Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

C. H. Frame1,2 and K. L. Casciotti1

1Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
2Joint Program in Chemical Oceanography, MIT Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Received: 2 April 2010 – Published in Biogeosciences Discuss.: 27 April 2010
Revised: 30 July 2010 – Accepted: 10 August 2010 – Published: 13 September 2010

Abstract. Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2-) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 µM) media. These yields, which were typically between 4 × 10^-4 and 7 × 10^-4 for cultures with cell densities between 2 × 10^3 and 2.1 × 10^4 cells ml^-1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 10^6 cells ml^-1), where 160-fold higher yields were observed at 0.5% O2 (5.1 µM dissolved O2) compared with 20% O2 (203 µM dissolved O2). At lower cell densities (2 × 10^2 and 2.1 × 10^4 cells ml^-1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2- (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα - δ15Nδ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.

1 Introduction

The atmospheric concentration of the greenhouse gas nitrous oxide (N2O) has risen steadily over the last century. Processes in the microbial nitrogen cycle are the largest source of atmospheric N2O and 20% of this source may come from the oceans (IPCC, 2007). Humans have greatly increased the amount of fixed nitrogen entering the oceans (Galloway et al., 1995), and the functioning of marine microbial ecosystems is shifting in response (Fulweiler et al., 2007; Beman et al., 2005; Naqvi et al., 2000). Understanding the impact of anthropogenic activity on the size of the marine N2O source requires knowledge of which microbes are involved in N2O production and how the production is controlled by chemical variables.
Nitrification, and in particular ammonia oxidation, is thought to dominate N₂O production in ocean water columns (Elkins et al., 1978; Cohen and Gordon, 1979; Goreau et al., 1980; Ostrom et al., 2000; Popp et al., 2002). Over-saturations of dissolved N₂O (ΔN₂O, nmol L⁻¹) are often positively correlated with apparent oxygen utilization (AOU, µmol L⁻¹) (Yoshinari, 1976; Cohen and Gordon, 1978; Elkins et al., 1978). AOU is a tracer of organic matter remineralization. Therefore, the direct relationship between AOU and ΔN₂O is taken as evidence that N₂O is produced as nitrifying organisms convert regenerated NH₃ to NO₂⁻ and NO₃⁻.

Stoichiometric relationships among N₂O production, NO₃⁻ regeneration, and AOU have been used to convert oceanographic nutrient and O₂ data to estimates of N₂O production (e.g., Codispoti and Christensen, 1985; Fuhrman and Capone, 1991; Jin and Gruber, 2003; Suntaralingam and Sarmiento, 2000) or to use N₂O concentration data to calculate nitrification rates (e.g., Law and Ling, 2001). However, there is not a universal AOU:N₂O ratio and linear AOU:N₂O relationships break down unpredictably in low-O₂ environments (Cohen and Gordon, 1979). Several different factors may contribute to this break-down: 1) at low O₂ concentrations, ammonia-oxidizing bacteria produce higher yields of N₂O per mole of NH₃ oxidized (Goreau et al., 1980; Lipschultz et al., 1981; Jorgensen et al., 1984), 2) heterotrophic denitrifying bacteria produce more N₂O in low-O₂ conditions (Knowles et al., 1981; Payne et al., 1971), 3) in stably anoxic environments denitrifying bacteria are net consumers of N₂O, which they reduce to nitrogen gas (N₂) (Cline et al., 1987, and 4) mixing between waters with different chemical properties influences the slopes of AOU:N₂O linear regressions (Nevison et al., 2003). There is also potential niche overlap among nitrifiers and denitrifiers in low-O₂ environments, making it especially difficult to distinguish between these two N₂O sources. Ammonia-oxidizing bacteria are able to thrive at low O₂ concentrations (Carlucci and McNally, 1969; Goreau et al., 1980; Codispoti and Christensen, 1985) and it has been suggested that denitrification occurs in oxic ocean waters in the anaerobic interiors of organic particles (Yoshida et al., 1989; Aldredge and Cohen, 1987). To understand how the N₂O budget may respond to global change, we need methods for determining the individual contributions of nitrification and denitrification to the N₂O budget.

Understanding the N₂O source from ammonia-oxidizing bacteria is particularly complicated because these organisms contain two distinct N₂O-producing pathways that may respond differently to geochemical controls. One pathway is the oxidative decomposition of hydroxylamine (NH₂OH), or one of its derivatives, during the conversion of NH₃ to NO₂⁻ (Hooper and Terry, 1979). The other mechanism, known as nitrifier-denitrification, is the sequential reduction of NO₂⁻ to NO and then N₂O by the action of the nitrite reductase (NIR, encoded by the gene nirK) and the nitric oxide reduc-tase (NOR, encoded by the gene norB). All of the ammonia-oxidizing bacteria that have been screened to date contain the nirK and norB genes (Casciotti and Ward, 2001; Shaw et al., 2006; Casciotti and Ward, 2005; Cantera and Stein, 2007; Norton et al., 2008; Arp et al., 2007), and the conversion of ¹⁵NO₂⁻ to ¹⁵N₂O has been demonstrated in several genera (Poth and Focht, 1985; Shaw et al., 2006). Archaeal ammonia oxidizers also appear to possess nirK and norB homologs (Treusch et al., 2005; Hallam et al., 2006; Walker et al., 2010) but it is not known whether the proteins encoded by these genes are involved in N₂O production.

The enzymes involved in nitrifier-denitrification are homologous to those found in a subset of heterotrophic denitrifying bacteria. However, unlike heterotrophic denitrification, nitrifier-denitrification may not be a strictly anaerobic process (Shaw et al., 2006). Ammonia-oxidizing bacteria express nirK in aerobic environments in response to NO₂⁻ (Beaumont et al., 2004) and it has been hypothesized that NIR’s main role is in detoxifying NO₂⁻ (Poth and Focht, 1985; Beaumont et al., 2002). Nevertheless, a role for O₂ is suggested by the fact that nirK expression increases in low-O₂ conditions (Beaumont et al., 2004), and yields of N₂O from cultures of ammonia-oxidizing bacteria increase more than 40-fold when O₂ concentrations drop below 5µM (Goreau et al., 1980).

N₂O with biologically distinct origins can be identified using stable isotopic signatures. The oxygen isotopic signature (δ¹⁸O-N₂O) has been used to distinguish nitrification and denitrification N₂O sources (Ostrom et al., 2000; Toyoda et al., 2005; Wrage et al., 2005; Kool et al., 2007). The δ¹⁸O of N₂O depends on the proportion of oxygen in N₂O that is derived from O₂ vs. H₂O, as well as any fractionation factors associated with incorporation or loss of the oxygen atoms in the metabolic precursors of N₂O (Fig. 1) (Casciotti et al., 2010). N₂O derived from NH₂OH contains only oxygen atoms from O₂ whereas N₂O produced by nitrifier-denitrification or heterotrophic denitrification depends on the δ¹⁸O of NO₂⁻ (and the δ¹⁸O of NO₃⁻, in the case of heterotrophic denitrification), which is derived from both O₂ and H₂O (Andersson et al., 1982; Casciotti et al., 2010; Buchwald and Casciotti, 2010). Since the δ¹⁸O values of marine H₂O are typically at least 20‰ less than those of dissolved O₂ (Kroopnick and Craig, 1976), marine N₂O produced with different amounts of oxygen from H₂O and O₂ will reflect this in the δ¹⁸O signature. Indeed, positive correlations between oceanographic δ¹⁸O-O₂ and δ¹⁸O-N₂O data have been interpreted as evidence that N₂O is a product of nitrification because oxygen from O₂ is most directly incorporated into N₂O through NH₂OH during NH₃ oxidation (Ostrom et al., 2000; Andersson and Hooper, 1983).

However, there may be isotope effects associated with the incorporation of oxygen atoms from O₂ and H₂O into N₂O (Casciotti et al., 2010). If these isotope effects are significant and variable among different species of ammonia oxidizers, it may prove difficult to extract source information
Fig. 1. During ammonia oxidation, the oxygen atoms incorporated into N₂O come from either O₂ or H₂O. The δ¹⁸O-N₂O depends upon the isotopic signatures of these two substrates as well as isotope effects (1⁸ε) that may be associated with the individual formation mechanisms, hydroxylamine (¹⁸ε₁H₂O) decomposition and nitrifier-denitrification of nitrite (¹⁸εND).

based on oxygen isotopes alone. Furthermore, the δ¹⁸O of N₂O produced by ammonia-oxidizing bacteria may change depending on what fraction of the oxygen atoms are derived from O₂ (via NH₂OH decomposition and nitrifier-denitrification) vs. H₂O (via nitrifier-denitrification) (Fig. 1).

The ¹⁵N site preference (SP) is another isotopic signature used to interpret environmental N₂O data (Toyoda et al., 2002; Sutka et al., 2003, 2004; Toyoda et al., 2005; Sutka et al., 2006; Koba et al., 2009). SP as defined by Toyoda and Yoshida (1999) is the difference in the isotopic enrichment of the internal (α) and external (β) nitrogen atoms in the linear N₂O molecule:

\[
SP = \delta¹⁵N^\alpha - \delta¹⁵N^\beta.
\]

Unlike δ¹⁸O and δ¹⁵Nbulk values, SP is thought to reflect the N₂O production mechanism while remaining independent of the substrate’s isotopic signature. This is because the reactions that produce N₂O involve two identical precursor molecules (either NO or NH₂OH) (Toyoda et al., 2002; Schmidt et al., 2004) that are presumably drawn simultaneously from the same substrate pool. SP measurements made on N₂O produced by ammonia-oxidizing bacteria and denitrifying bacteria support this idea (Sutka et al., 2006).

Cultures of ammonia-oxidizing bacteria produce N₂O with a SP of about 33.5‰ via NH₂OH decomposition. However, in the presence of NO₂⁻ and low O₂ concentrations, the same bacteria make N₂O with a SP that is closer to that of denitrifying bacteria (−0.8‰) (Sutka et al., 2003, 2004, 2006).

Previous workers have estimated the “end-member” SP signatures for the two different sources of N₂O in ammonia oxidizer cultures by manipulating O₂ concentrations in order to favor production via one process over the other (Sutka et al., 2003, 2004, 2006). However, since NH₂OH decomposition and nitrifier-denitrification can give rise to N₂O simultaneously, failure to account for this mixing may cause errors in these end-member SP estimates. If N₂O from NH₂OH decomposition has a SP that is much higher than the SP of N₂O from nitrifier-denitrification, as proposed by Sutka et al. (2003, 2004, 2006), then source mixing would cause underestimation of the SP of NH₂OH decomposition and overestimation of the SP of nitrifier-denitrification.

Here we have used δ¹⁸O-N₂O and SP measurements to make mixing-corrected estimates of the end-member SP values for N₂O produced by NH₂OH decomposition and nitrifier-denitrification by the marine ammonia-oxidizing bacterium Nitrosomonas marina C-113a. These end-member values were then used to calculate the N₂O yields from nitrification and nitrifier-denitrification in different growth conditions, including a range of O₂ headspace concentrations (20%, 2%, and 0.5%), excess NO₂ (0.2 to 1 mM), at different cell densities, and in the presence of nitrite-oxidizing bacteria. Each experiment was carried out with an eye towards simulating environmental conditions more closely than previous studies by using growth medium that contains a fraction of the NH₄⁺ present in commonly used recipes for ammonia oxidizer media (50 µM vs. 5 to 10 mM NH₄⁺), and lower cell densities.

2 Materials and methods

2.1 Culture maintenance and experimental setup

Nitrosomonas marina C-113a cultures were maintained semi-continuously in Watson medium containing 5 mM NH₄⁺ (Watson, 1965). All maintenance cultures were kept in the dark at 22 °C with shaking at 100 rpm. The cultures used to inoculate experiments were periodically tested for heterotrophic contamination as follows: 1 ml of each culture was added to 2 ml of a sterile 1:4 mixture of tryptic soy broth and artificial seawater and incubated 3 to 4 weeks in aerated culture tubes. Contamination was of particular concern during experiments on high density C-113a cultures because the abundance of cellular material was a potential source of organic substrate for the growth of heterotrophic denitrifiers, which can also produce N₂O at low O₂ concentrations. For this reason, additional purity tests were done by inoculating 5 ml of each high density culture (10⁵ – 10⁶ cells ml⁻¹) into 10 ml of the sterile tryptic soy/artificial seawater mixture amended with 1 mM NaNO₃. These cultures were incubated in closed, inverted 15 ml centrifuge tubes for 3 to 4 weeks. All tubes remained free of turbidity and showed no production of gas bubbles that would indicate heterotrophic denitrification.

Experiments were carried out in 545 ml glass serum bottles (Wheaton, 223952) that contained 100 ml sterile Watson medium with 50 µM NH₄⁺. Parallel experiments in ¹⁸O-enriched water were set up by adding 1 ml of 5000‰ δ¹⁸O-H₂O into each bottle. The headspace of each bottle
was sealed using 30 mm gray butyl rubber septa (Wheaton, 224100-331) and aluminum crimps (Wheaton, 224187-01). Atmospheric O\textsubscript{2} and N\textsubscript{2}O were removed by purging for 3 h with N\textsubscript{2} flowing at > 60 ml min-1 and appropriate amounts of high-purity O\textsubscript{2} (δ18O = +25.3‰) were injected back into each headspace to achieve 20%, 2%, or 0.5% O\textsubscript{2} (v/v) (203, 20, or 5 µM dissolved O\textsubscript{2}, respectively). Headspace O\textsubscript{2} and N\textsubscript{2}O concentrations were checked before and after each experiment by electron capture gas chromatography (see below). The ratio of headspace to liquid volumes was such that complete NH\textsubscript{3} oxidation consumed less than 10% of the total O\textsubscript{2} in the lowest O\textsubscript{2} headspaces.

Immediately before each experiment, 1–21 of late exponential or early stationary phase cultures were centrifuged at 10,000 g for 30 min, washed to remove residual NH\textsubscript{4}+ and NO\textsubscript{3}−, and re-suspended in 30 ml sterile media without NH\textsubscript{4}+. Experiments were initiated by the injection of 500 µl of washed and resuspended cells into each bottle. In the co-culture experiments, ammonia oxidizers with cell densities of approximately 2 × 105 cells ml-1 were added with washed and resuspended cells of the nitrite oxidizer Nitrooccus mobilis (106 cells ml-1).

Initial and final cell densities were measured in samples preserved with 2% formalin (0.22-µm filtered) by making microscopic counts of DAPI-stained cells, or by using fluorescence assisted flow cytometry (FACS) to count SYBR green-stained cells on a FACS Calibur flow cytometer (Becton Dickinson). Uninoculated bottles served as a control for abiotic N\textsubscript{2}O production and were analyzed in parallel with experimental bottles. All bottles were incubated in the dark at room temperature with constant shaking. The progress of NH\textsubscript{3} oxidation was monitored by measuring accumulation of NO\textsubscript{2}− and disappearance of NH\textsubscript{4}+ from the medium (see below). Once NH\textsubscript{3} oxidation was complete, experiments were terminated by injecting each bottle with 1 ml of 6 M NaOH, lysing the cells.

2.2 Chemical analyses

The concentrations of NH\textsubscript{4}+ were determined colorimetrically by the phenol-hypochlorite method (Solorzano, 1969) and NO\textsubscript{2}− concentrations were determined by the Griess-Ilosvay colorimetric method (Pai and Yang, 1990) using a 1 cm path-length flow cell. Headspace O\textsubscript{2} concentrations were determined using a gas chromatograph with a 63Ni electron capture detector (Shimadzu GC-8A). The O\textsubscript{2} peaks from 20 to 250 µl injections of sample headspace were recorded and integrated using Shimadzu EZStart software (v. 7.2.1). Sample peak areas were calibrated with standard injections of air. Headspace N\textsubscript{2}O concentrations were also measured before and after each experiment using the GC-8A. Sample peak areas were calibrated against commercial N\textsubscript{2}O mixtures (10, 1, and 0.1 ppm) and fresh atmospheric air (approximately 320 ppb). When total headspace N\textsubscript{2}O was less than 20 nmol, N\textsubscript{2}O was quantified by analyzing the whole bottle (by purging and trapping, see below) on a Finnigan DeltaPLUS Isotope ratio mass spectrometer (IRMS) and using the linear relationship between peak area of m/z 44 and nanomoles of N\textsubscript{2}O to determine total N\textsubscript{2}O. The average blank determined by analyzing bottles flushed with high-purity N\textsubscript{2} was 0.08 ± 0.04 nmol N\textsubscript{2}O.

2.3 Isotopic analyses

Isotopic analyses of N\textsubscript{2}O were conducted using a Finnigan DeltaPLUS XP IRMS. Bottles were purged with He and N\textsubscript{2}O was cryo-trapped on-line with a custom-built purge and trap system (McIlvin and Casciotti, 2010) operated manually with 545 ml serum bottles. The following modifications made large volume gas extraction possible: bottles were loaded manually, the helium flow rate was increased to 60 ml min-1, and the purge time was extended to 45 min. As described in McIlvin and Casciotti (2010), CO\textsubscript{2} was largely removed from the gas stream by passage through a Carbosorb trap, then N\textsubscript{2}O was separated from residual CO\textsubscript{2} using a capillary column (25 m × 0.32 mm) lined with Poraplot-O before injection into the mass spectrometer through an open split. Mass/charge (m/z) peak areas were automatically integrated using Isodat 2.0 software. Values for δ18O-N\textsubscript{2}O, δ15N\textsubscript{bulk}, δ15N\textsubscript{N\textsubscript{2}O}, and δ15N\textsubscript{δ} were obtained from the 45/44, 46/44, and 31/30 peak area ratios and referenced to our laboratory’s N\textsubscript{2}O tank as described in Appendix A. This reference tank has been calibrated for δ18O-N\textsubscript{2}O (% vs. VSMOW), δ15N\textsubscript{bulk}, δ15N\textsubscript{N\textsubscript{2}O}, and δ15N\textsubscript{δ} (% vs. AIR) by S. Toyoda (Tokyo Institute of Technology). Furthermore, the isotopomer-specific NO+ fragment ion yields for our DeltaPLUS XP were determined for the ion source conditions used in these measurements (see Appendix B). For quality-control, two or three tropospheric N\textsubscript{2}O samples were analyzed between every 7 to 10 experimental samples to check the consistency of our isotopomer analyses. These samples were created by allowing 100 ml of artificial seawater to equilibrate with outside air in 545 ml serum bottles, sealing the bottles, and analyzing them as described above. Triplicate samples of tropospheric N\textsubscript{2}O from Woods Hole, MA analyzed during a typical run had δ15N\textsubscript{N\textsubscript{2}O} = 15.0 ± 0.1‰, δ15N\textsubscript{δ} = −1.9 ± 0.1‰, δ18O = 44.4 ± 0.2‰, δ15N\textsubscript{bulk} = 6.5 ± 0.1‰, SP = 16.9 ± 0.1‰, and m/z 44 peak area = 15.6 ± 0.2 mV s (7.8 ± 0.1 nmol).

We also measured the δ18O and δ15N of NO\textsubscript{3}− that was produced by cultures as NH\textsubscript{3} oxidation progressed. NO\textsubscript{3}− was converted to N\textsubscript{2}O using the azide method developed by McIlvin and Altabet (2005). The conversion to N\textsubscript{2}O was carried out immediately after sampling to avoid shifts in the oxygen isotopic values by abiotic exchange with water (Casciotti et al., 2007) or continued biological production of NO\textsubscript{3} from residual NH\textsubscript{3}. Individual sample volumes were adjusted so that a consistent amount of N\textsubscript{2}O (5 or 10 nmol) was produced for each set of azide reactions. Each sample set included at least three sets of three different NO\textsubscript{3} standards (N-23,
N-7373, and N-10219; Casciotti et al., 2007) that were used to calculate sample δ^{15}N-NO_2 (‰ vs. AIR) and δ^{18}O-NO_2 (‰ vs. VSMOW) values. These samples were analyzed in 20 ml headspace vials using the autosampler setup described by Casciotti et al. (2002), modified with the addition of an −60°C ethanol trap and column backflush (McIlvin and Casciotti, 2010).

3 Results and discussion

Nitrifier-denitrification depends on the presence of NO_3\(^-\) to produce N_2O (Ritchie and Nicholas, 1972; Poth and Focht, 1985; Yoshida, 1988), and the accumulation of NO_3\(^-\) in environments such as oxygen deficient zones (ODZs) could contribute to increased N_2O production in these regions. To date, the roles of substrate concentration and cell density in determining N_2O yield have not been systematically investigated. This study was designed to test the impact of O_2 and NO_3\(^-\) concentrations on the N_2O yield of marine ammonia-oxidizing bacteria at a lower substrate (NH_3) concentration, and at a broader and lower range of cell densities than any previous work. N_2O yield data are presented in the same form used in oceanographic N_2O studies so that yields are the fraction of N-atoms converted to N_2O out of the total amount of NH_3 that is oxidized (i.e. 2 × moles N_2O/moles NH_3). In other words, a yield of 5 × 10^{-4} indicates that 1 in every 2000 N-atoms from oxidized NH_3 will go into an N_2O molecule.

3.1 Cell density and O_2 concentration

Cell density influenced the observed N_2O yields in both low O_2 (0.5% and 2%) and high O_2 (20%) conditions. O_2 concentration had the greatest impact on N_2O yield at the highest starting cell density tested (1.5 × 10^6 cells ml^{-1}) (Fig. 2). At 20% O_2, the high density cultures had the lowest average yields observed, (1.3 ± 0.4 × 10^{-4}) while at 0.5% O_2 the high density cultures had the highest average yields observed (220 ± 40 × 10^{-4}). In contrast, O_2 had a much smaller impact on N_2O yield in the medium density cultures (starting density = 2.1 × 10^4 cells ml^{-1}) and the low density cultures (starting density = 2 × 10^2 cells ml^{-1}). In fact, the N_2O yields of the medium density cultures were not significantly different among the high and low O_2 treatments (at 20% O_2, 5.1 ± 0.5 × 10^{-4}; at 2% O_2, 5.5 ± 0.8 × 10^{-4}, and at 0.5% O_2, 6.4 ± 1.4 × 10^{-4}). Low density cultures produced average yields of 3.9 ± 0.3 × 10^{-4} at 20% O_2, 4.7 ± 0.1 × 10^{-4} at 2% O_2, and 6.7 ± 0.5 × 10^{-4} at 0.5% O_2.

The average yields of the cultures at 20% O_2 were comparable to the production yields (0.8–5.4 × 10^{-4}) measured by Yoshida et al. (1989) in the oxide surface waters of the western North Pacific using ^{15}NH_4^+ tracer techniques. However, they are lower than previously reported yields for Nitrosomonas cultures at 20% O_2 (26–30 × 10^{-4} in Goreau et al. (1980) and 10–390 × 10^{-4} in Remde and Conrad, 1990).

![Fig. 2. N_2O yields vs. cell density. Each bar represents the average of 5 replicate cultures. Error bars are for one standard deviation among replicates.](image)

In this study, low-O_2 conditions only resulted in substantial increases in N_2O yield when cell densities were greater than 10^6 cells ml^{-1}. N_2O yields were relatively low and less sensitive to O_2 when cell densities were closer to those observed in the ocean (10^3–10^4 cells ml^{-1}; Ward et al., 1982). This draws into question the oceanographic applicability of previous culture-based yield measurements, where a many-fold increase in N_2O yield was observed as O_2 dropped from 20% to 0.5% (Goreau et al., 1980). Goreau et al. (1980) worked with a marine Nitrosomonas strain at cell densities (1 × 10^6 cells ml^{-1}) comparable to our high density experiments and observed N_2O yields of 800–1000 × 10^{-4} for cultures grown at 0.5% O_2 on 24 mM NH_4^+. The implication of the present study is that factors such as cell density can influence the relationship between N_2O yield and O_2 concentration.

The mechanisms that explain the high N_2O yields of high density cultures at low O_2 could be chemical or biological. O_2 has a major influence on the half-life of nitric oxide (NO), the gaseous precursor of N_2O during nitrifier-denitrification. Therefore, concentration-dependent changes in the rate of N_2O-production could be related to O_2 as a consequence of the abiotic oxidation of NO:

\[2\text{NO} + \text{O}_2 \rightarrow 2\text{N}_2\text{O}\]

\[2\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3,\]

where nitrous acid (HNO_2), is the major decomposition product of the second reaction (Ignarro et al., 1993). In aerobic environments, O_2 is the major reactant and any NO present reacts away soon after it is produced (Lewis and
Deen, 1994). However, in low-O\textsubscript{2} environments the half-life of NO increases, so that during bacterial NH\textsubscript{3} oxidation, it can accumulate to concentrations that are similar to N\textsubscript{2}O (Remde and Conrad, 1990; Lipschultz et al., 1981). This may allow the enzymes that carry out NO reduction to compete for NO with the above O\textsubscript{2}-dependent reaction. Studies of N. europaea have also shown that the expression of nir\textsubscript{K} during nitrifier-denitrification is controlled by a repressor protein (Beaumont et al., 2002, 2004) that belongs to a family of NO-sensitive transcription regulators (Rodionov et al., 2005). If NO induces nir\textsubscript{K} transcription, the abiotic reaction of O\textsubscript{2} with NO could reduce NIR-dependent N\textsubscript{2}O production by consuming the inducer. Finally, high cell densities may be necessary for either of these effects to become important because the ability of NO-reducing enzymes to compete with O\textsubscript{2} for NO will depend on the diffusivities of O\textsubscript{2} and NO relative to the average distance between cells.

It is unclear why cultures with the highest cell densities had significantly lower N\textsubscript{2}O yields at 20% O\textsubscript{2} than cultures with lower densities (Fig. 2). Time, NO\textsubscript{2} (or NO), and increasing cell numbers could all enhance N\textsubscript{2}O production by nitrifier-denitrification. There were significant differences in the amount of time that it took cultures of each density to oxidize all the NH\textsubscript{4}+ present. The low and medium density cultures took 14 and 3.5 d to oxidize 50 µM NH\textsubscript{4}+, respectively, while the high density cultures took only 7 h. Cell numbers also doubled approximately 7, 2, and 0 times, in the low, medium, and high density cultures, respectively. Thus, in the low and medium density cultures, NO\textsubscript{2} and cells accumulated over longer periods of time than they did in the high density cultures. Further research is needed to determine the behavioral and/or kinetic effects that influence the N\textsubscript{2}O yields from ammonia oxidizers.

3.2 NO\textsubscript{2} and O\textsubscript{2} concentration

In pure batch cultures of ammonia oxidizers, NO\textsubscript{2} exposure is an unavoidable result of growth because NO\textsubscript{2} accumulates up to the initial NH\textsubscript{4}+ concentration. Excess NO\textsubscript{2} may increase N\textsubscript{2}O yields if ammonia oxidizers convert NO\textsubscript{2} to N\textsubscript{2}O to avoid the toxic effects of NO\textsubscript{2} (Poth and Focht, 1985; Beaumont et al., 2002, 2004). To test the impact of NO\textsubscript{2} on N\textsubscript{2}O yields, we increased NO\textsubscript{2} concentrations by adding 0.2 or 1 mM NO\textsubscript{2} to some cultures, and decreased accumulated NO\textsubscript{2} concentrations in others by adding the nitrite-oxidizing bacterium Nitrococcus mobilis to create a co-culture.

In the co-cultures, NO\textsubscript{2} concentrations remained below detection at 20% O\textsubscript{2} and below 17 µM at 0.5% O\textsubscript{2}. Although co-culturing kept NO\textsubscript{2} concentrations lower than they were in the pure cultures, N\textsubscript{2}O yields were not significantly lower in the presence of the nitrite-oxidizing bacteria (Fig. 3a). The insignificant differences between the yields with and without nitrite oxidizers suggests that the 50 µM NO\textsubscript{2} that accumulated in our pure cultures did not have a major impact on the N\textsubscript{2}O yields measured for those cultures. However, we were unable to entirely eliminate NO\textsubscript{2} accumulation in the low-O\textsubscript{2} experiments. Future work should focus on identifying the impact of NO\textsubscript{2} on N\textsubscript{2}O production by nitrifiers in low-O\textsubscript{2} environments.

The addition of 1 mM NO\textsubscript{2}− had a greater impact on N\textsubscript{2}O yield than the differences in O\textsubscript{2} concentration did (Fig. 3b). The increase due to the additional NO\textsubscript{2} was apparent in both low and high O\textsubscript{2} conditions. Furthermore, the average N\textsubscript{2}O yields increased as the amount of added NO\textsubscript{2} increased. Cultures under 20% O\textsubscript{2} with no added NO\textsubscript{2} had an average yield of 4.0 ± 0.03 × 10−4 while those with 1 mM added NO\textsubscript{2} had an average yield of 7.6 ± 0.5 × 10−4. Cultures under 0.5% O\textsubscript{2} with no added NO\textsubscript{2} had an average yield of 6.0 ± 0.5 × 10−4 and those with 1 mM added NO\textsubscript{2} had an average yield of 10.2 ± 0.3 × 10−4. N\textsubscript{2}O yields were calculated as a fraction of the total N in NH\textsubscript{4}+ consumed during the experiment (≈ 5 × 10−4 moles).

From this work, it is clear that increased NO\textsubscript{2} concentrations enhance N\textsubscript{2}O production in cultures of ammonia-oxidizing bacteria. This is consistent with a detoxification role for nitrite reductase in nitrifying bacteria, as suggested by previous work (Beaumont et al., 2004). The relationship between NO\textsubscript{2}, nitrifier-denitrification, and N\textsubscript{2}O production is also complex. Aerobic nir\textsubscript{K} expression occurs in response to increasing NO\textsubscript{2} concentrations (Beaumont et al., 2004), but nir\textsubscript{K} knock-out mutants actually produce more N\textsubscript{2}O than the wild-type strain. The authors suggest that the NH\textsubscript{2}OH-dependent pathway has a role in this increase (Beaumont et al., 2002).

Oceanic O\textsubscript{2} concentrations may influence a number of different biogeochemical variables that enhance N\textsubscript{2}O production by ammonia oxidizers. For example, low dissolved O\textsubscript{2} concentrations are often associated with elevated NO\textsubscript{2} concentrations (Codispoti et al., 2001). When dissolved O\textsubscript{2} concentrations are low, the biological turnover time of NO\textsubscript{2} also increases (Hashimoto et al., 1983) in part because the activity of nitrite-oxidizing bacteria ceases at a higher O\textsubscript{2} concentration than the activity of ammonia-oxidizing bacteria (Helder and de Vries, 1983). Charpentier et al. (2007) also suggest that high concentrations of organic particles found in certain productive waters enhance N\textsubscript{2}O production by creating high-NO\textsubscript{2}, low-O\textsubscript{2} microenvironments necessary to support nitrifier-denitrification. Future oceanographic work should investigate how N\textsubscript{2}O production rates in oxygen deficient zones (ODZs) relate to these different biogeochemical variables.

3.3 Pathway dependence of δ15N\textsubscript{bulk}-N\textsubscript{2}O

Ammonia-oxidizing bacteria make N\textsubscript{2}O through two different pathways, so that the observed isotopic signatures of N\textsubscript{2}O are a function of the pathways’ mixing fractions, the isotopic signatures of their different substrate molecules,
Fig. 3a. N₂O yields in the presence and absence of nitrite-oxidizing bacteria (NOB). Starting NH₄⁺ concentrations were 50 µM.

Fig. 3b. N₂O yields increased when NO₂⁻ was added to the starting media. Initial NH₄⁺ concentrations were 50 µM. Added NO₂⁻ was either 0, 0.2 mM, or 1 mM.

and the different isotope effects associated with those pathways. Complete biochemical decoupling of the nitrifier-denitrification pathway from the NH₂OH decomposition pathway is difficult to achieve with intact C-113a cells because the bacteria require NH₃ to support their respiratory electron transport chain, and N₂O production stops once NH₃ oxidation is complete (Supplementary Fig. S.3). Therefore, while we manipulated growth conditions such as O₂ concentration and cell density in order to favor one N₂O production mechanism over another, in interpreting the results we account for N₂O contributions from both sources.

N₂O produced by all C-113a cultures was depleted in ¹⁵N relative to the substrate (δ¹⁵N-NH₄⁺ = −3‰), although the range varied widely (δ¹⁵Nbulk-N₂O = −54.9‰ to −6.6‰, Fig. 4). Culture conditions affected the degree of ¹⁵N depletion, with cultures grown under 0.5% O₂ producing the most depleted N₂O (−54.9‰ to −15.2‰), while cultures grown with 20% O₂ generally produced N₂O with higher δ¹⁵N values (−13.6‰ to −6.7‰). The low-O₂ cultures that produced the most depleted N₂O also produced the most N₂O (the highest yield). We interpret the observed variation in δ¹⁵Nbulk-N₂O to have arisen from pathway-dependent mixing, which implies that a single isotope effect will not adequately relate the δ¹⁵Nbulk-N₂O to the substrate nitrogen compounds.

We assume that each datapoint (δ¹⁵Nbulk, Mtotal, where M refers to moles of N₂O) represents a two-component mixture of a constant or “basal” N₂O source from NH₂OH decomposition (MNH₂OH) and a variable source of N₂O from nitrifier-denitrification (MND) that tended to be larger in low-O₂ cultures. This is the basis for performing the type II linear regression of δ¹⁵Nbulk vs. 1/MN₂O in Fig. 4. Equation (3b), the model for the linear regression was developed using the mass balance Eqs. (1 and 2) (Table 1).

According to Eq. (3b), the y-intercept of the regression is the δ¹⁵Nbulk of the more depleted nitrifier-denitrification
end-member (δ^{15}N_{ND}). This is because as the amount of N₂O approaches infinity, the δ^{15}N_{ND} should overwhelm the basal end-member signature, δ^{15}N_{NH₂OH}.

The value of δ^{15}N_{ND} obtained in this way is −59.9‰, ±3.8‰ (errors are given as one standard deviation of the y-intercept). The difference between the δ^{15}N_{bulk} of the product N₂O and the δ^{15}N of the substrate NH₃ is the overall isotope effect associated with N₂O formation by nitrifier-denitrification (15ε_{ND} = −56.9‰). The most enriched N₂O produced in these experiments had a δ^{15}N_{bulk} of −6.7‰, providing a minimum for δ^{15}N_{NH₂OH}. This is a minimum because if a fraction of this N₂O was produced by nitrifier-denitrification, we would not observe the heaviest possible value for the NH₂OH end-member.

This end-member mixing model does not account for the Rayleigh effects that kinetic isotopic fractionation has in closed systems such as batch cultures. These effects change the isotopic signatures of the NH₃ that is consumed and the NO₂⁻ that accumulates as NH₃ oxidation proceeds (Mariotti et al., 1981) so that at any instant during the reaction, the δ^{15}N of N₂O produced from these substrates will also reflect these isotopic shifts. However in this study, the end-member mixing model is not a serious violation of Rayleigh assumptions because all cultures were allowed to oxidize the same amount of NH₃ to completion before the total N₂O was analyzed. Abrupt changes in N₂O production rates during the NH₃ oxidation reaction could also make this model problematic in a Rayleigh system. In these experiments, however, N₂O accumulated steadily as NH₃ oxidation progressed and NO₂⁻ accumulated (Supplementary Fig. S.3).

3.4 Covariation of SP and δ¹⁸O-N₂O

The δ¹⁸O of N₂O is like the δ^{15}N_{bulk} in that these signatures are both process-dependent and substrate-dependent. That is, the δ¹⁸O of N₂O produced by ammonia-oxidizing bacteria depends on the mixing fraction of the two N₂O-producing pathways as well as the isotopic signatures of the substrates (O₂ and H₂O) that contribute oxygen atoms to those pathways and isotopic fractionation during oxygen atom incorporation or loss in the reactions that make N₂O (Fig. 1) (Casciotti et al., 2010). The conversion of NH₃ to NO₂⁻ incorporates oxygen atoms from O₂ in the first step and H₂O in the second step (Andersson et al., 1982; Andersson and Hooper, 1983):

\[
\text{NH}_3 + \frac{1}{2} \text{O}_2 \rightarrow \text{NH}_2\text{O}_2
\]

\[
\text{NH}_2\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + 4\text{H}.
\]

We expect the δ¹⁸O of N₂O derived from NH₂OH decomposition to be independent of the δ¹⁸O of H₂O because O₂ is the sole contributor of oxygen during the first reaction. However, the δ¹⁸O of N₂O produced by NO₂⁻ reduction during nitrifier-denitrification depends upon both the δ¹⁸O-N₂O and δ¹⁸O-H₂O, in proportions that are affected by the amount of oxygen atom exchange between NO₂⁻ and H₂O (Andersson and Hooper, 1983; Casciotti et al., 2002; Kool et al., 2007; Casciotti et al., 2010). The fact that the δ¹⁸O of N₂O produced by nitrifier-denitrification is sensitive to changes in δ¹⁸O-N₂O is the basis for a technique that uses parallel experiments in ¹⁸O-labeled and unlabeled H₂O to identify the proportion of N₂O produced by nitrifier-denitrification (Wragge et al., 2005).

The impact of the δ¹⁸O-N₂O on the δ¹⁸O of N₂O produced by C-113a is demonstrated in Fig. 5, where cultures grown in water with a δ¹⁸O of +40‰ (labeled) produced N₂O that was 5% to 40% more enriched in ¹⁸O than cultures grown in H₂O with a δ¹⁸O of −5‰ (unlabeled). The difference in δ¹⁸O-N₂O between labeled and unlabeled cultures was greatest at 0.5% O₂, when more N₂O was produced. At higher O₂ concentrations, less N₂O was produced and there was convergence of the δ¹⁸O-N₂O values from labeled and unlabeled experiments. The difference in δ¹⁸O-N₂O from ammonia oxidizers grown in labeled and unlabeled H₂O is directly proportional to the fraction of the total N₂O that is produced by nitrifier-denitrification. The pattern is consistent with relatively more N₂O production by nitrifier-denitrification as the O₂ concentration drops and H₂O contributes more to the overall δ¹⁸O-N₂O. Note that in these experiments, side-by-side comparisons between labeled and unlabeled replicates assume that nitrifier-denitrification and NH₂OH decomposition contribute the same proportion of N₂O to both labeled
Table 2. Equations used to model the SP and δ¹⁸O-N₂O data in Figure 5.

\[
\begin{align*}
\text{(4a) } SP_{\text{total}} &= F_{\text{ND}} \times SP_{\text{ND}} + (1 - F_{\text{ND}}) \times SP_{\text{NH}_2\text{OH}} \\
\text{(4b) } F_{\text{ND}} &= \frac{SP_{\text{total}} - SP_{\text{NH}_2\text{OH}}}{SP_{\text{ND}} - SP_{\text{NH}_2\text{OH}}} \\
\text{(5) } δ^{18}O-N_2O_{\text{total}} &= F_{\text{ND}} \times (δ^{18}O-NO_2^– - 18ε_{\text{ND}}) + (1 - F_{\text{ND}}) \times (δ^{18}O-O_2 - 18ε_{\text{ND}}) \\
\text{(6) } δ^{18}O-N_2O_{\text{total}} &= \frac{SP_{\text{total}} - SP_{\text{NH}_2\text{OH}}}{SP_{\text{ND}} - SP_{\text{NH}_2\text{OH}}} \times (δ^{18}O-NO_2^– - 18ε_{\text{ND}}) + (1 - \frac{SP_{\text{total}} - SP_{\text{NH}_2\text{OH}}}{SP_{\text{ND}} - SP_{\text{NH}_2\text{OH}}}) \times (δ^{18}O-O_2 - 18ε_{\text{ND}})
\end{align*}
\]

![Fig. 5. Pathway dependence of δ¹⁸O-N₂O and SP. Filled symbols are data from cultures grown in labeled water (about 40‰) while open symbols are data from cultures in unlabeled water (about −5‰). Circles correspond to cultures with cell densities of 1.5 × 10⁶ cells ml⁻¹, squares to 2 × 10⁵ cells ml⁻¹, and triangles to 2.1 × 10⁴ cells ml⁻¹. Colors correspond to headspace O₂ levels, with black symbols representing 0.5% O₂, blue symbols 2% O₂, and red symbols 20% O₂. Regression slopes and intercepts are given ± one standard deviation. Data from low-density cultures were not included to avoid the impact of relaxation of the N₂O or δ¹⁸O-N₂O towards equilibrium with H₂O over the course of the NH₃ oxidation reaction. Data points that were less than 1 nmol N₂O were not included. All δ¹⁸O values are referenced to VSMOW.](image)

and unlabeled replicates and that the N₂O from NH₃OH decomposition has the same ¹⁸O signature in both labeled and unlabeled experiments. This will be addressed in more detail below.

In contrast to δ¹⁸O-N₂O, SP signatures of N₂O from ammonia oxidizers are thought to be process-dependent and substrate-independent: SP signatures vary as a result of mixing among N₂O sources with distinct SP values (Sutka et al., 2003, 2004, 2006), but they do not depend on the δ¹⁵N values of the N₂O precursor molecules (Toyoda et al., 2002). In the present study, C-113a produced high-SP N₂O (up to 33.2‰) under 20% O₂ and low-SP N₂O (down to −9.1‰) under 0.5% O₂ (Fig. 5). Similar results have been observed for N. europaea, which produces high-SP N₂O (31.4 ± 4.2‰) when growing aerobically on NH₃ (Sutka et al., 2006) but can also produce low-SP N₂O (−0.8 ± 5.8‰) in the presence of NOₓ and anaerobic conditions (Sutka et al., 2003, 2004).

Knowing the end-member SP signatures of N₂O from NH₃OH decomposition and nitrifier-denitrification is powerful since these values can then be used to calculate the size of each pathway’s contribution to a culture’s total N₂O output based on its SP signature (SP_total) (Charpentier et al., 2007). We developed the following model in order to extract these end-member SP signatures from our data while accounting for the fact that the SP of the N₂O from each culture is a mixture of these end-members. Following Charpentier et al. (2007), we set up a system of isotopic mass balance equations (Table 2) that describe isotopic mixing between low-SP N₂O from nitrifier-denitrification (SP_ND) and high-SP N₂O from NH₃OH decomposition (SP_NH₂OH), where F_ND is the fraction of total N₂O that is produced by nitrifier-denitrification. Solving Eq. (4a) for F_ND produces Eq. (4b) which cannot be solved for F_ND without knowing the end-member values, SP_ND and SP_NH₂OH, or having additional information about the value of F_ND for each data point. Therefore, we develop a complementary mixing equation based on the δ¹⁸O-N₂O in Eq. (5) (Table 2).

As discussed above, the measured δ¹⁸O-N₂O (δ¹⁸O-N₂O_total) depends not only on the mixing fraction F_ND, but also the isotopic signatures of the substrate molecules (δ¹⁸O-O₂ and δ¹⁸O-NO₂⁻) and kinetic and/or branching isotope effects associated with either reaction (¹⁸ε_NH₂OH and ¹⁸ε_ND). In these equations, ¹⁸ε_NH₂OH and ¹⁸ε_ND are the respective net isotope effects expressed during oxygen incorporation from O₂ or NO₂ to N₂O. Here we do not consider the impact of Rayleigh fractionation on the δ¹⁸O-O₂ because the O₂ pool is large relative to the fraction that is consumed (<10%) and is expected to raise the δ¹⁸O-O₂ less than 2‰. Substituting (4b) into (5) produces Eq. (6) (Table 2), which includes both SP values and oxygen isotopic signatures.

The best-fit values of the parameters SP_NH₂OH, SP_ND, ¹⁸ε_NH₂OH, and ¹⁸ε_ND (Table 3) were obtained by fitting Eq. (6) to our dataset (n = 33) using a Levenberg-Marquardt non-linear regression program (Draper and Smith, 1981).
Isotope effects and signatures derived in this paper for N₂O production by *N. marina* C-113a. Best fit values of model parameters for Eq. (6) are given with standard deviations based on covariance estimates in Bard (1974).

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>σ</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁵NND</td>
<td>56.9‰</td>
<td>3.8‰</td>
<td>N isotope effect of nitrifier-denitrification</td>
</tr>
<tr>
<td>¹⁸OND</td>
<td>~8.4‰</td>
<td>1.4‰</td>
<td>O isotope effect of nitrifier-denitrification</td>
</tr>
<tr>
<td>¹⁸ONH₂OH</td>
<td>2.9‰</td>
<td>0.8‰</td>
<td>site preference of N₂O from nitrifier-denitrification</td>
</tr>
<tr>
<td>SPND</td>
<td>~10.7‰</td>
<td>2.9‰</td>
<td>effective O isotope effect of NH₂OH decomposition</td>
</tr>
<tr>
<td>SPNH₂OH</td>
<td>36.3‰</td>
<td>2.4‰</td>
<td>site preference of N₂O from NH₂OH decomposition</td>
</tr>
</tbody>
</table>

Inputs were the values of SP_{total}, δ¹⁸O-N₂O, and δ¹⁸O-NH₂O measured for each culture, as well as the known δ¹⁸O of the high-purity O₂ used in the headspaces (+25.3‰). Our estimates of the end-member SP values of N₂O are significantly lower for N₂O produced by nitrifier-denitrification (−10.7 ± 2.9‰) and higher for N₂O produced by NH₂OH decomposition (36.3 ± 2.4‰) than previous estimates (Šutka et al., 2003, 2004, 2006). A sensitivity analysis of the model reveals that the value of SP_{ND} is sensitive to the values of the isotope effects δ¹⁸ENH₂OH (Supplementary Fig. S.4A and S.4C and Supplementary Table 1) and δ¹⁸END (Supplementary Fig. S.4A) but that this sensitivity decreases in labeled water (Supplementary Fig. S.4B and S.4D and Supplementary Table 2). Drawing data from both labeled and unlabeled experiments, as we have done here, leads to acceptable levels of uncertainty (Table 3).

These results expand the range of SP values produced by ammonia oxidizers by more than 10‰. This has an impact when Eq. (4b) is used to calculate the fraction of N₂O from nitrifier-denitrification using oceanographic SP data (Charpentier et al., 2007). We used the new end-member SP values to calculate that nitrifier-denitrification by C-113a accounted for 11% to 26% of N₂O production under 20% O₂ and 43% to 87% of production under 0.5% O₂ (Table 4). The variability for a given O₂ level occurred among cultures with different cell densities; on average, the denser cultures produced relatively more N₂O by nitrifier-denitrification at low-O₂ and less at high-O₂ concentrations (also see Fig. 5).

Our estimated values of δ¹⁸END and δ¹⁸ENH₂OH were −8.4 ± 1.4‰ and +2.9 ± 0.8‰, respectively. This means that N₂O produced via nitrifier-denitrification was enriched in ¹⁸O by 8.4‰ relative to the NO₂⁻, and N₂O produced from NH₂OH was depleted in ¹⁸O by 2.9‰ relative to O₂. The ¹⁸O enrichment from nitrifier-denitrification is most likely the result of a combination of kinetic and branching isotope effects. There are few published estimates of these isotope effects that we can compare with our model results. Work on the heterotrophic denitrifier *Pseudomonas aureofaciens* indicates that the branching oxygen isotope effect of NO₂⁻ reduction is approximately 15‰ (Casciotti et al., 2007). However, it is not known whether the same isotope effect applies to nitrifier-denitrification or if there is also a kinetic isotope effect that influences the δ¹⁸O-N₂O. Recent work has also addressed the isotope effects for oxygen atom incorporation by C-113a (Casciotti et al., 2010), but was not able to separate fractionation during O₂ and H₂O incorporation.

Equations (5) and (6) assume that the oxygen atoms in N₂O produced by NH₂OH decomposition come only from O₂. If a fraction of this oxygen actually comes from H₂O, then the model value of δ¹⁸ENH₂OH reported in Table 3 could be too high for data from experiments in unlabeled H₂O (δ¹⁸O-H₂O < δ¹⁸O-O₂) and too low for data from labeled H₂O (δ¹⁸O-H₂O > δ¹⁸O-O₂). However, this structure was not apparent in the residuals of δ¹⁸ENH₂OH from labeled vs. unlabeled experiments. When a parameter for oxygen-exchange between H₂O and NH₂OH was included in Eq. (6), we were unable to resolve it with the present data set. However, if an exchange term is included in Eq. (6) so that 20% of the oxygen atoms in N₂O produced by NH₂OH decomposition are from H₂O, then the values of SP_{NH₂OH}, SP_{ND}, and δ¹⁸END from Table 3 and values of SP_{total}, δ¹⁸O-N₂O_{total}, δ¹⁸O-NH₂O, and δ¹⁸O-O₂ from Supplementary Tables 1 and 2, estimates of δ¹⁸ENH₂OH would decrease to −3.7‰ in unlabeled water and increase to 6.7‰ in labeled water if we assume that the oxygen atoms from water are incorporated without any isotope effect. However, 20% exchange is an extreme case and available evidence does not support significant exchange of oxygen atoms between NH₂OH and water during ammonia oxidation (Casciotti et al., 2010; Hollocher et al., 1981; Dua et al., 1979). Additional experiments in ¹⁸O-labeled water could shed light on the issue of oxygen exchange.

The δ¹⁸O and SP signatures of the N₂O in these experiments covaried (Fig. 5). The covariation depended on the δ¹⁸O of the H₂O in the media: the slope of the linear regression of SP and δ¹⁸O-N₂O was negative (−0.904 ± 0.087) for experiments performed in ¹⁸O-enriched H₂O (+40‰) and positive (0.152 ± 0.044) for experiments in unlabeled H₂O (−5‰) (Fig. 5). Our model provides an explanation for the covariation between SP and δ¹⁸O-N₂O because it describes mixing between two N₂O sources with distinct SP values and different proportions of oxygen from O₂ and H₂O. According to Eq. (6), the sign and magnitude of the regression slope will depend upon the difference between δ¹⁸O-O₂ and δ¹⁸O-H₂O.
Positive correlations between δ^{18}O-N_2O and SP observed in environmental data have been interpreted as signs that N_2O consumption by denitrification is an important N_2O cycling process in the system under scrutiny (Koba et al., 2009; Yoshida and Toyoda, 2000; Popp et al., 2002; Toyoda et al., 2002; Schmidt et al., 2004). Indeed, there is experimental evidence demonstrating that progressive consumption of N_2O by denitrifier cultures results in a simultaneous increase in both SP and δ^{18}O-N_2O (Ostrom et al., 2007). The theoretical basis for this behavior is the fact that the N-O bonds formed by the heavier nitrogen and oxygen isotopes have lower zero-point energies and are therefore more resistant to being broken than bonds between the lighter isotopes (Yung and Miller, 1997; Toyoda et al., 2002). As a result, decomposition of a symmetrical O-N-N-O intermediate during N_2O formation and also cleavage of the N-O bond during N_2O reduction to N_2 will produce N_2O with positively correlated δ^{18}O and SP values.

Our work demonstrates that SP and δ^{18}O-N_2O can also covary as a result of N_2O production by nitrification, without invoking N_2O consumption by heterotrophic denitrifiers. The sign and magnitude of the correlation depends on the difference between the δ^{18}O of the O$_2$ and the H$_2$O that contribute oxygen atoms to the N_2O. In contrast to this study, where we manipulated δ^{18}O-H$_2$O, there is little natural variation in δ^{18}O-H$_2$O in the open ocean but much larger variation in δ^{18}O-O$_2$ as a result of isotopic fractionation associated with respiratory O$_2$ consumption (Kroopnick and Craig, 1976; Bender, 1990; Levine et al., 2009). According to model Eq. (6), we would expect the slopes of the δ^{18}O-N_2O:SP regressions (such as those in Fig. 5) to increase as δ^{18}O-O$_2$ rises relative to δ^{18}O-H$_2$O (or δ^{18}O-NO$_2$). Nitrification may therefore influence the δ^{18}O-N_2O:SP dynamics in the oxycline in two opposing ways: 1) a drop in O$_2$ concentration may promote nitrifier-denitrification and thus the incorporation of low-δ^{18}O oxygen atoms from H$_2$O into low-SP N$_2O$, and 2) respiratory O$_2$ consumption increases the δ^{18}O of the remaining O$_2$ pool, raising the δ^{18}O of the N_2O produced by NH$_3$OH decomposition as well as nitrifier-denitrification. In the future, the combined use of SP, δ^{18}O-N_2O, and δ^{18}O-O$_2$ may be used to resolve these effects. An important unknown that remains in the marine N_2O isotope biogeochemistry is whether archaeal ammonia oxidizers also produce N_2O and if so, what their impact is on the N_2O budget and the isotopic signatures of N_2O in the ocean.

4 Conclusions

As shown previously, culturing conditions influence N_2O yields from ammonia-oxidizing bacteria. However, the yields observed in this study were much lower than those obtained in previous culture-based measurements, and they did not increase as dramatically at low oxygen concentrations except at high cell densities. These results are in line with modeling- and incubation-based oceanographic estimates of N_2O yields from nitrification and may be useful in future modeling of N_2O production and distributions in the ocean. Recent work interpreting isotopic signatures of biogenic N_2O has often relied on the assumption that a direct relationship between δ^{18}O-N_2O and SP was indicative of N_2O consumption and production by denitrification. However, our work suggests that a direct relationship between these signatures may also occur as a result of nitrification, at least when the SP values vary between -10% and 36%. Nitrification produces this relationship through mixing between high-SP, 18O-enriched N_2O produced by NH$_3$OH decomposition and low-SP, 18O-depleted N_2O produced by nitrifier-denitrification.

Appendix A

Calculating the position-specific 15N/14N ratios of N_2O

Data collected during continuous flow isotopic analyses of N_2O included simultaneous signal intensities (in volts) of 30, 31, 44, 45, and 46 mass/charge detectors. The delta values and site preferences reported here were calculated using the raw peak area ratios of 31/30, 45/44, and 46/44 for a reference gas injection and the eluted sample peak. Isodat software reports these raw ratios as rR 31NO/30NO, etc. For each run, sample raw ratios were referenced to the standard ratios and these

Table 4. The fraction of N_2O produced by nitrifier-denitrification (F_{ND}) calculated using measured SP values, Eq. (4b), and the best fit values for SP$_{ND}$ and SP$_{NH_3OH}$ in Table 3.

<table>
<thead>
<tr>
<th>density (cells/ml$^{-1}$)</th>
<th>20% O$_2$</th>
<th>2% O$_2$</th>
<th>0.5% O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×10^2</td>
<td>0.26 ± 0.06, n = 5</td>
<td>0.38 ± 0.04, n = 5</td>
<td>0.43 ± 0.09, n = 4</td>
</tr>
<tr>
<td>2.1×10^4</td>
<td>0.19 ± 0.03, n = 5</td>
<td>0.18 ± 0.04, n = 5</td>
<td>0.48 ± 0.11, n = 5</td>
</tr>
<tr>
<td>2×10^5</td>
<td>0.11 ± 0.03, n = 6</td>
<td></td>
<td>0.58 ± 0.11, n = 6</td>
</tr>
<tr>
<td>1.5×10^6</td>
<td></td>
<td></td>
<td>0.87 ± 0.09, n = 5</td>
</tr>
</tbody>
</table>
“ratios of ratios” were multiplied by the appropriate standard ratios ($^{31}R_{\text{standard}} = 0.004054063$, $^{45}R_{\text{standard}} = 0.007743032$, $^{46}R_{\text{standard}} = 0.002103490$) to calculate $^{31}R_{\text{sample}}$, $^{45}R_{\text{sample}}$, and $^{46}R_{\text{sample}}$, respectively. For example,

$$^{31}R_{\text{sample}} = [rR \text{NO}/30\text{NO}]_{\text{sample}}/\left([rR \text{NO}/30\text{NO}]_{\text{standard}} \right) \times ^{31}R_{\text{standard}}$$

The R_{standard} values are calculated ratios that the Farraday cups in the Casciotti DeltaPL-US isotope ratio mass spectrometer (IRMS) should detect whenever the standard gas is analyzed under normal operating conditions. They depend on the actual isotopic/isotopomeric composition of the standard gas and also how that gas is fragmented in the IRMS. To calculate these three values we used 1) values of $\delta^{15}N^\alpha$, $\delta^{15}N^\beta$, and $\delta^{18}O$ for our standard gas as measured by Sakae Toyoda and 2) The relative yields of m/z 30 and 31 from $^{14}N^{15}NO$ and $^{14}N^{13}NO$ when these isotopomers are analyzed in the Casciotti IRMS (see Appendix B for details).

$^{31}R_{\text{sample}}$, $^{45}R_{\text{sample}}$, and $^{46}R_{\text{sample}}$ values are then entered into the following equations:

$$^{31}R = ((1 - \gamma) \times 15R^\alpha + \kappa \times 15R^\beta + 15R^{\alpha15}R^\beta + 17R(1 + \gamma) \times 15R^\alpha
+ (1 - \kappa) \times 15R^\beta)/(1 + \gamma) \times 15R^\alpha + (1 - \kappa) \times 15R^\beta$$

$$45R = 15R^\alpha + 15R^\beta + 17R$$

$$46R = (15R^\alpha + 15R^\beta)R + 18R + 15R^{\alpha15}R^\beta$$

$$17R/0.0003799 = (18R/0.0020052)^{0.516}$$

where γ and κ are the yields of the scrambled fragment ions from $^{14}N^{15}NO$ ($^{30}NO^+$) and $^{15}N^{14}NO$ ($^{31}NO^+$), respectively (see Appendix B). The four equations above can be evaluated with a nonlinear equation solver to obtain values for $15R^\alpha$, $15R^\beta$, $17R$, and $18R$ for each sample.

Appendix B

Calculating m/z 30 and 31 yield coefficients

When N_2O is introduced into the ion source of the mass spectrometer, NO^+ fragment ions are produced. While most of these ions contain N from the α position, a small amount of “scrambling” occurs, yielding NO^+ ions containing the β N. Accurate measurements of $15R^\alpha$ and $15R^\beta$ require quantification of the scrambling behavior for the mass spectrometer under standard operating conditions.

Westley et al. (2007) use six separate coefficients to describe the $^{30}NO^+$ and $^{31}NO^+$ fragmentation behaviors of the $^{14}N^{15}NO$, $^{15}N^{14}NO$, and $^{15}N^{15}NO$ molecules. We followed their recommendation and performed mixing analyses using purified $^{14}N^{15}NO$, $^{15}N^{14}NO$, and $^{15}N^{15}NO$ gases from ICON (Summit, N. J.) to investigate the fragmentation behavior of individual isotopologues in our mass spectrometer (see supplementary material). We also compared this approach to the results of a simpler approach using two scrambling coefficients, γ and κ, to describe the relative production of $^{30}NO^+$ ions from $^{14}N^{15}NO$ and $^{31}NO^+$ from $^{15}N^{14}NO$, respectively. These coefficients were used in the system of equations that convert ^{31}R, ^{45}R, and ^{46}R to $^{15}R^\alpha$, $^{15}R^\beta$, ^{17}R, and ^{18}R for each sample (see Appendix A for the full set of equations).

For each sample gas the “measured” value of $[rR 31\text{NO}/30\text{NO}]_{\text{sample}}/\left([rR 31\text{NO}/30\text{NO}]_{\text{standard}} \right)$ was determined by averaging the results of a series of 10-cycle dual inlet analyses on the Casciotti IRMS. Then the “calculated” value of $[rR 31\text{NO}/30\text{NO}]_{\text{sample}}/\left([rR 31\text{NO}/30\text{NO}]_{\text{standard}} \right)$ (equivalent to $^{31}R_{\text{sample}}/^{31}R_{\text{standard}}$) was obtained by inserting Toyoda’s calibrated values of $^{15}R^\alpha$, $^{15}R^\beta$, ^{17}R, and ^{18}R for the sample and standard gases into the equation below and guessing values of γ and κ:

$$^{31}R = ((1 - \gamma) \times 15R^\alpha + \kappa \times 15R^\beta + 15R^{\alpha15}R^\beta + 17R(1 + \gamma) \times 15R^\alpha
+ (1 - \kappa) \times 15R^\beta)/(1 + \gamma) \times 15R^\alpha + (1 - \kappa) \times 15R^\beta$$

The problem is one of optimization where the object is to vary γ and κ until the calculated values of $^{31}R_{\text{sample}}/^{31}R_{\text{standard}}$ are as close as possible to the measured $[rR 31\text{NO}/30\text{NO}]_{\text{sample}}/\left([rR 31\text{NO}/30\text{NO}]_{\text{standard}} \right)$ for both sample gases. This two-coefficient model automatically obeys the constraint of Toyoda and Yoshida (1999) that $\delta^{15}N^{\text{bulk}} = (15R^\alpha + 15R^\beta)/2$. The optimized values obtained here are $\gamma = 0.1002$ and $\kappa = 0.0976$. These coefficients are consistent with reported values for fragment ion yields and scrambling coefficients (between 0.08–0.10) (Westley et al., 2007; Toyoda and Yoshida, 1999).

Following the alternative approach of Westley et al. (2007) we found that ionization of the $^{15}N^{14}NO$ ICON standard produced approximately one tenth as many $^{31}NO^+$ as the $^{14}N^{15}NO$ ICON standard (see supplementary material for data and calculations). This result is an independent confirmation of the scrambling coefficient approach described above (because $\kappa/(1 - \gamma) = 0.108$) and it does not require any a priori knowledge of the isotopomeric composition of the reference gas.

For the data presented in this paper, we opted to use two coefficients and assumed that the fragment ion yields of 30 and 31 sum to 1 for both $^{14}N^{15}NO$ and $^{15}N^{14}NO$. Using this approach we were able to reproduce the isotopomer ratio values of sample gases with a broad range of site preferences.
We gratefully acknowledge Sakae Toyoda for references provided suggestions that improved the manuscript immensely. Cara Manning, Ed Leadbetter, and three anonymous reviewers provided assistance with the flow cytometer. Alyson Santoro, bg-7-2695-2010-supplement.pdf.

Supplementary material related to this article is available online at: http://www.biogeosciences.net/7/2695/2010/bg-7-2695-2010-supplement.pdf.

Acknowledgements. We gratefully acknowledge Sakae Toyoda for calibrating our N2O reference gas, Robin Sutka and Nathaniel Ostrom for providing the calibrated Michigan State reference gas, and Keisuke Koba for providing the calibrated Tokyo University of Agriculture and Technology reference gas. Marian Westley kindly provided extensive details on her isotopomer intercalibration strategy. Ed Leadbetter suggested the test for heterotrophic denitrification and the high cell density N2O measurements. Matt McIlvin helped develop the modification necessary to do large-bottle headspace analyses on the MS. Matt First and Mark Dennett provided assistance with the flow cytometer. Alyson Santoro, Cara Manning, Ed Leadbetter, and three anonymous reviewers provided suggestions that improved the manuscript immensely.

Edited by: J. Middelburg

References

Fulweiler, R. W., Nixon, S. W., Buckley, B. A., and Granger, S. L.: Reversal of the net dinitrogen gas flux in coastal marine sed-

www.biogeosciences.net/7/2695/2010/

Biogeosciences, 7, 2695–2709, 2010

