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Finite Adaptability in Multistage Linear Optimization
Dimitris Bertsimas and Constantine Caramanis, Member, IEEE

Abstract—In multistage problems, decisions are implemented
sequentially, and thus may depend on past realizations of the
uncertainty. Examples of such problems abound in applications
of stochastic control and operations research; yet, where robust
optimization has made great progress in providing a tractable
formulation for a broad class of single-stage optimization prob-
lems with uncertainty, multistage problems present significant
tractability challenges. In this paper we consider an adaptability
model designed with discrete second stage variables in mind. We
propose a hierarchy of increasing adaptability that bridges the
gap between the static robust formulation, and the fully adaptable
formulation. We study the geometry, complexity, formulations,
algorithms, examples and computational results for finite adapt-
ability. In contrast to the model of affine adaptability proposed in
[2], our proposed framework can accommodate discrete variables.
In terms of performance for continuous linear optimization, the
two frameworks are complementary, in the sense that we provide
examples that the proposed framework provides stronger solu-
tions and vice versa. We prove a positive tractability result in the
regime where we expect finite adaptability to perform well, and
illustrate this claim with an application to Air Traffic Control.

Index Terms—Dynamics, multistage, optimization, robustness.

I. INTRODUCTION

O PTIMIZATION under uncertainty has long been at the
frontier of both theoretical and computational research.

Multi-stage problems, closely related to stochastic control,
model decision-making over time, where the uncertainty is
revealed sequentially, and future stage decisions may depend
on past realizations of uncertainty.1

Stochastic optimization (see [10], [22], [24], [25], and ref-
erences therein) explicitly incorporates a probabilistic descrip-
tion of the uncertainty, often relaxing hard constraints by pe-
nalizing infeasibility ([23]), or by using so-called chance con-
straints ([21]). In the last decade, much work has been done in
the single-stage robust optimization framework. Here, the deci-
sion-maker makes no probabilistic assumptions, but rather seeks
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1Problems from stochastic control differ primarily in the focus on feasibility.
While we do not discuss here the applicability of techniques from dynamic pro-
gramming versus stochastic programming, we refer the reader to [5], [6] for
work in dynamic and approximate dynamic programming, and then [13], [22],
[25] and references therein for further discussion of this in the Stochastic Opti-
mization formulation of uncertainty).

deterministic protection to some bounded level of uncertainty.
Recent work has considered the case of linear, semidefinite, and
general conic optimization, as well as discrete robust optimiza-
tion; see, e.g., [3], [4], [8], [9], [18].

The focus of this paper is on two-stage optimization models,
where the uncertainty follows the robust paradigm, i.e., it is set-
based and deterministic:

(1)

We investigate the class of piecewise constant adaptability func-
tions for . We are particularly interested in formulations of
adaptability that are able to address the case of discrete second
stage variables.

Remark 1: While our central motivation is the two-stage op-
timization model (and extensions to multi-stage problems), it is
also interesting to consider the second stage problem as a single
stage problem

(2)

In this context, piecewise constant adaptability to the uncer-
tainty, , is equivalent to a formulation where the decision-
maker receives some advance partial information about the re-
alization of the uncertainty, namely, the uncertainty realization
will lie in some given region of a partition of the uncertainty set

.
For deterministic uncertainty models, the landscape of solu-

tion concepts has two extreme cases. On the one side, we have
the static robust formulation where the decision-maker has no
adaptability to, or information about, the realization of the un-
certainty. On the other extreme is the formulation with com-
plete adaptability, where the decision-maker has arbitrary adapt-
ability to the exact realization of the uncertainty and then selects
an optimal solution accordingly.2 This latter set-up is overly op-
timistic for several reasons. Exact observations of the uncer-
tainty are rarely possible. Moreover, even if in principle fea-
sible, computing the optimal arbitrarily adaptable second stage
function is typically an intractable problem. Furthermore, even
implementing such complete adaptability in practice may be too
expensive, since effectively it requires complete flexibility in the
second stage, and hence in itself may be undesirable3. This mo-
tivates us to consider the middle ground.

2In the context of a single-stage problem, this corresponds to having complete
knowledge of the exact realization of the uncertainty, as opposed to some coarse
model for the advance information. As we comment throughout the paper, while
we focus on the two-stage model, the interpretation of the adaptability we in-
troduce, in the one-stage model, is exactly one corresponding to a finite amount
of information revealed to the decision-maker.

3For an example from circuit design where such second stage limited adapt-
ability constraints are physcially motivated by design considerations, see [28].

0018-9286/$26.00 © 2010 IEEE
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Contributions and Paper Outline: In a departure from the
static robust optimization paradigm, we consider a set-up where
the decision-maker (perhaps at some cost) may be able to select
some finite number, , of contingency plans for the second stage
solution, , as opposed to a single robust solution,

. The central topic of this paper is to understand the structure,
properties and value of this finite adaptability.

Our goals in this paper are as follows:
1) To provide a model of adaptability that addresses the

conservativeness of the static robust formulation in the
case of a two-stage optimization problem.

2) To develop a hierarchy of adaptability that bridges the
gap between the static robust and completely adaptable
formulations, as the level, , of adaptability increases.

3) To structure this adaptability specifically to be able to
accommodate discrete second-stage variables.

4) To investigate how to optimally structure the adapt-
ability (i.e., how to choose the contingency plans) for
small . Furthermore, we want to understand the com-
plexity of solving the problem optimally.

5) In addition to structural properties and theoretical char-
acterizations of the optimal adaptability structure, we
would like practical algorithms that perform well in
computational examples.

Point by point, we believe the above goals are important for
the following reasons. 1) While there exist proposals for adapt-
ability, to the best of our knowledge none are structured specifi-
cally to address the fact that the static robust formulation cannot
model non-convexity in the uncertainty set, or non-constraint-
wise uncertainty ([4]). 2) Also, as far as we know, there exist
no adaptability proposals that allow a variable degree of adapt-
ability, specifically with the ability to cover the middle ground
between the static robust and completely adaptable formula-
tions. 3) While there has been some effort in Stochastic Opti-
mization to address the case of discrete second-stage variables
(see, e.g., [19], and references therein) there has been no work
addressing the case of integer second-stage variables within the
framework of deterministic set-based uncertainty. 4) The com-
pletely adaptable formulation is known to be NP-hard to solve in
general ([2]) as are other adaptability proposals ([1], [2], [29]),
as well as various approaches to Stochastic Programming and
chance constraints ([22]). It is important, then, to try to under-
stand how much is possible, and the complexity of achieving
it. (4) Given the inherent difficulty of these problems, efficient
practical algorithms are of high importance.

In Section II, we provide the basic setup of our adaptability
proposal, and we define the problem of selecting contingency
plans. Because of its inherent discrete nature, this proposal can
accommodate discrete variables. To the best of our knowledge,
this is the first proposal for adaptability that can reasonably deal
with discrete variables. In Section III, we give a geometric in-
terpretation of the conservativeness of the static robust formu-
lation. We provide a geometric characterization of when finite
adaptability can improve the static robust solution by , for any
(possibly large) chosen . We obtain necessary conditions
that any finite adaptability scheme must satisfy in order to im-
prove the static robust solution by at least . The full collection

of these conditions also constitutes a sufficient condition for
improvement, when restricted to the second-stage model (2).

In Section IV, we consider an exact formulation of the
-adaptability problem as a bilinear optimization problem.

For the special case of right hand side uncertainty, we have
shown in [11] that the bilinear optimization becomes a dis-
crete optimization problem, and there we provide an integer
optimization formulation for the contingency plan
problem. In Section V, we consider the complexity of optimally
computing -adaptability, and we show that structuring the

adaptability optimally, is NP-hard in the minimum of
the dimension of the uncertainty, the dimension of the problem,
and the number of constraints affected. In particular, we show
that if the minimum of these three quantities is small, then
optimally structuring 2-adaptability is theoretically tractable.

In Section VI, we consider an example in detail, illustrating
several of the subtleties of the geometric characterizations of
Section III. Here, we also compare -adaptability to the affine
adaptability proposal of [2]. Following that work, there has been
renewed interest in adaptability (e.g., [1], [12], [14], [29]). Our
work differs from continuous adaptability proposals in several
important ways. First, our model offers a natural hierarchy of in-
creasing adaptability. Second, the intrinsic discrete aspect of the
adaptability proposal makes this suitable for any situation where
it may not make sense to require information about infinites-
imal changes in the data. Indeed, only coarse observations may
be available. In addition, especially from a control viewpoint,
infinite (and thus infinitesimal) adjustability as required by the
affine adaptability framework, may not be feasible, or even de-
sirable. We provide an example where affine adaptability is no
better than the static robust solution, while finite adaptability
with 3 contingency plans significantly improves the solution.

In Section VII, we provide a heuristic algorithm based on
the qualitative prescriptions of Section III. This algorithm is
also suitable for solving problems with discrete variables, where
if the original discrete static robust problem is computation-
ally tractable, so is our algorithm. Section VIII provides several
computational examples, continuous and discrete, illustrating
the efficient algorithm of Section VII. We consider a large col-
lection of randomly generated scheduling problems in an effort
to obtain some appreciation in the generic case, for the benefit
of the first few levels of the adaptability hierarchy. Then, we
discuss an application to Air Traffic Control (this application is
further considered in [7]). This example serves as an opportunity
to discuss when we expect finite adaptability to be appropriate
for large scale applications.

II. DEFINITIONS

We consider linear optimization problems with deterministic
uncertainty in the coefficients, where the uncertainty set is poly-
hedral. Uncertainty in the right hand side or in the objective
function can be modeled by uncertainty in the matrix (see, e.g.,
[8]). In Section II-A, we define the static robust formulation,
the completely adaptable formulation, and our finite adaptability
formulation.
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A. Static Robustness, Complete and Finite Adaptability

The general two-stage problem we consider, and wish to ap-
proximate, is the one with complete adaptability, that can be for-
mulated as

(3)

(4)

Without loss of generality, we assume that only the matrices
and have an explicit dependence on the uncertain parameter,

We assume throughout this paper that the parameters of the
problem (that is, the matrices and ) depend affinely on the
uncertain parameter .

On the other end of the spectrum from the completely adapt-
able formulation, is the static robust formulation, where the
second stage variables have no dependence on

(5)
We assume throughout that (5) is feasible.

In the -adaptability problem, the decision-maker chooses
second-stage solutions, , and then commits to one
of them only after seeing the realization of the uncertainty. At
least one of the solutions must be feasible regardless of the
realization of the uncertainty. We define as

...

(6)

This is a disjunctive optimization problem with infinitely many
constraints. In Section IV, we formulate this as a (finite) bilinear
optimization problem.

If we think of the collection of second stage vectors,
as contingency plans, where each is implemented

depending on the realization of the uncertainty, then the
-adaptability problem becomes a -partition problem. The

decision-maker selects a partition of the uncertainty set into
(possibly non-disjoint) regions: . Thus,

we can rewrite as

...

(7)
The equivalence of formulations (6) and (7) is immediate.

Throughout this paper we refer equivalently to either con-
tingency plans, or -partitions, for the -adaptability problem.

The inequalities
hold in general.

In the area of multistage optimization, there has been signif-
icant effort to model the sequential nature of the uncertainty,
specifically modeling the fact that some variables may be chosen
with (partial) knowledge of the uncertainty. This is often known
as recourse ([13], [22]). In [2], the authors consider a multi-stage
problem with deterministic uncertainty, where the variables in
stage are affine functions of the uncertainty revealed up to time
. We henceforth refer to this model as affine adaptability. The

affine adaptability approximation to (3) is

(8)
where is an affine function of the uncertain parameter,

The authors show that computing affine adaptability is in gen-
eral NP-hard, although in some cases it can be well-approxi-
mated tractably.

Our finite adaptability proposal is not comparable to affine
adaptability: in some cases affine adaptability fails where finite
adaptability succeeds, and vice versa.

III. GEOMETRIC PERSPECTIVE

It is convenient for some of our geometric results to repa-
rameterize the uncertainty set in terms of the actual matrices,

, rather than the space of the uncertain parameter,
. Then we define

Thus, for example, the static problem now becomes

(9)

We assume throughout, that the uncertainty set is a polytope,
that there are uncertain constraints, and . We consider
both the case where is given as a convex hull of its extreme
points, and where it is given as the intersection of half-spaces.
Some results are more convenient to present in the case of the
convex hull representation.

In this section, we provide a geometric view of the gap be-
tween the completely adaptable and static robust formulations,
and also of the way in which finite adaptability bridges this gap.
The key intuition is that the static robust formulation is inher-
ently unable to model non-constraintwise uncertainty and, as is
explained below, effectively replaces any given uncertainty set

, with a potentially much larger uncertainty set.
We use this geometric interpretation to obtain necessary con-

ditions that any -partition must satisfy in order to improve the
static robust solution value by at least , for any chosen value .

A. Geometric Gap

Since we consider matrix uncertainty, the elements of are
two matrices, , and

. Given any uncertainty region , let denote
the projection of onto the components corresponding to the
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Fig. 1. Figure illustrates the definition in (10), and Lemma 1. Let � � ��� � � � � � � � � � � � � � � �� � � � � �� � � � � ��� We
identify � with a subset of the plane. The unshaded triangle in Figure (a) illustrates the set � � ��� � � � � � � � � � � �� � � � � ��. The set
��� is the entire square, and the shaded part is the difference, ��� �� . Figures (b),(c), and (d) show three successively finer partitions, illustrating how
�� � � � � � � �� � �	 � .

constraint of (9), i.e., this is the projection onto the row
of the matrices

Then, we define

(10)

The set is the smallest hypercube (in the above sense) that
contains the set (see Fig. 1).

Lemma 1: For and defined as above, we have
a) as well as

.
b) For the optimal -partition of the

uncertainty set, we have

c) There is a sequence of partitions
so that

The first part of the lemma says that the static robust formu-
lation cannot model correlation across different constraints, nor
can it capture non-convexity in the uncertainty set. Furthermore,
it says that this is exactly the reason for the gap between the
static robust formulation, and the completely adaptable formu-
lation. The second part of the lemma explains from a geometric
perspective why, and how, the adaptive solution improves the
static robust cost. The third part gives a geometric interpretation
of how finite adaptability bridges the gap between the static ro-
bust and completely adaptable formulations.

Proof:
(a) To prove this part, we use a simple sandwiching tech-

nique that we employ throughout this section. Consider
the formulation where not only , but also may depend
on the realization of the uncertainty. This is not imple-
mentable, hence we call it the utopic solution, and we de-
fine as

and as:

...

We always have: , and
. By a simple duality argu-

ment (see [4]) it follows that we have:

But since
, the result follows.

(b) Fix a partition . Let
be an optimal

completely adaptable solution for the uncertainty set
. Now fix . Consider the problem

of computing an optimal and , for this fixed . Since
is fixed, the problem decouples into two problems,

with uncertainty sets and , respectively.
The optimal completely adaptable solution for this
single-stage problem is , and . But by part (a),
we know that adaptability cannot help. Therefore there
exist vectors and , that have no dependence on

, yet have the same performance. This is what
we wanted to show.

(c) It suffices to consider any sequence of partitions where the
maximum diameter of any region goes to zero as .
As the diameter of any region goes to zero, the smallest
hypercube (in the sense of (10)) also shrinks to a point.

Example: To illustrate this geometric concept, consider the
constraints , where the uncertainty set
is (and

). The set can be identified with the simplex
in . The set , then, is the unit square. The sets ,
and various partitions, are illustrated in Fig. 1.

We would like to conclude from Lemma 1 that -adapt-
ability bridges the gap between the static robust and completely
adaptable values, i.e., as

increases. With an additional continuity assumption, the
proposition below asserts that this is in fact the case.

Continuity Assumption: For any , for any ,
there exists and a point , feasible for
and within of optimality, such that with

, is also feasible for .
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The Continuity Assumption is relatively mild. It asks that if
two matrices are infinitesimally close (here is the usual
notion of distance) then there should be a point that is almost
optimal for both. Therefore, any problem that has an almost-op-
timal solution in the strict interior of the feasibility set, satis-
fies the Continuity Assumption. If the Continuity Assumption
does not hold, then note that any optimization model requires
exact (completely noiseless) observation of in order to
approach optimality.

Proposition 1: If the Continuity Assumption holds,
then for any sequence of partitions of the uncertainty set,

, with the diameter of the
largest set going to zero, the value of the adaptable solution
approaches the completely adaptable value. In particular

Proof: Using Lemma 1 parts (b) and (c), the proposition
says that as long as the Continuity Assumption holds, then

Indeed, given any , for every , consider the
-neighborhood around as given by the Con-

tinuity Assumption. These neighborhoods form an open cover
of . Since is compact, we can select a finite subcover. Let
the partition be (the closure of) such a
subcover. Then, by the Continuity Assumption,

. By definition

We have shown that there exists a single sequence of parti-
tions for which the corresponding adaptable solution value ap-
proaches the value of complete adaptability. This implies that

. Then recalling that the value
of a linear optimization problem is continuous in the parameters,
the proof is complete, as any sequence of partitions with diam-
eter going to zero, eventually is a refinement of (a perturbation
of) any given finite partition. We give an example in Section VI
that shows that the Continuity Assumption cannot be removed.

B. Necessary Conditions for -Improvement

In Section III-A, we use duality to show that the static ro-
bust problem and the -adaptability problem are each equiva-
lent to a completely adaptable problem with a larger uncertainty
set. This uncertainty set is smaller in the case of the -adapt-
ability problem, than in the static robust problem. In this section,
we characterize how much smaller this effective uncertainty set
must be, in order to achieve a given level of improvement from
the static robust value. We show that the points of the larger
uncertainty set that must be eliminated to obtain a given im-
provement level, each correspond to necessary conditions that a
partition must satisfy in order to guarantee improvement. Fur-
thermore, we show that for the problem where the first-stage

decision is fixed, and we are only considering conditions for
finding an improved second-stage solution, i.e., the problem in-
troduced in (I.2), collectively these necessary conditions turn
out to be sufficient.

Thus in this section we use the geometric characterization of
the previous section to essentially characterize the set of par-
titions that achieve a particular level of improvement over the
static robust solution.

Lemma 1 says that .
Therefore, there must exist some for which
the nominal problem
has value equal to the static robust optimal value of (9).
Let denote all such matrix pairs. In fact, we show that
for any , there exists a set such that if

, then does not satisfy
, for any . We show below that

the sets and are the images under a computable map,
of a polytope associated with the dual of the static robust
problem. In Proposition 2 we show that these sets are related
to whether a given partition can achieve -improvement over
the static robust value. In Proposition 3 we then show that each
point of these sets maps to a necessary condition which any

-improving partition must satisfy.
Proposition 2:
a) The sets and are the images under a computable

map, of a polytope associated with the dual of the static
robust problem.

b) Adaptability with contingency plans corresponding to
the partition improves the cost by
more than only if

Here, denotes the closure of the set .
c) There is some for which optimally chosen con-

tingency plans can improve the cost by at least only if
.

d) In the case of the second-stage setup (I.2), the neces-
sary conditions given in parts (b) and (c) above are also
sufficient.

For the proof, we first describe a polytope associated to the
dual of the robust problem, and we give the map that yields the
sets and , proving (a). Then we prove parts (b), (c), and
(d) of the proposition using the results of Lemma 2 below.

We consider the case where the uncertainty is given
as the convex hull of a given set of extreme points:

. The robust opti-
mization problem has the particularly convenient form

(11)

For any , we consider the infeasible problem

(12)
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The dual of (12) is feasible, and hence unbounded. Let
be the closure of the set of directions of dual unboundedness of
(12)

Note the dependence on the uncertainty set . We suppress this
when the uncertainty set is clear from the context. is
the set of dual optimal solutions to (11). For ,
let denote the component of . Let denote the

row of the matrix , and similarly for . Construct
matrices whose rows are given by

if .

otherwise.

if .

otherwise.

(13)

Therefore, each nonzero row of is a convex combination
of the corresponding rows of the matrices. Let
be any matrix pair in that coincides with on all its
non-zero rows.

Lemma 2: For defined as above

(14)

If , and if is an optimal solution for the static
robust problem (11), then is also an optimal solution for
the nominal problem with the matrix pair .

Proof: The proof follows by duality. We first consider the
case . The dual to the nominal problem

is given by
. We construct a solution to this dual,

and show that its objective value is equal to , thus
implying is optimal. For , define the vector

by . The vector is nonnegative,
and in addition, for any , we also have

Similarly, , and

Therefore, as constructed is an optimal (and feasible) solution
to the dual of (14), with objective value the same as the dual
to the original robust problem (11). Since is certainly
feasible for problem (14), it must then also be optimal. A similar
argument holds for .

We can now prove Proposition 2.
Proof:

a) The collection of such obtained as images of
points in and respectively, under the map given in
(13) make up the sets and . Lemma 2 shows that
these sets indeed have the required properties.

b) The value of the -adaptable solution corresponding to the
partition is lower-bounded by

(15)

For the optimal partition choice, this corresponds
to , and this may be strictly better than

.
By Lemma 1, . If

, then we can
find some , for some ,
and also we can find matrix pairs
with . By Lemma 2, the nominal
problem with matrices must have value at least

, for every . The optimal value of a linear
optimization problem is continuous in its parameters.
Therefore, the value of the nominal problem with ma-
trices must also be at least . The
value of can be no more than the value of
the nominal problem with matrices , and hence

, which means that the
improvement cannot be greater than .

c) If , then the point of intersection will always
belong to some element of any partition, and hence no
partition can satisfy the condition of part (b).

d) We can prove the converse for both (b) and (c) for the
case of second stage adaptability. Note that in this case,
there is no distinction between what we call the utopic,
and the adaptable formulation. Now, for the converse for
(b), if the partition does not improve the value by more
than , then there must exist some such that

. This implies that
is non-empty. Any point of then maps via (13)
to some , and the intersection is non-
empty, as required.

For the converse for (c), if the intersection is empty, then since
both and are closed, and is compact, the minimum
distance

is attained, and therefore is strictly positive. Then by Lemma 1
part (c), there must exist some partition of that satisfies the
empty intersection property of condition (b) above.

We now use the characterization of Proposition 2 to obtain
necessary conditions that any -improving partition must sat-
isfy. To this end, let denote the convex-combination coef-
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ficients used to construct the row of above for all
non-zero rows, so that

Using these coefficients, we define matrices
by

Consider now any partition of the uncertainty set,
. If for some , we have ,

then . Therefore, , and
thus by Proposition 2, the proposed partition cannot improve
the static robust cost by more than . Therefore, the set of ma-
trices of constitutes a necessary condition that
any -improving partition of must satisfy: a partition of
can improve the solution more than only if it splits the set

. Indeed, something more general is true.
Proposition 3:
a) Consider any element obtained from a point of ,

according to (13). Let us assume that the first rows of the
matrix pair are nonzero. Let
denote the set of matrices in whose row equals the

row of , . Then a partition
can achieve an improvement of more than

only if for any region , , there exists some
, such that

b) Collectively, these necessary conditions are also suffi-
cient, for the second-stage problem (I.2).

Proof:
a) Suppose that there exists a region of the partition, for

which no such index exists, and we have
for . Then we can find matrices ,
such that . By definition, the row of
matrix coincides with the row of . Therefore,

. Now the proof of necessity follows from
Proposition 2.

b) Suppose that a partition satisfies the
full list of necessary conditions corresponding to all ele-
ments of , yet the corresponding value of
does not achieve the guaranteed improvement, i.e.,

, for
some . Then, by the structure of the finite adapt-
ability problem there must be one region of the partition,
say , such that . Note that
this is only always true for the case of single-stage adapt-
ability – in the two-stage case, the equality is only for

, which may be strictly less than , and
thus this converse need not hold in general. Then
is non-empty. Given any point of , we can then
construct and the corresponding unsatisfied necessary
condition . Expressing the extreme points
of as a convex combination of extreme points of ,

this unsatisfied necessary condition corresponds to a
point in , a contradiction.

Therefore, we can map any point of to a necessary condi-
tion that any partition improving the solution of the static robust
problem by at least , must satisfy. In Section V, we show
that computing the optimal partition into two (equivalently,
computing the best two contingency plans) is NP-hard. In
Section VII, we provide an efficient, but possibly sub-optimal
algorithm for the -partition problem. However, this algorithm
does not offer any theoretical guarantee that more progress
cannot be made with another choice of partition. Neverthe-
less, a small list of necessary conditions may provide a short
certificate that there does not exist a partition with ,
that achieves -improvement. In Section VI, we provide a
simple example of this phenomenon. In this example, a finite
(and small) set of necessary conditions reveals the limits, and
structure of 2,3,4,5-adaptability.

IV. EXACT FORMULATIONS

In this section we give an exact and finite formulation of the
optimal 2-adaptability problem. We show that the infinite-con-
straint disjunctive optimization problem (II.6) can be formu-
lated as a bilinear problem.

Thus far we have considered a geometric point of view. Here
we follow an algebraic development. In (II.6) we formulated
the -adaptability problem as an infinite-constraint disjunctive
program

(16)

We reformulate this problem as a (finite) bilinear optimization
problem. In general, bilinear problems are hard to solve but
much work has been done algorithmically (see [15], [26],
[27] and references therein) toward their solution. For no-
tational convenience, we consider the case , but the
extension to the general case is straightforward. Also, for
this section as well, we focus on the case where the uncer-
tainty set is given as a convex hull of its extreme points:

.
Proposition 4: The optimal 2-adaptability value, and the op-

timal two contingency plans, are given by the solution to the
following bilinear optimization:

(17)

Recall that is the number of rows of and . We can inter-
pret the variables essentially as a mixing of the constraints.
For any , the triple is feasible.
Indeed, fixing for all leaves unrestricted, and
the resulting constraints on recover the original static ro-
bust problem. Thus, the problem is to find the optimal mixing
weights.



2758 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 12, DECEMBER 2010

Proof: We show that a triple is a feasible so-
lution to problem (16) if and only if there exist weights

, , such that

Suppose that the triple is not a feasible solution to
problem (16). Then there exists and matrix pair

such that , and
. Since , we must have
, for a convex combination given by . For any

we have

This follows since . But then there must be some
index for which the corresponding term in the sum is negative,
i.e.

For the converse, let be a feasible solution to problem
(16). We show there exist weights satisfying the re-
quired inequalities. By assumption, for any , either

, or . In particular, for any
, the value of the following optimization over is

finite and non-positive (recall that are fixed)

Writing , and
taking the dual using dual variables for the two inequality
constraints, and for the normalization constraint in , we have

By strong duality, this problem is feasible, and its optimal value
is non-positive. In particular, the following system is feasible:

and therefore there exists , and such that

Grouping the terms on one side of the inequality, we have that
there exists a weight such that

V. COMPLEXITY

In this section, we consider the complexity of -adaptability.
We show that even in the restricted case of right hand side un-
certainty, in fact even in the special case where has the form
of a generalized simplex, computing the optimal partition of
into two sets, , is NP-hard. We then go on to show
that, despite this negative complexity result, there are cases of
interest where the tractability of finding the optimal hyperplane
partition is tractable. In particular, as we claim via some com-
puational examples in Section VIII, finite adaptability is partic-
ularly well-suited for when the dimension of the uncertainty set
is small; this is included in the classes of problems for which
computing the optimal finite adaptability is tractable.

We show that if any of the three quantities: dimension of
the uncertainty, dimension of the problem, number of uncertain
constraints, is fixed, then computing the optimal 2-adaptability
is theoretically tractable.

Proposition 5: Obtaining the optimal split is
in general NP-hard.

In particular, computing 2-adaptability is NP-hard. We ob-
tain our hardness result using a reduction from Partition, which
is NP-complete ([17], [20]). We show that if we can find the op-
timal split of an uncertainty set, then we can solve any Partition
problem.

Proof: The data for the Partition problem are the
positive numbers . The problem is to min-
imize over subsets . Given
any such collection of numbers, consider the polytope

, where the form the stan-
dard basis for . Thus, is the simplex in , but with
general intercepts . Consider the static robust optimization
problem

(18)
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Suppose the optimal partition is . Then, letting
, the 2-adaptable problem can be written as

where are the component-wise minimum over and
, respectively. Since has the particularly easy form given

above, it is straightforward to see that, without loss of gener-
ality, we can write , and as

where for . In this case, we must
have (see [11] for full details)

...

Since we claim that the pair corresponds to the optimal
partition of , we can take the inequalities above to be satis-
fied by equality, i.e., we take the to be as small as possible.
Therefore, once the are fixed, so are the , and the pair

is determined.
Now we compute the value of the free parameters

that determine the pair . For the
specific form of the optimization problem we consider, given
a split where is covered by and by , the
optimization takes the simple form

Therefore, if the partition is optimal, we must have
. Thus, we have

(19)
We have parameters that are not specified. The maxi-
mizations above that determine the give equa-
tions. Then (19) gives the final equation to determine our pa-

rameters uniquely. From the maximizations defining , we
have

Solving in terms of , the above equations yield
. Substituting this back

into (19), we obtain an equation in the single variable

which gives

Using these values of , we find that the optimal value of
the optimization is given by

The first term in the numerator, and also the denominator, are
invariant under choice of partition. Thus, if this is indeed the
optimal solution to the optimization (18), as we assume, then
the second term in the numerator must be maximized. Thus,
we see that minimizing (18) is equivalent to maximizing the
product over . This is
equivalent to the Partition problem.

Note that in this example, the dimension of the uncertainty,
the dimension of the problem, and the number of constraints
affected by the uncertainty are all equal. Next we show that if
any one of these three quantities is fixed, then computing the
optimal 2-adaptability is theoretically tractable.

Proposition 6: We consider the static robust problem
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Let be an uncertainty set
that allows for efficient solution of the robustified linear opti-
mization problem (note that need not necessarily be small).
Let be the real dimension of , let
denote the number of optimization variables, and let be the
number of rows of , i.e., the number of uncertain con-
straints. Define . Then, we can compute
the -optimal 2-adaptability generated by a hyperplane parti-
tion, in time . In particular, if is con-
stant, the hyperplane generated 2-adaptability can be computed
efficiently.

Proof: There are three possibilities: is defined by , ,
or . In the case where or are fixed, then the result fol-
lows immediately, since we can find the best partition, or the
best two solutions by brute force discretization of the
uncertainty set, or the feasible set, respectively. The only inter-
esting case is when and are possibly large, but is a con-
stant. In this case, Proposition 4 says

For any fixed values of , the resulting problem is a static
robust problem with uncertainty set , and hence by our as-
sumption, it can be solved efficiently. Now if is small, we
discretize the possible set of , and search over this set by
brute force. This completes the proof.

While in principle this result says that for small the problem
is tractable, in large scale applications we require more than
theoretical tractability. We describe one such example in Sec-
tion VIII-C. In Section VII, we seek to give tractable algorithms
that will be practically implementable in applications.

VI. EXTENDED EXAMPLE

In this section we consider a detailed example. Through this
example, we aim to illustrate several points and aspects of the
theory developed in Section III above:

1) Propositions 2 and 3 tell us how to map to and then
to obtain necessary conditions for -improvement. Here
we illustrate this process.

2) A small set of necessary conditions (obtained as in Propo-
sitions 2 and 3) may reveal the limits of -adaptability for
some .

3) While in general not sufficient to guarantee -improve-
ment, a small set of necessary conditions may even suffice
to reveal the optimal structure of -adaptability for some

.
4) Finite adaptability may improve the solution considerably,

even when affine adaptability fails, i.e., even when affine
adaptability is no better than the static robust solution.

5) The Continuity Assumption may not be removed from
Proposition 1. Without it, (uncountably) infinite adapt-
ability may be required for even arbitrarily small improve-
ment from the static robust solution.

6) The closure of the sets and in Proposition 2 cannot
be relaxed.

We consider an example with 1-D uncertainty set. Note that here
there is no uncertainty in the -matrix

(20)

The unique optimal solution is ,
, so the corresponding value is

. The completely adaptable value is .
For notational convenience, can rewrite this problem more
compactly by minimizing directly. Then the
optimal value for will be that minimum value.

Then, the dual to the robust problem (20) is

There are two extreme dual optimal solutions:
, and .

We illustrate point (1) above by mapping these two points to
the corresponding necessary conditions. Each of these maps to
a unique matrix . Recall that, considering the component
of , and the component of , we obtain the row of the
matrix:

for all such that . For the first extreme dual optimal
solution, this condition is met for , 3, and thus we have

For the second extreme dual optimal solution, the nonzero rows
are , 3, and we get

Next, according to Proposition 3, we consider the set of matrices
in that share one of the nonzero rows of , and similarly for

. These are specified by the convex combination coefficients
that form the non-zero rows. The two convex combinations for
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the first dual solution are formed by the coefficients
and . The second dual solution has convex
combination coefficients and .
Therefore, any strictly improving partition must be such that no
single region contains both matrices ,
nor the two matrices . Evidently, no
such partition into 2 (convex) regions exists. Therefore 2-adapt-
ability cannot satisfy these two necessary conditions, and thus
(in this example) is no better than the static robust solution of
(20). This illustrates point (2) above: the necessary conditions
corresponding to the two extreme points of are alone suffi-
cient to prove that 2-adaptability is no better than the static ro-
bust solution.

Next we consider the more general case and . We con-
sider a few different values of : ,

, and . We generate the ex-
treme points of , and the points of to which they
map. The polytope has 12 extreme points4. These yield four
non-redundant necessary conditions

While there exists no partition into only two regions that can si-
multaneously satisfy these four necessary conditions, the three-
region split does satisfy

; we can check that none of the sets , , are
contained within any single region of the proposed partition. In
fact, this partition decreases the cost by . The poly-
tope has 12 vertices. The non-redundant constraints gener-
ated by points of corresponding to the extreme points of

, are

It is easy to check that these four necessary conditions are
not simultaneously satisfiable by any partition with only three
(convex) regions. Indeed, at least 5 are required. This is another
illustration of point (2) from above: a small set of four necessary
conditions suffices to prove that 3-adaptability cannot improve
the static robust solution by more than .

The smallest at which the necessary conditions corre-
sponding to the extreme points of provide a certificate that
at least 5 regions are required for any partition to achieve an

4These computations were done using the software CDD by Komei Fukuda
[16]. This is an implementation of the double description method. See also http://
www.cs.mcgill.ca/ fukuda/soft/cddman/node2.html for further details.

-improvement or greater, is .
This illustrates point (3) above: examining values of ,
the four necessary conditions implied by the extreme points
of are sufficient to reveal that two-adaptability is no better
than the static robust solution, and in addition, they reveal the
limit of 3-adaptability. Furthermore, they reveal the optimal
3-partition to be: , for

.
Finally, let us consider . In this case, we are

asking for more improvement than even the completely adapt-
able formulation could provide (recall ).
In short, such improvement is not possible within our frame-
work of a deterministic adversary. Proposition 2 tells us how
the polytope and the set witness this impossibility.
The polytope has 31 vertices. It is enough to consider one
of these vertices in particular: .
The corresponding necessary condition is: .
Evidently, no number of partitions can ever satisfy this neces-
sary condition. Indeed, this is precisely what Proposition 2 says:
if progress is not possible, it must be because .

Next we illustrate point (4), by showing that for the problem
(20) above, the affine adaptability proposal of Ben-Tal et al.
([2]) is no better than the static robust formulation, even though
3-adaptability significantly improves the static robust solution,
and thus outperforms affine adaptability. In Fig. 2 on the left,
we have the actual optimal solutions for the completely adapt-
able problem. For every , the decision-maker has an
optimal response, . The figure on
the right illustrates the optimal completely adaptable cost as a
function of , as well as the optimal static robust cost (the line at
the top) and then the cost when the decision-maker selects 3 and
5 contingency plans, respectively. is given by

We can see from the figure that indeed this value is 3.
Next, consider the optimal affine adaptability. In (II.8) we de-

fine affine adaptability for the two stage problem, however we
can easily apply this to single stage optimization by allowing
all the decision-variables to depend affinely on the uncertainty.
Here the uncertainty is one-dimensional, parameterized by

, so we let denote the optimal affine solution. The
third component, must satisfy: .
Therefore, by linearity, we must have for all

. Furthermore, for , we must also have

which implies, in particular, that .
The cost obtained by affine adaptability is

This is at least the value at . But this is:
, which is the static
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Fig. 2. The figure on the top illustrates the optimal response policy for the
decision-maker. The optimal response function is far from linear. In the figure
on the bottom the lowest curve is the value of the nominal LP as a function of
the realization of the uncertainty. The next three lines, � �� �� , illustrate
the value of 5,3-adaptability, and the static robust value, respectively. The static
robust value coincides with the value of affine adaptability.

robust value. Therefore, in this case, affine adaptability is no
better than the static robust value. On the other hand, as illus-
trated in Fig. 2, 3-adaptability is sufficient to significantly im-
prove the cost to the decision-maker, and 5-adaptability is better
still. Moreover, since this problem satisfies the Continuity As-
sumption, by Proposition 1,
as increases, so we can further improve the cost with more
adaptability. Thus, we illustrate point (4) from above.

Next we illustrate points (5) and (6) above by presenting a
modification of the previous example. Consider

(21)

The static robust solution to (21) is , and
hence . On the other hand, for any realization
of the uncertain matrix

the solution is feasible, and hence op-
timal for the nominal problem. The optimal response function
in this case is affine. Here, , and the gap
is 10/7. Consider now any partition of the uncertainty set (i.e.,
the interval [0, 1]) into finitely (or even countably many) re-
gions. At least one region of the partition must contain more than
one point of the interval, otherwise we would have uncountably
many regions. Let denote this region, with both ele-
ments of . The static robust problem over this set , is lower
bounded by

As , the point is the only point in
the feasible region, and thus it must also be optimal; hence the
value is not improved from 10/7. Note, moreover, that this ex-
ample violates the Continuity Assumption: for any two (even
infinitesimally close) realizations of the uncertainty, the only
common feasible point is , which is not
within of optimality for any . Thus, we illustrate
point (5), and show that the Continuity Assumption may not be
removed from Proposition 1. Recall that Proposition 2 says that
finite adaptability can strictly improve the solution if and only
if . Here, we can indeed check that .
However, the set of dual optimal solutions to (21) is unbounded,
and the set is not closed. With some work, we can check that,
e.g.,

Thus, the conclusion of Proposition 2 holds, and in particular,
as we point out in (6) above, taking the closure of cannot
be relaxed.

It turns out (see [11]) that with quartic polynomial adapt-
ability, or with piecewise affine adaptability, one can recover
the optimal solution.

VII. HEURISTIC ALGORITHMS

In large scale optimization problems such as the one dis-
cussed in Section VIII-C, we seek practically efficient and im-
plementable solutions. In this section, we propose a heuristic
tractable algorithm. We restrict ourselves to an infinite class of
partitions from which selecting the optimal partition can be done
efficiently.

The algorithm is motivated by the results of Section III.
There, the necessary conditions we derive say that good par-
titions divide points of which must be separated. We try
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to do exactly that. The algorithm is based on the following
observation, whose proof is immediate.

Lemma 3: Consider the set of partitions given
by a hyperplane division of . If the orientation (i.e., the normal
vector) of the hyperplane is given, then selecting the optimal
partitioning hyperplane with this normal can be done efficiently.

Algorithm 1: Let .
1. For every pair , , let

be the unique vector they define.
2. Consider the family of hyperplanes with normal .
3. Solve the quasi-convex problem, and let be the hy-

perplane that defines the optimal hyperplane partition of
within this family.

4. Select the optimal pair and the corresponding optimal
hyperplane partition of .

This algorithm can be applied iteratively as a heuristic approach
to computing -adaptability. In Section VIII, we implement
this algorithm to compute 2,4-adaptability.

Section III-C provides an approach to strengthen the above al-
gorithm. The algorithm selects the optimal hyperplane from the
set of hyperplanes that have normal vector defined by a pair of
extreme points of . By adding explicitly more points that are
in the interior of , we enlarge the space of hyperplanes over
which the algorithm searches. In Section III-C, we illustrate a
procedure for obtaining necessary conditions that any “good”
partition must satisfy. These conditions essentially contain re-
quirements that certain collections of points of should not be
contained within any single region of the partition. By including
(a partial set of) the points corresponding to a list of necessary
conditions, we guarantee that the set of partitions considered in-
clude partitions that meet the necessary conditions. In effect, this
gives a structured approach to increasing the size of the family
of partitions considered.

Algorithm 2: Let the uncertainty set be given by inequalities:
, where

is vector consisting of the rows of .
1. For every defining facet of , let be the unique normal

vector.
2. Consider the family of hyperplanes with normal .
3. Solve the quasi-convex problem, and let be the hyper-

plane that defines the optimal hyperplane partition of
within this family.

4. Select the optimal index and the corresponding optimal
hyperplane partition of .

VIII. COMPUTATIONAL EXAMPLES

In this section, we report on the performance of the heuristic
algorithm of Section VII. In Section VIII-A, we consider a
minimum cost robust scheduling problem with integer con-
straints. These randomly generated examples are meant to
illustrate the applicability of -adaptability, and some types of
problems that can be considered. In the final part of this section,
Section VIII-B, we explore a large collection of randomly
generated instances of the scheduling problem without integer
constraints. We consider different problem size, and types and
level of uncertainty, in an effort to obtain some appreciation
in the generic case, for the benefit of the first few levels of the
adaptability hierarchy, and for the behavior of the algorithm of
Section VII.

Finally, we discuss the problem of Air Traffic Control. We
discuss why finite adaptability may be an appropriate frame-
work for adaptability, both in terms of theoretical and practical
considerations. The full details of the model, and the numerical
computations are in [7].

A. Robust Scheduling: Integer Constraints

Suppose we have products, and each product can be com-
pleted partially or fully at one of stations, and the stations work
on many products simultaneously so that no product blocks an-
other. Thus the decision variables, , are for how long to op-
erate station . The matrix gives the rate of comple-
tion of product at station . Running station for one hour we
incur a cost . To minimize the cost subject to the constraint
that the work on all products is completed, we solve

In the static robust version of the problem, the rate matrix
is only known to lie in some set . How much can we reduce
our cost if we can formulate 2 (in general ) schedules rather
than just one? Particularly in the case where we have to make
binary decisions about which stations to use, there may be some
cost in having contingency plans prepared, as opposed to just
one. It is therefore natural to seek to understand the value of

-adaptability, so the optimal trade-off may be selected.
In Section VIII-B, we generate a large ensemble of these

problems, varying the size and the generation procedure, and
we report average results. Here, we consider only one instance
from one of the families below, and impose binary constraints,
so that each station must be either on or off: .

The heuristic algorithms proposed in Section VII are tractable
because of the quasi-convexity of the search for the optimal di-
viding hyperplane and by the limited set of normal directions
considered. Both these factors are independent of the contin-
uous or discrete nature of the underlying problem. Indeed, all
that is required for the algorithms is a method to solve the static
robust problem.

We consider an instance with six products and six stations,
where the uncertainty set is the convex hull of six randomly
generated rate matrices. Without the integer constraints, the
value of the static robust problem is 3.2697, and the completely
adaptable value is bounded below by 2.8485. The value of
the 2-adaptability solution is 3.1610, and for 4-adaptability
the value is 3.0978. Thus, 2-adaptability covers 25.8% of the
gap, and 4-adaptability covers just over 40% of the gap. As
we see from the results of the next section, these numbers are
typical in our ensemble. When we add integer constraints, the
static robust cost is 5, i.e., 5 stations must be turned on. The
completely adaptable value is 4. The 2-adaptability solution
also improves the static robust cost, lowering it to 4. Thus, in
this case a single split of the uncertainty region reduces the cost
as much as the full completely adaptable formulation.
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B. Robust Scheduling

We consider a large collection of randomly generated in-
stances of the scheduling problem above, without integer
constraints. First, we suppose that the extreme points of
are generated uniformly at random, their elements drawn iid
from a uniform distribution. Next, we consider another random
instance generation procedure, where the extreme points of
come from a specific degrading of some number of products.
That is, we may have nominal values , but in actuality
some collection (typically small) of the products may take
longer to complete on each machine, than indicated by the
nominal values. Here each extreme point of would be con-
structed from the nominal matrix , degraded at some small
number of rows. We generate random instances of this problem
by generating a nominal matrix , and then degrading each
row individually. This corresponds to choosing robustness
that protects against a single product being problematic and
requiring more time at the stations.

We are interested in several figures of merit. We consider
the gap between the static robust problem and complete adapt-
ability. As we have remarked above, we note that complete
adaptability is typically difficult to compute exactly [2]. There-
fore for all the computations in this section, we compute upper
bounds on the gap between the static robust and the completely
adaptable values. Thus, we present lower bounds on the benefit
of adaptability and the performance of the heuristic algorithm.
We obtain upper bounds on the gap by approximating the com-
pletely adaptable value by random sampling. We sample 500
points independently and uniformly at random from the uncer-
tainty set. Since the truly worst case may not be close to one
of these sampled points, the completely adaptable value may in
fact be worse than reported, thus making the gap smaller. Thus
our random approximation gives a conservative bound on the
true gap. Next, we compute the extent to which 2- and 4-adapt-
ability, as computed by the algorithm of Section VII, close this
gap.

We summarize the computational examples by reporting
the size of the instances and some statistics of the simula-
tions. In each category, every number represents the average
of 50 independently generated problem instances of size as
shown. These results are contained in Table I. There, we
give the average, minimum, and maximum gap between
the static robust and the completely adaptable values. We
give this as a fraction of the static robust value, that is,

. Then
we report the average percentage of this gap covered by
2-adaptability and 4-adaptability, as computed by the heuristic
algorithm.

The table illustrates several properties of the gap, and of
adaptability. We have considered several examples where we
fix the number of products and the number of stations (i.e.,
we fix the size of the matrices) and then vary the size of the
uncertainty set, i.e., the number of extreme points. In all such
examples, we see that the average gap increases as the level of
the uncertainty grows. Indeed, this is as one would expect. Fur-
thermore, we see that the quality of 2,4-adaptability decreases
as the size of the uncertainty set grows. Again this is as one
would expect, as we are keeping the amount of adaptability,
and the problem dimension constant, while increasing the

TABLE I
MATRICES IN THESE INSTANCES WERE GENERATED INDEPENDENTLY.

THE FIRST GROUP OF TWO COLUMNS IDENTIFIES THE SIZE OF THE PROBLEM,
WHERE BY MATRIX SIZE WE MEAN THE “NUMBER OF PRODUCTS BY NUMBER

OF STATIONS,” AND BY SIZE OF � WE INDICATE THE NUMBER OF EXTREME

POINTS. WE NOTE THAT THE AVERAGE GAP BETWEEN THE STATIC AND

ADAPTABLE FORMULATIONS INCREASES WITH THE SIZE OF THE

UNCERTAINTY SET � . ALSO, THE BENEFIT OF 2,4-ADAPTABILITY

DECREASES AS THE SIZE OF THE SET � INCREASES

TABLE II
MATRICES IN THESE INSTANCES WERE GENERATED WITH DEPENDENT

MATRICES, AS EXPLAINED ABOVE. IN THIS EXAMPLE AGAIN WE NOTE THE

SAME TRENDS AS FOR THE FIRST EXAMPLE: THE GAP BETWEEN THE STATIC

AND THE ADAPTABLE INCREASES WITH THE SIZE OF THE UNCERTAINTY SET,
AND THE VALUE OF 2,4-ADAPTABILITY IS BETTER FOR LOW-DIMENSIONAL

UNCERTAINTY SETS THAN FOR HIGH-DIMENSIONAL UNCERTAINTY

number of extreme points of the uncertainty set. For the 6 6
matrices, 4-adaptability covers, on average, over 70% of the
gap. That is, with only 4 contingency plans, on average we do
over 70% as well as the best possible attainable by any amount
of adaptability. When we double the size of , the average
performance of 2-adaptability drops from over 63% to just over
42%, while the performance of 4-adaptability drops from over
70% to about 52%. A similar phenomenon occurs in the other
examples as well.

We also report the results of the computations for the case
where the uncertainty set corresponds to the case where
at most one product is degraded. That is, we form by de-
grading each row of a matrix individually. The results from
this random generation procedure are comparable to the first
procedure. The results are reported in Table II.

C. Example From Air Traffic Control

There are about 30,000 flights daily over the United States
National Air Space (NAS). These flights must be scheduled
so that they do not exceed the takeoff or landing capacity of
any airport, or when they are the capacity of any sector of the
NAS while they are in-flight. These capacities are uncertain, as
they are impacted by the weather. Currently, there is no cen-
tralized, optimization-based approach implemented to obtain a
schedule that respects the capacity constraints while minimizing
delays. The primary challenges are a) the large scale nature of
the problem, with over a million variables and constraints; b)
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Fig. 3. We have planes arriving at a single hub such as JFK in NYC. Dashed
lines express uncertainty in the weather.

the variables are inherently discrete; (c) the problem is naturally
multistage: scheduling decisions are made sequentially, and the
uncertainty is also revealed throughout the day, as we have ac-
cess to the current forecast at every point in time. Because of the
discrete variables, continuous adaptability cannot work. Also,
because of the large-scale nature of the problem, there is very
little leeway to increase the size of the problem.

Finite Adaptability, is an appropriate framework to address
all three of the above challenges. We given a small example (see
[11] for more details and computations) to illustrate the applica-
tion of adaptability, showing finite adaptability can significantly
decrease the impact of a storm on flight delay and cancellation.

Fig. 3 depicts a major airport (e.g., JFK) that accepts heavy
traffic from airports to the West and the South. In this figure, the
weather forecast precits major disruption due to an approaching
storm; the timing of the impact, however, is uncertain, and at
question is which of the 50 (say) Northbound and 50 Eastbound
flights to hold on the ground, and which in the air.

The minimum flight time is 2 h. Each plane may be held either
on the ground, in the air, or both, for a total delay not exceeding
60 min. Therefore all 50 Northbound and 50 Eastbound planes
land by the end of the three hour window under consideration.

We discretize time into 10-min intervals. We assume that the
impact of the storm lasts 30 min. The uncertainty is in the timing
of the storm, and the order in which it will affect the capacity
of the southward and westward approaches. There is essentially
a single continuous parameter here, controls the timing of the
storm, and whether the most severe capacity impact hits the ap-
proach from the south before, after, or at the same time as it
hits the approach from the west. Because we are discretizing
time into 10 min intervals, there are four possible realizations
of the weather-impacted capacities in the second hour of our
horizon. These four scenarios are as follows. We give the ca-
pacity in terms of the number of planes per 10-min interval

TABLE III
RESULTS FOR THE COST OF TOTAL DELAY, AS WELL AS THE TOTAL

GROUND-HOLDING TIME, AND AIR-HOLDING TIME, FOR THE UTOPIC, ROBUST,
2-ADAPTABLE, AND 4-ADAPTABLE SCHEMES, FOR THE AIR TRAFFIC CONTROL

EXAMPLE. THE GROUND- AND AIR-HOLDING TIME IS GIVEN AS THE NUMBER

OF 10 MIN SEGMENTS INCURRED BY EACH FLIGHT (SO IF A SINGLE FLIGHT IS

DELAYED BY 40 MIN, IT CONTRIBUTES 4 TO THIS COUNT)

TABLE IV
RESULTS FOR THE COST OF TOTAL DELAY FOR EACH SCENARIO, WHEN THE

FIRST-STAGE SOLUTION IS CHOSEN WITHOUT ROBUSTNESS CONSIDERATIONS,
ASSUMING THAT THE FIRST REALIZATION IS IN FACT THE TRUE REALIZATION

In the utopic set-up (not implementable) the decision-maker can
foresee the future (of the storm). Thus we get a bound on per-
formance. We also consider a nominal, no-robustness scheme,
where the decision-maker assumes the storm will behave ex-
actly according to the first scenario. We also consider adapt-
abiliy formulations: 1-adaptable (static robust) solution, then the
2- and 4-adaptable solution.

The cost is computed from the total amount of ground holding
and the total amount of air holding. Each 10-min interval that a
single flight is delayed on the ground, contributes 10 units to the
cost. Each 10-min interval of air-delay contributes 20 units (see
Table I).

In Table IV, we give the cost of the nominal solution, de-
pending on what the actual realization turns out to be.

IX. CONCLUSION

We have proposed a notion of finite adaptability. This cor-
responds to choosing a finite number of contingency plans, as
opposed to a single static robust solution. We have shown that
this is equivalent to partitioning the uncertainty space, and re-
ceiving ahead of time coarse information about the realization
of the uncertainty, corresponding to one of the chosen partitions.

The structure of this adaptability is designed to reduce the
geometric gap between and , which is exactly the reason
the static robust solution may be conservative. In this paper,
we have focused on exploiting non-constraintwise uncertainty.
We consider elsewhere the value of adaptability in the face of
non-convex uncertainty sets. This notion of finite adaptability
establishes a hierarchy of adaptability that bridges the gap be-
tween the static robust formulation, and the completely adapt-
able formulation. Thus, we introduce the concept of the value
of adaptability. We believe that the finiteness of the proposal,
as well as the hierarchy of increasing adaptability, are central
to the paper. The finiteness of the adaptability is appropriate in
many application areas where infinite adjustability, and infini-
tesimal sensitivity, are either impossible due to the constraints
of the problem, or undesirable because of the structure of the
optimization, i.e., the cost. In addition to this, the inherent finite-
ness, and hence discrete nature of the proposal, makes it suitable
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to address adaptability problems with discrete variables. We ex-
pect that this benefit should extend to problems with non-convex
constraints.

In problems where adaptability, or information is the scarce
resource, the hierarchy of finite adaptability provides an oppor-
tunity to trade off the benefits of increased adaptability, versus
its cost.

On the other hand, as we demonstrate, obtaining optimal par-
titions of the uncertainty space can be hard. Thus, there is a need
for efficient algorithms. We have proposed a tractable algorithm
for adaptability. Numerical evidence indicates that its behavior
is good.
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