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Abstract

Risk stratification allows clinicians to choose treatments consistent with a patient's
risk profile. Risk stratification models that integrate information from several risk
attributes can aid clinical decision making.

One of the technical challenges in developing risk stratification models from med-
ical data is the class imbalance problem. Typically the number of patients that expe-
rience a serious medical event is a small subset of the entire population. The goal of
my thesis work is to develop automated tools to build risk stratification models that
can handle unbalanced datasets and improve risk stratification.

We propose a novel classification tree induction algorithm that uses non-symmetric
entropy measures to construct classification trees. We apply our methods to the ap-
plication of identifying patients at high risk of cardiovascular mortality. We tested our
approach on a set of 4200 patients who had recently suffered from a non-ST-elevation
acute coronary syndrome. When compared to classification tree models generated
using other measures proposed in the literature, the tree models constructed using
non-symmetric entropy had higher recall and precision. Our models significantly
outperformed models generated using logistic regression - a standard method of de-
veloping multivariate risk stratification models in the literature.
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Chapter 1

Introduction

Risk stratification is an important classification problem in medicine. It refers to the

task of predicting whether a patient is likely to develop a condition or experience

a medical event in the future. For example, predicting the probability of having a

heart attack. Accurate risk stratification allows clinicians to choose treatments con-

sistent with the patient's risk profile. However, the diversity in clinical presentation

of patients present a challenge.

At present, there exists a divide between therapy and diagnostics. This divide

is evidenced by the example of implantable cardioverter defribrillators (ICDs). An

ICD is a device that is surgically implanted in patients believed to be at a high risk

of suffering a fatal arrhythmia. An estimated 90% of the patients who receive ICDs

never end up needing them [16]. But every year hundreds of cardiovascular patients,

without an ICD, die of a fatal arrhythmia. This illustrates a clear clinical need to

develop tools and predictive models that can improve risk stratification.

Our work is motivated by an increasing availability of health information about

patients in the form of electronic health records (EHR) from medical institutions.

An EHR contains information such as patient demographics, progress notes, past

medical history, vital signs, medications, immunizations, laboratory results and radi-

ology reports [21]. Several of these individual measures have prognostic capabilities.

Moreover, some of the measures are complimentary to each other. Therefore, infor-

mation from several measures can be exploited to aid clinical decision making. EHRs



allow easy accessibility to this vast amount of patient data. Therefore, they present

one with the opportunity to utilize the data to create data-driven models that can

improve risk stratification.

The goal of this thesis work is to develop automated tools to build risk stratifi-

cation models that facilitate knowledge discovery and improve risk stratification. In

this thesis, we specifically investigate classification tree based models for risk stratifi-

cation of patients with non-ST elevation acute coronary syndrome (NTSEACS) from

the MERLIN trial [40]. This database is a highly unbalanced data set with a 2%

death rate.

Using the dataset from the MERLIN trial, we devise and evaluate an algorithm for

classification tree. The classification tree model was derived from a training dataset.

The model was then used to to risk stratify patients on a disjoint test set. Several

instances of training and test sets were used to evaluate our algorithm. We speculate

that our algorithm can be successfully applied to generate models for risk stratifying

patients for other medical outcomes as well.

1.1 Related work

Researchers have investigated several methods to generate integrated risk stratifica-

tion models for different medical outcomes.

The most commonly used technique in the literature is multivariate logistic re-

gression [3, 5, 10]. A multivariate logistic regression yields a model characterized by

regression coefficients. The values of the regression coefficients that are statistically

significantly gives us a measure of association of the variables with the outcomes.

One of the disadvantages of logistic regression is that it may not be able to identify

complex interaction between variables that exist in the data. For example, the value

of one variable (say, age) may substantially change the importance of another variable

(say, history of smoking). With the vast amount of data, it is virtually impossible to

include all potential interactions in a regression model. Moreover, logistic regression

models are rarely used in clinical practice.



In a clinical setting, simple integrated risk scores are used. These simple and

easy-to-use risk scores are derived from independent prognostic variables selected

using multivariate logistic regression. The TIMI risk score, used for risk stratification

of patients with non-ST elevation acute coronary syndrome (NTSEACS) [4], is an

example of such a score. Its simplicity and the ease of use have made it appealing for

clinical use.

Besides logistic regression, risk stratification models derived using machine learn-

ing algorithms are gaining popularity in the medical literature [29, 50, 56]. Complex

models generated using machine learning techniques show promise in improving risk

stratification. However, clinical applicability of complex 'black box'-type models is

limited since they do not give any explanation for classification results predicted by

the model. Examples of such machine learning techniques include Support Vector

Machines (SVM) and Artificial Neural Networks (ANNs). Advanced models that can

discover complex interactions between variables and also provide justifications for

classification results are more well-suited for use in a clinical setting. A classification

tree is an example of such a model.

Classification tree learning is a supervised data-driven algorithm that generates

a predictive model comprised of a set of classification rules in the form of a tree.

The rules extracted from the tree are simple to interpret. The main components of

classification tree induction process are:

e Splitting criterion: The splitting criterion is used to select a variable for

generating a split at a node of a tree during the tree induction process.

9 Discretization of continuous variables: Classification tree can only handle

discrete variables. Therefore, continuous variables need to be discretized.

* Pruning: Pruning helps to generate a model that is less susceptible to overfit-

ting the training data and easier to interpret.

One of the technical challenges in constructing a classification tree based risk

stratification model from medical data is the class imbalance problem. Typically the



number of patients that experience a serious medical event is a small subset of the

entire population. For example, amongst the patients with high cholesterol, only a

small fraction of patients actually suffer heart attacks. Despite class imbalance, a

good classification tree model should be able to extract useful information from the

data that can be used for risk stratification.

The most popular classification tree induction algorithm uses Shannon entropy

or the Gini index based splitting criterion during classification tree induction. These

functions do not take into account the class distribution of the data. Therefore, in

unbalanced datasets, they are biased towards the majority class.

1.2 Proposed Approach

We propose a tree learning algorithm for unbalanced data that uses non-symmetric

entropy measures for both discretization and for the criterion to select variables to

split during tree induction. Our algorithm performs local discretization during tree

induction to yield subset specific cutoffs. To generate classification rules that are

statistically significant, we use Fisher's exact test based method to prune the branches

that are not statistically significant.

1.3 Clinical Application

While the methods developed in this thesis are potentially applicable to data from any

application, we present and evaluate our methods in the context of risk stratification

of patients for cardiovascular death.

Cardiovascular death is an important clinical area because of the high incidence

of cardiovascular death in the US and around the world. In 2006, there were about

831,300 cardiovascular deaths in the US [2], which accounted for 36.9% of all deaths.

The total costs, both direct and indirect, associated with addressing cardiovascular

disease in US alone was about $366.6 billion [2]. These statistics highlight the need of

improved tools to identify patients with cardiovascular disease at high risk of death.



1.4 Contributions

We briefly review the primary contributions of this thesis. A more detailed discussion

of the contributions are deferred to the subsequent chapters in the thesis.

* Concept of Warped Entropy: We propose the concept of a warped entropy,

a new non-symmetric entropy measure that takes into account the class dis-

tribution of the dataset. The classical entropy measure, Shannon entropy is

maximized at the distribution where all the classes are present in equally pro-

portions. The new measure allows the maximum entropy point to be set at a

specified distribution.

e Evaluation of symmetric and non-symmetric entropy measures for

discretization of continuous attributes in an unbalanced dataset: We

evaluated Shannon entropy and two non-symmetric measures: warped entropy

and asymmetric entropy [33] for discretization of continuous variables. All of the

entropy measures were evaluated based on the stability of the cutoffs generated

by each of the measures over several training instances. The stability of the

cutoffs was measured using the coefficient of variance (COV) of the cutoffs.

The cutoffs were generated for four continuous variables: age, morphological

variability, heart rate variability and deceleration capacity using data from the

MERLIN trial [40].

We compare the COV for all the four continuous variables for each of the three

entropy measures. Our results show that warped entropy measure not only

yielded cutoffs with the smallest average COV but also had the best worst case

COV in the MERLIN dataset.

e Identification of the potential usefulness of subset specific cutoffs for

risk stratification: Typically, when a continuous risk attribute is used to risk

stratify patients into a low risk or a high risk group, the same cutoff is used

for patients, irrespective of their clinical background. For example, when using

morphological variability (MV), an ECG based metric for risk stratification of



patients with NTSEACS, a cutoff of 50 is suggested, regardless of whether or

not a patient has ST-depression [51]. We hypothesized that using subset specific

cutoffs - different cutoffs for the same continuous risk attribute based on clinical

background of the patients, can improve risk stratification.

We demonstrated that for several continuous variables, subset specific cutoffs

can yield improved performance in identifying patients at high risk of CVD.

For each of the available continuous risk metrics from the MERLIN trial, we

found 'global' cutoffs using the entire training set and subset specific cutoffs

based on a clinical attribute such as presence or absence of ST-depression. We

evaluated the cutoffs on a disjoint set of test examples. Our results show that

subset specific cutoffs can improve both recall and precision in identifying high

risk patients.

* Present a novel approach of building classification trees from highly

unbalanced dataset: We present an algorithm for development of classifica-

tion trees from unbalanced data. Our algorithm performs binary discretization

(with Bagging) of continuous variables at each node during the tree induction

process. This procedure exploits the usefulness of subset specific cutoffs for risk

stratification. Given a class coherence measure, the algorithm selects the vari-

able that has maximizes class coherence (or minimizes class incoherence) after

a split.

" Evaluation of different class coherence measures for induction of clas-

sification tree models, with local discretization, from unbalanced datasets:

We evaluated our algorithm using different class coherence measure-based split-

ting criteria. The classification trees developed using asymmetric entropy or

class-confidence proportion (CCP) as the splitting criterion yielded post-ACS

risk stratification models with significantly higher recall and precision than other

splitting criteria proposed in the literature for unbalanced data. Moreover, our

results suggest that using asymmetric entropy to generate classification tree

yields models with significantly higher recall than those generated using CCP,



with a comparable precision. We also compared the performance of these clas-

sification models with those generated using global discretization. Our results

show that the recall and precision obtained using asymmetric entropy using local

discretization is significantly higher than the best recall and precision obtained

using global discretization.

e Comparison of classification tree based models with other models:

We compared the risk stratification performance of the classification tree based

models developed using non-symmetric entropy measure with those of the TIMI

risk score. Our results show that the classification tree models yield a signif-

icantly higher recall, precision and odds ratio than the TIMI risk score. It is

important to note that the TIMI risk score and the classification tree models

uses different set of risk attributes with some overlap.

We also developed multivariable logistic regression models (LRM) using the

same set of variables used of the classification tree model. Again, the per-

formance of the classification tree based models were significantly higher than

LRMs.

1.5 Organization of Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides background

and an overview of the clinical application of interest - risk stratification of post-ACS

patients. Chapter 3 presents and evaluates different symmetric and non-symmetric

entropy measure for discretization of continuous variables. Chapter 4 describes clas-

sification trees and presents the algorithm used to construct classification trees. In

Chapter 5, we evaluate classification trees obtained using global and local discretiza-

tion with different splitting criteria. In Chapter 6, we compare the risk stratification

performance of classification tree models with the TIMI risk score and models devel-

oped using logistic regression. In Chapter 7, we present a classification tree model

generated by our proposed algorithm to risk stratify patients with NSTEACS. We



also analyze the classification rules derived from the tree. Chapter 8 concludes with

a summary and a discussion of future work.



Chapter 2

Background

In this chapter, we provide background information about acute coronary syndrome

(ACS) and post-ACS risk stratification techniques. We start with a discussion of

ACS and its subclassifications in Section 2.1. In Section 2.2, we review existing risk

stratification methods to identify high risk patients. The goal of this chapter is to

provide background of the clinical application on which the methods presented in this

thesis are evaluated.

This chapter borrows heavily from the discussion of these subjects in [49, 52].

2.1 Acute coronary syndrome

An acute coronary syndrome (ACS) is a cardiac event in which blood supply to a

part of the myocardium (heart muscle) is blocked or severely blocked. This leads

to ischemia or cell death in the myocardium. An ACS is also subclassified based

on the extent to which the coronary artery is occluded, which can often be inferred

from ECG recordings. An ECG showing elevation in the ST segment is indicative of

complete occlusion of an artery and necrosis (and therefore, myocardial infarction).

Such patients are given a diagnosis of ST-elevation MI (STEMI) and are typically

higher risk relative to patients with non-ST-elevation ACS. Non-ST-elevation ACS

(NSTEACS) is indicative of partial occlusion of an artery and is a less severe condi-

tion. NSTEACS may be diagnosed by the presence of certain ECG irregularities (ST



depression or T wave inversion).

2.2 Post-ACS risk stratification

Patients who have experienced ACS are at elevated risk of death. Among patients

stabilized after ACS, some patients are at higher risk than others. Therefore, post-

ACS risk stratification is an important clinical step to manage patients and to guide

their treatments. This section provides background information on post-ACS risk

stratification methods that are considered in the thesis. In particular, we consider

the TIMI risk score (TRS) and long-term ECG-based techniques. There exists other

risk stratification measures, such as echocardiography, that are not discussed here.

2.2.1 TIMI Risk score

The TIMI Risk score [4, 38, 39] is a simple risk stratification tool that incorporates

several binary clinical risk variables that are easily acquired at the time of admission.

It is designed to be simple so that it can easily be evaluated by a medical personnel

without the use of a computer. It can therefore be used for immediate decision

making with regard to treatment options. The GRACE [19] risk score performs a

similar function.

The TRS considers the following 7 binary predictor variables:

" Age 65 years or older,

" At least 3 risk factors for coronary artery disease among the following: hy-

pertension, hypercholesterolemia, diabetes, family history of coronary artery

disease, or being a current smoker,

" Prior coronary stenosis (narrowing of an artery) of 50% or more,

" ST-segment deviation on ECG at presentation,

" Severe anginal symptoms (at least 2 anginal events in prior 24 hours),



e Use of aspirin in prior 7 days, and

9 Elevated serum cardiac markers (CK-MB or troponins)

The TIMI1IB and ESSENCE trials [4] showed that higher TRS is associated with

cardiovascular death and other adverse cardiac events. Based on the TRS, patients are

further grouped in three categories: low risk (TRS = 1,2), moderate risk (TRS=3,4)

and high risk (TRS = 5,6,7) [40].

2.2.2 Heart rate variability

The ECG-based risk stratification techniques that has been most extensively discussed

in the literature is based on measurements of heart rate variability (HRV) [1, 25]. The

physiological theory behind using heart rate variability is that in a healthy individual,

the body is able to adjust the heart rate to compensate for the changes in oxygen

demand during different daily activities. A heart rate that changes little, is not able

to respond to such demands. This suggests that the heart and its control mechanisms

are not actively responding to the stimuli. HRV based measures attempt to quantify

the change in a patients instantaneous heart rate over a period of monitoring in order

to yield an estimate of risk.

Heart rate is modulated by the autonomic nervous system, which is comprised of

the sympathetic and the parasympathetic nervous systems. The sympathetic nervous

systems effects are mediated by the release of epinephrine and norepinephrine, which

increases the heart rate. The parasympathetic nervous system lowers heart rate by

release of of acetylcholine by the vagus nerve. Decreased vagal or parasympathetic

modulation (i.e. reduced downregulation of heart rate) is thought to be strongly

linked to increased risk of death [9, 48] . One possible explanation is that reduced

down-regulation corresponds to an increase in heart rate which imposes stress on

heart muscle already affected by ischemia or infarction.

HRV measures are calculated from the sequence of intervals between two consecu-

tive QRS complex of the ECG signal [1] . Abnormal beats are ignored, since the focus

of HRV is to study how the nervous system modulates heart rate. While abnormal



beats change the heart rate, these changes are the result of a different physiological

phenomenon (e.g., the presence of abnormal beat foci) and are ignored so as not to be

confused with heart rate changes caused by impulses from the nervous system. Since

only heartbeats resulting from normal depolarization of the SA node are considered,

the sequence of R-wave to R-wave (RR) intervals studied for HRV analysis is termed

the NN (for normal-to-normal) series. One of a number of methods is then used to

summarize this series with a single number. HRV measures can be roughly divided

into time domain, frequency domain, and nonlinear measures. [1] provides a more

complete overview of HRV metrics.

Frequency domain HRV methods rely on the fact that vagal and sympathetic

activity are mediated by biochemical pathways associated with different time scales

[1]. In particular, acetylcholine (which mediates vagal activity) is faster acting than

epinephrine and norepinephrine (which mediate sympathetic activity). As a result, it

is believed that changes in heart rate in the high frequency (HF) range (0.15-0.40 Hz)

correspond to vagal activity, while changes in heart rate in the low frequency (LF)

range (0.04-0.15 Hz) correspond to sympathetic activity.

One of the most commonly used frequency domain metrics, LF/HF, is defined as

the ratio of the total power at LF and HF frequencies in the power spectral density

(PSD) of the NN series. The PSD of the NN series is usually calculated using the

Lomb-Scargle periodogram [31], which is designed to estimate the frequency content

of a signal that is sampled at irregular intervals. The LF/HF ratio is computed for

5-minute windows, as in [1], and the median value across windows is used as the

LF/HF value for that patient. Patients with low HRV-LF/HF are considered to be at

risk. In the literature, HRV-LF/HF has performed better at identifying patients who

are at risk of death due to coronary heart disease than the time domain measures

[54].

2.2.3 Deceleration capacity

Like HRV, Deceleration capacity (DC) attempts to measure impaired vagal modula-

tion of heart rate, believed to be associated with high risk. The underlying theory



behind the DC measure is that the vagal and sympathetic activity of the heart can

be distinguished because the former causes deceleration of heart rate while the latter

causes heart rate acceleration [6].

To compute DC, we begin with the RR interval sequence RR[n] and search for

anchors, i.e., RR intervals that are longer than the ones preceding them. Let the

index of the ith anchor be ni and the total number of anchors be N. If we define X[n]

as the average RR interval length around each anchor i.e.

N

X [n] = RR[ni +n]
i=1

DC is then computed from this information as:

DC - (X[O] + X([1]) - (X[-1] + X[-2])
4

2.2.4 Morphological variability

Morphological variability is a measure of subtle changes in the shape of signals over

a period of time. The theory behind measuring MV is that in a stationary and

homogenous cardiac conducting system, the activated pathways through excitable

cardiac cells are usually similar for consecutive cardiac cells. However, in the pres-

ence of ischemia, the conducting system may have multiple islands of depressed and

relatively unexcitable myocardium [15] that lead to discontinuous electrophysiologi-

cal characteristics [23]. The presence of several possible adjacent pathways that can

invade the nonfunctioning area leads to variations in the spatial direction of the invad-

ing vector [8]. The overall effect of such minor conduction inhomogeneities is not well

understood but it could potentially correlate with myocardial instability and hence

have predictive value for adverse cardiovascular outcomes.

MV quantifies the inhomogeneities and subtle morphological variation using a

variant of dynamic-time warping to compute time-aligned morphology changes be-

tween consecutive sinus beats [52]. The original ECG signal is then transformed into a

sequence of energy differences, the morphological distance (MD) time series, between



consecutive beats. The MD time series is smoothed using a median filter. Finally

the power spectral density of the MD time series between 0.30-0.55 Hz is obtained

for a five minute time window using the Lomb-Scargle periodogram [31]. The power

spectral density is computed for every uncorrupted 5 minute windows from 24 hours

of continuous ECG signal. The 9 0th percentile value of the power spectral density is

used as the MV value for that patient [49]. A more detailed discussion of MV can be

found in [52].



Chapter 3

Discretization

In this chapter, we present our work on discretization of continuous variables using

entropy-based measures. We investigate two existing approaches, Shannon entropy

and asymmetric entropy, and one new approach, warped entropy. Both asymmetric

entropy and warped entropy take into account the distribution of the classes in the

dataset during discretization but Shannon entropy does not. Since there is typically

a substantial class imbalance in medical datasets, this difference in significant. We

evaluate the performance of the cut points generated using each of the measures in

terms of stability and their classification performance using a Naive Bayes classifier.

3.1 Overview

In medicine, multiple risk metrics are used to evaluate the risk profile of a patient.

These risk metrics consist of both continuous (e.g. age) and categorical (e.g. his-

tory of diabetes) variables. From a clinical perspective, categorization of continuous

variables into discrete categories (e.g. high risk) is useful since it offers a simple risk

stratification tool for both physicians and patients. In addition, categorization, more

generally referred to as discretization, of continuous risk variables is also important to

generate multivariable models using algorithms, e.g. decision tree induction methods,

that can only handle discrete variables. Moreover, many machine learning algorithms

are known to generate better models when discretized variables are used [26].



Discretization of continuous risk variables requires partitioning continuous vari-

ables into sub-ranges where each sub-range can be treated as a category. The purpose

of discretization is to identify cutoffs that partition the range into intervals such that

members of each category exhibit good class coherence.

In recent years, because of advances in medical research and extensive use of

computational techniques for medical data analysis, several new risk metrics have

been developed [51, 43]. These metrics show promise in improving risk stratification

of patients for adverse outcomes. However, categorization of these newly developed

risk variables is a challenge, since there is little prior expert knowledge. Therefore,

there is a need to develop algorithms that can identify informative cut points for a

continuous valued variable.

Discretization algorithms are based on assumptions about the distribution of val-

ues of the continuous variable and the outcomes associated with them. They assume

that there exists a correlation between the variable and the outcome. Equal width

technique is commonly used discretization technique. This method hope to find clus-

ters of observations with the same class labels along the values of the variable by

defining bins within the range of the variable. The equal width discretization method

splits the range of the continuous variable into the user-defined number of equal width

discrete intervals. The obvious disadvantage of this algorithm is that in cases when

the outcome are not distributed evenly within each bin, a lot of information is lost

after discretization. This technique is generally referred as class-blind or unsuper-

vised method. Percentile based approach is often used to find cutoffs for continuous

risk variables for binary class values. The algorithm uses the class labels associated

with the values to determine whether there exists a positive or a negative correlation

between the continuous attribute and the classes. Depending on the direction of cor-

relation, either the top or bottom x percentile is used to find the binary cut point.

Although this method uses the class label information to determine the direction of

linear correlation, the class labels are not directly used to determine the cut point

itself.

Supervised methods, on the other hand, use class label information to identify



cutoffs. The discretization cutoffs are derived from training data which consists of

examples, each represented by a value of the continuous variable and a class label

associated with the example. While unsupervised methods such as equal width and

equal frequency methods hope to find clusters by binning, supervised methods use

the class label information from the training set to guide the search for such clusters.

If any clusters are identified, the values of the variable that define the cluster are

identified as cut points. Previous research has indicated that supervised discretiza-

tion methods are better than unsupervised methods for classification using machine

learning algorithms such as decision trees and Naive Bayes classifier [14, 28]. In [28],

Kurgan et al. show that decision tree classifiers built from discretized data using

supervised methods yielded higher accuracy than the classifiers generated using un-

supervised discretization methods. The algorithms were tested on both medical and

non-medical datasets.

One of the popular supervised discretization approaches is based on measuring

class entropy of a sequence using Shannon entropy [26]. Class entropy of a sequence

is a measure of uncertainty of the class labels of the examples that belong to the

sequence. It is a measure of information where a lower value of entropy corresponds

to higher amount of information. Entropy based discretization algorithms evaluate

every candidate cut point based on a joint measure of the entropy of the two resulting

subsequences generated by the cut point. The candidate cut point that minimizes

the joint entropy of the class in the subsequences is chosen as the 'best' cut point.

According to Shannon entropy, a sequence that has an equal class distribution

is considered to be the most entropic. This property makes an implicit assumption

about equal prior probabilities of classes. However, in most of the medical applica-

tions, prior distribution of classes is highly unbalanced. In case of risk stratification

for cardiovascular deaths, deaths (positive outcome) are much less represented in the

datasets than non-deaths (negative outcome). If we use Shannon entropy for dis-

cretization in such highly unbalanced datasets, a subsequence with an equal class

distribution of positive and negative outcomes is assigned the maximum uncertainty

value of 1. According to Shannon entropy, such a subsequence contains the least



possible information about the class label of the examples in it. However, for highly

unbalanced datasets, such a subsequence actually provides a lot of information. It

suggests that patients that belong to the subsequence are at relatively high risk of

cardiovascular death. Shannon entropy fails to convey this information. Therefore,

a cut point that generates subsequences that contain a lot of information about the

class might be rejected when identifying a cut point with the least joint Shannon

entropy. Taking this under consideration, we present two entropy measures: asym-

metric entropy and warped entropy that take into account the distribution of classes

in the dataset. In Section 3.3, we discuss all three entropy measures.

While supervised methods have advantages over unsupervised methods, they are

prone to overfitting. In supervised learning, overfitting occurs when the model learned

from the training set describes the training data well but does not generalize well on

unseen data. Overfitted models are generally a consequence of noise in the training

data. When we use the training set for learning, we hope to derive a best cutoff that

can be usefully applied to new unseen examples. However, an optimal solution based

on a single training sample set may not necessarily be optimal for other data [46].

With this in consideration, in [46], Qureshi et.al present a resampling approach to re-

duce the discretization variance during the learning process. We propose a supervised

entropy-based discretization approach that integrates a similar resampling approach

to address the problem of overfitting. We present the proposed discretization algo-

rithm in Section 3.2.

In Section 3.4, we evaluate the stability of cutoffs generated using different entropy

measures. We also compare the recall and the precision of Naive Bayes Classifiers

generated using cutoffs proposed in the literature and the cutoffs generated using

entropy-based methods.



3.2 Proposed Entropy-based Supervised Discretiza-

tion Algorithm

We propose a supervised discretization algorithm that finds a user-specified number

of cutoffs for a continuous variable.

Let V be a continuous variable. Let Q be a sequence of N examples sorted in an

ascending order of the continuous variable. Each example is a pair [v, 1] where v is a

value of the continuous variable and I is the class label.

We find the midpoint of the value of variable V for each successive pair of examples

in Q. These midpoint values are the candidate cut points. Each candidate cut point C

partitions Q into two sequences, Q1 and Q2, where Q1 contains examples with v < C

and Q1 contains examples with v >= C. Next, we find the class entropy of each

subsequence Qj using an entropy measure. We use Weighted Joint Entropy (WJE)

to evaluate the quality of the partition generated by a candidate cut point C.

WJE(C, Q) = H(Q1 ) + Q2H(Q2) (3.1)

Here, H : M -+ 91, represents an entropy measure. M is an N x 2 matrix

containing N examples with the corresponding labels.

Amongst all the candidate cut points, C which minimizes WJE(C, Q) is selected

as the cut point for binary discretization for Q.

Equation 3.1 can be easily generalized to generate n cutoffs. However, the set of

candidate cutoffs that needs to be evaluated is O(Nn). To reduce the running time,

we use a greedy approach. To find n cutoffs for n > 1, first we perform a binary

split on the entire sequence Q to identify the first cutoff. To find the next cutoff,

we identify the subsequence QMaxEnt of Q which has the maximum class entropy

(uncertainty). A binary split is then performed on the subsequence by picking the

cutoff that minimizes WJE(C, QMaxEnt). This process is repeated until n cutoffs are

found.

Once the cutoff(s) are identified, to reduce the probability of overfitting to the



sample set but instead generalize well on unseen examples, we perform a Bagging

(Bootstrap aggregating) algorithm. Bagging is an algorithm used to acquire robust

estimation in machine learning applications. In the context of discretization, we

want to avoid overfitting so that the cutoffs identified for a continuous variable are

applicable to unseen examples. Given a sample sequence of size N, bagging generates

r new training sequences, also called replicates, of size N by uniformly sampling

examples with replacement from the original sample sequence [7].
Once the cutoffs for all the replicates are identified for a fixed number of cutoffs

n, we take the median of the distribution to identify the final cut point. The psuedo

code for the algorithm for n cutoffs is presented in Algorithm 1.

Algorithm 1 Proposed Discretization Algorithm for a n cutoffs with Bootstrapping
Inputs: Sequence Q, Number of cutoffs n, Number of replicates r
Output: Cutoffs finalClxn

1: Generate r replicates replicate
2: for each replicate(i) do
3: Maximum Entropy Subsequence RmaxEnt= replicate(i) {By default}
4: j=1 {By default}
5: while j <= n do
6: Find candidate cut points C from RmaxEnt
7: for each candidate cutoff C(m) do
8: Calculate weighted joint entropy, WJE(m)
9: end for

10: Find binary cutoff with minimum WJE, binaryC(i)
11: bestC(i, j) = binaryC(i)
12: Partition replicate(i) in subsequences using bestC(i, o)
13: RmaxEnt = the subsequence of replicate(i) with maximum entropy
14: Increment j by 1
15: end while
16: end for
17: finalC = median(bestC)
18: Return finalC

3.3 Entropy measures

We present three different types of entropy measure. First we discuss Shannon en-

tropy, a symmetric entropy measure, and then we present two different types of non-



symmetric entropy measures, Asymmetric entropy and Warped entropy. The entropy

measures can be generalized to the case of k class labels, however, we restrict our

discussion to two class labels for ease of explanation.

3.3.1 Shannon entropy

Shannon entropy [?] is the most commonly used entropy measure. Let the class-label

variable L take two different values, i.e. 1 = 2, with probability pi and P2 respectively.

The Shannon entropy of a subsequence S, with class distribution pi (S) and P2(S) is

given by

H (S) = -pi(S).log 2p1(S) - p 2(S).log 2P2(S) (3.2)

Shannon entropy is a symmetric entropy measure and is maximized when the two

classes in a S are present in equal proportions (Figure 3-1).

3.3.2 Asymmetric entropy

For the binary class case, the asymmetric entropy measure of a subsequence S derived

from a parent sequence P is given by,

H(S, P) = PI(S)P 2(S) (3.3)
(-2.zi(P) + 1).p(S) + (zi(P))

where, P1(S) and P2(S) are defined as above in Section 3.3.1. The variable zi is

a function of the parent sequence P such that zi(P) = pi(P). The value of zi

determines the asymmetry of the entropy measure. Specifically, for a given parent

sequence P, the function H(S, P) is maximized when p1(S) = zi(P).

By setting zi to the probability of class 1 in the parent sequence, we are essentially

considering the distribution of the parent sequence to be the most uninformative. Any

subsequence with pi(S) = zi(P) has the same distribution as the parent sequence.

Therefore, it does not provide any additional information and is assigned the maxi-

mum entropy value of 1 (Figure 3-1).

The concept of asymmetric entropy was first introduced by Zighed et.al. [33].



3.3.3 Warped entropy

This entropy measure is a modified or warped version of Shannon entropy (Sec-

tion 3.3.1). In Section 3.1, we motivated the utility of asymmetry based on the fact

that the prior distribution of classes is highly unbalanced in many medical datasets.

One way to deal with the class imbalance is to assign greater weights to examples

from the minority class than to those from the majority class so that the distribution

of the weighted samples is balanced.

The warped entropy measure of subsequence S derived from a parent sequence P

is given by,
2

H (S, P) = 1 - p*(S, P).log02p* (S, P) (3.4)
1=1

where,
pi(S).w1 (P)

p *(S, P) = S W P (3.5)p7(SP = w1(P).p1(S) + w2(P).p2 (S)

The variables wi and w2 are weights assigned to examples of class 1 and 2 respectively.

Specifically, wl(P) = z(P) where zi(P) = pi(P) as defined in Section 3.3.2.z1 (P)

3.4 Experiments

We performed all of our experiments on data from the MERLIN-TIMI 36 trial [40].

We used data from 4219 non-ST elevation acute coronary syndrome (NSTEACS) pa-

tients and considered cardiovascular death within 90 days as an endpoint. There were

83 (~ 2%) cardiovascular deaths within 90 days. The database contains continuous

ECG signals recorded at 128 Hz within 48 hours of admission due to NSTEACS.

Three electrocardiographic (ECG) risk metrics: heart rate variability (HRV) [1] , de-

celeration capacity (DC) [6] and morphological variability (MV) [51] were computed

from the first 24 hours of ECG recording. For HRV, we computed HRV-LF/HF [1].

We measured the HRV and DC for each patient using the HRV Toolkit available

from Physionet [18] and the libRASCH software provided by Technische Universitat

Mnchen [6] respectively. MV was computed using the algorithm described in [51]. In
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Figure 3-1: Entropy measures.

addition to these continuous ECG based metrics, we also use age, a continuous clinical

variable, for the evaluation of the different entropy measures for discretization.

3.4.1 Methodology

For our experiments, we used 100 different pairs of training and test sets. Each

pair was created using the holdout method where 4219 patients from MERLIN was

partitioned into two disjoint sets. Each training set contains 2813 patients and its

corresponding test set contains a disjoint set of 1406 patients.

3.4.2 Effectiveness of Bagging

In this experiment, we compare the stability of the cutoffs generated for each of the

100 training sets without Bagging with those of the cutoffs generated with Bagging.

Since Bagging is performed to reduce overfitting to the training set, we would expect

the cutoffs to be more stable than when the cutoffs are found without Bagging. We

........... :: ..... ...... ............ ...........
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use coefficient of variance (COV) as a measure of stability of the cutoffs. COV is a

normalized measure of dispersion and is defined as the ratio of standard deviation

(a) to the mean (p).
0COV = - (3.6)

To evaluate the effectiveness of Bagging, we implemented our discretization algo-

rithm with Bagging and without Bagging on 100 training sets. Binary discretization

was performed on four continuous variables: age, DC, MV and HRV-LF/HF of each

training set using all three entropy measures. When the algorithm was implemented

with Bagging, r = 100 replicates were used.

Figure 3-2 shows the average coefficient of variance (COV) of the cutoffs for each

0.

0.

0.

0.

0.



variable. Lower values of COV corresponds to more stable cutoff values. On average,

cutoffs found using Bagging has a lower COV than when Bagging is not used for

each of the four variables. This illustrates the effectiveness of Bagging in reducing

the variance of estimation of the cutoffs. Therefore, for all the following experiments

that involve discretization, we perform Bagging (with r = 100 replicates).

As seen in Figure 3-2, the improvement in stability varies among different variables

and different entropy measures. The discussion about the stability of cutoffs for

different entropy measures is presented in Section 3.4.3 below.

3.4.3 Stability of Cutoffs

The COV for a single cutoff obtained with Bagging using different entropy measures

is presented in Table 3.1. The worst (highest) COV for each entropy measure is

highlighted in the table. Although warped entropy does not always have the least

COV, it yielded the cutoffs with the best worst case COV compared to Shannon

and asymmetric entropy. Among the three entropy measures, Shannon and warped

entropy had the smallest average COV of 0.13.

Table 3.1: Coefficient of variance for a single cutoff using different entropy measures

Coefficient of variance
Risk Metric Shannon Asymmetric Warped

Age 0.04 0.03 0.06
DC 0.11 0.36 0.15
HRV LF-HF 0.31 0.18 0.15
MV 0.06 0.06 0.14
Mean 0.13 0.16 0.13

The high instability exhibited by the asymmetric entropy measure was caused by

its sensitivity to outliers. The outlier sensitivity can be explained by the shape of the

asymmetric entropy function when a dataset is highly unbalanced (see Figure 3-1).

The asymmetric entropy curve falls sharply as pi(S) approaches 0 from pi = zi=

0.05, but the rate of decrease is slow when we move away from the maximum entropy

point towards pi = 1. The latter property causes the entropy (uncertainty) to still



be high for pi > zi. Therefore, the evaluation function favors cutoffs where one of

the subsequences has pi < z1. This makes asymmetric entropy measure susceptible

to outliers from the minority class.

.*. Shannon
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Figure 3-3: An example to illustrate why Shannon entropy measure may yield unsta-
ble cutoffs for some unbalanced distribution of classes. The x-axis represent sorted
values for an arbitrary continuous variable and the y-axis correspond to the class label
of the examples associated with the continuous values of the variable. Figures 3-3(a)
and (b) show two possible instances of training set derived from the sample popula-
tion. The class distribution is unbalanced with the minority group proportion of 7%.
The dotted arrow and the solid arrow represent the position of the cutoff identified
by Shannon and warped entropy measure respectively. Since Shannon entropy places
equal weights on both minority and majority examples, redistribution of a few exam-
ples between instances causes the cut point to change drastically. On the other hand,
warped entropy measure yields the same cut point.

The high instability shown by cutoffs derived from Shannon entropy measure

(Table 3.1) can be attributed to the fact that it places equal weights on both minority

and majority examples despite their unbalanced prior distribution. An example that

illustrates this characteristic is shown in Figure 3-3.

. .................. . ......... ................ ..........



3.4.4 Performance Evaluation of the Cutoffs

Next, we compared the cutoffs found using an entropy measure with those found in

the literature for risk stratification of NTSEACS patients (Table 3.2). Because of

its robust performance relative to other entropy measures, only the warped entropy

measure is used for this experiment.

Table 3.2 show the cutoffs that are used in the literature for the four variables

along with the cutoffs derived using warped entropy on the 4219 patients from the

MERLIN dataset.

Table 3.2: Cutoffs for the continuous risk metrics

Cutoffs
Risk Metric Literature Warped

Age 65 60
DC 2.5 , 4.5 4.0, 6.0
HRV LF-HF 0.95 2.0
MV 50 40

The distribution of patients in the MERLIN data set for the different cutoffs

is shown in Figure 3-4. Since our method used weighted warped entropy to find

the cutoffs, the population size in each category is more even than for the literature

cutoffs. As we'll see later, this characteristic of the warped cutoffs results in classifiers

with higher recall at an expense of a smaller precision than those of the literature

cutoffs.

For the performance evaluation of cutoffs, we used 100 instances of disjoint train-

ing and test sequences. We built two Naive Bayes (NB) classifiers' [37] from each

of the training sequences using the cutoffs from the literature for one and the cut-

offs derived using the warped entropy measure for the other. A NB classifier is a

probabilistic classifier. Therefore, for each example in the test set, it generates a

probability of death given the cutoffs of all four risk metrics: age, DC, HRV and MV.

We used the death rate of the population (~~2%) as the threshold such that patients

'The NB classifier was built using Bayes Net Toolbox by Kevin Murphy available at
http://code.google.com/p/bnt/.
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with probability of death>2% were considered as high risk. The number of cutoffs

derived using the entropy measure was the same as those used in the literature for

risk stratification for cardiovascular deaths.

We evaluate the performance of the NB classifiers built from the training sequences

on the corresponding test sequences based on recall and precision on the minority

class:
true positives (37)

true positives + false negatives

true positives
Precision = . (3.8)

true positives + false positives

While evaluating the performance of a classifier, it is important that both recall

and precision are considered simultaneously. This is because there is an inverse re-

lationship between them. For example, a classifier can often increase its recall by

labeling most of the unseen patients as positive at the expense of large false positive

rate. Therefore, it is inappropriate to evaluate classification models using only one of

the measures in isolation.

We compare the recall (or precision) of the NB classifiers obtained each different

types of cutoffs using the paired samples t-test [27] and the Wilcoxon paired samples

signed rank test [58]. We consider the difference in recall (or precision) of the NB

classifiers obtained using different cutoffs to be statistically significant if both, the

paired t-test and the Wilcoxon test, yield p-values<0.05.

The Paired Samples T-test

The paired-samples t-test is a parametric statistical test used to decide whether there

is a significant difference between the mean values of the same performance measure

for two different algorithms. It calculates a pairwise difference between a performance

measure for each of the instances and tests if the average difference is significantly

different from zero. More formally, the paired samples t-test tests the null hypothesis

that the pairwise differences are a random sample from a normal distribution with

mean zero. The alternative hypothesis is that the mean is not zero.

This test assumes that the paired differences are normally distributed. Although



the values of a performance measure may not be normally distributed, the pair-wise

differences usually are [32].

The Wilcoxon paired samples signed rank test

The Wilcoxon paired samples signed rank test is a non-parametric test. It is used as

an alternative to the paired samples t-test when the distribution cannot be assume to

be normally distributed. Similar to the paired samples t-test, the Wilcoxon test also

compares the pair-wise differences between a performance measure for two different

algorithms.

The Wilcoxon test tests the null hypothesis that the pair-wise differences come

from a symmetric distribution with zero median. The alternative hypothesis is that

the distribution of pairwise differences does not have zero median. The hypothesis

that the median of pair-wise differences is zero is not equivalent to the hypothesis

that the median of two performance measures are equal.

Results

Table 3.3: The mean recall and precision of the NB classifier built using the same
number of cutoffs as in the literature. The percentage in the parentheses next to each
method is the mean percentage of patients that were labelled as high risk in the test
sequence.

Recall Precision
Method Mean Mean
Warped (35%) 72% 4.1%
Literature (33%) 70% 4.2%

Table 3.3 shows the mean performance of the NB classifier on the 100 instances of

test sequences as measured by recall and mean precision. Table 3.4 shows the results

of the paired samples t-test and the Wilcoxon test.

The NB classifier built using warped entropy cutoffs have significantly higher

mean recall than the classifiers built from literature cutoffs. The mean increase in

recall is 2.4%. The mean precision for warped entropy based NB classifier is slightly



Table 3.4: Results from the paired t-test and the Wilcoxon paired samples signed rank
test to compare recall and precision of NB classifier built using cutoffs derived from
warped entropy measure with literature cutoffs. A positive mean difference indicates
higher performance by the classifier using warped entropy cutoffs.

p-value
Mean Difference t-test Wilcoxon

Recall 2.4% 0.01 0.02
Precision -0.1% 0.03 0.07

(0.01%) lower than literature cutoff based classifier. However, the difference in not

significant. Therefore, the cutoffs derived using warped entropy can yield NB classi-

fiers with a higher recall for an insignificant loss in precision.

3.5 Summary

In this chapter, we reviewed the different types of discretization methods that are

suggested in the literature. In addition, we proposed an entropy-based supervised

discretization algorithm that uses Bagging to acquire a robust estimation of cut-

offs. Next, we discussed three different types of entropy measures, namely Shannon

entropy, asymmetric entropy and a novel entropy measure- warped entropy, in the

context of discretization of continuous variables.

We evaluated the effectiveness of Bagging in cutoff estimation using all three

entropy measures. Our results show that for each entropy measure, Bagging can

improve the stability of the cutoffs, as measured by coefficient of variance (COV) of

the cutoffs over 100 instances of training sets.

Next, we evaluated cutoffs obtained using different entropy measures in our pro-

posed algorithm. The evaluation was performed based on the stability of the cutoffs

generated by each of the measures over several training instances. The cutoffs were

generated for four continuous variables: age, morphological variability, heart rate

variability and deceleration capacity using data from the MERLIN trial [40]. We

compared the COV for all the four continuous variables for each of the three entropy

measures. Warped entropy and Shannon had the smallest mean COV of 0.13. In



addition, warped entropy measure yielded cutoffs with the best worst case COV in

the MERLIN dataset.

We then compared the cutoffs yielded using warped entropy measure to those sug-

gested in the literature, for risk stratification of patients from the MERLIN dataset.

We built Naive Bayes classifiers using discretized values of the four continuous vari-

ables using 100 instances of training sets. We show that when evaluated on test sets,

classifiers built using warped entropy cutoffs have an improved classification perfor-

mance, 2% increase in recall for an insignificant loss in precision, compared to those

obtained from the literature cutoffs.



Chapter 4

An Integrated Approach for Risk

Stratification

As described in Chapter 2, the TIMI risk score is a composite score that uses seven

binary predictor variables. For each variable, a score of 1 or 0 is assigned based on

the value of the predictor variable. The sum of the scores assigned to the variables

represents the TIMI risk score. The GRACE [19] risk score assigns weighted scores

based on the values of eight predictor variables. The sum of the weighted scores

represents the GRACE risk score. The simplicity and the ease of obtaining these

scores make them attractive. However, we hypothesize that more complex models

have the potential to improve risk stratification. In this thesis, we investigate the

application of classification trees to develop a multivariable risk stratification model

for post-NSTEACS risk stratification.

4.1 Classification Trees

To illustrate the concept of a classification tree, we present a simple example. Let

us consider a classification problem of determining whether a creature is a mammal

or not' [53]. In order to get to the answer, one approach is to ask a series of ques-

tions about different characteristics of the creature. This series of questions can be

'The classification tree is not completely correct. It is used only for illustration purposes.



represented in the form of a classification tree shown in Figure 4-1.

Temperature 'Root

node

Internal Warm Cold
node

Gives Birth Non-

Yes No

Leaf

Mammals Non- nodes
mammals

Figure 4-1: An example of a binary classification tree [53].

A classification tree is a hierarchical structure that consists of a set of nodes

and edges [53]. There are three types of node in a classification tree (Figure 4-1).

A root node is the node with no incoming edges and zero or more outgoing edges.

The internal nodes have exactly one incoming edge and two or more outgoing edges.

If the root node and all the interior nodes have exactly two outgoing edges, then

the classification tree is a binary classification tree. Figure 4-1 is an example of a

binary classification tree. Finally the leaf nodes, or terminal nodes, have exactly one

incoming edge and no outgoing edges. Each leaf node is assigned a class label.

Given a classification tree, we can find the classification label for any new test

example. We start from the root node, ask the question corresponding to the attribute

at the root node and then follow the appropriate branch based on the response for the

test example. We continue the process until we reach a leaf node. The new example

is then assigned the class label associated with the leaf node.

In the example shown in Figure 4-1, all of the attributes/variables are categorical

variables. Continuous variables can also be incorporated in a classification tree, by



first discretizing them.

Classification trees provide justifications for classification of new examples. The

justifications are comprised of classification rules derived from the tree. A classifi-

cation rule is a series of question and answer pairs asked about different features of

an example, before a conclusion is reached. The utility of justifications for a clinical

decision makes classification trees more appealing than 'black-box'-type classification

methods such as support vector machines. Classification trees also allow identification

of interesting patterns or relationships between variables. This allows researchers to

form hypotheses about the physiological mechanisms that could potentially explain

the characteristics of classification rules or patterns derived from a classification tree.

We present a formal definition of a classification tree. Given an example, rep-

resented by a vector containing values of different variables incorporated in the tree

model, a classification tree returns a rule associated with the example and a predicted

label for that example.

Classification trees are induced from a training set. A training set consists of a

set of examples. Each example is a vector whose components are values of variables

that are incorporated in the model. For each example in the training set, we also

have class label associated with the example. To develop classification tree models

for risk stratification, we use a training set that consists of patients. Each patient is

represented by a vector containing values of variables. A variable might represent a

value of a test measurement, or indicate the presence or absence of symptoms. We

also associate with each patient a class label that corresponds to the presence or

absence of a medical outcome.

We introduce some notation to describe the components and properties of a clas-

sification tree generated from a training set of patients. Let 4 be an N x n matrix

representing a dataset of N patients in a training set, where each patient is repre-

sented by a vector whose components are values of n variables. Let L be vector of

length N that contains the class label of each of the N patients.

Each node IN of the tree contains a subset of patients from D. Therefore, a node

IR is represented by a (IDgq, Lm) pair, where 4m is a N x n matrix that corresponds to



the values of the variables for each patient at the node, and LN is a vector of length

N that contains the class label for each patient. Here, N < N.

A classification tree, generated from a training set, has the following properties:

" The child nodes of a node IR of the tree have mutually exclusive assignments. If

a node has k child nodes, we partition the patients at a node M into k disjoint

set of patients based on the values of the variable at the node. Each child node

contains one of the k disjoint sets.

" Each path from the root node of the tree to a leaf node (terminal node) repre-

sents a classification rule - a conjunction of variables.

" Each classification rule in the tree is assigned a class label based on the dis-

tribution of patients with positive and negative outcomes from the training set

that follows the rule. The details of how this is done is described in Section 4.2.

" A classification tree is globally optimal with respect to a dataset if it has the best

classification performance on the dataset compared to all the other classification

trees that can be constructed using the same data.

4.2 Using Classification Tree for Risk Stratifica-

tion

We use a binary classification tree to develop a risk stratification model. In Chapter 3,

we explore binary classification trees constructed using both global discretization

cutoffs and local discretization cutoffs.

During the construction of a classification tree, at each node we select a variable

from a set of candidate variables to generate a binary split. The set of candidate

variables for a node includes all the binary variables except the variables that have

already been used along the path from the root node to the node.

We present the details of the algorithm in the following subsection.



4.2.1 Algorithm for Classification Tree Induction

Searching for a globally optimal tree for a training set is computationally infeasible

since the number of classification trees that can be constructed from n variables

increases exponentially with n.

We use a greedy algorithm for classification tree induction. The greedy algorithm

selects a locally optimal variable for partitioning at each node, where optimality is

defined based on a splitting criterion. The choice of variable used to split a node

during tree induction depends on the splitting criterion and the discretization cutoffs

of the variables. Both of these factors affect the performance of the classification tree.

The Growth Phase

The classification tree generated by the greedy algorithm in the growth phase is called

the maximal tree. In Algorithms 2 and 3, we present the pseudocode for constructing

a maximal tree.

Algorithm 2 (GetMaximalTree) Construction of a maximal tree
Input: Training data: 4, L
Output: Maximal tree

1: Initialize T to a node T with 4),N = D, Lq = L
2: Return GrowTree(@q, Lm, T)

Algorithm 3 (GrowTree) Induction of a classification tree
Input: Training data: 'Iq, LM, Tree T
Output: Tree T

1: if all examples belong to the same class then
2: Return T
3: else
4: d4 = Discretize Variables(4) {d4 contains all binarized variables.}
5: OptVariable = GetOptimal Variable(dI)
6: for each value vi of OptVariable do
7: Add a branch to node 91 of T for vi
8: Create a child node 91,i
9: T= Grow Tree (4Dqq,, Lmt, , T)

10: end for
11: end if
12: Return T



The growth phase consists of two main components: discretization of continuous

variables and selection of the 'optimal' variable as defined by a splitting criterion.

* Discretization of continuous variables: Since classification trees can only

handle categorical variables, we need to discretize continuous variables. As

described in Chapter 3, the goal of discretization is to identify cutoff points

that partition the range such that the examples that belong to each category

exhibit good class coherence. In Chapter 5, we explore classification trees with

both global and local discretization.

* Splitting Criterion based selection of 'optimal' variable: A greedy classi-

fication tree induction algorithm uses the splitting criterion to determine which

variable to use to split a particular node during the growth of the tree. The

measures used for selecting the best splitting variable at a node are based on

some measure of the class coherence of the resulting child nodes. The most

commonly used measures include Shannon entropy, Gini index and classifica-

tion error (Figure 4-2) [53]. For unbalanced datasets, these measures are biased

towards the variables that incorrectly assigns many minority examples, i.e. pa-

tients who suffer from adverse outcome such as death, to the child node that

has a lower risk of adverse outcome.

Several measures have been proposed as splitting criteria for constructing clas-

sification trees from unbalanced data. DKM [13], Hellinger distance (HD) [12]

and Class Confidence Proportion (CCP) [30] are examples of such measures.

Various studies have shown that classification trees that use one of these mea-

sures as the splitting criterion showed improved performance on unbalanced

datasets compared to those using Shannon entropy or Gini index [17, 12, 30].

In this thesis, we investigate the use of non-symmetric entropy measures as

splitting criteria for induction of classification trees from unbalanced datasets.

We compare their performances with Shannon entropy, DKM, HD and CCP.
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Figure 4-2: Comparison of the class coherence measures for binary classification prob-
lems [53]. The x-axis is the proportion of examples that belong to class 1.

The Pruning Phase

Maximal trees are usually large and complex. Large trees are hard to interpret and

are also susceptible to overfitting to the training data [44, 34, 30]. Previous studies

have shown that pruned maximal trees generalize better on unseen examples and also

have shorter classification rules that are easier to interpret [35, 36, 45].

Traditional pruning algorithms are based on error estimations. A node is pruned

if the predicted error is decreased after removing the node from the tree [30]. Such

pruning methods can have a detrimental effect on constructing decision trees from im-

balanced datasets [11] . Therefore, we use Fisher's exact test based pruning approach

as proposed by Chawla et al. in [30]. Fisher's exact test (FET) is a statistical signif-

icance test that is used to determine if there exists non-random associations between

two categorical variables [57]. We present a detailed explanation of FET below. The

pruning approach checks if each path (rule) in the tree is statistically significant and

if it is not, the path is pruned. Chawla et al. have shown that decision trees pruned



using FET based pruning outperformed the trees pruned using an error estimation

based method. The classification trees were evaluated using the area under the ROC

curve (AUC) [22] analysis.

Fisher's Exact Test

Fisher's Exact test is a statistical significance test that is used to test the null hy-

pothesis that two categorical variables are independent of each other [55].

Let us consider a binary attribute X and a binary class label Y for a training

dataset with N examples. The information in the training set can be summarized

using a 2 x 2 contingency table where the number of examples are counted for each

value of X and Y (Table 4.1).

Table 4.1: A 2x2 contingency table for two binary categorical variables.

X=0 X=1 Total
Y=0 a b a+b
Y=1 c d c+d
Total a+c b+d N

Given a contingency table, the probability of observing the data, under the null

hypothesis, is obtained using a hypergeometric distribution [42]:

probbiliy =(a + b)! (c + d)! (a + c)! (b + d)!(41p rob bili y =(4.1)
a!b!c!d!N!

Let us consider the contingency table shown in Table 4.2. In this example, the

two binary categorical variables are 'Treatment' and 'Outcome'. A sample of 19

patients are divided into 'Placebo' and 'Drug' treatment groups and their outcomes

are presented in the contingency table. Using Equation 4.1, the probability of this

contingency table is 0.01754.

In order to find the statistical significance of the data, FET calculates the total

probability of observing contingency tables with an equal or a stronger dependence

between the two variables relative to the observed contingency table, under the null

hypothesis that the variables are independent. The total probability is the p-value.



Table 4.2: A example contingency table for two categorical variables.

Treatment Treatment Total
Placebo Drug

Outcome= alive 2 7 9
Outcome= dead 8 2 10

Total 10 9 19

In the example shown in Table 4.2, the question of interest is: given the contin-

gency table, is there a statistically significant dependence between 'Treatment' and

'Outcome'. The contingency tables with an equal or stronger dependence between

the two variables, along with their probability, are shown in Table 4.3. The p-value,

given by the sum of the probabilities, is 0.01852. This is a one-sided test. Given

a threshold for the p-value, the dependence between the two variables is considered

significant if the p-value if less than the pre-determined threshold.

Table 4.3: Contingency tables with with equal or stronger dependence between the
variables 'Treatment' and 'Outcome', relative to Table 4.2. The probability of each
contingency table is also shown.

Treatment Treatment Total
Placebo Drug

Outcome= alive 2 7 9
Outcome= dead 8 2 10

Total 10 9 19

Treatment Treatment Total
Placebo Drug

Outcome= alive 1 8 9
Outcome= dead 9 1 10

Total 10 9 19

Treatment Treatment Total
Placebo Drug

Outcomne= alive 0 9 9
Outcome= dead 10 0 10

Total 10 9 19

probability = 0.01754

probability =0.00097

probability = 0.00001

When using FET for pruning a classification tree, we calculate the p-value of

an internal node. To do so, we form a contingency table based on the binary split

generated at the node. Next, based on the contingency table we calculate the p value

associated with the node using FET. We use the one-sided FET. A low p value means



that the null hypothesis is rejected. Given a threshold for the p-value, we keep the

branches that are statistically significant and discard the ones that are not [30].

FET-based Pruning Algorithm

We present the pseudo code for the FET-based pruning in Algorithm 4. Algorithms 5

and 6 are the subroutines of the pruning algorithm. The pseudocode is heavily bor-

rowed from the original publication [30].

Algorithm 4 (Prune) Pruning based on FET
Input: Maximal tree T, p-value threshold pVT
Output: Pruned decision tree pT

1: for Each leaf Leafi do
2: if Leafi.parent is not the Root of T then
3: Leafi.parent.pruneStatus = Pruneable, {Default}
4: SetPruneStatus (T, Leaf, .parent, pVT),
5: end if
6: end for
7: Initialize pT = T
8: for Each child(i) of the root T do
9: if child(i) is not a leaf then

10: if child(i).pruneStatus == Pruneable then
11: Set child(i) to be a leaf
12: else
13: PT = PrunebyStatus(child(i), pT )
14: end if
15: end if
16: end for
17: Return pT

After the maximal tree is constructed, the significance of a split at a node in the

maximal tree is measured using FET. An internal node becomes a leaf (terminal)

node if and only if all its descendant nodes have a p-value greater than the threshold.

FET-based pruning as proposed by Chawla et.al. is a two staged pruning algorithm.

The first stage is a bottom-up process from the leaf to the root. In this stage we

assign a pruneStatus to each node of the tree. If a node and all its descendants are

non-significant, the pruneStatus of the node is set to Pruneable, otherwise, it is set

as NotPruneable. The second stage prunes all insignificant rules from the tree to



Algorithm 5 (SetPrune Status) Subroutine for setting prune-status of each internal
node by a bottom-up search
Input: Maximal Tree T, an internal node Node, p-value threshold pVT

1: for Each child(i) of Node do
2: if child(i).prune Status == NotPruneable then
3: Node.pruneStatus = NotPruneable,
4: end if
5: end for
6: if Node.pruneStatus = pruneable then
7: Calculate the p value of this node using Fisher's Exact Test: Node.pValue,
8: if Node.pValue < pVT then
9: Node.prun eStatus = NotPruneable,

10: end if
11: end if
12: if Node.parent is not the root of T then
13: Node.parent.pruneStatus = Pruneable,
14: SetPruneStatus (T, Node.parent, pVT)
15: end if

Algorithm 6 (PruneByStatus) Subroutine for pruning nodes according to their
pruneStatus
Input: A branch represented by its top node Node, Tree T
Output: Pruned Tree T

1: if Node.pruneStatus == Pruneable then
2: Set Node as a leaf in T,
3: else
4: for Each child(i) of Node do
5: if child(i) is not a leaf then
6: T= PruneByStatus(child(i),T)
7: end if
8: end for
9: end if



generate a pruned classification tree.

After pruning the maximal tree, we assign a specific class label to each leaf node.

Typically, one assigns a class to a leaf node based on the majority class. However,

when a dataset is highly unbalanced, the majority class in the dataset is also the

majority class for most of the nodes. To account for the unbalanced distribution,

we use a weighted-majority rule. We derive the weights from the distribution of the

training set. More specifically, the examples from the majority class in the data set

get a weight of 1, while the examples from the minority class get a weight of W where,

number of the majority class in the data set (4.2)
number of the minority class in the data set

4.3 Summary

In this chapter, we present the hypothesis that complex models have the potential to

improve risk stratification compared to simple techniques such as TIMI and GRACE.

We argued that classification trees are more suitable for developing risk stratification

models than 'black-box' type models that fail to provide justifications for classification

of examples. Next, we presented a classification tree induction algorithm that we use

to generate a risk stratification model.



Chapter 5

Splitting criterion for classification

trees

During the induction of a classification tree, a splitting criterion is used to select an

variable for generating a split at a node. The most commonly used criteria are based

on Shannon entropy, the Gini index and classification error [53]. For unbalanced

datasets, these measures are biased towards the majority class [30]. Because of this

bias, the classification trees generated using these measures may not be appropriate

for correct classification of the minority class - the class that is usually of greater

interest.

Imbalanced data-oriented splitting criteria have been shown to improve perfor-

mance on unbalanced datasets compared to those using Shannon entropy or the Gini

index [17, 12, 30]. Examples of such criteria include Hellinger distance (HD) [12],

DKM [13], and Class Confidence Proportion (CCP) [30].

In this chapter, we compare HD, DKM, CCP, Shannon entropy and two non-

symmetric entropy based measures - asymmetric entropy [33] and warped entropy. In

Section 3.3, we proposed the concept of warped entropy in the context of discretiza-

tion. Here, we investigate its performance as a splitting criterion in the construction

of classification trees for unbalanced datasets.

In Section 5.2, we discuss different types of splitting criteria used for the induction

of classification trees from imbalanced datasets. Section 5.3 describes the evaluation



procedure and evaluates the performances of classification trees grown using different

splitting criteria.

5.1 Notations

In this chapter, we use a similar notation to that used in Chapter 4.1. We represent

a node 9 by a (Q,, LM) pair. Qqm is a N x n matrix that corresponds to the values of

n variables for each one of the N patients at the node, and LR is a vector of length

N that contains the class label for each patient.

Let V represent a variable. Since we are using a binary classification tree, a split

generated at node 91 using variable V induces two child nodes. Lm,k represents the

class labels of patients from node 91 which takes the kth value for variable V.

5.2 Types of splitting criterion

In this section, we discuss six different types of splitting criteria. Each splitting

criterion represents a different way of identifying a variable that provides the most

useful partitioning of patients, based on their class labels.

Hellinger distance-based criterion measures the distance between two distributions

of variable values across different classes. We select the variable that maximizes the

distance as the splitting variable at a node.

The splitting criteria based on the other five measures (DKM, Shannon entropy,

asymmetric entropy, warped entropy and class confidence proportion) use information

gain (IG) to select the splitting variable at a node. Information gain (IG) is defined as

the difference between the class incoherence of a node before a split and the weighted

average class incoherence of the child nodes after a split. Each of the five measures

represent different ways to quantify class incoherence.

IG = Class Incoherence before split - Class Incoherence after split (5.1)



When using IG for induction of classification trees, the variable that maximizes IG

is selected as the splitting variable at a node. At a given node, the class incoherence

before split is constant for all variables. Hence, maximizing IG is equivalent to

minimizing class incoherence after a split. We therefore select the variable that

minimizes class incoherence after a split.

5.2.1 Hellinger distance

The Hellinger distance is a measure of divergence of distributions [24, 47]. When using

the Hellinger distance as the splitting criterion, one calculates the divergence between

the distributions of variable values across different classes for each of the candidate

variables at a node [30]. The larger the Hellinger distance for a given variable, the

higher is its propensity to separate the classes [30]. Therefore, during classification

tree induction, the variable that maximizes the Hellinger distance is selected as the

splitting variable at a node.

Assuming a two-class problem (class 1 and 2), the Hellinger distance for an variable

V is given by:

2 |L -1 L - 2L ,=19M ILM,k= 21\
HD - LL) (5.2)

|L =1=L12

5.2.2 DKM

DKM is a measure proposed by Dietterich, Kearns and Mansour [13]. Using DKM,

the class incoherence of a node IN after a split is given by Equation 5.3.

2

Class Incoherence after a split = .2. p9,k(1).pmk(2) (5.3)
k=1

where, Pm(1) and pm( 2 ) are the probability of belonging to class 1 and 2 in node 91,

and P91,k(l) is defined as:

Pq'k(-) = ' (5.4)

|LM,k|



5.2.3 Entropy Measures

In Section 3.3, we presented three different types of entropy as measures of the class

incoherence of a (sub)sequence in the context of discretization. The same measures

can be used to quantify the class incoherence of a node, in the context of classification

trees.

For a given entropy measure H, the class incoherence of a node IN after a split is

calculated using Equation 5.5:

Class Incoherence after a split = , l.H(LM,k) (5.5)
k=1L

Based on the entropy measure used, Equations 3.2, 3.3 or 3.4 can be used for

Shannon, asymmetric and warped entropy respectively.

In the context of discretization, asymmetric and warped entropy functions take

two inputs: subsequence S and the parent sequence P. In the context of classification

tree induction, we input LM,k and Lq to compute the class incoherence of the node

91 after a split.

5.2.4 Class Confidence Proportion

Class Confidence Proportion (CCP) is a class incoherence measure proposed by

Chawla et al. [30]. Using CCP, the class incoherence of the node after a split is

given by Equation 5.6.

2 2

Class Incoherence after a split = .m (i -Pm,k(l). log2PM,k(l) (5.6)
k=1 1=1

where Pm,k(l) is defined as:

pm,k (1) =Lqk-1 (5.7)
|L- = 1|

When constructing CCP-based classification trees, Chawla et al. proposes using



CCP-based information gain in conjunction with Hellinger distance to find the split-

ting variable at a node. In particular, if two variables have the same CCP-based

information gain, they select the variable with a greater Hellinger distance [30].

The equation for CCP-based class incoherence is similar to that based on Shannon

entropy. Shannon entropy uses PM,k(l), the probability that an example with V = k

belong to class 1, to calculate the class incoherence in each child node. CCP, on the

other hand, uses pm,k(l), the probability that an example that belongs to class I has

V = k. Chawla et al. argues that this results in a class incoherence measure that is

unbiased when the data is unbalanced [30].

5.3 Experiments

We performed all the experiments on data from the MERLIN-TIMI 36 trial (Chap-

ter 3.4). The risk variables that are available for the patients in MERLIN are listed in

Table 5.1. Only 9 out of 12 risk variables had a significant (p<0.05) univariate associ-

ation with the class label of CVD within 90 days, on the MERLIN population. In all

the following experiments, we use those 9 variables for the induction of classification

trees.

5.3.1 Methodology

In each of the experiments, we use 100 different instances of training and test datasets.

Each training dataset contains 2813 patients and its corresponding test dataset con-

tains a disjoint set of 1406 patients. In each of the 100 instances, given a splitting

criterion, we use the algorithm described in Chapter 4.2.1 to induce a classification

tree based on the training dataset. We evaluate the performance of the classification

tree on the corresponding test data, as measured by its recall and precision. If two

splitting criteria have the recall or precision that is not significantly (p<0.05) different

based on either the paired samples t-test or the Wilcoxon test (Chapter 3.4.4) , we

refer to them as having a comparable recall or precision. For each splitting criteria,

we used the same training and test datasets to construct and evaluate the trees.



Table 5.1: Risk variables available to us for the patients in MERLIN. The variables
that are highlighted had a significant (p < 0.05) univariate association with CVD
within 90 days, in the MERLIN population and are used for the induction of decision
tree.

Variable Description
age Age in years
gender Gender (0=male, 1=female)
bmi Body mass index
diabetes Diabetes (0=no, 1=yes)
hyptert Hypertension (0=no, 1= yes)
smoker History of smoking (0=no, 1=yes)
priormi Prior incidence of myocardial infarction (0=no, 1= yes)
chf Congestive heart failure (0=no, 1=yes)
stdep ST depression>0.55mm (0=no, 1=yes)
MV Morphological variability
HRV Heart rate variability LF-HF
DC Deceleration capacity

5.3.2 Classification Trees with Global Discretization

We evaluated the performance of classification trees generated using splitting criteria

based on HD, DKM, CCP and the three entropy measures.

We pre-discretized (global discretization) the continuous variables in both the

training and the test sets using the cutoff values from in the literature as shown in

Table 3.2. Since DC has two cutoffs, we 'binarize' the variable. Binarization refers

to a process in which any numerical variable with more than two distinct values are

represented by several binary variables [20]. For example, if a continuous variable V

has two cutoffs C1 and C2 , after binarization we obtain two binary variables V and

V2 . We assign a value of 0 to all the examples in the variable V with V < Ci and 1 to

the others. After the variable V is binarized, we only consider the binarized variables.

For FET-based pruning, we set the p-value threshold to 0.05.

For every pair of splitting criteria, we performed the paired samples t-test and

the Wilcoxon test on the recall and the precision values for the 100 test sets. The

results are shown in Table 5.3. For each splitting criteria, we have highlighted the

rows where its performance (recall or precision) is higher than the other criterion, and



Table 5.2: The mean recall and precision of the classification trees with global dis-
cretization, using different splitting criteria. The mean percentage of patients that
were labelled as high risk was about 27% for each of the splitting criteria.

Test Set
Splitting criterion Recall Precision

Hellinger distance 0.63 0.048
DKM 0.63 0.048
Shannon entropy 0.64 0.047
Asymmetric entropy 0.65 0.047
Warped entropy 0.64 0.048
CCP 0.64 0.048

the difference is statistically significant . The differences in the precision for every

pair of splitting criteria yielded statistically insignificant results. The differences in

the recall, on the other hand, are statistically significant for some pairs of splitting

criteria. Shannon entropy-based tree had a higher recall than the trees induced using

Hellinger or DKM, with a mean difference of 1.64% and 1.62% respectively. Similarly,

warped entropy-based trees and CCP-based trees, also had a higher recall that the

trees generated using Hellinger or DKM. Asymmetric entropy-based trees had a higher

recall than the trees generated using Hellinger or DKM or CCP. Moreover, our results

show that relative to DKM or Hellinger, the mean difference in recall is higher for

asymmetric entropy (= 2.7%) than for Shannon entropy (~1.6%), or warped entropy

(-1.8%) or CCP (-1.4%).

Figure 5.2 shows the mean recall and precision for each of the splitting criterion.

Our results suggest that, for literature cutoffs-based global discretization, clas-

sification trees that use asymmetric entropy as the splitting criterion performs the

best compared to the other five criteria. However, we note that although the higher

recall values yielded by asymmetric entropy are statistically significant, the largest

the mean difference is only 2.7%. Therefore, the magnitude of improvement in recall

is small.



Table 5.3: The mean difference in recall and precision along with the p-values of
paired samples t-test and the Wilcoxon test for classification trees using global dis-
cretization. The results show the comparison for every pair of splitting criteria. For
example, the first table (Hellinger vs.) compares the recall and precision of classifi-
cation trees obtained using Hellinger distance with all the other splitting criteria. A
positive mean difference in that table suggests that Hellinger performed better than
the other criterion. The highlighted rows indicated significantly different recall (or
precision). For instance, in the third table (Shannon vs.), the two highlighted rows
show that the recall of Shannon entropy-based trees is significantly higher than those
of Hellinger-based trees and DKM-based trees respectively.

Hellinger vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
DKM 0.10 0.90 1.00 0.00 0.98 1.00
Shannon -1.64 0.01 0.01 0.11 0.04 0.01
Asym -2.71 0.00 0.00 0.11 0.08 0.17
Warped -1.81 0.01 0.02 0.00 0.97 0.79
CCP -1.39 0.04 0.03 -0.02 0.81 0.56

DKM vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 0.00 0.90 1.00 0.00 0.98 1.00
Shannon -1.62 0.01 0.01 0.11 0.04 0.01
Asym -2.70 < 0.001 < 0.001 0.11 0.08 0.18
Warped -1.84 0.01 0.02 0.00 0.97 0.81
CCP -1.38 0.04 0.03 -0.02 0.81 0.56

Shannon vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 1.64 0.01 0.01 -0.11 0.04 0.01
DKM 1.62 0.01 0.01 -0.11 0.04 0.01
Asym -1.08 0.01 0.08 -0.01 0.91 0.54
Warped -0.19 0.78 0.92 -0.12 0.07 0.05
CCP 0.24 0.72 0.74 -0.13 0.06 0.07

Asym. vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%0 p-value p-value (%) p-value p-value
Hellinger 2.71 < 0.001 0.001 -0.11 0.08 0.17
DKM 2.70 < 0.001 < 0.001 -0.11 0.08 0.18
Shannon 1.08 0.01 0.05 0.01 0.91 0.54
Warped 0.89 0.06 0.01 -0.11 0.00 0.06
CCP 1.32 0.02 0.01 -0.12 0.02 0.08

Warped vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value

Hellinger 1.81 0.01 0.02 0.00 0.97 0.79
DKM 1.84 0.01 0.02 0.00 0.97 0.81
Shannon 0.19 0.78 0.92 0.12 0.07 0.05
Asym -0.89 0.06 0.01 0.11 0.00 0.06
CCP 0.43 0.43 0.64 1 -0.01 0.79 0.92

CCP vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 1.39 0.04 0.03 0.02 0.81 0.59
DKM 1.38 0.04 0.03 0.02 0.83 0.56
Shannon -0.24 0.72 0.74 0.13 0.06 0.07
Asym -1.32 0.02 0.01 0.12 0.02 0.08
Warped -0.43 0.43 0.64 0.01 0.79 0.92



5.3.3 Classification Trees with Local Discretization

Why Local Discretization?

Local discretization preserves context sensitivity since it finds subset-specific cutoffs

for discretization. Context sensitivity is important in medicine because the course of

action that needs to be taken as a response to a particular clinical test result may

be different for patients with different clinical attributes. Similarly, in the context of

discretization, it is likely that for a risk metric, the cutoff that best separates the high

and low risk group of patients is different for patients with different clinical history.

Therefore, in this section we investigate context-sensitive, or subset-specific, cutoff

values.

We performed experiments to evaluate whether subset-specific cutoffs found using

local discretization can improve classification performance relative to global cutoffs.

To do so, we found subset-specific binary cutoffs for each of the continuous vari-

ables: age, MV, HRV and DC. For example, we found subset-specific cutoffs for

MV for patients with and without ST-depression. In this example, patients with

ST-depression belong to one subset and patients without ST-depression belongs to

another. Besides ST-depression (stdep), we also investigated subsets based on the

values of the binary variables hypert, smoker, priormi and chf (Table 5.1).

The global and the subset-specific cutoffs were derived from each of the 100 in-

stances of training sets. Next, we tested the performance of the univariate classifier,

based on each of the continuous variables, on the corresponding test sets.

Given, a continuous risk variable, we compare the recall and precision of each

subset-specific cutoffs to the recall and precision of the global cutoff for the same

risk variable. Subset-specific cutoffs are considered to have an improved classification

performance relative to the global cutoffs if any of the following is satisfied:

1. If the subset-specific cutoffs have a higher recall and precision than those yielded

by the global cutoff, and the improvements are statistically significant.

2. If the subset-specific cutoffs have a higher recall, but a comparable precision,



Table 5.4: The mean recall and precision of the binary cutoff for different continuous
variables using global and subset-specific cutoffs. The highlighted rows indicate the
instances where the subset-specific cutoffs had an improved classification performance
relative to the global cutoffs for the same variable.

Test Set
Age cutoffs Recall Precision

Global 95% 2.3%

Subset Specific
hypert 92% 2.6%
smoker 95% 2.5%
priormi 92% 2.7%
chf 85% 2.5%
stdep 87% 2.5%

MV cutoffs Recall Precision

Global 83% 2.7%

Subset Specific
hypert 79% 3.4%
smoker 93% 2.7%
priormi 85% 3.4%
chf 77% 3.7%
stdep 91% 3.6%

HRV cutoffs Recall Precision
Global 86% 2.8%

Subset Specific
hypert 90% 2.9%
smoker 93% 2.7%
priormi 90% 2.7%
chf 82% 2.9%
stdep 93% 2.7%

DC cutoffs Recall Precision

Global 82% 2.6%

Subset Specific
hypert 80% 2.7%
smoker 87% 2.5%
priormi 84% 2.4%
chf 85% 2.3%
stdep 88% 3.4%



relative to that of the global cutoff, and if the improvement in recall is statisti-

cally significant.

3. If the subset-specific cutoffs have a higher precision, but a comparable recall,

relative to that of the global cutoff, and if the improvement in precision is

statistically significant.

We consider the global cutoffs to have an improved classification performance

relative to subset-specific cutoffs using analogous criteria.

Table ?? shows the mean recall and precision values obtained from these experi-

ments. The highlighted rows indicate the instances where the subset-specific cutoffs

had an improved classification performance relative to the global cutoffs for the same

variable. The global cutoffs, on the other hand, did not yield an improved classifica-

tion performance relative to any of the subset-specific cutoffs.

Our results demonstrate that identifying subset-specific cutoffs can enhance classi-

fication performance. Therefore, in the following subsection, we generate classification

trees by including local discretization in our classification tree algorithm. We then

evaluate their performance for different splitting criteria.

Evaluation of Classification trees with Local Discretization

In Section 5.3.2, we performed discretization as a preprocessing step before the in-

duction of the decision tree. Now, we incorporate discretization as a part of the

decision tree induction algorithm to perform local discretization. At each node of a

tree, we locally derive binary cutoffs for continuous candidate variables during the

growth phase of the tree. If selected as the best splitting variable at a node, its local

cutoff is used to generate a split.

We generated classification trees using local discretization and splitting criteria

based on HD, DKM, CCP and the three entropy measures. Table 5.5 shows the mean

recall and precision for different splitting criteria obtained from this experiment.

As in Section 5.3.2, we performed the paired samples t-test and the Wilcoxon test

on the recall and the precision values for every pair of splitting criteria. The results



are shown in Table 5.6. For each splitting criteria, we have highlighted the rows where

its performance (recall or precision) is significantly higher than the other criterion.

Our results show that asymmetric entropy-based trees have an improved recall and

precision compared to trees based on Hellinger, DKM, Shannon and warped entropy.

It also has a significantly improved recall compared to CCP, with a mean difference

of ~ 3%, for a comparable precision. All the above improvements were statistically

significant.

Figure 5.5 shows the mean recall and precision for each of the splitting criterion.

Table 5.5: The mean recall and precision of decision trees induced using local dis-
cretization and different types of splitting criteria. The mean percentage of patients
that were labelled as high risk was 27% for all the criteria.

Test Set
Splitting criterion Recall Precision

Hellinger Distance 63% 5.5%
DKM 64% 5.5%
Shannon entropy 61% 5.3%
Asymmetric entropy 74% 6.3%
Warped entropy 60% 5.1%
CCP 71% 6.3%

5.3.4 Comparison of classification trees with global discretiza-

tion versus local discretization

Here, we compare the best classification performance obtained using global discretiza-

tion, with the best classification performance obtained using local discretization. Ac-

cording to our results in Section 5.3.2 and Section 5.3.3, splitting criterion based on

asymmetric entropy yielded the best classification performance for global as well as

local discretization. We repeat the results in Table 5.7.

Asymmetric entropy with local discretization yielded a mean recall of 74% and a

mean precision of 6.3%, while asymmetric entropy with global discretization yielded

a mean recall of 66% and a mean precision of 4.7%. Both, the mean recall and the

mean precision of the classification trees generated using asymmetric entropy with



Table 5.6: The mean difference in recall and precision along with the p-values of paired
samples t-test and the Wilcoxon test for classification trees using local discretization.
The results show the comparison for every pair of splitting criteria. For example,
the first table (Hellinger vs.) compares the recall and precision of classification
trees obtained using Hellinger distance with all the other splitting criteria. A positive
mean difference in that table suggests that Hellinger performed better than that
criterion. The highlighted rows indicated significantly different recall (or precision).
For instance, in the first table (Hellinger vs.), the highlighted row shows that the
difference in recall of Hellinger-based trees is significantly higher than of warped
entropy-based trees respectively.

Hellinger vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value

DKM -0.72 0.24 0.39 -0.05 0.46 0.54
Shannon 2.26 0.03 0.07 0.14 0.24 0.10
Asym -10.89 < 0.001 < 0.001 -0.84 < 0.001 < 0.001
Warped 4.16 < 0.001 < 0.001 0.43 < 0.001 < 0.001
CCP -7.88 < 0.001 < 0.001 -0.79 < 0.001 < 0.001

DKM vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 0.72 0.24 0.39 0.05 0.46 0.54
Shannon 2.97 0.01 0.02 0.19 0.13 0.07
Asym -10.17 < 0.001 < 0.001 -0.79 < 0.001 < 0.001
Warped 4.88 < 0.001 < 0.001 0.48 < 0.001 < 0.001
CCP -7.17 < 0.001 < 0.001 -0.74 < 0.001 < 0.001

Shannon vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger -2.26 0.03 0.07 -0.14 0.24 0.10
DKM -2.97 0.01 0.02 -0.19 0.13 0.07
Asym -13.15 < 0.001 < 0.001 -0.98 < 0.001 < 0.001
Warped 1.90 0.09 0.05 0.29 0.01 0.09
CCP -10.14 < 0.001 < 0.001 -0.93 < 0.001 < 0.001

Asym. vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 10.89 < 0.001 < 0.001 0.84 < 0.001 < 0.001
DKM 10.17 < 0.001 < 0.001 0.79 < 0.001 < 0.001
Shannon 13.15 < 0.001 < 0.001 0.98 < 0.001 < 0.001
Warped 15.05 < 0.001 < 0.001 1.27 < 0.001 < 0.001
CCP 3.01 < 0.001 < 0.001 0.05 0.64 0.96

Warped vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger -4.16 < 0.001 < 0.001 -0.43 < 0.001 < 0.001
DKM -4.88 0.00 0.00 -0.48 0.00 0.00
Shannon -1.90 0.09 0.05 -0.29 0.01 0.09
Asym -15.05 < 0.001 < 0.001 -1.27 < 0.001 < 0.001
CCP -12.04 < 0.001 < 0.001 -1.22 < 0.001 < 0.001

CCP vs. Recall Precision
Mean Diff t-test Wilcoxon Mean Diff t-test Wilcoxon

(%) p-value p-value (%) p-value p-value
Hellinger 7.88 < 0.001 < 0.001 0.79 < 0.001 < 0.001
DKM 7.17 < 0.001 < 0.001 0.74 < 0.001 < 0.001
Shannon 10.14 < 0.001 < 0.001 0.93 < 0.001 < 0.001
Asym -3.01 < 0.001 < 0.001 -0.05 0.64 0.96
Warped 12.04 < 0.001 < 0.001 1.22 < 0.001 < 0.001



Table 5.7: The best mean recall and precision of classification trees induced using
different types of discretization.

Test Set
Splitting criterion [Discretization] Recall Precision

Asymmetric entropy[local] 74% 6.3%
Asymmetric entropy[global] 66% 4.7%

Table 5.8: Results from the paired t-test and the Wilcoxon paired samples signed
rank test to compare recall and precision of the classification trees using asymmetric
entropy with local discretization versus those of the classification trees using asym-
metric entropy with global discretization. A positive value implies that trees with
local discretization had a higher value.

p-value
Mean Difference t-test Wilcoxon

Recall 9.15% < 0.001 < 0.001
Precision 1.6% < 0.001 < 0.001

local discretization was higher than those obtained using global discretization. The

improvements in the recall and precision were statistically significant. The mean dif-

ference in recall was 9.15% and the mean difference in precision was 1.6% (Table 5.8).

These results demonstrate the importance of subset-specific cutoffs for classification

tree-based risk stratification models for post-ACS patients.

5.3.5 Evaluation of Classification Stability

The classification tree model constructed using our algorithm depends on the training

set. It is important, however, that the trees, constructed using small perturbations

of the training set, give similar classification labels for a given set of test patients.

We refer to this notion as 'classification stability'. In this subsection, we evaluate

the classification stability of the trees generated from our proposed algorithm using

asymmetric entropy with warped entropy-based local discretization.



Methodology

For this experiment, we divided the MERLIN set into a training set and a holdout

set that consisted of 2813 and 1406 patients respectively. Using the training set,

we generated 100 bootstrapped training replicates using Bagging, as described in

Chapter 3.2. For each of the 100 replicates, we constructed a classification tree

model. Next, we used each of the tree models to predict outcomes of patients in the

holdout set.

We constructed a 100 x 1406 matrix, D, that contains the classification labels for

all the holdout patients using each one of the 100 tree models. In order to quantify,

classification emphinstability, we evaluated the Hamming distance between the pre-

dicted labels generated for each pair of trees, i.e. between each pair of rows of matrix

D. The hamming distance between two rows of matrix D is the number of patients

for which the classification labels are different. A total of (100) = 4950 comparisons

were made.

Fractional hamming distance is defined as:

Hamming Distance
fractional Hamming distance = Size Dote (5.8)

Size of the holdout set

Figure 5-1 shows the fractional Hamming distance for each of the 4950 compar-

isons. The graph is a symmetric plot. From the plot, we see some outlier cases,

indicated by the red lines in the plot, that have a high Hamming distance. These

classification tree models had a much higher recall rate but a lower precision on the

holdout set, compared to the mean recall and precision. The outlier trees predicted

many of the patients who did not die as high risk patients. Therefore, the Ham-

ming distance for these are much higher than the classification trees with recall and

precision comparable to the mean values.

Figure 5-2 shows the histogram of the fractional Hamming distance for every

pairwise comparison of the rows of matrix D. Based on 4950 comparisons, on average

~ 16% (231 patients: 227 patients who were alive and 4 patients who died) of the

patients in the holdout set were assigned different classification labels by the two
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Figure 5-1: Pair-wise fractional Hamming distance between the predicted labels for
the holdout patients using the 100 classification tree models generated using the 100
training samples.
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Figure 5-2: Histogram of the fractional Hamming distance for every pairwise com-
parison of the rows of matrix D.

classification tree models that form a pair. Out of the 27 patients in the holdout set

who died, on average only 4 patients were assigned different classification labels by

the two models in a pair.

5.4 Summary

In this chapter, we reviewed different types of splitting criteria proposed in the lit-

erature for constructing classification trees from unbalanced data. In addition, we

also presented non-symmetric entropy measures as splitting criteria for induction of

classification trees. We evaluated the performance of non-symmetric entropy-based

measures with other splitting criteria that are discussed in the literature. For global

discretization of continuous variables, we found that the performance of classification

trees constructed using different splitting criteria were comparable for risk stratifi-

cation of post-ACS patients. The classification performance was measured by recall

................. .. .................. .............................................
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and precision.

We also showed that subset-specific cutoffs can improve the classification per-

formance for a univariate classifier over using global cutoff derived from the entire

patient population with NTSEACS. Therefore, we incorporated local discretization

in our classification tree algorithm. We show that for risk stratification of post-ACS

patients, classification trees constructed using local discretization coupled with asym-

metric entropy yields significantly better results than other splitting criteria proposed

in the literature. Our results also show that for post-ACS risk stratification, those

classification models outperform models generated using global discretization.

In the next chapter, we compare the performance of classification tree models with

the TIMI risk score and multivariate logistic regression models.



Chapter 6

Comparison of different models for

post-ACS risk stratification

In this chapter, we compare the performance of asymmetric entropy-based classifica-

tion trees with local discretization to those of the TIMI risk score and the multivariate

linear logistic regression models for risk stratification of post-ACS patients.

6.1 Methodology

For all of the experiments, we use 100 different instances of training and test datasets.

Each training dataset contains 2813 patients and its corresponding test dataset con-

tains a disjoint set of 1406 patients. For each of the 100 instances, we use the algo-

rithm described in Section 4.2.1 to induce a classification tree based on the training

dataset. We use asymmetric entropy as the splitting criterion and warped entropy

based local discretization. We also generate a logistic regression model for each of

the 100 instances of the training sets. The logistic regression models were developed

using the generalized linear model regression toolbox in Matlab.

Next, we evaluate the performance of the classification trees and logistic regression

models on the corresponding test data, as measured by their recall, precision and the

odds ratio. For both classification trees and logistic regression models, we used the

same training and test datasets to construct and evaluate them. To evaluate the risk



stratification based on the TIMI risk score, we simply used the TIMI risk score of the

patients in the test set. We considered the test patients with TIMI risk score of 5-7

as the high risk patients (~ 20% of the MERLIN population) and the others as low

risk. Based on the risk labels assigned to the patients and their true outcomes, we

computed the recall, precision and odds ratio.

Recall and precision are the same as defined in Section 3.4.4. We present the

definition of the odds ratio below.

The Odds Ratio

The odds of an event is the probability of an event occurring divided by the probability

an event not occurring. The odds ratio is the ratio of the odds of an event in two

separate groups. In case of risk stratification for death, the odds ratio is the ratio of

odds of death in the low risk group to the odds of death in the high risk group.

An odds ratio>1 suggests that the odds of death in the high risk group is higher

than the odds of death in the low risk group.

Given a performance measure, two types of models have a significantly differ-

ent value for that measure if both the paired samples t-test and the Wilcoxon test

(Chapter 3.4.4) yield p-values<0.05.

For convenience, we'll refer to the classification tree models as 'AsymCT', the

TIMI risk score as 'TIMI' and the logistic regression models as 'LRM'.

6.2 Classification Tree Model versus TIMI

As described in Chapter 2.2.1, the TIMI risk score is a simple post-ACS risk strati-

fication tool that incorporates several binary clinical risk variables. Table 6.1 shows

the mean recall, precision and odds ratio for TIMI and AsymCT.

AsymCT performs significantly better than the TIMI risk score in terms in recall,

precision and the odds ratio. On average, the difference in recall between AsymCT

and TIMI was 30.9%. The mean difference in precision was 1.94% and the mean

difference in the odds ratio was 9.20.



Table 6.1: The mean recall, precision and odds ratio of AsymCT model and TIMI
risk score-based risk stratification model.

Test Set
Recall Precision Odds Ratio

TIMI 44% 4.4% 3.44
AsymCT 74% 6.3% 12.7

Table 6.2: Results from the paired t-test and the Wilcoxon paired samples signed
rank test to compare recall, precision and odds ratio of AsymCT with those of the
TIMI risk score on the test sets. A positive value implies that AsymCT had a higher
value than the TIMI score.

p-value
Mean Difference t-test Wilcoxon

Recall 30.9% < 0.001 < 0.001
Precision 1.94% < 0.001 < 0.001
Odds Ratio 9.20 < 0.001 < 0.001

It is important to note that the some of the risk attributes that are used to con-

struct the classification tree-based model (AsymCT) are not considered when calculat-

ing the TIMI risk score and vice versa. In particular, none of the electrocardiographic

risk measures such as HRV, DC and MV are incorporated in the TIMI risk score. On

the other hand, the TIMI risk score uses information about cardiac markers such as

CK-MD or troponin that are not used to construct the tree model. We did not use

these markers was because we did not have access to all the data used to derive the

TIMI risk score. Therefore, the improvement in recall, precision and the odds ratio

obtained from the classification tree-based model could be the result of the additional

information provided by the electrocardiographic risk attributes or the method used

to create the integrated risk stratification model.

Next, we present compare the classification tree-based model with the model de-

rived using multivariate logistic regression model (LRM) obtained using an identical

set of risk attributes.
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Figure 6-1: Comparison of the distribution of recall, precision and odds ratio for
three different classification models. It shows the sorted values of each classification
performance measures for different models.
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6.3 Classification Tree Model versus Linear Mul-

tivariate Logistic Regression Model

Logistic regression is the most commonly used technique in the literature for gen-

erating multivariate risk stratification model [3, 5, 10]. Using the same set of risk

attributes that were included in the classification tree-based model, AsymCT, we

generated a logistic regression model for each of the training sets. To generate a

logistic regression model (LRM), all the risk attributes were normalized to fall in the

range of 0 to 1.

The logistic regression model generates the probability of death for each of the

patients in the test set. To calculate recall, precision and the odds ratio, we used 2%

(average death rate in the MERLIN population) as the threshold such that patients

with probability of death > 2% were considered as high risk. Table 6.3 shows the

mean recall, precision and odds ratio for LRM and AsymCT. Both the average recall

and precision for LRM is lower than those obtained from AsymCT.

Table 6.3: The mean recall, precision and odds ratio of the AsymCT model and the
logistic regression model (LRM).

Test Set
Recall Precision Odds Ratio

LRM 72% 5.1% 8.3
AsymCT 74% 6.3% 12.7

Table 6.4: Results from the paired t-test and the Wilcoxon paired samples signed
rank test to compare recall, precision and odds ratio of AsymCT with those of LRM
on the test sets. A positive value implies that AsymCT had a higher value than LRM.

p-value
Mean Difference t-test Wilcoxon

Recall 2.1% 0.01 0.005
Precision 1.18% < 0.001 < 0.001
Odds Ratio 4.38 < 0.001 < 0.001

AsymCT yields significantly higher recall, precision and odds ratio than the logis-

tic regression model. Table 6.4 shows the mean difference and the the corresponding



p-values for each.

For LRM, using a threshold value greater than 2% to classify patients as low

versus high risk, will result in a lower recall and higher precision relative to those

obtained using 2% as the threshold. Conversely, using a threshold value smaller than

2% to classify patients as low versus high risk, will result in a higher recall and lower

precision relative to those obtained using 2% as the threshold. Therefore, no matter

which threshold we use, our results show that LRM cannot yield a higher recall and

a higher precision relative to those of AsymCT.

Our results show that classification tree-based models can generate risk stratifi-

cation models that yield improved classification performance relative to the logistic

regression based models - the standard method of generating multivariate risk strat-

ification models in medicine.

Figure 6-1 shows the distribution of recall, precision and odds ratio for AsymCT,

TIMI and LRM models. It compares the sorted values of each classification perfor-

mance measure obtained using different classification models.

6.4 Summary

Our results also show that classification tree based models can generate risk stratifi-

cation models with an improved recall, precision and odds ratio than the TIMI risk

score and logistic regression based models that are popularly used in the medical

literature.



Chapter 7

Understanding the rules of a

classification tree

In this chapter, we present a classification tree model generated from the entire MER-

LIN dataset using warped entropy-based local discretization and the asymmetric

entropy-based splitting criterion. We also analyze the properties of the tree and

the classification rules derived from it. In addition, we discuss how, given a classifi-

cation tree model, a doctor should interpret and communicate the rules derived from

the model to make a clinical decision.

7.1 Classification tree model for MERLIN

The classification tree model developed using the MERLIN dataset is a risk stratifica-

tion model for identifying NTSEACS patients at high risk of cardiovascular mortality.

We used the nine variables highlighted in Table 5.1 to generate the model. There are

other risk attributes, such as left ventricular ejection fraction and the level of cardiac

biomarkers, that are known to provide useful prognostic information for risk strat-

ification of NTSEACS patients. Since we did not have access to such information,

those attributes were not incorporated in our model. To develop a comprehensive

classification tree-based risk stratification model for NTSEACS patients, one should

include those risk attributes.



Figure 7-1 shows the classification tree based risk stratification model generated

from the dataset. The cutoffs for the continuous variables were rounded to the lowest

precision, such that the set of patients with variable values on either side the cutoff

remain unchanged before and after the rounding.

9/1280

8/438

Figure 7-1: The classification tree based risk stratification model generated from
the MERLIN dataset. We used our algorithm with warped entropy-based local dis-
cretization and asymmetric entropy-based splitting criterion to construct the tree.
The numbers above each node show the number of dead patients and the number of
alive patients at each node i.e. number of dead patients/number of alive patients. The
superscripted number next to the 'Low risk' or 'High risk' label is the rule number.
For example, 'Low riski' means the first low risk rule.
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7.2 Model Analysis and Discussion

7.2.1 Analysis of Classification Rules

Each path starting from the root node to a terminal node represents a rule in a

classification tree. The classification tree model derived from the MERLIN consists

of ten low risk rules and five high risk rules as shown in Figure 7-1.

Different risk attributes contain information about different stages of medical state

of a patient. For example, the risk attribute priormi describes the past medical

condition of a patient. On the other hand, the risk attribute stdep tells us whether

or not a patient had ST-depression at admission.

We categorize the nine variables included in our classification model into three

categories:

" Category A: Untreatable (e.g. age )

" Category B: Likely not yet treated (e.g. stdep, HRV, MV, DC)

" Category C: Likely to have been treated before (for e.g. priormi, chf, hyperten-

sion, smoker)

Category A and B describe the current state of the patient. Category C describes

the past medical condition of a patient that might have been treated. If the variable

that contains information about the treatment is not included in the model, it could

potentially be a confounding factor when analyzing the classification rules that in-

cludes attributes from Category C. It is important for a doctor to interpret such rules

with caution.

Next, we will discuss the classification rules derived from the classification tree

model in Figure 7-1.

1. Let us first analyze Low risk1 . This rule suggests that despite having a low hrv

(usually associated with elevated risk), patients with NSTEACS who are less

than 59 years of age are at a low risk of CVD. High risk 2, on the other hand,

suggests that a patients with high hrv (considered to be at lower risk based on



hrv alone) are still at high risk of cardiovascular death if the patient is older

than 50, have MV>38 and also have ST-depression. These rules illustrate the

advantage of integrated models in improving risk stratification. All variables

that are included in Low riski or High risk2 belongs to Category A or Category

C. Therefore, these rules are likely to be free of confounding factors.

2. Next, we consider rules Low risk4 and High riski. Both of these rules include

hrv<2.2 and age>=59. Patients that satisfy Low risk4 have ST depression and

those who satisfy High riski don't. The MV cutoffs that separates patients at

lower risk from those at higher risk is 27.5 and 43.3 for Low risk 4 and High

risk1 , respectively. This suggests that a patient with ST-depression has to have

a very low MV (< 27.5) to be considered at low risk. For patients without

ST-depression, a patient must have MV of at least 43.3 to be considered a high

risk patient. The different MV cutoffs are a consequence of local discretization

in our algorithm.

3. Another notable rule in the risk stratification model is Low risk8 . This rule

includes the risk attribute priormi (history of prior MI), a Category C attribute.

Patients who have a history of MI are likely to be on medication such as beta-

blockers. At first glance, Low risk8 appears to suggest that a history of prior

MI is protective. However, this unexpected rule is most probably because the

information about past medications of the patients is not included in the model.

This causes medication history to potentially be a confounding factor while

interpreting Low risk8.

7.2.2 Using the classification tree model in a medical setting

In this subsection, we will discuss how a doctor could use a classification tree-based

model in a medical setting.

Consider a scenario in which a doctor consults the classification model in Figure 7-

1 to identify the risk profile of a new patient. We will assume that information about

all the risk attributes, included in the model, is available. Based on the rule that



the patient satisfies, the doctor can infer why a patient should be considered to be at

high or low risk of CVD. In addition, the doctor may also use these rules to guide the

therapy for the patient. For example, a patient who satisfies High risk 2 has high MV

and ST-depression. ST depression is a sign of myocardial ischemia [41]. High MV

is also believed to be associated with the myocardial instability caused by ischemia.

Based on this information, a doctor might prescribe a drug that is aimed to treat

ischemia.

The classification model also contains information about the number of patients at

each node of the tree. A doctor should consider a rule satisfied by a larger population

to be more reliable than the one satisfied by a smaller population. For example, High

riski can be considered more reliable than High risk5.

7.3 Summary

In this chapter, we present the classification tree model generated using our proposed

algorithm using the entire MERLIN dataset.

We also analyzed the rules represented in the classification tree model. The classi-

fication rules derived from the tree illustrate the power of integrating information from

multiple variables in improving risk stratification. We highlighted that confounding

attributes may lead to rules that may appear counter-intuitive.

Finally, we discussed how a doctor might use a classification tree model in a

medical setting to help guide clinical decisions.
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Chapter 8

Conclusions and Future Work

We conclude the thesis with a summary of its goals, major contributions of our work

and discussion of proposed improvements for future work.

8.1 Summary

Advances in medical technology have greatly increased the amount of information

that can be used to aid clinical decision making. Electronic health records (EHR)

make this vast amount of data easily accessible. This offers an opportunity to use the

data to create integrated models that can improve risk stratification.

8.1.1 Goals and Contributions

The goal of this thesis was to develop an automated, data-driven algorithm to create

an integrated risk stratification model that can potentially be used in a clinical set-

ting. We focused on development of classification tree based models. Classification

trees provide justification for classification of examples, which makes these models

appealing for use in a clinical setting.

We developed a classification tree induction algorithm in two main stages. In the

first stage, we investigated different discretization methods. Discretization is impor-

tant because classification trees can only handle discrete variables. In our context, the



purpose of discretization is to identify cutoffs that partition the range of continuous

attribute into intervals such that members of each category exhibit class coherence. In

this thesis, we investigated different non-symmetric entropy based methods to identify

discretization cut points for continuous attributes in unbalanced data.

In the second stage, we proposed and evaluated classification tree algorithms that

use different splitting criteria. For each splitting criterion, we also explored classifica-

tion tree induction using global and local discretization cutoffs. For local discretiza-

tion, we implemented the warped entropy-based discretization developed in the first

stage.

The major contributions of our work are:

" Concept of Warped entropy: In Chapter 3, we proposed a novel non-

symmetric entropy measure called warped entropy. This measure allows the

maximum entropy point to be set to a distribution other than the one where

all the classes are present in equal proportions. We presented this measure in

the context of discretization and classification trees for unbalanced data.

" Entropy based discretization using Bagging: In Chapter 3.2, we propose

an entropy-based supervised discretization algorithm that incorporates Bagging

to avoid overfitting of cutoffs to the training set. Our results demonstrated that

Bagging can improve the stability of cutoffs derived using different entropy-

based methods on unbalanced datasets. The stability of the cutoffs was mea-

sured using the coefficient of variance (COV) of the cutoffs over 100 instances

of training sets.

* Evaluation of symmetric and non-symmetric entropy measures for

discretization of continuous attributes in unbalanced datasets: In

Chapter 3.4, we evaluated Shannon entropy and two non-symmetric measures:

warped entropy and asymmetric entropy [33 for discretization of continuous

variables in unbalanced datasets. The cutoffs were generated for four con-

tinuous variables: age, morphological variability (MV), heart rate variability

(HRV) and deceleration capacity (DC), using data from the MERLIN trial [40].



Among the three entropy measures, we showed that the warped entropy mea-

sure yielded cutoffs with the smallest average COV and the best worst case

COV in the MERLIN dataset.

* A novel approach of building classification trees from highly unbal-

anced dataset: We presented an algorithm for development of classification

trees from unbalanced data. Our algorithm performs binary discretization (with

Bagging) of continuous variables at each node during the tree induction pro-

cess. Given a class coherence measure, the algorithm selects the variable that

has maximizes class coherence (or minimizes class incoherence) after a split.

" Evaluation of different class coherence measures for induction of clas-

sification tree models with local discretization: We evaluated our al-

gorithm using different class coherence measure-based splitting criteria. Our

results showed that using asymmetric entropy to generate the classification tree

yields models with significantly higher recall and precision than other splitting

criterion proposed in the literature. We also compared the performance of these

classification models with those generated using global discretization. Our re-

sults showed that the recall and precision obtained using asymmetric entropy

with local discretization is significantly higher than the best recall and precision

obtained using global discretization.

" Comparison of classification tree based models with other models:

We compared the risk stratification performance of the classification tree based

models developed using non-symmetric entropy measure with that of the TIMI

risk score. Our results show that the classification tree models yield a signifi-

cantly higher recall, precision and odds ratio than the TIMI risk score. However,

the TIMI risk score and the classification tree models uses different set of risk at-

tributes with some overlap. We also developed multivariable logistic regression

models (LRM) using the same variables used in the classification tree model.

Again, the performance of the classification tree based models were significantly

higher than LRMs.



8.2 Future Work

e Further evaluation of proposed algorithms: We speculate that our algo-

rithms can be applied successfully on other medical and non-medical datasets.

In the near future, we will perform a more rigorous evaluation of our discretiza-

tion and classification tree algorithm in multiple datasets.

* Development of stopping criterion for discretization: At present, our

entropy based supervised discretization algorithm takes the number of cutoffs

as an input. As future work, we plan to develop an appropriate stopping criteria

that can be integrated with our proposed algorithm so that it can automatically

determine the appropriate number of cutoffs based on the characteristics of the

data.

e Handling missing values in classification trees: In all of our analysis of

classification trees, we have only used patients with no missing data. However,

most of the real world datasets have missing data. In the future, we want to

incorporate data imputation in our algorithm so that it handle datasets with

missing values.
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