
Hierarchical Modeling of Structure and Mechanics of Cement Hydrate

by MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAR 2 5 2011
Rouzbeh Shahsavari

LIBRARIES

B.S., Sharif University of Technology (2002) ARCHNES
M.S., McGill University (2004)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2011

U
Signature of A uthor....................................................

Department of CiviFland Envir6fimental
Decem

I- A A

Lngneerng
ber 21, 2010

Certified by......................................... ...
Profe r of Civil and Environmental Engineering

Thesis Supervisor

'I A

Accepted by................................................ .jv

Chairman, Department of Civil
Heidi Nepf

and Environmental Engineering



Hierarchical Modeling of Structure and Mechanics of Cement Hydrate

By

Rouzbeh Shahsavari

Submitted to the Department of Civil and Environmental Engineering on December 21, 2010, in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Civil

and Environmental Engineering

Abstract

With an annual production of more than 20 billion tons a year, concrete continues to be the world's

dominating manufacturing material for a foreseeable future. However, this ubiquity comes with a

large ecological price as concrete stands as the third largest culprit to the torrent of CO2 after

transportation and electricity generation. Despite several decades of studies, fundamental questions

are still unsettled on the structure and properties of the smallest building block of concrete, Calcium-

Silicate-Hydrate (C-S-H). Given the variable stoichiometry and morphology of C-S-H, no accurate

models were ever developed that could link electronic information at one end to the C-S-H molecular

properties at the other end.

This thesis develops a new modeling toolbox that enables unraveling the interplay between structure,
composition, morphology and mechanical properties of this "liquid stone" gel. First, using ab-initio

calculations we characterize the structural and mechanical properties of several mineral analogs of C-
S-H (tobermorite family and jennite). We show tobermorite as a class of layered materials that unlike

the common intuition, is not softest along the interlayer direction. Instead, the mechanically softest

directions are two inclined regions forming a hinge mechanism. This feature sheds light on the

complex mechanics of the realistic C-S-H layers. It occurs when the electrostatic interlayer

interactions become comparable to the iono-covalent intralayer interactions.

Next, to pass information to the next hierarchical level, we start by benchmarking the predictive
capabilities of two commonly used force field potentials for C-S-H minerals against ab-initio
calculations. While both potentials seem to give structural properties in reasonable agreement with
the ab-initio results, the higher order properties such as elastic constants are more discriminating in

comparing potentials with regards to predicting mechanical properties. Based on this finding, we use
ab-initio structural and elasticity data in tandem to develop a new force field potential, CSH-FF, well
customized and substantiated for the C-S-H family. This simple, yet efficient force-field is used in

conjunction with statistical mechanics to analyze a series of molecular C-S-H models. Our simulation

results predict a range of compositions and corresponding mechanical properties of solid C-S-H
molecules that are consistent with real cement paste samples. This confirms our bottom-up multi-

scale approach with the model parameters linked to electronic structure calculations. The

combination of these techniques and findings paves a path toward a predictive computational design

strategy to improve the core properties of cement hydrate while reducing its negative environmental

impact.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Industrial Context

Concrete is the most widely used manufacturing material on the planet. The current worldwide

concrete production stands at more than 20 billion tons, enough to produce more than one cubic

meter of concrete per capita and year. The key strengthening ingredient in concrete is cement.

the production of which expends a considerable amount of energy and contributes to 5-10%

of anthropogenic CO 2 emissions and significant levels of harmful NOx worldwide. On the

other hand, there is no other bulk material on the horizon that could replace concrete as the

backbone material for our societal needs in housing, shelter, infrastructure, and so on. There is

thus a need to rethink concrete for the age of global warming to make it part of the sustainable

development of our societies.

1.2 Research Motivation

Although concrete is considered to be the third largest climate-change culprit outside of trans-

portation and electricity-generation, it is the only sustainable solution for the construction

sector. This is mainly because the concrete raw materials including limestone, sand and aggre-

gate are readily available and affordable practically everywhere. Additionally, its flexible shape.

high compressive strength. fire resistance and high thermal mass make concrete most attractive

for architects., engineers and end-users. Concrete is a highly heterogeneous material presenting
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Figure 1-1: Hierarchical structure of concrete. Image credits: level II from [114]. level III from
[106] and level IV from [81].

different structural features across wide length scales (Fig. 1-1). At a macroscale, concrete is

composed of aggregates, cement and water. At a microscale, the cement paste (mix of water

and cement) itself is heterogeneous and composed of several hydration products, the principal

products being the Calcium-Silicate-lydrates (C-S-H) phases. At a mesoscale. the different

C-S-H phases are a mix of solid particles/lamella and mesopores. At a nanoscale, C-S-H is

made of molecules and nanoporosities in between the molecules.

Though concrete has been in widespread use since the Roman Empire, and has become

recently the focus of a multibillion-dollar industry under pressure to be eco-friendly the inter-

play between the structure, composition and physical properties of its smallest building block.

C-S-H. across different scales is essentially unexplored. This complexity is recognized to stem

from the lack of reliable structures for C-S-H at the fundamental levels. As an example, the

density of C-S-H at the atomistic scale was recently revealed in 2007 [4]. However, the C-S-

H structure has been classically investigated at the micro/macro scale for engineering design

purposes (see e.g.[153]). The complete chemical processes of C-S-H formation including cement



clinker dissociation, precipitation and setting is still unknown. because there were not neither

reliable molecular models of C-S-lI nor accurate enough experimental probes at the atomistic

level to enable such studies.

We will refer to the backbone of the C-S-H structure and its nanopores at the nano level as

solid C-S-H. In contrast, at a scale above, we will refer to the spatial organization of the C-S-H

molecules and mesopores in between them as the mesotexture of C-S-H. Given the characteristic

size of the C-S-H solid (a few Angstroms or nanometers), the classical top-down approach of

engineering research is quite daunting if not impossible. In contrast. here, we will use a bottom-

up approach to explore and build the C-S-TI solid phases, and give perspectives on how to link

their structures to the higher scales. This fundamental approach is crucial to explore the

heart of cementitious materials and upscale their very properties from the atomistic level into

engineering application. For instance, one promising approach derived from analogy to Galileo's

analysis of weight-strength relation is to achieve increased specific strength of this material: the

weight and CO 2 emissions of cement increase with the volume of required material, whereas

the strength increases proportionally to the cross-sectional area. Hence, as one increases the

strength of a material by a factor of X, one reduces the environmental footprint by 1-X-1 for

pure compressive members such as columns. arches and shells, 1-X-2/3 for beams in bending,

and 1-X-1/2 for slabs.

This research aims to answer the following scientific questions: What is the C-S-H backbone

structure? And how do elastic. strength and morphological properties of solid C-S-H relate to

the electronic properties?

1.3 Research Objectives

A comprehensive bottom-up approach is presented to address the scientific questions. The ap-

proach is composed of first-principles calculations, atomistic modeling via Molecular Dynamics

and Monte-Carlo methods. The approach is guided by the following three research objectives:

Objective 1: Develop a benchmark data useful for solid C-S-H via first-principles calculations

on known C-S-H minerals. There are a number of natural minerals that are akin to C-S-H in

terms of chemical composition and structure. We shall study their atomistic structure, interlayer



interactions and elastic properties based on accurate first-principles calculations. This study will

serve as a benchmark for the next objective to calibrate interatomic interaction for molecular

C-S-H phases.

Objective 2: Develop an accurate and efficient force field potential to predict C-S-H atomistic

interactions. Current force field potentials for C-S-H atomistic interactions are either inaccurate

or computationally very expensive to predict C-S-H physical properties. Here. we develop an

efficient force field, CSH-FF, which enables decoding the structure and mechanical properties

of variety of solid C-S-H phases. This development will serve as the prerequisite for the next

objective.

Objective 3: Develop a bottom-np toolbox to scainlessly link the electronic properties of C-

S-H to higher scales. The ultimate goal of this research is to implement the shift of paradigm

in materials science to concrete structures, that is., to pave the path to pass information from

electrons to higher scales.

1.4 Industrial and Scientific Benefits

Associated with the research objectives are impoitant industrial and scientific benefits. They

include:

" Fundamental understanding of the smallest building block of concrete which lay the foun-

dation for achieving never-seen-before mechanical properties.

" Assessment of upscaling various chemical compositions, which impact energy and envi-

ronmental footprints of cement.

" Quick insights on stability and mechanics of incorporation of new eco-friendly elements

as feedstocks into molecular C-S-H phases.

1.5 Outline of Thesis

This thesis is divided into five Parts. The first Part deals with the presentation of the topic.

Part 11 deals with a general introduction to cement and modeling and is composed of

two Chapters. First, Chapter 2 deals with introducing the hierarchical structure of cement



hydrate. This Chapter discusses various mineral analogs of C-S-H and the challenges ahead

for constructing an accurate model that is consistent with the experimental observations at the

nano level. Chapter 3 presents an overview of common multi-scale computational modeling

techniques by summarizing the theories, fundamentals, hypotheses and equations of several

modeling techniques from ab-inito calculations to Atomistic Simulations (Molecular Dynamics

and Monte-Carlo simulations).

Part III focuses on benchmarking several mineral analogs of C-S-H such as tobermorite fam-

ily and jennite via first-principles calculations. In Chapter 4, structural. elastic and strength

properties of these C-S-H mineral are characterized. Then inter/intra layer competitive interac-

tions are discussed, which may lead to uncommon deformation mechanism and fracture features

in C-S-H minerals. Chapter 5 is centred around acoustic tensor analyses of these minerals by

which a new statistical averaging scheme for bulk modulus and shear modulus of anisotropic

materials is derived.

In contrast to Part III. Part IV is devoted entirely to Statistical Mechanics and Atomistic

Simulation methods and is composed of three Chapters. First. Chapter 6 focuses on systematic

comparison of common empirical field fields for C-S-H. Based on the ab-initio results of Part

III., a new simple. yet efficient force-field. CSI-FF, is developed, which is well customized and

substantiated for cementitious materials. Next, in Chapter 7, the first consistent molecular

model of the C-S-H. cCSH. is proposed that is validated against several experiments at the

molecular and atomistic level. Finally, in Chapter 8. the results and concepts of Chapter 6 and

7 are utilized to decode the molecular structure of series of distinct C-S-H phases with realistic

Ca/Si ratios and mechanical properties.

The fifth Part., i.e., Chapter 9, summarizes the results of this study and gives perspectives

on how to link molecular-scale properties to C-S-H mesotexture.



Part II

Introduction to Cement hydrate and

Modeling



Chapter 2

Multi-Scale Model of Cement

Hydrate

The aim of Part II is to give a general background on cement hydrate, and computational

multi-scale modeling techniques. It is composed of two Chapters: The first reviews the current

understanding of hierarchical levels of the cement hydrate and discusses several complexities

observed in C-S-H systems. In particular, this Chapter focuses on different atomistic and mor-

phological models postulated for the C-S-H gel at the nano scale. The second Chapter reviews

several computational modeling techniques that are each appropriate for different length-scale

and physical properties. Together, these two Chapters provide a basis for the comprehensive

investigation of the structure and mechanics of C-S-H minerals and the developments of a new

force field. which enables tackling larger systems in the forthcoming Chapters.

2.1 Introduction

Portland cement concrete is used more than any other man-made material on the planet. As a

consumed material, it is only second after water. On average each person uses more than 3 tons

of concrete a year. Concrete is perhaps the oldest construction material used by humankind.

The first usage of concrete goes back to Egyptian civilization. which used a mix of mortar

in their buildings. But Romans advanced the simple mortar by inventing the first hydraulic

cement from fly-ash and lime. The cement modern history started by John Smeaton in 1754



to repair the Eddystone lighthouse in England. However, the first actual patent of Portland

cement belongs to Joseph Aspdin who set out the combination of limestone, clay, and their

manufacturing process [841.

Nowadays, cementitious materials are the absolute leaders in consumption and investment

in the construction sector. As an example, cement production is currently more than 2.4 billion

metric tons a year. Cement is an infrastructure key commodity whose production and use

is directly correlated with any country's GDP growth. Majority of the cement production is

located in the four BRIC countries with half of the world's production in China. Although

cement has several advantages such as mass availability, low manufacturing cost, high compres-

sive strength over other construction materials, it is considered to be the third greatest culprit

(after transportation and electricity generation) to the climate change by producing 5-10% of

global CO 2 emissions and significant levels of NO., and other harmful particulates. About 60%

of these greenhouse gas emissions comes from decarbonation of raw materials and 40% from

fuel burning at high temperatures. ~ 1500 C, to produce a so called clinker phase that form

cement when mixed with water at room temperature.

Among different types of cement. Ordinary Portland Cement (OPC) is the most common

one. It is produced by heating clays and limestone (CaCO3 ) up to ~ 1500 C, which af-

ter a series of chemical transformations result in a coarse phase clinker. A cement clinker

contains several crystalline phases, the most prominent being Alite (C:3S), Belite (C2 S) and

Tricalcium Aluminate (C3 A). Note that here cement chemistry is used to symbolize S=SiO2.

C=CaO and A=A12 0 3 . When a milled clinker, cement powder. is put in contact with water.

a myriad of chemical reactions. phase transformations, and thermodynamic processes takes

place whose complete details are quite complex due to the large number of involved variables.

The main products of cement hydration are Calcium-Silicate-Hydrate, portlandite. ettringite.

monosulphoaluminates [152] (Fig. 2-1).

In contrast to its ubiquity and common availability, and despite the most people belief, ce-

ment is a complex heterogenous materials with a hierarchical structure. Thus cement research

is. in fact, a multidisciplinary research involving studying the intrinsic nature of chemical reac-

tions of materials to manufacturing process and optimizing the engineering applications. Here.

in this report we focus on the most important hydration product, Calcium-Silicate-Hydrate



Figure 2-1: A magnified image of major cement hydration products. [Courtesy of Dr. James
Beaudoin and Dr. Aalizadeh, National Research Council of Canada].

(C-S-H) that gives cement remarkable mechanical properties.

2.2 Hierarchical Structure of Cement Hydrate

Among concrete ingredients - aggregate, sand, cement and water - cement is the most essential

component. Cement paste (cement mixed with water) is a complex, porous, multi-component

hierarchical material, which plays the role of a glue to bind all ingredients together. In a cement

paste, several crystalline hydration products co-exist with unhydrated clinker particles with dif-

ferent size and shapes, surrounded by the C-S-H gel. Because of the intrinsic heterogeneity from

the random distribution and composition of clinker phases, cement hydrate has different levels

of organization across different scales. Each scale is a random composite with a characteristic

size and pore structure, which together present different structural features.

The multi-scale structure and micormechanical properties of concrete are studied earlier

(see e.g. [26], [162]). In this report, we focus on the hierarchical structure of cement hydrate

from macro to nano scale.

2.2.1 Macro Scale

At the macro scale (> 10- 3m), cement hydrate is usually considered as a homogeneous material

with bulk physical properties and structural characteristics. At this scale, all hydration products
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Figure 2-2: A micrograph of a cement paste with different hydratin products co-existing with the
unreacted clinker particles and pore distribution (Courtesy of Dr. Hamiln Jennings, Concrete
Sustainability Hub, MIT)

and unreacted clinkers particles are present and pores with diameters between 0.1 to 5 mm co-

exist. These pores are usually originated from accumulation of trapped air bubbles during the

hydration process, and are natural hosts for several chemical attack, which contribute negatively

to mechanical properties including strength and durability [101].

2.2.2 Micro scale

At this scale (between 10-3 to 10- 6 m), the heterogeneous structure of cement hydrate mani-

fests itself clearly (Fig 2-2). The most common approach to investigate and study this scale is

electron microscopy technique [125]. Among different cement hydration products, the C-S-H

gel constitutes more than 60% of the volume. At this scale, C-S-H is an amorphous compound,

which encompasses all the other particles/phases. Several morphologies are attempted to de-

scribe the C-S-H structure including: needles, foils, honey-comb, flakes and unshaped grains

[152]. These morphologies are each based on different initial parameters such as water to cement

ratio (w/c) , cement types, hydration stage and available pore size [73],[132].

The most common classification of C-S-H in the light of microscopy images recognizes C-

S-H gel as inner and outer products [20],[53],[84],[135],[152]. The inner product grows radially

towards inside the unreacted product in contrast to the outer product, which grow away from



the boundaries of the anhydrous clinker phases towards the outer space filled with water. The

inner product is denser and more amorphous than the outer product, which form needle types

or fiber-like structures fluxing outward from clinker grains. However, both the inner and outer

products have similar compositions although a few reports point out otherwise by' measuring

larger Ca/Si ratio in inner products [134]. Among different crystalline phases, Portlandite,

Ca(OH) 2 , can reach several micrometers in size, hence clearly distinguishing itself at the micro-

scale cement hydrate. Portlandite can grow with the outer space and in ideal conditions, its

preferred grow direction forms hexagonal plates.

At this scale, the pore structure includes capillary pores or meso pores, which are created

as a result of hydration which displaces the initial cement and water with products and empty

spaces. The higher the w/c, the more porosity. Thus as the hydration advances, the pore

volume decreases and the initial network of connected pores faces a percolation transformation

to creates disconnected pores [19],[74],[101]. Although the capillary pores may reach to 5 pm

in diameter, in well-cured sample they are usually between 10 nm to 50 nm [101].

Under heating or aging, cement hydrate, which is largely composed of Portlandite, C-S-H

gel and reactive Si0 2 entities, all converts to a variety of hydrated Calcium Silicates such as

tobermorite, jennite, afwillite, hillebrandite, foshagite, xonotlite, reyerite, gyrolite and truscot-

tite. This family of C-S-H minerals differ in their atomic structure, Ca/Si ratio and the number

of OH and H2 0 groups [153] and each relates to a real C-S-H phase with different temperature

and hydration conditions.

2.2.3 Meso Scale

As the complex cement hydrate structure passes elegantly through scales, we consider an in-

termediate meso scale, as a bridging scale, which links the nanometers to micrometer features.

Thus it ranges from a few tens of nanometers to less than 1 pm. At this scale C-S-H is the

most prominent phase controlling the majority of cement hydrate properties. Whether C-S-H

is a matrix or a granular particulate material is a controversial subject in cement literature.

However, recent experimental techniques such as accurate nanoindentation probing [27] and

perhaps small angle neutron scattering measurements (SANS) [4] hint towards a granular par-

ticle behavior with (still) unknown shapes, sizes and packing distribution of particles. These



characteristics together with C-S-H particle interactions are still open subjects in the cement

community.

2.2.4 Nano Scale

At this scale, (< 10-9 m) C-S-H pores are intrinsic to the gel structure (so called gel poros-

ity) and significantly control the high surface area, creep, shrinkage and many other physical

processes. But the quantitative characterization of such pore volumes is quite difficult. For in-

stance, water loss measurement by drying the cement paste is flawed by the presence of adsorbed

water [31]. Thus characterization of C-S-H at this scale is not straightforward and several exper-

iments including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM),

Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), SANS, Small An-

gle X-ray Spectroscopy (SAXS), and sorption experiments can not fully elucidate the complex

details of the C-S-H structure [125]. Even after decades of intensive research, understanding

the atomic arrangement of C-S-H gel and properly predicting its mechanical properties is far

from satisfactory. Due to the importance of this scale as the next frontier in cement science,

we discuss C-S-H gel in length in the next section.

2.3 C-S-H Gel

By mixing water and cement, a so-called gelatious phase, C-S-H (Calcium-Silicate-Hydrate),

precipitates as nanoscale clusters of particles which is the primary binding product of cement

hydration [153]. Here cement chemistry notation is used for C=CaO, S=SiO 2 , H=H2 0. C-S-H

is a nonstoichiametric compound and the hyphenated expression refers to different combination

of C, S and H. In 1905, le Chatelier suggested CaO.SiO.Aq as a variable composition for the

C-S-H gel [86]. C-S-H is considered to be the smallest building block of concrete and it is the

principal source of strength and durability in all Portland cement concretes.

As elucidated earlier, due to its complexity, the exact structure of C-S-H gel at the nanoscale

is still unresolved. The insufficient accuracy of microscopic techniques can not explore the small

sizes of the disordered C-S-H gel. Thus indirect approaches are the only available techniques

to investigate the C-S-H. For instance, SANS measurements estimates the average Ca/ Si ratio
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Figure 2-3: TEM images of C-S-H. a) A synthesized C-S-H with Ca/Si=0.9. The layered
strucutre is similar to tobermorite (image from [52]), b) True clusters of C-S-H gel with
Ca/Si=1.7 [ Image credit: courtesy of A. Baronnet, CINaM, CNRS and Marseille Univer-
sit6, France]. Note the difference in Ca/Si ratios and the longer, organized connectivity of the
silica chains in the synthesized C-S-H.

in C-S-H to be 1.7 [4], with local values measured by TEM between -0.6 to -2.3 [175]. High

resolution 29 Si and 170 nuclear magnetic resonance (NMR), X-ray adsorption spectroscopy,

IR spectroscopy and Raman spectroscopy, nanoindentation and gas sorption reveal important

information on C-S-H structures [23],[72],[125]. Figure 2-3 shows a TEM image of the C-S-H

gel.

Even though C-S-H gel is amorphous but it has some short-range order at sub-nanometer

scales. Much of the findings at this level is obtained through comparison with fully crystalline

Calcium-Silicate Hydrate minerals. Different models define C-S-H gel as calcium oxide sheets

connected to silicate chains to form a layered structure. The interlayer space is comprised of

water molecules and ions such as Ca+2 or Na+ 1 [131],[132],[133],[135],[152]. In essence, it is

widely accepted that C-S-H has a layered structure akin mostly to that of tobermorite and

jennite minerals. Variety of experimental techniques are deployed to characterize these C-S-H

layers/chains [125]. Among these methods NMR renders valuable information about the silica

chains. These chains are Wollastonite type or Dreierketten with finite lengths of 2,5,8,..,3n-

1, where n is an integer; hence the minimum length of the repeating unit containing three

tetrahedra (Fig. 2-4). Two of tetrahedra share an oxygen in a dome-type pattern and are called



paired tetrahedra while the third tetrahedron, which is in a different chemical site and its vortex

points out of the calcium layer, is called bridging tetrahedron [131],[132],[152]. Each repeating

unit is an orthosilicic acid group, Si(OH)4 , which has polymerized via condensation reactions to

form the silica chains [95]. In C-S-H gel, the bridging tetrahedron in a Wollastonite chain does

not make a bond (by sharing oxygen on the vortex) with other bridging tetrahedra from an

adjacent layer, and thus is called single silica chain. In a young OPC paste, dimers constitute

most of the chains but the chain length continue growing. For a 23 year old OPC cement

paste, the mean silica chain length is reported 4.8 [139]. Richardson et al, proposed a growth

model to explain the discontinuous silica chain lengths (2,5,8, ...) [131], [133], [135], [137]. This

model consider chains growth by accumulation of two dimers via a bridging monomer to form a

pentamer as apposed to forming a trimer via dimer and monomer and so forth. However, such

models are still under development and much of current knowledge on C-S-H at the nanometer

scales comes from natural mineral analogs of C-S-H, which we will describe in the next section.

2.4 Mineral Analogs of C-S-H Gel

There are at least thirty crystalline minerals that are similar in composition to C-S-H [136]. For

instance at standard conditions, afwillite is a thermodynamically C-S-H phase in equilibrium

with water and Portlandite [92]. However, high resolution TEM observations indicate that

C-S-H gel contain tobermorite and jennite-like structures [166], [175].

2.4.1 Tobermorite Minerals

The tobermorite natural minerals have structure and crystal chemistry that are not only appeal-

ing because of their close similarity to C-S-H phases, but they have also potential application

as excellent cation exchangers for nuclear and hazardous waste disposal materials [80]. Tober-

morite group are layered structure and can be classified based on their different basal spacing

as 9.3 A, 11.3 A and 14 A [100] which are usually referred to as 9 A, 11 A and 14 A [15]. This

interlayer spacing distance represents the degree of hydration of tobermorite, which changes by

heating. The thermal behavior of tobermorite and their corresponding synthetic minerals are

studied by various techniques such as electron diffraction, electron microscopy, X-ray diffrac-
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Figure 2-4: a) Top view of a typical tobermorite. b) a side view of a layered tobermorite with
single silica chains. c) a side view of a layered tobermorite with double silica chains. d) [010]
view showing the dangling bridging tetrahedra. Pink pyramids represent silicon tetrahedra and
green ribbons indicate calcium layers.

tion, and NMR solid state spectroscopy [24],[80],[94],[100],[169] [174]. Due to non hydroxylated

oxygen atoms in the bridging silicon tetrahedra, tobermorite layers are negatively charged. But

the overall electroneutrality of the cells is maintained through the existence of interlayer ions

Ca+2

These studies show tobermorite 14 A transforms into tobermorite 11 A by heating up to

80'-100' C. Further heating up to 3000 C for a few hours causes transformation to tobermorite

9 A. Tobermorite 11 A has two different structures: Hamid structure which is a Reitveld refine-

ment that depicts tobermorite as independent layers [58] and Merlino structure which presents

tobermorite as chemically bonded layers [103].

Merlino Structure

In Merlino type tobermorite ( including 14 A, 11 A and 9 A) there are two modular units:

A calcium polyhedra with the smallest repeat unit length of 3.65 A and a Wollastonite chain

with typical length of 7.3 A. Figure 2-4a shows a top view of the connection of silica chains to

calcium ribbon in two equivalent ways shifted by 3.65 A in b crystal direction. The silica chains

are connected to calcium layers from both top and bottom. Figure 2-4b shows a side view of



tobermorite with two layers. The interlayer distance in general contain water molecules and Ca

cations (or other cations) depending on the hydration degree and chemical environment.

If the bridging tetrahedron is dangling in the interlayer distance (Fig. 2-4b) or share an

oxygen with the interlayer calcium ions, then this silica chain is called single silica chain.

Otherwise head-to-head connection of bridging tetrahedra (such as in Fig. 2-4c) forms an iono-

covalent Si-O-Si bond with the upper/lower layeres [119]. This direct interlayer links changes

the 2D layered structure of tobermorite into a strong 3D network by making ring-type structures

along the chains. This form of silica chains is called double silica chain. Figure 2-4d shows a

[010] view of tobermorite and the flanking bridging tetrahedra. Merlino tobermorite 14 A and 9

A have single silica chains while Merlino tobermorite 11 A is comprised of double silica chains.

There are some specimens of tobermorite 11 A that do not shrink to 9 A upon heating and are

called anomalous tobermorite to distinguish them from "Normal" tobermorite which shrink to

9 A. A possible reason for such peculiar behavior has been recently hypothesized in [103]. A

detailed study on natural and synthetic tobermorite minerals and procedures to produce them

can be found in [14] and references therein.

Hamid Structure

This class of tobermorite only belongs to interlayer distance of 11 A and has characteristics

analogous to Merlino tobermorite 11 A but with a main difference that it contains only single

silica chains (i.e. independent layers). Figure 2-5a shows a layer of this tobermorite along

with its side view (Fig. 2-5b). While this backbone layer is structurally unchanged, Hamid

tobermorite can have three different Ca/Si ratios, namely 0.67, 0.83 and 1. This is feasible

by adding calcium cations in the interlayer distance in the following way: for each addition of

calcium cations two protons must be removed from the hydroxyl groups of the layers to ensure

the cell neutrality.

2.4.2 Jennite

Jennite is a rare mineral analogous to C-S-H crystalline tobermorites that is believed to be

closely related to the structure of cement at late stages of hydration process [153]. 29 Si NMR
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Figure 2-5: a) A layer of tobermorite 11 A (Hamid structure) which has single silica chain. b)
its [010] view. Pink pyramids represent silicon tetrahedra and green ribbons indicate calcium
layers.

10.7A

Figure 2-6: a) A layer of jennite shown with a unit cell. b) A [100] view of jennite. Pink
pyramids represent silicon tetrahedra and green ribbons indicate calcium layers.

indicates that it has single silica chains [80] with Ca/Si=1.5. Its crystal structure is solved and

refined in [16]. Similar to tobermorite, jennite losses water upon heating and transform into

another phase called meta-jennite. Unlike the tobermorite family, the bridging tetrahedra of

the silica chains in jennite are connected to the calcium-oxide layers as well. As in tobermorite,

the negatively charged layers in jennite are counterbalanced by Ca+2 ions located in the in-

terlayer space. Fig 2-6a shows a layer of jennite along with its unit cell. Note that the side

distance between silica chains in jennite is around 10.7 A which is much larger than that in all

tobermorite family (about 7 A). Figure 2-6b shows a side view of jennite in the bc plane.



2.4.3 C-S-H type I and II

C-S-H (I) is a result of ill-crystalline product during the synthetic of tobermorite 14 A. Mainly,

the lack of bridging silicon tetrahedra in tobermorite is what is known as C-S-H (I). Thus,

the chains follow the (3n-1) rule and the Ca/Si increases spanning from 0.8 to 1.5 [84], [153].

The X-ray power diffraction patters indicate that the basal spacing in C-S-H (I) decreases with

increasing Ca/Si.

Similarly, under certain thermodynamic conditions and water excess, a second ill-crystalline

product may be formed that is called C-S-H (II). In this product with multiple imperfections

the Ca/Si ratio can reach up to 2. X-ray diffractograms show lattice parameters similar to those

found in jennite. Thus C-S-H (II) is as an disordered version of jennite and/or tobermorite with

finite silicate chains following the 3n-1 rule.

2.5 C-S-H Gel Models

2.5.1 Models for the Atomic Structure

Imperfect version of crystalline minerals such as tobermorite, jennite or portlandite provide a

appropriate framework to propose numerous models explaining the atomic structure of C-S-H.

Two detailed review papers on this subject can be found in [132], [136]. In what follows, we

briefly discuss the main features of these models.

Earlier models used portlandite structure in conjunction with monomeric silicate groups

[57], [145]. Tobermorite models were suggested in 1952 after X-ray power diffraction studies

on hydrated alite pastes [13]. This paper sets tobermorite family as a base for many models

proposed afterwards. However, the main drawback of these models was its low Ca/Si, which

was 0.83 while the average Ca/Si in real C-S-H was around 1.7 (Fig 2-7). Hence, some authors

proposed a model based on a solid solution of tobermorite and portlandite [44], or tobermorite

like layers sandwiched in between the portlandite sheets [76], or tobermorite models with more

Ca+2 and OH- 1 ions in between the layers [83].

Thus, all these models had a higher Ca/Si ratio but their silica chain was either all monomeric

or infinite, neglecting the finite chain lengths of C-S-H gel. To resolve this issue, Taylor sug-

gested to replace partial bridging Si0 2 units with interlayer Ca ions to achieve higher Ca/Si



ratios [154]. Hence, partial chain lengths were created by this approach. Later, other researchers

extended this concept to two versions of C-S-H gel: one based on entirely dimeric silica chains

and the other one based on polymeric silicate chains. Both versions had variable amount of

ions in the interlayer distance to ensure the charge neutrality [149]. About three decades later,

Taylor revised his first model to put forward the possibility of jennite like structures accounting

for large Ca/Si ratios [152].

Perhaps the most general and comprehensive model belongs to Richardson and Groves [131],

[132], [135], [134] who proposed a two-fold classification to clarify C-S-H chemistry. This clas-

sification references so-called tobermorite/jennite (T/J) models on one hand and tobermorite-

calcium hydroxyl (T/CH) models on the other hand. The T/CH class considers models that are

solid solutions of tobermorite layers sandwiching calcium hydroxide, hence providing a means

to achieve a larger Ca/Si ratio than the one of tobermorite. The T/J class considers C-S-H as

an assembly of tobermorite regions followed by jennite domains. While the T/CH class was

found to be relevant for hydrated KOH-activated metakaolin Portland cement, more common

water activated Portland cement pastes can be only partly described by the T/J or the T/CH

approaches.

2.5.2 Models for the Nanostructure and Morphology

So far we have discussed the nature of the atomistic structure of the C-S-H gel as a combina-

tion of disordered tobermorite-jennite like crystals. But how these models grow and rearrange

themselves to develop hardened C-S-H colloids is an important topic, which is still not well

understood. Indeed, there are certain contradictions between the nature of crystalline (from to-

bermorite/jennite models) versus colloidal C-S-H gel at the nano level. The concept of colloidal

nature in C-S-H gel was first introduced in 1909 [105]. Today this model is widely accepted as

descriptive model for the C-S-H gel behavior at the nano level.

Power-and-Brownyard 1948 Model

This model is a benchmark in cement community to quantitatively describe the colloidal struc-

ture of C-S-H gel [122]. It provides an extremely simple model calibrated with water content

and pore volume data. This model estimates an interlayer space of 1.8 nm and a constant
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Figure 2-7: Ca/Si ratio frequency histogram in Portland cement pastes, measured by TEM
microanalyses of C-S-H free of admixtures with other phases [135]. For comparison, the Ca/Si
ratios for tobermorite minerals and jennite are also shown with wide and narrow rectangular
boxes respectively.

porosity of 28% for the C-S-H phase. But now it is well-known that porosity changes during

the hydration period.

Feldmann-Sereda Model

Feldman and Sereda proposed a morphological modification to the Power-Brownyard model to

better explain the nanostructure of C-S-H gel structure [40]. This model depicts C-S-H particles

as a group of a few tobermorite layers with interlaminar water in between them (Fig. 2-8). This

model has the following features: i) The missing of water in between the layers causes the layers

to get closer to each other and create local disorders, ii) free surfaces that are not in contact

with other layers can have adsorbed water iii) the interlayer space varies from 0.5 to 2.5 nm.

This model was rather qualitative than quantitative and was later modified by Daimon el al by

incorporation of some internal pore structures with the pores in between the C-S-H particles

suggested by Feldman-Sereda model [31].



Figure 2-8: Feldman-Sereda model for the C-S-H gel nanostructure. The interlayer waters are
shown by (x) while the physically adsorbed waters are represented by (o) [adapted from [95]].

Jennings Model

Perhaps the most successful model for quantitative consideration of morphology of C-S-H phases

so far is due to Jennings and co-workers who resolved different inconsistent experimental data

on the surface area, density and water contents [66], [155]. This model resolved contradictory

results of the previous works on surface area measurements, i.e samples with the higher surface

area exhibit lower gel porosity [66]. But one would expect the opposite if C-S-H had a single

porosity. One way to resolve this was to consider several densities for the C-S-H gel. Thus new

Specific Surface Area (SSA) measured by SANS [158] together with better interpretation of the

N2 sorption data, resulted in identifying the existence of two different C-S-H types, which differ

only on porosity. However, a model with more than two C-S-H phases could equally justify the

experimental data.

In this model, known as CM-I, the smallest building blocks were spheres with a characteris-

tic radius of ~~1 nm and density ~2.8 g/cm3 . These spheres tend to agglomerate to form larger

structures so called "globules". The new feature of this model was that the globules could pack

in two different ways, known as Low Density (LD) and High Density (HD), which respectively

correspond to the outer and inner products suggested earlier. The parameters of this model

(size, density, porosity) were fitted to an extensive set of experimental data on density, com-

position, surface measurements to obtain globules of approximately 2.5 nm in radius with an

interglobule porosity of #G = 18% and density ~2.4 g/cm3 .(Fig. 2-9). The LD C-S-H and HD
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Figure 2-9: Jennings model of C-S-H, CM-I.

C-S-H were found due to the interglobular porosities of #LD = 37% and HD = 24%, with vari-

able densities depending on the water content, PLD = 1.44 - 1.93 g/cm3 and PHD = 1.75 - 2.13

g/cm 3 . This is, however, inconsistent with the SANS scattering data because there is a large

particle size distribution with an overlap between them. Later Constantidines and Ulm [27]

pointed out that the corresponding packing density (i.e. one minus porosity) of LD C-S-H and

HD C-S-H is in fact very close to the limit packing densities of spheres, namely 77 0.64 for

the random packing density of spheres [35],[64], which relates to LD C-S-H and q 0.74 for

the maximum packing of spheres [146], which relates to HD C-S-H and can be formed via two

ways: the ordered-faced centered cubic (fcc) and hexagonal closed-packed random packing.

Based on the pore structures and surface configurations on LD and HD and the relation

between the SSA measured by SANS with the degree of hydration, the authors suggested LD

C-S-H gel as an appropriate model for the early stages of hydration, and HD C-S-H gel for late



stages of hydration (diffusion). Ulm and coworkers [25], [27], [162] performed extensive nanoin-

dentation experiments on different cement paste samples, which showed a bimodal distribution

of elastic properties, confirming the presence of LD C-S-H and HD C-S-H phases. Their results

were based on extrapolation of elastic properties by correcting for the effect of interparticle

porosity, via particle packing density, r/, and determine the C-S-H particle indentation modu-

lus, mS = E,/ (1 - V2), where Es is the Young's elastic modulus, and vs is the Poisson's ratio.

Recently, Van Damme and Ulm proposed the existence of a third (rare) phase as Ultra High

Density C-S-H [162].

Refinement to the CM-I model was proposed by Jennings and co-workers, after obtaining

a new set of data about C-S-H particles by SANS and SAXS [4],[72]. It was found that the

density of the basic building blocks of C-S-H particles is ~2.604 g/cm3 with an average chemical

formula of (CaO)1. 7 (SiO 2 )(H 2 0)1.s. In the new model, called CM-II, the globules were modified

to include some features of Feldman-Sereda model (i.e tobermorite-jennite like layers) while

the concept of LD C-S-H and HD C-S-H were still present due to the packing of globules. In

this refined model, the water can be in several locations: interlaminar water, which fill the

intraglobule space, or adsorbed water on the surface of globules or interglobules water located

in between the globules (Fig 2-10).

2.6 Chapter Summary

The aim of this Chapter was to present the complexity and levels of hierarchy in cement

hydrate with a traditional top-down zoom going from macro to nano scale. We showed that

the core of the cement hydrate structure is a gelatious phase, so called, C-S-H, which is the

principal source of strength and mechanical properties in all Portland cement concretes. While

many crystal minerals such as tobermorite, jennite, portlandite or their natural or disordered

combinations are postulated as models to explain the different structural pattern and properties

of C-S-H, the structure itself is not fully resolved yet, in particular at the nano scale. Major

inconsistencies lie in the Ca/Si ratio, the length of the C-S-H silica chains, the structure of the

gel-porosity, and also in the intimate local order at the scale of the layers because XRD does

indicate disordered glassy materials compared to tobermorite. Thus, satisfactory prediction of
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Figure 2-10: Refined Jennings model, CM-II, for the C-S-H gel nanostructure (from [4]).

fundamental physical properties such stiffness and strength at the atomistic level is far beyond

the reach.

Several models attempted to shed light on the C-S-H gel morphology and density. Among

others, the concept of various densities and globules stemmed from different porosities and SSA

measurements were the most reliable approach in defining and linking the C-S-H morphologies

to the experimental data. However, exploring the inside of the buildings blocks below the

nano scale remain a formidable challenge, which will most likely have a tremendous impact

on cement science. At this stage due to the insufficient atomistic resolution of experimental

probes, or their prohibitive expenses, the implementation of computational materials science

paradigms into the atomistic structure of C-S-H seems the only viable approach to address

this challenge. In the next Chapter, we will introduce several atomistic modeling techniques,

which will be incorporated in Part III and IV to develop a computational toolbox suitable for

a comprehensive investigation of the C-S-H gel structure and properties.



Chapter 3

Overview of Computational

Modeling Techniques

This Chapter is centered around the most common methods in computational materials sci-

ence that are applicable to cement-based materials. We review the basic hypotheses, theories

and equations of several methods such as first-principles calculations, Molecular Mechanics,

Molecular Dynamics (MD), Monte-Carlo simulations, and coarse graining as a means to study

dynamics and equilibrium properties of a system. Different levels of the theories were employed

and each focuses on solving specific equations within their capabilities. In this Chapter, we also

introduce two commonly used force fields for hydrated oxides, ClayFF and core-shell model.

The force fields and methods presented in this Chapter will be extensively used in the next Parts

where more simulation details for each problem will be given. In particular, first-principles cal-

culations in Part III benchmarks the C-S-H crystal data. MD method in conjunction with

Statistical Mechanics and Monte-Carlo simulation results in realistic molecular C-S-H models

in Part IV.

3.1 Introduction to Atomistic Modeling Methods

Nowadays atomistic modeling of material has become an essential research tool to study various

problems such as organic chemistry, drug design, DNA (un)folding and so forth. One of the

first models applicable to the concept of atoms and molecules was the kinetic theory of gases



developed in the second half of the XIX century by Clausius, Maxwell and Boltzman. Other

than a few simple systems such as ideal gases, this model was unable to calculate the properties

of a real system [42]. In general, the Statistical Mechanics equations can be written but hardly

solved analytically because of the complexity introduced in the interparticle interactions.

The emergence of computers made it possible to numerically solve the Statistical Mechanics

equations. The first use of computers for simulations was carried out in Los Alamos in 1953

to study the interaction of liquids by Monte-Carlo (MC) method [104]. Three years later,

Molecular Dynamics (MD) simulation of hard spheres was reported [2]. These simulations were

based on classical Newtonian Mechanics to describe the atomic behavior. However, earlier in

the past century, Planck, Einstein, Dirac, Pauli, Born, Schrudinger and others showed that

the classical mechanics is not valid at the very small scales and established the framework of

quantum mechanics. Following the previous works, Schrudinger in 1926 discovered a partial

differential equation for the time evolution of the hydrogen atoms. The Schrudinger equation,

named after him, is analogous to the Newton's second law for classical systems. This equation

accurately describes the dynamics of the systems under the size of molecules and atoms and is

based on wave functions that include all the information of a system.

3.2 First-Principles Method

First-principles or the Latin word ab-initio refers to a method that is entirely independent of

any empirical input and is solely based on the electronic properties of a mater. The frontier

between Classical and Quantum Mechanics is defined by the De Broglie Thermal Wave Length

parameter

A = (3.1)
/2ermkbT

In Eq. (3.1), h and kb are the Planck and Boltzman constants, respectively and m and T

are the mass and temperature of the particle. For a given temperature, when the De Broglie

Thermal Wave Length is much less than the interparticle distance, the Classical Mechanics

governs. Otherwise when A is on the order or larger than the interparticle distance, Quantum

Mechanics will dominate. There are different flavors to include the relativistic effects and



electronic correlations but the common platform is as follows: A stationary electronic state

Ti (7) is described by a wavefunction satisfying the time-independent Schrodinger equation

HI' (7)= Ej (7) (3.2)

where H is the Hamiltonian operator and Ej is the system energy at a state i. For a given

system of N electrons and M nuclei, in the absence of external fields, the Hamiltonian can be

written [85]:

H = Te + T +Ven +Vee +Vnn (3.3)

where T and V stand for the kinetic and potential energy of the system and the subscript e , n

refers to electrons and nuclei, respectively. Thus, Te shown the total energy of all electrons and

Ven total potential energy of the all interacting electrons with nuclei, and so on. These energy

terms constitute the total energy of the system of electrons and nuclei and can be written as

Te = 2 VE (3.4)

2-
M

Tn = E - A (3.5)
A=1

N M

Ven = (3.6)
i=1 A=1

N N 1
Nee 1 (3.7)

i=1 j>i

M MM MZAZB 
(3.8)Onn = E E ZAB

A=1 B>A AB

In above equations, ZA is the atomic number of the nucleus A, and r is the distance. The

wavefunction 'I'r (7) is not an observable, hence it doesn't have a physical meaning, but its

square indicate the probability distribution of finding the system at the determinate state i.

Except for a few simple systems, the analytical solution of the Schrudinger equation is



impossible [87]. However, the variational approach provides a convenient path to this end, and

states that for any given trial wave function Wftrial (T), Etrial will only be minimal, (i.e. ground

state energy) if "Wtrial (T-) is the ground state wave energy. Thus the basis of constructing a

wave function is minimizing the system energy as much as possible to get closer to the ground

state energy.

For molecules, the Schradinger equation can be simplified by Born-Oppenheimer approxima-

tion [17], which is mainly based on the assumption that nuclei are much heavier than electrons

and thus move much slower. According to this approximation, the wave function of a system

can be separated into electronic (4e) and nuclear (-1) functions, hence Eq. (3.2) simplifies to

H'4e ( r) (n (7) = Etotai'4e (r7) #P2 ( r) (3.9)

In Eq. (3.9), nuclei are first assumed to be frozen with respect to the motion of electrons,

then the electronic arrangement are studies. In other words, the essence of Born-Oppenheimer

approximation is that electrons can instantaneously adjust to the nuclei positions for any move-

ment.

3.2.1 Density Functional Theory

In the previous Section, the central quantity was the wavefunction, and the information about

the energy and electron density was derived from it. In Density Functional Theory (DFT), the

central quantity is the electron probability density, p (7), itself, as a function of the position

r. The energy, E, is a function of p (') and is written as E[p]. This simply means that

there is a single energy, E, corresponding to the entire function p (r). This notion provides

an alternative to manipulation of wave functions. In fact, stemmed from the Thomas-Fermi

model, Hohenberg-Kohn [61] put DFT on a firm theoretical footing by the two Hohenberg-Kohn

theorems (H-K):

* The first H-K theorem demonstrates that the ground state properties of a many-electron

system are uniquely determined by an electron density that depends on only 3 spatial

coordinates. This theorem can be extended to the time-dependent domain to develop

time-dependent density functional theory, which can be used to describe excited states.



* The second H-K theorem defines an energy functional for the system and proves that the

correct ground state electron density minimizes this energy functional.

Although the H-K theorems prove that the energy functional exist, it does not determine

its form. The exact form of the functional is still unknown and contemporary DFT methods

constitute various approximations to it.

The exact ground state energy functional of an n-electron system reads

E [p] = EKE[P] + ENE[P] + EEH [P] + Exc[p] (3.10)

In Eq. (3.10), the first term is the kinetic energy of the electrons and its functional form is

not known directly. However, by re-introducing the concept of wave function Kohn and Sham

[78] were able to express the kinetic energy of electrons as

EKE [pl = 2m) r 2/; 7 (3.11)

In above, the one-electron orbital, @g (7), are the Kohn-Sham molecular orbitals. They are

related to, but different from, the ground state charge density, TJ (74), introduced in the

previous Section. The @g (-) orbitals are the solutions to the Kohn-Sham Equations discussed

below. The ground state charge density can be obtained from

n

p (-) ) (- )12 (3.12)
1

The second term in Eq. (3.10) is the electron-nuclear interactions:

n ~Zie2
ENE[p] - 2J+ p (Y) di (3.13)

ENE[P] 47rEo Ir - r ;i

where the sum runs over all i nuclei; the | - | is the separation of point r and nucleus

i; 8o is the dielectric constant in vacuum and e is the charge of an electron.

The third term is the classical coulombic energy between the electron densities at point --+

and point b:



f (') P(') -d-- d--EEH[P] = - dd (3.14)
2 47rEo Ir, - r b|I

This term is usually referred to as the "Hartree energy", because it correspond to the

coulombic interactions between average electron densities.

The last term is Eq. (3.10), Exc[p], is the reason the form of the complete functional is not

known. This term modifies the energy to account for the fact that the motion of each electron

is influenced by the motions of all the other electrons. Exc[p] is also a function of the electron

density and is called the Exchange-Correlation energy of the system.

It was mentioned above that the kinetic energy of the electrons is given in terms of the

Kohn-Sham orbitals, # (7), which are found by solving the Kohn-Sham equations:

( h 2 2  n- 1 ) e2

h2 +2 _ ZIe2 ,2_, drdr + VxC ( r)i ( ) = E2me 47rEO r - 
r il 47rEo()r - (7)

(3.15)

where the ej are the orbital energies and the exchange-correlation potential, VxC, is simply

Vxc[p] = 6Exc[p] (3.16)

The Kohn-Sham equations are solved iteratively and self-consistently since the solution,

p ( ), itself is a part of the Hamiltonian on the left hand side of Eq. (3.15). The process

starts by making a guess at the charge densities, often by superimposing the atomic densities.

Assuming a functional form is available for Exc, the electron density can be used to solve Eqs.

(3.15) to give an initial set of Kohn-Sham orbital Vzi (r ). From these orbitals, an improved

electron density can be found via Eq. (3.12), which can then be re-inserted into the Kohn-Sham

equations. This iterative process can be continued until the electron density and Exc have

converged. Then, the total energy can be obtained from Eq. (3.10).

In principle, the process described so far is exact. However, the exact form of exchange-

correlation functional, Exc[p], is unknown and must be approximated. The simplest approxi-

mation is the Local-Density Approximation (LDA), which is based upon exact exchange energy

for a uniform electron gas, which can be obtained from the local values of the electron density



at that point, or from fits to the correlation energy for a uniform electron gas. However, for a

molecule the electronic density is obviously not uniform. Hence, as the refinement of LDA, the

General Gradient Approximation (GGA), uses functional forms that are dependent on both the

local electron density and its gradient at that point.

There are different approaches to obtain the one electron states such as the use of Atomic

Orbitals, Grid Sampling and Plane Waves (PW). In solid states physics, PW are common since

the concept of the periodic boundary condition is indirectly implemented. PW are not only at

nuclei but they are extended in all space to provide the solutions of the Schrudinger equation

for a free electron particle [98]. In this method, each orbital wave function is expressed as a

linear sum of 3D planes waves

Op' (*) ai,k+g .ei(k+g) (3.17)
9

where k, i, g are respectively the wave vector, the imaginary number and the reciprocal lattice

vectors in a periodic cell. In theory, PW are a complete basis set. Thus as the number of planes

waves increases, the basis set approaches the ground state energy. However, their computational

cost can be higher when it comes to accurate results for the core orbitals localized around the

nucleus.

3.3 Molecular Mechanics Method

Molecular mechanics can be used to study small molecules as well as large biological systems

or material assemblies with many thousands to millions of atoms with low computational costs.

There are two main assumptions in Molecular Mechanics:

" The configurational system energy can be calculated as a function of nuclei positions only

with the electrons around them in an optimal distributions [85] through effective simple

analytical functions called "Potential Functions" or "Force Fields".

" The Newtonian mechanics, which allows to study nuclei as classical particles where the

presence of electrons are implicitly incorporated in the definition of particles. In this

case, the temperature is assumed 0 K and equilibrium configuration can be obtained by



minimization of the system energy.

The potential energy of all systems in Molecular mechanics is calculated using force fields.

If the force field parameters describe well the system, the accurate information on structure,

thermodynamic properties and mechanical properties can be obtained. On the other hand, if

the employed force field is not a good representative of the interatomic interactions, then all the

subsequent results may be misleading although seemingly the system may function properly.

Thus, unlike the first principles results, what is usually most taken as a reliable output from

Molecular Mechanics is the general trend of the system versus a particular observation rather

than the actual values of the output.

Furthermore, the set of interatomic functional forms, known as force field, developed to

describe a system, are usually derived based on fitting to ab-initio or experimental results. The

transferability of a force field to other environments is a crucial issue in Molecular Mechanics.

In Chapter 6, we will discuss this issue in detail with two commonly used force fields in C-S-H

systems.

3.3.1 Potential Functional Forms

The system energy in Molecular Mechanics is the sum of all interatomic interactions. The

explicit functional forms between two atoms or a group of atoms are usually chosen based

on physical insights to the nature of covalent or non-covalent bonding between atoms. The

exact parameters of the functionals are fitted to ab initio or experimental results. In what

follows, we briefly review the most common functional forms that are applicable in cement and

cement-related systems. A larger set of general functional forms can be found in [45].

Coulombic Interaction This interaction is mainly essential in ionic solids, and its functional

form for the energy is based on the Coulomb's law:

ucolum = qj (3.18)4 7rEorij

where qj is the partial charge of atom i, 60 is the dielectric constant in vacuum and rij is the

interatomic distance between atoms i and j. Eq (3.18) shows that the energy decays with the



inverse of distance, rij, hence Coulombic interactions are considered long range interactions.

This may cause difficulties in systems with low symmetry when it comes to practical sum of all

Coulombic terms due to he convergence issue. Because the number of ions increases proportional

to the surface of a sphere, 47rr 2 , while the interatomic distance decrease according to -. Hence,

the energy increases rather than decreases. There are different methods proposed to resolve

this issue [42]. Among them Ewald's summation is the most widely used in computations [39]

in which using the Laplace transformation, the Coulomb term is divided into two parts: one

converges rapidly in the real space while the other one is in the reciprocal lattice space.

Dispersive Interaction

Dispersive interactions, also known as London's dispersive interactions or van der Waals in-

teractions, are the second long range interactions [91] and are usually significant in systems

where the Coulombic interactions are not large such as molecular crystals. Dispersive forces

are not due to permanent dipole or induced permanent dipole interactions on the molecules

as in ionic interactions, but are due to time-dependent quantum fluctuations of the electronic

density. It may be imagined that an instantaneous picture of a molecule/solid would show

various arrangements of nuclei and electrons having dipolar and higher multipolar moments

[42]. For spherical atoms, these rapidly varying multipolar moments when averaged over a

large number of configurations would give a resultant of zero. However, at any instant they

would offer electrical interactions with another particle described by a series of terms increasing

with the inverse of the 6th, 8th, 12th, ..nth power of the interatomic distance. However, dipolar

moments are the leading contributors to dispersive interactions and usually the first term of

the series is considered sufficient:

Uis -C (3.19)
i i

where C is a parameter, which can be obtained from fitting.



Repulsive Interaction

At short interatomic distances, repulsive energies arise from overlapping electronic clouds. This

interaction is perhaps easier to imagine compared to dipersive interactions. The most com-

mon functional form to explain such physical interatomic behavior is exponential functions or

terms which are proportional to -1 where m is typically larger than 10. Usually the dispersive

and repulsive interactions are combined to give a single functional form. For example, the

Buckingham functional form is written as

UBcI= Ae ) (3.20)

or Lennard-Jones (LJ) functional from reads

ULJ m C _ OnU =6 (3.21)

where the A, p, C in Eq. (3.20) and Cm, C, in Eq. (3.21) are parameters to be adjusted against

ab-initio or experimental results. These potentials have a minimum at a certain interatomic

distance. Away from this minimum point, the energy increases smoothly and rapidly at long

and short distances. The extension of LJ potential for non-spherical particles is achieved by

the Gay-Burn potential [51] that is much more complicated than simple LJ forms and contains

angle dependence. In this case, the functional form takes into account the aspect ratio of the

particles, 3D directional vector of each particle and several empirical parameters, which must

be fitted via considering the particles in different distances and orientations.

Bonding Interaction

The covalent bonds between a pair of atoms or a group of atoms can be represented by a

functional form known as the More Potential

Ug4' = D [(I - e-a(ri-ro - 1 (3.22)

where ro is the equilibrium bond distance, D is the energy of the bond at ro and a is the

curvature of the potential around the minium equilibrium distance. An alternative functional



form representing directional bonding is the harmonic potential, which penalizes the energy for

any deviations from the optimum distance ro :

1
UHB = KB (r - ro) 2  (3.23)ij 2KB(.3

where KB is the stretching force constant. Since the bonding functional forms describe in

an effective way all the different contributions to the chemical bond, usually the Coulombic

interactions are subtracted within a bonded group.

In some cases, the hybridization of the covalent bonds results in specific shapes, such as

tetrahedra bonds in carbon or silicon. For such cases, the bonding potential must consider

the effect of more than two atoms. Similar to harmonic bonding terms, a three-body potential

representing an angle energy is usually defined by

U/A = KA (0 - 00)2 (3.24)

where 00 is the optimum angle between the three atoms and KA is the bending force constant.

In what follows, we specifically described two commonly used force fields for hydrated oxides.

Rigorous comparison of the prediction capabilities of these force fields will be discussed in

Chapter 6.

3.3.2 Potential Force Fields for Hydrated Oxides

ClayFF Potential

ClayFF is a force field suitable for molecular simulations of hydrated crystalline compounds and

their interfaces with liquid phases [30]. It is based on an ionic-covalent description of metal-

oxygen interactions associated with hydrated phases. To represent water, ClayFF considers the

flexible simple point charge (SPC) water model [12]. In ClayFF, all atoms are represented as

point charges and are allowed complete translational freedom. Metal-oxygen interactions are

based on a simple 12-6 Lennard-Jones potential combined with Coulombic interactions.

The empirical parameters are optimized using known mineral structures. Partial atomic

charges are obtained from cluster and periodic density functional theory, quantum chemical

calculations of simple oxide, hydroxide, and oxyhydroxyle model compounds with well defined



structures. Oxygen and hydroxyl charges vary depending on their occurrence in water molecules,

hydroxyl group and bridging environment. Harmonic terms are included to describe the bond

stretch and bond angle (three-body) terms associated with water molecules and hydroxyls.

The total energy is the sum of coulombic (electrostatic) interactions, short-range interactions

(named as Van der Waals, VDW), and bonded (stretching/angular) interactions:

Etat = Ecoul + EUJ + Estretch + Eangle (3.25)

For proximate intramolecular interactions, the coulombic and VDW interactions are ex-

cluded. The coulombic energy is represented as:

Eco = e2 q 3  (3.26)
47reo rij

The VDW interactions are represented with the conventional 12-6 Lennard-Jones function

that includes the short-range repulsion and the attractive dispersion energy:

ELZJ = D 12 _ 2 ( 6- (3.27)

In Eq. (3.27), Dij are Rij are parameters derived from the fitting of the Clay-FF model

to a number of observed structural property data for oxides, hydroxides and oxy-hydroxides.

The interaction parameters between the unlike atoms are calculated according to the arithmetic

mean rule for the distance parameter, Rij, and the geometric mean rule for the energy parameter

Dij:

Ri R 2 R (3.28)
2

Dij = fDiDj (3.29)

Bond stretching energy is considered between 0 and H of either a hydroxyl or a water

molecule and is described by a simple harmonic term as:

Estretch = K 1 (rij - roij)2 (3.30)



Species Partial Charge (e) D (Kcal/mole) IR (A)
Water Hydrogen (Hw) 0.41
Hydroxyl Hydrogen (Ho) 0.42 -
Water Oxygen (Ow) -0.82 0.1554 3.5532
Hydroxyl Oxygen (Oh) -0.95 0.1554 3.5532
Bridging Oxygen (0) -1.05 0.1554 3.5532
Silicon (Si) 2.1 1.84E-6 3.7064
Calcium (Ca) 1.05 5.03E-6 6.2428

Table 3.1: ClayFF partial charges and nonbonded parameters .

where K1 is twice the force stretching constant and roij represents the equilibrium bond

length, both values taken from the flexible version of the SPC water model [12]. To improve the

description of the vibrational (librational) motion of hydroxyl groups, a bending (three-body)

term is introduced in form of a harmonic relationship:

Eangle Z K 2 (Oijk - Ooijk) 2  (3.31)

where K 2 is twice the force bending constant, 0 ijk is the bond angle for the hydrogen-oxygen-

hydrogen, and 0 oijk refers to the equilibrium bond angle between the three atoms. Table 3.1 and

Appendix A show ClayFF partial charges and other non-bonded potential parameters for species

relevant to C-S-H systems. Note that as shown in Table 3.1, the hydrogens in water molecules

and hydroxyl groups in ClayFF do not have any Lennard-Jones parameters, indicating the

effective character of the approach. Hence, they are considered not to exhibit VDW interactions

with other species since they are assumed to have very small dipole polarizability. However,

they have bond energies within a hydroxyl or water molecule. All the original parameters of

the ClayFF potential are given in Appendix A.

Core-shell Potential

In contrast to the simple point charge force field, the core-shell model uses formal atomic

charges and allows an extra degree of freedom between the core and shell of the anions. While

the components of the total energy is essentially analogous to Eq. (3.25), their particular forms

are different for short range energy ( EU) and bonded energy ( Estretch).

The core-shell model is based on Born model description [45] for ionic and iono-covalent



core

Figure 3-1: The core-shell model for an anion interact via a harmonic oscillator with a spring
constant Kcs.

crystal structures. Point charges interact by means of electrostatic and short range semi-

empirical potential functions. An essential ingredient for the transferability of the core-shell

approach is the use of formal ionic charges for ionic species. As with ClayFF potential, the

electrostatic (Coulombic) interactions are evaluated using the Ewald sum technique expressed

by two convergent series in the real and reciprocal space [39]:

-G2

U rem 27r exp, 7

COU - V G2 qSqj exp (-iG. r y (3.32)
G 23

Uc erf c(ri/2ri,) (3.33)1 2 . ri

where erfc is the complementary error function, G is a reciprocal space vector (G $ 0), qi is

the ionic charge of atom i. V is the volume of the unit cell and 'q a parameter that controls the

division of work between real and reciprocal spaces. Note that i) the total electrostatic energy

now refers to the ionic self-energy given by

N

Uself - -q( )1/2 (3.34)
7r

j=1

that is constant in canonical conditions (fixed number of ions, N); (ii) the choice of 7 controls

the number of G vectors to be chosen for a given convergence accuracy; in this work it was set



Atomic species Core charge (e) Shell charge (e) Coupling constant (eV A2)
Ca 2 -

Si 4 -

H 0.426 -

Oh-0.8 0.86902 -2.29502 74.92

0-2 0.86902 -2.86902 74.92

Ow-0.8 1.25 -2.05 209.45

Hw 0.4 -

Cw 2 -

Table 3.2: coulombic interaction parameters within the core-shell model.

to 10-5 eV [47].

In modeling oxygen in silicate materials, electronic polarizability effects are taken into ac-

count by splitting the anion into two entities: a core and a massless shell, the (formal) ionic

charge (qt q + qc) being shared between these two species [45]. The core and the shell interact

via an harmonic oscillator with a spring constant Kcs (see Fig. 3-1). The shell polarizability

is then expressed by:

Y qs (3.35)
(Kcs + Fs)

where Fs is a force acting on the shell and due to the local environment. During energy

minimization process, the shell is allowed to relax relatively to its core, creating a local in-

stantaneous dipole mimicking ion polarizability. Thus far, the explicit inclusion of polarization

in the core-shell approach is the main difference with core-only potential based-model such as

ClayFF. Table 3.2 shows the atomic charges for cores and shells and the coupling constant.

The short range interactions are described by a Buckingham potential which combine an

exponential repulsive and an attractive dispersive term, Eq. (3.20). When using formal ionic

charges in the case of iono-covalent systems such as silicates, a three body harmonic term similar

to Eq. (3.31) is considered in order to mimic the correct angle O-Si-O distribution. The bonded

0-H interactions in water and hydroxyl are simulated by Morse potential, Eq. (3.22).

All potential parameters used in this thesis are listed in Appendix A in which Cw is the

interlayer calcium species, Ow and Hw are components of water, Oh corresponds to layer oxygen

linked to a hydrogen. "Buck", "Lennard", and "Morse" stands for Bukingham, Lennard-Jones



and Morse potential functions as given above. "Three" denotes three-body interactions in the

form of a harmonic bending term. "Inter/intra" marks the difference between inter and intra

atomic potentials, i.e, when a pair of atoms is defined as chemically bonded, the electrostatic

coulombic interaction is not calculated between them unless otherwise specified (this is the

case for H2 0, see [34] ). All these parameters in core-shell model are optimized to describe

simple crystalline mineral oxides and their surface and water adsorption properties (see e.g.

[22],[34],[171]).

3.4 Statistical Mechanics

There are two very different views of an equilibrium system namely "macroscopic" and "mi-

croscopic". The macroscopic state of a system is defined by a few everyday quantities such

as temperature and pressure, whose magnitudes are measurable and steady in an equilibrium

state. On the other hand, the microscopic state of a system relates to atomic or molecular

state. It is defined, at a given moment, by the properties of the particles in the system (usually

positions and velocities). Even at equilibrium, the microscopic state of a system is a constant

flux, changing from instant to instant as the particles move and interact. The task of Statisti-

cal Mechanics is to relate the chaotic, dynamic, microscopic states of the system to the steady,

everyday, macroscopic states.

The macroscopic state of a gas can be defined by three parameters: the temperature, the

pressure and the volume. The microscopic state of a gas, comprised of N molecules, can, at a

given time, be defined by 6N variable (three positions and three velocities for each molecule).

It is clear that there is a huge loss of information in moving from the microscopic to the

macroscopic description of a system. Hence, Statistical Mechanics is centered on relating the

macroscopic properties to the averages of the microscopic properties.

3.4.1 Ensemble Averages and The Ergodic Hypothesis

Assume a sample of a gas at pressure Pas. As the molecules in the gas bombard the walls of the

container, the pressure, at a given instant, can be calculated from sum of the molecular forces

exerted on the wall divided by the area of the wall container. The molecules strike the wall



with random motions, so the pressure, p, fluctuates with time. If the instantaneous pressure is

averaged over a sufficiently long time, -, then the average value must be both independent of

the starting time and be equal to the observed pressure:

=(n+1)r

- p(t )dt = Pabs (3.36)
St=nlr

where n is any integer number. More generally, if we define some observable property

Fabs, then the macroscopic value is expected to be the long-time average of the instantaneous

microscopic value, F(t). Statistical Mechanics, reposes this observation in terms, not of a time

average, but of an ensemble average.

An ensemble is a large imaginary collection of systems that have different instantaneous

values of some quantity, F, but share the same long-time average value of F. Thus the system

in an ensemble is microscopically diverse, but macroscopically identical. The ensemble average

of a quantity, F, is defined as

< F >= Fj (3.37)
j=1

where N is the number of systems in the ensemble and F is the value of the property in

system j. There are two central postulates in statistical mechanics:

* As the number of states in a system tends to infinity, the ensemble average of a quantity

becomes equal to the long time average of that quantity

Fj(t) = - F(t)dt (3.38)

where N -- oc and T -+ oc

* All possible microscopic states are equally probable.

Thus, if the two postulates are combined, they imply that any isolated system, over a long

time, spends equal amounts of time in all the available microscopic states. This is known as

ergodic hypothesis.



3.4.2 The Canonical Ensemble

In the canonical ensembles, the volume, V, the number of molecules, N, and the temperature,

T, are fixed in each system. The walls surrounding each system are impermeable to molecules

but are perfectly thermally conducting, and the system is surrounded by a fictitious infinite

heat reservoir at temperature T.

To build the model of the ensemble, we take a large number, N, of individual systems, and

couple them together such that the heat can flow throughout. The ensemble is then coupled

to an infinite heat bath at temperature T, which will be the temperature of the ensemble at

equilibrium too. The constraints on the ensemble are the total energy, Et and number of

systems, N, in the ensemble:

ni (3.39)
1

Zn E= Et (3.40)
1

In Eqs. (3.39-3.40), ni refers to the number of individual systems with an identical energy

Ej. There are many different distributions consistent with these constraints, and each appear

with a probability pdis defined by

pdis - ni (.1Pid's =(3.41)

On the other hand, the number of possible ensemble states, Qdis, consistent with a given

energy distribution ni, n2, n3, ... is given by a combinatorial formula

Qdis . (,1 n2 + n3 + --- )! _ N! (3.42)
ni!n2!n3!... I(ni!

Thus, in principle, a formula for a probability of a system in the canonical ensemble having

an energy Ej reads



ZQdisndis
P= NEQ (3.43)

NZQ
dis

It is clear that the above formula requires a sum over a potentially infinite number of

possible energy distributions that are consistent with the constraint. However, this problem

can be solved by allowing N to tend to infinity. It can be shown that at very small values of N,

one energy distribution is considerably more probable than the rest. As N rises, the probability

of the most prevalent distribution rapidly grows, until, as N tends to infinity, the probability

of the most likely energy distribution, Pi",, tends to one. This means that for a system of

macroscopic proportions, there is negligible error in summing Eq. (3.43) only over the single

most probable distribution, and so:

Qdis nyax ra

Pi = max i - 2(

NQdis N (3.44)
N ax N

where nmax is the number of systems with energy Ej in the most probable energy distribution

of the ensemble. This concept is the essence of the Central Theorem in Statistical Mechanics.

The method of undetermined multipliers gives the most probable distribution as

nmax = N exp(-a) exp(- OEj) (3.45)

where a and # are the undetermined multipliers. Substituting Eq. (3.45) into the constraints

on the total number of systems in the ensemble, Eq. (3.39), and the total energy, Eq. (3.40),

gives

exp(a) = exp(-OEi) (3.46)

Ej exp(-#E)

< E >= exp(-Ei) (3.47)

where the < E > is the ensemble average energy. Note that we no longer need the number



of systems in the ensemble, N, as it cancels out. In fact, it can be shown that the ensemble

average of any quantity, F, that depends on the state of the system can be found from

Z F exp(-E (N, V)/kbT)

< F >= Q(N,V,T) (3.48)

where Q(N, V, T) is the canonical ensemble partition function:

Q (N, V, T) - [ exp(-E (N, V)/kbT) (3.49)

3.4.3 The Grand-Canonical Ensemble

The canonical ensembles discussed so far is based on constant total number of particles, N.

However, is some systems, one may need to know the average number of particles as a function

of external conditions. For instance, in adsorption studies one is interested to know the amount

of adsorbed materials as function of the pressure or temperature of the reservoir with which

the system is in contact with. A careful choice of an ensemble can greatly reduce the computa-

tional efforts. In this example, for adsorption studies, a natural ensemble to use in the Grand

Canonical Ensemble (pVT), in which the temperature, volume and the chemical potential, y,

are fixed. The criteria for equilibrium is that the chemical potential and temperature of the gas

inside and outside the adsorbent must be equal, whereas the number of particles can fluctuate

during the simulations [42].

Analogous to the canonical ensemble, there maybe many possible distributions satisfying

the following constraints in a pVT ensemble:

-ni (3.50)
1

EnjEj = Et (3.51)
1

nZ Ni - Ni (3.52)
1



where the Nt is the total number of particles. Once more, the most probable distribution

swamps all the rest as N tends to infinity. The most probable distribution is given by

n" = N exp(-a) exp(-#E) exp(-yNi) (3.53)

where a, # and y are undetermined multipliers. Again a is eliminated and it can be shown

that the probability of a system in the grand canonical ensemble containing Ni particles and

having an energy Ej is:

exp(-E |kbT + NijpkbT)
P, (p, V, T) = EEtV )(3.54)

(pu, VT)

where E(p, V, T) is the grand canonical ensemble partition function:

E(pt, V, T)) = exp(-E/kbT + Nip/kbT) (3.55)

For a more details and discussion on different ensembles and their physical importance, see

[3],[42],.

3.5 The Monte Carlo Method

Monte Carlo (MC) methods are a class of computational algorithms that rely on repeated

random sampling to compute a system property. MC simulation methods are especially useful

in studying systems with a large number of coupled degrees of freedom, such as fluids, disordered

materials, strongly coupled solids, and cellular structures. More broadly, MC methods are

useful for modeling phenomena with significant uncertainty in inputs, such as risk analysis. A

classic use of MC method is in mathematics for the evaluation of definite integrals, particularly

multidimensional integrals with complicated boundary conditions.

Within the context of materials simulations, MC method calculates system properties at the

equilibrium configuration whereas MD can be employed for both the equilibrium configuration

and the dynamical time evolution of the system to get to the equilibrium configuration. Hence,

if only properties at equilibrium are sought, then MC might be more efficient. Additionally,

compared to MD simulations, MC methods are less prone to be stuck behind a energy barrier.



3.5.1 Sampling Schemes

We have seen that the ensemble average, < F >, of a quantity is given by:

< F >=( PF (3.56)
i

One approach to solving this equation would be to generate random molecular configurations

of the system, then calculate the probabilities, and finally < F > . Such a technique is often

known as "naive sampling" and although correct, it does not give good results as most of the

states have low probability. A better sampling scheme would be one in which we could generate

the molecular configurations based on their probability. In other words, the probability of

generating state i is actually given by P. This approach is called" importance sampling" since

each configuration is sampled according to its importance.

3.5.2 The Monte Carlo Method

The means of achieving the importance sampling is to set up an irreducible Markov chain of

states of the system. The quantity of interest is then averaged over the states in the chain,

rather than all possible states. A Markov chain is sequence of states in which each new state,

N, depends only on the current state (M), and belongs to a finite number of possible states.

A Markov chain is characterized by a fixed transition probability for any pair of states, 7 MN

which is the probability of the next state in the chain being N, if the correct states is M. By

defining this quantity for all the pair of states, we build a B x B matrix called the transition

probability matrix, 7r. Since the probability of staying in the same state, or moving to another

state, must adds up to one, the rows of the transition probability matrix must also adds up to

one:

B

S r MN= 1 (3.57)
N

Let us denote the probability of state M occurring in the Markov chain, as pm defined for

example in a canonical ensemble. Finding such a probability for all B states leads to a vector

of probabilities, p. The value of this vector will depend on the values of the 7r. We wish to find



a transition probability matrix such that

pM - PM(N, V, T) = exp(-EM/kbT) (3.58)
Q (N, V, T)

where EM is the energy of state M. Suppose from an initial state M, we generate a new

possible state N. We can then use the appropriate row of the transition probability matrix

to decide whether we move to our new trial state or not. If we repeat the process, we then

generate a Markov chain of states. Now as we move along the chain, we collect the average of

the quantity, F, that we were interested in. It can be shown that the average F, taken over

each of the T states in the chain, converges to the average taken over the limiting distribution

of the chain provided two criteria are met [42]. Firstly, for each state, there is a finite chance

of getting to any other state in a finite number of steps. Secondly, the probability of seeing a

state, N, is the chain must be equal to the sum of the probability of moving from every other

state, M, weighted by the probability of state M :

p MMN _ N (3.59)
M

Metropolis et al. was able to find a transition probability matrix that characterizes a Markov

chain with the ensemble probability of states as it limiting distribution [104]. Setting up such

a chain to calculate F, will result in the ensemble average.

The ir matrix elements derived by Metropolis et al. are given by three equations:

7rMN aMN; PN > PM; M # N (3.60)

7rMN _ MN ; PN < PM; M # N (3.61)
PM

7 r MN IrMN; M = N (3.62)
Nf M

The transition matrix, with elements aMN, is often termed the underlying matrix of the

Markov chain. For the Metropolis transition probability to satisfy Eq. (3.59), the matrix a



must be symmetric. This means that the way we generate trial states should be such that the

probability of generating a trial M -- N is the same as N -- M.

The first equation tells us if the trial state is more probable than (or as probable as ) the

old one (PN > PM), we should make the transition with a probability of aMN. Since this was

the probability of generating this particular trial anyhow, we should accept the transition.

The second equation tells us if the new trial state is less likely than the old one (PN < PM), we

should make the transition with a probability of (aMN PN). Since the probability of generating
PM

the state in the first place was aMN, there should be a (h-) chance to make the transition.
PM

Finally, the third equation indicates that the old state of the system should be taken as the new

state whenever the transition is not made. The Metropolis algorithm outlined above are general

and applicable to any ensemble. In what follows, we illustrate how this efficient algorithm can

be implemented in different ensembles

3.5.3 Canonical Ensemble Monte Carlo

In view of the transition probability matrix, for a canonical ensemble the (mN) can be written:

exp(-EN/kbT)

pN M Q(NV/T) exp(-(EN - EM)/kbT) (3.63)exp( EM/kbT)-
Q(N,V,T)

Note that since the partition function cancels out, this makes the Monte Carlo method very

tractable. In order to ensure we accept a transition with the above probability, the following

acceptance/rejection criteria is helpful [42],[3]

F ((EN -EM)
Pacc =min 1, exp kbT (3.64)

Thus if the energy of the new system is less than the old system (EN < EM), then

exp (-(EN-EM)) is always greater than one, therefore we accept the transition. Physically

this makes sense since the new state is energetically more stable. Otherwise, if EN > EM,

we accept the transition by the probability of exp (EN E) which is less than one. To do

so, we throw a random number between 0 and 1. If the random number is less than or equal

to exp _(EN- E) , we accept the transition, otherwise we reject it. Note that in this way,

even the new trial states with larger energies are likely to be sampled; hence enabling the MC



method to overcome energy barriers once in a while.

3.5.4 Grand Canonical Monte Carlo (GCMC)

To generate a Markov chain in the grand canonical ensemble, two new moves should be added

that generate trial states with differing number of molecules. Thus, at every step in the chain,

we decide at random whether to move a molecule, create a new molecule or destroy an existing

molecule. In order to satisfy the symmetry in the underlying transition matrix, it is required

that the probability of creating a molecules is the same as the probability of destroying it im-

mediately. For a Grand Canonical ensemble, the acceptance/rejection probability in Metropolis

algorithm is much more complex than that Eq. (3.64). It can be shown that for creation of a

new molecule Eq. (3.64) becomes (see [42])

1 V (p - EN(N +1) + EM(N)(6
Pacc m i A(N + 1) keTx(-_ (3.65)

where p is the target (reservoir) chemical potential and N is the number of molecules while

V is the system volume. Similarly, the acceptance condition for "deletion" of a molecule in

pVT ensembles reads (see [42])

A3N (p + Unew(N + 1) - U (N)6)
Pacc = mi 1, N exp ~ kbT (3.66)

3.6 Molecular Dynamics Methods

Molecular dynamics (MD) is a form of computation that allows following interacting atoms

and molecules in time. MD gives the motion of the particles based on the Newton's 2nd law

at finite temperatures. Then, the properties are defined according to the Statistical Mechanics

averages. MD has also been termed "statistical mechanics by numbers" and "Laplace's vision

of Newtonian mechanics" of predicting the future by animating nature's forces [143]. MD,

although constrained by numerical strategies, lets scientists peer into the motion of individual

atoms in a way which is not possible in laboratory experiments. This method elucidates detailed

time and space resolution into representative behaviors in phase space.

For a given system, any state can be entirely described by the positions, q, and momentum,



p, of all the particles within the system.

q =( q'1, Y2, .--, Y'n) (3.67)

P= (P 1, P 2, ---, P n) (3.68)

The two set of vectors, q and p, represent each single point in the phase space whose

evolution trajectory can be tracked. Most of the system thermodynamic properties in MD can

be averaged over different ensembles using q and p. For instance, for a system property, say A,

at equilibrium, the ensemble average reads

< A > = A(q, p)P(q, p)dpdq (3.69)

In Eq.(3.69), P(q, p) is the probability of the system to be at the phase space point (q, p),

and A(q, p) is the system property value at that point.

In MD, all the system properties can be computed from q and p and classical thermodynamic

relations. For example, the temperature can be calculated via equipartition principle

3 1 2
-kBT = -<mU2> (3.70)
2 2

To track the time evolution of the system in MD, one only needs to track the evolution

of the q and p. The time evolution of the particles in MD is based on the classical Newton's

motion equation

Fi = m a2 (3.71)

Here, the De Broglie wave length parameter must be on the order or larger than the inter-

particle distances; hence justifying the choice of classical mechanics. In MD, forces are obtained

from the derivative of the interatomic energies, which are usually described by force field poten-

tials. One can envision implementing quantum calculations in MD simulations. One common

such method is the Car-Parrinello method [18], which is the combination of MD and DFT

calculations where forces are calculated from DFT rather than Molecular Mechanics. Hence,



electronic degrees of freedom are considered as fictitious dynamic variables to solve coupled

equations for both nuclei and electrons.

For large systems, in the favor of computational costs, hybrid quantum mechanics MD are

used to treat part of the system with ab-initio MD and the rest with classical MD. Long MD

simulations are mathematically unstable, generating cumulative errors in numerical integra-

tion that can be minimized with proper selection of algorithms and parameters. This issue is

discussed next.

3.6.1 Integrating the Equation of Motion

To numerically solve the system of partial differential equations in Eq. (3.71), many algorithms

have been proposed [42]. Perhaps the most common algorithm is due to Verlet [165] who

proposed a simple, yet efficient method to integrate Eq. (3.71). In Verlet algorithm, the initial

velocities are usually adjusted to a desired kinetic energy to conserve the zero value of the

momentum. Next, both the backward (t - At) and forward (t + At) Taylor expansion of the

particles coordinates are written around the time step, At, up to the fourth term. Summing

both backward and forward Taylor expansions gives

q(t + At) ~ 2q(t) - q(t - At) + F(t) At 2 i 0 (At4 ) (3.72)

where F, m and t are the forces acting on the particle, mass of the particle and the current

time, respectively. In Verlet algorithm, to calculate the next positions, only the past and current

positions are needed and not the velocities. However, analogous to positions, velocities can be

obtained from the rest of the Taylor expansion for both backward and forward directions:

v(t) ~ q(t + A) - q(t - At) O (At2) (3.73)
2At

From Eqs (3.72) and (3.73), it appears that the numerical error in positions and velocities scales

with At 4 and At 2 respectively.

Alternative algorithms to Verlet include Euler, the Leap-Frog, the velocity Verlet algorithms,

or Predictor-Correction algorithms, which use higher order terms in Taylor expansion. More

details on all these schemes can be found in [42] and the references therein.



3.7 Coarse-Graining Method

At the other end of the multi-scale methods are coarse-grained and lattice models. In coarse

graining method, instead of explicitly representing every atom of the system, one uses "pseudo-

atoms" or "united atoms" to represent groups of atoms. For instance, "united-atoms" employed

in many simulations represent a collection of atoms such as methyl and methylene groups as

a single particle, or large protein systems are commonly simulated using a "bead" model that

assigns two to four particles per amino acid. This is particularly helpful for very large systems

because MD simulations on these systems may require such large computer resources that they

cannot easily be studied by traditional all-atom methods.

Similarly, simulations of processes on long time scales (beyond about 1 microsecond) are

computationally quite expensive. In these cases, coarse-grained models or reduced representa-

tions provide a viable way to tack the problem via the mean field theory to provide an effective

averaged interactions. Examples for coarse graining (CG) methods are discontinuous molecular

dynamics [147] and Go-models [117].

The fitting of the parameters of the coarse-grained models must be done empirically, by

either matching the behavior of the model to appropriate experimental data or to all-atom

simulations. Ideally, through these parameters both enthalpic and entropic effects should be

accounted for in free energy. However, when coarse-graining is performed at higher levels, the

accuracy of the dynamic description of the system may be less reliable. Several coarse-grained

models with different potential functional form have been used successfully to study a wide

range of questions in computational material science, particularly in structural biology.

3.8 Chapter Summary

Introducing several atomistic modeling schemes applicable to the amorphous C-S-H systems

was the aim of this Chapter. We reviewed basic hypotheses, fundamentals and equations of a

variety of methods that are each customized for different length- and time-scales. In general,

as the system size under study becomes larger, the accuracy decreases while the length- and

time-scales both increases. Thus, there is a trade-off on what method to choose although for

very large systems, the ab-initio methods is currently prohibitive.



MC methods that are carefully adjusted for the system ensemble are an efficient approach

to examine the properties of a system near equilibrium. For detailed investigation of dynamical

trajectory of a system before and at equilibrium, MD methods provide useful information,

although the limited time scale of the MD is still a major drawback in rendering realistic

physical observations On the other hand, in favor of time and length scales, coarse-grained

models are useful to condense all the atomistic information of a group of atoms into a single

particle information.

Seamlessly linking different scales to pass information from one to another is a difficult

task. In both force field potentials and coarse-grained models, the challenge remains how to

accurately and reliably parametrize the system functional forms from ab-inito or experimental

data. In the next Part, we will use DFT method to study several C-S-H crystals, and use those

results to parametrize a force field potential in Part IV.



Part III

Benchmarking C-S-H Crystals



Chapter 4

First-Principles Study on Structural

and Mechanical Properties of C-S-H

Crystals

With increasing interests in mineral analogs of C-S-H at the nanoscale, their mechanical proper-

ties are undoubtedly a crucial part of the evaluation and suitability of the interatomic potential

model. This Part benchmarks and evaluates the structural, mechanical and acoustic prop-

erties of several C-S-H crystals that were discussed in Part II. Chapter 4 presents original

first-principles calculations of the structural and mechanical properties of tobermorite family

and jennite minerals. Chapter 5 is devoted to analyzing the fundamental sound waves and

directional velocities of these minerals.

In recent years, with the emergence of improved computational powers, the first-principles

calculations of the mechanical properties of crystalline minerals are now considered as alter-

native routes with respect to experiments [170]. In this Chapter, we comprehensively study

the structure, elasticity and strength properties of several C-S-H crystals based on the DFT

method. This Chapter is divided into three main Sections: Computational Methods, Results

for Elastic Regime, and Results for Inelastic Regime. The results of this Chapter will be used

in Part IV for a force field potential parametrization to be used in MD simulation of the C-S-H

models.



4.1 Computational Methods

Except otherwise stated, all calculations reported in this Chapter are performed by Density

Functional Theory (DFT) [61, 78] using GGA exchange correlation functionals. For energy

and stress calculations, we used ultrasoft pseudopotentials [164] with a plane wave basis set

and a cutoff energy of 420 eV for the wavefunctions and 5035 eV for the charge density, as

implemented in the PWSCF package of Quantum Espresso distribution [11].

Considering first-principles calculations, it is important to ensure that the convergence in

k-point sampling and plane wave energy cutoffs are satisfactory. However, the computational

costs grow exponentially when the system size becomes large, and thus there is a trade-off in

the desired accuracy and the available resources to achieve it. In our study, because the system

sizes were relatively large (=70 to =100 atoms per unit cell) we used gamma-point-sampling of

the Brillouin zone.

Before calculating the mechanical properties, we perform 0 K energy minimizations as

implemented in PWSCF to fully relax the crystals. The importance of obtaining the equilibrium

state is first, to avoid any possible meta-stable state and second to make sure that the current

state is not far from the regions where linear elasticity holds. The latter is in particular the

key in calculating the elastic constants. To achieve equilibrium ground state the following two

criteria are met concurrently: each of the stress components is below 0.5 kbar; each of the X, Y

and Z component of the force on any single atom is below 0.01 eV/ A.

Among mechanical behaviors, calculation of elastic properties is the first and most fun-

damental concern as all the other mechanical behaviors can be derived or related to elastic

constants. Most ambiguity in material's behaviors such as understanding interatomic inter-

actions, phase transition, mechanical stability, internal structure and fracture energy can be

obtained or related to elastic properties.

Once all crystalline minerals have attained relaxed states, we apply strains to the cell co-

ordinates to calculate elastic constants. We use stress-strain approach to calculate the elastic

constants [113], which allows one to obtain second-, third-, and fourth-order elastic constants.

In this method, for each strain, by calculating the stress tensor, one can construct a linear sys-

tem relating stresses to strains. Then by using an orthogonal matrix factorization and the best

least square fit, elastic constants are found. Further details of this technique and its application



to a wide range of ceramics can be found in [172] and references cited therein. The generalized

Hooke's law in linear elasticity is given by

01 C11 C12 C13 C14 C15 C16 eI

2 C22 C23 C24 C25 C26 e2

3  C33 C34 C35 C36 e3 (4.1)

94  C44 C45 C46 e4

5 C55 C56 e5

6 C66 e6

Since the crystalline minerals under investigation are either monoclinic or triclinic, we apply

all 6 strains. By applying any nonzero strain in Eq. (4.1) and calculating stresses, one can

determine a column of elastic constants. Thus by repeating this procedure for all strains we

cover the whole elastic tensor. In this method, off-diagonal components appear twice in the

calculations and to have a better estimate, we take the average of the two equivalent off-diagonal

terms.

As elastic constants are defined in an orthogonal coordinate system, we relate cell parameters

to Cartesian system XYZ (subindex 1 in Eq. (4.1) refers to X axis; 2 to Y and 3 to Z) in the

following way: the first cell parameter, a, is parallel to X axis; second cell parameter, b is in

the XY plane and finally the third cell parameter, c, is a vector in XYZ space. The variables

e4, e5 and e6 are the shear strains between YZ, XZ and XY planes respectively. We apply both

positive (stretch) and negative (compression) strains. Thus in total we perform 12 simulations

for each crystal. Next, by using least square method, we minimize

(ai - a') - Cij (ei - e')| (4.2)

where o and e' are residual stress and residual strain respectively, and (ei - e') is the applied

strain. In this way, the uncertainty in Cij values will be minimized with enhanced overall

accuracy. Choosing the correct magnitude for the applied strain is critical. Sufficiently small

strains are needed to ensure that elastic constants are within the linear theory of elasticity, but

this will require higher precision accuracy in calculating the total energy and forces on each

atom. This is computationally very expensive, and therefore there is a trade-off between the



Partial charges Siintra Caintra Cainter 1Oitra Ow Hw

interlayer distance 11 A +2.24 +1.66 +1.72 -1.2 -0.88 +0.44

interlayer distance 14 A +2.24 +1.66 +1.72 -1.2 -0.8 +0.4

Table 4.1: Partial charges for tobermorite ( hamid structure ) Ca/Si=0.83 at the interlayer

distance of 11 A and 14 A . The subindices " inter", "intra" and "W" refer to interlayer,
intralayer and water respectively.

desired level of accuracy and computational time. In practice it has been shown that 1% strain

is sufficiently accurate for calculating elastic constants [172, 88]. Thus we use ±0.01 for all

strains and let the system relax after each strain because electronic vibrations are coupled to

ionic motions. Once we obtain the elastic constant tensor we invert it to obtain the compliance

tensor by Sij = C31 , where the first three diagonal terms of the compliance tensor, S 1 , S22, S33 ,

represent the inverse of the Young's modulus in the corresponding X, Y and Z directions,

respectively.

In order to calculate the partial atomic charges (Table 4.1), we performed variational static

calculations at the Hartree-Fock (HF) approximation (without a posteriori account for electron

correlation effects) using the CRYSTAL code developed for solid state applications [178]. Mul-

tielectron wave functions are described by linear combination of crystalline orbitals expanded

in terms of Gaussian-type basis sets. Considering the system size, we have chosen the 6-31G*

split valence basis set for 0 [28] and the standard 6-21 G for H. Ca and Si species are described

by Barthelat and Durand pseudo potentials respectively as implemented in [178]. Convergence

parameters were set for a high level of accuracy (ITOL1 = ITOL2 = ITOL3 = 5, ITOL4 =

6, ITOL5 = 11). Atomic partial charges were determined following the Mulliken partitioning

scheme. This provides an easy way to characterize the type of bonding schemes (covalent,

iono-covalent, coulombic) that are in action.

DFT at its current state of development does not yield accurate van der Waals dispersion

forces [77, 140]. In C-S-H models, the interlayer interactions are dominated by coulombic forces

rather than van der Waals dispersion forces [119]. Thus the predicted interlayer interactions for

C-S-H models should not be affected by this issue. In this work, we used Jmol [75] to create 3D

visualizations of the crystal structures. In what follows,we present the computational results in

two separate Sections: Elastic and Inelastic regimes.



tobermorite 14 A Experiment 6.735 7.425 27.987 90 90 123.25
Ca 5 Si6 016 (OH) 2 .7H2 0 ab initio 6.87 7.43 28.49 89.96 90.05 123.47

Ca/Si=0.83 Error (%) 2.00 0.13 1.80 0.006 0.004 1.31

tobermorite 11 A (Merlino) Experiment 6.735 7.385 22.487 90 90 123.25
Ca 4 Si 6O15 (OH)2 .5H 2 0 ab initio 6.80 7.51 22.572 89.83 89.05 123.43

Ca/Si=0.67 Error(%) 1.00 1.70 0.38 0.18 1.00 0.15

tobermorite 9 A Experiment 11.156 7.303 9.566 101.08 92.83 89.98
Ca5 Si6016 (OH)2 ab initio 11.211 7.389 9.710 102.65 92.54 89.75

Ca/Si=0.83 Error (%) 0.49 1.17 1.5 1.55 0.28 0.25

tobermorite 11 A (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca6 Si 6O18 .2H 20 ab initio 6.60 7.40 23.13 90.00 90.00 123.62

Ca/Si=1 Error(%) 1.4 0.08 1.5 0 0 0.11

tobermorite 11 A (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca 5 Si6O16 (OH) 2 .2H20 ab inito 6.708 7.373 22.54 90 90 123.71

Ca/Si=0.83 Error (%) 0.27 0.22 1.00 0 0 0.18

tobermorite 11 A (Hamid) Experiment 6.69 7.39 22.779 90 90 123.49
Ca 4 Si 6O14 (OH) 4 .2H20 ab inito 6.898 7.371 22.153 90 90 124.64

Ca/Si=0.67 Error (%) 3.10 0.24 2.74 0 0 0.9

jennite Experiment 10.575 7.265 10.931 101.3 96.98 109.65
Cag Si6O18 (OH)6 .8H20 ab inito 10.702 7.342 10.891 102.11 95 109.82

Ca/Si=1.5 Error (%) 1.2 1.06 0.36 0.8 2.0 0.16

Table 4.2: First-principles calculation of cell parameters for the tobermorite family and jennite.

4.2 Results for Elastic Regime

4.2.1 Cell Parameters and Elastic Constants

In this Section, we focus on structural data at equilibium and mechanical properties within the

elastic regime. Table 4.2 shows the cell parameters for the studied C-S-H models (6 tobermorite

polymorphs and a jennite polymorphs) obtained by first-principles calculations. Compared to

experiments, the average error of these results is typically smaller than 1%, and the maxi-

mum error is approximately 3% for tobermorite 11 A (Hamid) Ca/Si=0.67. This error may

stem partly from 0 K temperature conditions used in first-principles calculations versus room

temperature in experiments, and may also be due to the fact that the final stress components

during the course of relaxation are not exactly zero. Thus it is expected that there could be

small residual stresses that disturb the equilibrium lattice parameters.

-y (deg)ICell parameter I a ( A) I b ( A) I c ( A) at (deg) 1 3 (deg)



Elastic constant (GPa) 14 A 11 A 7 A Ca/Si=1 Ca/Si=0.83 Ca/Si=0.67 Ca/Si=1.5

C11 77.60 116.95 169.15 148.25 131.95 102.65 100.1

C12 35.90 45.83 54.48 63.25 48.30 41.68 26.85

C13 20.18 27.88 37.45 26.75 23.15 27.70 32.03

C14 0 0 -1.05 0 0 0 1.30

C15 0 0 -8.90 0 0 0 1.45

C16 3.08 0.3 2.7 6.63 -6.55 1.25 3.30

C22 104.5 126.10 169.95 138.35 128.30 125.05 45.70

C23 26.3 46.20 36.15 32.55 30.63 18.83 4.40

C24 0 0 3.55 0 0 0 7.35

C25 0 0 -11.75 0 0 0 -6.20

C26 -1.75 -14.93 -1.08 1.85 -10.98 -4.10 -3.18

C33 32.05 126.35 92.70 68.40 83.85 83.80 59.15

C34 0 0 2.60 0 0 0 -1.30

C35 0 0 -3.45 0 0 0 1.40

C36 3.03 -9.35 0.60 -1.73 -8.58 -3.38 0.07

C44 24.5 30.20 40.60 32.75 26.00 22.90 21.95

C45 -9.43 -11.10 0.43 -1.93 -8.35 -11.93 -1.73

C46 0 0 -5.48 0 0 0 -1.6

C55 14.65 20.75 17.85 25.65 21.75 23.25 21.00

C56 0 0 -1.85 0 0 0 2.73

C66 38.10 44.35 45.65 53.30 49.35 50.20 26.55

Table 4.3: First-principles calculation of elastic constants for the tobermorite family and jennite.

Table 4.3 summarizes the elastic constants obtained from first-principles calculations. To-

bermorite 9 A and jennite (triclinic crystals) have 21 independent second order elastic constants.

The remaining crystals which are monoclinic have only 13 independent elastic constants [116].

For monoclinic crystals, we assumed that the unique axis is in the direction of the c cell para-

meter.

For tobermorite 9 A, we were able to compare the results with higher k-points sampling (4

k-points with a mesh of 2 x 2 x 1) using Monkhorst-Pack scheme [107]. In this case, the maximum

errors on lattice parameters and elastic constants were less than 0.3% and 2 GPa, respectively.

The use of GGA exchange correlation potentials lead to larger exchange correlation energy and

therefore favor longer bonds. This results in lattice parameters that are overall larger than

experiments, and corresponding elastic constants that are slightly underestimated. On the

other hand, the use of LDA exchange-correlation functions results in overbinding the system.

Tober norite (Merlino) Tobermorite (Hamid, 11 A) Jennite



As an example, we relaxed the cell parameters and atomic positions of tobermorite with LDA

norm conserving pseudopotentials with cutoff energy of 840 eV for the wavefunctions (twice

as large as that of in the GGA exchange-correlation function) and 3360 eV for the charge

density cutoff. With these large cutoffs, LDA calculations are computationally quite expensive

for the tobermorite systems. However, we were able to obtain the following cell parameters

for tobermorite 11 A (Hamid) with Ca/Si=0.83: a = 6.85 A (2.4%), b = 7.22 A (-2.2%),

c = 19.49 A (-14.4%), a = 90.016 deg (0.02%), 3 = 90.016 deg (0.02%) and Y = 123.07deg

(-0.33%). The values in the parentheses indicate the error percentages as compared to the

experimental values. In view of cell parameters, it turns out that the LDA predictions are less

accurate than GGA predictions (see Table 4.2). In particular, for the interlayer direction, the

c parameters is shrunk by more than 14% (far beyond the elastic regime) compared to the

experiment. Thus, despite the heavier calculations, the LDA exchange-correlation functions

are not performing well for predicting the long range interlayer interactions for the complex

tobermorite layers. This issue is less pronounced for intralayer interactions, but still the errors

are larger than those calculated by GGA. Analogously, one can verify that this overbinding by

LDA exchange-correlation functions, results in very large (and incorrect) elastic constants for

tobermorite. Indeed, with 14% shrinkage in the interlayer space, the tobermorite is beyond

the fracture point and since all the cell parameters are coupled together, calculating the elastic

constants with this interlayer distance becomes pointless. Increasing the energy cutoffs in LDA

would decrease the errors to some extent, however, the computational costs become prohibitively

expensive.

4.2.2 Hinge Deformation Mechanism in Tobermorite 9 X and 11 1

In this section, via classical rotation of the compliance tensors [116] we focus on the Young's

modulus along any arbitrary direction. This enables us to identify the critical directions of

a crystal where the softest or stiffest Young's moduli are located. While we performed this

analysis for all crystals, here we only report the findings for tobermorite 11 A.

Because tobermorite minerals have layered structures, it is expected intuitively that the

softest direction is perpendicular to the layers and hence parallel to the interlayer direction.

This is the case for tobermorite 14 A with the interlayer stiffness C 33 = 32 GPa which is about



18% of the average intralayer stiffness. However, when the interlayer distance is decreased to

11 A or less, in contrast to this conjecture, we find that the interlayer direction is not always

the softest direction. For tobermorite 11 A, there are two possible structural forms:

Hamid Structure:

In Hamid structures, it is hypothesized that the layers are not connected through covalent

bounds, instead the layers interact via long range coulombic forces [118]. To validate this

hypothesis, we calculate the atomic charges at different interlayer distances. Table 4.1 shows

that the average partial charges for tobermorite Ca/Si=0.83 at the interlayer distance of 11

A and 14 A remain unchanged (except for a small redistribution of partial charges in water

molecules due to the different adsorption sites). Thus pulling the layers apart does not involve

any covalent bond breakage. Otherwise, the partial atomic charges should have been changed

upon stretching and bond breakage. Hence, there exists no covalent bonds in between the

layers; instead long range coulombic forces form the interlayer interactions. As an example,

Fig. 4-1(a) shows a unit cell of tobermorite II A (Hamid) with Ca/Si=0.83. In Fig. 4-1(b) the

sphere with the unit radius represents directional Young's modulus for this structure. In view

of 4-1(b), it turns out that the interlayer directions is not the softest direction and there are

two inclined soft regions (blue areas on the sphere).

Considering table 4.3, in tobermorite 11 A (Hamid) with Ca/Si=0.83, the coulombic inter-

layer interactions - which results in C33 ~ 83 GPa - are now comparable to the iono-covalent

intralayer interactions (C, 022 ~~ 130 GPa). However, this requirement does not necessarily

make two inclined soft regions in layered structures. Fig. 4-2 shows the top views for different

isomorphs of tobermorites 11 A (Hamid type) with Ca/Si=0.67, Ca/Si=0.83 and Ca/Si=1.

These three isomorphs of Hamid structures are formed by adding (removing) an interlayer Ca

and removing (adding) two protons. It is interesting to note that by increasing Ca/Si ratio,

the two inclined soft regions (blue regions) shift towards the interlayer direction. Therefore at

Ca/Si=1, the interlayer direction becomes the softest direction.

In order to investigate this later effect further, we quantify the total coulombic energy in the

interlayer direction for each isomorph. To do so, we identically increase the interlayer distance

for each Ca/Si ratio and relax the structure using DFT method. This allows us to monitor the



Interlay
+-~ Ca

E (GPa)

50 60 70 80 90 100 110 120
2.5,

2,

(er 1. 5

2 2

(b)

Figure 4-1: Tobermorite 11 (Hamid) Ca/Si=0.83. (a) Fully relaxed unit cell. Pink pyramids
are silicon tetrahedra; green ribbons are calcium polyhedra; red circles are oxygen atoms and
white circles are hydrogen atoms. (b) Young's modulus in any arbitrary direction. Any point
on the sphere with the unit radius represents the tip of a unit vector which is drawn from the
center of the sphere (intersection of the three crystal planes). The surface of the sphere covers
all possible 3D arbitrary unit vectors.
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Figure 4-2: Top views for Tobermorite 11 (Hamid). (a) tobermorite 11 (Hamid) Ca/Si=0.67.
(b) tobermorite 11 (Hamid) Ca/Si=0.83. (c) tobermorite 11 (Hamid) Ca/Si=1. Any point on
the spheres with the unit radius represents the tip of a unit vector which is drawn from the
center of the spheres (intersection of the three crystal planes). In this figures, two of the crystal
planes are perpendicular and are not seen. The surface of the spheres cover all possible 3D
arbitrary unit vectors.

change in total coulombic energy for each case. For a 0.3 A interlayer displacement, the change

in Ewald corrected coulombic energy for Ca/Si=0.67, Ca/Si=0.83 and Ca/Si=1 is respectively

1.08 A, 0.78 ev and 0.46 e per unit cell for a constant interlayer spacing of 11.076 A.

This indicates that adding extra Ca ions (increasing Ca/Si ratio) in the interlayer distance

reduces the contribution of coulombic interlayer interactions and hence shields the long range

interlayer bonds. This eventually leads to shifting the two inclined soft regions to a single

straight interlayer direction (Fig. 4-2).

Merlino Structure:

Figure 4-3(a) shows a side view of the tobermorite 11 A (Merlino) unit cell. The arrows indicate

the direction of the softest Young's modulus. Fig. 4-3(b) gives a top view of the same unit

cell indicating two equivalent soft regions (blue color). In this case, the interlayer direction is

considerably strengthened by covalent Si-O-Si interlayer bounds, which is due to the presence of

double silica chains (head-to-head connection of bridging tetrahedra). From a structural point

of view, it thus appears as if the unit cell is easier to pull (or push) along the blue regions.



Therefore, the shared oxygen atom of the double silica chain acts as a hinge, and the entire set

of upper and lower atoms can pivot around this point. This is illustrated in Fig. 4-3(a) by a

blue and black arrows.

Similar to tobermorite 11 A (Merlino), there are covalent interlayer bonds in tobermorite

9 A which lead to the hinge mechanism. Physically the hinge mechanism implies that atomic

reorientations are preferred over straight bond stretches to achieve the minimum energy. Be-

cause of the covalent interlayer bonds, the strengthening of the interlayer interactions in Merlino

structure is less surprising than those in Hamid structures, and perhaps in consistent with the

common perception.

There are, in deed, hinge deformation mechanisms in tobermorite (Hamid) with Ca/Si=0.67

and Ca/Si=0.83 (but not for Ca/Si=1). However, unlike tobermorite 11 A (Merlino), since

there are no interlayer covalent bonds in Hamid structures, no particular atom acts as a hinge

point. Instead a chemical site in the interlayer space becomes the center for such mechanism.

4.2.3 Averaged Elastic Properties

To compare with measurements of elastic properties of C-S-H gels, it is useful to characterize the

single-crystal level elastic properties. We use the Reuss-Voigt-Hill approximation [60, 130, 167]

to calculate the bulk modulus, K, shear modulus, G and average Young's modulus, E. One

can also relate K and G to the plane-stress modulus M, which is accessible for example by

indentation techniques based on the Hertz theory contact solution [48, 148]. In the isotropic

case, M relates to the bulk and shear modulus (K, G) of the indented half-space by:

M =4G K (4.3)
3K +4G

Table 4.4 provides the values of the average elastic properties for tobermorite and jennite and

Fig. 4-4 shows the average properties as a function of the density. Accurate nanoindentation

experiments performed on C-S-H, indicates M ~~ 63 GPa for solid C-S-H phases (Table 3 in

reference [27], table II in [160]). They somewhat relate to M values for tobermorite 14 A and

jennite (M ~ 56 GPa). This confirms earlier hypotheses [21, 152] that tobermorite 14 A and

jennite are among the best C-S-H analogs (but not with the correct density).

It is interesting to note that tobermorite 14 A and jennite have almost the same values
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Tobermorite (Merlino) Tobermorite (Hamid, 11 A) Jennite
14 A 11 A 9 A Ca/Si-1I Ca/Si=0.83 Ca/Si=0.67 Ca/Si=1.5

K (GPa) 35.91 66.65 71.42 60.84 58 52.68 31.83
G (GPa) 20.61 32.03 37.18 35.97 32.56 29.81 21.96
M (GPa) 55.64 90.59 103.03 96.31 88.44 80.77 56.26
E (GPa) 51.90 82.82 95.06 90.14 82.29 75.23 53.55

Table 4.4: Reuss-Voigt-Hill average of the elastic constants for the tobermorite family and
jennite obtained from first-principles calculation.

120 tobermorite 11 A group tobermorite9A
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tobermorite 14 A K

S60 .

40 A M

20
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1.5 2 2.5 3 3.5

Density( g

Figure 4-4: DFT calculations for bulk modulus, K, shear moduli, G and indentation modulus
M versus density for the studied minerals. The bar indicate Reuss and Voigt approximations
for K and G.

for all average elastic properties. This is of some importance, since it has been noted that the

C-S-H gel at an early stage resembles tobermorite 14 A, while it resembles jennite after a period

of months or years [21, 152].

Having the atomic coordinates for each deformation, we can compute the average directional

bond strain in Ca-0, Si-O and O-H in each of X, Y and Z directions. Figure 4-5 shows that

average directional bond strains have following common characteristics:

First, in all crystals under constant strain of 1%, Ca-O bond strains are greater than Si-O

bond strains, indicating that Si-O bonds are much stronger than Ca-0 bonds. Note that while

the total applied strain is 1%, each individual bond strain can in general be larger than 1%.

Second, for tobermorite 14 A and jennite, 0-H strains are always greater than correspond-

ing strains in other minerals under study. This indicates a structural role of O-H bonds in



these two C-S-H analogs which have large amount of water molecules in the interlayer distance.

The large values of the O-H strains in jennite and tobermorite 14 A indicate that the wa-

ter molecules act as a weak bridge in the interlayer bond connecting adjacent layers, that is

Si(OH)-H 20- Si(OH). These water molecules are part of the crystal-chemistry of the mineral

and are not bulk water; that is, they are attached to the layers and can not freely move in the

interlayer space. This is analogous to the studies of state of water in Portland cement pastes

[157].

4.2.4 Effect of Ca/Si ratio on Elasticity

Although we showed an excellent agreement between experimental indentation modulus, M,

performed on C-S-H with those obtained from DFT calculations on tobermorite 14 A and jen-

nite, there are major differences in chemical compositions between the two. C-S-H has an

average Ca/ Si ~ 1.7 whereas for jennite Ca/ Si = 1.5 and for tobermorite 14 A this ratio is

Ca/ Si = 0.83. Here, we investigate systematically the effect of Ca/ Si ratio on C-S-H crystals.

Later in Chapter 8, we complement this study over a wide range of Ca/Si ratios on a variety

of combinatorial C-S-H systems. In what follows, we use Hamid tobermorite, which is syn-

thetically established to exist with three different Ca/ Si without a major change in its layered

structural form [58].

While the cell shape is overall unchanged, addition of each Ca ion in the interlayer distance

of tobermorite removes two hydrogen atoms of two hydroxyl groups to make the cell neutral

[58]. This has an advantage that these ratios are experimentally validated [58] and since the

overall layered structure does not change, one can carefully monitor the direct effect of the

additional interlayer Ca ions. Figure 4-6 shows that by increasing Ca/ Si ratio from 0.66 to 1,

all averaged elastic properties increase linearly (except Poisson's ratio which remains constant

~ 0.26). This is due to the additional in-plane bonding that the the extra Ca ions make with

Si -0 groups.

Similar to tobermorite 11 A, tobermorite 14 A and jennite have single silica chains with

flanking bridging tetrahedra in the interlayer distance. Thus, increasing Ca/ Si ratio in tober-

morite 14 A and jennite, most likely forms similar bonds and increases linearly the averaged

elastic properties. In the case of tobermorite 14 A, these elastic properties at Ca/ Si ~ 1.7
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Figure 4-6: Effect of Ca/ Si ratio on K, G, and M for tobermorite (hamid type). The bar error
on K and G indicates the lower (Reuss) and upper (Voigt) bound approximations.

clearly surpass the experimental values of nanoindentation test on C-S-H, however, these crys-

talline minerals (including tobermorite 14 A) have silica chains of an infinite length whereas

experiments and 29 Si (magic angle spinning) MAS NMR studies [24] show that silica chains in

C-S-H have discrete lengths of m = 3n - 1 where n is an integer number. Therefore a finite

(broken) silica chain with less stiffness - compared to an infinite chains - must compensate for

match in elastic properties with nanoindentation on C-S-H.

4.2.5 Effect of Wat/Ca ratio on Elasticity

Another interesting aspect of the C-S-H minerals is their water molecules and their effect

on mechanical properties. Fig. 4-7 shows the general decreasing trend of the averaged elastic

properties of C-S-H crystals versus the ratio of number of water molecules over Ca ions, Wat/Ca.

This is because water molecules shield the coulombic interactions and therefore the layers can't

feel the presence of the neighboring layers. In this figure, tobermorite 9 A has zero water

molecules, and is the stiffest. Next are the three Hamid tobermorites. Note the single data

points correspond to tobermorite II A (Merlino type) which has a double silica chains. These

double silicate chains relate to bridging silicon tetrahedra in which the Si atoms have three

neighboring Si atoms: two intralayer Si atoms and one from the lower or upper layers. This Si

arrangement indicates the presence of Q3 in terms of 29 Si NMR analysis, and are known to form

strong 3D bonds, which in this case link the two adjacent layers by making iono-covalent Si-O-Si
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Figure 4-7: DFT results on the effect of wat/Ca on elastic properties. The single points
correspond to tobermorite 11 A (Merlino) with double silica chains which behaves differently
compared to other minerals with single silica chains (i.e. C-S-H analogous minerals)

bonds in the interlayer direction. As a result, these 3D bonds form a closed network or rings

of Si-O-Si bonds, which can engulf large number of water molecules without affecting elastic

properties. Among all studied minerals in the present work, tobermorite 11 A Merlino is the

only one with double silica chain and thus it may not be surprising that it behaves differently

compared to other minerals.

4.2.6 Correlation Between Young Modulus and Silica Chain Density

Table 4.5 and Fig 4-8 shows the correlation between the surface density of infinite silica chains in

all studied minerals with Young's modulus parallel to the axis of silica chains. This correlation

ramps up linearly up to a certain value and then it becomes saturated as it approach the closest

packing density of silica chains. Note also that increasing the Ca/ Si ratio in Hamid tobermorite

structure increases the Young's modulus linearly. However, it seems that among all studied

parameters in this work, the density of silica chains has paramount effect in determining in-plane

Young's modulus of C-S-H crystals. Thus given the density of silica chains in other similar C-S-

H minerals (such as hillebrandite Ca6 Si3 010 (OH)4 , Ca/ Si = 2, foshagite, Cas Si 6 016 (OH)2,
Ca/ Si = 1.3, nekoite, Ca3 Si6 0 15 .7H 2 0, Ca/ Si = 0.5 and so on), the linear equation on Fig

4-8 can be used to predict the Young's modulus parallel to their silica axis.

Fig 4-9, 4-10 and 4-11 show the variation of Young's modulus for all studied minerals in



Mineral # of silica chains [ ac area (nm2) I chain density (1/nm2) E (GPa)

tobermorite 14A 4 1.958 2.043 90

tobermorite 11A 4 1.527 2.620 126
tobermorite 9A 4 1.065 3.757 146

T-Hamid Ca/ Si = 1 4 1.537 2.602 123
T-Hamid Ca/ Si = 0.83 4 1.510 2.649 135
T-Hamid Ca/ Si = 0.67 4 1.529 2.617 126

Jennite 2 1.161 1.723 45

Table 4.5: Correlation between density of silica chains (number of silica chains per unit area)
with Young's modulus parallel to the direction of silica chain.
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Figure 4-8: Correlation between density of infinite silica chains (i.e. x
and Young's modulus parallel to the axis of the chains (y parameter).

parameter on the plot)



all directions in the XZ, YZ and XY planes. Several observations can be obtained from these

plots: i) tobermorite 14A and jennite are the softest members of the studied minerals, ii) as

discussed earlier, the interlayer direction in some crystals is not the softest direction (note the

variation of the color in Z direction), and iii) the in-plane (XY plane) stiffness is typically

highest among the three planes because all silica chains are in this plane.

4.3 Results for Inelastic Regime

In this Section, by applying incremental strains to the C-S-H crystals, we investigate their

deformation mechanisms and mechanical properties far beyond the elastic regime. In particular,

we apply incremental strains parallel to the softest direction, n, in each crystal. As discussed

in the previous Section, the critical softest direction in tobermorite 14 A and tobermorite 11

A (Hamid with Ca/Si=1), is along the interlayer direction (i.e. n. = 0, ny = 0, n, = 1 ),

while it lies in an inclined plane for other crystals. At each strain, we let the system relax via

DFT calculations with identical convergence parameters as described in 4.1. This relaxation

is important because electronic vibrations are coupled to ionic motions. Next we calculate the

normal stress on the plane whose unit vector is parallel to n. To do so, we first calculate traction

stress vector: here let's remind for any given stress tensor, ujj, the traction vector, T = ojfni,

represents the components of the stress tensor on any arbitrary plane whose normal is n. Thus

the normal stress on the plane is obtained by T, = Ti.n i .

4.3.1 Cohesive and Repulsive Stresses in C-S-H Crystals

We employ both positive (stretch) and negative (compression) strains and calculate normal

stress T which corresponds to cohesive (when stretched) or repulsive (when compressed)

stresses (Figs. 4-12 to 4-18). From these plots, one can find the maximum cohesive stress,

oc, and maximum repulsive stress, UR that a crystal can withstand prior to failure. Table 4.6

shows that in all studied C-S-H crystals the maximum cohesive stress is always less than the

maximum repulsive stress. The reason lies in efficient atomic arrangement in compression that

leads to maximum atomic packing density within the crystals.

Among all crystals, tobermorite 11 A of Merlino has the largest oc and OcR because head-
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C-S-H mineral -c (GPa) O-R (GPa)

tobermorite 14 A 3 -18.1
tobermorite 11 A 8.7 -47.8
tobermorite 9 A 4.8 -32.6

Tobermorite-Hamid Ca/Si= 1 6.1 -16.6
Tobermorite-Hamid Ca/Si= 0.83 4.3 -16
Tobermorite-Hamid Ca/Si= 0.67 3 -20.6

jennite 4.2 -

Table 4.6: Maximum cohesive and repulsive
minerals: tobermorite family and jennite.

stresses for two closely related C-S-H crystalline
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to-head connections of the silica chains (double silica chains) make a strong Si-O-Si bonds.

Tobermorite 14 A and tobermorite 11 A (Hamid, Ca/Si=0.67) have the minimum o-c = 3 GPa.

In tobermorite 14 A, the interlayer distance is larger than those in other crystals. Thus there

are no strong bonds in the interlayer direction. Considering Hamid tobermorite, increasing

Ca/Si ratio from 0.67 to 1, increases the maximum cohesive stress. Because the additional

Ca ions make iono-covalent Ca-O-Si bonds [119] in the interlayer distance and improves the

cohesion.

4.3.2 Uncommon Failure Mechanism in Layered Materials

By elongating the crystals along their softest directions, there will be a point after which the

total energy doesn't change upon stretching. This point indicates the rupture within the crystal

where the lamella are separated. As these C-S-H crystals have a layered structure, atomic

debonding and rupture must happen within the interlayer distance and create two surfaces in

there. This is the case for tobermorite 14 A. However, when the interlayer space decreases to

11 A, surprisingly rupture happens in the intralayer space where the backbone of the structures

are located (Figs. 4-19 and 4-20 ). This is particularly the case for tobermorite 11 A (Hamid,

Ca/Si=1 and Ca/Si=0.83) and tobermorite 11 A (Merlino).

This surprising new failure mechanism can be explained in the following way: for Hamid



tobermorite 11 A (Fig. 4-19), the coulombic interlayer interactions are stronger that intralayer

iono-covalent Ca-O-Si bonds. For the case of Merlino tobermorite 11 A, there is less surprise

because the interlayer link formed by the head-to-head connection of silica chains (Si-O-Si

bond) significantly enhances the interlayer coulombic interactions. This result in much stronger

interlayer bonds than any intralayer counterpart within the crystal, hence rupture occurring in

the intralayer space (Fig. 4-20).

In general, the existence of charge layers in these lamella and ionic concentration fluctuation

in the interlayer distance relates to these surprising failure mechanisms. More detailed study

and discussion of these parameters on C-S-H gel can be found in [119] and the references therein.

Together with the results of elastic properties in the previous section, it turns out that when

the interlayer distance is such that coulombic interlayer interactions become comparable to the

iono-covalent intralayer interactions, or there is 3D bonding network due to the presence of Q3
29 Si NMR, new mechanical phenomena happen that are quite out of expectations for layered

materials.

4.3.3 Surface Energies for C-S-H Crystals

Further elongation beyond the rupture point creates free surfaces. The difference between

global minimum energy at equilibrium and final energy when free surfaces are created, AE,

is the required energy to make such free surfaces. As an example, Fig. 4-13 shows AE for

tobermorite 11 A. Thus one can find the surface energies as

a-s = (4.4)
2Aab

where Aab is the area of ab plane. The factor 2 is needed because there are two free surfaces

created. Table 4.7 shows surface energies, for four tobermorite polymorphs. In other crystals,

since the softest directions lay in an inclined axis, the rupture did not create free surfaces but

a somewhat distorted atomic arrangement.

Surface energies indicate that tobermorite 14 A and 11 A require minimum and maximum

energies respectively to separate their lamella and create free surfaces. Although surface energies

can be best approximated by creating supercells, these crystals are relatively large (~70 to

~100 atoms) and the free surfaces do not interact much with each other. Furthermore, DFT
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Figure 4-19: Tobermorite (hamid, Ca/Si=1) (a) a unit cell at equilibrium. Blue spheres rep-
resent Ca, green spheres represent Si, red sphere represent 0 and yellow spheres represent H
atoms. (b) a unit cell when rupture occurs inside the backbone of the crystal (the intralayer
space). The 3D structures are created by using Xcrysden [79].

calculations of total energies for a C-S-H supercells similar to what we conducted here for a

unit cell is extremely difficult with current computational powers.

4.4 Chapter Summary

In this Chapter, using first-principles calculations we found lattice parameters, elastic con-

stants and cohesive and repulsive stresses for two classes of complex layered hydrated oxides,

tobermorite family and jennite. Carefully post-analyzing the data reveals new deformation and

fracture mechanisms that are quite uncommon for layered materials. For tobermorite 14 A,
the large interlayer distance makes the coulombic interlayer interactions relatively insignificant

compared to the iono-covalent intralayer interactions. In addition, the existence of water mole-

cules as well as Ca ions in the interlayer space shield the coulombic interlayer interactions.
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C-S-H mineral Surface energy (eV/ A2)
tobermorite 14 A 0.03
tobermorite 11 A 0.104

Tobermorite-Hamid Ca/Si= 1 0.064
Tobermorite-Hamid Ca/Si= 0.83 0.08

jennite 0.032

Table 4.7: Surface energy for tobermorites
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Thus as expected, the interlayer direction is the softest direction and rupture happens in the

interlayer space.

By decreasing the interlayer distance to 11 A, the long range coulombic interlayer interac-

tions become comparable to the iono-covalent intralayer interactions. This was earlier suggested

through using an empirical force field [119], and in our work is accurately inferred through two

separate analyses:

1. Comparison of the interlayer and intralayer elastic constants:

This analysis showed that when the interlayer and intralayer elastic constant become com-

parable, the softest direction in layered materials is not the interlayer direction anymore.

In this case, the softest directions are two inclined regions that form a hinge mechanism.

By quantifying total coulombic energy in the interlayer direction for different isomorphs

of tobermorite 11 A (Hamid types), we showed adding Ca in the interlayer space shields

the coulombic interlayer interactions, hence shifting the two inclined soft regions towards

a single straight interlayer direction.

Thus, in contract to the common perception that layered materials are soft in layer di-

rection, we found that this is not the case. However, this is not the only requirement and

the existence of interlayer ions and water molecules may shield the coulombic interlayer

interactions. In the case of tobermorite 11 A (Merlino type) and tobermorite 9 A, the

covalent interlayer bonds considerably strengthen the interlayer direction which lead to

hinge (gliding) mechanism.

2. Rupture mechanism

Upon stretching the crystals until rupture along their softest directions, quite surprisingly

for tobermorite 11 A (Hamid, Ca/Si=1 and Ca/Si=0.83) and tobermorite 11 A (Merlino)

the atomic debondings occur in the intralayer space (and not the interlayer space). These

debondings lead to complete failure in the intralayer space by creating two free surfaces in the

backbone of the crystals. This new failure mechanism indicates that the interlayer coulombic

interactions in Hamid and Merlino structures are much stronger than the intralayer bonds. In

the case of Merlino structure, the coulombic interlayer interactions are further enhanced by the

interlayer links (iono-covalent Si-O-Si bonds).



Finally, the characterization of the structural and mechanical properties of tobermorite

family and jennite led to the following five observations: i) Si-O bonds are much stronger

than Ca-O bonds, ii) H2 0 molecules in tobermorite 14 A and jennite - compared to other

studied minerals - have a structural role and are part of a Si(OH)-H 2 0- Si(OH) bridge in

the interlayer distance, iii) increasing the Ca/Si ratio within an unchanged backbone of the

tobermorite Hamid, increases the elastic properties, iv) increasing the Wat/Ca ratio decreases

the average elastic properties for all tobermorite (except 11 A Merlino) family, and v) increasing

the silica chain density per unit area increases the Young modulus parallel to the silica chain

direction.

We now have a wealth of reliable data on the structure, elastic, and strength properties

and deformation mechanisms of a variety of C-S-H crystalline family, which serve as a DFT

benchmark on these complex minerals. We use the results of this Chapter to analyze the

fundamentals sound waves in the next Chapter, and develop a new force field potentials in Part

IV.
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Chapter 5

Acoustic Properties of C-S-H

Crystals

A full elastic tensor enables a complete analysis of the fundamentals sound waves for an

anisotropic material. In this Chapter, we first focus on directional sound velocities to de-

rive a novel statistical averaging scheme for the bulk modulus, K, and shear modulus, G, for

an anisotropic material. We show our averaging scheme is superior than the classical approxi-

mation methods such as Voigt-Reuss-Hill approximation and Molinary approximation. Second,

by using our DFT results in Chapter 4, we calculate the three fundamental wavespeeds and the

associated polarization vectors at any arbitrary location for tobermorite family and jennite.

5.1 Acoustic Properties of C-S-H Crystals at 0 K

5.1.1 Averaging Methods for Elastic Properties

In mechanics and physics, bulk modulus, K and shear modulus, G, of isotropic materials are

of tremendous use. There are numerous experiments and theoretical derivations based on these

two parameters. For anisotropic materials, since there are more than two elastic constants,

one has to condense the full elasticity tensor components into quasi-isotropic properties in

order to utilize the available experimental data and better conceptualize the complex behavior

of anisotropic materials. Averaging the elastic constants in an old, well-known problem in
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mechanics. Here, we very briefly review two classic averaging schemes that are most commonly

used for anisotropic materials:

Voigt-Reuss-Hill Approximation

This approach is the most common approach based on the Voigt [167] and Reuss [130] routes

that define an upper and lower bound for bulk modulus, K, and shear modulus, G. This

approach employs hydrostatic stress and strains in conjunction with stored energy to estimate

the bounds. The arithmetic mean of Voigt and Reuss bounds is known as the Voigt-Reuss-

Hill (VRH) approximation [60], which is classically used in mineralogy to estimate the elastic

constants corresponding to a random polycrystal.

As shown by Povolo and Bolmaro [121], both Voigt and Reuss models are built using the

invariance of the trace of the 9 x 9 matrix representing the stiffness and compliance tensors,

respectively. This leads to the observation (made by Hill [60]) that the Voigt and Reuss averages

only use 9 of the 21 independent elastic constants. Denoting by I1 = Cijj and I* = Cijij the

traces (or linear invariants) of tensors Ciikl and Cijjl, respectively, the Voigt average is obtained

from a comparison of those traces with their corresponding isotropic expressions, leading to:

Ii 1
Kviogt - - (CI + C22 + C33 + 2 (C12 + C13 + C23)) (5.1)

9 9

(31* - 1 1
Gviogt - (C11 - (C C22 + C33 + 3 (C44 + C55 + C66) - C12 - C13 - C23) (5.2)

30 15

where Cij denotes the Voigt notation of the elastic constants. Applying a similar procedure to

the compliance tensor Si-kl = C-1 the Reuss average is obtained:

KRe uss y (S11 + S22 + S33 + 2 (S12 + S13 + S23 ))< (5.3)
J1

15 15

(6J - 2J1) 4 (S + S22 + 33 - S12 - S 13 - S 23) + 3 (S44+ S55 + S 6 6)
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where J1 = Seiij and J* = Sigji are the corresponding traces of the compliance tensors Siikl

and Sijjl, respectively.

There are two common objections to both Voigt and Reuss averages (and hence to Hill

average): first because it is based on linear invariants of the elasticity tensors, it involves only

9 out of the 21 elastic constants. This may be relevant for simple geometries such as cubic

or hexagonal where most of the elastic constants not considered in the VRH averaging scheme

are zero; it may, however, be of importance for symmetries such as trigonal, monoclinic (e.g.

tobermorite 11 and 14 A) and triclinic (tobermorite 9 A). Second, Voigt and Reuss derivations

consider orthogonal symmetries and hence are only invariant under orthogonal transformations.

That means that if one considers a crystal whose coordinates is tilted other than right angles, the

VRH results is different values. In other words, the VRH is not completely frame-indifferent (or

so called objective in Continuum Mechanics terminology), hence the physical properties depend

on the location of the observer.

Molinary Approximation

Molinary approximation is another common approximation for elastic constants that is mostly

used for polycrystals [82]. This approach is based on probability distributions and statistical

moments which lead to

C2
K = (5.5)

C11 + 2C33 + C12 - 4C13
302

G = 32(5.6)
2 (2Cn1 + C33 + 2C12 + 4C13)

with

02 C33 (C1 + C12) - 2C13 (5.7)

While Molinary's approach may resolve the second shortcoming of VRH, it fails to consider

the full anisotropy effect. Hence, both approaches consider identical elastic constants, and their

sole difference is in the combination of them.
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New Statistical Averaging Method for Elastic Constants: Sound Wave Approach

Recognizing the VRH and Molinary's limitations, Povolo and Bolmaro [121] proposed the con-

sideration of higher order invariants of the elasticity tensors to estimate average elastic con-

stants. While this approach is complex and lacks physical insights, here we derive a simple, yet

efficient averaging scheme based on acoustic tensor analysis in which all the 21 elastic constants

as well as all random orientations contribute to the average quasi-isotropic elastic properties. To

this end, we briefly recall that the principle acoustic wave velocities in an anisotropic medium

are obtained from the eigenvalue-eigenvector problem (see e.g. [29]):

A.v =c2v (5.8)

where c is the wavespeed, v is the particle-motion direction and A is the acoustic tensor

defined by

1 1
A = -n.C.n; Agk = -nCijkjin (5.9)

P P

In above, p is the density, C is the fourth order elastic tensor and n is the unit normal

of the incident wave propagation. Equation (5.8) is a eigenvalue-eigenvector problem known

as Christoffel equation [93]. It specifies the propagation velocity and particle-motion direction

(polarization vector) for each plane wave component in space.

Wavespeeds in Eq. (5.8) are the roots of characteristic equation det(A - c2 1) = 0 where 1

is the second order unit tensor. The symmetry of the acoustic tensor, A, ensures that the un-

derlying eigensystem is well-behaved. Thus we can find three distinctive velocities C3 c2 5 ci

associated with three orthogonal directions of particle motions: ci represents (quasi) longitu-

dinal sound waves, while c2 and c3 represent respectively the higher and the lower transverse

sound waves.

By taking the volume average of the three sound waves over all directions, one can obtain:

1 27r
Qj = - cj (ni ) sin OdOdp (5.10)

47 r10= J 0o

These mean velocities represent statistical averages of the longitudinal (VL =c) and shear
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velocities, 12 and Z3 . Taking the mean for the two shear velocities, i.e.

Vs 2 3 ' (5.11)
2

and making use of the classical relations between velocities and isotropic properties, we deter-

mine the statistical average of the bulk and shear modulus from:

Kvel p (vZ - V) (5.12)

Gvel = PVs (5.13)

For an anisotropic material, our new statistical averaging scheme ensures that not only all

21 elastic constants are taken into account but all random directions contribute to the average

bulk and shear moduli. With such an approach, one can thus evaluate the contribution of those

elastic constants not considered in the VRH and Molinary schemes. By way of illustration, in

the next section we show the three fundamental sound velocities for C-S-H crystals along any

arbitrary direction in space. This will greatly simplify the 3D conceptualization of soft and stiff

areas in complex anisotropic materials, hence making our averaging scheme more meaningful.

Later in Chapter 6, we present a detailed numerical example of application of our new averaging

method. The numerical code for the new averaging scheme and 3D visualizations are given in

Appendix B.

5.1.2 Directional Wave Speeds

We use the elastic constants of C-S-H crystals obtained in Chapter 4 along with Eqs. (5.8)

and (5.9) to calculate the three fundamental plane waves in each arbitrary direction in space.

Figures 5-1 to 5-7 shows the three fundamental sound speeds for each crystal. The sphere with

unit radius indicates arbitrary directions in space. Several observations can be made from Figs.

5-1 to 5-7, but the following features deserve most attention:

(a) As these crystals are either monoclinic or triclinic [14],[16],[58],[103], the elastic tensor

is anisotropic. Thus, none of these fundamental waves are purely longitudinal or
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Figure 5-1: Directional sound speeds in tobermorite 14
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Figure 5-2: Directional sound speeds in tobermorite 11 A. (a)
medium sound speed c2. (c) minimum sound speed C3-

maximum sound speed c1. (b)
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Figure 5-3: Directional sound speeds in tobermorite 9 A.
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Figure 5-4: Directional sound speeds in tobermorite 11 A (Hamid Ca/Si=1). (a) maximum

sound speed ci. (b) medium sound speed c2. (c) minimum sound speed C3.
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Figure 5-6: Directional sound speeds in tobermorite 11 A (Hamid, Ca/Si=0.67). (a) maximum

sound speed c1. (b) medium sound speed c2. (c) minimum sound speed c3 .

110



(a) 2 (b) 2(c)

C C C

11 1

0 0 0

-1 1 -1-2 a-2 -2 a

0 0 0

10 0 0
22 y 22 1 2 1

4500 5000 5500 6000 6500 3000 3200 3400 3600 2600 2800 3000 3200

C1 (m/S) C2 (m/s) C3 (m/S)

Figure 5-7: Directional sound speeds in jennite. (a) maximum sound speed c1. (b) medium
sound speed C2. (c) minimum sound speed c3.

purely transverse.

(b) The direction of maximum velocity in all crystals is almost coincided with the di-

rection of Young's modulus (and not the stiffness Cii) calculated in Chapter 4. This

has been shown for tobermorite 14 A as an example in Fig. 5-8.

(c) In tobermorite family, the lowest values of shear velocities are along both the in-plane

and the interlayer directions.

(d) The maximum directional velocity is around 8000 m/s along the in-plane direction of

tobermorite 11 A (Hamid type, with Ca/Si=1) while the average maximum velocity

(average over all directions on the unit sphere) is highest in tobermorite 11 A (Merlino

type). This is because of the overall enhanced elastic properties in 3D due to the

existence of interlayer links (Q3 29Si NMR).

(e) In all crystals, the magnitude of the medium and minimum velocities are relatively

close as they are both somewhat transverse velocities (not purely).

(f) The minimum directional velocity is around 2000 m/s parallel to the interlayer direc-
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Figure 5-8: Tobermorite 14 A. (a) Directional longitudinal sound speed. (b) Directional Young
modulus. (c) Directional stiffness. The results for parts (b) and (c) are taken from Chapter 4.

tion in tobermorite 14 A. The average minimum velocity is also lowest in tobermorite

14 A. Figure 5-9 shows the average three velocities in each of the crystals as a func-

tion of density. For all three velocities, tobermorite 14 A and jennite have the lowest

average velocity between all crystals. In the case of C3, jennite and tobermorite 9 A

have a very close average minimum velocity. In addition, although tobermorite 9 A

is the stiffest crystal among these minerals (see Chapter 4), the sound velocity is not

maximum due to the interference of density.

5.1.3 Polarization Vectors

For any of the directional velocities of C-S-H crystals calculated in the previous section, one

can find three orthogonal eigenvectors. The real value wavespeeds and orthogonality of particle-

motion directions (polarization vectors) relate to the crystal's stability. The real value wavespeeds

assures that the fluctuations of energy are spontaneously redistributed in the crystals through

the travelling waves. Otherwise, the energy fluctuations can locally accumulate which tends
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Figure 5-9: Average maximum, medium and minimm velocities for tobermorite family and
jennite.

to shift the crystal from its natural equilibrium. On the other hand, orthogonality of particle-

motion directions ensures that no resonance can occur between two travelling waves. Because

orthogonality requires no energy exchange between orthogonal directions. More detailed dis-

cussion on stability of traveling waves and polarization vectors can be found in [29].

In this work, we studied the polarization vectors associated with the maximum velocity for

all C-S-H crystal in table 4.6. In this case, it turns out that due to the stability of the crystal

structures, the polarization vectors are not always parallel to the directional velocities (as is

the case in isotropic materials). Indeed, they tend to bend over closest areas where the Young's

modulus is higher. Figure 5-10 schematically shows how this effect takes place. For points A or

C, the directions of maximum velocity and polarization are identical while these directions are

different for point B. The polarization vector for point B, leans towards the in-plane direction.

To clarify, we show this effect for three types of C-S-H crystals (Figs. 5-11, 5-12 and 5-13).

For simplicity, we only show one eighth of the spheres where all components of the polarization

vectors are positive.
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Figure 5-10: Schematic diagram representing the directional velocities (black lines) and their
corresponding polarization vectors (red lines).

For tobermorite 11 A (Hamid, Ca/Si=1), Fig. 5-11(a) shows the direction of maximum

velocity while Fig. 5-11(b) indicates the polarization direction. Identical colors between Fig.

5-11(a) and Fig. 5-11(b) refer to velocities and their corresponding polarization vectors. Sim-

ilar to the schematic illustration in Fig. 5-10, Fig. 5-11(b) shows how the direction of all

polarization vectors (points such as B) are shifted down. Figure 5-12 shows same phenomenon

for tobermorite 11 A (Merlino) where unlike the previous case, the softest direction is not

the interlayer direction, but an inclined axis (blue regions in Fig. 5-12(a)). In this case, as

Fig. 5-12(b) shows the polarization vectors for all the points in the middle (where the Young's

modulus is the lowest) are shifted towards the sides and the area of the blue region expands.

For jennite, as its crystal structure is different, the direction of the polarization vectors are

different but still the same detour happens in polarization directions due to the crystal stability

condition, that is leaning towards the areas with larger Young modulus (Fig. 5-13).
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Figure 5-11: Tobermorite 11 A (Hamid, Ca/Si=i). (a) maximum directional velocity, (b)
polarization vectors for the maximum velocities in (a). Downward shifting of the wrinkles
represent the change of polarization vectors toward areas with higher Young's modulus.
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Figure 5-12: Tobermorite 14 A. (a) maximum directional velocity. (b) polarization vectors for
the maximum velocities in (a). Deviation of wrinkles from the center area represent the change
in polariation vectors from soft center regions towards stiff side-areas with higher Young's
modulus.
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5.2 Chapter Summary

In this Chapter, based on acoustic tensor analysis, we developed a simple, yet efficient averaging

scheme for quasi-isotropic elastic properties. Our statistical approach overcome the shortcom-

ings of classical averaging schemes such as Voigt-Reuss-Hill and Molinary approximation in

that i) it considers all 21 independent elastic constants of an anisotropic material, ii ) is invari-

ant under any arbitrary rotation in space, and iii) it conveniently provides a physical insight

to conceptualize the complex contributions of softest and stiffest directions of an anisotropic

material into quasi-isotropic elastic properties, K, and G. This novel statistical approach is

independent of any length-scale and can be applied to any anisotropic materials spanning from

tiny atomistic crystals to giant structural components.

Next, we presented the three fundamental wave velocities along any arbitrary direction for

tobermorite family and jennite. It turns out that the locations of maximum wave velocity follow

the footprints of the directional Young's modulus. We showed polarization vectors associated

with the maximum wave velocity tend to be leaned towards areas with higher Young moduli.

This is due to the crystal stability to ensure the integrity of particle motions are maintained.

In Part III, all our focus was on characterization of C-S-H crystals based on DFT calcu-

lations. In the next Part, we turn our attention to Atomistic Simulations methods (MD and

MC) as a means to handle larger C-S-H systems, which enable addressing more realistic C-S-H

phases.
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Part IV

Investigation of C-S-H Phases via

Atomistic Simulations
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Chapter 6

Empirical Force Fields for C-S-H

Gel: Development of CSH-FF

Part III of this thesis was centred around first-principles calculations on C-S-H crystalline

models and their structural and mechanical features. However, C-S-H crystals are not a strict

analog for an amorphous real C-S-H phase. This Part employed the Atomistic Simulation

methods (MD and MC) to tackle larger systems and is composed of three Chapters: The first

Chapter uses the DFT results in Part III to develop a new force field, CSH-FF, customized for

the C-S-H family. Second Chapter focuses on developing a consistent molecular model based

on the most frequently measured local value of Ca/Si. Finally, in the third Chapter CSH-FF

is used in conjunction with statistical mechanics to decode a wide variety of C-S-H molecular

phases across different Ca/Si ratios

In this Chapter, we focus on comparing two common empirical force fields, the simple

point charge ClayFF potential developed for clay minerals and the core-shell potential that are

both widely used in simulating hydrated oxides such as tobermorite. We start by investigating

the predictive capabilities of these force fields against our benchmark DFT results in Part

III. We show that transferability of force fields to analogous hydrated oxides without rigorous

investigations may result in misleading predictions in properties. To overcome the deficiencies

of common force field potentials, we use both structural and elasticity data to develop a new

force field potential, CSH-FF, for hydrated calcio-silicates as an improved version of ClayFF.
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6.1 Introduction

The use of empirical force fields is now a standard approach in predicting the properties of

hydrated oxides which are omnipresent in both natural and engineering applications. The use

of empirical force fields is a common approach in Computational Materials Science or Miner-

alogy. Recently, several attempts have been made to apply this approach to hydrated oxides

[9],[22],[30],[36],[141],[171] including Calcium-Silicate-Hydrate (C-S-H) [97]. Yet progress on the

"atomistic concrete front" has been slow due to uncertainty in the degree of transferability of

empirical force fields used to simulate complex hydrated oxides, such as C-S-H, whose char-

acteristic grain size is beyond the reach of state-of-the-art first principles calculations such as

DFT.

One way to resolve this issue is to benchmark empirical potentials against first principles

calculation results for a selected number of hydrated oxides with relevant chemistry, for which

the atomic structure is well known. In Chapter 4, we presented such first principles results

for tobermorite family and jennite. By comparing results from first principles simulations, we

aim in the present Chapter at evaluating the degree of transferability of empirical potentials

for such complex hydrated oxides. In particular, we focus on two different families of empirical

force fields commonly in use for calcio-silicate minerals: simple point charge models represented

by the ClayFF potential [30] and the core-shell model [45],[46],[47].

In the core-shell model, anion charges are divided between an atomic core (with a positive

charge) and a shell (with a negative charge) such that the sum of these charges is equal to

the formal atomic charge (or to a given partial charge as for oxygen in water for instance).

The comparison with the first principles results is made for both structural data and elastic

properties for two tobermorite polymorphs distinguished by their basal spacing and hence water

content: tobermorite 14A and tobermorite 11A Hamid with Ca/Si=1. No further fitting to

tobermorite properties was attempted for core-shell model in this thesis. Thus, the results

presented here are predictions for the used potential models and related parameters.

Note that in core-shell model 50 % of the coulombic intra-molecular energy within the

water molecule is subtracted. This 50% reduction is the feature of the de Leeuw-Parker water

potential [34] and may not lead to very satisfactory predictions of bulk liquid water density at

room temperature. However, in the case of the hydrated calcio-silicate compounds, this is not



an issue as interlayer water molecules do not form a confined dense phase such as those in clay

minerals; water molecules in tobermorite minerals or in C-S-H are usually called "structural

water molecules". All the parameters of the core-shell potential are given in Appendix A.

6.2 Comparison of Empirical Potentials with DFT

With a focus on transferability of empirical potentials, there are structural data at room tem-

perature from experiments on tobermorite crystals, however, there are no experimental data

on higher order properties such as elastic constants. Hence, because of lack of experimental

data, wherever needed, we employ first-principles results as reference data to compare higher

order properties of tobermorite crystals. Thus, this section compares first principles results

with predictions obtained with two commonly used empirical force field potentials for the C-S-

H minerals, namely ClayFF and core-shell model. For comparison, we consider the benchmark

results obtained from first-principles Density Functional theory using GGA exchange correla-

tion functional (GGA-DFT) as reported in Chapter 4. Comparison is made for both structural

and elasticity data of tobermorite 14 A and 11 A minerals. For this purpose, we implemented

both the ClayFF potentials and the core-shell potentials in the GULP code [47].

6.2.1 Structural Data

We minimize the total energy of tobermorite 14 A and 11 A at 0 K allowing all degrees of

freedom to relax including cell parameters, angles and all atomic positions. The unit cell of

tobermorite 14 A has 14 water molecules while 11 A tobermorite has 4 water molecules. The

experimental unit cell dimensions for both of these minerals are given in Tables 6.1 and 6.2.

From these tables, it can be inferred that DFT minimization for tobermorite 14 A and 11

A tobermorite structures at 0 K quite accurately refine experimental XRD data. Interestingly

enough, both inter-atomic potentials predict lattice parameters with an acceptable accuracy

compared to experiments or DFT results. The reason for which the ClayFF-relaxed systems

are somewhat of lower symmetry compared to that obtained with the core-shell approach is

not obvious. ClayFF is a simple charge potential model with no anionic polarization by con-

trast to the core-shell model. Hence, one may conclude that allowing anion polarization allows
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a b c a _Y
(A) (A) (A) (deg) (deg) (deg)

Exp. 6.69 7.39 27.99 90 90 123.25
DFT 6.87 7.43 28.49 89.96 90.05 123.47

Core-shell 6.94 7.35 28.35 90 90 123.07
ClayFF 6.87 7.37 28.55 89.25 90.95 122.69

CSH-FF 6.7 7.41 28.7 90.01 89.81 123.77

Table 6.1: Tobermorite 14 A (Ca/Si = 0.83, 14 H20/unit cell). Comparison between experi-
ment, OK DFT, core-shell, ClayFF and CSH-FF empirical force fields. Note that CSH-FF is a
re-parametrized and simplified version of Clay-FF, see text.

a b c a #
(A) (A) (A) (deg) (deg) (deg)

Exp. 6.73 7.42 22.78 90 90 123.49
DFT 6.6 7.4 23.13 90 90 123.62

Core-shell 6.65 7.3 24.45 90.28 89.93 123.75
ClayFF 6.77 7.33 24.51 91.13 89.98 123.05

CSH-FF 6.6 7.39 24.37 90 90 123.88

Table 6.2: Tobermorite 11 A (Ca/Si = 1, 4 H20/unit cell). Comparison between experiment,
OK DFT, core-shell, ClayFF and CSH-FF empirical force fields. Note that CSH-FF is a re-
parametrized and simplified version of Clay-FF, see text.

maintaining larger system symmetry. In addition, it is interesting to see that thermal expan-

sion/contraction effects at room temperature (as in experiment) are small since both DFT and

experimental data agree within a few percents; that is to say kT represents a small fraction of

all different iono-covalent bond energies found in these systems.

In order to analyze the internal atomic structure, we plot the histograms of major iono-

covalent bonds and angles (Fig. 6-1). As expected DFT predictions for bond and angle dis-

tribution spectrum are in general in good agreement with those from experiments [15],[58].

For Ca-O bond distances in tobermorite 14 A and 11 A, both force field potentials predict

approximately the same mean and relatively comparable distribution spectrum compared to

experiment or those from DFT results. For Si-O bonds in tobermorite 14 A, both force fields

estimate a mean bond distance which is comparable to experiment while it is about 3% larger

than that predicted by DFT method which predicts a narrower distribution. In the case of to-

bermorite 11 A, this difference almost vanishes for the core-shell potential, while ClayFF tends

to underestimate the mean bond distance.
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Analyzing DFT results, one can see that the Si-O-Si angle (Fig. 6-2) linking two tetrahedra

is on the order of 135 0 to 145 while this angle is between 137.5 to 138.5 0 from experiments,

thus showing a spike in Fig. 6-1(c). For comparison, this angle in quartz is 1440 [62]. This

indicates that silica chains in tobermorite polymorphs are more packed than quartz and this

will likely affect the partial charge distribution and mechanical properties of SiO 2 chains in

tobermorite. In both tobermorite 14 A and 11 A, core-shell potential predicts mean Si-O-Si

angles that are close to experiments and DFT results. In summary, considering first-order (i.e.

structural) information both semi- empirical potentials give relatively satisfactory results. Core-

shell estimations seem to be more in agreement with the DFT results, while ClayFF results

give wider bond distance and angle distributions.

6.2.2 Elastic Constants

Once the tobermorite structure is in a fully relaxed stable state, we turn to higher order proper-

ties and determine the elastic constants. Since tobermorite 14 A and 11 A are triclinic crystals,

in theory there are 13 independent elastic constants. There are no experimental values for

these independent elastic constants. We thus consider our DFT results as reference data. In

Tables 6.3 and 6.4, we report values for the full elastic tensors for tobermorite 11 A and 14 A

polymorphs using the DFT method and the two force field potentials (we also report results

obtained with a newly fitted force field potential, CSH-FF, which will be discussed in detail in

the last section).

6.2.3 Elastic Tensor Metrics

In order to quantitatively compare these fourth-order elastic tensors, one-to-one comparison

of the components and corresponding statistical analysis are not of much help. One way of

measuring the closeness of these square matrices with the DFT-results as a reference is to

utilize an Euclidean distance to define a metric on the tensor space, i.e.

dE(CDFT,CFF) CDFT - CFF E (6.1)

where the associated norm is defined by:
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Figure 6-1: (a ) to (c) Histograms of the bond distance Ca-0, Si-O and bound angle Si-O-Si for
tobermorite 14 A. (d) to (f) Histograms of the bond distance Ca-0, Si-O and bound angle Si-
O-Si for tobermorite 11 A. Note that CSH-FF is a corrected and simplified version of Clay-FF
that is described later in this Chapter.

Figure 6-2: The angle Si-0-Si between two tetrahedral in tobemorite. White and red spheres
represent silicon and oxygen atoms respectively.
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DFT ClayFF core-shell CSH-FF
Cii/GPa 148.25 112.98 167.5 151.34

C12 /GPa 63.25 29.17 47.78 54.27

Ci 3 /GPa 26.75 22.11 41.13 25.18

C1 6/GPa 6.63 -16.24 6.78 1.05

C22 /GPa 138.35 99.24 142.8 123.16

C23 /GPa 32.55 9.36 35.18 20.9

C26 /GPa 1.85 -9.12 3.05 -3.16

C33 /GPa 68.4 28.45 67.87 61.33
C36 /GPa -1.73 -1.2 7.64 -1.99

C44 /GPa 32.75 18.53 18.37 37.33

C45 /GPa -1.93 -0.45 3.32 -0.15

C55 /GPa 25.65 17.53 32.49 27.36

C66 /GPa 53.3 40.65 46.44 54.86

Table 6.3: Comparison of elastic constants for tobermorite 11 obtained with DFT, and the
two empirical potentials, ClayFF and core-shell. The CSH-FF predictions refer to the corrected
simgle charge model. The DFT data of tobermorite 11 A has been used for fitting the potential
parameters of the CSH-FF potential that is an improved version of Clay-FF (see text).

DFT ClayFF core-shell CSH-FF

Cii/GPa 77.6 62.8 96.74 101.42

C 12 /GPa 35.9 30.88 42.07 35.12

C1 3/GPa 20.18 19.76 20.43 17.15

C1 6/GPa 3.08 -7.72 -3.17 -7.602

C22 /GPa 104.5 80.81 102.82 88.04

C23 /GPa 26.3 18.38 25.16 25.12

C2 6/GPa -1.75 -12.62 -7.6 3.36

C33 /GPa 32.05 55.33 59.03 57.05
C3 6/GPa 3.03 -6.24 -5.25 -4.08

C44 /GPa 24.5 17.9 25.46 13.76

C45 /GPa -9.43 -11.1 -6.62 -5.91

C5 5/GPa 14.65 20.75 7.74 11.13
C6 6/GPa 38.1 44.35 42.45 34.09

Table 6.4: Comparison of elastic constants for tobermorite 14 A obtained with DFT, and the
two empirical potentials, ClayFF and core-shell. The CSH-FF predictions refer to the corrected
simgle charge model. The DFT data of tobermorite 11 A has been used for fitting the potential
parameters of the CSH-FF potential that is an improved version of Clay-FF (see text).
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Metric Type Tensor ClayFF core-shell CSH-FF
dE (CDFT, CFF)/ DFT E Stiffness 0.39 0.17 0.11
dE(SDFT,SFF)/ SDFT E Compliance 0.71 0.51 0.106

dR(P1, P2 ) Stiffness and Compliance 1.04 0.84 0.29

Table 6.5: Comparison of the relative Euclidean and Riemannian metrics for elastic tensors for
tobermorite 11 A. The CSH-FF predictions refer to the corrected Clay-FF model. A perfect
agreement with the targeted DFT results would result in a zero value of the relative metric.

Metric Type Tensor ClayFF core-shell CSH-FF
dE(CDFT, CFF) CDFT E Stiffness 0.29 0.24 0.28
dE(SDFT,SFF) SDFT E Compliance 0.37 0.64 0.50

dR(Pl, P2 ) Stiffness and Compliance 1.06 1.12 1.20

Table 6.6: Comparison of the relative Euclidean and Riemannian metrics for elastic tensors for
tobermorite 14 A. The CSH-FF predictions refer to the corrected Clay-FF model. A perfect
agreement with the targeted DFT results would result in a zero value of the relative metric.

||AIIE = (tr [AT A] )0.5 (6.2)

Because of its simplicity, the Euclidean metric may be a preferable metric. However, it

is not a rigorous metric for positive definite matrices and lacks certain properties [8]. For

instance, it is not invariant under inversion. The inverse of the elastic tensor is the compliance

tensor, S = C , which renders important information about the average elastic properties. A

more robust metric for symmetric positive-definite matrices is the Riemannian metric which is

independent of the coordinate system; it preserves material symmetry and it is invariant under

inversion [108]. For two symmetric positive-definite matrices P1 and P2 , the Riemannian metric

is:

1/2 1/2n )0.5

dR(P1, P2 ) = log (P21/2PP/2 Rn2 Ai (6.3)

where A are the eigenvalues of the P-'P2 matrix.

Tables 6.5 and 6.6 show the relative Euclidean and Riemannian metrics for the elastic

tensors reported in tables 6.3 and 6.4 respectively. A perfect agreement with the targeted

DFT results would result in a zero value of the relative metric. For both tobermorite 11 A

and 14 A, the relative Euclidean metric for stiffness tensors predicted by the core-shell force
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field potential is smaller than that predicted by ClayFF. For the compliance tensors, the same

trend is observed for tobermorite 11 A. In return, in the case of tobermorite 14 A, the relative

Euclidean distance is larger for core-shell than for ClayFF. In the case of tobermorite 11 A, the

Riemannian metric for core-shell potential is considerably smaller than that for ClayFF (about

66%). For tobermorite 14 A , the Riemannian distances for ClayFF and core-shell are about

the same (core-shell metric is only 6% larger than ClayFF metric).

It seems since ClayFF is originally developed for hydrated crystalline compounds and their

interfaces with liquid phases, its prediction power is better for water-rich compounds such as

tobermorite 14 A as opposed to tobermorite 11 A. Additionally, the slight increases in core-shell

metrics in tobermorite 14 A may suggest that the water model used in core-shell model may

not be well suited for expanded phases such as tobermorite 14 A with more water molecules.

However, overall considering the magnitudes of metrics for both tobermorites 11 A and 14 A,

it turns out that core-shell predictions are closer to DFT results.

6.2.4 Averaged Elastic Properties

Another way for comparing the elastic tensors is by condensing the elasticity tensor components

into quasi-isotropic bulk modulus, K, and shear modulus, G. Here, in view of our analytical

derivations and discussion in Chapter 5, we compare the average elastic properties via two

approaches: i) Voigt-Reuss-Hill Approach (VRH), and ii) Sound Wave Approach, which we

developed in Chapter 5 and was shown to be superior than VRH for highly anisotropic materials

such as tobermorite crystals (see Section 5.1.1 for the exact analytical relations of each averaging

scheme).

Tables 6.7 and 6.8 display the values for the bulk and shear modulus calculated based on

VRH and Velocity approach for tobermorites 11 A and 14 A respectively. Given the small

values of the elasticity constants not considered in the VRH averages (namely, C16, C26, C36

and C45 in Tables 6.3 and 6.4), K and G do not differ by more than about 8% by using the

different averaging methods. In another comparison which is physically more perceivable, Fig.

6-3 shows the principle sound velocities along any arbitrary direction for tobermorite 11 A.

From this figure it appears that, the core-shell model predictions for the longitudinal velocity,

ci, better matches with that calculated by DFT (note the color map for ci in Fig. 6-3a and
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DFT ClayFF core-shell CSH-FF
Kvoit/GPa 66.7 40.2 69.6 59.6
GVoi9t/GPa 37.8 27.3 36.4 39.6

KRuess/GPa 55 24.8 57.1 47.7
GRueSS/GPa 34.1 20.8 30.1 35.8
KVRH/GPa 60.8 32.5 63.3 53.6
GVRH/GPa 36 24.1 33.2 37.7
Kvel/GPa 58.9 35.5 63.2 51.5
GVel/GPa 34.5 22 31.5 36

Table 6.7: Average elastic properties of tobermorite
Sound Wave Velocity Approach.

11 A based on VRH approximation and

DFT ClayFF core-shell CSH-FF

Kvo%'g/GPa 42.1 37.4 48.2 44.6

Gvog/GPa 24.2 21.2 26.5 23.1
K-uess/GPa 29.7 33.8 42.6 40.2

GRues/GPa 17 15.7 15.8 15.3
KVR/GPa 35.9 35.6 45.4 42.4
GVRH /GPa 20.6 18.5 21.1 19.2

Kvel/GPa 38 38.6 47.6 44.5
GVeT/GPa 20.1 18.5 22.1 19.2

Table 6.8: Average elastic properties of tobermorite 14 A based on VRH approximation and
Sound Wave Velocity Approach.
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Fig. 6-3c).

With different estimates now in hand, it is possible to benchmark the polycrystal elastic

properties predicted by ClayFF and core-shell against DFT results. The results displayed in

Tables 6.7 and 6.8 reflect, in terms of polycrystal properties, the conclusions from the tensor

metrics analysis: in the case of tobermorite 11 A, the core-shell results are in very close agree-

ment with the DFT results; while ClayFF significantly underestimates, by 40%, both the bulk

modulus and the shear modulus. In turn, in the case of the tobermorite 14 A, both empirical

approaches provide reasonable results for the shear modulus; the core-shell approach overesti-

mates by roughly 25% the DFT bulk modulus. It thus appears, from both the tensor metrics

analysis and the polycrystal properties for both tobermorite 14 A and 11 A, that the core-shell

model predicts second-order approximations (i.e. elastic constants) reasonably well, while the

ClayFF approach has some shortcomings when it comes to hydrated oxides with small water

content such as for tobermorite 11 A. Consistent with this observation is the fact that the

ClayFF model predicts elastic properties of quartz that are about 50% lower than experiments.

The core-shell model utilizes (unphysical) formal charges for all in-solid species even though

the bonding in tobermorite layers is iono-covalent in nature. This approach may be more

justifiable to guarantee the transferability of a force field as formal charges are unchanged

regardless of the (hydrated) oxide. Overall, in both semi-empirical potentials the error in

predicting bulk modulus is larger than the error for shear moduli.

6.3 An Improved Potential Customized for C-S-H Phases

Despite the core-shell model's higher degree of transferability, an improvement for the core-only

model for hydrated calcio-silicates is highly desirable since core-only models are less computa-

tionally expensive and thus more efficient for larger systems. Such a development is presented

below. Obviously, such a new core potential for hydrated calcio-silicates may not be transfer-

able to other oxides with different element types. ClayFF's shortcomings in predicting elastic

properties of low-hydrated oxides do not come as a surprise: ClayFF was designed for pre-

dicting structural data (which it does reasonably well) rather than elastic properties. Thus an

improvement of ClayFF would require improving the second-order predictive capabilities.

130



C1 (m/s)
8000

7500

7000

6500

b 6000

5500

b

C1 (m/s)I 7000
6000

5000

4000

C1 (m/s)
8000

7500

7000

6500

b 6000

5500

C1 (m/s)
7500

7000

6500

6000

5500

5000

C2 (m/s)
4500

4000

3500

C2 (m/s)

3800

3600

3400

3200

3000

2800

C2 (m/s)

4400

4200

4000

b :3800

3600

3400

C2 (m/s)
4600

4400

4200

4000

b 3800

3600

C3 (m/s)
3700

3600

3500

3400 (a)
3300

3200

C3 (m/s)

I 2600
2500

2400

(b)

C3 (m/s)

3400

3200

3000
2800

C3 (m/s)

3700

3600

3500 (d)
b 3400

3300

Figure 6-3: Comparison of the principle sound velocities for tobermorite 11A in any arbitrary
direction. Any point on the sphere with the unit radius represents the tip of a unit vector which
is drawn from the center of the sphere (intersection of the three crystal planes). The surface of
the sphere covers all possible 3D arbitrary unit vectors. a) DFT-results b) ClayFF c) core-shell
d) CSH-FF. The CSH-FF predictions refer to the corrected Clay-FF simple charge model.
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6.3.1 Developing CSH-FF Potential

An inspiration for such an improvement comes from SiO 2 core-only potentials that give a good

account of many properties of quartz including structural and elasticity properties [161]. These

potentials are based on the same set of equations as ClayFF but use different parameters. In

view of this approach, we first note that some of the partial charges used in the ClayFF model,

although obtained from quantum calculations, are significantly different than those we derived

from our DFT calculations in Chapter 4.

It is well known that there are different schemes to calculate partial charges, the Mulliken

scheme being the most popular. Thus first-principles derived atomic or ionic charges can be used

as a guideline to understand chemical and bonding processes; but they can also be considered as

fitting parameters in force field potential determination; ab initio data providing a good starting

point for any potential parameter fitting procedure. In the CRYSTAL98 ab initio calculations

in Chapter 4, we found: qsi=+2 .2 5 e, qobridge=-1.2 2 6, qo=-1.36 e, qca=1.66 e and qcw=1.70

e in the case of tobermorite 11 A with Ca/Si=1 and 4 H2 0 molecules per unit cell (Cw refers

to interlayer calcium). By comparing with the ClayFF parameter data set in [30], one can see

noticeable differences, which indicates that the overall Coulombic energy is likely to be very

different. Interestingly, water species partial charges were the same as those in ClayFF, and

are thus compatible with the flexible SPC water model. As a consequence, we did not attempt

to change intra molecular potential parameters.

As a further simplification with respect to ClayFF, we did not consider short-range (Lennard-

Jones) interactions between cations in the spirit of the core-shell approach, and assume that

the cation-cation Coulombic repulsion is sufficient, leading to a simpler description as com-

pared to ClayFF. We thus start our fitting parameter process by considering the ClayFF set

of short-range parameters and let all charges adjust (except those of water species) by using

the potential fitting procedure within the GULP code [47]. Note that we made a distinction

between interlayer calcium, Cw, and intralayer calcium, Ca, based on quantum-derived charges.

As we aim the new force field to show good performances not only at the structural level

but for elasticity as well, we used as a set of fitting data from our DFT calculations including

the cell parameters, the bulk and shear moduli and the entire elastic tensor of tobermorite

11 A; thus in total 29 input data. In a second stage, we let all short range (Lennard-Jones)
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Species charge (e)
Water hydrogen (Hw) 0.41
Water oxygen (Ow) -0.82

Oxygen (formally carrying a H atom) (Oh) -1
Bridging oxygen (0) -1.14

Silicon (Si) 1.72
Calcium (Ca) 1.43

Interlayer Calcium (Cw) 1.7
Hydrogen (H) 0.29

Table 6.9: Partial charges for the CSH-FF force

Dij (eV) Rij (A)
Ca 0 3.77E-05 4.898
Ca Oh 3.06E-05 6.125

Cw 0 6.33E-05 4.898
Cw Oh 4.51E-05 4.9866

Si 0 2.43E-05 3.6716
Si Oh 2.58E-05 3.6627
O 0 5.39E-02 3.0687

Oh Oh 2.68E-03 3.8652
O Oh 1.98E-03 4.0654
Si Ow 2.30E-05 3.6298

Ca Ow 3.80E-05 4.898
Cw Ow 2.62E-05 5.0168

O Ow 2.28E-04 4.7557
Oh Ow 3.78E-02 3.2513

field.

Table 6.10: Non-bonded parameters for different interaction in CSH-FF. D and R are empirical
Lennard-Jones parameters as symbolized in original ClayFF model.

parameters (except the Cw-O, Ow-Ca and Ow-Si parameters fixed to ClayFF initial values as

they are found to have no significant energy contribution) freely adjusting toward DFT data.

At this point, we have 29 parameters to adjust (Lennards-Jones parameters + charges) for 29

input data with equal convergence weight set to 0.01. As a final and third step, as approaching

a converged mathematical solution (i.e. minimizing the sum of the squared differences with

DFT inputs), we ran a fit-relaxation calculation in order to optimize the final structure as well

as the set of fitting parameters.

The set of fitted potential parameters for this new C-S-H force field that we name CSH-FF,

are given in Tables 6.9 and 6.10.
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a b c a # -y
(A) (A) (A) (deg) (deg) (deg)

core-shell 13.31 29.52 23.69 92.01 88.52 123.58
CSH-FF 13.06 29.02 23.08 91.69 87.86 122.68

Table 6.11: Structural data of cCSH, comparison of CSH-FF and core-shell performances.

We note that newly fitted partial charges in CSH-FF are significantly different from both

DFT and ClayFF charges except for water (unchanged during fitting). Therefore, they should

be considered as effective potential fitting parameters with no real physical meaning which is

only relatively well captured by DFT approaches. This also acknowledges the fact that Lennard-

Jones potentials are effective and a rather crude approximation of the repulsive and dispersion

interactions as one can see from the more rigorous quantum perturbation theory based multipole

expansion for the latter [120]. The quality of the fitting can be seen for tobermorite 11 A, in

both structural data (see Table 6.2 and Fig 6-1d to Fig 6-1f), elasticity data (see Tables 6.3, 6.5

and 6.7) and sound wave velocity (see Fig. 6-3). Note that for hydroxyl groups (OH) present

in tobermorite 14 A, CSH-FF uses the same parameters as derived in ClayFF. In this case, to

ensure the charge neutrality of the cell, the small extra positive charge will be divided between

all the cation atoms.

6.3.2 Validation of CSH-FF

The validation of CSH-FF is achieved for tobermorite 14 A, which has not been used for fitting,

showing a good agreement in both structural data (see Table 6.1 and Fig 6-la to Fig 6-1c) and

elasticity data (Tables 6.4, 6.6 and 6.8 ), displaying in some cases superior performance than

the core-shell model for a significantly smaller computational effort.

Finally as a full scale demonstration of the ability of our re-parameterized version of ClayFF,

in predicting, not only structural but also elastic properties, we used CSH-FF in an energy

minimization of the atomic-scale consistent model of cement hydrate (cC-S-H). This model

with a chemical composition of (CaO) 1.6 5 (SiO 2 )(H 2 0)1.75 is able to properly predicts essential

structural features and fundamental physical properties of real cement hydrates (see Chapter

7).

In fact, this model shows cement hydrate as being a porous glassy calcio-silicate at short-
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K VH G VRH M v

(GPa) (GPa) (GPa)

core-shell 49.53 22.69 64.92 0.3

CSH-FF 50.5 21.69 63.06 0.31
Experiment 49.3 22.7 65 ~0.3

Table 6.12: Average elastic properties of cCSH, comparison of CSH-FF and core-shell perfor-
mances with experiments on real cement hydrate samples [27].

range with some reminiscence of tobermorite layer-to-layer longer range correlations. By com-

parison with tobermorite polymorphs, cement hydrate has a rather different chemistry with

significantly larger calcium (and water) content. This large Ca/Si ratio in cC-S-H is achieved

by having silica chains of finite lengths (unlike tobermorite which has infinite chains). In other

words, the cC-S-H model of cement hydrates is a stringent test of our CSH-FF potential as it

contains many defects and also larger water content compared to tobermorite polymorphs.

Note that electroneutrality of the cC-S-H model, although very defective, is maintained.

Tables 6.11, 6.12 and 6.13 present a comparison of structural and elastic data of cC-S-H unit

cell obtained using both core-shell and CSH-FF potential models. It can be seen that CSH-

FF predicts fairly accurate both structural and elastic properties of a complex material such

as cement hydrate. In particular, indentation modulus, M=63.06 GPa, which relates to bulk

and shear moduli agrees well with that extrapolated from nanoindentation experiments on real

cement hydrates [27]. Note that the experimental bulk and shear moduli are back-calculated

from elasticity relations considering v = 0.3 and M = 65 GPa.

This is very encouraging given the relative simplicity and higher efficiency of CSH-FF as

a core-only force field. For instance, assuming equal CPU resources, in the case of cC-S-H,

the CSH-FF considers only N=672 core species while the core-shell model needs additional

317 shells for negative ions for a total of 989 species. Hence, CSH-FF results in 3.4 times more

efficiency than a core-shell model in terms of computational time for energy minimization, which

scales with N3 . Similarly, MD simulations with CSH-FF are at least 2 times faster than those

with a core-shell model. Additionally, since CSH-FF does not have the complexity of a core-

shell structure (i.e. massless shells in anions), the MD times steps can be around an order of

magnitude larger than that used in typical MD simulations with core-shell models. Finally, for

the sake of comparison, we compare the CSH-FF computational speed with DFT. As expected



core-shell CSH-FF

Cii/GPa 93.4939 86.187

C 12 /GPa 45.3728 34.2917

C1 3/GPa 26.0704 35.6453

Ci 6 /GPa 3.4574 1.2588

C22 /GPa 94.8693 85.4978

C23 /GPa 30.0581 32.3433

C26 /GPa -3.007 3.22652

C33 /GPa 68.4554 80.4045

C36 /GPa -0.5734 1.9247

C44 /GPa 19.2291 18.2580 -

C45 /GPa 0.3323 0.674

C5 5/GPa 16.1189 17.7185

C6 6/GPa 31.2336 24.3994

Table 6.13: Elastic constants for cCSH, comparison of CSH-FF and core-shell performances.

DFT calculations take orders of magnitude more time than empirical force fields. For a full cell

relaxation (including internal atomic positions and six cell parameters) for tobermorite 14 A

with 104 atoms, DFT took almost 4 days with 4 parallel CPUs, whereas this relaxation with

empirical force fields takes maximum a few hours with a single CPU.

Since our benchmark comparison data was our previous DFT results, it is worthwhile to

mention that DFT at its current state may not predict accurate van der Waals dispersive forces.

However, in crystalline C-S-H minerals such as tobermorite the interlayer interactions between

charged layers are dominated by coulombic interactions rather than van der Waals dispersive

forces [119]. Moreover, real cement hydrate models such as cC-S-H have a 3D defected structure

where the 2D layered structure is much less pronounced than crystalline C-S-H minerals. Hence,

the dispersive interactions in real cement hydrates are much less critical than other neutral

layered materials such as Mg(OH) 2 , Ca(OH) 2 and kaolinite as discussed in [159]. Hence, the

dispersive forces do not play a significant role for interlayer interaction in both C-S-H models

such as tobermorite and the realistic cement hydrate systems such as cC-S-H which are our

final target for CSH-FF potential transferability.
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6.4 Chapter Summary

In this Chapter, we rigorously evaluated the performances of empirical force fields in the context

of structural and mechanical properties of complex hydrated oxides such as tobermorite 14 A

and 11 A polymorphs. By benchmarking two different classical approaches against reference

DFT data, one based on a simple point charge model, ClayFF, and the second based on the

core-shell potential model, we found that the structural prediction of both force fields seem to

be in close agreement with DFT results. However, a comprehensive investigation of the degree

of transferability of such force fields requires the consideration of higher order properties such as

elastic constants, which relate to second order derivatives of energy. By comparing the elastic

tensors as obtained from the DFT quantum route with the predictions of ClayFF and core-

shell models (in terms of Euclidean and Riemannian metrics, Voigt-Reuss-Hill scheme, and a

new averaging scheme based on sound wave velocity calculations), we found that the core-shell

model well predicts elastic properties while ClayFF underestimates them. This suggests that a

core-shell model has a greater degree of transferability than ClayFF.

On the other hand, we demonstrated that the shortcomings of the simple point charge

model can be overcome by deriving a new set of potential parameters from an original fitting

procedure that includes concurrently structural and elastic data. A core-only force field for

hydrated calcio-silicate materials is proposed in this Chapter. For tobermorite polymorphs,

this re-parameterized version of ClayFF, named CSH-FF, performs well when compared to the

core-shell approach in terms of both structural and elastic property predictions. CSH-FF is

also significantly less computational intensive than the core-shell model.

As a full-scale test of CSH-FF within the framework of calcio-silicate solids, we compared

CSH-FF and core-shell predictions on the consistent atomistic model of cement hydrate, cC-S-

H, that is structurally and chemically quite different than the tobermorite polymorph originally

used in the fitting process. We found that CSH-FF provides satisfactory predictions for struc-

tural data. Average elastic constants predicted by CSH-FF for cement hydrates agree with

those obtained from nanoindentation experiments on C-S-H. However, rigorous analyses of this

prediction for individual elastic constants requires experimental values to become available.

Nevertheless, this new tool provides a means to start performing large scale simulations of ce-

ment hydrates bridging the gap between nano and micron-scale approaches [138]. In the next
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Chapter, we will discuss the cCSH development using core-shell model. In Chapter 8, CSH-FF

will be extensively used to establish the link between composition, density and morphology of

hundreds of C-S-H phases existing in real cement pastes.
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Chapter 7

A Consistent Molecular Structure of

C-S-H

In this Chapter, we propose a consistent molecular model of C-S-H based on an atomistic

simulation approach that considers only the experimental NMR precursors as the overriding

constraint. The overall goal of this Chapter is to show how the molecular components of C-S-H

such as CaO, SiO 2 , and H2 0 interact with each other to form a defected silica chain morphology

that links to realistic values for density and chemical composition of an averaged C-S-H phase.

We show how core-shell model is utilized to build the consistent model of C-S-H. Validated by

experiments, this model predicts several essential structural features and fundamental physical

properties such as mechanical stiffness and strength of real cement paste systems

7.1 Introduction

With the recent determination of the calcium/silicon (Ca/Si =1.7) ratio and the density of the

C-S-H particle (2.6 g/cm3 ) by small-angle neutron scattering measurements [4], there is new

urgency to the challenge of explaining these essential properties. Although our DFT results in

Chapter 4 implied tobermorite 14 A and jennite as the best C-S-H crystalline analogs among all

C-S-H minerals, from the standpoint of constructing a molecular model of C-S-H, these C-S-H

analogs do not possess strict structural and morphological resemblance to those in realistic C-

S-H. For instance, Ca/Si and density values clearly cannot be obtained from either tobermorite
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(Ca/Si = 0.83, 2.18 g/cm3) or jennite (Ca/Si = 1.5 and 2.27 g/cm 3).

In this Chapter, we adopt the perspective that the chemical composition of C-S-H is the

most essential property in formulating a realistic molecular description. We show that once the

Ca/Si ratio is described correctly, a number of characteristic structural features and physical

properties follow naturally in atomistic simulations. We view the present model and its subse-

quent refinements as enabling a new bottom-up perspective on the broad science of cementitious

materials and the innovative engineering of concrete. Manipulation of such a testable model

should ultimately allow the establishment of the critical links between nanoscale microstructure

and macroscale behavior (see Chapter 9).

7.2 Computational Details

All energy minimizations, Grand Canonical Monte-Carlo and NPT-MD were carried out with

the GULP code [47]. The advantage of such an approach compared to ab-initio quantum me-

chanical methods is that for large systems with low symmetry, one can compute not only struc-

tural data but also thermodynamic and elastic properties. The core-shell force field potential

[45],[46],[47] was adopted for interatomic interactions, which is based on Born model description

[45] for ionic and iono-covalent crystal structures. A detailed discussion of the strengths and

weaknesses of the core-shell predictions for C-S-H systems is presented in Chapter 6.

Energy minimization for finding an equilibrium structure consists in tracking stationary

points that correspond to a minimum energy gradient with positive energy curvature (i.e. find-

ing a set of atomic positions that minimizes system energy and give a Hessian operator with

positive eigenvalues only). A phonon spectrum calculation at the center of the Brillouin zone

is then used as a final validation from which one gets the list of lattice vibration frequencies

that should be all positive except the first three that should be zero (unit cell translational

invariance). Such minimization procedure gives a zero temperature solution.

All degree of freedom were considered including atomic positions, unit cell dimensions and

angles. The same approach but at fixed negative hydrostatic stress was used to perform cell

relaxation to calculate rupture properties: for each incremental value of stress, all cell parame-

ters were recorded until one of them was diverged, indicating rupture. The maximum stress at
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which cell volume diverges is considered as cohesive stress.

7.2.1 The Grand Canonical Monte-Carlo Technique for Water Adsorption:

In developing a realistic C-S-H model, we first produced an anhydrous version of the C-S-H

substrate and subsequently calculated the maximum amount of water that can be accommo-

dated in its pore voids. For this purpose, we used the Grand Canonical Monte-Carlo simulation

technique that is a well-suited method to study adsorption/desorption processes. The Grand

Canonical Monte Carlo simulations (GCMC) involves the determination of the properties of

a system at a constant volume V (the pore with the adsorbed phase) in equilibrium with an

infinite fictitious reservoir of particles imposing its chemical potential y and its temperature T

[43],[112]. For different values of p, the absolute adsorption isotherm can be determined as an

ensemble average of the adsorbed atom numbers in the system versus the relative pressure of

the gas reservoir P (the latter can be obtained from the chemical potential according to the

equation of state for the bulk gas).

The adsorption and desorption processes can be respectively simulated by increasing or

decreasing the chemical potential of the reservoir; the final configuration of a simulation is the

initial state for the next point. Similar to energy minimization procedures, periodic boundary

conditions was used in all directions of space. An equal number attempt for translation, rotation,

creation or destruction of molecules has been chosen.

The water sorption isotherm has been calculated for 300 K. Acknowledging the very re-

stricted available space in between tobermorite layers, one should not expect capillary con-

densation to occur by contrast to larger pore systems such as vycor [123]. In our case, the

adsorption/desorption process is expected to be close to that observed for microporous zeolite

[124]. We did not calculate the entire water adsorption/desorption isotherm but perform a

single GCMC simulation with the water chemical potential fixed to a value that corresponds

to the bulk liquid phase with a density of 1 g/cm3 at room temperature (p = 0 eV for the used

core-shell water model).
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pair tetrahedron Bridging tetrahedron

11 A

Figure 7-1: A view of tobermorite 11 A crystal. Green ribbons represent Ca layers and pink
pyramids symbolize silicon tetrahedra (silica chain).

7.2.2 Molecular Dynamics in the NPT Ensembles

Room temperature relaxation were carried out using Molecular Dynamics simulation in the

NPT statistical ensembles integrating motion equation with the leapfrog Verlet algorithm with

Nos6-Hoover thermostat and barostat (with corresponding parameters set to 0.05 eV). Finite

temperature entropic effects are included in NPT-MD relaxations (with zero external pressure)

on the resulting system obtained from energy minimization.

7.3 Model Construction

One of the key issues in designing a realistic C-S-H molecular model is the Ca/Si ratio. Indeed,

confirming earlier measurements [56],[131] energy dispersive X-ray analyses of C-S-H in hard-

ened Portland cement pastes aged 1 day to 3.5 years reveal a composition variation spanning

Ca/Si from approximately 1.2 to 2.3 with a mean value of 1.7; this variation also depends on

the water-to-cement (w/c) mass ratio at which cement is hydrated [135].

Given the shortfalls of the natural analogs, tobermorite and jennite, to meet this compo-

sitional constraint, Richardson proposed a two-fold classification to clarify C-S-H chemistry

[135]. This classification references so-called tobermorite/jennite (T/J) models on one hand

and tobermorite-calcium hydroxyl (T/CH) models on the other hand. The T/CH class consid-

ers models that are solid solutions of tobermorite layers sandwiching calcium hydroxide, hence
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providing a means to achieve a higher Ca/Si ratio than the one of tobermorite. The T/J class

considers C-S-H as an assembly of tobermorite regions followed by jennite domains. While the

T/CH class was found to be relevant for hydrated KOH-activated metakaolin Portland cement,

more common water activated Portland cement pastes can be only partly described by the T/J

or the T/CH approaches.

A realistic model for C-S-H that predicts a realistic Ca/Si ratio thus remains a center piece

of any model construction. Furthermore, quantitative information on the fractions of Si present

in silicate tetrahedra with different connectivities is provided by 29 Si nuclear magnetic resonance

(NMR) [10],[24]. Such studies have established that the dimer is the most predominant of all sil-

icate species, with the linear pentamer as the second most abundant. Tetrahedral coordination

measured by NMR is expressed in terms of the Q, factor, denoting the fractional chemical shift

of a silicon atom bound to n bridging oxygens. Thus Qo is the fraction of a single tetrahedron

(a silicate monomer), Qi the fraction of tetrahedra at the end of a chain (a silicate dimer would

have two Qi), Q2 the fraction of tetrahedra in the middle of a chain (a silicate pentamer would

have three Q2).

7.3.1 Removal of SiO 2 Units

To construct a molecular model of C-S-H that has a Ca/Si ratio consistent with small-angle

neutron scattering measurements, we begin with a monoclinic periodic computational cell of dry

tobermorite 11 A with Ca/Si=1, with 2, 4, and 1 units along axes a, b, and c. Figure 7-1 shows

a side view of tobermorite 11 A. Note that with this value of Ca/Si, the tobermorite layers are

not electroneutral and there are interlayer calcium ions to maintain electroneutrality. We then

remove Si0 2 (neutral) groups in silica tetrahedra guided by the NMR results [38], Qo ~ 10%,

Qi ~ 67%, and Q2 ~ 23% , obtaining a defective C-S-H structure that has a distribution of

Qo = 13%, Qi = 67%, and Q2 = 20%, with a Ca/Si ratio of 1.65. Obviously there are many

possible ways for creating a defected structure with the aforementioned NMR signatures. In

Chapter 8, we discuss and explore a combinatorial approach to produce defected silicate chains.

In this Chapter, we only focus on a single morphology.

Our procedure was carried out without the presence of any OH groups, so that a reasonable

Ca/Si ratio could be obtained under the electroneutrality constraint [132]. After the silicate
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chain modification, we relax the dry cell using the core-shell potential model at 0 K to find a

density of 2.12 g/cm3 , the interlayer distance having shifted slightly to 11.3 A. At this stage,

one can observe significant distortion of the layer structure.

7.3.2 Adsorption of Water Molecules

In order to hydrate the defected unit cell, we performe Grand Canonical Monte Carlo simulation

of water adsorption in the distorted anhydrous unit cell, coupling the system to an external

reservoir at a chemical potential corresponding to liquid water at 300 K as implemented in

GULP [47]. At equilibrium, the adsorbed water increases the density to 2.56 g/cm3 , which is

close to the experimental value provided by neutron scattering of 2.6 g/cm 3 [4]. We regard

this agreement, which was an outcome rather than an input or constraint to this model, to be

a significant consistency check on our model development procedure. Further relaxation at 0

K of this hydrated C-S-H model yields a slight increase of the interlayer spacing from 11.3 A

to 11.9 A, reducing the density by 4% to 2.45 g/cm3 ; molecular dynamics simulations under

constant pressure and temperature (NPT-MD) give the same result.

In the final model, one can observe water molecules adsorbed in cavities inside the calcium

oxide layers as a result of relaxation. While the amount of water is similar to that present

in the interlayer region of 14 A tobermorite, the water in our model is adsorbed not only in

the interlayer regions, but also in the distorted intralayer regions around the silica monomers.

As a consequence of water adsorption the density increases to 2.56 g/cm3 , with the adsorbed

water molecules being in an ultra-high confining environment. This water may be regarded

as part of the structure, reminiscent of structural water or bound water in cement chemistry

terminology. The overall chemical composition of the computational model of the hydrated

C-S-H is thus found to be (CaO)1.65(SiO 2 )(H 20)1.75, which is in reasonable agreement with

the neutron scattering experiments (CaO) 1.7 (SiO 2 )(H 2 0)1.8 [4]. The molecular configuration of

this model is shown in Fig. 7-2; and its cell parameters and atomic positions are given in the

Appendix C.
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Figure 7-2: (a) TEM image of clusters of C-S-H (courtesy of A. Baronnet, CINaM, CNRS and
Marseille Universite, France), the inset is a TEM image of tobermorite 14 A from [136] (b)
the molecular model of C-S-H: the blue and white spheres are oxygen and hydrogen atoms of
water molecules, respectively; the green and grey spheres are inter and intra-layer calcium ions,
respectively; yellow and red sticks are silicon and oxygen atoms in silica tetrahedra.
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7.4 Model Validation Against Experiments

7.4.1 Structural Validation Through EXAFS, XRD and IR Measurements

We validated the structure of our model by calculating several experimentally accessible prop-

erties. The results, summarized in Fig. 7-3, consist of extended X-ray absorption fine structure

(EXAFS) spectroscopy signals measuring short-range order around Ca atoms (Fig. 7-3A),

longer range correlations revealed in X-ray diffraction intensity (Fig. 7-3B) and vibrational

density of states measured by infrared spectroscopy (Fig. 7-3E).

The various tests provide strong evidence of a short-range structural disorder, the hallmark

of a glassy phase. For instance, the simulated and experimental Ca total pair distribution

functions as measured in EXASF (Fig. 7-3A), agree well, showing peaks at the same inter-

atomic distances with same relative intensities that allow discriminating C-S-H against all other

calcio-silicate crystalline solids [89]. The fact that the first peak in the experimental EXAFS

signal is broader than that obtained in simulation suggests that real C-S-H may exhibit an

even larger volume fraction of short-range structural disorder. The X-ray diffractogram of our

C-S-H model (Fig. 7-3B) clearly indicates the reduced degree of crystallinity as compared with

tobermorite.

The suggestion that our C-S-H model can be seen as a glassy phase at short length scales

is confirmed by a comparison of the partial pair distribution functions g(r) of our C-S-H model

with that of a true non-porous calcio-silicate glass at room temperature with the same Ca/Si

ratio and a density of 2.34 g/cm3 (Fig. 7-3C and 7-3D): the structure of the second peaks in

the g(r) for Si-O and Ca-O pairs in tobermorite show characteristic structural features that are

absent for both the calcium-silicate glass and our C-S-H model. For the sake of consistency,

the Ca-glass and crystalline tobermorite simulations were carried out with the same empirical

potential model, with the Ca-glass potential obtained by following the method given in [50].

We may interpret this comparison to indicate that C-S-H should be considered as a glass on the

short range of distances associated with the distorted intralayer structure, while retaining some

layered crystal features at longer range of distances associated with the interlayer spacing.

The comparison between simulation and experimental infrared spectra (Fig. 7-3E), allows

further characterization of our model. Note that calculated infrared intensities were obtained
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Figure 7-3: Characterization and validation of molecular model of C-S-H. (a) EXAFS Ca-radial
distribution function, exp. [89] (phase shift of +0.3 A, background subtracted); (b) XRD data,
exp. [65] for C-S-H and [99] for Tobermorite 14 A; X-ray diffraction patterns for cCSH are
calculated with the CRYSTAL-DIFFRACT code at a wave length of 1.54 A and an apparatus
aperture broadening of 0.4 A- [179] (c) SiO radial distribution function, comparison with that
for a non porous calcio-silicate with Ca/Si=1.6 and with that for Tobermorite 14 A; (d) idem
for the CaO pair; (e) Infrared data, exp. [173]; (f) nanoindentation data, exp. [160], see text.
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from the relaxed model C-S-H structure by performing a numerical integration over the sampled

phonon modes [37]. All of the experimental bands are present in the calculated spectrum but

the ones in the range 1,200-1,500 cm-1; the absence of these bands is not surprising, as these

correspond to experimental carbonation effects (Q3 silicate stretching and vibrational mode of

CO2- ions) that can be avoided in a computational model.

The first low frequency band in the range 200-350 cm-1 corresponds to the vibration of Ca

polyhedra including those of other hydration products, namely Ca(OH) 2 grains, that nucleate

in the mesopores of the real cementitious material, in addition to C-S-H. Since our model

only represents the C-S-H, this Ca polyhedra band is present in the model, but not of as high

intensity as in experiment, more closely corresponding to that measured for tobermorite [173].

The band in the domain 440-450 cm- 1 can be attributed to deformations of SiO- tetrahedra.

The band in the range 660-670 cm- 1 is due to Si-O-Si bending while that at 810 and 970 cm-1

is attributed to Si-O stretching in silica tetrahedra (Q1 and Q2 environments, respectively).

Finally, infrared analysis provides some information on the nature of the water molecules:

the band at approximately 1,600 cm-1 is characteristic of water H-0-H bending, while that

at 3,300 cm-1 is attributed to 0-H stretching. Interestingly, these band positions are lower

than that of bulk liquid (bulk liquid water is also present in the mesopores of C-S-H) and are

characteristic of a strong confining environment, as is also suggested from neutron quasi-elastic

experiments [41].

7.4.2 Mechanical Validation Through Stiffness and Strength Measurements

We consider mechanical properties of the model C-S-H, computed by stretching the cell di-

mensions to calculate elastic constants (Tables 7.1 and 7.2) as well as the rupture strength.

For a quantitative comparison, we use nanoindentation measurements that probe the stiffness

and hardness of nanoscale clusters of randomly oriented C-S-H particles at the micrometer

scale (Fig. 7-2), which have been characterized by isotropic stiffness and strength particle

properties and particle packing density [27],[160]. Then, using micromechanics-based scaling

relations pertaining to granular [59] and porous materials [109], of the indentation elastic mod-

ulus, M = mHM (7q, v), and indentation hardness, H = hSHH (q, a), we correct for the effect

of interparticle porosity, via particle packing density, 7, and determine the C-S-H particle in-
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Elastic properties
Voigt bulk modulus in GPa 51
Reuss bulk modulus in GPa 47
Voigt shear modulus in GPa 24
Reuss shear modulus in GPa 22

Young modulus along the x-z plane in GPa 66-68
Young modulus along the y direction in GPa 55

Poisson's ratio 0.3
Indentation modulus in GPa 65

Strength in GPa 3

Table 7.1: Elastic Properties

C /GPa 1 2 3 4 5 6
1 93.5 45.4 26.1 0.58 -0.05 3.46

2 94.9 30.01 -4.60 1.79 -3.00
3 68.5 -4.32 -2.72 -0.57
4 19.2 0.33 1.82

5 16.1 -0.4

6 Sym 31.2

Table 7.2: Elastic Tensor

dentation modulus, m. = E/ (1 - v2), and the particle hardness, he, (where E, is the Young's

elastic modulus, v, is the Poisson's ratio, a is the friction coefficient). The extrapolation is

shown in Fig. 7-3F.

The experimental values are in excellent agreement with the ones obtained from our com-

putational C-S-H model, using for the elasticity constants the Reuss-Voigt-Hill average (M

= 65 GPa, Table 7.1) calculated from the full elasticity tensor (Table 7.2) to compare with

the elasticity properties of randomly oriented C-S-H particles; and for hardness the maximum

negative isotropic pressure (h, = 3 GPa, Table 7.1) that precedes rupture of the simulation

cell perpendicular to the layer plane. These values are somewhat higher than those for tober-

morite 14 A and jennite, for which m. = 56 GPa obtained from classical [118] and our ab initio

plane-wave GGA-DFT calculations (Chapter 4).

This comparison underscores the importance of considering a realistic C-S-H structure for

the prediction of elasticity and strength properties of cement-based materials. Moreover, com-

bining the elastic properties determined from our C-S-H model with some micromechanics
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models [59], [109] with no adjustable parameters, we can also probe the texture and extent of

anisotropic structures within cement paste at micrometer length scales of randomly oriented

C-S-H particles. Fig. 7-3F compares the prediction of two micromechanics models along with

nano-indentation results; one is a porous bicontinuous matrix approach captured by the so-called

Mori-Tanaka scheme [109], and the other a granular approach captured by the self-consistent

scheme [59]. From this comparison, we observe first that the granular approach better describes

the experimental data over the entire domain of C-S-H particle packing fractions. Second, both

approaches give acceptable predictions at larger packing fractions. That is, at the micrometer-

scale, Mori-Tanaka and self consistent micromechanics approaches, parameterized only with

nanoscale derived elasticity constants, indicate that cement paste can be conceptualized as a

cohesive granular material rather than a porous bicontinuous matrix.

7.5 Chapter Summary

In this Chapter, we provided an atomistic-level structural model for C-S-H, developed with the

core-shell model and validated against several experimental analyses of structure and properties.

By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-

H archetype of a molecular description of interacting CaO, Si0 2 , and H20 units provides

not only realistic values of the Ca/Si ratio and the density computed by Grand Canonical

Monte Carlo simulation of water adsorption at 300 K. Our proposed model, with a chemical

composition of (CaO)1.6 5 (SiO 2 )(H 20)1.75 and density 2.6 g/cm3 may serve as the first consistent

molecular model of C-S-H, to which one may refer to as the DNA of concrete. Analogous to

Watson and Crisk's discovery of DNA, which revolutionized biology, our model can greatly

impact the cementitious materials landscape by enabling many opportunities for understanding

fundamental deformation mechanisms, diffusive properties, electrical properties and many other

characteristic material parameters. In the next Chapter, we show one example of how the

concepts and methodologies used in this Chapter help decoding a set of C-S-H molecular phases

across different Ca/Si ratios.
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Chapter 8

Decoding Molecular C-S-H Phases

by CSH-FF

The previous Chapter was focused on a single molecular phase of C-S-H with an average ratio

of Ca/Si=1.7. In this Chapter, by leveraging from the efficiency and validated predictive capa-

bility of CSH-FF, along with statistical mechanics and a combinatorial approach, we aim to un-

ravel the structure, chemical composition and mechanical features of several non-stoichiometric

C-S-H phases spanning from Ca/Si=1.1 to Ca/Si=2.1. We present several physio-chemical

properties that vary across C-S-H phases. Under shear computational experiments, we show

how mechanical properties such as strength and hardness can be modulated with varying the

molecular morphology and chemical composition of C-S-H phases.

8.1 Computational Approach

The computational strategy used in this Chapter is a combination of a combinatorial approach

and different atomistic-scale classical simulation techniques including internal energy relaxation,

GCMC for water adsorption and NPT/NVT Molecular Dynamics at room temperature. In

this Chapter, all these simulations techniques rely on a consistent description of interatomic

interactions based on the core-only force field potential, CSH-FF developed in Chapter 6. Such

a force field is obviously far less computationally expensive than polarizable (core-shell) force

field that have additional degrees of freedom.



While CSH-FF was calibrated based on our DFT results on tobermorite 11 A (Chapter

4), its predictive capability was tested and confirmed in estimating the structure and elastic

properties of a realistic C-S-H, cCSH (Chapter 6 and 7). Compared to tobermorite 11 A

mineral, cCSH can be distinguished by two major features: first, it has 70% larger Ca/Si ratio

than tobermorite 11 A, and second, it has a distorted layered structure composed of silica

chains of various lengths (as opposed to infinite chains in tobermorite 11 A mineral). Hence,

we consider cCSH model as a full-scale validation for predictive capability of CSH-FF.

In developing combinatorial C-S-H models, aside from the random nature of the strategy,

we use similar computational methods and codes (energy minimization, GCMC and NPT-

MD) with identical parameters as presented in the previous Chapter. Note that we did not

investigate the effect of temperature and as needed it was set to 300 K. We wrote several scripts

to automatize the computational routines.

8.1.1 Combinatorial Model Construction

In the previous Chapter, cCSH was constructed to meet the Qi valued measured by 29 Si NMR

experiments on cement pastes, hence cCSH is, in fact, a model equivalent to an average com-

position of the nonstoichiometic C-S-H gel with Ca/Si=1.7 [4]. In this Chapter, we remove this

constraint and aim at achieving various possible chemical compositions of the nonstoichiometric

C-S-H across different Ca/Si ratios; thus covering the whole experimental spectrum of energy

dispersive X-ray analyses of local Ca/Si ratios spanning from approximately 1.2. to 2.3 with a

mean value of 1.7 [56], [131], [135] (see Fig. 8-1). Our approach is similar to what we employed

earlier in the previous Chapter, thus we randomly remove Si0 2 entities from an anhydrous

supercell of tobermorite 11 A crystal until we achieve the targeted Ca/Si ratio.

8.1.2 Generating Different Ca/Si ratios

We employ our developed strategy in Chapter 7 to impose a given chemistry in terms of Ca/Si

ratio. As for the cCSH initial model, we start from a periodic simulation box of tobermorite 11

A (Hamid structure, Ca/Si=1) with 2, 3 and 1 units along cell axes a, b and c. At this stage,

we considered an anhydrous version of this structure as we were only interested in creating the

model itself; the addition of water was carried out at a second stage using Grand Canonical
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Figure 8-1: Ca/Si ratio frequency histogram in Portland cement pastes, measured by TEM
micoanalyses of C-S-H free of admixtures with other phases [135]. For comparison, the Ca/Si
ratios for tobermorite minerals and jennite are also shown with wide and narrow rectangular
boxes respectively.
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Figure 8-2: The matrix of the backbone structure for a tobermorite crystal.

Monte-Carlo simulation implemented to describe adsorption /desorption processes.

Note that our simulation box is large enough to accommodate silica dimmers, pentamers

and even octamers as these types of silica chain are known to be present in real cement paste.

One can map out each silica initial infinite chain onto line that contains "1" for non-bridging

tetrahedral and "2" for the bridging ones (in tobermorite, both types of silica tetrahedral form

a so-called drierketten pattern that in this simple notation writes "-112-". Thus within our

periodic simulation box, silica structure of tobermorite writes "-112112112-". Juxtaposing all

the eight chains (2 per side of each layer, two layers), we can assemble the Hamid's structure

of tobermorite in a matrix shown in Fig. 8-2

Note that for the given considered size of our model (in number of initial unit cells of

Hamid's model of tobermorite), it contains 72 silicon species. Implementing a target Ca/Si

ratio is achieved through the following steps. First, we developed a simple computer program

that uses a random number generator to replace some elements of the above matrix by "0" with

the constraint of matching a given Ca/Si ratio (within ± 0.25) and producing only dimmers

11-" pentamers "-11211-" and octamers "-11211211-". For instance the "cutting" matrix

for a Ca/Si=1.30 is shown in Fig. 8-3

The second step is to realize the combinatorial aspect of the approach as they are many

ways to "cut" for a given Ca/Si ratio. In this report, for each Ca/Si ratio, we constructed 10

to 15 different samples. Finally, each "cutting matrix" is automated to be projected onto our
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Figure 8-3: The matrix of a backbone structure for a combinatorial C-S-H with Ca/Si=1.3.

simulation box. Each "0" corresponds to a silicon atom that has to be removed along with two

of its neighboring oxygens. Since Si0 2 is a neutral entity, overall system electroneutrality is

maintained. We also make sure that the silicons in sites that correspond to the chain ends (or

Qi in the nomenclature of solid state NMR) have the necessary 4 oxygen neighbors. Figure 8-4

shows a schematic picture of the defected tobermorite along with cavities occurring inside the

layers.

8.1.3 Calculation of Shear Strength and Hardness

Before investigating the strength response of combinatorial C-S-H models, all internal degrees

of freedom and cell parameters and angles were relaxed using NPT-MD at 300K. Next, in

order to predict strength and Hardness, we recourse to the Von-Mises pure solid case, for which

H ~ 2.8Y from comprehensive analysis of conical indentation [49]. Here, H represents Hardness

and Y is the uniaxial strength. It can be simply shown that for such Von-Mises solids Y = V/5cs

where c' is the Von-Mises cohesion or the yield stress of the material in pure shear. Hence, to

obtain Hardness we simulate the stress-strain behavior of all combinatorial C-S-H polymorphs

in affine shear deformation (strain controlled).

A series of shear strains in increments of 0.005 is applied; after each increment the atomic

configuration is relaxed at fixed volume by energy minimization and shear stress determined by

calculating the derivative of the total energy density with respect to strain. Then c' is taken
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Figure 8-4: A schematic defected supercell of the tobermorite where some bridging silicon
tetrahedra (triangles) are removed. Ellipsoid represent cavities inside the tobermorite layers,
which arise from the tetrahedra removals.

as the yield stress of the shear stress-strain behavior. On average, each data point representing

simulated hardness took about three days involving relaxation and energy minimization.

8.2 Variation of the C-S-H Backbone Structure

By following the above computational methodology, we decoded a variety of C-S-H phases (more

than 130 polymorphs') spanning from approximately Ca/Si=1.1 to 2.1. Each C-S-H polymorph

creation took about 3-4 days of computational time on a single CPU. Figure 8-5 shows a few of

these polymorphs for different Ca/Si ratios. For simplicity we only display the defected silica

chains (water molecules and Ca ions are not shown). From the pool of combinatorial C-S-

H polymorphs and their corresponding physical and mechanical properties including density,

morphology, water contents, total energy, stiffness, and shear strength, a number of different

cross-plots can be generated that each represents an interesting trend.

By increasing Ca/Si, more defects appear in the C-S-H structure. In Fig. 8-5, we have

'The actual number of attempted polymorphs was much more, however, not all of them converged.
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Figure 8-5: Sample combinatorial C-S-H models along with defects for different Ca/Si ratios.
The yellow bars represent Si atoms and the red bars indicate Oxygen atoms. For clarity, water
molecules and interlayer Ca ions are not shown.

shown a few snapshots of the defected structures. At low Ca/Si (less defects), the 2D backbone

structure of the lamella is almost preserved. However, for large Ca/Si (more defects), the

removal of several silicon tetrahedra results in changing the 2D layered structure to a (3D)

glassy structure. In is interesting to note that more defects creates more empty sites in the

(distorted) backbone structure, hence more water molecules can enter into the system.

Thus by increasing the Ca/Si, the density of water per Si atom increases (Fig 8-6a), which

is consistent with the concept that each Si0 2 occupies the volume of approximately two H2 0

molecules. This trend generally results in shrinking the interlayer distance (in which the water

molecules and interlayer Ca ions are mostly located), hence increasing the density (Fig 8-6b

and Fig 8-6c) due to the competence of several chemical interactions inside each single distorted

C-S-H structure to find the minimum overall energy. Figure 8-6d compares the total energy of

each unit cell normalized by their volume as a function of Ca/Si. In this figure, it appears that

for a given Ca/Si ratio, there are concurrently different C-S-H polymorphs that are structurally

equilibrated. This hints toward the presence of different stable morphologies (hereafter called

C-S-H polymorphs) at a given composition, which are energetically distinct and competitive.

8.3 Modulation of Mechanical Properties of Combinatorial C-

S-H Phases

Besides our DFT study in Chapter 4, there are scarce MD simulations of the elastic properties of

distinct mineral analog phases of C-S-H such as tobermorite family and jennite as a function of

157

Ca/Si=1.2 Ca/Si=1.8 Ca/Si=1.9



2

... *
.5-s*

,.1

:-.''

1 1.2 1.4 1. 1.8

Ca/Si

(a)

2 2.2

(C)

0< 125

12
CO

S11.5

( 11

10.5

10

S.

S.;...

* . S

.1. ..

1 1.2 IA 1.6 1.8

Ca/Si

-oA8
S.

S* S.3

-0.52

-0.54

-0.58

1 1.2 1A 1.6 12

Ca/Si
2 2.2

;3

S..

1 1.2 1A 1.6 1.8

Ca/Si

Figure 8-6: Effect of Ca/Si on a few physical properties of combinatortial C-S-H structures.
(a) The number of water molecules per Si atom, (b) The interlayer spacing between adjacent
C-S-H layers, (c) Density of the unit cell, (d) Total energy per volume in a final equilibrated
unit cell.

158

(b)

' (d)

2 2.2



Ca/Si [52],[96],[118],[119]. These studies are based on mineral phases that although seemingly

are similar to C-S-H, whose backbone structures are significantly different within themselves

and also from that of the C-S-H gel. Here, we show a set of attainable mechanical properties

as a function of Ca/Si ratio within a fixed chemical framework (i.e. tobermorite supercell), in

which all structures have similar backbone layers and interlayer distances.

Following the methods presented in Chapter 7, analyses of various cell deformations relates

to VRH approximation for bulk modulus and shear modulus, which both are linked to in-plane

stiffness, indentation modulus, M. Hardness values are predicted using shear stress-strain plots.

Figure 8-7 shows how these two mechanical parameters, indentation modulus and hardness,

varies as a function of Ca/Si. From these plots, it turns out that there are significant changes

in mechanical properties as a function of defects or structural changes discussed in Fig. 8-6:

First, we note that the factor Ca/Si has a significant effect on stiffness and strength prop-

erties which can be up to 100%. This is particularly the case for structures with low Ca/Si,

which in general show higher stiffness than those with larger Ca/Si ratios. Hardness shows a

slightly wider spectrum as a function of Ca/Si. Thus as expected and analogous to many other

compounds and alloys, the chemical specificity of a C-S-H system plays a major role in defining

mechanical properties.

Second, in contrast to common intuition, the existence of different polymorphs at a given

Ca/Si, results in significant variation in stiffness and strength properties of C-S-H systems.

Thus it appears besides the chemical composition, there is another important degree of freedom,

molecular morphology, which similarly has a profound effect on mechanical properties of C-S-

H phases. For instance for Ca/Si=1.8, we note how stiffness and hardness varies between

approximately 52-75 GPa and 3-7 GPa, respectively.

Thus, in summary, in view of Fig. 8-6 and Fig. 8-7 we showed by means of a combinatorial

computational methodology, how Ca/Si ratio and molecular morphology as two controlling

parameters can affect the structural disorder and hence mechanical properties of C-S-H phases.

In what follows, we validate our predictions by chemomechanical characterization of real cement

paste samples.
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Figure 8-7: Comparison of experiments and simulations. a) Indentation modulus, M. Exper-
imental indentation modulus data extrapolated to 77=1 closely matches the average of several
possible polymorphs of C-S-H from simulation data at each Ca/Si ratio. b) Indentation hard-
ness, H. Hardness values predicted by computational shear experiments are in agreement with
the experimental hardness data extrapolated to q=1. Solid blue lines represent the average M
or H value of all the polymorphs. Error bars here indicate the maximum and minimum values
at each Ca/Si. Some of the samples only had one data point and therefore have no data range.
[Experimental data courtesy of Dr. Karen Stewart and Prof. Krystyn van Vleit, MIT].

8.4 Chemomechanical Validation of Combinatorial C-S-H Phases

Synthesized cement paste samples include two different clinkers, different additives, and different

water:cement (w/c) ratios2 . Clinker A is comprised of 65.3% CAS, 13.5% C2 S, 7.1% C3 A and

8.6% C4 AF while clinker B is comprised of 6.3% C3S, 71.2% C2 S, 9.1% C3 A and 11% C 4AF.

With the exception of A2 and B2 (w/c = 0.4), all cement pastes have w/c = 0.3 using 100 g

of cement. All cement paste samples contained 5 wt % gypsum and 95 wt % clinker. The 12

pastes were cured for 28 days at 20'C and 98% relative humidity.

After curing, the cement paste samples were prepared for in situ mechanical characterization

(via nanoindentation) and chemical characterization (via Wavelength Dispersive X-ray Spec-

troscopy, WDS). Mechanical samples were sectioned with a diamond saw into slices of 15 mm x

2All experiments and characterizations in this Section are performed by Dr. Stewart and Prof. van Vliet at
the Department of Material Science and Engineering of MIT.
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Sample Ca/Si M (GPa) H (GPa)
B3 1.36 70.5 7.5
B6 1.38 87.9 7
B4 1.41 76.4 6.5
B5 1.51 77.1 11.5
A5 1.52 76.4 10
A6 1.52 92.7 3.9
A4 1.53 83.6 9.1
Al 1.62 75.7 6
A3 1.64 78.5 5.8
B1 1.66 73.3 5.2
B2 1.68 69.3 5.8
A2 1.88 68.1 4.4

Table 8.1: Details of each cement paste sample and the corresponding Ca/Si ratio, extrapolated

indentation modulus and hardness [Experimental data courtesy of Dr. Karen Stewart and Prof.

Krystyn van Vleit, MIT].

5 mm x 5 mm thickness. Chemical samples from the same cured cement pasted were sectioned

into 5 mm x 5 mm x 3 mm thickness; this smaller size reduced the time required for vacuum

pumping within the WDS chamber. All samples were polished using silicon carbide sandpaper

of decreasing grits (500, 1200, and 4000) in air, and cleaned within each polishing step via high

pressure air flow. A final polish was employed via a diamond impregnated polishing pad of <1

pm grit diameter, to achieve a mirror-like finish on the cement sample surface.

The detailed procedure in nanoindentation experiments on porous cement paste samples is

similar to the method presented in [27] and [163], and the values of M and H for fully dense

C-S-H solids (i.e. packing density, 7=1) was calculated from extrapolating packing density plots

to 77=1. The determination of Ca/Si and the chemical composition were performed using WDS

by collecting 400 data points on each of the samples with 15 kV accelerating voltage. More

details on the techniques and procedures used in both nanoindentation and WDS experiments

on these cement paste samples will be published elsewhere [150]. The parameters for each

samples is given in Table 8.1.

From the comparison of the experimental chemomechanical characterizations of cement

paste samples with mechanical properties of combinatorial C-S-H phases (Fig. 8-7), it turns

out that there is an excellent agreement between the two results. Thus confirming our earlier

predictive approach in modulating cement hydrate via chemical composition and molecular
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morphology. Here, two of the clinker B samples do not match with the simulation plot for

indentation modulus. Clinker B samples may be flawed in that they are comprised of C2 5

which needs a longer period of curing to reach hydration levels similar to C3S, which were

typically more porous.

Another reason for why some of the B samples do not match simulation is due to the fact

that our combinatorial C-S-H models are developed based on a framework (tobermorite II A,

Hamid structure) whose precursors are validated and obtained from typical industrial samples,

which are based on primarily C3S clinkers. C3 S and C2 S have different crystal structures and

therefore their clinker dissociation in water and eventual precipitation may result in different

C-S-H products. Thus one may not expect a satisfactory match to B clinkers. Also, our models

are comprised of only Ca and Si, and water whereas these real cement paste samples have

various degrees of additives/impurities especially Na substitution.

8.4.1 Is the stiffest C-S-H polymorph the hardest ?

One interesting aspect of the mechanical properties of C-S-H is whether the stiffness polymorphs

is the hardest polymorph ? This is important because if the stiffest is the hardest, then there

is not much room for ductility; hence indicating very brittle behavior of C-S-H. This may not

be appealing in terms of energy dissipation that is usually a concern in code designs. Figure

8-8 shows for simulated molecular C-S-H phase, hardness do not linearly increase with stiffness.

For comparison, experimental values for clinker A and B are also shown, which together with

simulation results indicate that the stiffest polymorphs are not the hardness. Hence, C-S-H

shows ductility at the nano-scale. However, this is not the case at the higher hierarchical

scales as other parameters such as porosity, materials boundary mismatch and sliding limit the

ductility regime.

In view of Fig. 8-7, simulation data are denoted as a weighted average of each mechanical

property at a given composition, which relates implicitly to the relative energy of each C-S-H

polymorph. Figure 8-6d shows this total energy/volume of C-S-H varies over a narrow range

for each Ca/Si. In other words, C-S-H polymorphs are energetically distinct. Interestingly,

Fig. 8-6d indicates that C-S-H phase stability generally increases with decreasing Ca/Si; as

expected, the crystalline tobermorite phase at low extreme approaching Ca/Si = 1 is most
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Figure 8-8: Hardness versus stiffness for C-S-H.

stable. Relevant to this notion, Fig. 8-9 cross-plots the total energy per atom and the elastic

moduli and hardness of the C-S-H phases. From Fig 8-9a, it appears that by increasing the

Ca/Si ratio (moving up), the stiffness and stability decrease (moving left and up respectively),

whereas there is no correlation between stability and hardness. Further, for a polymorph family

of a fixed composition, there is no correlation between the polymorph phase energy and these

mechanical properties, hence these structures are being energetically competitive. Therefore,

modulating to stiffer or harder phases cannot be achieved only by chemistry and relative phase

stability, but may need altered reaction kinetics.

Considering the unsettled nature of C-S-H nucleation in actual cement pastes containing

impurities that are unaccounted for in our current simulations, satisfactory level of agreement

was found between experiments and simulations to validate our computational approach. Our

results underscore potential to optimize stiffness and strength attainable via the modulating

Ca/Si ratio of C-S-H.
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composition are energetically very competitive. b) There is no correlation between energy per
atom and the hardness of the C-S-H polymorph.

8.5 Hydraulic Shear Response

Probing atomic-level mechanisms to gain insights into structural deformation and failure at

larger length scales is currently a central issue in the development of nanomechanics of hard

crystalline materials [151],[176]. The formulation of molecular models of C-S-H presents an

opportunity to initiate similar investigations of cementitious materials, thereby opening up a

class of microstructures with unique chemistry-rich and spatially heterogeneous characteristics.

A fundamental question common to all systems is the nucleation and evolution of a "unit

process" in the constitutive response to tensile and shear loading, and the effects of specimen

size, temperature, and strain-rate dependence.

In order to investigate the deformation and fracture mechanisms of the highly anisotropic

C-S-H models, the uniaxial properties such as stiffness and strength may not provide a good

reliable results. But shear deformation would engage more atomistic degrees of freedom, hence

better representing the complex behavior of anisotropic C-S-H models. While we have simulated

the shear stress-strain behavior of all combinatorial C-S-H models, in what follows, we focus
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on a representative C-S-H model with Ca/Si=1.65 and elucidate the common characteristics of

combinatorial C-S-H models such as deformation mechanisms and atomistic strength features.

8.5.1 Strength-Controlling Shear Localization

Here, we zoom at cCSH, as the most representative C-S-H model and discuss the shear stress-

strain curves of both hydrated cCSH as well as a "dry" version of this model in which all

water molecules have been removed (Fig. 8-10). The responses in both cases are a sequence

of elastic loading under incremental strain, interspersed with discrete stress drops reminiscent

of strain localization events. This type of intermittent or saw-tooth behavior is typical in all

combinatorial C-S-H models and has been observed in deformation simulation of metallic glasses

[7], glassy polymers [111] as well as nanoindentation-induced dislocation nucleation [90].

Here, we will discuss the first two stress drops in each response curve. These occur at

stresses between 2.5 to 3 GPa in the dry sample and approximately 1 GPa in the hydrated

sample; these values are lower than the ideal shear strength, or about 10% of the shear elastic

modulus, due to the defected microstructure of this C-S-H phase. Moreover, it is not surprising

that the presence of water lowers the strength.

On the other hand, inspection of Fig. 8-10a indicates a significant difference between the two

response curves. If we take the elastic loading portion of the response after the first drop and

extrapolate back to zero stress, we find a significant "residual" strain of approximately 0.1 in the

dry sample, an indication of irreversible deformation associated with the first drop. In contrast,

in the hydrated sample unloading after the first drop indicates essentially no residual strain,

which suggests the deformation to be largely elastic. To observe the atomic displacements that

correspond to these stress drops, we display in Fig. 8-10b the largest individual displacements

associated with the four stress drops in Fig. 8-10a.

It is clear that in the dry sample local strains are distributed across the cell, with a slight

degree of strain concentration within the layers rather than in the interlayer region, especially at

stage (d). It is also quite clear that in the hydrated sample the strains are localized entirely in the

interlayer region and are mostly associated with displacements of water molecules. Combining

these observations with the characteristics of the stress-strain response in Fig. 8-10a we can

conclude that the shear response of the C-S-H model is strain localization in the interlayer
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region; this localization occurs in the form of sliding, ostensibly facilitated by the lubricating

action of the water molecules. In the absence of water, strain localization appears to manifest

as individual events of irreversible deformation.

The present results demonstrate the potential to gain insights into the effects of water

on the deformation behavior of the C-S-H particle. This problem bears some analogy to the

phenomenon of "hydrolytic weakening" in other crystalline and glassy silicates, where it is

believed that hydration causes more than a five-fold reduction in the compressive strength of

a-quartz [54].

8.6 Density as a Unified Parameter Governing Stiffness in C-

S-H Phases

Classifying C-S-H mechanical properties under a single controlling parameter is a controversial

subject. There are various experimental and computational results quantifying C-S-H stiffness

as a function of several parameters including Ca/Si, w/Ca and so on. However, these results

in many cases don't match with each other and even in some cases they clearly contradict

the general pattern of each other! Our pool of combinatorial C-S-H models constructed under

an unified computational umbrella by means of a bottom-up approach originating from DFT

calculations provides a reliable and consistent databank to clarify many common ambiguities

found in the literature.

While various cross-plots representing the combinatorial C-S-H data are possible, here we

show the results of our investigation on the in-plane stiffness or indentation modulus M, which

linearly scales with the density. This bears some analogy with the packing of C-S-H granular

particles inside the porous matrix of a cement paste [27]. However, in this case the packing

pattern occurs inside a single C-S-H particle with a fixed size by rearrangement of the atomistic

species in favor of the minimum internal energy, hence most stability and stiffness.

8.7 Chapter Summary

In this Chapter, by leveraging from the computational efficiency of CSH-FF potential along with

its unique capability of predicting structural and mechanical properties of the C-S-H family,
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Figure 8-11: This figure shows how indentation modulus, M, of C-S-H models scales linearly
with density.

we built an immense spectrum of C-S-H polymorphs spanning from approximately Ca/Si=1.1

to 2.1, hence covering all local values of experimental Ca/Si ratios. Our results were based

on a combinatorial approach tailored to statistical mechanics to unravel the structure and

morphology of more than 130 C-S-H atomistic models with realistic mechanical properties.

We showed the removal of Si0 2 units distorts the layered C-S-H structures by creation of

defects (cavities), which may serve as a host for water molecules, hence shrinking the interlayer

space and increasing the density. By analyses of deformation of C-S-H models, we showed me-

chanical properties such as stiffness and hardness vary significantly as a function of composition

and molecular morphology. The trend and the magnitude of our computational predictions are

in perfect agreements with experimental results of chemomechanical characterization of real

cement paste samples. This demonstrates that CSH-FF is a powerful predictive potential for

directing chemistry to achieve targeted mechanical properties.

From hundreds of affine shear tests, it was predicted that the hardness can significantly vary

(up to 100%) by lowering the Ca/Si. Moreover, we showed that the stiffest C-S-H polymorphs

are not the hardest polymorphs, hence suggesting a ductile behavior for the C-S-H at the
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nano-scale. Finally, post-analyzing the pool of combinatorial C-S-H models, enabled us to

draw the conclusion that under similar chemical conditions, the density is the unified governing

parameter controlling stiffness; simply the denser, the stiffer. In the next Part, we summarize

all the results of this thesis and suggest some future directions towards building the C-S-H

mesotexture at the next higher scale.
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Part V

Conclusions
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Chapter 9

Summary of Results and

Perspectives

The ultimate goal of this study was the implementation of the shift of paradigms in computa-

tional materials science for cement-based materials, that is, the bottom-up multi-scale approach

to unravel the link between structure, composition and mechanical properties of cement hydrate

across different scales. This Chapter presents a summary of this implementation for the C-S-H

gel. Based on findings and contributions some future research is proposed.

9.1 Summary of Main Contributions

This research led the following scientific findings and contributions about the hierarchical struc-

ture of the non-stoichiometric C-S-H gel and its link with mechanical properties:

9 Structure and mechanical properties of several mineral analogs of C-S-H gel are character-

ized based on DFT calculations. This provides the first ever benchmark DFT calculations

on the C-S-H crystalline models. In contrast to common intuition that layered materials

are soft in the interlayer direction, a class of hydrated oxides, C-S-H crystals, were shown

that this is not the case. The reason lies in the strong coulombic interactions between

the charged lamella, which become comparable to iono-covalent intalayer chemical inter-

actions. The former interactions becomes important at interlayer distances of 11 A and
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9 A, which lead to new (hinge-type) deformation mechanisms within the crystals affecting

both elastic and strength/fracture properties.

" Using acoustic tensor analyses, fundamental wave velocities and particle-motion direc-

tions are obtained for C-S-H crystals in any random directions. This information hints

towards identifying critical softest and stiffest planes in lattice structures, and assessing

the stability of each crystal as a whole cluster in 3D space. Based on these findings, a novel

statistical method is derived to average the bulk and shear moduli (K, G) for anisotropic

materials. This simple averaging method is superior than the classic averaging schemes in

mechanics such as Voigt-Reuss-Hill approach or Molinary approach in that i) it considers

all the 21 elastic components of an anisotropic material, ii) it is frame-indifference (ob-

jective) meaning that it is invariant under any random transformation of the coordinates

system, and iii) it is a physically perceivable method as it clearly shows the contributions

of the softest and/or stiffest regions.

" A systematic methodology for comparison of empirical force fields is presented, which

shows that in regards to transferability of empirical force fields, second order properties

such as elasticity are of crucial importance. For a particular case of C-S-H systems,

ClayFF model predictions proved to be computationally faster but less reliable than the

core-shell model. To avoid the shortfalls of ClayFF, a new force-field potential, CSH-FF,

is developed that is well customized and substantiated for the C-S-H family. This re-

parametrized version of ClayFF potential is based on core-only representation and includes

both structural data and full elasticity tensor from DFT calculations to parametrize the

potential functional forms.

" The efficiency and the validated predictive capability of CSH-FF potential in conjunction

with the statistical mechanics enabled decoding the structure and molecular morphology

of series of molecular C-S-H models. Our simulation results predict a range of C-S-

H compositions and corresponding mechanical properties that are consistent with real

cement paste samples. Upon applying hundreds of affine shear deformations to these

molecular models, it was shown that the hardness can significantly vary (up to 100%) by

lowering the Ca/Si. Moreover, it was predicted that the stiffest C-S-H polymorphs are
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not the hardest polymorphs, hence suggesting a ductile behavior for the C-S-H at the

nano-scale. Together, these findings and developments set up a modeling toolbox that

allows improving cement core properties with a predictive computational design strategy.

9.2 Industrial Benefit

Since concrete is ubiquitous material, scientific contributions have a potential for great indus-

trial benefits. The new CSH-FF potential in conjunction with the statistical physics enabled

decoding a variety of C-S-H phases at the molecular level. The investigation of strength prop-

erties of these molecular C-S-H phases shows that it is possible to lessen the Ca/Si ratio to

achieve nano level C-S-H phases with much higher strengths. The benefit of this is threefold: i)

low Ca/Si ratio can reduce the energy consumption and CO 2 footprint of cement, ii) in addition

to (i) higher strength requires less volume for construction, hence cement manufacturers save

energy and release less C0 2 , iii) end-users can have more efficient, streamlined structures.

9.3 Perspectives for Future Research

The CSH-FF potential was developed based on fitting to DFT data at 0 K. Although kbT

was shown to have negligible effects in predicting lattice parameters and bond distances, it is

necessary to rigorously analyze the effect of temperature on higher order properties such as

elastic constants (which pertains to the curvature of binding energies) and strength/fracture

properties. This issue is crucial for force field development especially for C-S-H since most of

its functionality is based on its mechanical performances at room temperature.

All MD simulations in this work were based on nonreactive force field potentials. Simulations

of water-silica interactions have identified three distinct competing mechanisms in the water

attack on the siloxane bridging bond, Si-O-Si [177]. Considerations of this mechanism in regards

to (un)confined water in C-S-H gel, and also other reactive processes that may happen under

shear and stretch need to be explained via either first-principles MD studies or reactive force

fields.

This thesis provided an atomistic modeling framework to build several molecular C-S-H

models. These models together represent the solid phase of the C-S-H gel as infinite matrices
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with variable Ca/Si ratios. It is possible to bridge these infinite matrices to the C-S-H meso-

texture for a hardened cement hydrate. Under pulling computational experiments, one can

identify the uniaxial strength boundaries of the C-S-H mediums along each of the X, Y and

Z directions. These strength boundaries mechanistically define C-S-H particles as encapsuled

volumes surrounded by the larger periodic cells. With distinct compositions and/or internal

molecular morphologies, these particles form the C-S-H mesotexture, which can be simulated

using Monte Carlo method and coarse-grain modeling. The parameters of this coarse-graining

are crucial in determining any mesotexture properties, and can be obtained based on all-atom

MD simulation of C-S-H particles interacting in a water solution via CSH-FF potential. To

provide representative averaged functionals for coarse-grain modeling, all-atom MD simulation

are necessary for several pair-particles in various orientations. This coarse graining rooted in

MD, which is subsequently rooted in DFT calculations, will present a modeling path that on

one end relates to electronic and nuclear properties at the atomistic scale, and on the other end

can be directly tested with typical laboratory measurements on C-S-H samples; hence providing

a bottom-up approach from electrons to the C-S-H mesotexture.

To summarize, concrete as the king of construction materials continues to be the world's

dominating manufacturing materials on the future horizon. There is an urgency to curb its

energy consumption and environmental footprint for a sustainable progress of our societies.

However, for such a heterogenous multi-physics material, there are several scientific enigma to

suppress concrete footprint and improve its core properties. This study suggests that the shift

of paradigms in materials from macro to nano is now ripe to rethink concrete as an assembly of

atoms that build cement paste and bulk concrete at other end. Our bottom-up computational

techniques showed that intelligently tuning materials chemistry at the nanoscale can result in

improved strength and ultimately less carbon footprint. Given the global potential impact

of such an approach and the complexity of the material in hand, we hope that this study

will incite consideration of predictive atomistic modeling as the next frontier in construction

material design and other complex materials such as colloids, protein gels, and nanocomposites.
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Appendix A

Interaction Parameters of ClayFF

and Core-shell Potentials
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Bond species ki (eV A 2) Ro (A)
Hw-Ow-Hw 48.0574 1
Oh-Ho 48.0574 1

Table A.1: Bonded species potential parameters for harmonic terms (ClayFF).

Angle species k2 (eV Rad- 2 ) Oo (deg)
Ow-Hw 3.9694 109.47
Oh-Ca-Ho 3.9694 109.47

Table A.2: Three-body potential parameters for harmonic terms (ClayFF).

Ri3 ( A) Dij (eV)
Ca Oh 4.898 3.83E-05
Ca Ow 4.898 3.83E-05
Ca 0 4.898 3.83E-05

Table A.3: Non-bonded Lennard Jones parameters for different oxygens and Ca (ClayFF).

Rig ( A) Dig (eV)
Si Oh 3.6298 2.32E-05
Si 0 3.6298 2.32E-05
Si Ow 3.6298 2.32E-05

Table A.4: Non-bonded Lennard Jones parameters for different oxygens and Si (ClayFF).

Rij ( A) Dig (eV)

Ow Ow 3.5532 0.00673854
Ow Oh 3.5532 0.00673854
Ow 0 3.5532 0.00673854
O 0 3.5532 0.1554
O Oh 3.5532 0.1554
Oh Oh 3.5532 0.1554

Table A.5: Non-bonded Lennard Jones parameters for different oxygens (ClayFF).

Rij ( A) Dij (eV)
Ca Ca 6.2428 2.18E-07
Si Si 3.7064 7.98E-08
Ca Si 4.9746 1.32E-07

Table A.6: Non-bonded Lennard Jones parameters for calcium and silicon (ClayFF).
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Form Inter/intra species 1 species 2 A (eV) p (A) C, (eV 6) Rmin( A) Rmax( A)
Buck inter Ca core 0 shell 1090.4 0.343 0 0 12
Buck inter Ca core Oh shell 777.27 0.343 0 0 12
Buck inter Si core 0 shell 1283.9 0.320 10.66158 0 12
Buck inter Si core Oh shell 983.5 0.320 10.66158 0 12

Buck inter 0 shell 0 shell 22764 0.149 27.879 0 12
Buck inter 0 shell Oh shell 22764 0.149 13.94 0 12

Buck inter Oh shell Oh shell 22764 0.149 6.97 0 12

Buck inter H core 0 shell 311.97 0.25 0 0 12

Table A.7: short range interaction parameters for tobermorite (core-shell model).

Form Inter/intra species 1 species 2 D (eV) a (A') Ro( A) Rmin( A) Rmax( A)
Morse inter H core Oh shell 7.0525 3.1749 0.9428 1 1.4

Table A.8: short range interaction parameters for tobermorite (core-shell model).

Form inter species 1 species 2 species 3 K 2(eVRad- 2 ) 0o(deg) R- Rna R2a

Three inter Si core 0 shell 0 shell 2.0972 109.47 1.8 A 1.8 A 3.2 A
Three inter Si core 0 shell Oh shell 2.0972 109.47 1.8 A 1.8 3.2

Table A.9: short range interaction parameters for tobermorite (core-shell model).

Form Inter/intra species 1 species 2 A (eV) p (A) C6 (eV A ) Rmin ( A) Rmax (A)
Buck inter Cw core Ow shell 777.27 0.343 0 0 12

Table A.10: short range interaction parameters for water and interlayer Ca (core-shell model).

Form Inter/intra species 1 species 2 A (eV) p (A) C6 (eV Ab) Rmin (A) Rmax (A)
Buck inter Cw core 0 shell 1090.4 0.343 0 0 12

Buck inter Cw core Oh shell 1090.4 0.343 0 0 12

Table A. 11: short range interaction parameters for oxygen and interlayer Ca (core-shell model).

Form inter species 1 species 2 A (eV) B (A) Rmin Rmax

Lennard inter Ow shell Ow shell 39344.9 42.15 0 12 A
Form inter species 1 species 2 A (eV) p (A) C6 Rmin Rmax

Buck inter Hw core Ow shell 396.27 0.25 0 0 12 A

Form inter species 1 species 2 D (eV) a (A-') Ro Rmin Rmax

Morse intra Hw core Ow shell 6.2033 2.22003 0.92 A 1A 1.4 A
Form Inter species 1 species 2 species 3 K 2  Oo(deg) R Rmax Rma
Three intra Ow shell Hw core Hw core 4.1 eV/rad2 108.69 1.2 A 1.2 A 1.8 A

Table A.12: short range interaction parameters for water molecules (core-shell model).
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Form Inter/intra species 1 species 2 A (eV) p (A) C6 (eV A6) Rmin( A) Rmax( A)
Buck inter Ca core Ow shell 777.27 0.34 0 0 12
Buck inter Si core Ow shell 983.55 0.32 10.66158 0 12
Buck inter H core Ow shell 311.97 0.25 0 0 12
Buck inter 0 shell Ow shell 22764 0.14 13.94 0 12
Buck inter Oh shell Ow shell 22764 0.14 6.97 0 12
Buck inter 0 shell Hw core 311.97 0.25 0 0 12
Buck inter Oh shell Hw core 311.97 0.25 0 0 12

Table A.13: short range interaction parameters for water molecule and tobermorite (core-shell

model).
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Appendix B

Developed In-House Codes
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B.1 Matlab Code to Develop A New Averaging Scheme for

(K, G) and 3D Visualizations of Directional Wavespeeds

and Eigenvectors

function Averaging

whitebg('w')

cle

% options = optimset('LargeScale','off');

clay=load('clay.txt'); %case -1

port=load('port.txt'); %case 0

A9=load('9A.txt'); %case 1

Merl1=load(' 11AMer.txt'); %case2

CS6=load('CS.6.txt'); %case3

CS8=load('CS.8.txt'); %case4

CSDFT=load('CS1.txt'); %case5

CS1F=load('CS1-ClayFF.txt'); %case5

CSlC=load('CS1-CoreShell.txt'); %case5

CS1FF=load('CSH-FF.txt'); %case5

A14=load('14A.txt'); %case6

A14F=load('14A-ClayFF.txt'); %case6

A14C=load('14A-CoreShell.txt'); %case6

A14FF=load('14ACSH-FF.txt'); %case6

Jen=load('iso'); %case7

%%%%%%%%%%%%%%%%% choosing CSH type

p=6;

pp=0;

ww=1;

function waves (pp)

if pp >2
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ww=3;

end

switch p

case -1

x=clay;

ro=2700;

coef=1.7;

V1=coef*[0.99238769 0 0];

V2=coef*[-0.496193845 0.859431288

V3=coef*[0 0 1.346973585];

case 0

x=port;

ro=2230;

coef=1.7;

V1=coef*[0.99238769 0 0];

V2=coef*[-0.496193845 0.859431288

V3=coef*[0 0 1.346973585];

case 1

x=A9;

ro=3120; %density N/m^3

coef=1.7;

Vl=coef*[0.999963962 0.000259621

V2=coef*[0.002694942 0.659053311

V3=coef*[-0.039157313 -0.18809393

case 2

x=Merll;

ro=2387;

coef= 1.5;

V1=coef*[1.000488808 0.000162553

V2=coef*[-0.609035527 0.922044214

0];

0];

0.000555471];

-0.001115162];

0.844505952];

0.002170952];

0.00078827];
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V3=coef/2.5*[0.047337414 0.040248776

case 3

x=CS6;

ro=2352;

coef=1.5;

V1=coef*[1.01004133 0.000901124 0.

V2=coef*[-0.614369463 0.887436274

V3=coef/2.5*[0.000320447 -0.000042568

case 4

x=CS8;

ro=2487;

coef=1.5;

V1=coef*[0.999371818 0.000171098

V2=coef*[-0.609844657 0.913597842

V3=coef/2.5*[0.000050042 -0.000195319

case 5

switch pp

case 1

%CS1=load('Beryllium'); %case5

CS1=load('CS1.txt'); %case5

case 2

CS1=load('CS1-ClayFF.txt'); %case5

case 3

CS1=load('CS1-CoreShell.txt'); %case5

case 4

CS1=load('CSH-FF.txt'); %case5

end

x=CS1;

ro=2589;

coef=1.5;

3.317554388];

000024242];

0.000036492];

3.243603668];

0.000009816];

0.000045232];

3.357958431];
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V1=coef*[1.006519982 0.002025859 -

V2=coef*[-0.626866678 0.938468288

V3=coef/2.5*[0.000426699 -0.000771729

case 6

switch pp

case 1

A14=load('14A.txt'); %case5

case 2

A14=load('14A-ClayFF.txt'); %case5

case 3

A14=load('14A-CoreShell.txt'); %case5

case 4

A14=load('14ACSH-FF.txt'); %case5

end

x=A14;

ro=2381;

coef=1.5;

V1=coef*[0.999160411 -0.000082475

V2=coef*[-0.617859499 0.886871685

V3=coef/3.5*[0.001259076 0.004428587

0.00011813];

0.000273757];

3.529424491];

-0.000377643];

0.000742269];

4.141870737];

case 7

x=Jen;

ro=2275;

coef=1.8;

V1=coef*[1.011791615

V2=coef*[-0.23457857

V3=coef* [-0.109043032

end

function wall

tr=.2; %transparency

-0.001387144

0.653408744

-0.262542403

0.019152881];

-0.004083587];

0.989806484];
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Ver=[O 0 0;V1(1) 0 0;V1(1)+V2(1) V2(2) 0;V2(1) V2(2) 0; V3(1) V3(2) V3(3);V1(1)+V3(1)

V3(2) V3(3);V1(1)+V2(1)+V3(1) V2(2)+V3(2) V3(3);V2(1)+V3(1) V2(2)+V3(2) V3(3)];

epsi=1.05;

text(V1(1)*epsi^4,V1(2)*epsi^4,V1(3)*epsi^4,' a','FontSize',16);

text(V2(1)*epsi, V2(2)*epsi,V2(3)*epsi,' b','FontSize',16);

text(V3(1)*epsi,V3(2) *epsi,V3(3) *epsi,' c','FontSize',16);

Face=[1 2 6 5; 4 1 5 8;1 2 3 4];

hold on;

patch('Vertices',Ver,'Faces',Face);

alpha(tr);

end

%%%%%%%%%%%%%%% next box

Ver(:,1)=Ver(:,1)-V1(1);

Face=[1 2 6 5;2 3 7 6; 3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];

Face=[1 2 6 5; 4 1 5 8;1 2 3 4];

hold on;

patch('Vertices',Ver,'Faces',Face);

alpha(tr);

%%%%%%%%%%%%%%% next box

Ver(:,2)=Ver(:,2)-V2(2);

Ver(:,1)=Ver(:,1)-V2(1);

Face=[1 2 6 5;2 3 7 6; 3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];

Face=[1 2 6 5; 4 1 5 8;1 2 3 4];

hold on;

patch('Vertices',Ver,'Faces',Face);

alpha(tr);

%%%%%%%%%%%%%%%% next box

Ver(:,1)=Ver(:,1)+V1(1);

Face=[1 2 6 5;2 3 7 6; 3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];

Face=[1 2 6 5; 4 1 5 8;1 2 3 4];
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hold on;

patch('Vertices',Ver,'Faces',Face);

alpha(tr);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C11=x(1,1);

C22=x(2,2);

C33=x(3,3);

C44=x(4,4);

C55=x(5,5);

C66=x(6,6);

C12=x(1,2);

C13=x(1,3);

C16=x(1,6);

C23=x(2,3);

C26=x(2,6);

C36=x(3,6);

C45=x(4,5);

m=[C11 C12 C13 0 0 C16;C12 C22 C23 0 0 C26;C13 C23 C33 0 0 C36; 0 0 0 C44 C45 0; 0

0 0 C45 C55 0;C16 C26 C36 0 0 C66];

m=x;

S=x^-1;

%%%%%%working with log-Euclodian metric %%%%%%%%%

x=logm(CSDFT)-logm(CS1);

error=mean2(x);

stdv=std2(x);

norm=(trace(transpose(x)*x)) .5;

%%%%%%%%%%%%%%%%%%%%%%%%% end fot Log-Euclodian

%%%%% Viot bounds

F=fopen('bounds','wt');

Kv=1/9*(C11+C22+C33+2*(C12+C13+C23))
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Kr=(S(1,1)+S(2,2)+S(3,3)+2*(S(1,2)+S(1,3)+S(2,3)))^--1

Kh=(Kv+Kr)/2

Gv= 1/15* (C1 1+C22+C33+3* (C44+C55+C66)-C12-C13-C23)

Gr= 15/ (4* (S (1, 1) +S(2,2) +S (3,3)-S (1, 2)-S (1,3)-S (2,3)) +3* (S (4,4) +S (5,5) +S (6,6)))

Gh=(Gv+Gr)/2

Mh=4*Gh*(3*Kh+Gh)/(3*Kh+4*Gh)

%%%%%%%% Molinary bounds

C=C33*(C11+C12)-2*C13^2;

Km=C/(C11+2*C33+C12-4*C13)

Gm=3*C/2/(2*C11+C33+2*C12+4*C13)

Mmoli=4*Gm*(3*Km+Gm)/(3*Km+4*Gm)

fprintf(1,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n');

fprintf(1,' \n');

fprintf(1,'%f\n',Kv);

fprintf(1,'%f\n',Kr);

fprintf(1,'%f\n',Kh);

fprintf(1,'%f\n',Gv);

fprintf(1,'%f\n',Gr);

fprintf(1,'%f\n',Gh);

fprintf(1,'%f\n',Mh);

fprintf(1,'%f\n',Km);

fprintf(1,'%f\n',Gm);

fprintf(1,'%f\n',Mmoli);

fclose(F);

%%%%%%%%%%% finding maximum Young modulus

11=0:.1:1;

12=0:.1:1;

x = rand(500,1)*16 - 8;

y = rand(500,1)*16 - 8;

r = sqrt(x. ^2 + y. ̂ 2) + eps

186



z = sin(r)./r;

h=1;

function maxspeed(h,q)

l1=X(h,q);

12=Y(h,q);

13=Z (h,q);

D=[ll 0 0 0 13 12;0 12 0 13 0 11;0 0 13 12 11 0];

%%%%%%%%%%%%%% stiffness

Wave=1/ro*D*x*10^9*transpose(D);

[eigvec,eigval] =eig(Wave);

speed1(h,q)= (abs(eigval(1,1)))^.5;

speed2(h,q)= (abs(eigval(2,2)))^.5;

speed3(h,q)= (abs(eigval(3,3)))^.5;

[speedm,pos] =max(diag(eigval));

speedmax(h,q)=speedm^.5;

[speedmini,pos] =min(diag(eigval));

speedmin(h,q)=speedmini^.5;

%%%%%%% cheking only one direction to see if K,G can be compared

%%%%%%% with I3-I3* of the povolo1987

fprintf(F,'just one direction')

aveCL=speed3(h,q)

aveCT1=speed2(h,q)

aveCT2 =speed1 (h,q)

Vs=(aveCT1+aveCT2)/2;

G=ro*Vs^2

K=((aveCL)^2*3*ro-4*ro*Vs^2)/3

M=4*G*(3*K+G)/(3*K+4*G)

%%%%%%%%%%%%%%%%%%end of cheking 13-13

% %%%%%%%%%%%%% for compliance

Wave=ro*D* (x^-1) * 10^-(-9) *transpose(D);
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[eigvec,eigval] =eig(Wave);

speed1(h,q)= 1/(abs(eigval(1,1)))^.5;

speed2(h,q)= 1/(abs(eigval(2,2)))^.5;

speed3(h,q)= 1/(abs(eigval(3,3)))^.5;

%speed(h,q)=speed1 (h,q);

% speedmax(h,q)=max([ speed1(h,q); speed2(h,q); speed3(h,q)]);

%speedmin(h,q)=min([ speed1(h,q); speed2(h,q); speed3(h,q)]);

[speedm,pos] =min(diag(eigval));

speedmax(h,q)=1/speedm^.5;

[speedmini,pos] =max(diag(eigval));

speedmin(h,q)=1/speedmini ^.5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

n=50;

[X,Y,Z] =sphere(n);

[XX,YY,ZZ] =sphere(n);

[XXX,YYY,ZZZ]=sphere(n); %min

[XXXX,YYYY,ZZZZ]=sphere(n); %med

maxim=70;

mini=70;

for h=1:n+1

for q=1:n+1

maxspeed(h,q);

if eigvec(1,pos) < 0

eigvec(1,:)=-eigvec(1,:);

end

if eigvec(2,pos) < 0

eigvec(2,:)=-eigvec(2,:);

end

if eigvec(3,pos) < 0
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eigvec(3,:)=-eigvec(3,:);

end

XX(h,q)= (eigvec(1,pos));

YY(h,q)=(eigvec(2,pos));

ZZ-(h,q) = (eigvec(3,pos));

[speedmini,pos] =min(diag(eigval));

speedmin(h,q)=speedmini^.5;

if X(h,q) >=O & Y(h,q) >=O & Z(h,q) >=O

maxspeed(h,q)

XX(h,q)=abs(eigvec(1,pos));

YY(h,q)=abs(eigvec(2,pos));

ZZ(h,q)=abs(eigvec(3,pos));

end

if X(h,q) >=O & Y(h,q) >=O & Z(h,q) <=O

maxspeed(h,q)

XX(h,q)=abs(eigvec(1,pos));

YY(h,q)=abs(eigvec(2,pos));

ZZ(h,q)=-abs(eigvec(3,pos));

end

if X(h,q) <=O & Y(h,q) >=O & Z(h,q) >=0

maxspeed(h,q)

XX(h,q)=-abs(eigvec(1,pos));

YY(h,q)=abs(eigvec(2,pos));

ZZ(h,q)=abs(eigvec(3,pos));

end

if X(h,q) <=0 & Y(h,q) >=0 & Z(h,q) <=O

maxspeed(h,q)

XX(h,q)=-abs(eigvec(1,pos));

YY(h,q)=abs(eigvec(2,pos));
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ZZ(h,q)=-abs(eigvec(3,pos));

if eigvec(3,pos) > 0

eigvec(:,pos)=- eigvec(:,pos);

end

XXX(h,q)=(eigvec(1,pos));

YYY(h,q)=(eigvec(2,pos));

ZZZ(h,q)=(eigvec(3,pos));

if speedmax(h,q) speedl(h,q)

if speedmin(h,q) speedl(h,q)

speedmed(h,q) =speed 1 (h,q);

XXXX(h,q)=(eigvec(1,1));

YYYY(h,q)=(eigvec(2,1));

ZZZZ(h,q) =(eigvec(3, 1));

end

end

if speedmax(h,q) speed2(h,q)

if speedmin(h,q) speed2(h,q)

speedmed(h,q)=speed2(h,q);

XXXX(h,q)=(eigvec(1,2));

YYYY(h,q)=(eigvec(2,2));

ZZZZ(h,q)=(eigvec(3,2));

end

end

if speedmax(h,q) speed3(h,q)

if speedmin(h,q) ~ speed3(h,q)

speedmed(h,q)=speed3(h,q);

XXXX(h,q)=(eigvec(1,3));

YYYY(h,q)=(eigvec(2,3));

ZZZZ(h,q)=(eigvec(3,3));

end
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end

E(h,q)0O;

E(h,q)=41. ^4*S(1,1>+2*11. -2.*12j ̂ 2*S(1,2)+2*11j ^2.*13 2*S(1,3)+

E(h,q)=E(h,q)± 12. ^4*S(2,2)±2*12. ^2.*13. -2*S(2,3)±

2*12. -3.*13*S(2,4)+2*11.*12. 2.*13*S(2,5)+2*11.*12. -3*S(2,6);

2*11.*13. -3*S(3,5)+2*11.*12.*13. "2*S(3,6)

C(h,q)-C(h,q) 12. '*x-(2)+1.~.1.~*(,)

2*12. *1.*13-*(,)2*11.*12. 2.*13*(2,)2l.l4(,6) ;

C(h,q)=E(h,q)+ ^.13. 4*()+ 2*1. .13. *34)+ 6

2*11.-*1.13*x(,)+2*11.2.*3*x(3,6)2*13.2x1,)

CC(h,q)=CC(h,q)+ 12. -2.*13. ^2*x(4,4)+

2*11.*12. *13. -2*x(4,5) + 2*11.*12. "2. *13*x(4,6)

Young (h,q =E (h,q) "(1);

if maxim < Young(h,q)

maxim =Young(h,q);

11 lmaxrzll;

l22max-12;

133max=13;
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end

if mini > Young(h,q)

mini =Young(h,q);

111min=ll;

122min=12;

133min=l3;

end

end

end

subplot (2,3,3* (pp-ww) +1)

wall

surf(X,Y,Z,abs(speedmax),'FaceColor','interp','EdgeColor','none','FaceLighting','phong');

daspect([5 5 5])

xlabel('x')

ylabel('y')

colorbar('vertical','FontSize',16)

%colorbar

axis off

axis tight

view(160,30)

view(90,O)

camlight left

subplot (2,3,3* (pp-ww) +2)

wall

surf(X,Y,Z,abs(speedmed),'FaceColor','interp','EdgeColor','none','FaceLighting','phong');

daspect([5 5 5])

xlabel('x')

ylabel('y')

colorbar('vertical','FontSize',16)

%colorbar
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axis off

axis tight

view(160,30)

view(90,O)

camlight left

subplot(2,3,3* (pp-ww)+3)

wall

surf(X,Y,Z,abs(speedmin),'FaceColor','interp','EdgeColor','none','FaceLighting','phong');

daspect([5 5 5])

xlabel('x')

ylabel('y')

hold on

colorbar('vertical','FontSize',16)

ylabel(colorbar,'Hello')

colorbar

axis off

axis tight

view(160,30)

view(90,O)

camlight left

minE=min(speedmin(:));

maxE=max(speedmax(:));

%maxim

% mini

E11=1/S(1,1);

%average directional speeds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

aveCL=mean2(speedmax);

aveCT1=mean2(speedmed);

aveCT2=mean2(speedmin);

Vs=(aveCT1+aveCT2)/2;
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G=ro*Vs^2

K-((aveCL) ^2*3*ro-4*ro*Vs^2)/3

M=4*G*(3*K+G)/(3*K+4*G)

waves(1)

waves(2)

waves(3)

waves(4)

speedmax(5,5)

speedmed(5,5)

speedmin(5,5)

end
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B.2 Script to Deform the Molecular C-S-H Phases for Elasticity

and Strength Calculations

import os,sys,string,math

import time

from string import *

#from Numeric import *

def break line(s):

copy = s[:]

return string.split (copy)

def printhelp(:

print '\nUsage syntax: python xxx.py direction increment(A)'

sys.exit()

args = sys.argv[:]

#print "length", len(args),args[1]

if len(args) != 2: printhelp()

# get the necessary files

#Dir = args[1]

template = 'out'

#newfile = args[2]

newfile = 'input'

e = float (args [1]) # Deformation (A)

f = open(template,'r')

T = f.readlines()

f.close(

template1='model'

fl open(templatel,'r')

TI fl.readlineso

fl.close()

newlines []
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print "

#if (string.find(T[ii-1],'DL _Poly') == 0):

newlines.append ('opti conv conjugate molecule nosys nonrepulsive -cutoff\ n')

newlines.append ('maxcyc opt 49\n')

#newlines. append ('supercell\n')

#newlines.append ('1 1 2\n')

newlines.append ('#rspeed 0.25\n')

newlines.append ('#bfgsorder 50\n')

newlines.append ('vectors\n')

R11=1

R12=0

R13=0

R21=0

R22=1

R23=0

R31=0

R32=0

R33=1

i=1

nat=10

while i < (len(T)):

if (string.find(T[i],' Dimensionality = 3 Bulk') == 0):

nn=split(T[i-2])

nat=int(nn[4])

# print nat

if (string.find(T[i],' Cartesian lattice vectors (Angstroms)') 0):

i=i+2

# print T[i]

vl=split(T[i])

i=i+1
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v2=split(T[i])

i=i+1

v3=split(T[i])

i=i+1

R22=float(1+e/float (v2 [1]))

newlines.append ('%1Of %10f %10f\n'%(float(vl [0]),float(vl [1]),float(v1 [2])))

newlines.append ('%10f %10f %10f\n'%(float (v2 [0]) *R22,float(v2 [1]) *R22,float (v2 [2])))

newlines.append ('%10f %10f %10f\n'%(float(v3[0]),float(v3[1]),float(v3[2])))

if (string.find(T[i],' Fractional coordinates of asymmetric unit :') 0):

print T[i]

h=i+6

# cha=[]

# cha=cha+[2]

# for j in range(1I+h,nat+h):

# gg=split(T[j])

# print gg

# cha=cha+ [float (gg[9])]

if (string.find(T[i],' Final fractional coordinates of atoms :') 0):

newlines.append ('frac\n')

i =i+6

for j in range(1,nat+1):

#print T1[j+17]

#print T[i]

#so=split(T1[j+16])

sn=split(T[i])

#print T[i], cha[j-1]

#newlines.append ('%s %s %5.8f %5.8f %5.8f %2.7f %1.4f %1.4f %d %d %d \n'%

(sn[1],sn[2],float(sn[3]),float(sn[4]),float(sn[5]) ,float(cha[j-1]), 1.000,0.000, 1,1,1))

newlines.append ('%s %s %5.8f %5.8f %5.8f %2.7f %1.4f %1.4f %d %d %d \n'%

(sn[1],sn[2],float(sn[3]),float(sn[4]),float(sn[5]),1,1.000,0.000, 1,1,1))
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i=i+1

ff=int(nat/2.0)+7

i=i+1

while ff < len(T1)

newlines.append (Ti[ff])

ff=ff+1

f = open(newfile,'w')

f.writelines (newlines)

f.close()

print "rescaling DONE****************************************************
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B.3 Script to Analyze Bond Strain and Three-Body Strains

import os,sys,string,math

import time

from string import *

#from Numeric import *

def break line(s):

copy s[:]

return string.split (copy)

def printhelp(:

print '\nUsage syntax: python xxx.py initialREVCON finalREVCOn x.xyz number-of-

atoms '

sys.exit()

args = sys.argv[1:]# [1: means 1 not included

#if len(args) != 4: print_help()

# get the necessary parameters/files

############ calculating bonds for the Eq state #############

#just 3 important steps for this whole script:1-adjust the alat 2-create a

OutO file form in1 with right cellpara (K-POINTs should be attached to

positions without space) 3-adjust the bond lengths particularly OH

newfile = 'bondseq'

#a=args[3]
newlines = []
alat=21.187*0.529177249

bCaO=2.7

bSiO=1.8

bOH= 1.11

for j in range(1,2):

template ='Out0'

f = open(template,'r')
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T = f.readlines()

f.close()

ii=6

n=O.

for ii in range(1,len(T)):

if (string.find(T [ii], 'CELL _PARAMETERS') ==0):

print "foundcell"

V1=split(T[ii+1])

V2=split (T[ii+2])

V3=split(T[ii+3])

print V1 [0]

if (string.find(T[ii] ,'ATOMICPOSITIONS') ==0):

start=ii+l

print "found",start

if (string.find(T[ii] ,'K POINTS') 0):

finish=ii-1

print "finish",finish

i=1;

for ii in range(start,finish+1):

s=split (T[ii])

k=i #print s[:]

for jj in range(ii,finish+1):

u=split(T[jj])

Xlcar=fioat (s[1]) *float (VI [0]) +float (s[2]) *float(V2[0]) +float (s[3]) *float (V3 [0])

X2car=float (u [1]) *float (VI [0]) +float (u[2]) *float (V2 [0]) +float (u [3]) *float (V3 [0])

Ylcar=float (s [1]) *float (V1 [1]) +float (s[2]) *float(V2 [1]) +float (s[3]) *float (V3 [1])

Y2car=float (u [1]) *float (V1 [1]) +float (u[2]) *float (V2 [1]) +float (u[3]) *float (V3 [1])

Zlcar=float(s [1]) *float (VI [2]) +float (s[2]) *float (V2 [2]) +float (s [3]) *float (V3 [2])

Z2car=float(u[1]) *float (VI [2]) +float (u[2]) *float (V2[2]) +float(u[3]) *float (V3 [2])

cutoff=.5
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#print Xlcar

if (s[]=='Ca') and (u[]=='O'):

cutoff=bCaO

if (s[]=='O') and (u[]=='Ca'):

cutoff=bCaO

if (s[]=='Si') and (u[]=='O'):

cutoff=bSiO

if (s[0]=='O') and (u[]=='Si'):

cutoff=bSiO

if (s[O]=='O') and (u[]=='H'):

cutoff=bOH

if (s[]=='H') and (u[0]=='O'):

cutoff=bOH

dis= ((X2car-Xlcar)**2+ (Y2car-Ylcar) **2+ (Z2car-Zlcar) **2) **5*float (alat)

if (dis <cutoff) and (dis>O):

print i,k,s[O],u[O],dis

n=n+ 1

inter = '%d %d %s %s %f %f %f %f\n' % (i,k,s[0],u[],dis,(float(alat)*

(X2car-Xlcar) /dis) **2, (float(alat) *(Y2car-Ylcar) /dis) **2, (float (alat) *

(Z2car-Z1car)/dis)**2)

newlines.append(inter)

k=k+1

i=i+1

f = open(newfile,'w')

f.writelines(newlines)

f.close()

bonds=n

print finish-start+1

print "bonds",n

print "*************************************************
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################# calculating bonds for the Out files ##########

#newfile = args[2]

newfile = 'allbonds'

#a=args[3]

newlines = []

for j in range(1,13):

template ='Out'+str(j)

templatel ='bondseq'

f open(template,'r')

T = f.readlines()

f.close()

f = open(template1,'r')

Eq= f.readlines()

f.close()

#newlines.append ('%d \n'%int(a))

#newlines.append ('MESO\n')

ii=6

n=O

for ii in range(0,len(T)):

if (string.find(T[ii] ,'CELL _PARAMETERS') ==O):

print "Out"j

V1=split(T[ii+1])

V2=split(T[ii+2])

V3=split(T[ii+3])

#print V1[0]

if (string.find(T[ii] ,'ATOMIC POSITIONS') ==O):

start=ii+1

#print "found",T[ii+1]

if (string.find(T[ii],' number of atoms/cell') == 0):

atoms=split(T[ii])
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finish-int(atoms[4])

print "found nat",finish

i=1

newlines.append ( 'Out %d\n'%j)

for ii in range(start,start+finish):

s=split (T[ii])

k=i#print s[:]

for jj in range(ii,start+finish):

u=split(T[jj])

Xlcar=float (s[1]) *float (Vi [0]) +float (s[2]) *float(V2 [0]) +float (s[3]) *float (V3 [0])

X2car=float (u[1]) *float (VI [0]) +float (u[2]) *float (V2 [0]) +float (u[3]) *float (V3 [0])

Ylcar=float (s[l]) *float (VI [1]) +float (s[2]) *float(V2 [1]) +float (s[3]) *float (V3 [1])

Y2car=float (u [1]) *float (V1 [1]) +float (u[2]) *float (V2 [1]) +float (u[3]) *float (V3 [1])

Z1car=float(s [1]) *float (VI [2]) +float (s[2]) *float(V2 [2]) +float (s [3]) *float(V3 [2])

Z2car=float (u[1]) *float (Vi [2]) +float (u[2]) *float(V2 [2]) +float(u[3]) *foat (V3 [2])

cutoff-.5

#print Xicar

if (s[0]=='Ca') and (u[0]=='O'):

cutoff=bCaO

if (s[0]=='Si') and (u[0]=='O'):

cutoff=bSiO

if (s[0]=='O') and (u[0]=='H'):

cutoff=bOH

if (s[0]=='O') and (u[0]=='Ca'):

cutoff=bCaO

if (s[0]=='O') and (u[0]=='Si'):

cutoff=bSiO

if (s[0]=='H') and (u[0]=='O'):

cutoff=bOH

dis=((X2car-Xicar)**2+(Y2car-Yicar)**2+(Z2car-Zicar)**2)**.5*float(alat)
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if (dis <cutoff) and (dis>O):

#print i,k, s[O],u[O],dis

#print "n",n

e=split(Eq[n])

if (s[]==e[2]) and (u[]==e[3]) and (i==int(e[O])) and (k==int(e[1])):

n=n+ 1

inter = '%d %d %s %s %10.5f %d %d %s %s %10.5f %10.5f %

10.5f %10.5f %10.5f\n' % (i,k,s[O],u[],dis,int(e[O]),int(e[1]),e[2],e[3],

float (e[4]),float (dis-float (e[4])) /float (e[4]),float (e [5]),float (e[6]),float (e[7]))

newlines.append(inter)

k=k+1

i=i+1I

print "bonds",n

f = open(newfile,'w')

f.writelines(newlines)

f.close()

# avergaing distnces

template='allbonds'

f = open(template,'r')

T= f.readlineso

f.close()

aveCaO=[]

aveSiO=[]

aveOH=[]

for i in range(O,len(T)):

s=split(T[i])

if (s[]=='Out'):

print "found",s[l]

CaO=O

nCaO=O
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SiO=0

nSiO=0

OH=0

nOH=0

cos=1.

temp=int(s[1])-1

for j in range(i+1,i+1+n):

s=split(T[j])

if (temp==0) or (temp==6):

cos=abs(float (s[11]))

#print "found cos",cos

if temp==1 or temp==7:

cos=abs (float (s[12]))

if temp==2 or temp==8:

cos=abs (float (s[13]))

if (s[2]=='Ca') and (s[3]=='O') and (s[7]=='Ca') and (s[8]=='O'):

CaO=CaO+abs(float (s[10])) *cos

nCaO=nCaO+cos

if (s[2]=='O') and (s[3]=='Ca') and (s[7]=='O') and (s[8]=='Ca'):

CaO=CaO+abs(float (s[10])) *cos

nCaO=nCaO+cos

if (s[2]=='Si') and (s[3]=='O') and (s[7]=='Si') and (s[8]=='O'):

SiO=SiO+abs (float (s[10])) *cos

nSiO=nSiO+cos

if (s[2]=='O') and (s[3]=='Si') and (s[7]=='O') and (s[8]=='Si'):

SiO=SiO+abs (float (s [10])) *cos

nSiO=nSiO+cos

if (s[2]=='H') and (s[3]=='O') and (s[7]=='H') and (s[8]=='O'):

OH=OH+abs(float(s[10]))*cos

nOH=nOH+cos
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if (s[2]=='O') and (s[3]=='H') and (s[7]=='O') and (s[8]=='H'):

OH=OH+abs (float (s[10])) *cos

nOH=nOH+cos

aveCaO=aveCaO+ [float (CaO/nCaO)]

aveSiO=aveSiO+ [float (SiO/nSiO)]

aveOH=aveOH+ [float(OH/nOH)]

print "aveCaO",CaO,nCaO,CaO/nCaO

print "ave-SiO",SiO,nSiO,SiO/nSiO

print "ave-OH",OH,nOH,OH/nOH

print "vector",aveCaO [0]

#print finish-start+1

############# calculating stdev

newlines1=[]

newfile1='ave.std'

for i in range(0,len(T)):

s=split(T[i])

if (s[0]=='Out'):

print "found",s[1]

newlines1.append('Out %d\n'% int(s[1]))

cos=1.

CaO=0

nCaO=0

SiO=0

nSiO=0

OH=0

nOH=0

temp=int(s[1])-1

for j in range(i+l1,i+1+n):

s=split(T[j])

if (temp==0) or (temp==6):
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cos=abs (float (s [11]))

#print "found cos",cos

if temp==1 or temp==7:

cos=abs(float(s[12]))

if temp==2 or temp==8:

cos=abs (float (s[13]))

if (s[2]=='Ca') and (s[3]=='O') and (s[7]=='Ca') and (s[8]=='O'):

CaO=CaO+ (abs(float (s[10])) *cos-aveCaO [temp]) **2

nCaO=nCaO+cos

if (s[2]=='O') and (s[3]=='Ca') and (s[7]=='O') and (s[8]=='Ca'):

CaO=CaO+ (abs(float (s[10])) *cos-aveCaO [temp]) **2

nCaO=nCaO+cos

if (s[2]=='Si') and (s[3]=='O') and (s[7]=='Si') and (s[8]=='O'):

SiO=SiO+ (abs(float (s[10])) *cos-aveSiO [temp]) **2

nSiO=nSiO+cos

if (s[2]=='O') and (s[3]=='Si') and (s[7]=='O') and (s[8]=='Si'):

SiO=SiO+ (abs (float (s[10])) *cos-aveSiO [temp]) **2

nSiO=nSiO+cos

if (s[2]=='H') and (s[3]=='O') and (s[7]=='H') and (s[8]=='O'):

OH=OH+ (abs(float (s [10])) *cos-aveOH [temp]) **2

nOH=nOH+cos

if (s[2]=='O') and (s[3]=='H') and (s[7]=='O') and (s[8]=='H'):

OH=OH+(abs(float(s[10]))*cos-aveOH[temp])**2

nOH=nOH+cos

#stdCaO=stdCaO+[CaO/nCaO]

#stdSiO=stdSiO+[SiO/nSiO]

#stdOH=stdOH+[OH/nOH]

#print "stdCaO",CaO,nCaO, (float(CaO/nCaO))**.5

#print "std-SiO",SiO,nSiO,float(SiO/(nSiO))**.5

#print "std-OH",OH,nOH,float(OH/(nOH))**.5
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inter = 'Ca-0 %f %10.5f %10.5f \n' % (nCaO,aveCaO[temp],

float(CaO/(nCaO))**.5)

newlines1.append(inter)

inter = 'Si-O %f %10.5f %10.5f \n' % (nSiO,aveSiO[temp],float(SiO/(nSiO))**.5)

newlines1.append(inter)

inter = 'O-H %f %10.5f %10.5f \n' % (nOH,aveOH[temp],float(OH/(nOH))**.5)

newlines1.append(inter)

fl = open(newfilel,'w')

fl.writelines(newlinesl)

fl.closeo

print "
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B.4 Script to Analyze Energy and Calculate Stess

import os,sys,string,math

import time

from string import *

#from Numeric import *

def break line(s):

copy = s[:]

return string.split (copy)

def printhelp(:

print '\nUsage syntax: python xxx.py x/y/z initialOUT LastOUT'

sys.exit()

args = sys.argv[:]

#print "length", len(args),args[1]

if len(args) != 4: printhelp()

# define outpit file

ini=int(args[2])

f=int(args[3])

newfile = 'plotinput'

newlines []

print "

for i in range(ini,f+1):

template ='out'+str(i)

#print os.path.isfile(template)

f = open(template,'r)

T = f.readlines()

f.closeo

#definig the line number where lattice parameter is

j=1

while j< len(T):

# if i==1000000 and (string.find(T[j],' Final Cartesian lattice vectors') 0):
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# if (args[1]=-'x' or args[1]=='X'):

# t--split(T[j+2])

# cell=float(t[0])

# elif (args[1]=='y' or args[1]=='Y'):

# t=split(T[j+3])

# cell=float(t[1])

# elif (args[1]=='z or args[1]=='Z):

# t=split(T[j+4])

# cell=float(t[2])

#else:
# print "Please specify a direction using this format:python xxx.py x/y/z

initial OUTPUT lastOUTPUT"

# sys.exit()

if (string.find(T[j],' Cartesian lattice vectors') 0):

if (args[1]=='x' or args[1]=='X'):

t=split(T[j+2])

cell=float (t [01])

elif (args[1]=='y' or args[1]=='Y'):

t=split(T[j+3])

cell=float(t[1])

elif (args[1]=='z' or args[1]=='Z'):

t=split(T[j+4])

cell=float (t [2])

else:

print "Please specify a direction using this format:python xxx.py x/y/z

initialOUTPUT lastOUTPUT"

sys.exit()

j=j+1

j=1

while j < len(T):
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if (string.find(T[j],' Final energy') == 0):

s=split(T[j])

newlines.append ('%f %f\n'%(cell,float(s[3])))

j-j+1

f = open(newfile,'w')

f.writelines(newlines)

f.close()

template ='plotinput'

f = open(template,'r)

T f.readlines()

f.close()

newlinel []

j=0

#print T[j]

while j <len(T)-1:

t1=split(T[j])

t2=split(T[j+1])

delta=float (t2 [0])-float (t1 [0])

diff=float(t2[1])-float(t1[1])

stress =float (diff) /float (delta)

newlinel.append ('%f %f\n'% (float (t1 [0]),float (stress)))

j=j+1

f = open('stress','w')

f.writelines (newlinel)

f.close()

print "writing DONE"

print "
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Appendix C

Molecular Configuration of the

Consistent C-S-H Model
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C.1 Cell Parameters and Atomic Positions of cCSH

All length units are in A.

Number of Atoms: 672

C.1.1 Cell Parameters

a =26.618

b =29.521

c =23.691

a =92.02 deg

# =88.52 deg

-y =123.58 deg

C.1.2 Atomic Positions in Cartesian Coordinates

Ca 9.0248822 2.489555 6.9455407

13.5005146

7.8895264

18.9610178

2.3347079

13.7676501

7.2286737

19.7533586

-0.2118658

11.9216108

6.7426245

17.2976727

22.1316093

11.9128905

6.9397873

6.7084888

6.2373611

8.6885592

7.833785

5.6965703

6.2814971

6.7801312

15.8655833

14.1112502

14.2041509

14.4705676

13.8951489

14.4350234

15.5421889

Ca 5.760837 17.6498568 15.230708
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0.2314494

4.9693745

-3.5958435

21.632521

14.1899251

17.8188456

9.1704938

2.4622424

-3.6925914

1.3789855

-8.7301849

-1.2210967

10.0394601

15.1495054



Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

8.2002221

0.2790733

3.7239289

-5.7203013

15.1234129

13.3171626

17.9043855

1.8330511

0.3003985

-8.0294249

-3.334589

-12.6631702

13.4592603

5.5038157

10.0626691

0.9114894

2.9561668

-5.076671

-1.3526566

-9.7533537

15.7990923

8.4058581

11.8322414

3.8697993

6.3635341

-1.4248983

2.5809648

11.7901971

20.2475052

11.8313821

2.3250477

14.4241146

8.3119493

20.9469943

0.5469502

14.5773871

8.6511572

18.3189162

4.9255589

17.1157769

10.9209441

23.0839023

4.6225404

17.1465521

11.0708357

23.2774546

2.0735705

14.0433099

8.027336

20.5447532

1.7554645

14.3252515

8.179123

20.3467255

5.4215991

17.4182461

11.3109039

-0.1309444

5.9880973

17.7031082
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18.5309981

16.7310351

18.1758216

18.1229446

15.7499896

16.9714087

18.5410508

21.2373836

4.0744062

4.2246492

4.2587752

3.5599545

3.4155997

4.6036362

3.7419985

4.2875931

3.8033799

4.208268

3.7591231

5.4665524

3.0285819

4.0129444

2.30641

5.250631

18.4773753

17.1263133

16.3502416

19.770889

17.3804732

17.0403425



Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Ca

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

16.0136678

7.4207821

1.9342798

-5.1285622

-0.9605833

-8.5518088

16.7593667

8.0465204

12.1696234
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Ow 13.8013909 15.4529961 19.4400652

227

15.3749682

16.1516436

22.0734446

22.326513

22.8036851

0.6222112

0.5230601

1.4087901

6.1128535

5.8560893

6.2800387

20.671106

19.9138966

20.906387

15.9639885

16.1130737

15.033147

21.2197998

20.6061355

20.6980205

9.6201559

9.1475555

9.2996902

11.0425524

11.4814624

10.3536921

9.7878525

8.9689303

10.4827075



Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

12.4866568

15.4853852

21.1721906
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-8.3784205
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13.738976
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10.3954003
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22.7317239
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23.4222147
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-9.557577
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-11.4078928
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13.3718486
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22.4188794
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1.3773837
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7.7095305
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0.1708008

1.2695309

2.7597115

3.3219671

2.7914233
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20.4252955

19.6634047

19.7571813

19.5647901

18.3897295

1.4120983

1.8357323

1.3913787

1.3195972

1.7733094

0.929885

3.7563373

4.2353933

3.7532594

Ow -6.710428 15.354545 10.3203592
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10.6005551
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1.0257427
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0.6379741
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-3.8878783
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19.307765

17.2736168
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-2.7298568

-7.7003401

-6.8191161

-7.4948005

7.7017882

7.3650661
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19.5303945

18.243125

0.7216383

-0.2498631

2.6568951

2.5321526
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15.4776077
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5.4303544

5.2953393

6.2883608
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6.3105613

6.7729941
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8.9631561

9.2446532
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18.6671386
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4.9241554

6.1342681

4.9791935

4.3565338
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24.3716571
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21.6571187

20.3904745
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5.5962077
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12.3775411
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18.6452362
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16.5073703

23.1377926
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23.7880087

16.9904635
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22.3936309

22.3760826

22.1383228

23.2317753

23.1082148

22.4946405

9.3063975

8.9547841

10.2548252
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11.3599758
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20.3986236
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-9.2590754

-8.7079788

-8.3134

16.0567479

-9.2506475
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-0.4656766

24.632707
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13.3444225
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14.370354
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12.7329705
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6.4880088
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10.7804034
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22.7612507

24.2334946

14.1004211

14.4405614
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1.0090459
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0.2824644

0.5647876

0.0537714

0.4094825

10.8329312

10.5834127

10.015319

3.3340308

4.2777121

2.9337889

3.0445883

2.9109762

3.9087148

Ow -12.1129345 20.2274136 1.000952
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20.564367

19.9985203

20.7731621

20.7491337

21.6744801

8.8736384

8.492369

8.1633446

1.0018682

1.4346534

1.4995955

21.7028387

20.9892752

21.2919298

1.7302858

1.9713199

1.1159728

6.4337904
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23.3103665
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16.0292337
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10.7569487
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20.602984

20.6408336
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13.2438364
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-6.4588889

-6.623534
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-3.0710809

-2.268829

-4.1413218

11.1741045

9.9030328

10.1238648
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19.3831886

20.8305346

21.4280229

22.1012406

21.0635108

6.8500146

6.4781843

6.9814755

21.5315844

21.2125435

21.950148

8.7051009

9.1852284
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4.9560627

5.4916735

5.2712764

17.4294952

17.9178149

17.1260648

24.1676207

23.3314316

-0.0728236

20.2449376

19.8590396

19.4838501

1.4843732

1.1587166

1.7653367

1.9221106
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22.4069129

23.031146
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10.9750059
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10.9114559

10.0241444

10.9159732
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15.1304703

16.1098183

13.5538889

12.9462382

13.4514209

14.5709213
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16.9943598
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16.4537182

15.2687618

14.250941

13.528601

14.9250324

6.4996583
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12.4136649

14.6380458
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-9.297403

13.7341456

15.7006999

12.7951705

7.7745404

6.6619332

7.8149383

11.4579613

11.8005919

13.3024448

15.1786706

13.4825121

16.6999436

0.7684769

1.1295368

2.6409926

7.509192

7.6520755

6.5646896

5.0128889

5.3806651

4.5116797

19.1616453

18.5711546
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2.406989

2.0349109

1.8096542
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6.0362932
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12.1679274
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4.0338041
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4.307654
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12.8335024
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1.9695655

0.8293868
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20.4131723
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0.0852345

0.5645303
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10.5549299

19.2909563

19.6632053

19.6610839

0.0826278



Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

Ow

Hw

Hw

2.0135411
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23.3971577

2.2397381
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3.5305389

2.3581048
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9.9095339

12.383153

6.3574072

-9.9379579

6.7857589

-9.4895546

-9.2694114

-10.372776

12.3209529

11.2836446

20.8084774

20.478959

21.6047989

13.7362596

14.0692879

14.2596242

0.0521721
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0.3475632
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0.5831748

2.291608

2.8785899
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15.3307469

15.8416899

10.8787197
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9.9742836
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1.8274101

1.8971892

0.003047

0.8278076

23.2720215
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20.5177
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21.2759085

0.4882262'

0.7197759

1.253362
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