of C-S-H at the nanoscale, their mechanical proper-
ties are undoubtedly a crucial part of the evaluation and suitability of the interatomic potential
model. This Part benchmarks and evaluates the structural, mechanical and acoustic prop-
erties of several C-S-H crystals that were discussed in Part II. Chapter 4 presents original
first-principles calculations of the structural and mechanical properties of tobermorite family
and jennite minerals. Chapter 5 is devoted to analyzing the fundamental sound waves and
directional velocities of these minerals.

In recent years, with the emergence of improved computational powers, the first-principles
calculations of the mechanical properties of crystalline minerals are now considered as alter-
native routes with respect to experiments [170]. In this Chapter, we comprehensively study
the structure, elasticity and strength properties of several C-S-H crystals based on the DFT
method. This Chapter is divided into three main Sections: Computational Methods, Results
for Elastic Regime, and Results for Inelastic Regime. The results of this Chapter will be used
in Part IV for a force field potential parametrization to be used in MD simulation of the C-S-H

models.
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4.1 Computational Methods

Except otherwise stated, all calculations reported in this Chapter are performed by Density
Functional Theory (DFT) [61, 78] using GGA exchange correlation functionals. For energy
and stress calculations, we used ultrasoft pseudopotentials [164] with a plane wave basis set
and a cutoff energy of 420 eV for the wavefunctions and 5035 eV for the charge density, as
implemented in the PWSCF package of Quantum Espresso distribution [11].

Considering first-principles calculations, it is important to ensure that the convergence in
k-point sampling and plane wave energy cutoffs are satisfactory. However, the computational
costs grow exponentially when the system size becomes large, and thus there is a trade-off in
the desired accuracy and the available resources to achieve it. In our study, because the system
sizes were relatively large (=70 to ~100 atoms per unit cell) we used gamma-point-sampling of
the Brillouin zone.

Before calculating the mechanical properties, we perform 0 K energy minimizations as
implemented in PWSCF to fully relax the crystals. The importance of obtaining the equilibrium
state is first, to avoid any possible meta-stable state and second to make sure that the current
state is not far from the regions where linear elasticity holds. The latter is in particular the
key in calculating the elastic constants. To achieve equilibrium ground state the following two
criteria are met concurrently: each of the stress components is below 0.5 kbar; each of the X, Y
and Z component of the force on any single atom is below 0.01 eV/ A.

Among mechanical behaviors, calculation of elastic properties is the first and most fun-
damental concern as all the other mechanical behaviors can be derived or related to elastic
constants. Most ambiguity in material’s behaviors such as understanding interatomic inter-
actions, phase transition, mechanical stability, internal structure and fracture energy can be
obtained or related to elastic properties.

Once all crystalline minerals have attained relaxed states, we apply strains to the cell co-
ordinates to calculate elastic constants. We use stress-strain approach to calculate the elastic
constants [113], which allows one to obtain second-, third-, and fourth-order elastic constants.
In this method, for each strain, by calculating the stress tensor, one can construct a linear sys-
tem relating stresses to strains. Then by using an orthogonal matrix factorization and the best

least square fit, elastic constants are found. Further details of this technique and its application
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to a wide range of ceramics can be found in [172] and references cited therein. The generalized

Hooke’s law in linear elasticity is given by

o1 Cn Ciz Cis Ciye Ci5 Ci e1
o2 Cx C23 Ca Cos5 Cop e2
o3 | _ Csz Cza Cs5 Cse €3 (@1)
o4 Cau Css Cus e4
o5 Css  Cse es
| 06 | L Ces | | €6 |

Since the crystalline minerals under investigation are either monoclinic or triclinic, we apply
all 6 strains. By applying any nonzero strain in Eq. (4.1) and calculating stresses, one can
determine a column of elastic constants. Thus by repeating this procedure for all strains we
cover the whole elastic tensor. In this method, off-diagonal components appear twice in the
calculations and to have a better estimate, we take the average of the two equivalent off-diagonal
terms.

As elastic constants are defined in an orthogonal coordinate system, we relate cell parameters
to Cartesian system XYZ (subindex 1 in Eq. (4.1) refers to X axis; 2 to Y and 3 to Z) in the
following way: the first cell parameter, a, is parallel to X axis; second cell parameter, b is in
the XY plane and finally the third cell parameter, c, is a vector in XYZ space. The variables
es, €5 and eg are the shear strains between YZ, X7 and XY planes respectively. We apply both
positive (stretch) and negative (compression) strains. Thus in total we perform 12 simulations

for each crystal. Next, by using least square method, we minimize

(0 — o) — Cij (ei — &) (4.2)

where o7 and €] are residual stress and residual strain respectively, and (e; — €]) is the applied
strain. In this way, the uncertainty in Cj; values will be minimized with enhanced overall
accuracy. Choosing the correct magnitude for the applied strain is critical. Sufficiently small
strains are needed to ensure that elastic constants are within the linear theory of elasticity, but
this will require higher precision accuracy in calculating the total energy and forces on each

atom. This is computationally very expensive, and therefore there is a trade-off between the
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Partial charges “ Siintra | Caintra ‘ Cainter H Ointra | Ow I Hy
interlayer distance 11 A || +2.24 [ +1.66 | +1.72 -1.2 | -0.88 | +0.44
interlayer distance 14 A || +2.24 | +1.66 | +1.72 -1.2 -0.8 | +04

Table 4.1: Partial charges for tobermorite ( hamid structure ) Ca/Si=0.83 at the interlayer
distance of 11 A and 14 A . The subindices " inter", "intra" and "W" refer to interlayer,
intralayer and water respectively.

desired level of accuracy and computational time. In practice it has been shown that 1% strain
is sufficiently accurate for calculating elastic constants [172, 88]. Thus we use £0.01 for all
strains and let the system relax after each strain because electronic vibrations are coupled to
ionic motions. Once we obtain the elastic constant tensor we invert it to obtain the compliance
tensor by S;; = Cigl, where the first three diagonal terms of the compliance tensor, S11, S22, S33,
represent the inverse of the Young’s modulus in the corresponding X, Y and Z directions,
respectively.

In order to calculate the partial atomic charges (Table 4.1), we performed variational static
calculations at the Hartree-Fock (HF) approximation (without a posteriori account for electron
correlation effects) using the CRYSTAL code developed for solid state applications [178]. Mul-
tielectron wave functions are described by linear combination of crystalline orbitals expanded
in terms of Gaussian-type basis sets. Considering the system size, we have chosen the 6-31G*
split valence basis set for O [28] and the standard 6-21 G for H. Ca and Si species are described
by Barthelat and Durand pseudo potentials respectively as implemented in [178]. Convergence
parameters were set for a high level of accuracy (ITOL1 = ITOL2 = ITOL3 = 5, ITOL4 =
6, ITOL5 = 11). Atomic partial charges were determined following the Mulliken partitioning
scheme. This provides an easy way to characterize the type of bonding schemes (covalent,
iono-covalent, coulombic) that are in action.

DFT at its current state of development does not yield accurate van der Waals dispersion
forces [77, 140]. In C-S-H models, the interlayer interactions are dominated by coulombic forces
rather than van der Waals dispersion forces [119]. Thus the predicted interlayer interactions for
C-S-H models should not be affected by this issue. In this work, we used Jmol [75] to create 3D
visualizations of the crystal structures. In what follows,we present the computational results in

two separate Sections: Elastic and Inelastic regimes.
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[ Cell parameter [ a (A) Tb (A) [ ¢ (A) [ o (deg) | B (deg) | v (deg)

tobermorite 14 A Experiment 6.735 | 7.425 | 27.987 90 90 123.25

Cas SigO16 (OH), .7H20 ab initio 6.87 743 | 28.49 89.96 90.05 123.47
Ca/Si=0.83 Error (%) 2.00 0.13 1.80 0.006 0.004 1.31

tobermorite 11 A (Merlino) Experiment 6.735 | 7.385 | 22.487 90 90 123.25

Cay SigO15 (OH), .5H,0 ab initio 6.80 7.51 | 22.572 | 89.83 89.05 123.43
Ca/Si=0.67 Error(%) 1.00 1.70 0.38 0.18 1.00 0.15
tobermorite 9 A Experiment 11.156 | 7.303 | 9.566 101.08 92.83 89.98

Cas SigO16 (OH), ab initio 11.211 | 7.389 | 9.710 | 102.65 92.54 89.75
Ca/Si=0.83 Error (%) 0.49 1.17 1.5 1.55 0.28 0.25

tobermorite 11 A (Hamid) Experiment 6.69 7.39 | 22.779 90 90 123.49

Cag Sig015.2H20 ab initio 6.60 7.40 | 23.13 90.00 90.00 123.62
Ca/Si=1 Error(%) 1.4 0.08 1.5 0 0 0.11

tobermorite 11 A (Hamid) Experiment 6.69 7.39 | 22.779 90 90 123.49

Cas SigO16 (OH), .2H,0 ab inito 6.708 | 7.373 | 22.54 90 90 123.71
Ca/Si=0.83 Error (%) 0.27 0.22 1.00 0 0 0.18

tobermorite 11 A (Hamid) Experiment 6.69 7.39 | 22.779 90 90 123.49

Cay SigO14 (OH), .2H,0 ab inito 6.898 | 7.371 | 22.153 90 90 124.64
Ca/8i=0.67 Error (%) 3.10 0.24 2.74 0 0 0.9

jennite Experiment 10.575 | 7.265 | 10.931 | 101.3 96.98 109.65

Cag SigO15 (OH)4 .8H;0 ab inito 10.702 | 7.342 | 10.891 | 102.11 95 109.82
Ca/Si=1.5 Error (%) 1.2 1.06 0.36 0.8 2.0 0.16

Table 4.2: First-principles calculation of cell parameters for the tobermorite family and jennite.

4.2 Results for Elastic Regime

4.2.1 Cell Parameters and Elastic Constants

In this Section, we focus on structural data at equilibium and mechanical properties within the

elastic regime. Table 4.2 shows the cell parameters for the studied C-S-H models (6 tobermorite

polymorphs and a jennite polymorphs) obtained by first-principles calculations. Compared to

experiments, the average error of these results is typically smaller than 1%, and the maxi-

mum error is approximately 3% for tobermorite 11 A (Hamid) Ca/Si=0.67. This error may

stem partly from 0 K temperature conditions used in first-principles calculations versus room

temperature in experiments, and may also be due to the fact that the final stress components

during the course of relaxation are not exactly zero. Thus it is expected that there could be

small residual stresses that disturb the equilibrium lattice parameters.
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: Tobermorite (Merlino) Tobermorite (Hamid, 11 A) Jennite

Elastic constant (GPa) || 14 A] 11 AT 9 A [ Ca/Si=1 | Ca/Si=0.83 | Ca/Si=0.67 || Ca/Si=1.5
Ci 77.60 | 116.95 | 169.15 || 148.25 131.95 102.65 100.1
Cia 35.90 | 45.83 | 54.48 63.25 48.30 41.68 26.85
Cis 20.18 | 27.88 | 37.45 26.75 23.15 27.70 32.03
Cia 0 0 -1.05 0 0 0 1.30
Chs 0 0 -8.90 0 0 0 1.45
Ci6 3.08 | 03 2.7 6.63 -6.55 1.25 3.30
Co 104.5 | 126.10 | 169.95 || 138.35 128.30 125.05 45.70
Cos 26.3 | 46.20 | 36.15 32.55 30.63 18.83 4.40
Coa 0 0 3.55 0 0 0 7.35
Cas 0 0 -11.75 0 0 0 -6.20
Cas -1.75 | -14.93 | -1.08 1.85 -10.98 -4.10 -3.18
Css 32.05 | 126.35 | 92.70 68.40 83.85 83.80 59.15
Css 0 0 2.60 0 0 0 -1.30
Css 0 0 -3.45 0 0 0 1.40
Css 3.03 | -9.35 | 0.60 -1.73 -8.58 -3.38 0.07
Cus 24.5 | 30.20 | 40.60 32.75 26.00 22.90 21.95
Cus -9.43 | -11.10 | 0.43 -1.93 -8.35 -11.93 -1.73
Cus 0 0 -5.48 0 0 0 -1.6
Css 14.65 | 20.75 | 17.85 25.65 21.75 23.25 21.00
Css 0 0 -1.85 0 0 0 2.73
Ces 38.10 | 44.35 | 45.65 53.30 49.35 50.20 26.55

Table 4.3: First-principles calculation of elastic constants for the tobermorite family and jennite.

Table 4.3 summarizes the elastic constants obtained from first-principles calculations. To-
bermorite 9 A and jennite (triclinic crystals) have 21 independent second order elastic constants.
The remaining crystals which are monoclinic have only 13 independent elastic constants [116].
For monoclinic crystals, we assumed that the unique axis is in the direction of the c cell para-
meter.

For tobermorite 9 A, we were able to compare the results with higher k-points sampling (4
k-points with a mesh of 2x2x 1) using Monkhorst-Pack scheme [107]. In this case, the maximum
errors on lattice parameters and elastic constants were less than 0.3% and 2 GPa, respectively.
The use of GGA exchange correlation potentials lead to larger exchange correlation energy and
therefore favor longer bonds. This results in lattice parameters that are overall larger than
experiments, and corresponding elastic constants that are slightly underestimated. On the

other hand, the use of LDA exchange-correlation functions results in overbinding the system.
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As an example, we relaxed the cell parameters and atomic positions of tobermorite with LDA
norm conserving pseudopotentials with cutoff energy of 840 eV for the wavefunctions (twice
as large as that of in the GGA exchange-correlation function) and 3360 eV for the charge
density cutoff. With these large cutoffs, LDA calculations are computationally quite expensive
for the tobermorite systems. However, we were able to obtain the following cell parameters
for tobermorite 11 A (Hamid) with Ca/Si=0.83: a = 6.85 A (2.4%), b = 7.22 A (-2.2%),
c=19.49 A (-14.4%), o = 90.016 deg (0.02%), 8 = 90.016 deg (0.02%) and y = 123.07 deg
(-0.33%). The values in the parentheses indicate the error percentages as compared to the
experimental values. In view of cell parameters, it turns out that the LDA predictions are less
accurate than GGA predictions (see Table 4.2). In particular, for the interlayer direction, the
¢ parameters is shrunk by more than 14% (far beyond the elastic regime) compared to the
experiment. Thus, despite the heavier calculations, the LDA exchange-correlation functions
are not performing well for predicting the long range interlayer interactions for the complex
tobermorite layers. This issue is less pronounced for intralayer interactions, but still the errors
are larger than those calculated by GGA. Analogously, one can verify that this overbinding by
LDA exchange-correlation functions, results in very large (and incorrect) elastic constants for
tobermorite. Indeed, with 14% shrinkage in the interlayer space, the tobermorite is beyond
the fracture point and since all the cell parameters are coupled together, calculating the elastic
constants with this interlayer distance becomes pointless. Increasing the energy cutoffs in LDA
would decrease the errors to some extent, however, the computational costs become prohibitively

expensive.

4.2.2 Hinge Deformation Mechanism in Tobermorite 9 A and 11 A

In this section, via classical rotation of the compliance tensors [116] we focus on the Young’s
modulus along any arbitrary direction. This enables us to identify the critical directions of
a crystal where the softest or stiffest Young’s moduli are located. While we performed this
analysis for all crystals, here we only report the findings for tobermorite 11 A.

Because tobermorite minerals have layered structures, it is expected intuitively that the
softest direction is perpendicular to the layers and hence parallel to the interlayer direction.

This is the case for tobermorite 14 A with the interlayer stiffness C33 = 32 GPa which is about
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18% of the average intralayer stiffness. However, when the interlayer distance is decreased to
11 A or less, in contrast to this conjecture, we find that the interlayer direction is not always

the softest direction. For tobermorite 11 A, there are two possible structural forms:

Hamid Structure:

In Hamid structures, it is hypothesized that the layers are not connected through covalent
bounds, instead the layers interact via long range coulombic forces [118]. To validate this
hypothesis, we calculate the atomic charges at different interlayer distances. Table 4.1 shows
that the average partial charges for tobermorite Ca/Si=0.83 at the interlayer distance of 11
A and 14 A remain unchanged (except for a small redistribution of partial charges in water
molecules due to the different adsorption sites). Thus pulling the layers apart does not involve
any covalent bond breakage. Otherwise, the partial atomic charges should have been changed
upon stretching and bond breakage. Hence, there exists no covalent bonds in between the
layers; instead long range coulombic forces form the interlayer interactions. As an example,
Fig. 4-1(a) shows a unit cell of tobermorite 11 A (Hamid) with Ca/Si=0.83. In Fig. 4-1(b) the
sphere with the unit radius represents directional Young’s modulus for this structure. In view
of 4-1(b), it turns out that the interlayer directions is not the softest direction and there are
two inclined soft regions (blue areas on the sphere).

Considering table 4.3, in tobermorite 11 A (Hamid) with Ca/Si=0.83, the coulombic inter-
layer interactions - which results in Cs3 ~ 83 GPa - are now comparable to the iono-covalent
intralayer interactions (Ci1,Ca2 ~ 130 GPa). However, this requirement does not necessarily
make two inclined soft regions in layered structures. Fig. 4-2 shows the top views for different
isomorphs of tobermorites 11 A (Hamid type) with Ca/Si=0.67, Ca/Si=0.83 and Ca/Si=1.
These three isomorphs of Hamid structures are formed by adding (removing) an interlayer Ca
and removing (adding) two protons. It is interesting to note that by increasing Ca/Si ratio,
the two inclined soft regions (blue regions) shift towards the interlayer direction. Therefore at

Ca/Si=1, the interlayer direction becomes the softest direction.

In order to investigate this later effect further, we quantify the total coulombic energy in the
interlayer direction for each isomorph. To do so, we identically increase the interlayer distance

for each Ca/Si ratio and relax the structure using DFT method. This allows us to monitor the
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Figure 4-1: Tobermorite 11 (Hamid) Ca/Si=0.83. (a) Fully relaxed unit cell. Pink pyramids
are silicon tetrahedra; green ribbons are calcium polyhedra; red circles are oxygen atoms and
white circles are hydrogen atoms. (b) Young’s modulus in any arbitrary direction. Any point
on the sphere with the unit radius represents the tip of a unit vector which is drawn from the
center of the sphere (intersection of the three crystal planes). The surface of the sphere covers
all possible 3D arbitrary unit vectors.
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Figure 4-2: Top views for Tobermorite 11 (Hamid). (a) tobermorite 11 (Hamid) Ca/Si=0.67.
(b) tobermorite 11 (Hamid) Ca/Si=0.83. (c) tobermorite 11 (Hamid) Ca/Si=1. Any point on
the spheres with the unit radius represents the tip of a unit vector which is drawn from the
center of the spheres (intersection of the three crystal planes). In this figures, two of the crystal
planes are perpendicular and are not seen. The surface of the spheres cover all possible 3D
arbitrary unit vectors.

change in total coulombic energy for each case. For a 0.3 A interlayer displacement, the change
in Ewald corrected coulombic energy for Ca/Si=0.67, Ca/Si=0.83 and Ca/Si=1 is respectively
1.08 ‘—Avg, 0.78 % and 0.46 % per unit cell for a constant interlayer spacing of 11.076 A.
This indicates that adding extra Ca ions (increasing Ca/Si ratio) in the interlayer distance
reduces the contribution of coulombic interlayer interactions and hence shields the long range
interlayer bonds. This eventually leads to shifting the two inclined soft regions to a single

straight interlayer direction (Fig. 4-2).

Merlino Structure:

Figure 4-3(a) shows a side view of the tobermorite 11 A (Merlino) unit cell. The arrows indicate
the direction of the softest Young’s modulus. Fig. 4-3(b) gives a top view of the same unit
cell indicating two equivalent soft regions (blue color). In this case, the interlayer direction is
considerably strengthened by covalent Si-O-Si interlayer bounds, which is due to the presence of
double silica chains (head-to-head connection of bridging tetrahedra). From a structural point

of view, it thus appears as if the unit cell is easier to pull (or push) along the blue regions.
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Therefore, the shared oxygen atom of the double silica chain acts as a hinge, and the entire set
of upper and lower atoms can pivot around this point. This is illustrated in Fig. 4-3(a) by a
blue and black arrows.

Similar to tobermorite 11 A (Merlino), there are covalent interlayer bonds in tobermorite
9 A which lead to the hinge mechanism. Physically the hinge mechanism implies that atomic
reorientations are preferred over straight bond stretches to achieve the minimum energy. Be-
cause of the covalent interlayer bonds, the strengthening of the interlayer interactions in Merlino
structure is less surprising than those in Hamid structures, and perhaps in consistent with the
common perception.

There are, in deed, hinge deformation mechanisms in tobermorite (Hamid) with Ca/Si=0.67
and Ca/Si=0.83 (but not for Ca/Si=1). However, unlike tobermorite 11 A (Merlino), since
there are no interlayer covalent bonds in Hamid structures, no particular atom acts as a hinge

point. Instead a chemical site in the interlayer space becomes the center for such mechanism.

4.2.3 Averaged Elastic Properties

To compare with measurements of elastic properties of C-S-H gels, it is useful to characterize the
single-crystal level elastic properties. We use the Reuss-Voigt-Hill approximation [60, 130, 167]
to calculate the bulk modulus, K, shear modulus, G and average Young’s modulus, E. One
can also relate K and G to the plane-stress modulus M, which is accessible for example by
indentation techniques based on the Hertz theory contact solution [48, 148]. In the isotropic

case, M relates to the bulk and shear modulus (X, G) of the indented half-space by:

IK+G

M =A4G3 776

(4.3)

Table 4.4 provides the values of the average elastic properties for tobermorite and jennite and
Fig. 4-4 shows the average properties as a function of the density. Accurate nanoindentation
experiments performed on C-S-H, indicates M ~ 63 GPa for solid C-S-H phases (Table 3 in
reference [27], table II in [160]). They somewhat relate to M values for tobermorite 14 A and
jennite (M ~ 56 GPa). This confirms earlier hypotheses [21, 152] that tobermorite 14 A and
jennite are among the best C-S-H analogs (but not with the correct density).

It is interesting to note that tobermorite 14 A and jennite have almost the same values
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Figure 4-3: Tobermorite 11 (Merlino): (a) Side view of : Blue (or black) coupled arrows indicate
the deformation mechanism along the softest Young’s modulus. (b) A top view of directional
Young’s modulus representing two equivalent inclined soft regions. The embedded lines on the
sphere represent the crystal directions in (a) and are not drawn to scale. Any point on the
sphere with the unit radius represents the tip of a unit vector which is drawn from the center
of the sphere (intersection of the three crystal planes). In this figure, two of the crystal planes
are perpendicular and are not seen. The surface of the sphere covers all possible 3D arbitrary
unit vectors.
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Tobermorite (Merlino) Tobermorite (Hamid, 11 A) Jennite

14 AJ11 AT 9 & [ Ca/Si=1] Ca/Si=0.83 | Ca/Si=0.67 | Ca/Si=1.5

GPa) || 35.91 | 66.65 | 71.42 60.84 53 52.68 31.83

(
(GPa) [ 20.61 | 32.03 | 37.18 || 35.97 32.56 20.81 21.96

(GPa) || 55.64 | 90.59 | 103.03 96.31 88.44 80.77 56.26

(GPa) || 51.90 | 82.82 | 95.06 90.14 82.29 75.23 53.55

Table 4.4: Reuss-Voigt-Hill average of the elastic constants for the tobermorite family and
jennite obtained from first-principles calculation.
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Figure 4-4: DFT calculations for bulk modulus, K, shear moduli, G and indentation modulus

M versus density for the studied minerals. The bar indicate Reuss and Voigt approximations
for K and G.

for all average elastic properties. This is of some importance, since it has been noted that the
C-5-H gel at an early stage resembles tobermorite 14 A, while it resembles jennite after a period
of months or years [21, 152].

Having the atomic coordinates for each deformation, we can compute the average directional
bond strain in Ca-O, Si-O and O-H in each of X, Y and Z directions. Figure 4-5 shows that
average directional bond strains have following common characteristics:

First, in all crystals under constant strain of 1%, Ca-O bond strains are greater than Si-O
bond strains, indicating that Si-O bonds are much stronger than Ca-O bonds. Note that while
the total applied strain is 1%, each individual bond strain can in general be larger than 1%.
Second, for tobermorite 14 A and jennite, O-H strains are always greater than correspond- 7

Ing strains in other minerals under study. This indicates a structural role of O-H bonds in
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these two C-S-H analogs which have large amount of water molecules in the interlayer distance.
The large values of the O-H strains in jennite and tobermorite 14 A indicate that the wa-
ter molecules act as a weak bridge in the interlayer bond connecting adjacent layers, that is
Si(OH)—H20— Si(OH). These water molecules are part of the crystal-chemistry of the mineral
and are not bulk water; that is, they are attached to the layers and can not freely move in the
interlayer space. This is analogous to the studies of state of water in Portland cement pastes

[157).

4.2.4 Effect of Ca/Si ratio on Elasticity

Although we showed an excellent agreement between experimental indentation modulus, M,
performed on C-S-H with those obtained from DFT calculations on tobermorite 14 A and jen-
nite, there are major differences in chemical compositions between the two. C-S-H has an
average Ca/Si ~ 1.7 whereas for jennite Ca/Si = 1.5 and for tobermorite 14 A this ratio is
Ca/Si = 0.83. Here, we investigate systematically the effect of Ca/ Si ratio on C-S-H crystals.
Later in Chapter 8, we complement this study over a wide range of Ca/Si ratios on a variety
of combinatorial C-S-H systems. In what follows, we use Hamid tobermorite, which is syn-
thetically established to exist with three different Ca/ Si without a major change in its layered
structural form [58].

While the cell shape is overall unchanged, addition of each Ca ion in the interlayer distance
of tobermorite removes two hydrogen atoms of two hydroxyl groups to make the cell neutral
[58]. This has an advantage that these ratios are experimentally validated [58] and since the
overall layered structure does not change, one can carefully monitor the direct effect of the
additional interlayer Ca ions. Figure 4-6 shows that by increasing Ca/ Si ratio from 0.66 to 1,
all averaged elastic properties increase linearly (except Poisson’s ratio which remains constant
~ 0.26). This is due to the additional in-plane bonding that the the extra Ca ions make with
Si—O0 groups.

Similar to tobermorite 11 A, tobermorite 14 A and jennite have single silica chains with
flanking bridging tetrahedra in the interlayer distance. Thus, increasing Ca/ Si ratio in tober-
morite 14 A and jennite, most likely forms similar bonds and increases linearly the averaged

elastic properties. In the case of tobermorite 14 A, these elastic properties at Ca/Si ~ 1.7
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Figure 4-5: Average bond strains in Ca-O, Si-O and O-H for different C-S-H crystals. Applied
strain on all crystals is 0.01: (a) average bond strains in X direction; (b) average bond strains
in Y direction; (c) average bond strains in Z direction. In all figures the bar symbols indicate

the positive error.
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Figure 4-6: Effect of Ca/Si ratio on K, G, and M for tobermorite (hamid type). The bar error
on K and G indicates the lower (Reuss) and upper (Voigt) bound approximations.

clearly surpass the experimental values of nanoindentation test on C-S-H, however, these crys-
talline minerals (including tobermorite 14 A) have silica chains of an infinite length whereas
experiments and 2° Si (magic angle spinning) MAS NMR studies [24] show that silica chains in
C-S-H have discrete lengths of m = 3n — 1 where n is an integer number. Therefore a finite
(broken) silica chain with less stiffness - compared to an infinite chains - must compensate for

match in elastic properties with nanoindentation on C-S-H.

4.2.5 Effect of Wat/Ca ratio on Elasticity

Another interesting aspect of the C-S-H minerals is their water molecules and their effect
on mechanical properties. Fig. 4-7 shows the general decreasing trend of the averaged elastic
properties of C-S-H crystals versus the ratio of number of water molecules over Ca ions, Wat /Ca.
This is because water molecules shield the coulombic interactions and therefore the layers can’t
feel the presence of the neighboring layers. In this figure, tobermorite 9 A has zero water
molecules, and is the stiffest. Next are the three Hamid tobermorites. Note the single data
points correspond to tobermorite 11 A (Merlino type) which has a double silica chains. These
double silicate chains relate to bridging silicon tetrahedra in which the Si atoms have three
neighboring Si atoms: two intralayer Si atoms and one from the lower or upper layers. This Si
arrangement indicates the presence of Q3 in terms of 2°Si NMR analysis, and are known to form

strong 3D bonds, which in this case link the two adjacent layers by making iono-covalent Si-O-Si
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Figure 4-7: DFT results on the effect of wat/Ca on elastic properties. The single points
correspond to tobermorite 11 A (Merlino) with double silica chains which behaves differently
compared to other minerals with single silica chains (i.e. C-S-H analogous minerals)

bonds in the interlayer direction. As a result, these 3D bonds form a closed network or rings
of 5i-O-5i bonds, which can engulf large number of water molecules without affecting elastic
properties. Among all studied minerals in the present work, tobermorite 11 A Merlino is the
only one with double silica chain and thus it may not be surprising that it behaves differently

compared to other minerals.

4.2.6 Correlation Between Young Modulus and Silica Chain Density

Table 4.5 and Fig 4-8 shows the correlation between the surface density of infinite silica chains in
all studied minerals with Young’s modulus parallel to the axis of silica chains. This correlation
ramps up linearly up to a certain value and then it becomes saturated as it approach the closest
packing density of silica chains. Note also that increasing the Ca/ Si ratio in Hamid tobermorite
structure increases the Young’s modulus linearly. However, it seems that among all studied
parameters in this work, the density of silica chains has paramount effect in determining in-plane
Young’s modulus of C-S-H crystals. Thus given the density of silica chains in other similar C-S-
H minerals (such as hillebrandite C'ag Siz O19 (OH), , Ca/ Si = 2, foshagite, Cag Sig O1¢ (OH),,
Ca/Si = 1.3, nekoite, Cag Sig O15.7H20, Ca/Si = 0.5 and so on), the linear equation on Fig
4-8 can be used to predict the Young’s modulus parallel to their silica axis.

Fig 4-9, 4-10 and 4-11 show the variation of Young’s modulus for all studied minerals in
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Mineral | # of silica chains | ac area (nm?) | chain density (1/nm?) | E (GPa)
tobermorite 14A 4 1.958 2.043 90
tobermorite 11A 4 1.527 2.620 126
tobermorite 9A 4 1.065 3.757 146

T-Hamid Ca/Si =1 4 1.537 2.602 123
T-Hamid Ca/Si = 0.83 4 1.510 2.649 135
T-Hamid Ca/Si = 0.67 4 1.529 2.617 126

Jennite 2 1.161 1.723 45

Table 4.5: Correlation between density of silica chains (number of silica chains per unit area)
with Young’s modulus parallel to the direction of silica chain.

160
R sl |
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S 0/
o 80
W, /, = 85.3x— 95.2
40
0
15 2 25 3 35 4

Number of silica chains per unit area

Figure 4-8: Correlation between density of infinite silica chains (i.e. x parameter on the plot)
and Young’s modulus parallel to the axis of the chains (y parameter).
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all directions in the XZ, YZ and XY planes. Several observations can be obtained from these
plots: i) tobermorite 14 A and jennite are the softest members of the studied minerals, ii) as
discussed earlier, the interlayer direction in some crystals is not the softest direction (note the
variation of the color in Z direction), and iii) the in-plane (XY plane) stiffness is typically

highest among the three planes because all silica chains are in this plane.

4.3 Results for Inelastic Regime

In this Section, by applying incremental strains to the C-S-H crystals, we investigate their
deformation mechanisms and mechanical properties far beyond the elastic regime. In particular,
we apply incremental strains parallel to the softest direction, n, in each crystal. As discussed
in the previous Section, the critical softest direction in tobermorite 14 A and tobermorite 11
A (Hamid with Ca/Si=1), is along the interlayer direction (i.e. ny = 0, ny =0, n, = 1),
while it lies in an inclined plane for other crystals. At each strain, we let the system relax via
DFT calculations with identical convergence parameters as described in 4.1. This relaxation
is important because electronic vibrations are coupled to ionic motions. Next we calculate the
normal stress on the plane whose unit vector is parallel to n. To do so, we first calculate traction
stress vector: here let’s remind for any given stress tensor, o;;, the traction vector, T; = o;n;,
represents the components of the stress tensor on any arbitrary plane whose normal is n. Thus

the normal stress on the plane is obtained by T, = T;.n;.

4.3.1 Cohesive and Repulsive Stresses in C-S-H Crystals

We employ both positive (stretch) and negative (compression) strains and calculate normal
stress T, which corresponds to cohesive (when stretched) or repulsive (when compressed)
stresses (Figs. 4-12 to 4-18). From these plots, one can find the maximum cohesive stress,
oc, and maximum repulsive stress, og that a crystal can withstand prior to failure. Table 4.6
shows that in all studied C-S-H crystals the maximum cohesive stress is always less than the
maximum repulsive stress. The reason lies in efficient atomic arrangement in compression that
leads to maximum atomic packing density within the crystals.

Among all crystals, tobermorite 11 A of Merlino has the largest o¢ and o g because head-
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Figure 4-9: Values of Young’s modulus in XZ plane for tobermorite family and jennite. J
symbol stands for jennite, 14 for tobermorite 14 A, CS1 for tobermorite 11 A (Hamid) with
Ca/Si = 1,CS.8 for tobermorite 11 A (Hamid) with Ca/Si = 0.83, CS.6 for tobermorite 11 A
(Hamid) with Ca/Si= 0.67 and finally 9 indicates tobermorite 9 A. Inset shows tobermorite 14
A and jennite.
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Figure 4-10: Values of Young’s modulus in YZ plane for tobermorite family and jennite. J
symbol stands for jennite, 14 for tobermorite 14 A, CS1 for tobermorite 11 A (Hamid) with
Ca/Si = 1,CS.8 for tobermorite 11 A (Hamid) with Ca/Si = 0.83, CS.6 for tobermorite 11 A
(Hamid) with Ca/Si= 0.67 and finally 9 indicates tobermorite 9 A. Inset shows tobermorite 14
A and jennite.

C-S-H mineral oc (GPa) | or (GPa)
tobermorite 14 A 3 -18.1
tobermorite 11 A 8.7 -47.8
tobermorite 9 A 4.8 -32.6

Tobermorite-Hamid Ca/Si= 1 6.1 -16.6
Tobermorite-Hamid Ca/Si= 0.83 4.3 -16
Tobermorite-Hamid Ca/Si= 0.67 3 -20.6

jennite 4.2 -

Table 4.6: Maximum cohesive and repulsive stresses for two closely related C-S-H crystalline
minerals: tobermorite family and jennite.
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Figure 4-11: Values of Young’s modulus in XY plane for tobermorite family and jennite.J
symbol stands for jennite, 14 for tobermorite 14 A, CS1 for tobermorite 11 A (Hamid) with
Ca/Si = 1,CS.8 for tobermorite 11 A (Hamid) with Ca/Si = 0.83, CS.6 for tobermorite 11 A
(Hamid) with Ca/Si= 0.67 and finally 9 indicates tobermorite 9 A. Inset shows tobermorite 14
A and jennite.
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Figure 4-12: Total energy and cohesive/repulsive stresses for tobermorite 14 A .
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Figure 4-13: Total energy and cohesive/repulsive stresses for tobermorite 11 A (Hamid,
Ca/Si=1). AE is the energy required to create free surfaces.
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Figure 4-16: Total energy and cohesive/repulsive stresses for tobermorite 11 A (Hamid,
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Figure 4-17: Total energy and cohesive/repulsive stresses for tobermorite 9 A
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Figure 4-18: Total energy and cohesive/repulsive stresses for jennite.

to-head connections of the silica chains (double silica chains) make a strong Si-O-Si bonds.
Tobermorite 14 A and tobermorite 11 A (Hamid, Ca/Si=0.67) have the minimum ¢ = 3 GPa.
In tobermorite 14 A, the interlayer distance is larger than those in other crystals. Thus there
are no strong bonds in the interlayer direction. Considering Hamid tobermorite, increasing
Ca/Si ratio from 0.67 to 1, increases the maximum cohesive stress. Because the additional
Ca ions make iono-covalent Ca-O-Si bonds [119] in the interlayer distance and improves the

cohesion.

4.3.2 Uncommon Failure Mechanism in Layered Materials

By elongating the crystals along their softest directions, there will be a point after which the
total energy doesn’t change upon stretching. This point indicates the rupture within the crystal
where the lamella are separated. As these C-S-H crystals have a layered structure, atomic
debonding and rupture must happen within the interlayer distance and create two surfaces in
there. This is the case for tobermorite 14 A. However, when the interlayer space decreases to
11 A, surprisingly rupture happens in the intralayer space where the backbone of the structures
are located (Figs. 4-19 and 4-20 ). This is particularly the case for tobermorite 11 A (Hamid,
Ca/Si=1 and Ca/Si=0.83) and tobermorite 11 A (Merlino).

This surprising new failure mechanism can be explained in the following way: for Hamid
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tobermorite 11 A (Fig. 4-19), the coulombic interlayer interactions are stronger that intralayer
iono-covalent Ca-O-Si bonds. For the case of Merlino tobermorite 11 A, there is less surprise
because the interlayer link formed by the head-to-head connection of silica chains (Si-O-Si
bond) significantly enhances the interlayer coulombic interactions. This result in much stronger
interlayer bonds than any intralayer counterpart within the crystal, hence rupture occurring in
the intralayer space (Fig. 4-20).

In general, the existence of charge layers in these lamella and ionic concentrétion fluctuation
in the interlayer distance relates to these surprising failure mechanisms. More detailed study
and discussion of these parameters on C-S-H gel can be found in [119] and the references therein.
Together with the results of elastic properties in the previous section, it turns out that when
the interlayer distance is such that coulombic interlayer interactions become comparable to the
iono-covalent intralayer interactions, or there is 3D bonding network due to the presence of Q3
298i NMR, new mechanical phenomena happen that are quite out of expectations for layered

materials.

4.3.3 Surface Energies for C-S-H Crystals

Further elongation beyond the rupture point creates free surfaces. The difference between
global minimum energy at equilibrium and final energy when free surfaces are created, AF,
is the required energy to make such free surfaces. As an example, Fig. 4-13 shows AFE for

tobermorite 11 A. Thus one can find the surface energies as

AE

= m (44)

Os

where A, is the area of ab plane. The factor 2 is needed because there are two free surfaces
created. Table 4.7 shows surface energies, for four tobermorite polymorphs. In other crystals,
since the softest directions lay in an inclined axis, the rupture did not create free surfaces but
a somewhat distorted atomic arrangement.

Surface energies indicate that tobermorite 14 A and 11 A require minimum and maximum
energies respectively to separate their lamella and create free surfaces. Although surface energies
can be best approximated by creating supercells, these crystals are relatively large (~70 to

~100 atoms) and the free surfaces do not interact much with each other. Furthermore, DFT
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interlayer distance

intralayer distance

interlayer distance

Figure 4-19: Tobermorite (hamid, Ca/Si=1) (a) a unit cell at equilibrium. Blue spheres rep-
resent Ca, green spheres represent Si, red sphere represent O and yellow spheres represent H
atoms. (b) a unit cell when rupture occurs inside the backbone of the crystal (the intralayer
space). The 3D structures are created by using Xcrysden [79].

calculations of total energies for a C-S-H supercells similar to what we conducted here for a

unit cell is extremely difficult with current computational powers.

4.4 Chapter Summary

In this Chapter, using first-principles calculations we found lattice parameters, elastic con-
stants and cohesive and repulsive stresses for two classes of complex layered hydrated oxides,
tobermorite family and jennite. Carefully post-analyzing the data reveals new deformation and
fracture mechanisms that are quite uncommon for layered materials. For tobermorite 14 A,
the large interlayer distance makes the coulombic interlayer interactions relatively insignificant
compared to the iono-covalent intralayer interactions. In addition, the existence of water mole-

cules as well as Ca ions in the interlayer space shield the coulombic interlayer interactions.
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tetrahedra (Si-O-Si bonds)
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Figure 4-20: Tobermorite (Merlino) (a) a unit cell at equilibrium. Blue spheres represent Ca,
green spheres represent Si, red sphere represent O and yellow spheres represent H atoms. (b) a
unit cell when rupture occurs inside the backbone of the crystal (the intralayer space).

C-S-H mineral [ Surface energy (eV/ AZ)
tobermorite 14 A 0.03
tobermorite 11 A 0.104

Tobermorite-Hamid Ca/Si= 1 0.064
Tobermorite-Hamid Ca/Si= 0.83 0.08
jennite 0.032

Table 4.7: Surface energy for tobermorites
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Thus as expected, the interlayer direction is the softest direction and rupture happens in the
interlayer space.

By decreasing the interlayer distance to 11 A, the long range coulombic interlayer interac-
tions become comparable to the iono-covalent intralayer interactions. This was earlier suggested
through using an empirical force field [119], and in our work is accurately inferred through two

separate analyses:

1. Comparison of the interlayer and intralayer elastic constants:

This analysis showed that when the interlayer and intralayer elastic constant become com-
parable, the softest direction in layered materials is not the interlayer direction anymore.
In this case, the softest directions are two inclined regions that form a hinge mechanism.
By quantifying total coulombic energy in the interlayer direction for different isomorphs
of tobermorite 11 A (Hamid types), we showed adding Ca in the interlayer space shields
the coulombic interlayer interactions, hence shifting the two inclined soft regions towards

a single straight interlayer direction.

Thus, in contract to the common perception that layered materials are soft in layer di-
rection, we found that this is not the case. However, this is not the only requirement and
the existence of interlayer ions and water molecules may shield the coulombic interlayer
interactions. In the case of tobermorite 11 A (Merlino type) and tobermorite 9 A, the
covalent interlayer bonds considerably strengthen the interlayer direction which lead to

hinge (gliding) mechanism.
2. Rupture mechanism

Upon stretching the crystals until rupture along their softest directions, quite surprisingly
for tobermorite 11 A (Hamid, Ca/Si=1 and Ca/Si=0.83) and tobermorite 11 A (Merlino)
the atomic debondings occur in the intralayer space (and not the interlayer space). These
debondings lead to complete failure in the intralayer space by creating two free surfaces in the
backbone of the crystals. This new failure mechanism indicates that the interlayer coulombic
interactions in Hamid and Merlino structures are much stronger than the intralayer bonds. In
the case of Merlino structure, the coulombic interlayer interactions are further enhanced by the

interlayer links (iono-covalent Si-O-Si bonds).
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Finally, the characterization of the structural and mechanical properties of tobermorite
family and jennite led to the following five observations: i) Si-O bonds are much stronger
than Ca-O bonds, ii) HoO molecules in tobermorite 14 A and jennite - compared to other
studied minerals - have a structural role and are part of a Si(OH)—HzO— Si(OH) bridge in
the interlayer distance, iii) increasing the Ca/Si ratio within an unchanged backbone of the
tobermorite Hamid, increases the elastic properties, iv) increasing the Wat/Ca ratio decreases
the average elastic properties for all tobermorite (except 11 A Merlino) family, and v) increasing
the silica chain density per unit area increases the Young modulus parallel to the silica chain
direction.

We now have a wealth of reliable data on the structure, elastic, and strength properties
and deformation mechanisms of a variety of C-S-H crystalline family, which serve as a DFT
benchmark on these complex minerals. We use the results of this Chapter to analyze the
fundamentals sound waves in the next Chapter, and develop a new force field potentials in Part

Iv.
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Chapter 5

Acoustic Properties of C-S-H

Crystals

A full elastic tensor enables a complete analysis of the fundamentals sound waves for an
anisotropic material. In this Chapter, we first focus on directional sound velocities to de-
rive a novel statistical averaging scheme for the bulk modulus, K, and shear modulus, G, for
an anisotropic material. We show our averaging scheme is superior than the classical approxi-
mation methods such as Voigt-Reuss-Hill approximation and Molinary approximation. Second,
by using our DFT results in Chapter 4, we calculate the three fundamental wavespeeds and the

associated polarization vectors at any arbitrary location for tobermorite family and jennite.

5.1 Acoustic Properties of C-S-H Crystals at 0 K

5.1.1 Averaging Methods for Elastic Properties

In mechanics and physics, bulk modulus, K and shear modulus, G, of isotropic materials are
of tremendous use. There are numerous experiments and theoretical derivations based on these
two parameters. For anisotropic materials, since there are more than two elastic constants,
one has to condense the full elasticity tensor components into quasi-isotropic properties in
order to utilize the available experimental data and better conceptualize the complex behavior

of anisotropic materials. Averaging the elastic constants in an old, well-known problem in
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mechanics. Here, we very briefly review two classic averaging schemes that are most commonly

used for anisotropic materials:

Voigt-Reuss-Hill Approximation

This approach is the most common approach based on the Voigt [167] and Reuss [130] routes
that define an upper and lower bound for bulk modulus, K, and shear modulus, G. This
approach employs hydrostatic stress and strains in conjunction with stored energy to estimate
the bounds. The arithmetic mean of Voigt and Reuss bounds is known as the Voigt-Reuss-
Hill (VRH) approximation [60], which is classically used in mineralogy to estimate the elastic
constants corresponding to a random polycrystal.

As shown by Povolo and Bolmaro [121], both Voigt and Reuss models are built using the
invariance of the trace of the 9 x 9 matrix representing the stiffness and compliance tensors,
respectively. This leads to the observation (made by Hill [60]) that the Voigt and Reuss averages
only use 9 of the 21 independent elastic constants. Denoting by Iy = Cj;;; and IT = Cjj;; the
traces (or linear invariants) of tensors Cj;x; and Cjjji, respectively, the Voigt average is obtained
from a comparison of those traces with their corresponding isotropic expressions, leading to:

I

1
Kviogt = 39 (C11 + Ca2 + C33+ 2 (Cr2 + C13 + Ca3)) (5.1)

B -Iy 1

30 =1 (C11 4 C22 + C33 + 3(Caa + Cs5 + Ces) — C12 — C13 — Ca3)  (5.2)

GViogt =

where C;; denotes the Voigt notation of the elastic constants. Applying a similar procedure to
the compliance tensor S;;x; = C;,il, the Reuss average is obtained:

2,

1 _
KReuss = T (S11 + Saz + Szz + 2 (S12 + Si3 + Sa3)) ™ (5.3)

P 15 5.
Reuss (6JF —2J1)  4(S11+ Saz2 + S33 — S12 — S13 — Sa3) + 3 (Saa + Ss5 + Ses) '
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where J1 = Sj;;; and J{ = Sjji; are the corresponding traces of the compliance tensors S
and Sj;i, respectively.

There are two common objections to both Voigt and Reuss averages (and hence to Hill
average): first because it is based on linear invariants of the elasticity tensors, it involves only
9 out of the 21 elastic constants. This may be relevant for simple geometries such as cubic
or hexagonal where most of the elastic constants not considered in the VRH averaging scheme
are zero; it may, however, be of importance for symmetries such as trigonal, monoclinic (e.g.
tobermorite 11 A and 14 A) and triclinic (tobermorite 9 A). Second, Voigt and Reuss derivations
consider orthogonal symmetries and hence are only invariant under orthogonal transformations.
That means that if one considers a crystal whose coordinates is tilted other than right angles, the
VRH results is different values. In other words, the VRH is not completely frame-indifferent (or
so called objective in Continuum Mechanics terminology), hence the physical properties depend

on the location of the observer.

Molinary Approximation

Molinary approximation is another common approximation for elastic constants that is mostly
used for polycrystals [82]. This approach is based on probability distributions and statistical

moments which lead to

02
K = 5.5
Ci11+2C33+ C12 —4C13 (5:5)
2
G - 3¢ (5.6)

2(2C11 + C33 4+ 2C12 + 4Ch3)

with

C? = C33 (C11 + Cr2) — 2C% (5.7)

While Molinary’s approach may resolve the second shortcoming of VRH, it fails to consider
the full anisotropy effect. Hence, both approaches consider identical elastic constants, and their

sole difference is in the combination of them.
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New Statistical Averaging Method for Elastic Constants: Sound Wave Approach

Recognizing the VRH and Molinary’s limitations, Povolo and Bolmaro [121] proposed the con-
sideration of higher order invariants of the elasticity tensors to estimate average elastic con-
stants. While this approach is complex and lacks physical insights, here we derive a simple, yet
efficient averaging scheme based on acoustic tensor analysis in which all the 21 elastic constants
as well as all random orientations contribute to the average quasi-isotropic elastic properties. To
this end, we briefly recall that the principle acoustic wave velocities in an anisotropic medium

are obtained from the eigenvalue-eigenvector problem (see e.g. [29]):

Av =cv (5.8)

where c is the wavespeed, v is the particle-motion direction and A is the acoustic tensor

defined by
A= ln.C.n; Ajp = lniC’ijkml (5.9)
P P

In above, p is the density, C is the fourth order elastic tensor and n is the unit normal
of the incident wave propagation. Equation (5.8) is a eigenvalue-eigenvector problem known
as Christoffel equation [93]. It specifies the propagation velocity and particle-motion direction
(polarization vector) for each plane wave component in space.

Wavespeeds in Eq. (5.8) are the roots of characteristic equation det(A — ¢?1) = 0 where 1
is the second order unit tensor. The symmetry of the acoustic tensor, A, ensures that the un-
derlying eigensystem is well-behaved. Thus we can find three distinctive velocities c3 < ca < 1
associated with three orthogonal directions of particle motions: c¢; represents (quasi) longitu-
dinal sound waves, while co and c3 represent respectively the higher and the lower transverse
sound waves.

By taking the volume average of the three sound waves over all directions, one can obtain:

21 ™
cj = —-1— / Ccy (nz) sin 9d6d¢ (510)
4m Jp=0 Jo=0

These mean velocities represent statistical averages of the longitudinal (Vz, = ¢;) and shear
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velocities, ¢a and ¢3. Taking the mean for the two shear velocities, i.e.

Vg = 02;”33 ‘ (5.11)

and making use of the classical relations between velocities and isotropic properties, we deter-

mine the statistical average of the bulk and shear modulus from:

4
KVl =p (Vg - gVs) (5.12)

GVl = pv2 (5.13)

For an anisotropic material, our new statistical averaging scheme ensures that not only all
21 elastic constants are taken into account but all random directions contribute to the average
bulk and shear moduli. With such an approach, one can thus evaluate the contribution of those
elastic constants not considered in the VRH and Molinary schemes. By way of illustration, in
the next section we show the three fundamental sound velocities for C-S-H crystals along any
arbitrary direction in space. This will greatly simplify the 3D conceptualization of soft and stiff
areas in complex anisotropic materials, hence making our averaging scheme more meaningful.
Later in Chapter 6, we present a detailed numerical example of application of our new averaging
method. The numerical code for the new averaging scheme and 3D visualizations are given in

Appendix B.

5.1.2 Directional Wave Speeds

We use the elastic constants of C-S-H crystals obtained in Chapter 4 along with Egs. (5.8)
and (5.9) to calculate the three fundamental plane waves in each arbitrary direction in space.
Figures 5-1 to 5-7 shows the three fundamental sound speeds for each crystal. The sphere with
unit radius indicates arbitrary directions in space. Several observations can be made from Figs.

5-1 to 5-7, but the following features deserve most attention:

(a) As these crystals are either monoclinic or triclinic [14],[16],[58],{103], the elastic tensor

is anisotropic. Thus, none of these fundamental waves are purely longitudinal or
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Figure 5-1: Directional sound speeds in tobermorite 14 A. (a) maximum sound speed ¢;. (b)
medium sound speed ¢3. (¢) minimum sound speed c3.
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Figure 5-2: Directional sound speeds in tobermorite 11 A. (a) maximum sound speed ¢;. (b)
medium sound speed ¢z. (¢) minimum sound speed c3.
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Figure 5-3: Directional sound speeds in tobermorite 9 A. (a) maximum sound speed c;. (b)
medium sound speed ¢z. (¢) minimum sound speed c3.

6000 7000 8000 3500 4000 4500 3200 3400 3600
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Figure 5-4: Directional sound speeds in tobermorite 11 A (Hamid Ca/Si=1). (a) maximum
sound speed c1. (b) medium sound speed ¢z. (¢) minimum sound speed c3.
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Figure 5-5: Directional sound speeds in tobermorite 11 A (Hamid, Ca/Si=0.83). (a) maximum
sound speed ¢;. (b) medium sound speed ¢p. (¢) minimum sound speed c3.

5500 6000 6500 7000 7500 3800 400 4200 4400 48600 2500 3000 3500
{ b ;N f
¢, (m/s) ce (m/s) cz (m/s)

1.

Figure 5-6: Directional sound speeds in tobermorite 11 A (Hamid, Ca/Si=0.67). (a) maximum
sound speed c¢;. (b) medium sound speed cz. (¢) minimum sound speed c3.
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Figure 5-7: Directional sound speeds in jennite. (a) maximum sound speed c;. (b) medium
sound speed co. (¢) minimum sound speed c3.

(f)

purely transverse.

The direction of maximum velocity in all crystals is almost coincided with the di-
rection of Young’s modulus (and not the stiffness Cj;) calculated in Chapter 4. This

has been shown for tobermorite 14 A as an example in Fig. 5-8.

In tobermorite family, the lowest values of shear velocities are along both the in-plane

and the interlayer directions.

The maximum directional velocity is around 8000 m/s along the in-plane direction of
tobermorite 11 A (Hamid type, with Ca/Si=1) while the average maximum velocity
(average over all directions on the unit sphere) is highest in tobermorite 11 A (Merlino
type). This is because of the overall enhanced elastic properties in 3D due to the

existence of interlayer links (Qs 2°Si NMR).

In all crystals, the magnitude of the medium and minimum velocities are relatively

close as they are both somewhat transverse velocities (not purely).

The minimum directional velocity is around 2000 m/s parallel to the interlayer direc-
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Figure 5-8: Tobermorite 14 A. (a) Directional longitudinal sound speed . (b) Directional Young
modulus. (c) Directional stiffness. The results for parts (b) and (c) are taken from Chapter 4.

tion in tobermorite 14 A. The average minimum velocity is also lowest in tobermorite
14 A. Figure 5-9 shows the average three velocities in each of the crystals as a func-
tion of density. For all three velocities, tobermorite 14 A and jennite have the lowest
average velocity between all crystals. In the case of c3, jennite and tobermorite 9 A
have a very close average minimum velocity. In addition, although tobermorite 9 A
is the stiffest crystal among these minerals (see Chapter 4), the sound velocity is not

maximum due to the interference of density.

5.1.3 Polarization Vectors

For any of the directional velocities of C-S-H crystals calculated in the previous section, one
can find three orthogonal eigenvectors. The real value wavespeeds and orthogonality of particle-
motion directions (polarization vectors) relate to the crystal’s stability. The real value wavespeeds
assures that the fluctuations of energy are spontaneously redistributed in the crystals through

the travelling waves. Otherwise, the energy fluctuations can locally accumulate which tends
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Figure 5-9: Average maximum, medium and minimm velocities for tobermorite family and
jennite.

to shift the crystal from its natural equilibrium. On the other hand, orthogonality of particle-
motion directions ensures that no resonance can occur between two travelling waves. Because
orthogonality requires no energy exchange between orthogonal directions. More detailed dis-

cussion on stability of traveling waves and polarization vectors can be found in [29].

In this work, we studied the polarization vectors associated with the maximum velocity for
all C-S-H crystal in table 4.6. In this case, it turns out that due to the stability of the crystal
structures, the polarization vectors are not always parallel to the directional velocities (as is
the case in isotropic materials). Indeed, they tend to bend over closest areas where the Young’s
modulus is higher. Figure 5-10 schematically shows how this effect takes place. For points A or
C, the directions of maximum velocity and polarization are identical while these directions are
different for point B. The polarization vector for point B, leans towards the in-plane direction.
To clarify, we show this effect for three types of C-S-H crystals (Figs. 5-11, 5-12 and 5-13).
For simplicity, we only show one eighth of the spheres where all components of the polarization

vectors are positive.
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Figure 5-10: Schematic diagram representing the directional velocities (black lines) and their
corresponding polarization vectors (red lines).

For tobermorite 11 A (Hamid, Ca/Si=1), Fig. 5-11(a) shows the direction of maximum
velocity while Fig. 5-11(b) indicates the polarization direction. Identical colors between Fig.
5-11(a) and Fig. 5-11(b) refer to velocities and their corresponding polarization vectors. Sim-
ilar to the schematic illustration in Fig. 5-10, Fig. 5-11(b) shows how the direction of all
polarization vectors (points such as B) are shifted down. Figure 5-12 shows same phenomenon
for tobermorite 11 A (Merlino) where unlike the previous case, the softest direction is not
the interlayer direction, but an inclined axis (blue regions in Fig. 5-12(a)). In this case, as
Fig. 5-12(b) shows the polarization vectors for all the points in the middle (where the Young’s

modulus is the lowest) are shifted towards the sides and the area of the blue region expands.

For jennite, as its crystal structure is different, the direction of the polarization vectors are
different but still the same detour happens in polarization directions due to the crystal stability

condition, that is leaning towards the areas with larger Young modulus (Fig. 5-13).
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Figure 5-11: Tobermorite 11 A (Hamid, Ca/Si=1). (a) maximum directional velocity, (b)
polarization vectors for the maximum velocities in (a). Downward shifting of the wrinkles
represent the change of polarization vectors toward areas with higher Young’s modulus.
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Figure 5-12: Tobermorite 14 A. (a) maximum directional velocity. (b) polarization vectors for
the maximum velocities in (a). Deviation of wrinkles from the center area represent the change
in polariation vectors from soft center regions towards stiff side-areas with higher Young’s

modulus.
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Figure 5-13: Jennite. (a) maximum directional velocity. (b) polarization vectors for the max-
imum velocities in (a). Concentration of wrinkles towards stiff areas represents the change in
the direction of polariation vectors.
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5.2 Chapter Summary

In this Chapter, based on acoustic tensor analysis, we developed a simple, yet efficient averaging
scheme for quasi-isotropic elastic properties. Our statistical approach overcome the shortcom-
ings of classical averaging schemes such as Voigt-Reuss-Hill and Molinary approximation in
that i) it considers all 21 independent elastic constants of an anisotropic material, ii ) is invari-
ant under any arbitrary rotation in space, and iii) it conveniently provides a physical insight
to conceptualize the complex contributions of softest and stiffest directions of an anisotropic
material into quasi-isotropic elastic properties, K, and G. This novel statistical approach is
independent of any length-scale and can be applied to any anisotropic materials spanning from
tiny atomistic crystals to giant structural components.

Next, we presented the three fundamental wave velocities along any arbitrary direction for
tobermorite family and jennite. It turns out that the locations of maximum wave velocity follow
the footprints of the directional Young’s modulus. We showed polarization vectors associated
with the maximum wave velocity tend to be leaned towards areas with higher Young moduli.
This is due to the crystal stability to ensure the integrity of particle motions are maintained.

In Part III, all our focus was on characterization of C-S-H crystals based on DFT calcu-
lations. In the next Part, we turn our attention to Atomistic Simulations methods (MD and
MC) as a means to handle larger C-S-H systems, which enable addressing more realistic C-S-H

phases.
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Part IV

Investigation of C-S-H Phases via

Atomistic Simulations
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Chapter 6

Empirical Force Fields for C-S-H
Gel: Development of CSH-FF

Part III of this thesis was centred around first-principles calculations on C-S-H crystalline
models and their structural and mechanical features. However, C-S-H crystals are not a strict
analog for an amorphous real C-S-H phase. This Part employed the Atomistic Simulation
methods (MD and MC) to tackle larger systems and is composed of three Chapters: The first
Chapter uses the DFT results in Part III to develop a new force field, CSH-FF, customized for
the C-S-H family. Second Chapter focuses on developing a consistent molecular model based
on the most frequently measured local value of Ca/Si. Finally, in the third Chapter CSH-FF
is used in conjunction with statistical mechanics to decode a wide variety of C-S-H molecular
phases across different Ca/Si ratios

In this Chapter, we focus on comparing two common empirical force fields, the simple
point charge ClayFF potential developed for clay minerals and the core-shell potential that are
both widely used in simulating hydrated oxides such as tobermorite. We start by investigating
the predictive capabilities of these force fields against our benchmark DFT results in Part
III. We show that transferability of force fields to analogous hydrated oxides without rigorous
investigations may result in misleading predictions in properties. To overcome the deficiencies
of common force field potentials, we use both structural and elasticity data to develop a new

force field potential, CSH-FF, for hydrated calcio-silicates as an improved version of ClayFF.
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6.1 Introduction

The use of empirical force fields is now a standard approach in predicting the properties of
hydrated oxides which are omnipresent in both natural and engineering applications. The use
of empirical force fields is a common approach in Computational Materials Science or Miner-
alogy. Recently, several attempts have been made to apply this approach to hydrated oxides
[9],[22],[30],[36],[141],[171] including Calcium-Silicate-Hydrate (C-S-H) [97]. Yet progress on the
“atomistic concrete front” has been slow due to uncertainty in the degree of transferability of
empirical force fields used to simulate complex hydrated oxides, such as C-S-H, whose char-
acteristic grain size is beyond the reach of state-of-the-art first principles calculations such as
DFT.

One way to resolve this issue is to benchmark empirical potentials against first principles
calculation results for a selected number of hydrated oxides with relevant chemistry, for which
the atomic structure is well known. In Chapter 4, we presented such first principles results
for tobermorite family and jennite. By comparing results from first principles simulations, we
aim in the present Chapter at evaluating the degree of transferability of empirical potentials
for such complex hydrated oxides. In particular, we focus on two different families of empirical
force fields commonly in use for calcio-silicate minerals: simple point charge models represented
by the ClayFF potential [30] and the core-shell model [45],[46],[47].

In the core-shell model, anion charges are divided between an atomic core (with a positive
charge) and a shell (with a negative charge) such that the sum of these charges is equal to
the formal atomic charge (or to a given partial charge as for oxygen in water for instance).
The com<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>