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According to Hudson’s theorem, any pure quantum state with a positive Wigner function is necessarily a
Gaussian state. Here, we make a step toward the extension of this theorem to mixed quantum states by finding
upper and lower bounds on the degree of non-Gaussianity of states with positive Wigner functions. The bounds
are expressed in the form of parametric functions relating the degree of non-Gaussianity of a state, its purity,
and the purity of the Gaussian state characterized by the same covariance matrix. Although our bounds are not
tight, they permit us to visualize the set of states with positive Wigner functions.
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The Wigner representation of quantum states �1�, which is
realized by joint quasiprobability distributions of canonically
conjugate variables in phase space, has a specific property
which differentiates it from a true probability distribution: it
can attain negative values. Among pure states, it was proven
by Hudson �2� �and later generalized to multimode quantum
systems by Soto and Claverie �3�� that the only states which
have non-negative Wigner functions are Gaussian states �4�.
The question that naturally arises �2� is whether this theorem
can be extended to mixed states, among which not only
Gaussian states may possess a positive Wigner function. A
logical extension of the theorem would be a complete char-
acterization of the convex set of states with positive Wigner
function. Although this question can be approached by using
the notion of Wigner spectrum �5�, a simple and operational
extension of Hudson’s theorem has not yet been achieved
due to the mathematical complications which emerge when
dealing with states with positive Wigner functions �5�.

Motivated by the increasing interest for non-Gaussian
states in continuous-variable quantum information theory
�see, e.g., �6�� and the need for a better understanding of the
de-Gaussification procedures for mixed states �see, e.g., �7��,
we attempt here an exploration of the set of states with posi-
tive Wigner functions using Gaussian states as a reference.
More precisely, we consider the subset of such states that
have the same covariance matrix as a reference Gaussian
state. We obtain a partial solution to the problem by analyti-
cally deriving necessary conditions �bounds� on a measure of
non-Gaussianity for a state to have a positive Wigner func-
tion. This set of conditions bounds a region in a three-
dimensional space with coordinates being the purity of the
state, the purity of the corresponding Gaussian state, and the
non-Gaussianity. As intuitively expected, the maximum de-
gree of non-Gaussianity increases with a decrease in the pu-
rity of both the state and its Gaussian corresponding state.

Before deriving the main results of this paper, let us recall
a convenient representation of the trace of the product of two
one-mode quantum states, � and ��, in terms of the Wigner
representation �8�,

Tr����� = 2�� � dx dpW��x,p�W���x,p� , �1�

where W� is the Wigner function of the state �. For example,
the purity of a state, ����=Tr��2�, may be calculated with
the help of this formula. For a state with a Gaussian Wigner
function determined by the covariance matrix � and dis-
placement vector d, the purity is simply ���G�= �det ��−1/2.
The matrix elements of the covariance matrix of state � are
defined as

�ij = Tr���r̂i − di�,�r̂ j − dj���� , �2�

where r̂ is the vector of quadrature operators r̂= �x̂ , p̂�T,
d=Tr�r̂��, and �· , ·� is the anticommutator. Note that we can
put the displacement vector to zero with no loss of generality
since the purity �and all quantities we will be interested in�
does not depend on d. We will thus consider states centered
on the origin in this paper.

Our aim is to derive bounds on the non-Gaussianity, i.e.,
on the “distance” between a state � of purity ���� possessing
a positive Wigner function and the Gaussian state �G deter-
mined by the same covariance matrix. While there are differ-
ent measures in the literature for quantifying the distance
between two mixed states, we have chosen to use a recently
proposed one �9�,

���,�G� =
���� + ���G� − 2 Tr���G�

2����
. �3�

Although the quantity ��� ,�G� is obviously not symmetric
under the permutation of the two states, it is convenient for
quantifying the non-Gaussian character of � in the sense that
�� �0,��, with ��1, and �=0 is attained if and only if
���G. For one-mode states, it is conjectured in Ref. �9� that
�=1 /2.

In a first step, we are going to derive bounds on the trace
overlap Tr���G� for fixed values of ���G� and ����. It will
then be straightforward to express bounds on the non-
Gaussianity ��� ,�G� in terms of ���G� and ���� by using
Eq. �3�.

We use Eq. �1� in order to reformulate the problem as an
optimization problem that can be tackled with the method of
Lagrange multipliers. More specifically, we need to extrem-
ize the functional I�W��=Tr���G� represented by Eq. �1�
with the constraint that the Gaussian Wigner function W�G
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and the positive function W� possess the same second order
moments. In order to simplify our derivation, we apply a
symplectic transformation S on the states � and �G, giving
S�S† and S�GS†, respectively, in such a way that the Gauss-
ian state becomes invariant under rotation in the x-p plane
�i.e., becomes a thermal state�. In this way the problem is
reduced to a simpler but equivalent one since the functional
I�W�� and the purities of the states remain invariant under S
and since the positivity of W� is preserved. This last state-
ment can be justified by the fact that the time evolution of a
Wigner function under a quadratic Hamiltonian can always
be viewed as an affine transformation on the variables x and
p �8�. Furthermore, we claim that the function W�

ex which
extremizes the functional I�W�� is invariant as well under
rotation in the x-p plane, and we will justify this assumption
at the end of the derivation.

After application of the symplectic transformation and un-
der the assumption of rotation-invariant solutions, the func-
tions W��r� and W�G

�r�= 1
2�Ce−r/2C only depend on the

squared radius r=x2+ p2, and the functional I�W�� is written
in a simpler form as

I�W�� = Tr���G� = 2�2�
0

	

W��r�W�G
�r�dr . �4�

The constrains that we impose on the function W� can be
summarized as follows:

�1� It is positive for the values of r belonging to some
set s and zero elsewhere.

�2� It is normalized, �	sW��r�dr=1.
�3� It has the same variance as the corresponding Gauss-

ian state, �G,

��
s

W��r�rdr = 2C = 1/���G� . �5�

�4� It is such that the state � has purity ����,

2�2�
s

W�
2�r�dr = ���� . �6�

�5� It is square integrable and continuous.
This last requirement follows directly from the general

property of Wigner functions,

�
−	

	

W�x,p�dp = 
x���x� , �7�

�
−	

	

W�x,p�dx = 
p���p� . �8�

Recall that a state can always be diagonalized in a basis of
pure states, namely, �=i
i��i�
�i�. Since wave functions
must satisfy the conditions of continuity and integrability in
both position and momentum representation, one concludes
that a Wigner function of variables x and p and more gener-
ally of any variable that is a continuous function of these,
e.g., r=x2+ p2, has to satisfy the same requirements.

Finally, let us stress that without the requirement of posi-
tive definiteness of the operator �, the set of conditions listed

above is not sufficient to constrain the solutions W��r� to
eligible Wigner functions. To our knowledge, there exists no
operational criterion on phase-space functions ensuring that
the operator � is physical �see �10� for an extensive discus-
sion�. On the other hand, one can verify whether a qua-
siprobability distribution is unphysical by using a theorem
which states that a square integrable and normalized function
is an eligible Wigner function if its overlap with the Wigner
function of every pure state is positive �11�.

After having applied the method of Lagrange multipliers,
we obtain the extremal solution

W�
ex�r� = A1 + A2

1

2�C
e−r/2C + A3r , �9�

with the A’s being determined by conditions 2–4. Square
integrability, condition 5, limits the class of possible func-
tions W�

ex�r� in Eq. �9� to those that have zero, one, or two
positive roots denoted as rB �in the one- and two-root cases�
and rA �in the two-root case�. Furthermore the condition of
continuity dictates that s= �rA ,rB� in the two-root case,
s= �0,rB� in the one-root case, and s= �0,	� in the zero-root
case. The latter case is the trivial one, where W�

ex�r� coincides
with W�G

�r� and thus ��� ,�G� vanishes. We treat the other
two cases separately and obtain two continuously connected
branches of solutions for W�

ex. The expressions that we obtain
for Tr���G�ex and ����ex are highly nonlinear, so that it is not
possible to derive an analytic expression that directly con-
nects the two quantities. Nevertheless, we are able to express
the extremal solutions in the form of parametric functions.

�I� Two roots: W�
ex�rA�=W�

ex�rB�=0. We express the extre-
mum purity ����ex and overlap Tr���G�ex in terms of the
purity of the corresponding Gaussian state ���G� and param-
eter �= �rB−rA����G�,

����ex = ���G�
2��2 − 9 sinh���� + 2��2 + 6�cosh��� − 12�

3��� cosh��
2 � − 2 sinh��

2 ��2 ,

�10�

Tr���G�ex = ���G�2 exp�−
��� + e��2� − 3� + 3�
3�e��� − 2� + � + 2� �

�e� − 1�/� , �11�

where 0����G��1. By imposing the condition rA�0, we
obtain the bound 0���xr, with xr being the root of equa-
tion,

ex�x − 3� + 2x + 3 = 0. �12�

�II� One root: W�
ex�rB�=0. The extremal solution is defined

by the following pair of parametric functions,
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����ex = ���G�
4�e2��� − 3�2 + 8e���� − 3� + ����2� + 9� + 12� − 9�

�2e��� − 3� + ��� + 4� + 6�2 , �13�

Tr���G�ex = ���G�
4���cosh��� + 2� − 3 sinh����

2e��� − 3� + ��� + 4� + 6
, �14�

where 0����G��1 and �=rB���G�. The range of the latter
parameter is ��xr.

We now need to show that, although we have only con-
sidered solutions W�

ex with no angular dependence, our result
is general. If we waive this assumption and consider the most
general case, we arrive to

W�
ex�x,p� = A1 + A2

1

2�C
e−�x2+p2�/2C + A3x2 + A4p2 + A5xp ,

�15�

which is the analog of Eq. �9� but allowing for an angular
dependence. We can then apply a phase rotation on states �
and �G in order to eliminate the term A5xp in Eq. �15�. Such
a rotation does not affect the corresponding Gaussian state
�since it is thermal� nor the trace overlap, so that the resulting
extremal function becomes symmetric by reflection with re-
spect to the x or p axis in phase space. The condition 
x2�
= 
p2�=C for the function in Eq. �15� is satisfied if A3=A4.
Thus, the most general solution reduces to the rotation-
invariant one, namely, Eq. �9�.

By using the derived bounds on the trace overlap �Eqs.
�10�–�14��, we plot in Fig. 1�a� the corresponding �upper�
bounds on the non-Gaussianity ��� ,�G�ex. By direct inspec-
tion, we conclude that the intersection of the plotted surface
with the plane of pure states ����=1 provides us with an
upper bound on the non-Gaussianity of any state with a posi-
tive Wigner function and fixed covariance matrix �or, equiva-
lently, fixed ���G�� which is independent of its purity ����.
We denote it as the ultimate upper bound �u.ult����G�� and its
parametric expression can be directly derived by setting
�ex���=1 in Eqs. �10�–�14�. In Fig. 2 we plot �u.ult together
with a lower estimation on this, �l.ult, obtained by the convex
combination of two symmetrically displaced coherent states.
The tight ultimate upper bound on ��� ,�G� must be located
between these two curves.

The bounds derived by using the Lagrange multiplier
method confine � only from above. In order to obtain a lower
bound on �, we need to find an upper bound on the trace
overlap. We achieve this by applying the Cauchy-Schwarz
inequality on the Wigner representation of the trace overlap
�Eq. �1��. By using the definition of the purity, we arrive at

Tr���G� � ����G����� � Tr���G�CS �16�

where CS stands for “Cauchy-Schwarz.” This bound, dis-
played in Fig. 1�b�, delimits together with the upper bound of
Fig. 1�a�, the region accessible for states with positive
Wigner function in this 3D representation. Let us note that

this lower bound holds for states with both positive and
negative Wigner functions.

Let us now address the question of the physicality of the
upper bound, namely, the extremal solution W�

ex. By resorting
to Hudson’s theorem, we can conclude that the intersections
of the surface with the planes ����=1 and ���G�=1 �see
dotted and double thick blue lines in Fig. 1�a�� cannot corre-
spond to physical states where ��0. The only physical so-
lution belonging to these lines is thus one point, namely,
����=1, ���G�=1, and �=0. In order to test the physicality
of the rest of the surface, we applied the theorem mentioned
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FIG. 1. �Color online� �a� Upper bound on non-Gaussianity
��� ,�G�ex derived with the Lagrange multiplier method. The double
thin orange line marks the boundary between the two branches of
solutions. The dotted blue line indicates the intersection with the
plane ����=1 �also noted �u.ult in Fig. 2� while the double thick
blue line shows the intersection with the plane ���G�=1. The red
thick straight line denotes the “left” extremity of the surface. �b�
Lower bound on non-Gaussianity ��� ,�G�CS implied by the
Cauchy-Schwarz inequality. We plot this lower bound only up to
the intersecting line of ��� ,�G�CS and ��� ,�G�ex ����G�=���� and
��� ,�G�=0�.
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above employing the eigenstates of the quantum harmonic
oscillator as test pure states. From our analytical results on
the first 40 number states, we infer that the only functions
W�

exgiving a positive overlap with every number state as n
→	 are the states with ���G�=0, that is, infinitely mixed
states. Therefore, we conclude that the extremal solution of
the form of Eq. �9� is unfortunately unphysical; hence, our
bound is not tight.

Finally, one may notice in Fig. 1�a� that the left extremity
of the bound �red thick straight line� is on the left of the
plane ���G�=����. The equation for this line can be easily
derived,

���� = 8
9���G� �17�

and thus sets a lower bound on the purity of a mixed state
given the purity of the corresponding Gaussian state. This
bound has been derived in another context by Bastiaans �12�
and has been proven to be the asymptotic form of an exact
expression derived later by Dodonov and Man’ko �13� in the
context of purity bounded uncertainty relation. The exact
bound is more strict than the bound in Eq. �17�, and it is
realized by positive Wigner functions �14�. This fact con-
firms again that our bound is unphysical but it also gives
some evidence about the underlying link between Hudson’s
theorem and the Heisenberg uncertainty principle.

In conclusion, we have found both upper and lower
bounds on the non-Gaussianity of mixed states with positive
Wigner function. These bounds only depend on the purity
and covariance matrix of these states, and an ultimate upper
bound can be derived that does not even depend on the pu-
rity, making it experimentally accessible. An open question
remains to derive tighter bounds for the non-Gaussianity. All
our results apply to one single mode, so another natural ques-
tion would be to investigate the case of several modes.

The authors thank Julien Niset for fruitful discussions.
A.M. gratefully acknowledges financial support from the
Belgian National Fund for Scientific Research. This work
was carried out with the financial support of the European
Commision via projects COMPAS and QAP, the support of
the Belgian Rederal program PAI via the Photonics project,
and the support of the Brussels-Capital Region via projects
CRYPTASC and Prospective Research for Brussels.

�1� E. Wigner, Phys. Rev. 40, 749 �1932�.
�2� R. L. Hudson, Rep. Math. Phys. 6, 249 �1974�.
�3� F. Soto and P. Claverie, J. Math. Phys. 24, 97 �1983�.
�4� In the rest of this paper, we loosely use the term positive func-

tion instead of non-negative function.
�5� T. Bröcker and R. F. Werner, J. Math. Phys. 36, 62 �1995�.
�6� N. J. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information

with Continuous Variables of Atoms and Light �Imperial, Lon-
don, 2007�.

�7� S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A
67, 032314 �2003�; R. Garcia-Patron, J. Fiurasek, N. J. Cerf, J.
Wenger, R. Tualle-Brouri, and Ph. Grangier, Phys. Rev. Lett.
93, 130409 �2004�.

�8� W. P. Schleich, Quantum Optics in Phase Space �Wiley-VCH,
Berlin, 2001�.

�9� M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A
76, 042327 �2007�.

�10� V. I. Tatarski�, Sov. Phys. Usp. 26, 311 �1983�.
�11� M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner,

Phys. Rep. 106, 121 �1984�.
�12� M. J. Bastiaans, J. Opt. Soc. Am. 73, 251 �1983�.
�13� V. V. Dodonov and V. I. Man’ko, in Proceedings of the Leb-

edev Physics Institute, edited by M. A. Markov �Nova Science,
Commack, NY, 1989�, Vol. 183, p. 103.

�14� V. V. Dodonov, J. Opt. B: Quantum Semiclassical Opt. 4, S98
�2002�.

0.0 0.2 0.4 0.6 0.8 1.0
Μ�ΡG�0.0

0.1

0.2

0.3

0.4

0.5

∆ult

FIG. 2. �Color online� Ultimate upper bound �u.ult �blue solid
line� on the non-Gaussianity of states with positive Wigner function
as a function of the purity of corresponding Gaussian state ���G�. A
lower estimate �l.ult �black dashed line� on the ultimate upper bound
that was obtained for a mixture of coherent states. The two curves
limit the region where the tight ultimate upper bound on non-
Gaussianity must be located.
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