
MIT Open Access Articles

Using memory mapping to support cactus
stacks in work-stealing runtime systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lee, I-Ting Angelina et al. "Using Memory Mapping to Support Cactus Stacks in Work-
Stealing Runtime Systems." in Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT '10, Sept. 11-15, 2010, Vienna, Austria.

As Published: http://dx.doi.org/10.1145/1854273.1854324

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/64623

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/64623
http://creativecommons.org/licenses/by-nc-sa/3.0/

Using Memory Mapping to Support Cactus Stacks in
Work-Stealing Runtime Systems

I-Ting Angelina Lee Silas Boyd-Wickizer Zhiyi Huang∗ Charles E. Leiserson

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139

ABSTRACT

Many multithreaded concurrency platforms that use a work-
stealing runtime system incorporate a “cactus stack,” wherein a
function’s accesses to stack variables properly respect the func-
tion’s calling ancestry, even when many of the functions operate
in parallel. Unfortunately, such existing concurrency platforms fail
to satisfy at least one of the following three desirable criteria:

• full interoperability with legacy or third-party serial binaries
that have been compiled to use an ordinary linear stack,

• a scheduler that provides near-perfect linear speedup on ap-
plications with sufficient parallelism, and

• bounded and efficient use of memory for the cactus stack.

We have addressed this cactus-stack problem by modifying the
Linux operating system kernel to provide support for thread-local

memory mapping (TLMM). We have used TLMM to reimplement
the cactus stack in the open-source Cilk-5 runtime system. The
Cilk-M runtime system removes the linguistic distinction imposed
by Cilk-5 between serial code and parallel code, erases Cilk-5’s
limitation that serial code cannot call parallel code, and provides
full compatibility with existing serial calling conventions. The
Cilk-M runtime system provides strong guarantees on scheduler
performance and stack space. Benchmark results indicate that the
performance of the prototype Cilk-M 1.0 is comparable to the Cilk
5.4.6 system, and the consumption of stack space is modest.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Virtual mem-

ory; D.3.4 [Programming Languages]: Processors—Run-time en-

vironments.

General Terms

Experimentation, Languages, Performance.

∗Zhiyi Huang is Senior Lecturer in the Department of Computer Science
at University of Otago in New Zealand and was a Visiting Scientist at MIT
during the course of this research.
This work was supported in part by the National Science Foundation under
Grants 0540248 and 0615215.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Keywords

Work stealing, memory mapping, cactus stack, Cilk, interoperabil-
ity, serial-parallel reciprocity.

1. INTRODUCTION
Work stealing [2, 6–9, 11–13, 16, 18, 21, 23, 24, 33, 38] is fast

becoming a standard way to load-balance dynamic multithreaded
computations on multicore hardware. Concurrency platforms that
support work stealing include Cilk-1 [6],1 Cilk-5 [16], Cilk++ [28],
Fortress [1], Hood [8], Java Fork/Join Framework [26], Task Paral-
lel Library (TPL) [27], Threading Building Blocks (TBB) [34], and
X10 [10]. Work stealing admits an efficient implementation that
guarantees bounds on both time and stack space [7,16], but existing
implementations that meet these bounds — including Cilk-1, Cilk-
5, and Cilk++ — suffer from interoperability problems with legacy
(and third-party) serial binary executables that have been compiled
to use a linear stack.2 This paper addresses the question of how an
operating system can support algorithmically sound work-stealing
concurrency platforms that interoperate seamlessly with legacy se-
rial binaries.

An execution of a serial Algol-like language, such as C [22]
or C++ [36], can be viewed as a “walk” of an invocation tree,
which dynamically unfolds during execution and relates function
instances by the “calls” relation: if function instance A calls func-
tion instance B, then A is a parent of the child B in the invocation
tree. Such serial languages admit a simple array-based stack for
allocating function activation frames. When a function is called,
the stack pointer is advanced, and when the function returns, the
original stack pointer is restored. This style of execution is space
efficient, because all the children of a given function can use and
reuse the same region of the stack. The compact linear-stack rep-
resentation is possible only because in a serial language, a function
has at most one extant child function at any time.

In a multithreaded language, such as Cilk-5 [16] or Cilk++ [28],
a parent function can also spawn a child — invoke the child without
suspending the parent — thereby creating parallelism. The notion
of an invocation tree can be extended to include spawns, as well as
calls, but unlike the serial walk of an invocation tree, a parallel exe-
cution unfolds the invocation tree more haphazardly and in parallel.
Since multiple children of a function may exist simultaneously, a
linear-stack data structure no longer suffices for storing activation
frames. Instead, the tree of extant activation frames forms a cactus

stack [19], as shown in Figure 1. The implementation of cactus

1Called “Cilk” in [6], but renamed “Cilk-1” in [16] and other MIT docu-
mentation.
2Although Fortress, Java Fork/Join Framework, TPL, and X10 employ
work stealing, they do not suffer from the same interoperability problems,
because they are byte-code interpreted by a virtual-machine environment.

A

C

(a)

A

ED

A

C

(b)

A

A A

C

D

A

C

B C D E

B
B

E

Figure 1: A cactus stack. (a) The invocation tree, where function A invokes
B and C, and C invokes D and E. (b) The view of the stack by each of the
five functions. In a serial execution, only one view is active at any given
time, because only one function executes at a time. In a parallel execution,
however, if some of the invocations are spawns, then multiple views may be
active simultaneously.

stacks is a well-understood problem for which low-overhead im-
plementations exist [16, 17].

In all known software implementations, however, transitioning
from serial code (using a linear stack) to parallel code (using a
cactus stack) is problematic, because the type of stack impacts the
calling conventions used to allocate activation frames and pass ar-
guments. We call the property of allowing arbitrary calling be-
tween parallel and serial code — including especially legacy (and
third-party) serial binaries — serial-parallel reciprocity, or SP-

reciprocity for short.
SP-reciprocity is especially important if one wishes to multicore-

enable legacy object-oriented environments by parallelizing an ob-
ject’s member functions. For example, suppose that a function A

allocates a new object x whose type has a member function foo(),
which we parallelize. Now, suppose that A is linked with a legacy
binary containing a function B, and A passes x to B, which proceeds
to invoke x.foo(). Without SP-reciprocity, this simple callback
does not work.

Existing work-stealing concurrency platforms that support SP-
reciprocity fail to provide provable bounds on either scheduling
time or consumption of stack space. These bounds typically fol-
low those of Blumofe and Leiserson [7]. Let T1 be the work of a
deterministic computation — its serial running time — and let T∞

be the span3 of the computation — its theoretical running time on
an infinite number of processors. Then, a work-stealing scheduler
can execute the computation on P processors in time

Tp ≤ T1/P+ c∞T∞ , (1)

where c∞ > 0 is a constant representing the span overhead. This
formula guarantees linear speedup when P ≪ T1/T∞, that is, the
number P of processors is much less than the computation’s par-

allelism T1/T∞. Moreover, if S1 is the stack space of a serial ex-
ecution, then the (cactus) stack space SP consumed during a P-
processor execution satisfies

SP ≤ PS1 . (2)

Generally, we shall measure stack space in hardware pages, where
we leave the page size unspecified. Many systems set an upper
bound on S1 of 256 4-KByte pages.

We refer to the problem of simultaneously achieving the three
criteria of SP-reciprocity, a good time bound, and a good space
bound, as the cactus-stack problem. In this paper, we show
how operating-system support for thread-local memory mapping

(TLMM) allows a work-stealing runtime system to support full

3“Span” is sometimes called “critical-path length” and “computation
depth” in the literature.

SP-reciprocity, so that a cactus stack interoperates seamlessly with
the linear stack of legacy binaries, while simultaneously providing
bounds on scheduling time and stack space. Whereas thread-local
storage [35] gives each thread its own local memory at different
virtual addresses within shared memory, TLMM allows a portion
of the virtual-memory address space to be mapped independently
by the various threads. We implemented a prototype TLMM-Linux
operating system by modifying the page table maintained by the
open-source Linux 2.6.29 kernel.

We also implemented a prototype Cilk-M concurrency platform,
called Cilk-M 1.0, by modifying the open-source Cilk-5 runtime
system4 to use a TLMM-based cactus stack. The Cilk-Mworker

threads, which comprise the distributed scheduler, allow the user
code to operate using traditional linear stacks, while the runtime
system implements a cactus stack behind the scenes using TLMM
support. Since TLMM allows the various worker stacks to be
aligned, pointers to ancestor locations on the cactus stack are deref-
erenced correctly no matter which worker executes the user code.

Our prototype TLMM-Linux operating system and prototype
Cilk-M 1.0 runtime system solve the cactus-stack problem. In Cilk-
M, we define a Cilk function to be a function that spawns, and the
Cilk depth of an application to be the maximum number of Cilk
functions nested on the stack during a serial execution. Suppose
that an application has work T1, span T∞, consumes stack space S1

on one processor, and has a Cilk depth D. Then, analogously to
Inequalities (1) and (2), the Cilk-M scheduler executes the compu-
tation on P processors in time

Tp ≤ T1/P+ c∞T∞ , (3)

where c∞ = O(S1 +D), and it consumes stack space

SP ≤ P(S1 +D) . (4)

Inequality (3) guarantees linear speedup when P≪ T1/(S1+D)T∞.
We have compared Cilk-M 1.0 to the original Cilk 5.4.6 on a

variety of benchmarks in the Cilk-5 distribution. These studies in-
dicate that the time overhead for managing the cactus stack with
TLMM is generally as good or better than Cilk-5. The per-worker
consumption of stack space in Cilk-M 1.0 on these benchmarks was
no more than 2.5 times the serial space requirement. Moreover, the
overall space consumption (including both stack and heap) of Cilk-
M 1.0 is comparable to or better than that of Cilk-5.

The remainder of this paper is organized as follows. Section 2
provides background on work-stealing schedulers and cactus stacks
using Cilk-5 as a model. Section 3 describes a range of conven-
tional approaches that fail to solve the cactus-stack problem. Sec-
tion 4 describes how Cilk-M leverages TLMM support to solve
the cactus-stack problem. Section 5 describes the implementation
of the prototype TLMM-Linux operating system. Section 6 ana-
lyzes the performance and space usage of the Cilk-M 1.0 prototype
both theoretically and empirically. Section 7 sketches an alternative
scheme to TLMM which also uses memory mapping but does not
require operating-system support. Section 8 provides some con-
cluding remarks.

2. CACTUS STACKS
This section describes how a work-stealing scheduler manipu-

lates its cactus stack using Cilk-5 [16] as an exemplar. We cover
in some detail how the Cilk-5 runtime system operates, because its
runtime system forms the basis of Cilk-M 1.0 . We briefly review
the theoretical bounds on space and time provided by Cilk-5.

4The open-source Cilk-5 system is available at http://supertech.
csail.mit.edu/cilk/cilk-5.4.6.tar.gz.

Before we dive into how the Cilk-5 work-stealing scheduler
works, we first overview its linguistic model. Cilk-5 is a fork-join
programming language, which permits dynamic creation of paral-
lelism. More specifically, Cilk-5’s linguistic constructs allow the
programmer to denote the logical parallelism of the program rather
than the actual parallelism at execution time. The Cilk-5 work-
stealing scheduler [4, 7] respects the logical parallelism specified
by the programmer while guaranteeing that programs take full ad-
vantage of the processors available at runtime.

Cilk-5 extends C with two main keywords: spawn and sync.5

Parallelism is created using the keyword spawn. When a function
call is preceded by the keyword spawn, the function is spawned

and the scheduler may continue to execute the continuation of the
caller in parallel with the spawned subroutine without waiting for
it to return. The complement of spawn is the keyword sync, which
acts as a local barrier and joins together the parallelism forked by
spawn. The Cilk-5 runtime system ensures that statements after a
sync are not executed until all functions spawned before the sync

statement have completed and returned.
Cilk-5’s work-stealing scheduler load-balances parallel execu-

tion across the available worker threads. Cilk-5 follows the “lazy
task creation” strategy of Kranz, Halstead, and Mohr [23], where
the worker suspends the parent when a child is spawned and be-
gins work on the child.6 Operationally, when the user code running
on a worker encounters a spawn, it invokes the child function and
suspends the parent, just as with an ordinary subroutine call, but
it also places the parent frame on the bottom of a deque (double-
ended queue). When the child returns, it pops the bottom of the
deque and resumes the parent frame. Pushing and popping frames
from the bottom of the deque is the common case, and it mirrors
precisely the behavior of C or other Algol-like languages in their
use of a stack.

The worker’s behavior departs from ordinary serial stack exe-
cution if it runs out of work. This situation can arise if the code
executed by the worker encounters a sync. In this case the worker
becomes a thief , and it attempts to steal the topmost (oldest) frame
from a victim worker. Cilk-5’s strategy is to choose the victim ran-
domly, which can be shown [7, 16] to yield provably good perfor-
mance. If the steal is successful, the worker resumes the stolen
frame.

Another situation where a worker runs out of work occurs if it
returns from a spawned child to discover that its deque is empty. In
this case, it first checks whether the parent is stalled at a sync and
if this child is the last child to return. If so, it performs a joining

steal and resumes the parent function, passing the sync at which
the parent was stalled. Otherwise, the worker engages in random
work-stealing as in the case when a sync was encountered.

The analysis of the Cilk-5 scheduler’s performance is compli-
cated (see [7]), but at a basic level, the reason it achieves the bound
in Inequality (1) is that every worker is either working, in which
case it is chipping away at the T1/P term in the bound, or work-
stealing, in which case it has a good probability of making progress
on the T∞ term. If the scheduler were to wait, engage in bookkeep-
ing, or perform any action that cannot be amortized against one
of these two terms, the performance bound would cease to hold,

5Cilk-5 includes three additional keywords, cilk, inlet, and abort. The
cilk keyword is a modifier so that the type system can preclude calls from
C functions to Cilk functions. The inlet and abort keywords provide
advanced features, including support for programs with speculative compu-
tation, which are orthogonal to the stack issues we are investigating.
6An alternative strategy is for the worker to continue working on the parent,
and have thieves steal spawned children. Cilk-1 [6], TBB [34], and TPL
[27] employ this strategy, but it can require unbounded bookkeeping space
even on a single processor.

SP- Time Space

Strategy Reciprocity Bound Bound

1. Recompile everything no very strong very strong
2. One stack per worker yes very strong no
3. Depth-restricted stealing yes no very strong
4. Limited-depth stacks yes no very strong
5. New stack when needed yes very strong weak
6. Recycle ancestor stacks yes strong weak
7. TLMM cactus stacks yes strong strong

Figure 2: Attributes of different strategies for implementing cactus stacks.

and in the worst case, result in much less than linear speedup on a
program that has ample parallelism.

The analysis of the Cilk-5 scheduler’s space usage is more
straightforward. The scheduler maintains the so-called busy-leaves

property [7], which says that at every moment during the execu-
tion, every extant — allocated but not yet deallocated — leaf of the
spawn tree has a worker executing it. The bound on stack space
given in Inequality (2) follows directly from this property. Observe
that any path in the spawn tree from a leaf to the root corresponds to
a path in the cactus stack, and the path in the cactus stack contains
no more than S1 space. Since there are P workers, PS1 is an upper
bound on stack space (although it may overcount). Tighter bounds
on stack space have been derived for specific applications [5] using
the Cilk-5 scheduler and for other schedulers [3].

3. THE CACTUS-STACK PROBLEM

SEEMS HARD
This section overviews challenges in supporting SP-reciprocity

while maintaining bounds on space and time, illustrating the dif-
ficulties that various traditional strategies encounter. Figure 2 cat-
egorizes attributes of the strategies of which we are aware. This
list of strategies is not exhaustive but is meant to illustrate the chal-
lenges in supporting SP-reciprocity while maintaining bounds on
space and time, and to motivate why naive solutions to the cactus-
stack problem do not work. We now overview these strategies.

The main constraint on any strategy is that once a frame has been
allocated, its location in virtual memory cannot be changed, be-
cause generally, there may be a pointer to a variable in the frame
elsewhere in the system. Moreover, the strategies must respect the
fact that a legacy binary can act as an adversary, allocating stor-
age on the stack at whatever position the stack pointer happens to
lie. Thus, when a legacy function is invoked, the runtime system
has only one “knob” to dial — namely, choosing the location in
virtual memory where the stack pointer points — and there bet-
ter be enough empty storage beneath that location for all the stack
allocations that the binary may choose to do. (Many systems as-
sume that a stack can be as large as 1 MByte.) A strategy does have
the flexibility to choose how it allocates memory in parallel code,
that is, code that spawns, since that is not legacy code, and it can
change the stack pointer. It must ensure, however, that when it in-
vokes legacy serial code, there is sufficient unallocated storage on
the stack for whatever the legacy serial code’s needs might be.

Strategy 1: Recompile everything

This approach allocates frames off the heap and “eats the whole
elephant” by recompiling all legacy serial functions to use a call-
ing convention that directly supports a cactus stack. Very strong
time and space bounds can be obtained by Strategy 1, and it al-
lows serial code to call back to parallel code, but it does not pro-
vide true SP-reciprocity, since serial functions in legacy (and third-
party) binary executables, which were compiled assuming a lin-
ear stack, cannot call back to parallel code. Cilk++ [20] employs

this strategy. An interesting alternative is to use binary-rewriting
technology [25, 31, 32] to rewrite the legacy binaries so that they
use a heap-allocated cactus stack. This approach may not be feasi-
ble due to the difficulty of extracting stack references in optimized
code. Moreover, it may have trouble obtaining good performance
because transformations must err on the side of safety, and dynam-
ically linked libraries might need to be rewritten on the fly, which
would preclude extensive analysis.

Strategy 2: One stack per worker

This strategy gives each worker an ordinary linear stack. Whenever
a worker steals work, it uses its stack to execute the work. For ex-
ample, imagine that a worker W1 runs parallel function foo, which
spawns A. While W1 executes A, another worker W2 steals foo and
resumes the continuation of foo by setting its base pointer to the top
of foo, which resides on W1’s stack, and setting its stack pointer to
the next available space in its own stack, so that the frames of any
function called or spawned by foo next is allocated on W2’s stack.

With Strategy 2, the busy-leaves property no longer holds, and
the stacks can grow much larger than S1. In particular, W1 must
steal work if foo is not yet ready to sync when W1 returns from A.
Since foo is not ready to be resumed and cannot be popped off the
stack, W1 can only push the next stolen frame below foo. If foo is
already deep in the stack and W1 happens to steal a frame shallow
in the stack, then W1’s stack could grow almost as large as 2S1.
That is not so bad if it only happens once, but unfortunately, this
scenario could occur recursively, yielding impractically large stack
space consumption.

Strategy 3: Depth-restricted stealing

This approach is another modification of Strategy 2, where a
worker is restricted from stealing any frame shallower than the
bottommost frame on its stack. Thus, stacks cannot grow deeper
than S1. The problem with Strategy 3 is that a worker may be
unable to steal even though there is work to be done, sacrificing
the time bound. Indeed, Sukha [37] has shown that there exist
computations for which depth-restricted work-stealing exhibits at
most constant speedup on P workers, where ordinary work-stealing
achieves nearly perfect linear speedup. TBB [34] employs a heuris-
tic similar to depth-restricted work-stealing to limit stack space.

Strategy 4: Limited-depth stacks

This approach is similar to Strategy 2, except that a limit is put
on the depth a stack can grow. If a worker reaches its maximum
depth, it waits until frames are freed before stealing. The problem
with Strategy 4 is that the cycles spent waiting cannot be amortized
against either work or span, and thus the time bound is sacrificed,
precluding linear speedup on codes with ample parallelism.

Strategy 5: New stack when needed

This strategy, which is similar to Strategy 2, allocates a new stack
on every steal. In the scenario described in Strategy 2, when W1

goes off to steal work, Strategy 5 switches to a new stack to exe-
cute the stolen work. Thus, nothing is allocated below foo, which
avoids the unbounded space blowup incurred by Strategy 2.

Since Strategy 5 maintains the busy-leaves property, the total
physical memory used for extant frames at any given moment is
bounded by PS1. The extant frames are distributed across stacks,
however, where each stack may contain as little as a single ex-
tant frame. Since each stack may individually grow as large as S1

over time and the stacks cannot be recycled until they contain no
extant frames, the virtual-address space consumed by stacks may
grow up to DPS1, where D is the Cilk depth (defined in Section 1),

a weak bound. Moreover, Strategy 5 may incur correspondingly
high swap-space usage. Swap space could be reduced by directing
the operating system to unmap unused stack frames when they are
popped so that they are no longer backed up in the swap space on
disk, but this scheme seems to laden with overhead. It may be pos-
sible to implement the reclamation of stack space lazily, however.

Strategy 6: Reuse ancestor stacks

This scheme is like Strategy 5, but before allocating a new stack af-
ter stealing a frame, it checks whether an ancestor of the frame
is suspended at a sync and that the ancestor is the bottommost
frame on the stack. If so, it uses the ancestor’s stack rather than
a new one. Strategy 6 is safe, because the ancestor cannot use the
stack until all its descendants have completed, which includes the
stolen frame. Although Strategy 6 may cut down dramatically on
space compared with Strategy 5, it has been shown [14] to still
require at least Ω(P2S1) stack space for some computations. As
with Strategy 7, the time bound obtained with this strategy exhibits
some additional steal overhead compared to Inequality (2), which
results from the traversal of ancestors’ frames when searching for
a reusable stack.

Strategy 7: TLMM cactus stacks

The strategy employed by Cilk-M and explored in this paper. In
particular, we obtain the strong bounds given by Inequalities (3)
and (4).

4. Cilk-M
Cilk-M leverages TLMM to solve the cactus-stack problem by

modifying the Cilk-5 runtime system in two key ways. First,
whereas Cilk-5 uses a heap-allocated cactus stack, Cilk-M uses a
linear stack in each worker, fusing them into a cactus stack using
TLMM. Second, whereas Cilk-5 uses a special calling convention
for parallel functions and forbids transitions from serial code to
parallel code, Cilk-M uses standard C subroutine linkage for se-
rial code and compatible linkage for parallel code. This section
describes how the Cilk-M runtime system implements these two
modifications.

The Cilk-M cactus stack

A traditional operating system provides each process with its own
virtual-address space. No two processes share the same virtual-
address space, and all threads within a given process share the pro-
cess’s entire virtual-address space. TLMM, however, designates
a region of the process’s virtual-address space as “local” to each
thread. This special TLMM region occupies the same virtual-
address range for each thread, but each thread may map differ-
ent physical pages to the TLMM region. The rest of the virtual-
address space outside of the TLMM region remains shared among
all threads within the process.

Recall that any strategy for solving the cactus-stack problem
must obey the constraint that once allocated, a stack frame’s lo-
cation in virtual memory cannot be moved. Cilk-M respects this
constraint by causing each worker thread to execute user code on
a stack that resides in its own TLMM region. Whenever a suc-
cessful steal occurs, the thief memory-maps the stolen frame and
the ancestor frames in the invocation tree — the stolen stack pre-

fix — so that these frames are shared between the thief and victim.
The sharing is achieved by mapping the physical pages correspond-
ing to the stolen stack prefix into the thief’s stack, with the frames
occupying the same virtual addresses at which they were initially
allocated. Since the physical pages corresponding to the stack pre-
fix are mapped to the same virtual addresses, a pointer to a local

0x7d000

E

A AA

W1 W2 W30x7f000

B

C

D

C

0x7e000

Figure 3: The view of stacks mapped in the TLMM region of each worker.
The stack layout corresponds to the execution of the invocation tree shown
in Figure 1. The horizontal lines indicate page boundaries, and the hexadec-
imal values on the left correspond to the virtual-memory addresses.

variable in a stack frame references the same physical location no
matter whether the thief or the victim dereferences the pointer.

Consider the invocation tree shown in Figure 1(a) as an exam-
ple. Imagine three workers working on the three extant leaves B,
D, and E. Figure 3 illustrates the corresponding TLMM region for
each worker. Upon a successful steal, Cilk-M must prevent mul-
tiple extant children frames from colliding with each other. For
instance, worker W1 starts executing A, which spawns B and worker
W2 steals A from W1, maps the stack prefix (i.e., the page where A

resides) into its stack, resumes A, and subsequently spawns C. In
this case, W2 cannot use the portion of the page below frame A,
because W1 is using it for B. Thus, the thief, W2 in this example,
advances its stack pointer to the next page boundary upon a suc-
cessful steal.

Continuing with the example, W2 executes C, which spawns D.
Worker W3 may steal A from W2 but, failing to make much progress
on A due to a sync, be forced to steal again. In this case, W3 happens
to steal from W2 again, this time stealing C. Thus, W3 maps into its
stack the pages where A and C reside, aligns its stack pointer to
the next page boundary to avoid conflicting with D, resumes C, and
spawns E.7 In this example, W1 and W2 each map 2 pages in their
respective TLMM regions, and W3 maps 3. The workers use a total
of 4 physical pages: 1 page for each of A, C, and E, and an additional
page for B. Function D is able to share a page with C.

Upon a successful steal, the thief always advances its stack
pointer to the next page boundary before resuming the stolen par-
ent frame to avoid conflicting with the parallel child executing on
the victim. Advancing the stack pointer causes the thief’s stack to
be fragmented.8 Cilk-M mitigates fragmentation by employing a
space-reclaiming policy in which the stack pointer is reset to the
bottom of the frame upon a joining steal or a successful sync. This
space-reclaiming policy is safe, because all other parallel subcom-
putations previously spawned by the frame have returned, and so
the executing worker is not sharing this portion of the stack with
any other worker.

Since a worker’s TLMM region is not addressable by other work-
ers, one deficiency of the TLMM strategy for implementing cactus
stacks is that it does not support legacy serial binaries where the
stack must be visible externally to other threads. For instance, an
application that uses MCS locks [30] might allocate nodes for the
lock queues on the local stack, rather than out of the heap. This

7Actually, this depiction omits some details. We shall elaborate more fully
later in this section.
8An alternative strategy to prevent collision is to have workers to always
spawn at a page boundary. This strategy, however, would cause more frag-
mentation of the stack space and potentially use more physical memory.

A’s

pointer
base

stack
pointer

A’s parent’s base pointer
A’s return address

A’s local variables

A’s linkage region

B’s return address
A’s base pointer

B’s local variables

B’s linkage region

B’s
frame

frame

Figure 4: The layout of a linear stack with two frames. The figure shows a
snapshot of a linear stack during execution, where A has called the currently
executing function B. The figure labels the stack frame for each function on
the right and marks the current base and stack pointers on the left.

code would generally not work properly under Cilk-M, because
the needed nodes might not be visible to other threads. This is-
sue seems to be more theoretical than practical, however, because
we are unaware of any legacy applications that use MCS locks in
this fashion or otherwise need to see another worker’s stack. Nev-
ertheless, the limitation is worth noting.

Cilk-M’s calling convention

TLMM allows Cilk-M to support a cactus stack in which a frame
can pass pointers to local variables to its descendants, but additional
care must be taken to ensure that transitions between serial and
parallel code are seamless. Specifically, the parallel code must use
calling conventions compatible with those used by serial code.

Before we present Cilk-M’s calling convention, we digress for a
moment to outline the calling convention used by ordinary C func-
tions. The calling convention described here is based on the x86
64-bit architecture [29], the platform on which we implemented
the Cilk-M 1.0 system.

Figure 4 illustrates the stack-frame layout for a linear stack, as-
suming that the stack grows downward, where function A calls
function B. The execution begins with frame A on the stack, where
the frame contains (from top to bottom) A’s return address, A’s
caller’s base pointer, and some space for storing A’s local variables
and passing arguments. Typically, arguments are passed via reg-
isters. If the argument size is too large, or when there are more
arguments than the available registers, some arguments are passed
via memory. We refer to these arguments as memory arguments

and the region of frame where memory arguments are passed as the
linkage region.

Modern compilers generate code in the function prologue to re-
serve enough space in the frame for the function’s local variables,
as well as a linkage region large enough to pass memory arguments
to any potential child function that the function may invoke, which
takes an extra compiler pass to compute. Thus, in this example,
when A calls B, the execution simply moves values to A’s linkage
region. Even though this linkage region is reserved by A’s prologue
and is considered part of A’s frame, it is accessed and shared by
both A and A’s callee (e.g., B). Function A may access the area via
either positive offset from A’s stack pointer or, if the exact frame
size is known at compile time, negative offset from its base pointer.
On the other hand, A’s callee typically accesses this area to retrieve
values for its parameters via positive offset from its base pointer,
but it could also access this area via its stack pointer if the frame
size is known at compile time.

This calling convention assumes a linear stack where a parent’s

frame lies directly above its child’s frame and the shared linkage re-
gion is sandwiched between the two frames. All children of a given
function access the same linkage region to retrieve memory argu-
ments, since the calling convention assumes that during an ordinary
serial execution, at most one child function exists at a time. While
these assumptions are convenient for serial code, it is problematic
for parallel code employing work stealing, because multiple ex-
tant children cannot share the same linkage region. Furthermore, a
gap may exist between the parent frame and the child frame in the
TLMM-based cactus stack if the child frame is allocated immedi-
ately after a successful steal.

To circumvent these issues while still obeying the calling con-
vention, workers in Cilk-M allocate a fresh linkage region immedi-
ately upon a successful steal by advancing the stack pointer a littler
further beyond the next page boundary.9 This strategy allocates the
linkage region immediately above the child frame and allows ad-
ditional linkage region to be created only when parallel execution
occurs. Since multiple linkage regions may exist for multiple ex-
tant children, some care must be taken so that the parent passes the
memory arguments via the appropriate linkage region, which we
elaborate next.

Implementation of Cilk-M 1.0

We implemented Cilk-M 1.0 by modifying the Cilk 5.4.6 runtime
system to use a TLMM-based cactus stack. The Cilk-M 1.0 run-
time system also differs from the Cilk-5 runtime system in that it
supports SP-reciprocity: a Cilk function may be called as well as
spawned. If a Cilk function is spawned, it may execute in paral-
lel with the continuation of its parent. If it is called, while it may
execute in parallel with its children, the continuation of its parent
cannot be resumed until it returns. Therefore, the runtime system
must be aware of how a function is invoked. Maintaining the cor-
rect call/spawn semantics during execution is mainly a matter of
handling the runtime data structure differently. Many of the imple-
mentation details of the Cilk-M 1.0 runtime resemble those of the
Cilk++ runtime system, and we refer interested readers to [15].

To ensure execution correctness and to obey the Cilk-M calling
convention, all the compiled Cilk functions maintain the following
invariants:

1. All memory arguments are passed by stack pointer with pos-
itive offset.

2. All local variables are referenced by base pointer with nega-
tive offset.

3. Before each spawn statement, all live registers are flushed
onto the stack.

4. If sync fails, all live registers are flushed onto the stack.

5. When resuming a stolen function after a spawn or sync state-
ment, restore live register values from the stack.

6. When a call or spawn returns, flush the return value from the
register onto the stack.

7. The frame size is fixed before any spawn statement.

Invariants 1 and 2 ensure correct execution in the event where a
gap exists between the frames of the caller and the callee. Using
the stack pointer to pass arguments to the child frame ensures that
the arguments are stored right above the child frame. Similarly,
the locals need to be referenced by the base pointer with negative
offset, since the stack pointer may have changed.

9For simplicity, Cilk-M 1.0 reserves a fixed amount, 128 bytes, for each
linkage region. Had we built a Cilk compiler, it would calculate the space
required for each linkage region and pass that information to the runtime.

thread0 thread1

page0heap .datapage2 page1

Figure 5: Example of a x86 64-bit page-table configuration for two threads
on TLMM-Linux. The portion of the data structure dealing with the TLMM
region is shaded light grey, and the remainder corresponding to the shared
region is shaded dark grey. In the TLMM region, thread0 maps page2 first
and then page0, whereas thread1 maps page1 first and then page0. The
pages associated with the heap and the data segments are shared between
the two threads.

Invariants 3–6 ensure that a thief resuming the stolen function
accesses the most up-to-date local variable values, including re-
turn values from subroutines. This method is analogous to Cilk-5’s
strategy of saving execution states in heap-allocated frames [16].
Cilk-M 1.0 adapts the strategy to store live values directly on the
stack, which is more efficient.

Finally, although Invariant 7 is not strictly necessary, it is a con-
venient simplification, because it ensures that a frame is allocated
in contiguous virtual-address space. Since a frame may be stolen
many times throughout the computation, if we were to allow a thief
to allocate more stack space upon a successful steal, the frame al-
location would end up fragmented and allocated in noncontiguous
virtual-address space.

We did not build a Cilk-M compiler. To evaluate the Cilk-M
1.0 runtime system, we manually hand-compiled the set of bench-
marks using gcc’s inline-assembly feature to force the compiler to
generate the desired assembly code. Ideally, a Cilk-M compiler
would produce code satisfying the above invariants which is more
optimized than our hand-compiled benchmarks.

5. SUPPORT FOR TLMM
TLMM provides the memory abstraction to allow workers to re-

serve a part of the virtual address range to be mapped indepen-
dently while keeping the rest shared. We modified the Linux kernel
to implement TLMM, referred as TLMM-Linux, which provides
a low-level virtual-memory interface organized around allocating
and mapping physical pages. The design attempts to impose as
low overhead as possible while allowing the Cilk-M 1.0 runtime
system to implement its work-stealing protocol efficiently. In ad-
dition, the design tries to be as general as possible so that the API
can be used by other user-level utilities, applications, and runtime
systems besides Cilk-M. This section describes the implementation
of TLMM-Linux and the TLMM interface.

TLMM Implementation

We implemented TLMM for Linux 2.6.29 running on x86 64-
bit CPU’s, such as AMD Opterons and Intel Xeons. We added
about 600 lines of C code to manage TLMM virtual-memory map-
pings and modified several lines of the context-switch and memory-
management code to be compatible with TLMM.

Figure 5 illustrates the design. TLMM-Linux assigns a unique
root page directory to each thread in a process. The x86 64-bit
page tables have four levels, and the page directories at each level
contain 512 entries. One entry of the root-page directory is re-

addr_t sys_reserve(size_t n):
Reserve n bytes for the TLMM region, and return the start address.

pd_t sys_palloc(void):
Allocate a physical page, and return its descriptor.

sys_pfree(pd_t p):
Free the page descriptor p.

sys_pmap(pd_t p[], addr_t a):
Map the pages represented by the descriptors in p starting at virtual
address a.

Figure 6: System-call API for TLMM.

served for the TLMM region, which corresponds to 512-GByte of
virtual address space, and the rest of the entries correspond to the
shared region. Threads in TLMM-Linux share page directories that
correspond to shared region. Therefore, the TLMM-Linux virtual-
memory manager needs to synchronize the entries in each thread’s
root page directory and populate the shared lower-level page direc-
tories only once.

TLMM interface

Figure 6 summarizes the TLMM system call interface.
sys_reserve marks n bytes of the calling thread’s process
address space as the TLMM region and returns the starting address
of the region. sys_palloc allocates a physical page and returns its
page descriptor. A page descriptor is analogous to a file descriptor
and can be accessed by any thread in the process.10 sys_pfree

frees a page descriptor and its associated physical page.
To control the physical-page mappings in a thread’s TLMM re-

gion, the thread calls sys_pmap, specifying an array of page de-
scriptors to map, as well as a base address in the TLMM region at
which to begin mapping the descriptors. sys_pmap steps through
the array of page descriptors, mapping physical pages for each de-
scriptor to subsequent page-aligned virtual addresses, to produce a
continuous virtual-address mapping that starts at the base address.
A special page-descriptor value PD_NULL indicates that a virtual-
address mapping should be removed. Thus, a thief in Cilk-M that
finishes executing a series of functions that used a deep stack can
map a shorter stolen stack prefix with a single system call.

This low-level design for the TLMM-Linux interface affords a
scalable kernel implementation. One downside, however, is that
the kernel and the runtime system must both manage page descrip-
tors. The kernel tracks at which virtual addresses the page descrip-
tors are mapped. The runtime tracks the mapping between page
descriptors and stack pages so that a thief can remap its stack with
pages corresponding to the stolen prefix upon a successful steal. We
considered an alternative interface design where the TLMM-Linux
provides the cactus abstraction, rather than the Cilk-M runtime sys-
tem, and Cilk-M relies on the kernel to remap a thief’s stack upon a
successful steal. In this design, the runtime no longer needs to keep
track of the page mappings on the stacks, but a thief must acquire a
lock on the victim’s deque while the remapping takes place, which
may prevent other thieves from stealing from the same victim for a
longer period of time. Because of this performance consideration
and the fact that is perhaps overly specific to work-stealing sys-
tems, we chose the low-level interface over the cactus-abstraction
interface.

The most unfortunate aspect of the TLMM scheme for solving
the cactus-stack problem is that it requires a change to the operating

10To save some coding effort, our prototype TLMM-Linux implementation
supports a maximum of 500 page descriptors per process, because it em-
ploys a static map to keep track of the mappings between page descriptors
and physical pages. To relax this limitation, one could employ a dynamic
map, which would add little overhead, because the overhead of growing the
map can be amortized over many page allocations.

system. Section 7 sketches an alternative “workers-as-processes”
scheme, which, although it does not require operating-system sup-
port, has other deficiencies. Most of our theoretical and empirical
analysis for the TLMM scheme applies to the workers-as-processes
scheme as well.

6. EVALUATION
This section evaluates the Cilk-M system. We provide theoret-

ical bounds on stack space and running time, which, although not
as strong as those of Cilk-5, nevertheless provide reasonable guar-
antees. We compare Cilk-M 1.0’s empirical performance to that
of the original Cilk-5 system. The results indicate that Cilk-M 1.0
performs similarly to Cilk-5 and that the overhead for remapping
stacks is modest. Cilk-M 1.0’s consumption of stack space appears
to be well within the range of practicality, and its overall space con-
sumption (including stack and heap space) is comparable to that of
Cilk-5.

Theoretical bounds

We first analyze the consumption of stack space for an application
run under Cilk-M. Let S1 be the number of pages in a serial exe-
cution of the program, let SP be the number of pages that Cilk-M
consumes when run on P workers, and let D be the Cilk depth of
the application. The bound SP ≤ P(S1 +D) given in Inequality (4)
holds, because the worst-case stack depth of a worker is S1 +D

pages. This worst case occurs when every Cilk function on a stack
that realizes the Cilk depth D is stolen. The stack pointer is ad-
vanced to a page boundary for each of these D stolen frames, con-
tributing an extra D to the normal number S1 of pages in the stack.
Since there are P workers, the bound follows.

As we shall see from the benchmark studies, this upper bound is
loose in terms of actual number of pages. First, since different stack
prefixes are shared among workers, we are double-counting these
shared pages. Second, we should not expect, which the benchmark
studies bear out, that every frame on a stack is stolen. Moreover,
the space-reclaiming policy also saves space in practice. Neverthe-
less, the theoretical bound provides confidence that space utiliza-
tion cannot go drastically awry.

Cilk-M achieves the time bound Tp ≤ T1/P+ c∞T∞ given in In-
equality (3), where T1 is the work of the program, let T∞ be its span,
and c∞ = O(S1 +D). The proof of this bound requires theoretical
arguments beyond the scope of this paper. The bound reflects the
increased cost of a steal compared to the constant-time cost in Cilk-
5. In the worst case, every steal might need to map a nearly worst-
case stack of depth S1+D, which costs O(S1+D) time. The actual
bound can be proved using the techniques of [2] and [7], adapted
to consider the extra cost of stealing in Cilk-M .

As with the space bound, the time bound is loose, because the
worst-case behavior used in the proof is unlikely. One would not
normally expect to map an entire nearly worst-case stack on every
steal. Nevertheless, the bound provides confidence, because appli-
cations with sufficient parallelism are guaranteed to achieve near-
perfect linear speedup on an ideal parallel computer, as is assumed
by prior theoretical studies.

Empirical studies

Theoretical bounds alone, especially those based on asymptotic
analysis, do not suffice to predict whether a technology works in
practice, where the actual values of constants matter. In particular,
we had two main concerns when we started this work. The first
concern was whether the cost of entering and exiting the kernel
would be too onerous to allow a memory-mapping solution to the

Application Input Description

cholesky 4000/40000 Cholesky factorization

cilksort 108 Parallel merge sort

fft 226 Fast Fourier transform
fib 42 Recursive Fibonacci
fibx 280 Synthetic benchmark with deep stack
heat 2048×500 Jacobi heat diffusion
knapsack 32 Recursive knapsack
lu 4096 LU-decomposition
matmul 2048 Matrix multiply
nqueens 14 Count ways to place N queens
rectmul 4096 Rectangular matrix multiply
strassen 4096 Strassen matrix multiply

Figure 7: The 12 benchmark applications.

cactus-stack problem. The second concern was whether the frag-
mentation of the stack would consume too much space, rendering
the solution impractical. To address the first concern, we compared
the performance of Cilk-M 1.0 and Cilk-5 empirically on 12 appli-
cations. The benchmark results indicate that the two systems per-
form similarly, with Cilk-M 1.0 sometimes outperforming Cilk-5
despite the additional overhead for remapping the stacks. To ad-
dress the second concern, we profiled the stack space of the appli-
cations running on Cilk-M 1.0 with 16 cores. The data from this
experiment indicate that the per-worker consumption of stack space
on these benchmarks was at most a factor of 2.5 more than the serial
space requirement, which is modest. Due to the fragmentation of
the stack, Cilk-M 1.0 indeed has higher stack space overhead than
Cilk-5; as a trade-off, however, Cilk-5 tends to consume more heap
space than Cilk-M 1.0 due to the use of a heap-allocated cactus
stack. To better understand the trade-offs made between the two
runtime systems, we profiled the stack and heap space consump-
tion of each system running the applications with 16 cores. The
benchmark results indicate that the additional stack space overhead
in Cilk-M 1.0 is inexpensive when one considers the overall space
consumption.

General setup. We ran all experiments on an AMD Opteron
system with 4 quad-core 2 GHz CPU’s having a total of 8 GBytes
of memory. Each core on a chip has a 64-KByte private L1-data-
cache and a 512-KByte private L2-cache, but all cores on a chip
share a 2-MByte L3-cache.

We evaluated the system with 12 benchmark applications, all of
which are included in the Cilk-5 distribution except fibx, which
is a synthetic benchmark we devised to generate large stacks. Fig-
ure 7 provides a brief description of each application. Whereas
applications for Cilk-M 1.0 were hand-compiled as described in
Section 4, applications for Cilk-5 were compiled with the source-
to-source translator included in the Cilk-5 distribution to produce C
postsource. The postsources for both systems were compiled with
gcc 4.3.2 using -O2 optimization.

Relative performance. Figure 8 compares the performance of
the applications run on Cilk-M 1.0 and Cilk-5. For each application
we measured the mean of 10 runs on each of Cilk-M 1.0 and Cilk-
5, and the mean on each has standard deviation less than 3%. We
normalized the mean for Cilk-M 1.0 by the mean for Cilk-5. Cilk-
M 1.0 performs similarly to Cilk-5 for most of the applications and
is sometimes faster. These results indicate that the additional over-
head in Cilk-M 1.0 for remapping the stacks is modest and does
not impact application performance in general. Moreover, the good
performance on fib, which involves mostly spawning and function
calls and little computation per se, indicates that the Cilk-M linear-
stack-based calling convention is generally superior to the Cilk-5
heap-based one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cholesky

cilksort

fft fib fibx heat
knapsack

lu matmul

nqueens

rectmul

strassen

C
ilk

−
M

 r
el

at
iv

e
ex

ec
ut

io
n

tim
e

Figure 8: The relative execution time of Cilk-M 1.0 compared to Cilk-5 for
12 Cilk applications on 16 cores. Each value is calculated by normalizing
the execution time of the application on Cilk-M 1.0 with the execution time
of the application on Cilk-5.

Application D S1 S16/16 S1 +D

cholesky 12 2 3.19 14
cilksort 18 2 3.19 20
fft 22 4 3.75 26
fib 43 2 3.69 45
fibx 281 8 8.44 289
heat 10 2 2.38 12
knapsack 34 2 5.00 36
lu 10 2 3.19 12
matmul 22 2 3.31 24
nqueens 16 2 3.25 18
rectmul 27 2 4.06 29
strassen 8 2 3.13 10

Figure 9: Consumption of stack space per worker for 12 Cilk applications
running on Cilk-M 1.0 as measured in 4-KByte pages. The value D is the
Cilk depth of the application. The serial space S1 was obtained by running
the application on one processor. The value S16 was measured by taking the
maximum of 10 runs on 16 cores. Shown is the average space per worker
S16/16. The rightmost column shows the theoretical upper bound for con-
sumption of stack space per worker from Inequality (4).

Space utilization. Figure 9 shows the stack space consump-
tion of the benchmark applications running on Cilk-M 1.0 with 16
cores. Since the consumption of stack pages depends on schedul-
ing, it varies from run to run. We ran each application 10 times and
recorded the maximum number of pages used. Overall, the applica-
tions used less space than predicted by the theoretical bound, and
sometimes much less, confirming the observation that the upper
bound given in Inequality (4) is loose. Indeed, none of the appli-
cations used more than 2.5 times the stack space per worker of the
serial stack space.

Figure 10 shows the stack and heap space consumptions of the
benchmark applications running on Cilk-M 1.0 and on Cilk-5 with
16 workers. Both runtime systems employ an internal memory al-
locator that maintains local memory pools for workers to minimize
contention and a single global pool to rebalance the memory distri-
bution between local pools. The heap consumption is measured by
the total number of physical pages requested by the memory alloca-
tor from the operating system at the end of the execution.11 Again,
we ran each application 10 times and recorded the maximum num-
ber of pages used.

11This measurement does not include space for the runtime data structures
allocated at the system startup, which is relatively small, comparable be-
tween the two systems, and always fixed with respect to the number of
workers.

Cilk-M Cilk-5 Cilk-M Cilk-5 Cilk-M Cilk-5

Application S16 S16 H16 H16 Sum Sum

cholesky 51 16 193 345 244 361
cilksort 51 16 193 265 244 281
fft 60 48 169 1017 229 1065
fib 59 16 169 185 228 201
fibx 135 64 217 217 353 281
heat 38 16 209 273 247 289
knapsack 80 16 169 361 249 377
lu 51 16 185 265 236 281
matmul 53 16 169 257 222 273
nqueens 52 16 161 249 213 265
rectmul 65 32 169 240 234 272
strassen 50 16 161 417 211 433

Figure 10: Comparison of the overall stack and heap consumptions be-
tween Cilk-M 1.0 and Cilk-5 for 12 Cilk applications running with 16 work-
ers. The values were measured by taking the maximum of 10 runs on 16
cores, and measured in 4-KByte pages. The last two columns show the sum
of the stack and heap space consumptions for the two systems.

Across all applications, Cilk-M 1.0 uses about 2–4 times, and
in one case (i.e., knapsack) 5 times more pages on the stack, than
that of Cilk-5 due to fragmentation resulted from successful steals.
The additional space overhead caused by fragmentation is never
referenced by the runtime or the user code, however, and thus the
additional stack space usage does not cause memory latency. On
the other hand, Cilk-5 tends to use comparable or slightly more
the heap space used by Cilk-M 1.0 (less than 3 times more), ex-
cept for one application, fft. Since fft contains some machine
generated code for the base cases, the Cilk functions in fft con-
tain large number of temporary local variables that are used within
the functions but not across spawn statements. The cilk2c com-
piler used by Cilk-5 faithfully generates space for these variables
on the heap-allocated cactus stack, resulting in large heap space us-
age. With the same program, Cilk-M 1.0 uses the same amount of
stack space for these temporary local variables as however much
space a C compiler would allocate for them. Finally, when com-
paring the overall space consumption, Cilk-M 1.0 tends to use less
space than Cilk-5, except for fib and fibx. The Cilk functions in
these two applications have very few local variables, and therefore
their heap-allocated cactus stack in Cilk-5 consumes relatively little
space. Furthermore, fibx is a synthetic benchmark that we devised
to generate large stacks (i.e., with large Cilk depth), so Cilk-M 1.0
ends up having a deep stack for fibx.

7. AN ALTERNATIVE TO TLMM
Some may view TLMM as too radical a solution to the cactus-

stack problem, because it involves modifying the operating system.
This section considers another possible memory-mapping solu-
tion to the cactus-stack problem which does not require operating-
system support. The idea of the workers-as-processes scheme is to
implement workers as processes, rather than threads, but still use
memory mapping to support the cactus stack. This section sketches
a design for this alternative scheme and discusses its ramifications.

During the start-up of the workers-as-processes scheme, each
worker uses memory-mapping to share the heap and data segments
across the workers’ address spaces by invoking mmap with a desig-
nated file descriptor on the virtual-address range of where the heap
and data segments reside. Since processes by default do not share
memory, this strategy provides the illusion of a fully shared address
space for these segments. Since a thief needs access to the stolen
stack prefix of its victim, the runtime system also must memory-
map all the workers’ stacks to the file, recording the file offsets for
all pages mapped in the stacks so that they can be manipulated. In

addition, other resources — such as the file system, file descriptors,
signal-handler tables, and so on — must be shared, although at least
in Linux, this sharing can be accomplished straightforwardly using
the clone system call.

Although this workers-as-processes approach appears well worth
investigating, there are few complications that one needs to deal
with if this approach is taken. Here is a summary of challenges.

First, the runtime system would incur some start-up overhead to
set up the shared memory among workers. A particular complica-
tion would occur if the runtime system is initialized in the middle of
a callback from C to Cilk for the first time. In this case, the runtime
system must first unmap the existing heap segment used by the C
computation, remap the heap segment with new pages so that the
mapping is backed up by a file (so as to allow sharing), and copy
over the existing data from the old mapping to the new mapping.

Second, it seems that the overhead for stealing would increase.
If m is the number of pages that a thief must map to install its vic-
tim’s stack prefix, the thief might need to invoke mmap m times,
once for each address range, rather than making a single call as
with our TLMM implementation, because it is unlikely that con-
secutive pages in the stolen prefix reside contiguously in the desig-
nated file. These m calls would result in 2m kernel crossings, and
thus increase the steal overhead. One might imagine an mmap in-
terface to that would support mapping of multiple physical pages
residing in a noncontiguous address range, but such an enhance-
ment would involve a change to the operating system, exactly what
the workers-as-processes scheme tries to avoid.

Finally, and perhaps most importantly, workers-as-processes
makes it complicated to support system calls that change the ad-
dress space, such as mmap and brk. When one worker invokes
mmap to map a file into shared memory, for example, the other
workers must do the same. Thus, one must implement a proto-
col to synchronize all the workers to perform the mapping before
allowing the worker that performed the mmap to resume. Other-
wise, a race might occur, especially if the application code com-
municates between workers through memory. This protocol would
likely be slow because of the communication it entails. Further-
more, in some existing implementation of system calls library such
as glibc, calling malloc with size larger than 128 KBytes results
in invoking mmap to allocate a big chunk of memory. Therefore,
with this scheme, one would need to rewrite the glibc library to
intercept the mmap call and perform the synchronization protocol
among workers for the newly allocated memory as well.

Despite these challenges, the workers-as-processes “solution”
appears to be an interesting research direction. It may be that hybrid
schemes exist which modify the operating system in a less intrusive
manner than what TLMM does, for example, by allowing noncon-
tiguous address ranges in mmap, by supporting mmap calls across
processes, etc. We adopted TLMM’s strategy of sharing portions
of the page table, because we could explore a memory-mapping
solution with relatively little engineering effort. Our work focuses
more on such solution’s implication on the runtime system, how-
ever, and not as much on how the memory-mapping should be sup-
ported. Most of the work described in this paper, including the de-
sign of the runtime system and the theoretical bounds, applies to the
workers-as-processes approach as well. Cilk-M 1.0 seems to per-
form well, which may motivate the exploration of other, possibly
more complex strategies that have different systems ramifications.

8. CONCLUSION
From an engineering perspective, we have laid out some choices

for implementers of work-stealing environments. There seem to be
four options for solving the cactus-stack problem: sacrificing in-

teroperability with binaries that assume a linear-stack calling con-
vention, sacrificing a time bound, sacrificing a space bound, and
coping with a memory-mapping solution similar to those laid out
in this paper.

Sacrificing interoperability limits the ability of the work-stealing
environment to leverage past investments in software. An engineer-
ing team may be willing to sacrifice interoperability if it is devel-
oping a brand-new product, but they may be more cautious if they
are trying to upgrade a large codebase to use multicore technology.

Sacrificing the time or space bound may be fine for a product
where good performance and resource utilization are merely de-
sirable. It may be unreasonable, however, for a product hoping to
meet a hard or soft real-time constraint. Moreover, even for every-
day software where fast performance is essential for good response
times, time and space bounds provide a measure of predictability.

Coping with memory mapping by modifying the operating sys-
tem may not be possible for those working on closed operating sys-
tems which they cannot change, but it may be fine for applications
running on an open-source platform. Moreover, as multicore plat-
forms grow in importance, future operating systems may indeed
provide TLMM-like facilities to meet the challenges. In the shorter
term, if it is not possible to modify the operating system, it may still
be possible to implement a workers-as-processes scheme in order.

The particular engineering context will shape which option is the
most reasonable, and in developing the case for a memory-mapped
solution to the cactus-stack problem, we have placed an important
new option on the table.

9. ACKNOWLEDGMENTS
Thanks for Matteo Frigo of Cilk Arts for tips and insights on the

code sequences necessary to fool gcc into doing what we wanted,
as well as for many helpful discussions. Thanks to Bradley Kusz-
maul of MIT CSAIL and Tim Huang of the University of Otago for
helpful discussions.

10. REFERENCES
[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,

G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress Language

Specification, Version 1.0. Sun Microsystems, Inc., Mar. 2008.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In SPAA ’98, pages 119–129,
June 1998.

[3] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism. In SPAA ’95,
pages 1–12, July 1995.

[4] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD
thesis, MIT Department of EECS, Sept. 1995.

[5] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H.
Randall. An analysis of dag-consistent distributed shared-memory
algorithms. In SPAA ’96, pages 297–308, June 1996.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime
system. JPDC, 37(1):55–69, August 1996.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5):720–748, Sept. 1999.

[8] R. D. Blumofe and D. Papadopoulos. Hood: A user-level threads
library for multiprogrammed multiprocessors. Technical Report,
University of Texas at Austin, 1999.

[9] F. W. Burton and M. R. Sleep. Executing functional programs on a
virtual tree of processors. In FPCA ’81, pages 187–194, Oct. 1981.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In OOPSLA ’05, pages
519–538. ACM, 2005.

[11] R. Feldmann, P. Mysliwietz, and B. Monien. Studying overheads in

massively parallel min/max-tree evaluation. In SPAA ’94, pages
94–103, June 1994.

[12] R. Finkel and U. Manber. DIB — A distributed implementation of
backtracking. ACM TOPLAS, 9(2):235–256, Apr. 1987.

[13] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distributed
Filaments: Efficient fine-grain parallelism on a cluster of
workstations. In OSDI ’94, pages 201–213, Nov. 1994.

[14] M. Frigo, 2009. Private communication.

[15] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In SPAA ’09, pages 79–90, Calgary,
Canada, Aug. 2009. ACM.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI ’98, pages 212–223,
1998.

[17] S. C. Goldstein, K. E. Schauser, and D. Culler. Enabling primitives
for compiling parallel languages. In LCR ’95, May 1995.

[18] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic
computation. ACM TOPLAS, 7(4):501–538, Oct. 1985.

[19] E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 stack
mechanism. Proceedings of the AFIPS Spring Joint Computer

Conference, pages 245–251, 1968.

[20] Intel Corporation. Intel Cilk++ SDK Programmer’s Guide, October
2009. Document Number: 322581-001US.

[21] R. M. Karp and Y. Zhang. Randomized parallel algorithms for
backtrack search and branch-and-bound computation. Journal of the

ACM, 40(3):765–789, July 1993.

[22] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, Inc., second edition, 1988.

[23] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: A
high-performance parallel Lisp. In PLDI ’89, pages 81–90, June
1989.

[24] B. C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, MIT
Department of EECS, May 1994.

[25] J. R. Larus and T. Ball. Rewriting executable files to measure
program behavior. Softw. Pract. Exper., 24(2):197–218, 1994.

[26] D. Lea. A Java fork/join framework. In Java Grande Conference,
pages 36–43, 2000.

[27] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task
parallel library. In OOPSLA ’09, pages 227–242, 2009.

[28] C. E. Leiserson. The Cilk++ concurrency platform. In 46th Design

Automation Conference. ACM, July 2009.

[29] M. Matz, J. Hubička, A. Jaeger, and M. Mitchell. System V
Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99. Available at
www.x86-64.org/documentation/abi.pdf, May 2009.

[30] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer
synchronization for shared-memory multiprocessors. In PPOPP ’91,
pages 106–113, 1991.

[31] MIPS Computer Systems, Inc. RISCompiler Languages

Programmer’s Guide, December 1988.

[32] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI ’07, pages 89–100, 2007.

[33] R. S. Nikhil. Cid: A parallel, shared-memory C for
distributed-memory machines. In LCPC ’94, Aug. 1994.

[34] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for

Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

[35] D. Stein and D. Shah. Implementing lightweight threads. In USENIX

’92, pages 1–9, 1992.

[36] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
Boston, MA, third edition, 2000.

[37] J. Sukha. Brief announcement: A lower bound for depth-restricted
work stealing. In SPAA ’09, Aug. 2009.

[38] M. T. Vandevoorde and E. S. Roberts. WorkCrews: An abstraction
for controlling parallelism. International Journal of Parallel

Programming, 17(4):347–366, Aug. 1988.

