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We prepare a chemically and thermally one-dimensional (1D) quantum degenerate Bose gas in a single

microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the

gas from the thermal cloud at finite temperature. We reach temperatures down to kT � 0:5@!?
(transverse oscillator eigenfrequency !?) when collisional thermalization slows down as expected in

1D. At the lowest temperatures the transverse-momentum distribution exhibits a residual dependence on

the line density n1D, characteristic for 1D systems. For very low densities the approach to the transverse

single-particle ground state is linear in n1D.
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Low dimensional systems are more fragile and prone to
quantum and thermal fluctuations than their three-
dimensional counterparts, so that the physics is drastically
changed [1]. This is relevant in many different areas, but
real systems are embedded in three dimensions. Cold
atomic gases are well suited to synthesize low dimensional
systems of interacting particles and to explore the influence
of the frozen dimensions. The dimensionality can be con-
trolled by the external trapping potential, quantum degen-
eracy can be reached by established cooling techniques,
and interparticle interactions can be tuned by controlling
the density or a Feshbach resonance [2].

A number of experiments have been performed with
two- (2D) and one-dimensional (1D) cold atom systems,
observing phenomena like the Kosterlitz-Thouless transi-
tion in 2D [3–5] or the ‘‘fermionization’’ of bosons in the
1D Tonks- Girardeau gas [6,7]. To date, deeply 1D systems
have been studied mostly in optical lattices where many 1D
systems (typically�100) are prepared at once [6,8]. These
systems are then characterized by averages over all
‘‘tubes.’’ In contrast, creating only one or two 1D clouds
allows direct measurements of density [9] and phase
[10,11] fluctuations, facilitates studies of dynamical effects
[12], and allows us to probe the full distribution function of
quantum variables [13–15]. A recent experiment has
shown that the exact Yang-Yang theory predicts a density
distribution of a single 1D gas that matches the data better
than ideal gas and mean field models [16]. Earlier experi-
ments have been performed in elongated macroscopic
magnetic traps, where the systems exhibited some charac-
teristic 1D properties while still in the 1D–3D crossover
(chemical potential � and temperature kT > @!?). Most
notably, phase fluctuating ‘‘quasicondensates’’ were ob-
served [17–19].

In this work we experimentally study the low tempera-
ture behavior of quantum degenerate Bose gases in the
one-dimensional limit (�, kT < @!?). We study the trans-
verse expansion of an individual degenerate 1D Bose gas,
enabling us to explore the decreasing influence of 3D
properties down to very low temperatures and chemical
potentials. When kT is lowered, the population of excited
transverse modes is gradually reduced and the quasicon-
densate fraction grows. We directly investigate this process
by observing the interference of two clouds after transverse
expansion. The interference allows us to distinguish qua-
sicondensed and thermal fractions of the gas as conven-
tional techniques fail in 1D. We derive the temperature of
the gas from the width ratio of these fractions and reach
kT � 0:5@!? as the lowest temperature in our experiment.
Reaching such low T allows us to observe the exponential
suppression of thermalization rates when the dimension-
ality is reduced from three to one. In the low temperature
regime, we show that even for �< @!?, interparticle
interactions lead to an admixture of 3D character at any
finite density. Only in the limit of vanishing density, the
ground state width expected for the noninteracting gas is
recovered.
In our experiment we prepare 1D Bose gases of 87Rb in

a microscopic magnetic trap formed at a distance of
d� 10–30 �m from the surface of an atom chip [20,21]
as described in detail in [22]. At small atom-surface dis-
tances, small longitudinal variations of the trapping poten-
tial arising from slightly nonuniform currents in trapping
wires modulate the atomic density of the quantum degen-
erate gas. It is essential that these modulations are smaller
than the chemical potential of the cloud and allow us to
study linear density n1D dependent effects [23]. We are
able to explore the entire density range from the detection
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threshold of n1D � 3 �m�1, corresponding to an interac-
tion energy per particle of the order of 0:03@!? only
(!? ¼ 2�� 4 kHz), to well into the 1D–3D crossover
regime � * @!? (n1D � 250 �m�1). The length of the
continuous gas reaches L � 1 mm, corresponding to an
aspect ratio of L=a? > 5000 (a? ¼ 170 nm is the trans-
verse ground state size), the Lieb-Liniger parameter ranges
between � ¼ 0:0014–0:12.

At finite temperature, an important question is which
fraction of the gas is (quasi) condensed. The time-of-flight
(TOF) technique of observation (in free expansion) of
bimodal density profiles with a parabolic core and a sur-
rounding thermal cloud has been very successful in studies
of 3D BECs. In the case of 1D gases, however, this ap-
proach cannot be easily applied since both quasicondensate
and thermal fraction expand transversely in a Gaussian
fashion. Their widths after expansion hardly differ at suf-
ficiently low T.

Our solution to this problem is to exploit the coherence
property of a quasicondensate as revealed in an interfer-
ence experiment. We trap a gas at sufficiently large dis-
tance from the surface (d� 30 �m) to obtain completely
smooth 1D clouds. We then split the gas using a radio
frequency induced transformation of the trap into a double
well as described in [24–26]. These two clouds are then
released from the confining potential by suddenly switch-
ing off all trapping fields. After a free TOF expansion of
16 ms, the clouds overlap and form a high contrast inter-
ference pattern wherever the single-particle ground state is
macroscopically occupied.

Figure 1 shows two example images obtained in the way
described above. One represents the low T regime where
essentially the entire cloud interferes, i.e., the sample is
close to a pure quasicondensate. The other image clearly
displays a core that interferes with high contrast, over-
lapped by a larger structureless thermal cloud. For quanti-
tative analysis we perform a one-dimensional Fourier
transform (FT) along each pixel row of each image. We
determine the width of the coherent quasicondensate frac-
tion by fitting a Gaussian to the first harmonic at k0, the
wave vector corresponding to the period of the fringe
pattern. For comparison we fit a Gaussian to the overall
density profile. Note that the conventional method of fitting
bimodal profiles fails already at kT � 3@!?.

The total transverse-momentum distribution of the ex-
panded cloud is wider than its coherent part since the
excited states of the radial motion contribute to the former,
whereas the latter is determined by the properties of the
ground state of the radial motion. The experimental pa-
rameter controlling the temperature of the gas is the final
frequency �rf of the radio frequency (rf) field (measured
from the trap bottom) used to reduce the trap depth in the
applied forced evaporation scheme. The ratio between
thermal and coherent parts of the cloud as a function of
the final depth of the trap h�rf during the cooling process is

plotted in Fig. 1 (right). The coherent cloud’s width indeed
does not depend on �rf; small remaining variations (see
also Fig. 3) can be attributed to variations in atom density
as discussed below in more detail. At the lowest tempera-
tures, the trap depth is set to very close to the chemical
potential of the gas and partially depletes the quasiconden-
sate. At high temperature, the quasicondensate fraction
decreases as the critical degeneracy temperature is ap-
proached. In contrast, the width of the thermal cloud
increases with h�rf , as expected.
We assign a temperature T to the gas according to the

transverse (y) width �y expected from an ideal Bose-

Einstein gas. The temperature dependent width upon ex-
pansion was obtained by calculating the expectation value
hy2i using the grand canonical partition function of a 3D
noninteracting Bose gas. Reflecting the experimental im-
plementation, this gas is strongly harmonically confined in
the two transverse dimensions. The chemical potential �
was fixed by the particle density at each T. We have
verified that our experimental parameters are well in the
dilute gas limit where interactions do not lead to detectable
deviations from the ideal gas behavior [27]. The lowest
temperature we can reliably measure by this procedure is
kT � 0:5@!?.
In evaporative cooling the ratio of h�rf to the final

temperature kT (truncation parameter � ¼ h�rf=kT) is a
measure of the efficiency of the cooling. For kT > @!?
we find �� 5. As we approach colder temperatures
kT � @!?, � drops significantly and reaches � � 1 for
the lowest measured T. In our experiments the atoms were
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FIG. 1 (color online). Interference of two 1D quasicondensates
at relatively low (top left) and high (bottom left) temperatures.
The absorption images were taken along the long direction (z) of
the clouds after they had expanded from a double well trap in
potential free time-of-flight. The absolute value of the Fourier
transform (in arbitrary units) along the direction (x) of modu-
lated density (fringes) is also depicted. The central panels show
the density profiles at the interference fringe period [dashed line
(blue online)] and at zero spatial frequency [solid line (red
online)] and Gaussian fits (bars indicate the respective standard
deviations �). The panel on the right illustrates the increase in
ratio between the widths of the cloud and the part of it that
interferes as a function of final trap depth after the evaporative
cooling process.
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always released after a constant hold time t ¼ 100 ms in
the final trap. In this way � can be used to quantify elastic
collision rates �c leading to thermalization of the gas [28].
Figure 2 displays �c as a function of T. In 3D �c is
expected to be given by the constant elastic collisional
cross section, the density n, and the mean particle velocity,

i.e., �c=n / ffiffiffiffi
T

p
. The data clearly deviate from this scaling

behavior. The faster drop of �c for low T can be related to
reduced thermalizing binary collisions in the 1D regime.
To illustrate the possibility of this effect being relevant in
our case, we have fitted two model functions to our data:
(1) A square root behavior as expected in 3D; (2) an
exponential drop of thermalizing binary collision rates
according to �c=n / expð�2@!?=kTÞ [29] as expected
in the low temperature regime (kT & @!?, the fit is for
kT < 2@!?). Three-body collisions start to be the domi-
nant mechanism for kT < 0:3@!? [29–31]. We find that
the strong reductions of thermalizing elastic binary colli-
sions is consistent with our data. The associated reduction
of thermalization rates [32] is likely to be the limiting
factor in cooling further into the 1D regime.

We now investigate the low temperature limit
kBT < @!? for a single 1D quasicondensate, in order to
uncover the density dependent expanded cloud widths that
cannot be seen at higher temperatures [33]. Here we exploit
the density modulations that occur for small trap-surface
distances (d ¼ 10 �m). The inset of Fig. 3 shows a typical
density profile of an expanding cloud after 6 ms TOF in a
two-dimensional projection onto the xz plane, so that
the longitudinal (z) and one transverse (y) directions are
resolved. The density profile is strongly modulated along z.
The variations on longer length scales arise from a corre-
spondingly inhomogeneous (and stable) potential. As the
gas does not notably expand along the weakly confining z
direction during TOF, these features of the density profile

are unaffected by TOF. We can confirm this by comparison
to in situ images taken under the same experimental
conditions. The known quasicondensate nature of the 1D
quantum degenerate Bose gas causes random phase fluctua-
tions in the trapped system that are converted to short range
density fluctuations after TOF [10,11,17,18]. This random-
ness allows us to eliminate this type of fluctuations by
averaging over a few TOF images to ensure that the remain-
ing modulation is due to actual density modulation in the
trapped gas. In the transverse y direction, on the other hand,
the cloud’s initial extension is comparable to the harmonic
oscillator ground state size of �170 nm and cannot be
resolved by the in situ imaging. After TOF, the size of the
cloud along y is then a direct measure of the energy stored in
the trapped gas, since no longitudinal expansion occurs on
the experimentally relevant time scales.
In the common case of a 3D harmonic trap when

� � @!?, the interaction energy dominates the kinetic
energy and a parabolic density profile emerges in the
Thomas-Fermi approximation. In contrast, the zero point
energy @!?=2 dominates in the 1D case when � � @!?,
so that the shape of the distribution becomes Gaussian. By
applying a local density approximation to averaged sets of
images of the type shown in the inset of Fig. 3, we obtain
transverse TOF profiles of the cloud distribution as a
function of n1D. We compare these distributions to best
fits to Gaussian distributions (Fig. 3, insets) and confirm
that as long as n1D & 100 �m�1, the Gaussian fits repre-
sent the data much more closely than the parabolic ones
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FIG. 3 (color online). Transverse width (Gaussian standard
deviation, normalized to the single-particle ground state ex-
panded size) of the expanded cloud after time-of-flight as a
function of longitudinal line density of atoms throughout the
quasi-one-dimensional regime of � � @!? and into the 1D–3D
crossover. The points represent our data, measured in two differ-
ent traps (blue squares and red circles, example data see upper
inset). The line shows the theory without any adjustable parame-
ters [Eq. (1) [34] ]. The lower insets illustrate that a Gaussian
distribution models the data very well in the 1D regime (left,
n1D ¼ 100 �m�1), while systematic deviations become discern-
ible in the 1D–3D crossover regime (right, n1D ¼ 250 �m�1).
Data, best Gaussian fits, and residuals (magnified by a factor
of 3) are shown.
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FIG. 2 (color online). Collision rate divided by density as a
function of temperature across the 1D–3D crossover. The lowest
achieved temperatures (kT & 0:5@!?) appear to be limited
by slow rethermalization due to inhibited elastic collisions.
The increase in collision rate as temperature is increased does
not follow the square root law (solid line shows best fit) that
is valid in 3D, but is compatible with an exponential suppression
as predicted in 1D (dashed line shows best fit for data within
kT < 2@!?) [29].
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that would be expected in 3D. For larger densities n1D *
100 �m�1, in the 1D–3D crossover, where � * @!?,
systematic deviations from the fitted model become dis-
cernible. Hence, Gaussian expansion is characteristic of
the quasi 1D regime in which the shape of the momentum
distribution of the single-particle transverse ground state is
directly observed.

Figure 3 shows the width of the fitted Gaussian distri-
butions as a function of n1D. Even down to the lowest
linear densities, repulsive interparticle interactions (scat-
tering length ascat ¼ 5:3 nm) broaden the distribution.

Note that the scattering is still of 3D nature (ascat � a? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!?

p
), even in the regime where binary collisions

cease to contribute to thermalization when kT �
@!?.We compare our measured widths �ðn1DÞ to the
theoretical predictions of the correction to the width �0

of the single-particle ground state case [34,35]

�ðn1DÞ
�0

¼ ð1þ 4ascatn1DÞ1=4 (1)

and find excellent agreement in the absence of any fitting
parameters for � & @!?. The data only start to slightly
deviate form this model when � � @!?, i.e. when the
expansion of the gas is no longer purely Gaussian in
the 1D–3D crossover regime. For large temperatures
(T � @!? or larger) the measured width saturates and
stays at a constant value [33] given by the temperature,
significantly above the curve shown in Fig. 3.

In conclusion, we have prepared quantum degenerate
bosonic gases in the one-dimensional limit. We use an
interferometric technique to differentiate between the qua-
sicondensed and thermal part of the gas at finite tempera-
tures. We find that the width of only the thermal cloud
grows with temperature while the coherent part is tempera-
ture independent. Determining the temperature from the
thermal cloud width and comparing it to the trap depth
indicates a loss of cooling efficiency at very low tempera-
tures kT < @!?, which can be attributed to suppressed
thermalization in the 1D regime. In the low temperature
regime (kT � 0:5@!?), the transverse-momentum distribu-
tion exhibits Gaussian shape. The width of this distribution,
however, equals that of the single-particle ground state only
in the limit of vanishing line density when � ! 1. This
implies that a true 1D gas is always a strongly correlated
Tonks-Girardeau gas [6,7]. Our measured widths follow the
theoretical expectation for repulsive interactions.
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[23] P. Krüger et al., Phys. Rev. A 76, 063621 (2007).
[24] T. Schumm et al., Nature Phys. 1, 57 (2005).
[25] I. Lesanovsky et al., Phys. Rev. A 73, 033619

(2006).
[26] S. Hofferberth et al., Nature Phys. 2, 710 (2006).
[27] A. Imambekov, V. Gritsev, and E. Demler, in Ultracold

Fermi Gases, Proceedings of the International School of
Physics ‘‘Enrico Fermi,’’ edited by M. Inguscio, W.
Ketterle, and C. Salomon (IOS, Amsterdam, 2007).

[28] O. J. Luiten, M.W. Reynolds, and J. T.M. Walraven, Phys.
Rev. A 53, 381 (1996).

[29] I. E. Mazets, T. Schumm, and J. Schmiedmayer, Phys.
Rev. Lett. 100, 210403 (2008).

[30] I. E. Mazets and J. Schmiedmayer, New J. Phys. 12,
055023 (2010).

[31] S. Tan, M. Pustilnik, and L. I. Glazman, Phys. Rev. Lett.
105, 090404 (2010).

[32] T. Kinoshita, D. Wenger, and D. S. Weiss, Nature
(London) 440, 900 (2006).

[33] A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).
[34] F. Gerbier, Europhys. Lett. 66, 771 (2004).
[35] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 65,

043614 (2002).

PRL 105, 265302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2010

265302-4

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.99.030401
http://dx.doi.org/10.1103/PhysRevLett.99.030401
http://dx.doi.org/10.1103/PhysRevLett.102.170401
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.96.130403
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.80.033604
http://dx.doi.org/10.1103/PhysRevA.81.031610
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/10.1038/nphys941
http://dx.doi.org/10.1038/nphys410
http://dx.doi.org/10.1103/PhysRevLett.104.255302
http://dx.doi.org/10.1103/PhysRevLett.104.255302
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.100.090402
http://dx.doi.org/10.1103/PhysRevLett.87.160406
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevLett.97.250403
http://dx.doi.org/10.1103/PhysRevLett.84.4749
http://dx.doi.org/10.1103/PhysRevA.69.030901
http://dx.doi.org/10.1103/PhysRevA.76.063621
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevA.73.033619
http://dx.doi.org/10.1103/PhysRevA.73.033619
http://dx.doi.org/10.1038/nphys420
http://dx.doi.org/10.1103/PhysRevA.53.381
http://dx.doi.org/10.1103/PhysRevA.53.381
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1088/1367-2630/12/5/055023
http://dx.doi.org/10.1088/1367-2630/12/5/055023
http://dx.doi.org/10.1103/PhysRevLett.105.090404
http://dx.doi.org/10.1103/PhysRevLett.105.090404
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1209/epl/i2004-10035-7
http://dx.doi.org/10.1103/PhysRevA.65.043614
http://dx.doi.org/10.1103/PhysRevA.65.043614

