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ABBREVIATIONS: AMD, automodification domain; ADP-HPD, adenosine diphosphate (hy-

droxymethyl)pyrrolidinediol; BER, base excision repair; cDDP, cis-diamminedichloroplatinum(II); 

cDPCP, cis-diammine(pyridine)chloroplatinum(II) or pyriplatin; CFE, cell-free extract; DBD, DNA-

binding domain; dsDNA, double-stranded DNA; DOXO, doxorubicin; EMSA, electrophoretic mobility 

shift assay; ICL, interstrand cross-link; LB, lysis buffer; MMR, mismatch repair; NAD+, nicotinamide 

adenine dinucleotide; NER, nucleotide excision repair; PAGE, polyacrylamide gel electrophoresis; 

pADPr, poly(ADP-ribose); PARG, poly(ADP-ribose) glycohydrolase; PARP-1, poly(ADP-ribose) po-

lymerase-1; XRCC1, X-ray repair cross complementing 1. 
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ABSTRACT: Poly(ADP-ribose) polymerase-1 (PARP-1) was recently identified as a platinum DNA 

damage response protein. To investigate the binding properties of PARP-1 to different platinum-DNA 

adducts in greater detail, biotinylated DNA probes containing a site-specific cisplatin 1,2-d(GpG) or 

1,3-d(GpTpG) intrastrand cross-link, or a cisplatin 5’-d(GC)/5’-d(GC) interstrand cross-link (ICL) were 

utilized in binding assays with cell free extracts (CFEs) in vitro. The activated state of PARP-1 was 

generated by treating cells with a DNA damaging agent or by addition of NAD+ to CFEs. PARP-1 binds 

with a higher affinity to cisplatin-damaged DNA compared to undamaged DNA, and the amount of the 

protein that binds to the most common cisplatin-DNA cross-link, 1,2-d(GpG), is greater than to other 

types of cisplatin-DNA cross-links. Both DNA damage-activated and unactivated PARP-1 binds to cis-

platin damaged DNA, and both automodified and cleaved PARP-1 bind to cisplatin-DNA lesions. The 

role of poly(ADP-ribose) (pADPr) in mediating PARP-1 binding to platinum damage was further inves-

tigated. PARP-1 binding to the cisplatin 1,2-d(GpG) cross-link decreases upon automodification, and 

overactivated PARP-1 loses its affinity for the cross-link. Elimination of pADPr facilitates binding of 

PARP-1 to the cisplatin 1,2-d(GpG) cross-link. PARP-1 also binds to DNA damaged by other platinum 

compounds including oxaliplatin and pyriplatin, indicating protein affinity for the damage in a platinum-

specific manner rather than recognition of distorted DNA. Our results reveal the unique binding proper-

ties of PARP-1 to platinum-DNA damage, providing insights into, and a better understanding of, the 

cellular response to platinum-based anticancer drugs.     
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Platinum-based chemotherapy has been widely used in the clinic for over 30 years. Three FDA-

approved platinum anticancer drugs, cisplatin, oxaliplatin and carboplatin, either alone or in combina-

tion with other anticancer drugs, have been used to treat numerous patients with a variety of cancers (1). 

These bifunctional platinum drugs attack DNA to form both intrastrand and interstrand cross-links 

(ICLs) that block transcription and trigger apoptosis (2). Cisplatin forms 1,2-d(GpG) cross-links as the 

major adduct, with 1,3-d(GpTpG) cross-links and ICLs appearing less frequently (3). Very recently, a 

monofunctional platinum compound, cis-diammine(pyridine)chloroplatinum(II) (cDPCP, or pyriplatin; 

Figure 1), exhibited anticancer activity against colorectal cancer cells overexpressing an organic cation 

transporter and a significantly different mechanism of transcription inhibition of RNA polymerase II 

compared to that of cisplatin (4-5).  

Poly(ADP-ribose) polymerases (PARPs) are a family of proteins present in eukaryotes. PARP-1 is the 

most studied PARP, playing pivotal roles in DNA replication, transcriptional regulation, and DNA dam-

age repair. PARP-1 is one of the most abundant non-histone nuclear proteins, with 105 to 106 copies per 

cell (6). PARP-1 contains three domains. There is a DNA-binding domain (DBD) containing two zinc 

finger motifs, an automodification domain (AMD) that functions as the target of direct covalent self-

modification, and a carboxyl-terminal catalytic domain that polymerizes linear or branched chains of 

ADP-ribose onto acceptor proteins. PARP-1 utilizes nicotinamide adenine dinucleotide (NAD+) as the 

substrate to add pADPr onto itself (automodification) or other acceptor proteins (hetero- or transmodifi-

cation), including histone H1 and transcription factors. Once polymerized, pADPr is hydrolyzed by 

poly(ADP-ribose) glycohydrolase (PARG) (7). 

PARP-1 functions in the DNA damage response. Whereas the catalytic activity of PARP-1 is low un-

der physiological conditions, PARP-1 activity is highly upregulated following DNA damage (8). Such 

PARP-1 activation recruits DNA damage-response proteins to the sites of modification. These proteins 

include XRCC1 and DNA ligase III, which then trigger the base excision repair (BER) pathway. If the 

DNA is severely damaged, PARP-1 will initiate necrosis by depletion of NAD+ and ATP in the cells (9-

10).  
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The development of PARP-1 inhibitors as anticancer drugs is an emerging field of drug discovery. 

Several PARP inhibitors have entered into clinical trials for various types of solid tumors, especially 

BRCA-mutated breast or ovarian cancers (11-13). Inhibitors targeting the catalytic domain of PARP 

prevent polymerization of pADPr during DNA damage and thereby block the recruitment of other DNA 

damage response proteins.  PARP-1 inhibition therefore results in synthetic lethality of tumors with ge-

netic lesions in DNA repair pathways such as BRCA1/2 because multiple DNA damage repair pathways 

are blocked.  Since cisplatin treatment of cancer cell results in DNA damage, combinatorial therapy 

with cisplatin and PARP-1 inhibitors in DNA damage repair deficient cells could similarly result in 

symbiotic lethality.  The strategy of using co-treatment with PARP-1 inhibitors has made it feasible to 

overcome platinum-based drug resistance. Thus, PARP-1 inhibitors sensitize specific cancer cell types 

to cisplatin. For example, the PARP inhibitor AZD2281 sensitizes BRCA2-deficient cells but not 

BRCA2-proficient cells to cisplatin (14).  

    Recently we identified PARP-1 as a protein that binds to platinum damaged DNA using PtBP6, a pho-

toreactive analogue of cisplatin. PARP-1 binds to PtBP6 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand 

cross-links and to 5’-(GC)/5’-(GC) ICLs (15-17). The photo-cross-linking efficiency is higher in the 

presence of PARP-1 inhibitors, suggesting that PARP-1 mediates the binding of damage response pro-

teins (18). However, the specificity of PARP-1 binding to different cisplatin-DNA cross-links and the 

potential binding of PARP-1 to DNA damage by other platinum anticancer compounds have not yet 

been investigated. Moreover, the effect of automodification of PARP-1 by pADPr to platinum-damaged 

DNA needs further elucidation.   

To provide this information, in the present study we investigated the binding properties of PARP-1 to 

platinum-damaged DNA in greater detail. PARP-1 binding to a variety of cisplatin-DNA lesions was 

examined, and the relative affinity of PARP-1 for damaged vs. undamaged double-stranded DNA 

(dsDNA) was studied. We also determined that PARP-1 recognizes oxaliplatin- and pyriplatin-DNA 
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adducts. The effects of PARP-1 automodification on its binding to the platinum damage were further 

explored. The potential roles of PARP-1 in the platinum-DNA damage response are discussed.  

 

EXPERIMENTAL PROCEDURES 

 

Materials and Methods. All chemicals and solvents were purchased from commercial sources. Ana-

lytical and preparative HPLC was performed on an Agilent 1200 HPLC system. Polyacrylamide gel 

electrophoresis (PAGE) on DNA samples was performed on a Protean II xi Cell from Bio-Rad. SDS-

PAGE analysis of protein samples was carried out using a Criterion Cell from Bio-Rad. UV-vis spectra 

were recorded on an HP 8453 spectrometer. Platinum analysis was performed by flameless atomic ab-

sorption spectrometry on a Perkin-Elmer AAnalyst 300 system. Western blots were run using SuperSig-

nal Western Blot system from Pierce, Rockford, IL. Rabbit anti-PARP-1 polyconal antibody was from 

Affinity Bioreagents, Rockford, IL. Dynabeads MyOne Streptavidin C1 was purchased from Invitrogen, 

Carlsbad, CA. Oligonucleotides were obtained from Integrated DNA Technologies, Coralville, IA. 

cDPCP and [Pt(R,R-DACH)Cl2] (DACH=1,2-diaminocyclohexane) were kindly provided by Dr. Kath-

erine Lovejoy from the Department of Chemistry at MIT.  

Preparation of Site-Specifically Modified Platinum-DNA Probes. Cisplatin-modified 1,2-d(GpG) and 

1,3-d(GpTpG) probes were synthesized as reported (19) and characterized by native PAGE (Figure S1). 

cDDP-ICL was prepared following published procedures (17). For oxaliplatin-modified DNA probes, 

we used [Pt(R,R-DACH)Cl2] as the starting material. A 21 mM aqueous solution of [Pt(R,R-DACH)Cl2] 

was activated by adding 1.98 equivalents of AgNO3 followed by agitation overnight in the dark at room 

temperature. The suspension was centrifuged. To a solution of 0.21 mM top strand in 10 mM NaH2PO4 

pH 6.3, 1.2 equivalents of activated [Pt(R,R-DACH)Cl2] were added. The reaction mixture was incu-

bated in the dark at 37 °C for 8 h. The reaction was stopped by freezing the solution. PtDACH-modified 

top strand DNA was purified by ion exchange HPLC (Dionex DNAPac PA-100, linear gradient, 0.48 M 

NaCl to 0.55 M NaCl in 25 mM Tris-HCl pH 7.4 over 11 min). After purification, the platinated DNA 
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solution was dialyzed against H2O and lyophilized. The platination level was confirmed by UV-vis and 

atomic absorption spectroscopy, which yielded a Pt/DNA ratio of 0.95 ± 0.04. A 5-nmol quantity of the 

platinated top strand was annealed to 1 equivalent of bottom strand containing a biotin moiety in a 

buffer comprising 0.25 mM NaCl, 2 mM MgCl2, 10 mM Tris-HCl pH 7.4. The duplex was purified by a 

12% native-PAGE. The cDPCP-modified duplex was synthesized as described elsewhere (4).  

Cell Culture and Transfection.  HeLa S3 cells were grown in DMEM high glucose supplemented 

with 10% FBS, 1% penicillin, and streptomycin at 37 °C, 5% CO2. Transfection was performed as de-

scribed elsewhere (20).  Briefly, at the time of transfection, cells were resuspended at a concentration of 

1 × 106 cells/mL in the medium without antibiotics. Cell cultures (40 mL) were transfected with 40 µg 

of eGFP-PARP-1 plasmid using 40 µL of 293fectin™ transfection reagent (Invitrogen, Carlsbad, CA) 

overnight.  Cells were treated with 0.2 µM latrunculin B for 1 h to disrupt the microfilament network 

prior to cell lysis.  For PARP-1 activation, cells were treated with 10 mM H2O2 for 30 min or with 5 µM 

doxorubicin (DOXO; Sigma, St. Louis, MO) for 1 h prior to cell lysis.  

Cell-Free Extract (CFE) Preparation. HeLa S3 cells were centrifuged at 400 × g for 3 min at 4 °C. 

Cell pellets were washed twice with ice-cold PBS prior to resuspension in cell lysis buffer (LB) contain-

ing 150 mM NaCl, 50 mM HEPES, 1 mM MgCl2, 0.5% (v/v) Triton X-100, 1 mM DTT, 1 mM EGTA, 

pH 7.4, with an EDTA-free protease inhibitor tablet (Roche, Branford, CT). For 1 × 107
 cells, a 146 µL 

quantity of LB was used. The mixture was incubated on ice for 10 min and spun at 5,000 × g for 5 min. 

The supernatant was collected and supplemented with 1 µM cytochalasin D and 1 µM nocodazole. For 

ARH3 or NAD+ pretreatment conditions, CFE was either incubated with 0.1 mg/mL ARH3 at 4 °C for 

30 min, or with 1 mM NAD+ at 4 °C for 30 min before the binding assay (20).  

PARP-1 Binding Assay. Dynabeads MyOne Streptavidin C1 were washed 3 times with LB. To a 50 

µg quantity of Dynabeads, 25 pmol of DNA probes were added. The mixture was incubated in LB at 25 

°C for 30 min to allow binding of the DNA probes. The supernatant was removed with the help of a 

magnet. Measured amounts of CFE were incubated with the beads at 4 °C for 1 h. The mixture was then 

washed 3 times with LB. The protein mixture was released into 15 µL of 1X LDS loading buffer (Invi-
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trogen, Carlsbad, CA) by heating at 95 °C for 5 min. The samples were resolved on either precast 4-

12% Bis-Tris gels, or by 8% SDS-PAGE. For the post-treatment of ARH3, the binding reaction mixture 

was washed twice with LB and treated with 0.1 mg/mL ARH3 for 30 min at 25 °C. The beads were 

washed twice with LB and the protein mixture was released in LDS loading buffer.  

 

RESULTS 

Design of DNA Sequences. We chose to investigate 21-bp oligonucleotide duplexes containing site-

specific damage by bifunctional or monofunctional platinum compounds (Figure 2). The sequences are 

identical in each of the probes except for, in the center of the duplex, a cisplatin 1,2-d(GpG) cross-link 

(cDDP-G*G*), a cisplatin 1,3-d(GpTpG) cross-link (cDDP-G*TG*), a cisplatin ICL (cDDP-ICL), an 

oxaliplatin 1,2-d(GpG) cross-link (PtDACH-G*G*), or a pyriplatin dG lesion (cDPCP-G*). In this 

manner we were able to obtain the best comparison of PARP-1 binding to different kinds of platinum-

DNA damage. A no-platinum control probe (NoPt) was also synthesized. Each of the probes contains a 

biotin moiety for binding to streptavidin coated magnetic beads.  

Synthesis and Characterization of 21-bp DNA Probes. For the synthesis of probes containing site-

specific cisplatin/oxaliplatin intrastrand cross-links or a pyriplatin-modified dG, the top strand was pla-

tinated and purified first. Platinated top strands were annealed with biotinylated bottom strands to obtain 

the duplexes. The purity of these duplexes was confirmed by a non-denaturing gel (Supporting 

Information Figure S1). The cisplatin ICL probe was synthesized as described previously (17). An ana-

lytical denaturing PAGE gel revealing the starting materials and cDDP-ICL is shown in Figure S2. Re-

moval of the ICL by treatment with NaCN confirmed that cross-link results from platinum. 

PARP-1 Binding Assay Strategy. A PARP-1 binding assay was performed in vitro using cell free ex-

tracts (CFEs). Biotinylated DNA probes were pre-bound to streptavidin-coated magnetic beads in LB. 

The magnetic beads containing the DNA probes with different platinum adducts were incubated with 

CFE. After incubation, the complexes were washed stringently with LB to remove non-specifically 

bound proteins. The DNA-Pt-protein complexes were precipitated and resolved by SDS-PAGE. Identi-



 

 9 

cal amounts of each reaction were loaded to quantify the amount of total protein bound to the DNA 

probe. PARP-1 concentrations in each sample were detected by immunoblotting with a PARP-1 anti-

body. 

There are several advantages of utilizing this PARP-1 binding strategy compared with traditional 

electrophoretic mobility shift assays (EMSAs) using purified proteins. First, PARP-1 is in a dynamic 

equilibrium with PARG, and the activity of PARP-1 partially requires its associated proteins. Therefore, 

use of a CFE is the better way to mimic the cellular environment in vitro. Second, the activation state of 

PARP-1 can be controlled in this system. For example, the binding of activated PARP-1 to specific 

platinum adducts can be adjusted by first treating cells with DNA-damaging agents, and the amount of 

pADPr polymer in CFE can be modified by addition of PARG or NAD+. 

Binding of Different Forms of PARP-1 to Cisplatin-Damaged DNA. We first investigated the binding 

of endogenous PARP-1 to cisplatin-DNA cross-links. Three biotinylated DNA probes were used, 

cDDP-G*G*, cDDP-G*TG*, and cDDP-ICL. An unplatinated control (NoPt) was included in this assay 

in order to differentiate between binding of PARP-1 to damaged and undamaged DNA. Doxorubicin, a 

DNA damaging agent, was used to activate PARP-1 in HeLa S3 cells, and the binding of endogenous 

PARP-1 to the DNA probe was tested (21). A PARG inhibitor, adenosine diphosphate (hy-

droxymethyl)pyrrolidinediol (ADP-HPD) (22), was included during the steps of cell lysing and protein 

binding to the DNA probe in the PARP-1 binding assay in order to suppress the endogenous activity of 

PARG. Increasing amounts of DNA probes bound to magnetic beads were incubated with a constant 

amount of CFE. Immunoblot results showed that the approximately 115 kDa band is the native form of 

PARP-1, and the band above 115 kDa corresponds to automodified PARP-1. Both native form and 

automodified PARP-1 bind to cisplatin-DNA damage (Figure 3A). There is larger amount of PARP-1 

that binds to cDDP-G*G* compared to cDDP-G*TG*, cDDP-ICL, or NoPt. Activated PARP-1 also 

binds to cisplatin-damaged DNA probes (Figure 3B). More activated PARP-1 binds to cisplatin-DNA 

intrastrand cross-links than to a cisplatin ICL or a native DNA duplex. We also transfected HeLa S3 

cells with eGFP-PARP-1 plasmid to obtain CFE containing overexpressed PARP-1, and binding assay 

was carried out in the absence of ADP-HPD (20). The result indicated that overexpressed PARP-1 also 
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binds to cDDP-G*G*, cDDP-G*TG*, and cDDP-ICL (Figure S3). Cleaved PARP-1, corresponding to 

the bands below the native eGFP-PARP-1 band around 140 kDa, retains its binding affinity for cis-

platin-DNA cross-links. Including all the native, automodified, and cleaved forms, the binding affinity 

of PARP-1 to a cisplatin 1,2-d(GpG) cross-link is the greatest. 

More PARP-1 Binds to a 1,2-d(GpG) Cross-Link than to Unplatinated DNA. We studied the binding 

of endogenous PARP-1 to a cisplatin 1,2-d(GpG) cross-link in more detail. In this assay, a constant 

amount DNA probe was incubated with increasing amounts of CFE. After binding the protein to the 

probes, the complexes were washed stringently with LB, and the samples were treated with ARH3, an-

other pADPr glycohydrolase, to eliminate the pADPr polymer (23). The activity of ARH3 is not af-

fected by ADP-HPD. Therefore, all ARH3 treated forms of PARP-1 that bind to the cisplatin-DNA 

damage will migrate at 115 kDa on an SDS-PAGE gel. Figure 4 shows the binding of PARP-1 to a cis-

platin 1,2-d(GpG) cross-link and an unplatinated control. When the protein-Pt-DNA complex was not 

treated with ARH3, the automodified PARP-1 binds to DNA (Figure 4A, lanes 1-3, 7-9; Figure 4B, 

lanes 1-3, 7-9), and treatment of ARH3 results in a single band (Figure 4A, lanes 4-6, 10-12; Figure 4B, 

lanes 4-6, 10-12). More PARP-1 binds to a cDDP 1,2-d(GpG) cross-link than to an unplatinated control, 

when both unactivated and activated protein samples were utilized (Figure 4A, lanes 1-3 and Figure 4B, 

lanes 1-3; Figure 4A, lanes 7-9 and Figure 4B, lanes 7-9). When PARP-1 is activated, less protein binds 

to the platinum-DNA damage (Figure 4A, lanes 1-3 and lanes 7-9). Quantification of the gel illustrating 

the binding difference is presented in Figure 4C.  

PARP-1 Binds to Different Platinum Lesions. The binding of PARP-1 to different platinum-DNA le-

sions was studied. In order to better quantitate the amount of non-modified PARP-1 that binds, we used 

low concentrations of CFE so that only the native form of the bound protein is detectable. cDDP-G*G*, 

PtDACH-G*G*, and cDPCP-G* DNA probes were included to elucidate the binding affinity of en-

dogenous PARP-1. PARP-1 binds to the three DNA probes modified by different platinum compounds: 

cisplatin, oxaliplatin and cDPCP (Figure 5A). Compared to the activated PARP-1, more unactivated 

PARP-1 bound to damaged DNA (Figure 5B). There is a significantly greater amount of proteins that 

bind to platinated DNA than the proteins that bind to unplatinated control (Figure 5B).  
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Over-activation of PARP-1 Inhibits Its Binding to Cisplatin-Damaged DNA. We further examined the 

role of pADPr in the binding of PARP-1 to cisplatin-damaged DNA. HeLa S3 cells were treated with 

and without doxorubicin, then CFE generated. Prior to binding to the DNA probes, the CFE was pre-

treated with either NAD+ to overactivate PARP-1, or with ARH3 to eliminate pADPr. In agreement 

with the results mentioned above, less activated PARP-1 bound to cisplatin-modified DNA (Figure 6, 

lanes 2, 4, 6) compared to the unactivated protein (Figure 6, lanes 1, 3, 5). Additionally, more PARP-1 

bound when the samples were pretreated with ARH3 (Figure 6, lanes 3 and 4), whereas overactivation 

of  PARP-1 by NAD+ 
 addition significantly decreased the binding affinity of the protein (Figure 6, lane 

6). 

 

DISCUSSION 

In the presence of DNA damage, PARP-1 is activated to catalyze the NAD+-dependent addition of 

pADPr polymer to receptor proteins including PARP-1 itself, resulting in either damage repair or cell 

death (8). PARP-1 also plays a role in transcription regulation by modulating chromatin structure, acting 

as an enhancer-binding factor, functioning as a transcriptional coregulator, or serving as a component of 

insulators (24). PARP-1 plays a role in the repair of other types of DNA lesions including pyrimidine 

dimers, and a role for PARP-1 in platinum-DNA damage recognition has been recently discovered by a 

photo-cross-linking strategy (15-17).  

It is argued that automodified PARP-1 bound to DNA can still be cross-linked under the photo-cross-

linking condition published previously (15). The assumption was that PARP-1 dissociates from the pla-

tinum damage only after heavy automodification, and insufficient levels of modification of PARP-1 

may result in its shielding of the damage from repair (25). Our results clearly show that both native and 

automodified PARP-1 bind to platinum-DNA lesions, with less of the automodified form binding to the 

damage. However, when PARP-1 is overactivated by NAD+, very small amounts of protein bind to the 

cisplatin 1,2-d(GpG) lesion (Figure 6, Lane 6). The fact that activated PARP-1 still binds to platinum-

DNA damage in our experiment is in agreement with the model that, under physiological conditions, 
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when DNA is damaged by platinum drugs and PARP-1 is activated, the protein shields the damage from 

repair until the downstream pathways are activated. 

Numerous reports support the notion that PARP-1 binds to specific regions of DNA in a sequence-

dependent manner. PARP-1 itself has an affinity for dsDNA in vitro (26-28). PARP-1 also recognizes 

other forms of DNA, including negatively supercoiled matrix attachment sequences and structurally 

complex cruciform DNA (29-30). The affinity of unmodified dsDNAs toward PARP-1 is lower than the 

affinity of end-blocked dsDNA in the trans-poly(ADP-ribosylation) reaction according to an in vitro 

kinetic study, and the affinity of both unmodified and modified dsDNA to PARP-1 was much lower in 

an auto-poly(ADP-ribosylation) reaction (31). Our results indicate that PARP-1 has an affinity for both 

unmodified and platinum-damaged dsDNA. More PARP-1 binds to the platinum-damaged dsDNA, in-

dicating the role of PARP-1 in the cellular response to platinum damage. 

A previous report showed that addition of the PARP inhibitor CEP-A increased the photo-cross-

linking of proteins to a DNA probe containing a PtBP6 1,2-d(GpG) cross-link in NTera2, BxPC3, and 

U2OS cells, but not in HeLa cells. In addition, PARP-1 inhibitors did not sensitize HeLa cells to cis-

platin (18). Our results here further confirm that PARP-1 automodification attenuates its activity in 

platinum-DNA damage recognition in HeLa S3 cells. When PARP-1 is moderately activated, the pro-

tein binds to cisplatin-damaged as well as undamaged DNA in lesser amounts, and overactivated PARP-

1 does not bind to the lesion. The amount of PARP-1 binding to a cisplatin 1,2-d(GpG) cross-link is the 

largest compared to other types of cisplatin-DNA lesions, which is consistent with the previous finding 

that a 1,2-d(GpG) cross-link more efficiently activates the protein (18).  

Oxaliplatin has been approved by FDA for the treatment of colorectal cancer and it is biologically ac-

tive against some cisplatin-resistant tumor types (32). The mechanism of oxaliplatin-DNA adduct repair 

is slightly different from that of cisplatin-DNA repair. For example, although nucleotide excision repair 

(NER) cannot discriminate between oxaliplatin and cisplatin-DNA adducts, mismatch repair (MMR) 

does not recognize oxaliplatin-DNA cross-links (33-34). A number of proteins have been identified that 

bind to oxaliplatin-DNA adducts, but there is no relationship between PARP-1 and oxaliplatin-damaged 
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DNA. In the present work, we demonstrate that PARP-1 binds to a dsDNA containing a site-specific 

oxaliplatin 1,2-d(GpG) cross-link. Therefore, PARP-1 may also play a role in the recognition and proc-

essing of oxaliplatin-DNA adducts.  

cDPCP, or pyriplatin, shows promising biological activity against colorectal cancer cells, blocks the 

transcription by RNA polymerase II, and can escape from DNA damage repair pathways (4-5). The X-

ray structure of a cDPCP-DNA adduct revealed that the damage introduces substantially less distortion 

in the DNA duplex compared to a cDDP-DNA adduct (4). The pyridine moiety in cDPCP faces the 5’-

end of the platinated strand, allowing formation of a hydrogen bond between the NH3 ligand trans to 

pyridine and O6 of the guanosine residue. However, little is known about damage response proteins that 

might bind to a cDPCP-DNA lesion. Our results indicate that PARP-1 binds to a dsDNA damaged by 

cDPCP. Taken together with the fact that PARP-1 also binds to dsDNA damaged by other platinum 

drugs, especially one containing a cisplatin 1,2-d(GpG) cross-link, it is likely that the PARP-1 binds to 

the damage in a platinum-specific manner rather than recognizing a distortion in the DNA.  

In conclusion, the in vitro PARP-1 binding assays have established the specific role of PARP-1 in 

platinum-DNA damage response. PARP-1 differentiates between normal and platinum-damaged DNA, 

and the protein has higher affinity for cisplatin 1,2-d(GpG) cross-links compared to other types of cis-

platin-DNA cross-links. PARP-1 recognizes not only cisplatin lesions but also those of oxaliplatin and 

pyriplatin. Automodification of PARP-1 significantly attenuates its binding to the platinated DNA, and 

elimination of pADPr facilitates binding of the protein to the cisplatin-DNA cross-link. Our results fur-

ther shed light on platinum-DNA damage recognition, with the implication that PARP-1 may shield the 

lesion from repair and trigger a cytotoxic response. Future studies on downstream effects that follow 

automodified PARP-1 binding to the platinum lesion will provide an even more detailed picture of the 

exact role of this protein as a platinum damage-response factor in the cell.  
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FIGURE CAPTIONS  

Figure 1: Chemical structure of platinum compounds: cisplatin, oxaliplatin and pyriplatin. 

Figure 2: Sequences of the 21-bp duplexes containing site-specific platinum damage and biotin moi-

ety. 

Figure 3: Western Blot analysis of endogenous PARP-1 binding to different DNA probes. (A) Bind-

ing of unactivated PARP-1 to cDDP-G*G* (lanes 1-3), cDDP-G*TG* (lanes 4-6), cDDP-ICL (lanes 7-

9), and NoPt (lanes 10-12). (B) Binding of activated PARP-1 to cDDP-G*G* (lanes 1-3), cDDP-G*TG* 

(lanes 4-6), cDDP-ICL (lanes 7-9), and NoPt (lanes 10-12). A 45 µL quantity of CFE was used in all 

lanes. The samples were resolved on 8% SDS-PAGE and detected using a PARP-1 antibody. 

Figure 4: Western Blot analysis of endogenous PARP-1 binding to cDDP-G*G* (A) and NoPt (B). 

The samples were resolved on 8% SDS-PAGE and detected using a PARP-1 antibody. Amount of CFE 

used: Lanes 1, 4, 7 and 10 in both (A) and (B), 60 µL; Lanes 2, 5, 8 and 11 in both (A) and (B), 15 µL; 

Lanes 3, 6, 9 and 12 in both (A) and (B), 5 µL; (C) Quantification of the gels. Lanes: a, unactivated 

PARP-1 binding to cDDP-G*G* (Lane 2 in Figure 4A); b, activated PARP-1 binding to cDDP-G*G* 

(Lane 8 in Figure 4A); c, unactivated PARP-1 binding to NoPt (Lane 2 in Figure 4B); d, activated 

PARP-1 binding to NoPt (Lane 8 in Figure 4B). 

Figure 5: Western Blot analysis of endogenous PARP-1 binding to different platinum-DNA damages. 

(A) Binding of unactivated PARP-1 to cDDP-G*G* (lanes 1-3), PtDACH-G*TG* (lanes 4-6) and 

cDPCP-G* (lanes 7-9). Amount of CFE used: Lanes 1, 4, and 7, 5 µL; Lanes 2, 5, and 8, 2 µL; Lanes 3, 

6, and 9, 1 µL. (B) Binding of activated PARP-1 to cDDP-G*G* (lane 1), PtDACH-G*TG* (lane 2), 

cDPCP-G* (lane 3) and NoPt (lane 4). A 5 µL quantity of CFE was used. The samples were resolved on 

8% SDS-PAGE and detected by a PARP-1 antibody.  

Figure 6: Western Blot analysis of PARP-1 binding to cDDP-G*G*. A 5 µL quantity of CFE was 

used. The samples were resolved on 8% SDS-PAGE and detected by a PARP-1 antibody. 
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