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Abstract

A zonotopal algebra is the quotient of a polynomial ring by an ideal generated by

powers of linear forms which are derived from a zonotope, or dually it's hyperplane

arrangement. In the case that the hyperplane arrangement is of Type A, we can

rephrase the definition in terms of graphs. Using the symmetry of these ideals, we can

find monomial ideals which preserve much of the structure of the zonotopal algebras

while being computationally very efficient, in particular far faster than Gr6bner basis

techniques. We extend this monomization theory from the known case of the central

zonotopal algebra to the other two main cases of the external and internal zonotopal

algebras.
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Chapter 1

Introduction

1.1 Background on Power Ideals

Ideals generated by powers of linear forms have arisen in several areas recently. They

appear in work on linear diophantine equations and discrete splines [61, the study of

zonotopes [10][71, zonotopal Cox rings 1181, ideals of fat points [91, and other areas. Of

particular interest is the computation of the colengths of quotients by these ideals, as

well as their Hilbert series. In many cases these computations have been connected to

the computation of other statistics which are more germane to the problem in which

they appear (eg.,[1I],[18]).

In this work, we are concerned with a special class of power ideals associated

with graphs. More specifically, in [101 Holtz and Ron identify three major classes of

algebras that can be attached to a zonotope or, dually, to a hyperplane arrangement.

They call these zonotopal algebras. Since the construction of these algebras depends

only on the matroid theory of the hyperplane arrangement, these algebras can be

redescribed in terms of graphs in the case that the hyperplane arrangement is of Type

A. The simplest and most classical of these algebras, the so-called central algebra, has

thus far received the most attention. Indeed, our main results will be generalizations

of an idea of Postnikov and Shapiro 1141 to the other major classes of zonotopal

algebra, the external and internal algebras.

We recall here some of the background, history, and motivation for the study of



these algebras. Throughout, we will be working in a finitely generated polynomial ring

over C. To be consistent with the literature we let V - C' and make the following

definition.

Definition 1. A power ideal is an ideal I E C [V] that is generated by powers of

linear forms such that I has finite colength. Equivalently, there is a collection of

linear forms hi,. . . , hk which span V*, and non-negative integers r 1 , ... , r such that

I = (h ,.. h'" k

Now let X be any n x r matrix, thought of as a collection of r (column) vectors

in V. Let 'R be the arrangement of hyperplanes dual to these vectors, i.e. 'H = {H}

where Hi {y E V*1 (xi, y) = 0}. Now let PH, be a function on V* which is 1 on Hi

and 0 everywhere else, and let

P-H =_ Z(PHi)'
i=1

Then for any k we define the ideal in C [V]

-1 H4k =(y P1(y)±k ly E V*)

Notice that we do allow vectors to appear with multiplicity in X, and likewise hyper-

planes may appear with multiplicity in N.

The importance of these ideals to approximation theory appears via their inverse

systems, the definition and application of which we briefly describe now. Given our

X, the box spline is defined as the distribution satisfying

f f (x) B (xjX) = f (TX) dt1 ... dt,

for any function f c C (R'). It is known to be a piecewise polynomial function on

the image of X (thought of as a map from R' to R"). An important question in

approximation theory, and particularly in computer graphics design, is to understand



the space of functions generated by integer translates of B(xlX), that is

S (X) = {B (x - aIX)|a E Z'}.

In particular, one would like to describe in some way the complexity of the functions

in this space.

Now consider the (Macaulay) inverse system of our ideal 1Ho. To define the

inverse system, we first define a pairing on the polynomial ring. Given f, g C

C [Xi, ... , x, J, we let (f, g) be the result of interpreting each xi in f as a/Dzi, apply-

ing the operator to g, and then evaluating the resulting polynomail at 0. The inverse

system of an ideal I is then defined by

I' := {f E C [Xi, . .. , Xn] I(f,g) = 0 for all g E- I}.

The main theorem in this vein is due to Dahmen and Micchelli, although a similar

result appeared simultaneously in a paper by Jia.

Theorem 2. [5] [11] Any function in S (X) is a piecewise polynomial, and the poly-

nomials appearing in it are all in ZI,0. Furthermore the dimension of IO,0 is equal to

the number of bases of the hyperplane arrangement H.

A fundamental and simple fact about inverse systems over a field of characteristic

0 is that it's dimension is equal to that of the quotient of the polynomial algebra

modulo the ideal, and if the ideal is homogeneous as in our case, the same holds for

the graded parts. So, if we are content to answer questions about the number of

polynomials and their degrees, we can work with the commutative algebra, an object

whose properties are often more familiar.

As for the enumerative theory of power ideals, the farthest reaching result to date

is due to Ardila and Postnikov [1]. They establish a relationship amongst the ideals

with respect to restriction and deletion, allowing them to relate the formula for its

Hilbert Series to the Tutte polynomial of the hyperplane arrangement. One precise

statement of their result is as follows.



Theorem 3. [1] For a central hyperplane arrangement of r hyperplanes in V and for

k > 1,

k1 t rn T ti
Hilb (C [x1 .... ,Xn] /I-H,k, t) Zh- = ' T 1+ ,

Y> (1 - z) 1 - tz t
k>1

where TW is the Tutte polynomial of the hyperplane arragnement.

For the cases k = -1, 0,1, the ideals INk admit a slightly simpler description, and

it is these cases that Holtz and Ron have dubbed the internal, central, and external

zonotopal algebras, respectively. We now give this simpler description, and at the

same time introduce the relationship to parking functions.

1.2 Parking functions

Let us recall some definitions and facts about parking functions and some of their

generalizations. A parking function of length n is a sequence of non-negative integers

(ai, ... , an) such that for i E [n]

#{jla3 <i} >.

Note that we allow ai = 0; the definition is often written for positive integers instead

of non-negative, in which case the '<' above is replaced with '<'. The definition

is equivalent to requiring that the increasing rearrangement b1 < ... < b has the

property bi < i. The origin of the term parking function comes from the following

interpretation. Suppose n cars arrive at a linear parking lot with parking spaces

labelled between 0 and n - 1. Each car, i, has a preferred parking space, aj. The

cars arrive in order and drive to their preferred spot. If it is already taken, then they

drive until they reach the next empty spot and take that one. A preference function

a. is a parking function if (and only if) every car gets a parking spot without having

to turn around.

Several generalizations have appeared in the literature. In [17], Stanley defines



k-parking functions similarly, with the following distinction. If (bi, . . . , b") is the in-

creasing rearrangement, then bi < k(i - 1). A further generalization are the 7-parking

functions of Yan 119]. Here we have a non-decreasing sequence 7 = (XI, .. . , Xz), and a

sequence is an 7-parking function if the increasing rearrangement b1 < ... K bn satis-

fies bi < xi. A k-parking function is an 7-parking function when Y (0, k, 2k, . .. , Ink).

A G-parking function is another broad generalization, appearing first in [141, and

later in [3, 4]. Let G be a digraph on vertices labelled 0,1, ... , n. For this definition,

and throughout the rest of this work, by graph we will mean a finite graph with no

loops, but with multiple edges allowed. We will call 0 the root of G. For every non-

empty subset I C [n] and i C I define d, (i) to be the number of edges originating

at i and terminating at a vertex not in I. A G-parking function is defined to be a

function f assigning a non-negative integer to the vertices 1,. .. , n such that for every

non-empty subset I there is an i C I such that f (i) < di (i).

Example 4. When G = Kn+1 the complete graph on n vertices, the G-parking

functions are the same as the ordinary parking functions defined above.

Example 5. In fact we can recover Stanley's k-parking functions with this notion

as well. Let G be the graph on 0,1,... , n with a + 1 edges between 0 and any other

vertex and b + 1 edges between any two non-zero vertices. The corresponding G-

parking functions will be (a, b, 2b, . . . , nb)-parking functions, and in particular cover

the k-parking case when a = 0 and b = 1.

We now give an algebraic reinterpretation of the G-parking functions. For any

I c [n], we define D, to be the the total number of edges of G which originate at a

vertex in I and terminate at a vertex outside of I. Explicitly,

Dr = d, (i)
iEI

Now let k be any integer. If Dr + k > 0 for every I as above, we define a polynomial



pi in the ring C [xi,... , xn] given by

PI 
XDk

iE- )D 1+k

Note that this will always be the case when k is positive. We then define IG,k to be

the power ideal generated by all such pf, and further define AG,k to be the quotient

C [XI, . . . , xn] /IG,k. if we interpret G as a representation of a type A hyperplane

arrangement H, these ideals are the same as the ideals IW,k in the cases k = -1, 0, 1.

Although it's easy to see IG,k C 1K,k, showing identity is nontrivial, and the details

can be found in [1].

Since IG,k is a homogeneous ideal, AG,k will have a basis of monomials. Given a

monomial basis B of AG,k, the set of monomials M C [x1, . . . , xn] \B is an ideal,

and B is the basis of standard monomials for C [xI, ... , x] /M. We call any such

M a nonomization of the ideal IG,k. Our program is to find a monomization for the

ideals IG,k which is natural in some way and easy to compute. Such a theory would

greatly simplify the study of the linear structure of the rings AG,k, and in particular

the dimensionality.

In the case k 0, the picture is especially beautiful. In [14), it is shown that

the monomials X= - ... -n where (a1,..., an) is a G-parking function give a

monomial basis for AG,O. Translating this to the ideal JG,0 of monomials Xa where a

is not a G-parking function, we find the following description. For every non-empty

I C [n], let
dj(ii) di (i,)

Tnj 1  ... . 1%

Then, 7G,o = KmI)c[n] is a monomization of 'G,k-

There are several features of this monomization we would like to emulate. Firstly,

a set of generators for 7G,0 is relatively easy to compute from G. Secondly, both

the generators of 1 G,0 and 7G,0 are indexed by the same set, and in particular are

the same size. There is a third very useful feature of 7G,o, which we would like

to emulate, but won't be able to. Clearly the group H = Aut, (G) of basepoint



preserving automorphisms of G acts oii C [i, ... , xn], and since it preserves the p1,

H also acts on AG,k. Since the definition of G-parking function is invariant under the

action of H, we see that this basis is H-invariant. We can thus use the combinatorial

structure of the G-parking functions to understand not just the linear structure of

AG,o, but also its structure as an H-representation. For example, this shows that the

multiplicity of the trivial representation of 6, on AKn+1,0 is equal to '( 2n(), the nth

Catalan number, from the corresponding well-known result for parking functions.

For k / 0, we cannot in general find an Aut, (G) invariant basis of monomnials,

even when G is a complete graph.

Example 6. Let G - K 3, the triangle. Then IG,o 2 y2, (X + y) 2). The parking

functions are {(0, 1) , (1, 0) , (0, 0)}, and indeed

AG,0 CG CX e CY

Now for k = 1, IG,1 - (XI, y3, (X + y)3). The monomials which are non-zero in

AG, 1 are 1, x, y, 2 xy 2 7 X2 y, and xy 2 . As we can easily verify, however, the Hilbert

series of AG,1 is 1 - 2t - 3t 2 + t3. In particular, any monomial basis must contain

1, x, y, 2, xy, and y2, and must can contain exactly one of x 2 y or xy 2. Thus there is

no way to choose ani 5 3-invariant basis of monomials.

Nonetheless, our goal will be to achieve an analogous construction for k = -1 and

k = 1 in the remainder of this thesis.

1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2 we discuss the already

known case of the central algebra. In this section, we introduce some of the tools

that will be used to attack the external and internal algebras. Chapters 3 and 4

deal respectively with the external and internal algebras. While the proof outline of

both cases is similar to that of the central algebra, the combinatorial details are quite



different. Finally in Chapter 5, some remarks and conjectures are made regarding the

work done in this paper as well as avenues for future investigation.



Chapter 2

Monotone Monomial Ideals and the

Central Algebra

2.1 Monotone Monomial Ideals

The idea of monotone monomial ideals and their properties will be critical to securing

tightness on many of the bounds in our results, and therefore proving monomization.

They were introduced in [141 and used there to establish monomization of the central

algebra. Following the publication of 11], much of the argument from that orginal

paper can be simplified, and serves as the model for our development in the external

and internal cases.

Therefore, let us recall some facts about monotone monomial ideals. Although the

theory in 1141 is developed over a general poset, we only need to use the case when

the underlying poset is the boolean algebra. Since the definitions and properties

are somewhat easier then, we restrict immediately to that case. Let {m 1 } be any

collection of monomials in C [xi, ... , x,]. Let mj\I be the monomial formed from mj

by removing all xi with i E I, and let I [n] \I. Then the collection {mj} is a

monotone monomial family if

" mI\I 1 and

* if I C J, then mj\ divides mrn.



The first condition simply says that m, contains only the the variables xi for i E I.

The second condition says that if i is in both I and J, then the degree of xi in mj is

less than or equal to that degree in irn.

Given an index set I = {ii,... , i,} and a monomial m, in the variables {xi, ... .i,

we say that a homogeneous polynomial p, (also in these variables) is an I-deformation

of m, if the set of monomials not divisible by m, gives a linear basis for the algebra

C [xil, ... , xi]. That is

(C [Xi , ... , Xi, = (Rmi) D (p1)

where Rm, is the set of monomials not divisible by mI.

In fact, as long as deg (mi) = deg (p1), almost any polynomial is an I-deformation.

In fact,

Proposition 7. [14] If mi is a monomial in C [xi,.. . , x,], and {a}i 1 is any col-

lection of non-zero constants, then

Pi = (aixi + ... + arXr)deg(m)

is an I-deformation of mi1 .

Now take a monomial m, for every non-empty subset I C [n], and for each an

I-deformation pI. We say that the ideal I = (p1) is a deformation of the ideal

3 = {mr}. Of course, almost by definition, for any fixed I, we have

Hilb (C [x1, . . . , x,] / (n 1 ) , t) = Hilb (C [x1 , . . . , x,] / (p1) , t) .

Notice there are more variables in the ring than just those indexed by I. However,

there is no guarantee that the Hilbert series of (the quotients by) J and _I will be

equal, and indeed they typically differ. However, if J is a monotone monomial ideal,

we have the following result



Theorem 8. [14] If I is a deformation of the monotone monomial ideal J, then the

set of monomials not in J linearly span the algebra C [x1,.. . , x,] /1. In particular

Hilb (C [xi, . . , x,] /I, t) < Hilb (C [x1, . . . , x,] /J, t) .

The other important theorem on monotone monomial ideals that we will need,

and also factors into the proof of monomization for the central algebra is an inclusion

exclusion formula for the dimension of the quotient algebra B C [xi, ... ,, /

of a monotone monomial ideal.

Lemma 9. [13][14] Let J be a monotone monomial ideal generated by m = flic; xii

Then the dimension of B is equal to the alternating sum

(- 1 )k 17 (v~1, (i) - VI (i)) x ... x 11 (vfi2 (i) - Vik (Z)) x 17 i (v )
I1C...CIk iEIi iEIk\Ik-1 ijIk

(2.1.1)

where we include the empty chain of subsets where k = 0.

2.2 The Central Algebra

The central zonotopal algebra for graphs is the quotient algebra of 1G,0 from the

introduction, that is, the case k - 0. It's importance to spline theory was described

there. The proof that G-parking functions give a monomization of this ideal was first

proven by Postnikov and Shapiro, using the ideas just introduced. A crucial part of

the proof lies in showing that (2.1.1) is equal to the number of spanning trees of the

graph G. The idea is to show that term counts oriented subgraphs of G of a certain

form, and to show that in the sum the only such subgraphs with non-zero weight are

the spanning trees (with some canonical orientation), and that these have weight 1.

This methodology is a theme for our proofs in the external and internal cases.

As the proof goes, this demonstrates only that the dimension of BG,O is equal

to the number of spanning tree. The rest of Postnikov and Shapiro's work involves

introducing several other algebras, connecting AG,0 and BG,0. Thanks to the work



of Ardila and Postnikov [1], this work is greatly simplified. Although the particular

result is not a direct application of Theorem 3, it is very similar. Applied to the

graphical case it says that

Hilb (AG,0, E(G)|-n )G ,

where IE(G)| is the number of edges in the graph. This says that dimension of the

the rth graded part is equal to the number of spanning trees with external activity

I E(G) I - n - r. Because the dimension in particular is equal to the number of spanning

trees, we get the equality

dim(AG,O) - dim(BG,O)-

Combining this with Theorem 8 gives the main theorem for central zonotopal algebras.

Theorem 10. The ideal JG,o gives a monomization of IG,o- In particular

Hilb (C [x1 , . . . , xn] /IG,O, t) = Hilb (C [xi, . .. , xn] /JG,o, t) -



Chapter 3

External Algebras

3.1 Background

We will now address the case of the external algebra, the quotient algebra of IG,1,

which we denote AG,1. It was initially this algebra which led to Postnikov and

Shapiro's study of the central case, despite the fact that the primary historical inter-

est in zonotopal algebras was on the central algebra. There is, however, a remarkable

connection between this algebra and geometry of the flag manifold. Precisely

Theorem 11. [16] Let A, be the (commutative) algebra generated by the curvature

forms of the n canonical line bundles on the manifold of flags in Cn+l, with wedge

product as the product. Then this algebra is isomorphic to AKn+1,1.

Since we will not be directly addressing this result, we do not go into a detailed

description of this ring as it pertains to geometry. Roughly, though, it says that

AK,,,,1 contains information about the intersection theory of the flag manifold which

is finer than that of the (singular) cohomology ring. We hope, however, that this

result motivates the initial interest in looking at the external algebra, aside from it's

interest as a particularly well behaved subclass of power ideals.



3.2 Monomization of the External Algebra

Similar to the k - 0 case, we define a monomial m1 for any non-empty subset I C [n).

Namely, let

di (i) + 1 i C I is minimal

vi ('i) = d, (i) i E I is not minimal

0 i(I

and define
n

M - i1

Notice that these monomials are as close to the center of the Newton polytope of P,

as possible. This remark is addressed further in Chapter 5. Let JG,1 i= M). The

main result of this section is that 7G,1 is a monomization of T G,i.

Theorem 12. The standard monomial basis of JG,1 gives a monomial basis forT G,I.

We can use this to give a defintion of what we will call a (G, 1)-parking function.

In the case of the complete graph, we believe this definition appeared first in 110].

Definition 13. For a graph G on the vertex set {0, 1 ... n}, a (G, 1)-parking func-

tion is a function f : [n] -> N such that for any I c [n],

{ # {edges from i out of I}

# {edges from i out of I}

Example 14. Let's take the following examples.

obtain the power ideal

+ 1 if i is minimal

otherwise

From the graph in Figure 3.2.1 we

1,1 = (x3, X 4, (X 1 + x2) + 3 + X4) (X2 + X3)

(X2 + X4 )4 , (X 3 + X 4 ) 5 , (i 1 + X 2 + X 3 )6 , (Xi1 + X 2 + X4)6

(I 1 + 3 + X4 ),5 (X 2 + 3 + X 4 ) 5 , (X 1 + X2 +3+ X4)5)



1 4

2 3

Figure 3.2.1: Graph for Example 14

and the monomization

3 2 2 22 3 2 2 2 2 2 2
.L3 X 4 ,X 1 X 2 X 3 , X 1 X 2 X 4 , X 1 X 3 X 4 , X 2 X 3 X 4 , X 1 X 2 X 3 X 4 )

From this, it is fairly easy to compute that the dimension of BG,1, and therefore

AG, is equal to 82. Notice that many of the generators of JG,1 are redundant, and

it easy to reduce. For example, clearly since we have x3, we don't need XX,

or xix 2x4. Continuing in this way we can reduce to a minimal set of 10 generators.

A computation also gives that the Hilbert series of both AG,1 and BG,1 is 1 + 4t +

10t 2 + 18t 3 + 23t4 + 18t 5 + 7t6 + t 7.

It is routine to check that the monomials defined above are a monotone monomial

family, that is, JG,1 is a monotone monomial ideal. Indeed, the condition mp\J = 1,

which simply states that m1 contains xi only if i E I, is satisfied by definition. To

check the second condition, we examine the degree of xi for i E I in m1 and mj.

Since J D I, the number of edges originating at vertex i and terminating outside J

is less than or equal to those terminating outside I, ie. di (i) < d, (i). So there are

two cases. If i is the smallest element of I, then either its degree goes from d, (i) + 1

to dj (i) + 1 (in the case that i is still the smallest element of J), or it goes from



d, (i) +I1 to di (i). In both cases the degree drops or remains the same. If i is not the

smallest element of I, then it can't be the smallest element of J, so the degree goes

from d, (i) to dj (i). Therefore, in any case deg, (in) > deg, (mj).

Since each m, is an I-deformation of pi, the ideal JG,l is a deformation of IG,1.

Because of this, we can use Theorem 8 to conclude

Hilb (AG,1, t) < Hilb (13 G,1, t).

The goal is demonstrate equality, for which it is enough to demonstrate the equal-

ity of the dimensions. By plugging z 0 into the formula from ??, we get

Hilb (AG,1, 0) = j1E(G)| G (i + t,

and in particular, the dimension is equal to the number of forests which are subgraphs

of G.

To investigate the dimension of the of space BG,1, we first use (2.1.1) to find an

expression for the dimension as an alternating sum. Let ur (i) = deg, (mi). We recall

here the formula

(-1)k H (1/ (i) -- j (i @ x . .. x -VW- VIk W) x v (Z (.2. 1
I1 i...C Ik iE I iEIk\Ik -1 W9Ik

We give the following interpretation to the alternating sum. For a given chain

I1 C ... C Ik the product counts the number of directed subgraphs H of G with the

following properties

1. There is at most one edge originating at each i E [n], and there is no edge

originating at 0.

2. If i C Ij for some j, then the edge originating at i must end in Ij as well.

3. If i E Ij is the minimal element of Ij, then i has an edge originating at it.

In other words we interpret the numbers in the product as follows. We take v(i) to

count "the edges incident on i, plus the possibility of no edge", and we take v(i) - v1 (Z)
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Figure 3.2.2: The digraphs in I and II are examples of allowable pairs for the displayed

chain of subsets. III is a non-example because 2 connects to 3, and because 4 needs

an edge originating at it.

to count "those edges and the possibility of no edge, less those edges which leave I,

and also less the possibility of no edge if i is the minimal vertex of I". Clearly then,

for a given chain of subsets, the unweighted product counts the number of subgraphs

as described. We call a subgraph with the above properties together with the chain

of subsets an allowable pair. See Figure 3.2.2 for some sample allowable pairs, and

an example of a digraph which is not an allowable pair.

Let us note some properties of these subgraphs. Firstly, any subgraph of G satis-

fying the first condition appears in the sum with k - 0. Secondly, we can embed the

set of forests canonically in this collection as follows. For any forest F of G, orient

each edge of F so that each connected component has a unique sink at the minimal

element of that component. Indeed, have the following lemma.

Lemma 15. Every subforest F of G appears with this canonical orientation in the

alternating sum exactly once with weight 1, namely with the empty chain of subsets.



Proof. Suppose that the chain of subsets is non-empty. Then the minimal element

of 11 must have an edge originating at it. But then the forest is not canonically

oriented. So if F appears with the canonical orientation, it must have the empty

chain of subsets. Clearly, though, it does appear with the empty chain. El

We claim that every other subgraph is cancelled out in the sum, so that the

alternating sum is precisely equal to the number of subforests of G. To show this,

we now construct an involution on the set of pairs (H, I1 C ... C Ik). The involution

will only act on the chain of subsets, that is, it will leave H fixed. A pair will be fixed

by the involution if and only if it corresponds to (H, 0) with H a canonically oriented

forest. and it will take a chain of length k either to chain of length k - 1 or length

k + 1. Since there are no other fixed points, this will show that any nonforest H is

cancelled out in the alternating sum.

The involution will only use some subset of the vertices of H which we call special.

We use the following algorithm to label the vertices of H special and non-special.

" Let v be the smallest unlabelled vertex.

" If v has an edge originating at it, label it and all remaining unlabelled vertices

special and stop. Otherwise, label v non-special as well as any vertex such that

the chain of edges originating from it terminates at v.

" Return to the first step.

Notice that 0 will always be chosen first (and labelled non-special), when none of

the vertices are labelled. See Figure 3.2.3 for an example. We also have the following

claim.

Proposition 16. Each connected component is either composed entirely of non-

special vertices or special vertices. Those labelled non-special are trees rooted at their

minimal element.

Proof. Suppose that i is non-special. Then i must lie on a directed path towards a

terminal vertex, and in particular the path originating at i does not contain a circuit.
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Figure 3.2.3: For this graph, vertices 3 and 5 are special, while the others are non-

special.

This follows because the only way a vertex can be labelled non-special is in step 2

of the algorithm, and only as part of a path which terminates. Therefore, if i is

non-special, then its connected component must be a tree.

If i is part of a tree T and non-special, we claim the tree is rooted, ie. it has a

unique sink. More specifically, it is rooted at the end of the path originating from i.

If this is the case, then every vertex of the tree was labelled non-special in the same

step that i was. To see that it has a uniqe sink, let w be a sink in T. There is a

unique undirected path (), vi, V2, .... , v, i) from w) to i. The edge from w to vi must

be oriented towards w, because w is a sink. Because each vertex can have at most

one out-edge, this is the unique out-edge from vi. Therefore the edge from v2 to vi

must be oriented towards v1 .

Continuing in this way, we conclude that the entire path is oriented from i to w.

Therefore w is the vertex at the end of the path originating from i, and consequently

is unique. The only thing left to see is that w is the minimal vertex of the tree.

This is easy, though, since otherwise w would not have been chosen in step 1 of the

algorithm, and this component would be labelled special. E

Note that the converse of the second part of the claim is false. It is perfectly

feasible for a subtree of H to be oriented towards its minimal vertex and still be

labelled special. We do however get the following corollary.

Corollary 17. H is a canonically oriented forest if and only if the algorithm labels

every vertex non-special.



Proof. One direction is clear from the claim: If all the vertices are labelled non-

special, then every connected component is a rooted tree oriented toward the minimal

vertex, which is a canonically oriented forest. For the converse, suppose H is a

canonically oriented forest, but some vertex is marked special. Then at some point in

the algorithm, the least unlabelled vertex v has an out-edge. The path coming out of

v must terminate at a vertex smaller than v since the forest is canonically oriented,

but then this vertex must have been labelled non-special. This, in turn, would imply

that v is labelled non-special, and we get a contradiction. E

Corollary 18. If i E Ij, then i is special.

Proof. Let w be the minimal vertex in Ij. Clearly w must be special, because if

it were non-special then by Proposition 16 it would lie on a tree oriented towards

its minimal vertex. However this isn't possible since there is an edge originating at

wj, and the entire path from wj must lie within Ij by definition. However, if i is

non-special, then the path originating at i must terminate at a non-special vertex v,

and that vertex must lie in Ij. Because v must also lie in Ij it must be greater than

wj, but then wj would have been chosen in step 1 of the above algorithm before v

was, and v wouldn't have been marked non-special. This is a contradiction. D

We now define the involution K. Let S be the set of special vertices in H. Then

K ((H, I1 C I2 C -. - - 1k)) - (H, I1 C 12 C .. -C Ik C S) if S #4 Ik

(H, I1 c I2 c -. -- k-1) if S = Ik

If the chain of subsets is empty, and there are no special vertices, then K does nothing.

By Corollary 17 this means that H is a canonically oriented tree. Otherwise, the

length of the chain of subsets is changed by K. Therefore, the only fixed points are

(H, 0) where H is a canonically oriented tree. Applying K to formula 2.1.1 we get

Theorem 19. The dimension of BG,1 is equal to the number of foreStS on G.

This completes the proof of Theorem 12. As mentioned, we also get the following

corollary



Corollary 20. Hilb (BG,1, t) = Hilb (AG,1, t)

From [1] we also have a combinatorial interpretation for the coeffients in Hilb (A, t).

If

Hilb (A, t) = [ cat"

then cn is equal to the number of forests F on G with external activity equal to

IGI - |Fl - n. This generalizes the results of [15, 16]. It would be nice to find a

bijection between the monomials of fixed degree and the forests of fixed external

activity.
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Chapter 4

Internal Algebras

We now examine the case k = -1, the internal algebra. We would like to proceed

by analogy with the external algebra, choosing one monomial for each generator

of IG,-1 as near to the center of the Newton poytope as possible, and making a

lexicographically minimal choice to break ties. In other words, for a graph G, we let

d1 (i) - 1 i E I is minimal

v (i) d, (i) i E I is not minimal

0 i I

and define

m , = ( x M

This product will only be a monomial in C [x1, . . . , x,,] if d, (i) > 0 when i is

minimal in I. This will not be a case for a general graph, even in a simple case like

the complete graph on (0, 1, 2) with the edge (0, 1) missing. In fact, for any vertex x

let No (x) be the neighborhood of x in G\ {0}. Now suppose there is a vertex x such

that x is minimal in N0 (x). If x is not connected to 0, then letting I = N' (x), we

have v, (x) = -1, and m1 ( k [x1, . . . , xn]. If, however, all vertices of G are connected

to 0, then the product above will always be a monomial, and we define the ideal JG,-1

to be (m). Even in this case, though, we cannot achieve the same results as in the



external case.

Example 21. For the graph G appearing in figure 4.0.1, the ideal IG,-1 has Hilbert

Series 1 + 5t + 11t 2 + 15t3 + 12t 4 + 3t5 while the ideal JG,-1 has Hilbert Series

1 + 5t + 11t 2 + 15t 3 + 12t 4 + 4t5 .

0

15

2 4

3

Figure 4.0.1:

Using the nauty [12] software package for exhaustive graph generation and Singular

[81 for Hilbert Series computations, we have determined that this graph is the mini-

mal counterexample. In other words, all graphs on a smaller number of vertices have

Hilb (IG,-1, t) = Hilb (JG,- 1, t). Furthermore, all counterexamples thus discovered are

missing a four-cycle, although this is certainly not a sufficient condition for inequality.

It would be interesting and certainly illuminating to determine the conditions under

which one can guarantee the equality of the two Hilbert Series.

Thus, we must impose some restriction on the graphs we examine. It turns out

the condition that at least one edge exist between any two vertices is sufficient. Let

BG ,-1 - - -[ , xn /JG,-1. The main result of this section is

Theorem 22. Let G be a graph with multiple edges on the vertex set {0,1,... , }

with at least one edge between any two vertices. Then Hilb (BG,- 1 , t) = Hilb (AG,-1, t).



In particular, dim (BG,-I) = dim (AG,-1) which is known to be the number of subtrees

with no internal activity.

Regarding parking functions, the corresponding notion is as follows

Definition 23. For a graph G with multiple edges on the vertex set {O, 1, ... , n} such

that there is at least one edge between any two vertices, a (G, -1)-parking function

is a function f : [n] - N such that for any I C [n],{ # {edges from i out of I} - 1 if i is minimal

# {edges from i out of I} otherwise

The proof will be similar to the case of the external algebra. We first confirm that

7G,-1 is a monotone monomial ideal, and therefefore that we can use the formula 2.1.1

to compute the dimension of BG,- 1. Then we will find a combinatorial interpretation

for this count in terms of subgraphs of G, and then show that this number agrees

with the one for AG,-1 from Ardila-Postnikov.

Lemma 24. JG,-1 is a monotone monomial ideal if and only if there is an edge

between any two non-zero vertices in G.

Proof. Again the first condition in the definition of monotone monomial family is

obviously satisfied. For the second, suppose i E I C J. If i is not the minimal vertex

of I, then it is also not the minimal vertex of J, so vI (i) = d, (i) > dj (i) = vj (i). If

i is minimal in I, but not in J, then v, (i) d, (i) - 1, but because there is an edge

from i to some vertex in J\I, we have di (i) ; d, (i) - 1, and therefore, once again,

v, (i) ;> v (i). Finally, if i is minimal in both I and J, we have vi (i) = d, (i) - 1 >

di (i) - 1 = vi (i).

To see that the condition is necessary, assume that the edge (i, j) is not in G, with

i <j. Then v{1} (j) = d{31 (j) - 1 while v{2,} (j) = d{ (j). E

In this situation, we can use the formula 2.1.1 to determine the dimension of

BG,-1. We now associate a combinatorial interpretation to the summands. Consider



subgraphs H of G created according to the following method. For edges with mul-

tiplicity choose some fixed ordering. The ordering we will take on the edges will be

the lexicographic ordering on the edges, with tie-breaks according to these fixed or-

derings. The method contains a loop, so some statements in parantheticals will only

make sense on a complete reading:

1. Let j 1.

2. Let x be the minimal (remaining) vertex in Ij (if Ij doesn't exist, skip to step

5).

3. Choose any edge at x which lies in Ij besides the minimal edge and connect it.

4. Now choose any other edge in Ij except the one we just came from and connect

to it. If this vertex does not have an edge originating at it yet, repeat this step.

Otherwise, choose the minimal remaining vertex in Ij, and repeat step 3. If

there are no remaining vertices in Ij, increase j by one, and go to step 2.

5. After all the vertices in the subsets have edges originating at them, let x be

the minimal vertex remaining, and connect it to some vertex except along the

minimal edge to 0. Continue connecting until either 0 is reached, or a vertex

which already has an edge is reached. At that time, repeat this step.

6. Stop when every vertex has an edge originating at it, or no edge may be chosen.

We first note that the only circumstance in which the method terminates before

every vertex has an edge is if Ii has only 1 or 2 vertices, and in the latter case, only

if there is only one edge between these two vertices. For later reference, note that in

this case the product in (2.1.1) is 0. If every vertex besides 0 has an edge originating

at it in the end result, we say that the resulting graph H together with the chain of

subsets is an allowable pair. See Figure 4.0.2 for an example on the complete graph.

Lemma 25. For a fixed chain of subsets I1 C I2 C ... C Ik, the number of allowable



Figure 4.0.2: Allowable Pair

pazrs is equal to

({i () - v (i) X ... X { (vfi} ( - VIk W) X 171 v{fli)
iEI1iGIk\Ik-1 Wfk

Proof. As a first approximation to an interpretation of these numbers, we think of

v{l} (v) as meaning "The number of edges out of v besides the minimal one to 0," and

we think of v{f}(v) - vIj(v) as meaning "Remove from those edges all edges going

out of Ij, and also remove one more if v is not minimal in I." This is only a first

approximation for several reasons, not the least of which is that the second statement

is vague.

For each vertex v, we first fix a list of edges incident to v. Then for each v

we choose a natural number, depending on which subset(s) v lies in. If v is not in

Ik, then the list is simply all edges at v, and we choose a number between 1 and

v{}(v). Otherwise, if v E Ij\Ij-1, the list is all edges at v in Ij, and we choose a

number between 1 and v 3 (v) - v{o}(v). We now use these numbers to construct a

subgraph Hx. Basically, we follow the steps in the method above, and at each step

we (possibly) make a change to our list, and then choose the x(v)th edge on our list

when the method gives us a choice. In order to ensure that Hx is allowable, we do

the following at each vertex v.

If v is the minimal vertex in Ij, then it won't have any edges coming into it yet.

If it did, then that edge would have to come from within Ij and in fact tracing the



whole chain back, each vertex would have to lie in Ij. In particular, the very last

vertex in that chain would lie in Ij, but the only way this vertex could have been

chosen is if it were the minimal remaining vertex in Ii, and this is impossible since

v is that vertex. In this case, we don't change the list at all. Notice that for these

vertices, the list is the correct length. In all other cases, some edge must be removed.

If v is in Ij\Ij- and we have arrived at v from some other vertex, cross that edge off

the list, then choose the X(v)th edge oi the list. If we arrived at v and v does not yet

have an edge enterring it, remove the minimal edge in Ij at v from its list and then

choose the x(v)th edge on the list. Finally, if v is not in Ik, we remove the minimal

edge to 0 from it's list, unless it has an edge enterring it, in which case we remove

that edge and choose the x(v)th edge on the list. In any of these cases, the list has

length equal to our first approximation.

Clearly, because we have simply provided choices for the method above, we have

created an allowable graph. As mentioned before the lemma, this will only fail if

we remove all edges from the list, which can only happen in the cases described, in

which case the number of allowable pairs and the product in the lemma are both 0.

Furthermore, the number of choices for x is clearly equal to that product, and each

choice determines a unique graph Hx. Finally, given any graph H determined via

the method above, the choice made at each step determines such a x in the obvious

manner, so this number is in fact the correct count.

Our goal, of course, is to show that this number is equal to the number of spanning

trees with no internal activity. The first step towards this is to show that each such

tree appears with total multiplicity 1.

Lemma 26. If H is a tree constructed by the above method, then it is rooted at 0,

the chain of subsets is empty, and the tree has no internal activity. Furthermore, any

such tree can be constructed in this way.

Proof. Since every non-zero vertex has an edge originating at it, if H is a tree, it

clearly must be rooted at 0, as 0 is the only sink. If 1, is not empty, then there are



|11 vertices and as many edges between them, and therefore there must be a cycle.

Therefore, if H is a tree, then Ii, and hence the chain, must be empty.

Now suppose that H has an internally active edge (i, j) with i < j. For this proof,

it is easier to ignore the direction oi the edge, and so even though we write it as an

ordered pair, the ordering will be ignored for now. After removing the edge (i, j), let

Hi be the component of the remaining graph containing i, and Hj be the component

containing j. If 0 E Hi, then (0,j) reconnects the graph. Since (i,j) is internally

active, we must have i = 0, else (0, j) is smaller. In the above method, the only way

j - 0 could have been chosen is if at that stage in the development of H, there was

already an edge incident on j. The only way this can happen is if there is some vertex

I which is less than j that was, at some time, chosen as the minimal remaining vertex,

and the path chosen from it eventually led to j. In this case, however, (0, 1) would

reconnect the graph, and that edge is less (0, j) so that (i, j) would not be internally

active, a contradiction. Therefore we could not have had 0 E Hi. So assume 0 E Hj.

Since i < j, we can't have j = 0, but then (i, 0) reconnects the graph and is less than

(i, j), meaning that (i, j) is not internally active, contradiction. Therefore we also

can't have 0 C H,. In conclusion we cannot have an internally active edge, so H has

no internal activity.

Now, given such a tree with no internal activity rooted at 0, it is clear how to

construct it according to the method above. When given a choice of edge, we simply

choose the edge in the tree. We must only check that this edge is allowed according

to the method. But this is clear. The only edges which would not be allowed are

edges that double-back, creating a cycle, or in a few instances, edges connecting to

0. But, if (i, 0) is an edge in H, and at the current stage of the method there is no

edge incident on i, then i must be the smallest vertex amongst those whose paths

eventually lead through i. If some j < i has its path to 0 through i, then it will

be chosen before i in the method, and hence i would have an edge incident on it

already. E

The two lemmas above demonstrate that in the alternating sum expressing the

dimension of BG,-1, every subtree of G with no internal activity appears exactly once



Figure 4.0.3: Vertices 1, 5, and 6 are special. All others are non-special

with (total) positive weight 1. We now must see that all other graphs H appear with

weight 0. Towards this end we will define an involution on pairs (H, I C ... C Ik) as

in the other cases. By analogy with the external case, we divide the vertices of H into

two classes, which we call special and non-special, according to the following scheme.

To begin, 0 is always a non-special vertex. Let For(v) be the set of vertices that we

hit if we travel forward along the path originating at v, and let Tail(v) be the vertices

w such that v E For(w). Note that while For(v) may have only one branch, Tail(v)

may actually have several branches. If 0 E For(v), then label v non-special. Now let

x be the minimal vertex with 0 V For(x). If any unlabelled vertex v points (directly)

to x, and v is minimal in Tail(v), label it and any vertex in its tail non-special. Label

all other vertices special. See Figure 4.0.3 for an example.

Let J be the set of all vertices eventually labelled special. Now define a function

K (H, I1 c . .. C Ik) = (H, I1 C . .. C Ik C J) Ik j/ J

(H, I1 c ... C Ik_1) Ik = J

If it is well-defined, the operation is clearly a fixed-point free involution which changes

the weight (- 1)k in (2.1.1) from positive to negative or vice versa. Thus the only

thing left to prove is that K (H, I1 C ... C Ik) is an allowable pair, that is, that H is

a subgraph which can be constructed with the method above using the new chain of

subsets.

Lemma 27. If v C Is for some j, then v is special



Proof. There's only two ways a vertex can be labelled non-special. If v E Ij, then

any vertex in For(v) is also in Ij. Since 0 is not in any of the subsets, v cannot

be labelled non-special in the first way. Therefore, suppose v E I is labelled non-

special, but 0 ( For(v). Let x be the minimal unlabelled vertex, as in the description

of the labelling process. Then (v, x) is an edge of H, and v is minimal in Tail(v).

Since v E Ii and x E For(v), we have x E Ij. Since the only vertices labelled so far

have 0 in their forward path, none of the members of any Ij are labelled non-special

yet. Therefore, x is the minimal element of Ij. So, in order for H to have been

constructed according to the method, v must have an edge enterring it at the time it

is selected by the method. This is impossible though, since v is the minimal element

of Tail(v), and therefore must have been chosen ahead of any of those vertices. This

is a contradiction. El

This shows, in particular that Ik c J always. If Ik = J, then consider the

situation when we remove it from the chain of subsets. As we follow the method for

constructing subgraphs using this chain, the only vertices whose rules have changed

are those that were in J\Iki1. In fact, though, the choice of edges has become strictly

more permissive, so H together with this chain is an allowable pair.

Contrary to this, in the case Ik # J, while these vertices are again the only ones for

whom the rules regarding edge choosing have changed, the rules are more restrictive.

However, by construction, if w non-special, so is Tail(w), so we can not have (v, w)

as an edge with v E J and w ( J. The only problem that can arise, then, is if v

connects to the minimal element of J, and this happens at a point in the method

when v does not have an edge enterring it. This implies that v is minimal amongst

Tail(v)n J. Suppose the minimal element w of Tail(v) is not in J. Clearly 0 ( For(w),

so therefore for some element u E For(w) we have u connecting directly to x and u

is minimal in Tail(u). However, v is the element of For(w) which connects to x, and

so it must be minimal. This contradicts the minimality of w in Tail(v). So v must

be minimal in all of Tail(v), but in this case it would have been marked non-special,

and so not in J.

This completes the proof, and shows that r (H, 1 c ... C Ik) is an allowable pair.



Since K is a fixed-point free involution on set of allowable pairs when H is not a tree

with no internal activity, while changing the sign of the weight in (2.1.1), we find

that this together with Lemma 26 proves that the dimension of BG,-1 is equal to the

number of spanning trees with no internal activity, completing the proof of Theorem

22. Again from the paper of Ardila-Postnikov, we also get an interpretation for the

coefficients of the Hilbert Series, namely that it is the generating function for such

trees with a given external activity.



Chapter 5

Observations, Conjectures, and

Future Work

There are many issues raised throughout this thesis. Some purely conjectural, some

obvious avenues for new research, and some suggestive of a deeper program and

theory. We'll touch on a few of them here.

First and foremost is the unsatisfying requirement in Theorem 22 that the graph

G contain an edge between any two vertices. Because the ideals IG,-1 can be defined,

and have importance in the literature, for any graph G, a more general construction

should be found to handle this case.

There is also the question of C [x1, xn] /IG,k as a representation for Aut" (G),

especially for the symmetric group, when the graph is the complete graph. Although

the monomization provides little in the way of help, trying to understand even the

degree of the trivial representation would be an interesting program. Towards this

end, we have computed the degree of the trivial representation in some small cases

for the complete graph. The results so far are compiled in Table 5. The computations

are very lengthy, but the code used is available by request.

Both (partial) sequences for the external and internal algebra appear in the Sloane

database already. The partial sequence for the external case appears as the image of

the Catalan numbers under the Riordan array (1, x(1 - x 2)). Another way of saying



n [External I Central I Internal
2 2 1 0
3 4 2 1
4 10 5 2
5 27 14 7
6 78 42 22
7 ? 132 73

8 ? 429 ?

Table 5.1: Degree of the trivial representation in the three zonotopal algebras for K".

this is that this sequence appears to have the generating function

2

1+ 1 - 4x (1 - x 2)

The partial sequence for the internal case appears as the number of returns to the

x-axis in all hill-free Dyck paths of semilength n. This gives the generating function

(1 - v/1 - 4x) 2

(1 + v/1 -4x + 2x)2

While both cases are just partial comparisons, because they are both related to the

Catalan numbers, there may be some justification for conjecturing equality.

Another obvious area for future work is other zonotopes. A general theory of mon-

omization for zonotopes is likely far off, and perhaps not even intelligible. However, it

seems worthwhile to investigate monornization for hyperplane arrangements of types

B,C, and D. Initial investigations suggest that the approach of this paper cannot be

directly applied, but perhaps some minor modifications will work.

5.1 Computational Comments

Some words must be said regarding initial ideals and Gr6bner bases. Given an ideal

I in a polynomial ring C [x1 ,... , xn], the initial ideal in(I) is defined with respect

to a global ordering. A global ordering is a well-ordering on the monomials of the



polynomial ring satisfying

" x > 1 for every variable xi.

* If mi > m2 and m3 ;> m4 then mim3 > m2 m4.

Given such an ordering and a polynomial f, we can define the leading monomial of

f to be the monomial (with non-zero coefficient) in f which is greatest with respect

to this ordering. The initial ideal, then, is the monomial ideal of those monomials

which are leading monomials for elements of I.

Another way of saying this involves the Newton polytope. Given a polynomial

f = EcWx
,EZn

the Newton polytope is the convex hull of the points L for which c, $ 0. A monomial

ordering is a linear form on the space of monomials (which distinguishes all the mono-

mials), and the initial monomial is the monomial for which that form is maximal. It

is, therefore, always a vertex of the Newton polytope. In contrast, the monomiza-

tions for all the algebras in this thesis are generated by taking the monomial for each

generator of IG,k which is closest to the center of the Newton polytope.

The initial ideal is extremely important as a computational, and even a theoretical,

tool. The primary reason for this is that it is easy to define a flat deformation (over P')

from the ideal to its initial ideal. This deformation shows, for starters, that the Hilbert

Series of the two ideals is the same. It also shows, somewhat more substantially, that

the points corresponding to I and in(I) lie on the same irreducible component of the

Hilbert scheme.

It is not true in general that if g1,... , gm is a set of generators for I, then the

leading monomials, in(gi), . . . , in(gm), of those generators generate the initial ideal.

A Gr6bner basis is a special collection of generators, (fi, ... , fn) = I, such that the

initial ideal is generated by the leading terms, (in (fi) , ... , in (fm)) = in (I). The

existence of a Gr6bner basis is important, as is the development of methods for

finding them. All algorithms for determining the Hilbert Series, or even the Hilbert



function, first compute the initial ideal, and without something like a Gr6bner basis,

it's impossible to determine if one has chosen enough generators.

Unfortunately, algorithms, such as Buchberger's algorithm, for determining a

Gr6bner basis are exteremely slow, and indeed there is no known bound on the run-

ning time. In contrast to this, in the graphical case of the zonotopal algebras in this

paper we have demonstrated that if one takes the center point (or closest such point)

of the Newton polytope for each generator and generates this ideal, one obtains a

monomial ideal with the same Hilbert series in constant time. Some examples of the

amount of time taken using standard Gr6bner basis techniques can be found in Table

5.2.

Note that running time is not the only limitation. Indeed, time was not the

primary limitation in performing the comparison. Even on a computer with a memory

cache of 24Gb, the computation runs out of memory even for graphs with just 8

vertices, essentially because the size of the Gr5bner and its constituent parts gets so

large. In contrast, the size of the monomization is, of course, fixed and equal to the

number of generators of the original ideal. As an example, for the complete graph on

6 vertices, using the lexicographic ordering on monomials, the Gr6bner basis found

using Singular had 123 elements, while the monomization of course has 31 = 2' - 1

generators. Perhaps, though, it is possible that a sort of centrally symmetric Gr6bner

theory could be developed for these ideals which would allow the case of the internal

algebra to be solved by adding more generators, or modifying the generators used.

Somehow the difficulty with Gr6bner bases is that they ignore any symmetry in the

ideal, looking only at the vertices (indeed one vertex) of the Newton polytope.

It should be added, even once the initial ideal or monomization has been found,

the process of determining the Hilbert Series, although essentially combinatorial, is

still fairly slow, and in fact is NP-complete [2]. This is a problem which we do not

attempt to solve at this time.

The last connection with Gr6bner theory regards the Hilbert scheme of points.

Because the Hilbert scheme is a fine moduli space, the existence of flat deformation

over I from I to in(I) implies that the two points on the Hilbert scheme are con-



Graph Time elapsed

0

1 6

2 3 min. 5 see.

4

0

1 6

2 42 min. 6 sec.

4

0

1 6

2 3 days 21 hrs. 32 min.

4

Table 5.2: Time elapsed in computing the Hilbert series of AG,1 using Gr5bner basis
techniques. Using monomization takes less than the timer in Singular can record.



nected by a smooth rational curve, and in particular lie on the same component.

This strong geometric statement is something we would like to investigate regarding

the monomizations. Because the connection between the geometry of the two fat

points corresponding to IG,k and JG,k is anything but obvious, I would be inclined

to conjecture that in general they do not lie on the same component. However, be-

cause JG,k is a monomial ideal it has a tendency to lie at the intersection of several

components, attempts to prove they lie on different components cannot be achieved

solely by looking at tangent space computations, which is the primary computational

tool in this regard. Therefore, greater knowledge of the component structure of the

Hilbert scheme of points is necessary, and this is known to be an extremely difficult

problem. Indeed, even in 3 variables, it is unknown which Hilbert schemes of points

have more than one component.

The punctual Hilbert scheme is a subscheme of the Hilbert scheme of points cor-

responding to fat points at the origin. Deformations of these fat points, and therefore

the geometry of the punctual Hilbert scheme, is even more subtle, and in fact little is

known about them when the number of variables is greater than 2, but investigating

the location of our ideals there would also be interesting.
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