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ABSTRACT

From yeast to humans, the fusion of vesicles with target membranes is driven
by the formation of a parallel four-helix bundle of SNARE proteins that are present
on both the vesicular (v-SNAREs) and target plasma membranes (t-SNAREs). The
full zippering of this bundle is thought to provide the driving force for membrane
fusion. At synapses, vesicle fusion is exquisitely regulated by Ca2+ such that
neurotransmitter release can occur within 1 ms of an action potential reaching the
presynaptic terminal. This feat implies the presence of both a Ca2* sensor and a
fusion clamp that prevents vesicles from fusing in the absence of Ca2+. The
presynaptic Ca2* sensor for synchronous vesicle release is widely accepted to be
Synaptotagmin-1 (Syt1), and there is growing evidence that Complexin (Cpx), which
binds to the SNARE complex with high affinity and 1:1 stoichiometry, can act as a
vesicle fusion clamp. As suggested by its name, however, Cpx appears to play a
more complex role in vesicle release, carrying out different functions in spontaneous
vs. evoked fusion events.

Here we show the Drosophila express at least two Cpx isoforms that differ in
the C-terminus (Cpx7A and Cpx7B) and can be further regulated by RNA editing and
phosphorylation. These isoforms show different effects on spontaneous vs. evoked
neurotransmitter release, with Cpx7A being a better fusion clamp and Cpx7B being a
better fusion promoter. In addition, these isoforms have different effects on synaptic
growth, which may be linked to their effects on synaptic physiology.

Thesis Supervisor: Dr. J. Troy Littleton
Title: Associate Professor of Biology
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"But there were others who stood out from the

conference crowd: young, self-confident individuals

whose demeanor suggested they were going places.

These were people for whom public speaking seemed to

hold no fears. They gave talks that translated each short

scientific life into one long success story. They collected

new facts like a bee collected pollen. And they had their

work routinely published in the distinguished pages of

Nature and Science. They came from all corners but

were united by a common bond. Who were these

people? ... They were the ones who had chosen to work

with fruit flies."

-Martin Brooks, Fly
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Chapter 1

A Molecular Understanding of Synaptic Vesicle Exocytosis

Lauren K. Buhl'

'Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, MA 02139



Membrane fusion is an integral part of nearly all cellular processes in

eukaryotes. Within cells, proper regulation of fusion allows for communication

between membranous organelles and maintenance of functional subcompartments.

In addition, external communication is made possible by the fusion of intracellular

vesicles with the plasma membrane, exposing vesicular contents to the extracellular

space. Nowhere is vesicle fusion more exquisitely regulated than at synapses in the

nervous system. The temporal and spatial requirements of communication in the

brain are met by cooperation between a number of molecular players acting upon a

core machinery that underlies all types of membrane fusion. As this core machinery

is thought to default to the "on" state to carry out fusion for basic cellular

maintenance, synaptic vesicle fusion has a particular requirement for a "stop" signal

to prevent unwanted synaptic transmission and a "go" signal to allow fusion at

precisely the correct moment. Studies in a number of systems are now lending more

and more support to the idea that these stop/go signals are not traceable to

individual proteins but require cooperation between several proteins and, perhaps,

even cooperation between multiple domains of the same protein.

The synaptic vesicle cycle and vesicle pools

Before addressing the larger topic of neurotransmitter release, I will begin with

a review of synaptic vesicles and quantal neurotransmission at synapses. Fatt and

Katz (1952) saw the first hints of quantal neurotransmission at the neuromuscular

junction with their observation of spontaneous end plate potentials (EPPs). These

spontaneous EPPs appeared to be scaled down versions of evoked EPPs with the



same time course and response to various drugs affecting cholinergic synapses.

Thus, the term spontaneous miniature EPPs (mEPPs or, later, "minis") was coined to

describe these events. Subsequent work by del Castillo and Katz (1954) showed

that as external Ca2* was reduced, the size of evoked EPPs was reduced, eventually

reaching the size of the mEPPs. Under these low Ca2, conditions, the amplitude of

evoked EPPs varied such that each was an integer multiple of the mEPPs, giving

rise to the quantal hypothesis of neurotransmission. Actual visualization of synaptic

vesicles, the structural correlates of the "quanta," in the act of releasing

neurotransmitters would have to wait nearly two decades. Using freeze-fracture

techniques (as opposed to electron microscopy with conventionally fixed tissue),

Heuser and co-workers were able observe individual vesicles fusing with the plasma

membrane (Heuser and Reese, 1973; Heuser et al., 1974), consistent with the

electrophysiological observations of Katz and other researchers.

Packaging neurotransmitters in vesicles comes with a number of important

requirements that the neuron must meet. First, there must be a way to fill each

vesicle with neurotransmitter, and filled vesicles must be reliably placed at release

sites known as active zones and made competent to fuse with the plasma

membrane. After fusion, vesicles must be recycled both to provide more vesicles for

subsequent rounds of fusion and to prevent unwanted expansion of the plasma

membrane. All of these requirements are met by the synaptic vesicle cycle (for

review, see S(dhof, 2004). The cycle begins when an action potential invades the

presynaptic terminal and triggers synaptic vesicle fusion (Katz, 1969). Upon the



arrival of an action potential, voltage-gated Ca2+ channels open and cause a local

increase in intracellular Ca2+ levels that triggers vesicle fusion with the plasma

membrane and neurotransmitter release. As described above, even in the absence

of an incoming action potential, single synaptic vesicles may spontaneously fuse

with the plasma membrane, giving rise to miniature postsynaptic currents (Katz,

1969). Vesicle fusion triggered by Ca2+ influx occurs in two phases: a synchronous

phase that begins as quickly as 50 [ts after Ca2+ influx (Sabatini and Regehr, 1996)

and an asynchronous phase consisting of an increased rate of vesicle fusion that

continues for several hundred milliseconds after Ca2+ influx (Barrett and Stevens,

1972; Goda and Stevens, 1994). Following fusion, synaptic vesicles are retrieved

(i.e., endocytosed) through multiple pathways that remain the subject of controversy

and debate. Capacitance measurements at the calyx of Held have provided an

understanding of the time course of synaptic vesicle retrieval (Sun et al., 2002). The

rate of retrieval seems dependent on the number of unretrieved vesicles in the

plasma membrane. Following spontaneous release events or release triggered by

single or low-frequency trains of action potentials, vesicle retrieval occurs on a

millisecond timescale. In contrast, release triggered by high-frequency trains of

action potentials leads to retrieval on a timescale of seconds. This kinetic data

suggests multiple modes of endocytosis, and in fact, these modes were first

hypothesized over 35 years ago on the basis of biochemical studies with

synaptosomes (Barker et al., 1972) and electron microscopy at the neuromuscular

junction (Ceccarelli et al., 1973; Heuser and Reese, 1973). Subsequent studies have



shown that fast modes of retrieval with local recycling and refilling of vesicles

predominate at low vesicle release frequencies, whereas slower, clathrin-mediated

endocytosis predominates at high vesicle release frequencies (Koenig and Ikeda,

1996; Richards et al., 2000). Following fusion and retrieval, synaptic vesicles must

be recycled, refilled, docked at release sites, and primed for another round of fusion.

Vesicles can be recycled either locally or through endosomal intermediates. They

are then reacidified via a vacuolar proton pump (Maycox et al., 1988), creating an

electrochemical gradient that drives neurotransmitter uptake through one of a

number of pumps, depending on the neurotransmitter (for review, see Sadhof,

2004). The subsequent steps of vesicle "docking" at release sites and "priming" to

become fusion competent are poorly understood at the molecular level but are

thought to involve a number of the components of the membrane fusion machinery

discussed below (for review, see Rizo and Rosenmund, 2008).

Synaptic vesicles in the presynaptic terminal are not all alike and differ in their

functional properties and capacity for release (for review, see Rizzoli and Betz,

2005). The definition of vesicle pools has varied over time and between systems, but

in general, it is well accepted that there are three distinct vesicle pools: the readily

releasable pool, the recycling pool, and the reserve pool. The readily releasable pool

consists of vesicles that are already docked at the active zone and primed for fusion

immediately upon stimulation. Depletion of this pool occurs quickly with brief

application of high frequency stimulation (Elmqvist and Quastel, 1965;

Schneggenburger et al., 1999; Delgado et al., 2000; Richards et al., 2003),



depolarization (Neves and Lagnado, 1999), or hypertonic solution (Rosenmund and

Stevens, 1996). The recycling pool is thought to sustain release at more moderate

levels of stimulation (i.e., those that are more likely to be encountered

physiologically). During such stimulation, this pool is recruited and refilled with newly

recycled vesicles (Harata et al., 2001; Kuromi and Kidokoro, 2003; Richards et al.,

2003). The majority of synaptic vesicles, however, are held in the reserve pool. This

pool is seemingly only recruited upon intense stimulation (for review, see Rizzoli and

Betz, 2005). Kuromi and Kidokoro (1998) used the Drosophila temperature-sensitive

dynamin mutant shibire, which lacks endocytosis above the restrictive temperature

of 340C, to show that vesicles were recruited from the reserve pool during stimulation

at 340C once the recycling pool was depleted, but not during stimulation at room

temperature. These findings are consistent with work at the frog NMJ showing that

reserve pool vesicles are almost never recruited until the recycling pool has been

depleted (Richards et al., 2000; Richards et al., 2003).

Some studies have suggested that the different properties of evoked vs.

spontaneous fusion events can be explained by the use of different vesicle

populations. Recent data, however, has shown that both modes of release rely on

the same vesicle pool. When the quantal hypothesis of neurotransmitter release was

first postulated (del Castillo and Katz, 1954), it was assumed that the same quanta

(or vesicles) were released during spontaneous and evoked fusion events. This

assumption was maintained over several decades. More recently, work at

hippocampal synapses showed that vesicles labeled with the styryl dye AM1-44



during spontaneous endocytosis are more likely to be released spontaneously than

vesicles labeled following a stimulus. In addition, blocking vesicle refilling with the

vacuolar ATPase inhibitor folimycin preferentially depletes neurotransmitter from

spontaneously fusing vesicles (Sara et al., 2005). Subsequent studies found

differential release properties (Mathew et al., 2008) and localization (Chung et al.,

2010) of vesicles loaded with styryl dyes by different protocols (e.g., spontaneous

vs. stimulus-driven). In addition, labeling vesicles with a biotinylated version of the

synaptic vesicle protein synaptobrevin (biosyn) has suggested that separate vesicle

pools supply different modes of release (Fredj and Burrone, 2009). On the other

hand, separately labeling vesicles endocytosed spontaneously and in response to

stimulation with spectrally separable styryl dyes has shown that both populations are

released at the same rate following trains of action potentials (Groemer and Klingauf,

2007). To address this controversy, Wilhelm et al. (2010) tested all possible

combination of styryl dye loading and unloading (evoked/evoked,

evoked/spontaneous, spontaneous/evoked, and spontaneous/spontaneous) in four

different preparation (the NMJs of mice, frogs, and Drosophila third-instar larvae and

cultured hippocampal neurons) and found similar levels of dye unloading (i.e.,

vesicle fusion) under all conditions, consistent with the same pool of vesicles

supplying both spontaneous and evoked fusion. Similar results have been observed

with biotinylated antibodies against the lumenal portion of the synaptic vesicle

protein synaptotagmin and with synaptopHluorin, a pH-sensitive GFP attached to the

lumenal portion of synaptobrevin. Thus, while there may be some conditions and



protocols in which vesicles are preferentially recruited for spontaneous or evoked

fusion, there does not appear to be precise separation between vesicles for each

release mode.

The core fusion machinery: SNARE proteins

Early studies of vesicle fusion in vitro led to the purification of NSF (N-

ethylmaleimide-sensitive factor) and SNAP (soluble NSF attachment protein), both

of which were found to be necessary for vesicle fusion (Malhotra et al., 1988; Wilson

et al., 1989; Clary et al., 1990). Subsequently, the SNARE proteins were identified

on the basis of their ability to bind to NSF and SNAP (thus the name SNAp

REceptor) (Sollner et al., 1993). At synapses, there are two SNARE proteins

associated with the plasma membrane, the target-SNAREs (t-SNAREs) SNAP-25

and syntaxin, and one SNARE protein associated with the vesicle membrane, the

vesicle-SNARE (v-SNARE) synaptobrevin. The clostridial neurotoxins botulinum and

tetanus toxins, which cleave the SNAREs and block neurotransmission (Blasi et al.,

1993a; Blasi et al., 1993b; Schiavo et al., 1993), highlight the central role of the

SNAREs in synaptic vesicle fusion. Homologs of the synaptic SNAREs are

expressed in different cellular compartments, such that a limited number of SNARE

combinations allows for some measure of fusion specificity (Fukuda et al., 2000;

McNew et al., 2000; Parlati et al., 2000).

The individual SNARE proteins have unremarkable structure on their own but

zipper together into a highly stable four-helix coiled-coil bundle (known as a trans-

SNARE complex or a SNAREpin) with syntaxin and synaptobrevin each contributing



one alpha helix and SNAP-25 contributing two (Sutton et al., 1998). The orientation

of SNAREs in the vesicle and target membranes is such that zippering of the

SNAREpin brings these membranes into close apposition, the first step in fusion.

The length of the linker between the transmembrane portion of the SNAREs and the

SNAREpin is critical for fusion. Increasing the length of this linker has been shown to

inhibit fusion, likely by eliminating close membrane apposition (McNew et al., 1999;

Deak et al., 2006). The energy of SNAREpin zippering is thought to provide the

driving force to overcome the energy barrier of membrane fusion, which is quite high

given the necessary mixing of polar head groups and hydrophobic tails of

phospholipids. Each zippered SNAREpin provides on the order of 35 kBT of energy

(Li et al., 2007), and the activation energy of membrane fusion has been estimated

to be on the order of 40-140 kBT (Cohen et al., 2004). Therefore, at least two to three

SNARE complexes would be needed to provide the requisite energy for membrane

fusion. Current estimates indicate that three to ten SNAREpins are required to

achieve proper fusion kinetics (Mohrmann et al., 2010; Karatekin et al., 2010).

After membrane fusion, the SNAREs are held in what is called the cis-SNARE

complex and must be released and recycled to participate in subsequent rounds of

vesicle fusion. NSF is a hexameric ATPase that can indirectly bind to SNARE

proteins via the adapter protein SNAP (Sollner et al., 1993). The cis-SNARE

complex is disassembled by NSF (Mayer et al., 1996), releasing the individual

SNARE proteins. The t-SNAREs and v-SNAREs must then be sorted and separated

so that t-SNAREs remain at release sites, while v-SNAREs are endocytosed and



incorporated into newly formed synaptic vesicles. The mechanisms underlying these

trafficking events remain unclear.

SM (Sec1 /Muncl 8-like) proteins: SNARE chaperones

When the synaptic SM protein Munc-1 8 was found to bind to the synaptic t-

SNARE syntaxin-1 (Hata et al., 1993), its potential role in membrane fusion was

unknown. In addition to its SNARE domain, syntaxin contains an Habc domain

consisting of three alpha helices that fold back onto the SNARE domain and holds

syntaxin in a "closed" state in which it cannot interact with other members of the

SNARE complex (Fernandez et al., 1998; Misura et al., 2000). Munc-18 binds to the

four-helix bundle formed between the Habc domain and the SNARE domain of

syntaxin, maintaining the "closed" state (Dulubova et al., 1999). Given this

configuration, Munc-18 was originally hypothesized to be a negative regulator of

vesicle fusion; however, studies in multiple systems have identified SM proteins as

positive regulators of fusion (for example, see Brenner, 1974; Novick et al., 1980). In

fact, genetic deletion of Munc-18 inhibits vesicle fusion even more than deletion of

the v-SNARE synaptobrevin (Verhage et al., 2000), suggesting a critical role of

Munc-18 in promoting fusion. The potential mechanistic basis of this role was

provided by additional structural studies showing an interaction between Munc-18

and the N-terminus of syntaxin that would allow Munc-18 to bind to the four-helix

bundle of the SNARE complex instead of "closed" syntaxin (Dulubova et al., 2002;

Yamaguchi et al., 2002). This interaction between Munc-18 and the SNARE complex

may stabilize the zippering SNAREpin and promote fusion by some as yet



undetermined mechanism. Together, SNARE proteins and SM proteins constitute

the core machinery for all modes of membrane fusion.

Munc13 and RIM1a: "Priming" the release machinery

The events leading up to neurotransmitter release that make vesicles

competent to fuse with the plasma membrane in response to an incoming action

potential are grouped together under the somewhat nebulous umbrella "priming."

Among the proteins thought to be important for priming, Munc13-1 and RIM1a are

particularly noteworthy given the dramatic effects of their absence on

neurotransmitter release. In mice, the deletion of both Munc13-1 and Munc13-2

eliminates both spontaneous and evoked neurotransmitter release (Varoqueaux et

al., 2002). Notably, this phenotype can be rescued by expression of a minimal region

of Munc13-1 termed the MUN domain, highlighting the key role of this region in the

function of the protein (Basu et al., 2005). On the other hand, deletion of RIM1a in

mice has much milder effects on neurotransmitter release than deletion of Munc13

(Schoch et al., 2002), although several forms of synaptic plasticity are disrupted in

RIM1a mutants (reviewed in Rizo and Rosenmund, 2008). Interestingly, in C.

elegans the synaptic defects in null mutants of the Munc 3 homolog unc-1 3 and the

RIM1a homolog unc-10 can be rescued by a syntaxin mutation that maintains the

protein in an "open" conformation (Richmond et al., 2001). These findings suggest

that Munc13 and RIM1a both act to convert syntaxin from a "closed" to an "open"

state, making it available for SNARE complex formation. In fact, a direct interaction

has been demonstrated between the N-termini of Munc13-1 and RIMla, and



disrupting this interaction results in defects in vesicle priming (Betz et al., 2001). In

addition, a tripartite complex can be formed between Munc13-1, RIM1 a, and Rab3A

(Dulubova et al, 2005), which is itself required for multiple forms of synaptic

plasticity. The precise function of this complex is unclear, but it may regulate spatial

or temporal aspects of Munc13-1 and RIM1a function (Dulubova et al, 2005).

Synaptotagmin: The Ca2, sensor

Given its low intracellular concentration at baseline (in the submicromolar

range), Ca2+ is an ideal second messenger and plays a critical role in multiple

cellular processes ranging from signal transduction to muscle contraction. In the

nervous system, Ca2, influx determines the timing of neurotransmitter release from

presynaptic terminals, and synaptotagmin is widely regarded to be the Ca2+ sensor

that triggers evoked neurotransmitter release. Synaptotagmin is a synaptic vesicle

protein with a single membrane-spanning domain and two Ca2*-binding C2 domains,

C2A and C2B (Perin et al., 1991). It was first hypothesized to be the Ca2* sensor for

fast neurotransmitter release based on its localization and Ca2' and phospholipid

binding properties (Brose et al., 1992) but has since been shown to be involved in

several aspects of the synaptic vesicle cycle, including docking and endocytosis

(reviewed in Chapman, 2008). Early genetic knockout studies of synaptotagmin-1 in

Drosophila, C. elegans, and mice showed impairment of synaptic transmission, but

different conclusions were drawn as to whether synaptotagmin was the Ca2+ sensor

for fast neurotransmitter release (reviewed in Koh and Bellen, 2003). The critical

piece of evidence in support of synaptotagmin-1 as the Ca2+ sensor for fast
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neurotransmitter release came from studies showing that a point mutation in

synaptotagmin-1 that reduced its Ca2+ affinity caused a concurrent reduction in the

Ca2+ sensitivity of neurotransmitter release (Fernandez-Chacon et al., 2001).

Synaptotagmin can bind simultaneously to Ca2*, plasma membrane phospholipids,

and membrane-bound SNARE complexes (Dai et al., 2007), putting it in an ideal

position to translate Ca2 ' binding into membrane fusion.

A role for synaptotagmin-1 as a vesicle fusion clamp has also been proposed.

In support of this idea, several groups have reported an increase in the frequency of

spontaneous vesicle fusion events at the Drosophila larval NMJ in synaptotagmin-1

null animals (Littleton et al., 1994; DiAntonio et al., 1994; Mackler et al., 2002). In

synaptotagmin knockout mice, although no increase in the frequency of spontaneous

fusion was reported in hippocampal neurons grown on microislands (Geppert et al.,

1994), a subsequent study of cultured cortical neurons did find such an increase

(Pang et al., 2006). A model is now emerging in which apo-synaptotagmin-1 (i.e.,

synaptotagmin-1 not bound to Ca2+) acts as a fusion clamp and, upon binding Ca2+,

subsequently promotes fusion. This idea has been supported by data from liposome

fusion assays (Chicka et al., 2009).

Complexin: The fusion clamp that promotes fusion?

Of all the proteins involved in neurotransmitter release, perhaps none has

been more controversial in recent years than complexin. Seemingly divergent results

in different experimental systems have given rise to two camps: those who view

complexin as a fusion clamp and those who consider its function to be promoting



fusion. Most recently, a more nuanced view of complexin has emerged in which it

exerts different effects on different modes of vesicle fusion, but several unresolved

issues still remain.

Identifying complexins and early functional studies

Complexin was originally isolated from rat brain homogenates based on its

ability to bind to the SNARE complex (McMahon et al., 1995). Subsequent X-ray

crystallography studies showed a complexin fragment bound by its central helix to

the groove between synaptobrevin and syntaxin in the assembled SNARE complex

(Chen et al., 2002; Bracher et al., 2002). The structure of the far N-terminus and C-

terminal half of complexin, however, remains a mystery. In mammals, complexins 1

and 2 were the first to be characterized (McMahon et al., 1995), followed nearly a

decade later by complexins 3 and 4 (Reim et al., 2005). All complexin isoforms are

small, highly charged proteins, and complexin 2 belongs to the uncommon class of

proteins that show 100% amino acid identity between mice, rats, and humans,

suggesting a critical functional role (McMahon et al., 1995). Complexin 1 and 2

transcripts are highly enriched in the brain, and their protein products can be found

in overlapping yet distinct subdomains. In addition, complexin 1 is expressed in the

testis, and complexin 2 is present at low levels in all tissues (McMahon et al., 1995).

In contrast, complexins 3 and 4, which share only 24-28% amino acid identity with

complexins 1 and 2, are concentrated at ribbon synapses in the retina (Reim et al.,

2005). In fact, complexin 4 expression appears to be entirely restricted to the retina,

whereas complexin 3 is also expressed elsewhere throughout the brain, particularly
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in the hippocampus and cerebellum (Reim et al., 2005). Interestingly, complexins 3

and 4 share a C-terminal CAAX-box motif known to be a consensus sequence for

post-translational farnesylation (for review, see Zhang and Casey, 1996). This motif

is absent from complexins 1 and 2, but present in complexin isoforms from a number

of other species, including Drosophila, and may represent a functional specialization

necessary at the unique retinal ribbon synapse where complexins 3 and 4 are

expressed (Reim et al., 2005).

The earliest functional studies of complexins were carried out using Aplysia

buccal ganglia, which have large cell bodies conducive to microinjection of

compounds that can easily diffuse to synapses and affect synaptic transmission. In

this preparation, presynaptic injection of a monoclonal antibody against complexin 2

leads to an increase in the amplitude of postsynaptic IPSCs in response to single

evoked presynaptic action potentials. In contrast, injection of recombinant complexin

2 leads to a decrease in IPSC amplitude (Ono et al., 1998). These effects of

complexin 2 injection are the opposite of those observed for a-SNAP injection. In

fact, the effect of complexin 2 injection can be reversed by a-SNAP injection and

vice versa (Ono et al., 1998). These findings suggest that complexin 2 and a-SNAP

have opposing effects on the same substrate and that complexin 2 has an overall

effect of inhibiting neurotransmitter release. Perhaps no subsequent studies have

equaled these early experiments in terms of acute intervention, which is necessary

to avoid the complication of compensatory mechanisms. Antibody injection,



however, is a somewhat crude method of protein inactivation and can have

unintended effects.

Additional evidence for complexin function has come from studies in PC12

cells in which acetylcholine release from small synaptic vesicles is inhibited by

overexpression of either complexin 1 or 2 (Itakura et al., 1999). Furthermore,

complexin 2 overexpression in adrenal chromaffin cells leads to a reduction in the

number of evoked exocytotic events and a reduction in the amount of

catecholamines released during a single exocytotic event as measured by carbon

fiber amperometry. Taken together, the early studies of complexin function favor the

idea that complexin is a negative regulator of transmitter release.

In vitro fusion assays of complexin function

In vitro systems have the advantage of well-defined components, allowing the

effects of individual components and interactions between components to be

evaluated with a precision that is difficult using in vivo systems. Two types of in vitro

approaches have been used to study complexin function: lipid mixing by liposome

fusion (Weber et al., 1998) and cell fusion by flipped SNAREs (Hu et al., 2003). Lipid

mixing by liposome fusion involves the generation of a population of v-SNARE

liposomes containing synaptobrevin and a population of t-SNARE liposomes

containing syntaxin and SNAP-25. In addition, the lipid component of the v-SNARE

liposomes is labeled with a quenched mixture of fluorophores, such that when a v-

SNARE liposome fuses with a t-SNARE liposome, lipid mixing dilutes and

unquenches the fluorophores, and the increase in fluorescence can be used to track



fusion kinetics. As an added level of analysis, pretreating the v-SNARE liposomes

with the reducing agent sodium dithionite permanently quenches the fluorophores in

the outer leaflet, allowing inner and outer leaflet mixing of the lipid bilayers to be

measured separately. On the other hand, cell fusion with flipped SNAREs involves

transfection of COS cells with constructs expressing a v-SNARE or both t-SNAREs

in a "flipped" orientation with their SNARE domains located extracellularly. The v-

SNARE cells are additionally labeled with cytosolic RFP, and the t-SNARE cells are

labeled with nuclear CFP, allowing fusion to be tracked by identifying cells with cyan

nuclei in a red cytosol. Unlike liposomes in which the orientation of the incorporated

SNARE proteins is stochastic, cells expressing flipped SNAREs allow precise control

over SNARE orientation and placement in the membrane.

A liposome fusion assay was used by Schaub et al. (2006) to study the

effects of complexin and synaptotagmin on SNARE-mediated fusion. Using mouse

complexin 4 and Drosophila complexin 7A (both of which contain the C-terminal

farnesylation motif), they found that both complexins greatly inhibited liposome

fusion driven by the neuronal SNAREs syntaxin-1A, SNAP25b, and synaptobrevin-2.

In fact, fusion was arrested at the hemifusion step at which the outer leaflet lipids

had mixed, but the inner leaflet lipids had not. The addition of synaptotagmin and

Ca2+ relieved this hemifusion arrest and allowed full liposome fusion to proceed

rapidly. These results support a model in which complexin blocks neuronal SNARE-

mediated fusion, while synaptotagmin removes this block in the presence of Ca2 .

Notably, liposome fusion studies do not recapitulate the membrane curvature of a
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synaptic vesicle fusing with an essentially planar plasma membrane, and it is

unclear whether Drosophila complexin 7A interacts differently with mouse SNARE

proteins than with endogenous Drosophila SNAREs. At the same time, Giraudo et al.

(2006) used cell fusion by flipped SNAREs to show that both soluble and membrane-

anchored mouse complexin 1 could robustly block cell fusion and that this block

could be overcome by release of the complexin 1 anchor and the addition of

synaptotagmin and Ca2,. These results were essentially identical to those of Schaub

et al. (2006) and further strengthened the idea of complexin as a negative regulator

of SNARE-mediated fusion.

In subsequent work, Malsam et al. (2009) used a liposome fusion assay to

study all four mouse complexins along with Drosophila complexin 7A and found that

mouse complexins 1 and 2 actually promoted liposome fusion, whereas mouse

complexins 3 and 4 and Drosophila complexin 7A (all of which contain the C-terminal

farnesylation motif) all inhibited liposome fusion. Interestingly, when the C-terminus

of complexin 1 was transferred to complexin 3, this complexin 3/1 chimeric protein

promoted liposome fusion. These data suggest that the effects of complexin on

membrane fusion are isoform-specific and may be critically dependent on the

presence or absence of a C-terminal farnesylation motif. Furthermore, these results

apparently contradict the earlier cell fusion study of Giraudo et al. (2006) in terms of

the role of complexin 1. In that study, however, complexin 1 was most potent as an

inhibitor of cell fusion when it contained a C-terminal GPI anchor, again highlighting

the potential importance C-terminal farnesylation for complexin function.
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Reductionist systems such as liposome fusion and cell fusion by flipped SNAREs,

however, are by their very nature artificial, and results obtained in such systems

must be corroborated by in vivo evidence.

Complexin knock-out/down studies

A complexin 2 knockout (KO) mouse was the first reported genetic disruption

of complexin (Takahashi et al., 1999). Given the 100% amino acid conservation of

complexin 2 among mice, rats, and humans, it was somewhat surprising that these

mice showed normal hippocampal synaptic transmission and short-term plasticity as

measured by paired-pulse facilitation. Long-term potentiation (LTP) was reduced,

however, in both CA1 and CA3. To avoid compensation by complexin 1, double

knockout (DKO) mice for complexins 1 and 2 were generated, and their synaptic

transmission properties were studied in hippocampal autapses (Reim et al., 2001).

The DKO mice showed a dramatic reduction in evoked EPSC amplitude, but no

change in the rate of spontaneous fusion events or the amplitude of mEPSCs. The

size of the readily-releasable vesicle pool in the DKO mice was also unchanged

relative to controls, suggesting that complexin acts to promote release at a post-

priming step. In support of this idea, the DKO mice also showed initial facilitation in

response to a train of action potentials, indicating a reduced release probability, and

reduced Ca 2 sensitivity of neurotransmitter release. These results are apparently at

odds with earlier in vitro studies and cell/liposome fusion assays, all of which

suggested a negative role of complexin in neurotransmitter release. This difference

could have been due to the nonphysiological nature of the in vitro studies or possible



compensation by complexin 3, which is also expressed throughout the brain, in the

DKO mice.

Analysis of the Drosophila knockout of complexin added to the controversy

surrounding complexin function (Huntwork and Littleton, 2007). Drosophila has only

a single complexin gene, eliminating the possibility of compensation by other

isoforms and simplifying the phenotypic analysis. Synaptic transmission was

evaluated at the third-instar larval neuromuscular junction (NMJ) of complexin

knockout animals, revealing a dramatic increase (>20-fold) in the frequency of

spontaneous vesicle fusion events. Even after taking into account the 64% increase

in the number of release sites in the knockout animals, this change in mini frequency

represents a substantial increase in the probability of spontaneous vesicle fusion.

This finding was perhaps surprising given the lack of any effect on spontaneous

fusion events observed in the complexin 1/2 DKO mice (Reim et al., 2001). On the

other hand, evoked neurotransmitter release was reduced at elevated Ca2+ levels

(>0.25 mM) but remained unchanged at lower Ca2+ levels, indicating a reduction in

the Ca2* sensitivity of neurotransmitter release similar to that seen in the complexin

1/2 DKO mice (Reim et al., 2001). The spontaneous fusion phenotype of the

Drosophila complexin knockout is highly indicative of a role for complexin as a

vesicle fusion clamp, but it is unclear why a similar phenotype was not observed in

mice. Again, it is possible that compensation by complexin 3 is to blame, but it could

also be that cultured hippocampal autapses are functionally different from the larval

NMJ. Regardless, analysis of the Drosophila complexin knockout represents one of
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the first indications that complexin might have different effects on two different

modes of vesicle release: spontaneous and evoked. This idea was further supported

by data from C. elegans complexin-1 knockout animals, which showed a 3-fold

increase in the rate of tonic fusion at a graded synapse, but a 10-fold decrease in the

amplitude of evoked fusion events (Martin et al., 2011; Hobson et al., 2011).

The generation of complexin 1/2/3 triple knockout (TKO) mice finally

addressed the issue of potential compensation by complexin 3 in the DKO mice but

increased the growing controversy surrounding complexin function. Using autaptic

hippocampal cultures, Xue et al. (2008) reported a decrease in evoked EPSC

amplitude and in the Ca2, sensitivity of neurotransmitter release in the TKO mice,

similar to that seen in the DKO mice (Reim et al., 2001); however, they also reported

a ~30% decrease in spontaneous EPSC frequency in both the DKO and TKO mice.

Notably, the original report on the DKO mice did not find any effect on spontaneous

EPSCs using the same autaptic culture system (Reim et al., 2001). This decrease in

spontaneous EPSC frequency in the TKO and DKO mice was also observed at

inhibitory and excitatory synapses in brainstem slices of the pre-B6tzinger complex.

The size of the readily-releasable vesicle pool was unchanged in the DKO and TKO

mice relative to controls; thus, the reduction in both evoked EPSC amplitude and

spontaneous ESPC frequency indicates a decrease in the probability of vesicle

release. It remains unclear why there is an apparent difference in the effects of

complexin on vesicle fusion between mice and flies. Compensation by other

members of the synaptic vesicle release machinery could be at play in both systems,
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and it is possible that autaptic synapses do not behave as endogenous synaptic

connections. There is agreement between flies and mice, however, in the apparent

effects of complexin on evoked neurotransmitter release, namely, to increase the

Ca 2 sensitivity of release and the probability of vesicle fusion.

Acute complexin knockdown studies have also been carried out using short

hairpin RNA (shRNA), making developmental compensation by other complexins or

members of the vesicle release machinery less likely. Maximov et al. (2009) used a

lentiviral expression system to express an shRNA targeting both complexins 1 and 2

in cultured cortical neurons from mice and found a 3- to 4-fold increase in the

frequency of spontaneous EPSCs and a 3- to 4-fold decrease in the amplitude of

evoked EPSCs, similar to - although less severe than - the phenotypes observed at

the Drosophila NMJ (Huntwork and Littleton, 2007). It is unclear why the mouse

knockout and knockdown studies of complexin function came to such different

conclusions regarding the role of complexin in spontaneous vesicle fusion. It may be

due to differences between hippocampal autapses and cultured cortical neurons.

Alternatively, the acute nature of the shRNA knockdown may have avoided

compensation by other members of the vesicle release machinery or the knockdown

itself may have been incomplete.

Complexin domain studies

With so many studies showing different effects of complexin on different kinds

of vesicle release (spontaneous vs. evoked) in different species and different

synapses, studies of complexin subdomains have become necessary to clarify its
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seemingly multiple roles. The field has generally looked at complexin as having four

distinct domains, the far N-terminus (~30 residues) followed by the accessory helix

(~20 residues), the central helix (~20 residues), and the C-terminus (-65 residues).

The central helix is clearly required to bind to the SNARE complex as suggested by

crystal structures (Chen et al., 2002; Bracher et al., 2002), and constructs that lack

this domain or key binding residues within it fail to rescue complexin knockout or

knockdown synapses (Xue et al., 2007; Maximov et al., 2009; Martin et al., 2011)

and fail to clamp cell fusion by flipped SNAREs as observed with wild type (WT)

complexin (Giraudo et al., 2008). Binding to the SNARE complex alone, however,

does not appear to be sufficient to recapitulate complexin function (Xue et al., 2007).

The N-terminus and accessory helix, meanwhile, seem to promote and clamp

fusion, respectively, and balance one another in the context of full length complexin.

When both are absent, only mild effects on complexin function are observed in

mouse hippocampal autaptic cultures, whereas complexin constructs lacking only

the N-terminus (residues 1-27) lead to a full loss-of-function phenotype, suggesting

that the N-terminus promotes neurotransmitter release (Xue et al., 2007). Even

constructs lacking fewer N-terminal residues (1-15 and 1-7) fail to rescue the

complexin null phenotype in autaptic cultures (Xue et al., 2010). Interestingly, how

much of the N-terminus is deleted appears to influence complexin function in C.

elegans. When only the first 15 residues of the N-terminus of complexin-1 were

deleted (equivalent to mouse residues 1-14), the frequency of spontaneous vesicle

fusion was greatly reduced and the amplitude of evoked EPSCs was actually



increased at the NMJ, suggesting that the N-terminus promotes spontaneous

release but inhibits evoked release (Hobson et al., 2011). Meanwhile, when the first

22 residues were deleted (equivalent to mouse residues 1-21), there was little effect

on aldicarb sensitivity (a measure of acetyl choline release) or locomotion (Martin et

al., 2011). These studies could indicate differences between hippocampal autapses

and the C. elegans NMJ or that the N-terminus of complexin has multiple roles in

neurotransmitter release. There is some structural basis for the hypothesis that the

N-terminus promotes neurotransmitter release. Xue et al. (2010) used NMR

spectroscopy to identify residues of the N-terminus of complexin that interact with

the membrane-proximal C-terminus of the SNARE complex, perhaps influencing the

force transfer from the SNARE complex that drives membrane fusion. There is also

evidence to suggest how the accessory helix clamps fusion. Giraudo et al. (2009)

noted that the accessory helix of complexin has substantial similarity to

synaptobrevin and might replace synaptobrevin in the SNARE complex, blocking full

zippering and thus clamping fusion. In fact, introducing mutations into complexin to

increase its similarity to synaptobrevin also increased its clamping function in cell

fusion assays (Giraudo et al., 2009).

The C-terminus of complexin is the most mysterious domain in terms of both

structure and function. In hippocampal autapses, a complexin construct lacking the

C-terminus was fully able to rescue the complexin null phenotypes (Xue et al., 2007),

suggesting either that the C-terminus is not critical for complexin function or that the

C-terminus harbors balanced, opposing functions similar to those described for the
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N-terminus and accessory helix. Constructs lacking the entire C-terminus fail to

clamp cell-cell fusion by flipped SNAREs as well as full length complexin, predicting

a negative influence of the C-terminus on vesicle release (Giraudo et al., 2008). In C.

elegans, meanwhile, a complexin construct lacking the C-terminus failed to rescue

the aldicarb sensitivity of complexin-1 null animals and only partially rescued their

locomotor defects, indicating an important role of the C-terminus in inhibiting

neurotransmitter release at the NMJ (Martin et al., 2011), consistent with findings

from cell fusion assays. Interestingly, rat complexin 1 can be phosphorylated both in

vitro (by protein kinase CK2) and in vivo at serine-1 15 in the C-terminus, and this

phosphorylated form of complexin binds to the assembled SNARE complex with

greater affinity than unphosphorylated complexin (Shata et al., 2007). In addition,

phosphomimetic mutations in serine-1 15 reduce the ability of complexin 1 to

promote liposome fusion (Malsam et al., 2009). Furthermore, the CK2 inhibitor 5,6-

dichlorobenzimidazole riboside causes a nearly 100-fold increase in the frequency of

spontaneous neurotransmitter release at the frog NMJ (Rizzoli and Betz, 2002).

These findings provide a biochemical basis for how the C-terminus of complexin may

influence synaptic vesicle release and suggest that phosphorylation of complexin by

CK2 may increase its ability to inhibit spontaneous neurotransmitter release.

Cross-species studies of Complexin

As the field has trended toward viewing complexin as a protein of domains

with distinct inhibitory and facilitatory functions in neurotransmitter release, an idea

has emerged that perhaps the differences in phenotype between the mouse and
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Drosophila complexin KO animals could be explained by different weighting of these

domains, such that Drosophila complexin functions more like a clamp overall,

whereas mouse complexins have more facilitatory roles (Xue et al., 2009). In support

of this idea, Drosophila complexin 7A nearly abolished both spontaneous and

evoked neurotransmitter release when expressed at complexin TKO hippocampal

autapses and severely reduced EPSC amplitude and mEPSC frequency when

overexpressed at WT hippocampal autapses (Xue et al., 2009). In contrast,

overexpression of mouse complexin 1 at WT hippocampal autapses was previously

shown to have no effect on neurotransmitter release (Xue et al., 2007). Reverse

experiments have also been done involving the expression of mouse complexins at

the Drosophila third instar larval NMJ. In complexin null larvae, mouse complexins 1,

2, and 3 were not able to fully rescue the increased frequency of spontaneous

neurotransmitter release but actually rescued the decreased amplitude of evoked

EPSCs to beyond WT levels (Xue et al., 2009; Cho et al., 2010). On the other hand,

mouse complexin 4 was better able to rescue the increased frequency of

spontaneous neurotransmitter release, despite being expressed at lower than WT

levels, but only rescued the amplitude of evoked EPSCs to WT levels (Cho et al.,

2010).

Studies have also been performed using chimeric constructs of mouse and

Drosophila complexins. Removal of the entire C-terminus of Drosophila complexin

7A or simply mutating its farnesylation motif blocked its ability to inhibit release in

autaptic cultures, and only its ability to inhibit spontaneous release was restored



when the C-terminus of mouse complexin 1 was substituted for the Drosophila

complexin 7A C-terminus (Xue et al., 2009). When only the farnesylation motif of

Drosophila complexin 7A was replaced with the final four residues of mouse

complexin 1, this chimeric construct was unable to inhibit the increased frequency of

spontaneous neurotransmitter release in complexin null animals at the Drosophila

NMJ but increased evoked ESPC amplitudes to greater than WT levels (Cho et al.,

2010). Similar substitution with the entire C-terminus of mouse complexin 3, which

contains a farnesylation motif like that of Drosophila complexin 7A, resulted in

promotion of both spontaneous and evoked neurotransmitter release in hippocampal

autapses (Xue et al., 2009). Clearly, the mere presence of a farnesylation motif is

not enough to restore the inhibitory functions of the C-terminus of Drosophila

complexin 7A. Similar studies have been done with substitutions of the Drosophila

complexin 7A N-terminus and accessory helix. When both of these domains were

replaced with the analogous mouse complexin 1 sequences, the ability of Drosophila

complexin 7A to inhibit both evoked and spontaneous neurotransmitter release was

somewhat reduced in hippocampal autapses; however, substituting only the far N-

terminus had no effect (Xue et al., 2009), suggesting that the accessory helix of

Drosophila complexin 7A has an inhibitory effect on neurotransmitter release

stronger than that mediated by the accessory helix of mouse complexin 1 (Xue et al.,

2007). These studies indicate that the "weighted domains" model of complexin

function across species may explain some of the differences observed between

mouse and Drosophila KO animals, but all cross-species experiments are hindered



by the fact that proteins may not behave normally when placed in the cellular milieu

of another species. This point is especially critical for protein-protein interactions

such as those between complexin and the SNARE complex.

Complexin/synaptotagmin/SNARE biochemistry

Fast neurotransmitter release in response to Ca2, influx clearly requires both

complexin and synaptotagmin acting on the SNARE complex, and both of these

proteins seem to have both facilitatory and inhibitory roles in membrane fusion. The

mechanism by which these two proteins work in concert to orchestrate synaptic

vesicle fusion, however, remains unclear. Complexins 1 and 2 were identified on the

basis of their ability to bind the assembled SNARE complex, and early biochemical

studies showed that they also bind to isolated syntaxin, but not synaptobrevin or

SNAP-25, with lower affinity than to the assembled complex (McMahon et al., 1995).

These binding characteristics are similar to those of Munc-18 and synaptotagmin.

Furthermore, both complexins and synaptotagmin compete with a-SNAP, but not

with each other, for syntaxin binding (McMahon et al., 1995), consistent with the idea

that complexin and synaptotagmin act at a post-priming step in membrane fusion,

separate from a-SNAP (S6llner et al., 1993). Subsequent studies have shown that

complexin can bind to the SNAP-25:syntaxin acceptor complex on target

membranes, although with lower affinity than to the fully assembled SNARE complex

(Guan et al., 2008; Weninger et al., 2008). This interaction with the SNAP-

25:syntaxin acceptor would be critical for complexin to function as a clamp, such that

it is already in place before synaptobrevin arrives and full SNARE zippering and
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membrane fusion commence. Similarly, synaptotagmin can bind the SNAP-

25:syntaxin acceptor complex in addition to isolated SNAP-25 and syntaxin

(Rickman et al., 2004; Bhalla et al., 2006; Dai et al., 2007; Lynch et al., 2007). The

proposed mechanisms for the interplay between complexin, synaptotagmin, and the

SNARE complex have revolved around whether complexin and synaptotagmin can

bind to the SNARE complex simultaneously. The earliest models favored sequential

binding in which complexin acts to promote the assembly of SNARE complexes but

blocks full fusion until it is displaced by Ca2+-synaptotagmin (Tang et al., 2006;

Giraudo et al., 2006; Schaub et al., 2006; Dai et al., 2007; Giraudo et al., 2008).

Evidence for this model comes from the observation that complexin is able to

displace assembled SNARE complexes from GST-synaptotagmin in GST-pull down

assays and able to displace synaptotagmin from purified native SNARE complexes.

More pertinently, synaptotagmin is able to displace complexin from membrane-

embedded SNARE complexes in the presence of Ca2+ (Tang et al., 2006).

Furthermore, synaptotagmin is able to relieve the complexin fusion clamp when

added to liposome (Schaub et al., 2006) and cell fusion assays (Giraudo et al.,

2006). This sequential model was challenged, however, by recent evidence that

complexin and synaptotagmin can bind to assembled SNARE complexes

concurrently (Chicka et al., 2009). In coflotation assays with liposomes lacking

phosphatidyl serine, which binds synaptotagmin with high-affinity, synaptotagmin

was able to bind to assembled SNARE complexes already saturated with complexin.

In fact, neither synaptotagmin nor complexin affected the extent of binding of the
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other to assembled SNARE complexes over the range of concentrations tested.

Furthermore, Chicka et al. (2009) showed that apo-synaptotagmin blocked fusion in

a liposome fusion assay and that this block occluded any additional block by the

addition of complexin. These results were interpreted to indicate that apo-

synaptotagmin acts as a fusion clamp early in SNARE assembly, whereas complexin

acts as a clamp later in SNARE assembly. The precise localization of complexin,

however, and the timing of its arrival during SNARE assembly are unknown, and it

remains possible that complexin is present on SNAP-25:syntaxin acceptor

complexes and acts as a fusion clamp early in SNARE assembly. Live imaging in

PC12 cells has shown that the fluorescent signal of GFP-tagged complexin 2 peaks

at sites of exocytosis with the onset of neuropeptide Y release from secretory

granules and then disappears by lateral spreading, presumably due to diffusion of

cis-SNARE complexes away from release sites (An et al., 2010). Interestingly,

complexin appears absent from non-fusing secretory granules in this system, calling

into question its role as a fusion clamp. Increasing levels of complexin, however,

progressively reduce the frequency of fusion events, indicating some negative role

for complexin in exocytosis from secretory granules.

Summary

The precise timing of neurotransmitter release in response to an arriving

action potential is the key feature of synapses that allows for communication and

signaling in the nervous system. It is well accepted that neurotransmitters are stored

in and released from synaptic vesicles at active zones and that the SNARE complex
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makes up the core machinery mediating membrane fusion between vesicles and the

plasma membrane. The myriad of proteins known to contribute to this process,

however, is continually growing, and each seems to play a number roles. As more

details emerge about the precise mechanism of neurotransmitter release, it is

important not to perseverate on labels such as "docking protein," "fusion clamp," or

"Ca 2 sensor" as we have already seen how even individual domains of a single

protein can have multiple, or even opposing, functions. The importance of studying

protein functions in multiple systems is also evident from the studies outlined above.

For example, interactions between complexins, synaptotagmin, and SNARE proteins

that were not evident in solution became clear once the proteins were studied in their

more natural environment in reconstituted membranes, and the seemingly opposed

phenotypes of complexin KO animals in different systems have fueled detailed

studies of individual domains and mutations that have taught us a great deal about

the biology of complexin and neurotransmitter release.
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Introduction

Complexins are key players in the control of fast synchronous

neurotransmitter release, which underlies the bulk of synaptic communication in the

nervous system. In conjunction with a number of other mediators, particularly the

vesicle-bound calcium sensor synaptotagmin, complexins modulate synaptic vesicle

fusion with the plasma membrane via binding to the trimeric SNARE complex, which

underlies all forms of membrane fusion. In mammals, four complexin genes with

different, yet partially overlapping, expression patterns combine to meet the diverse

requirements of synapses throughout the nervous system. Understanding the factors

that regulate complexin expression in the nervous system is particularly critical given

that numerous psychiatric and neurological disorders show increases or decreases

in complexin expression, including schizophrenia, Huntington's disease, Parkinson's

disease, Alzheimer's disease, depression, and bipolar disorder based on data from

patients and post-mortem tissues, and traumatic brain injury, Wernicke's

encephalopathy, fetal alcohol syndrome, alcoholism, addiction, and

ischemia/reperfusion injury based on animal models (for review, see Brose, 2008). In

addition, several single nucleotide polymorphisms in complexin 2 have been

associated with cognition in schizophrenic patients (Begemann et al., 2010). To

date, however, no mutations in complexin have been linked to any disorder, and it is

unclear if the alterations in complexin expression in the disorders listed above are a

direct cause of dysfunction or a result of other changes in the brain. In Drosophila,

only a single complexin gene must serve the entire animal, but my work has shown
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that this single gene is quite complex in terms of its expression via both alternative

splicing and RNA editing, perhaps providing the diversity needed to serve synaptic

transmission at a broad range of synapses.

Results

cDNA analysis

Unlike mammals, which have four complexin genes, there is only a single

complexin gene in Drosophila, and early studies with this gene focused on a single

mRNA species (Huntwork and Littleton, 2007). By analyzing EST databases,

however, it is clear that multiple mRNA species are expressed from the complexin

locus (Fig. 1A). There are eight exons in complexin, several of which may be

alternatively spliced. The most extensive alternative splicing occurs in exon 1,

resulting in 13 different 5' untranslated regions (UTRs), the function of which remains

unknown. The Drosophila database FlyBase (http://www.flybase.org) lists a total of

21 predicted mRNA isoforms (most of which differ only in the 5' UTR) with varying

levels of certainty. To clarify which of these isoforms is actually expressed and to

determine the relative expression of each, I carried out sequence analysis of

individual cDNAs of the complexin protein-coding region isolated by reverse

transcription of total mRNA and PCR amplification. The final coding exon of

Drosophila complexin (exon 7) has two splice variants, exon 7A and exon 7B;

therefore, I amplified cDNAs from the beginning of the protein-coding region to the

stop codons in either exon 7A or 7B. There were three splice variants that utilized

exon 7A in a total of 50 sequenced cDNAs and two splice variants that utilized exon



7B in a total of 20 sequenced cDNAs. All of this variation involved usage of exons 4

and 5. Based on EST databases, there are three predicted options for exon 4 (4.1,

4.2, and 4.3) and two predicted options for exon 5 (5.1 and 5.2). Among the splice

variants that utilized exon 7A, all of them either used exon 4.2, which encodes only

four amino acids, or skipped exon 4 altogether. All of those that used exon 4.2 also

used exon 5.2, which begins three amino acid later than exon 5.1, and those that

skipped exon 4 used either exon 5.1 or 5.2. As a percentage of the total sequenced

cDNAs, the three complexin mRNA species utilizing exon 7A were as follows: 3-4.2-

5.2 = 64%, 3-5.1 = 32%, and 3-5.2 = 4%. Among the splice variants that utilized

exon 7B, all of them either used exon 4.2 or skipped exon 4 altogether, similar to the

variants utilizing exon 7A. When exon 4.2 was used, exon 5.2 was also used, and

when exon 4 was skipped, exon 5.1 was used. As a percentage of the total

sequenced cDNAs, the two complexin mRNA species utilizing exon 7B were as

follows: 3-5.1 = 84% and 3-4.2-5.2 = 16%. In subsequent studies of the C-terminus

of complexin herein, Cpx7A and Cpx7B refer to the most common isoforms utilizing

exon 7A (3-4.2-5.2) and exon 7B (3-5.1), respectively.

The alternative splicing in exons 4 and 5 leads to changes in the complexin

protein sequence in the N-terminus, near the beginning of the accessory helix. Likely

the most significant difference between splice isoforms in this region is the use of a

negatively charged aspartate or a small, uncharged glycine at position 19: Cpx7A

has an aspartate at this position, whereas Cpx7B has a glycine. This region is not

well conserved with mammalian complexins, but mouse complexins 3 and 4 have a



glycine and phenylalanine, respectively, at this position, whereas mouse complexins

1 and 2 both have a positively charge lysine. The presence of a negatively charged

aspartate in Cpx7A compared to a positively charged lysine in mouse complexins 1

and 2 might be expected to lead to functional differences between these isoforms.

Position 19, however, is not one of the residues in the N-terminus previously

identified as being critical for interactions with the SNARE complex thought to

promote vesicle fusion (Xue et al., 2010).

Alternative splicing of exon 7 causes the most drastic changes in the

complexin protein sequence. Exon 7A encodes the final 24 residues of the protein,

whereas exon 7B encodes only 20 residues. These regions have very little homology

with each other or with complexins from other species (Fig. 1 B). Interestingly, exon

7A contains a C-terminal CAAX box known to be a farnesylation motif, but this motif

is absent from exon 7B. Mammalian complexins 3 and 4 also share this motif,

whereas complexins 1 and 2 do not. Presumably, this motif mediates interactions

with the vesicle or plasma membrane or with other proteins.

There is also some variation in the 3' UTR of complexin. Transcripts utilizing

exon 7A also contain exon 8A, which makes up the majority of the 3' UTR and

contains multiple binding sites for the translational regulator Pumilio (Gerber et al.,

2006). These sites may affect the abundance of Cpx7A at the protein level.

Transcripts utilizing exon 7B do not contain exon 8A and lack any known motifs in

the 3' UTR. This difference could indicate differential regulation of Cpx7A and

Cpx7B.
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Complexin 7A is the predominant isoform in Drosophila

Given that alternative splicing of exon 7 in Drosophila complexin causes the

most extensive sequence variation of any splicing event, I carried out quantitative

RT-PCR (qRT-PCR) to determine the relative abundance of mRNAs using exon 7A

and exon 7B. I designed primers to amplify only those transcripts using exon 7A or

exon 7B and compared RT-PCR amplification of total RNA samples prepared from

flies to a standard curve of Cpx7A or Cpx7B mRNA prepared in vitro. In mRNA

samples prepared from wild type (WT) adults, Cpx7A was ~1,000-fold more

abundant than Cpx7B. Similar results were seen with mRNA samples prepared from

WT third-instar larvae, suggesting the relative expression of exon 7A vs. exon 7B is

not developmentally regulated (Fig 2A).

I also examined whether the relative abundance of exon 7A or exon 7B was

activity-dependent using a previously reported approach (Guan et al., 2005). In

short, total RNA samples were prepared from the temperature-sensitive mutants

paralytics1 (paraTS1) and seizureTsl (seiTSl) following different heat shock protocols

(acute and chronic) to mimic neuronal hypoactivity and hyperactivity, respectively.

RT-PCR amplification of each sample was quantified relative to an internal control

(Act88F). The levels of transcripts utilizing exon 7A and exon 7B were mildly activity-

dependent but always remained within 40% of wild-type levels. At baseline before

heat shock, both Cpx7A and Cpx7B levels were elevated in seiTS1 and reduced in

paraTS1 compared to WT adults. In seiTS1 mutants, both exon 7A and exon 7B levels

dropped with either heat-shock protocol, whereas in paraTS1 mutants, these levels



remained essentially unchanged (Fig. 2B). Cpx heterozygous animals show a 50%

decrease in Cpx protein levels but lack any behavioral or synaptic growth

phenotypes (see Chapter 3); thus, it is unlikely that these minor changes in transcript

levels would have a substantial effect on overall function of the flies, but they may

have important effects on synaptic physiology.

In situ hybridization

To further evaluate the expression of Cpx7A and Cpx7B in intact animals, we

carried out in situ hybridization analysis of late-stage embryos. Antisense

hybridization probes specific for Cpx7A and Cpx7B were designed from the 3' UTRs

of exon 7A and exon 7B, respectively. Both Cpx7A and Cpx7B showed clear

expression in the developing central nervous system and ventral nerve cord (Fig.

2C). Cpx7A expression appeared to be much stronger than that of Cpx7B,

consistent with the qRT-PCR results; however, this assay was not quantitative. No

staining was evident when using sense hybridization probes, suggesting specificity

of the observed expression patterns.

Specific antibodies

Although it seems clear that Cpx7A is the predominant complexin isoform at

the mRNA level, I generated specific antibodies against Cpx7A and Cpx7B to test

whether this findings holds true at the protein level and to observe potential

differences in localization of the proteins. Specific antiserum was generated in

rabbits immunized with peptides encoded by exon 7A or exon 7B and then purified

on columns containing immobilized full-length Cpx7A or Cpx7B, respectively. These

57



antibodies were exquisitely specific for recombinant Cpx7A or Cpx7B expressed as

GST-fusion proteins. Unfortunately, they did not recognize any complexin protein on

western blots prepared from Drosophila adult head extracts (Fig. 3A). Similar results

were observed for antibody dilutions ranging from 1:50 to 1:1,000 and for extracts

treated with proteinase inhibitors (data not shown). These antibodies were also

tested by immunohistochemistry on fixed third-instar larval fillets. Again no staining

was apparent at the NMJ in tissues fixed with paraformaldehyde (data not shown),

unlike the robust NMJ staining observed with the pan-Complexin antibody (Huntwork

and Littleton, 2007). Similar results were seen for samples fixed with methanol and

with Bouin's fixative (data not shown).

NMJ expression of Cpx7A and Cpx7B transgenes

In lieu of direct observation of Cpx7A and Cpx7B protein expression in third-

instar larvae, I evaluated the expression of Cpx7A and Cpx7B transgenes using the

Gal4/UAS system (Brand and Perrimon, 1993). I generated transgenic Drosophila

expressing Cpx7A or Cpx7B under the control of the UAS promoter. When driven

pan-neuronally with elavc155-Gal4 in a complexin null background (cpxSH1), both

Cpx7A and Cpx7B were robustly expressed at the NMJ (Fig. 3B), similar to

immunostaining observed with the pan-Complexin antibody. The halo-shaped

distribution of both transgenes was reminiscent of synaptic vesicle-associated

proteins such as synaptotagmin (Littleton et al., 1993) and synaptogyrin (Robin

Stevens, personal communication). Interestingly, both transgenes appeared to be

preferentially expressed in type 1 b terminals compared to smaller type 1s terminals,



although expression was clearly present in both types of terminals. The

electrophysiological properties of type 1 b and 1s terminals are distinct (Lnenicka and

Keshishian, 2000), and differential levels of complexin would be an intriguing

explanation for these properties. A preference for type 1 b terminals, however, has

not been observed with the pan-complexin antibody (Huntwork and Littleton, 2007)

and may be an artifact of the Gal4/UAS expression system.

Recombineering

Given the limitations of the Gal4/UAS system - namely, that it is rare to find a

Gal4 driver that faithfully recapitulates the endogenous expression of a given

transgene - I turned to a bacterial artificial chromosome (BAC) transgenesis

approach using the P[acman] vector, which allows for germline transformation of

DNA fragments > 100 kb (Venken et al., 2006). The large capacity of this vector

allows for the transformation of entire genetic loci, including introns and upstream

and downstream regulatory elements, allowing the expression of multiple isoforms

(unlike the Gal4/UAS system) under endogenous controls. In addition, the P[acman]

vector is equipped for recombineering to modify DNA inserts and for $C31 integrase-

mediated targeted transformation into the Drosophila genome. Venken et al. (2007)

generated a P[acman] library covering most of the Drosophila genome, and I chose

a clone containing a -78 kb region surrounding the complexin locus and including

adjacent genes on either side. From this starting point, I used recombineering with

galK substitution (Warming et al., 2005) to individually mutate the splice acceptor

sites for exon 7A and exon 7B. All three of these BACs (P[acman]-Cpx (unmodified),

59



P[acman]-CpxA7A, and P[acman]-CpxA7B) were then trimmed using gap repair (see

Methods) to contain only the complexin locus and surrounding sequences up to the

preceding and following genes. Transgenic animals were generated from each

trimmed BAC and crossed into the complexin null background such that all

complexin expression was driven from the P[acman] insertion. Using this approach,

transgenic animals were successfully generated for P[acman]-Cpx and P[acman]-

CpxA7B.

RNA editing

In addition to alternative splicing, complexin expression in Drosophila can

also be regulated post-transcriptionally by RNA editing. Hoopengardner et al. (2003)

used a comparative genomics approach with 18 Drosophila species to identify

targets of the RNA editing enzymes adenosine deaminases acting on RNA (ADARs)

and found three sites of RNA editing within exon 7A of complexin: position 375,

which encodes isoleucine (Ile) residue 125, and positions 388 and 389, which

encode asparagine (Asn) residue 130. RNA editing at position 375 changes Ile-125

to methionine (Met), and RNA editing at positions 388 and 389 could change Asn-

130 to aspartate (Asp), serine (Ser), or glycine (Gly). The amino acid possibilities at

residue 130 are intriguing as Asp is phosphomimetic and Ser is phosphocompetent,

raising the possibility that phosphorylation at this site may regulate complexin

function.

The ADAR enzymes require a double-stranded RNA substrate, which is

usually provided by an imperfect duplex in the pre-mRNA formed by base pairing
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between the exon containing the adenosine to be edited and an intronic region

called the editing site complementary sequence (ECS) (Higuchi et al., 1993). To

further investigate the occurrence of RNA editing in exon 7A, I compared complexin

intronic sequences from 12 Drosophila species to identify highly conserved regions

that could function as the ECS. A region of near perfect conservation was found in

the final ~65 bp of intron 6 extending through the first ~88 bp of exon 7A (Fig. 4A).

The mfold algorithm for prediction of RNA secondary structure (Zuker, 2003)

predicted that this region folds into an extended, imperfect RNA duplex (Fig. 4B),

satisfying the requirements for an ADAR substrate.

To further investigate the extent of RNA editing, I sequenced individual cDNA

segments of the editing region amplified by RT-PCR. Interestingly, editing was never

observed at the second and third sites (A388, A389) unless editing had also

occurred at the first site (A375). According to the mfold algorithm, editing at A375

actually extends the length of the imperfect RNA duplex (Fig. 4C), perhaps making it

a more stable or attractive substrate for ADAR to carry out editing at sites A388 and

A389. At these final two sites, editing was either observed at A389, giving rise to a

Ser at residue 130, or at both A388 and A389, giving rise to a Gly at residue 130, but

never at A388 alone. In summary, four RNA editing isoforms of exon 7A can be

observed in vivo: Ile125/Asn130 (the unedited form), Met125/Asn130,

Met125/Ser13O, and Met125/Gly13O. As a percentage of 96 individual cDNAs

sequenced, each isoform was as follows: IIe125/Asn13O = 61.5%, Met 125/Asn130

= 7.3%, Metl25/Serl30 = 10.4%, and Metl25/Glyl30 = 20.8%.



Phylogenetic analysis

The SNARE proteins that make up the basal machinery for membrane fusion

are conserved from ancient eukaryotes such as yeast all the way to humans.

Complexin and other genes involved in calcium-mediated vesicle fusion at synapses,

however, arose more recently in evolution. Complexin has eumetazoan origins as

homologous sequences can be found in the genomes of the placozoan Trichoplax

adhaerens (Srivastava et al., 2008) and the cnidarian Nematostella vectensis

(Putnam et al., 2007), but not of the demosponge Amphimedon queenslandica

(Srivastava et al., 2010). Interestingly, the vesicular calcium sensor synaptotagmin 1

appears to have arisen before complexin as a homologous sequence is present in

the Amphimedon queenslandica genome. The closest relative to Drosophila

complexin is in the squid Loligo pealei, followed by two complexin genes in the

nematode C. elegans. Sequence alignment of complexins from a number of species

(Fig. 1 B) shows highly conserved regions, including some perfectly conserved

residues, in the accessory helix and SNARE-binding central helix, whereas the N-

and C-termini are less well conserved. The far C-terminus is particularly poorly

conserved, with the exception of a C-terminal farnesylation motif (-CAAX) shared by

mouse complexins 3 and 4, Drosophila complexin 7A, and squid complexin.

Discussion

Gaining a better understanding of the factors that regulate complexin

expression is an important goal given the many neurological conditions and disease

in which complexin expression is altered. In Drosophila, a number of potential



regulatory factors are present, the first being alternative splicing of 13 different 5'

UTRs. UTRs have to shown to affect a number of processes in the post-

transcriptional regulation of gene expression, including transport out of the nucleus,

translation efficiency, subcellular localization, and stability (van der Velden and

Thomas, 1999; Jansen, 2001; Bashirullah et al., 2001). It remains unknown whether

any of the 5' UTRs in Drosophila complexin affect any of these processes, but

preliminary experiments using 5' rapid amplification of cDNA ends (5' RACE)

suggest that Cpx7A and Cpx7B transcript utilize different 5' UTRs (data not shown),

which could lead to the observed differences in expression levels. On the other end

of the complexin locus, the 3' UTR of Cpx7A is notable for the Pumilio binding

elements located in exon 8A (Gerber et al., 2006). Pumilio is the founding member of

the conserved Pumilio-Fem 3-binding factor (Puf) family of RNA-binding proteins that

typically repress gene expression by affecting mRNA stability and translation

efficiency (Wickens et al., 2002). Pumilio is critical for pattern formation during early

embryonic development (for review, see Kuersten and Goodwin, 2003), but a

number of studies have also identified important roles for Pumilio in nervous system

development and function. Multiple alleles of Pumilio have effects on long-term

memory formation in Drosophila (Dubnau et al., 2003). Pumilio is also important for

proper dendritic branching of Drosophila larval peripheral sensory neurons,

particularly higher order dendrite branches (Ye at al., 2004). Several nervous system

targets of Pumilio have been identified, including the voltage-gated sodium channel

Para (Mee et al., 2004; Murano et al., 2008) and the postsynaptic scaffolding protein



Discs-large (Chen et al., 2008). At the Drosophila larval NMJ, Pumilio represses

expression of the postsynaptic glutamate receptor subunit GluRIIA (Menon et al.,

2004), which allows more current to flow through the channel in response to

neurotransmitter release compared to the GIuRIIB subunit (DiAntonio et al., 1999;

Sigrist et al., 2002). The observation of Pumilio binding sites in the 3' UTR of Cpx7A,

but not Cpx7B, raises the possibility that the predominance of Cpx7A at the mRNA

level may not be maintained at the protein level. The development of isoform specific

antibodies for use in western blot analysis and immunohistochemistry will be

necessary to address this point.

The presence of a C-terminal farnesylation motif in Cpx7A, but not Cpx7B, is

another element that may differentiate the subcellular localization of these isoforms.

Among the four mammalian complexin genes, complexins 3 and 4 share this C-

terminal farnesylation motif (Reim et al., 2005), whereas complexins 1 and 2 do not

(McMahon et al., 1995). In HEK293 cells, the farnesylation motif on complexins 3

and 4 causes them to show a different expression pattern than complexins 1 and 2.

Whereas complexins 1 and 2 are diffusely distributed in the cytoplasm, complexins 3

and 4 are mostly associated with the plasma membrane and present in granular

structures in the cytosol. Furthermore, mutation of the C-terminal farnesylation motif

of complexins 3 and 4 results in an expression pattern similar to that of complexins 1

and 2 (Reim et al., 2005). Somewhat surprisingly, the expression patterns of Cpx7A

and Cpx7B transgenes were identical at the larval NMJ by immunohistochemistry.

There are several explanations for why differential localization was not observed for



these isoforms, unlike that observed for the mammalian complexins. 1) Whereas

farnesylation of mammalian complexins 3 and 4 has been demonstrated in vitro

using a radio-labeled prenyl precursor (Reim et al., 2005), no such result has been

reported for Drosophila Cpx7A, raising the possibility that it is not truly farnesylated.

Mutation of the Cpx7A farnesylation motif, however, greatly reduces the apparent

clamping function of the WT protein at hippocampal autapses (Xue et al., 2009) and

the Drosophila NMJ (Cho et al., 2010). These results argue that farnesylation is

indeed important for the function of Cpx7A. 2) The differential expression patterns of

complexins 1 and 2 vs. complexins 3 and 4 in HEK293 cells could an artifact of the

in vitro system or the GFP tag used to visualize the proteins. Untagged versions of

the proteins, however, still showed differential localization, with complexins 1 and 2

in the soluble fraction and complexins 3 and 4 in the membrane fraction following

cell homogenization and centrifugation (Reim et al., 2005). 3) The resolution of

immunohistochemistry observed by confocal microscopy may be insufficient to

identify differential subcellular localization of Cpx7A and Cpx7B at the larval NMJ.

The greater resolution and detail provided by immuno-electron microscopy may be

able to distinguish the localization of Cpx7A in the vesicular and/or plasma

membrane vs. a more cytosolic localization of Cpx7B. 4) Finally, the association of

Cpx7A with the vesicular and/or plasma membrane may be dynamic, similar to the

synaptic vesicle association and dissociation of Rab3 that parallels synaptic vesicle

exo- and endocytosis (Fischer von Mollard et al., 1991).
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The apparently increased expression of Cpx7A and Cpx7B transgenes in type

1b boutons compared to type is boutons at muscles 6/7 in third-instar larvae is

intriguing. With the exception of anterior segments, muscles 6/7 received innervation

from two axons: axon 1, which terminates in larger type 1 b boutons, axon 2, which

terminates in smaller type is boutons (Atwood et al., 1993). In focal recordings, the

EPSPs elicited from type is boutons are actually larger than those from type 1b

boutons, although there is considerable overlap between the two (Kurdyak et al.,

1994; Lnenicka and Keshishian, 2000). Furthermore, type 1b terminals show

facilitation in response to prolonged repetitive stimulation, whereas type 1s terminals

show synaptic depression, suggesting that the probability of neurotransmitter release

is higher at type 1s boutons at baseline (Lnenicka and Keshishian, 2000). These

morphological and physiological properties have led to the suggestion that type 1 b

and 1s boutons correspond to the tonic and phasic motor axons on crustaceans

(Atwood, 1976; Kurdyak et al., 1994). It is interesting to consider that the differences

in neurotransmission between type 1b and 1s terminals - and their crustacean

correlates - may be due to differences in complexin levels. Given that this staining

pattern is not observed with the pan-complexin antibody in WT animals, however, it

may be an artifact of the pan-neuronal elavc155-Gal4 driver. Other neuronal drivers

should be used to test this possibility.

RNA editing of exon 7A adds yet another level of complexity to the expression

of Cpx7A (Bass et al., 1988; Wagner et al., 1989). ADAR enzymes catalyze the

deamination of adenosine to inosine in mRNA substrates. This inosine is then read



at a guanine by the translational machinery (Basilio et al., 1962). In mice, loss-of-

function of ADAR2, which is predominantly expressed in the brain, results in severe

epileptic seizures, and these mice die shortly after birth. Interestingly, this phenotype

can be rescued by expressing a constitutively edited form of the AMPA-type

glutamate receptor subunit GluR2 (Higuchi et al., 2000). In Drosophila, deletion of

the single ADAR gene results in flies that are WT in appearance but have multiple

behavioral deficits, including severe incoordination, temperature-sensitive paralysis,

seizures, and a complete lack of courtship displays and mating (Palladino et al.,

2000). The preponderence of nervous system phenotypes observed in ADAR mutant

animals suggests that many of the targets of RNA editing function in the nervous

system. In mammals, only a handful of these targets have been somewhat

serendipitously discovered, most notably the GIuR-B subunit of AMPA receptors,

which is edited from glutamine to arginine in nearly 100% of transcripts (Seeburg et

al., 1998). In Drosophila, comparative genomics between several species has

allowed for the identification of -50 neuronal mRNAs that are edited at one or more

sites (Hoopengardner et al., 2003). These transcripts include the voltage-gated

sodium channel Para (Hanrahan et al., 2000; Reenan et al., 2000), voltage-gated

calcium channels (Smith et al., 1998), voltage-gated potassium channels (Ingleby et

al., 2009), ligand-gated ion channel subunits, and components of the

neurotransmitter release machinery, including synaptotagmin, UNC-13, and

complexin. A neurotransmitter release phenotype in an ADAR mutant animal has not
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been reported to date but would shed light on the functional importance of RNA

editing for communication within the nervous system.

As noted above, a C-terminal farnesylation motif in Drosophila complexin 7A

is also found in mammalian complexins 3 and 4 and in squid complexin; however, it

is unclear if alternative splicing and RNA editing are used to diversify complexin

expression in other species. Among the mammalian complexins, alternative splicing

is only predicted for human complexin 2 within the 5' UTR. The effects of this

splicing are unknown but presumably involve mRNA stability, localization, or

translation efficiency. Interestingly, the 5' UTR of complexin 2 also contains a

microRNA binding site that is conserved among mammals, and a single nucleotide

polymorphism in this site is associated with reduced complexin 2 protein levels in

peripheral blood mononuclear cells in humans (Begemann et al., 2010). RNA editing

has also not been reported outside of Drosophila, but the comparative genomics

approach used to identify the RNA editing sites in Drosophila Cpx7A

(Hoopengardner et al., 2003) has not been applied to other species in which RNA

editing sites are typically stumbled upon fortuitously. In C. elegans, my own analysis

of the single intron in complexin-1 did not detect any regions of near perfect

conservation - analogous to that in intron 6 of Drosophila complexin - among the

five Caenorhabditis species with available genome sequences. This finding,

however, does not rule out the possibility of RNA editing of complexin-1 in C.

elegans. To properly evaluate RNA editing of complexin in any species, individual

cDNA sequences should be compared to genomic sequences to detect A-to-G



changes indicative of an editing site, just as I report here for Drosophila Cpx7A.

Similar cDNA analysis, including 5'- and 3'-RACE to evaluate the UTRs, should also

be used to identify any currently unknown alternative splicing of complexins in other

species.

Methods

cDNA analysis

Total RNA was extracted from ten adult Canton S flies using an RNeasy Mini Kit

(Qiagen) and treated with DNase I (Ambion) according to the manufacturers'

instructions. DNase I was then removed from the sample with the RNeasy Mini Kit.

Single stranded cDNA was synthesized in a total volume of 20 pL from 1 pg of total

RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems)

according to the manufacturer's protocol. PCR was carried out by standard

procedures using 2 !IL of the above reverse transcription reaction as a template and

the following primers for cDNA analysis (Cpx7A: forward 5'-

CACCATGGCGGCCTTCATAGCTAAG-3' and reverse 5'-

TCACTGCATGACACATTTTCCC-3'; Cpx7B: forward 5'-

CACCATGGCGGCCTTCATAGCTAAG-3' and reverse 5'-

TCAGAACAAGTTTCTCAAAGGACAAT-3') and for RNA editing analysis (forward 5'-

CGCCGAAGCGGAGCAGGAAGA-3' and reverse 5'-

TCACCGCCTCGTTCGGATTTTGAT-3'). PCR products were separated and

visualized on a 1.2% agarose gel containing ethidium bromide. The bands

corresponding to Cpx7A (~436 bp) and Cpx7B (~421 bp) were excised, and the DNA
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was purified using a QiAquick Gel Extraction Kit (Qiagen). 4 RL of the purified DNA

was used for cloning into the pCR-Blunt I-TOPO vector using a TOPO Cloning Kit

according to the manufacturer's protocol (Invitrogen). DNA was isolated from

individual transformants and sequences from the T7 promoter at the MIT

Biopolymers Lab using an Applied Biosystems Model 3730 capillary DNA sequencer

with the Big Dye Terminator Cycle Sequencing Kit (Applied Biosystems). Sequence

analysis was carried out using the Lasergene software suite (DNASTAR).

Quantitative RT-PCR (qRT-PCR)

qRT-PCR was carried out using an Applied Biosystems 7300 Real-Time PCR

System. Total RNA extraction and single stranded cDNA synthesis were carried out

as described above for cDNA analysis. PCR was carried out in triplicate for each of

two independent total RNA samples per genotype in optical 96-well plates (Applied

Biosystems). The reaction mixtures were as follows: 25 pL of 2x QuantiTect SYBR

Green PCR Master Mix (Qiagen), 300 nM forward primer, 300 nM reverse primer,

and 5 pL of single stranded cDNA (see above) in a total volume of 50 pL. The

thermal cycling conditions were 15 min at 950C, followed by 40 cycles of 15 sec at

940C, 30 sec at 540C, and 30 sec at 720C. A final dissociation step was carried out to

evaluate product integrity, and reaction samples were run on a 1.2% agarose gel

and stained with ethidium bromide. The primer sequences were as follows: Act88F

(actin) forward 5'-ACTTCTGCTGGAAGGTGGAC-3' and reverse 5'-

ATCCGCAAGGATCTGTATGC-3', Cpx7A forward 5'-

CCCCCAAGAAGAGCCCAATC-3' and reverse 5'-



CACTGCATGACACATTTTCCCTCTAT-3', and Cpx7B forward 5'-

CGCCGAAGCGGAGCAGGAAGAG-3' and reverse 5'-

GGGCGTGCTGGTGTGGGTGTCT-3'.

In situ hybridization

Sense and antisense RNA probes labeled with digoxigenin (Roche) were

generated by in vitro transcription from the first 500 bp in the 3' UTRs of both Cpx7A

and Cpx7B. In situ hybridization was carried out as described previously (Tautz and

Pfeifle, 1989)

Generation of Cpx7A- and Cpx7B-specific antibodies

Exon 7A and exon 7B were subcloned into the pGEX-5X-1 vector (GE

Healthcare Life Sciences), expressed, and purified as GST-fusion proteins The GST

tag was then cleaved using the Factor Xa Cleavage Capture Kit (EMD Chemicals,

USA). The resulting exon 7A and exon 7B proteins were then used to immunize

rabbits (ProSci, Inc., Poway, CA). The resulting immune sera were purified using full-

length Cpx7A or Cpx7B protein, respectively, immobilized on HiTrap TM NHS-

activated HP columns, and fractions containing the purified antibodies were stored in

PBS (pH 7.4) at 40C.

Immunohistochemistry

Immunostaining was performed on wandering third-instar larvae at room

temperature. Third-instar larvae were dissected in Drosophila HL3.1 physiological

saline and fixed in 4% formaldehyde for 30 min before staining with anti-Complexin

antiserum at 1:500 or goat anti-HRP antiserum conjugated to DyLight 549 (Jackson



ImmunoResearch). Immunoreactive proteins were visualized on a Zeiss Pascal

confocal microscope.

Recombineering

The P[acman] BAC CH321-65L02 (Venken et al., 2009), which contains the

entire complexin locus and several surrounding genes, was used as the starting

point for recombineering. The splice acceptor sites of exon 7A and exon 7B were

individually mutated from AG to CT using galK selection as described previously

(Warming et al., 2005). Briefly, a 1390-bp region surrounding the splice acceptor site

of exon 7A and a 1430-bp region surround the splice acceptor site of exon 7B were

amplified from CH321-65L02 by PCR and cloned into pCR-Blunt II-TOPO

(Invitrogen). The splice acceptor sites were then mutated from AG to CT using the

QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) according to the

manufacturer's protocol. A GaIK cassette with ~500-bp ends homologous to the

ends of the 1390-bp region for exon 7A and the 1430-bp region for exon 7B was

generated by a three-way PCR ligation reaction. These GaIK cassettes were

individually introduced into CH321-65L02 in the recombineering E. coli strain

SW102, which lacks the GaIK gene and contains a heat shock-inducible X prophage

carrying the exo, bet and gam genes necessary for homologous recombination; non-

heat shocked SW102 cells were used as a negative control. Before plating, cells

were washed twice in M9 salts to remove all traces of rich media and then plated on

M63 minimal medium agar containing 0.2% galactose as a carbon source and 25

jig/mL chloramphenicol for BAC selection. Surviving clones were restruck onto
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MacConkey agar with 0.2% galactose and 25 [tg/mL chloramphenicol to confirm

galactose fermentation. The mutated 1390-bp fragment surrounding exon 7A and

1430-bp fragment surrounding exon 7B were then introduced into the CH321-65L02

BACs carrying GalK at the respective positions in SW102 cells as described above.

After two washes in M9 salts, cells were plated on M63 minimal medium agar

containing 0.2% glycerol as a carbon source, 0.2% 2-deoxy-galactose as negative

selection for cells still carrying GalK, and 25 tg/mL chloramphenicol for BAC

selection. All products were confirmed by PCR analysis and DNA sequencing.

The complexin locus from CH321-65LO2 and the two splice acceptor mutants

was then transferred to the ampicillin-resistant attB-P[acman]-ApR using gap repair.

Two ~500-bp regions (homology arms) immediately downstream of the gene

preceding complexin and immediately upstream of the gene following complexin

were cloned in tandem into attB-P[acman]-ApR by a three-way ligation such that a

Pac restriction site separated the two. This targeting vector was then linearized by

digestion with Pac, creating the "gap." The complexin locus from CH321-65LO2 and

the two splice acceptor mutants was introduced into the linearized vector by

homologous recombination in SW102 cells. Cells were plated on LB agar medium

containing 50 tg/mL ampicillin for BAC selection. The three vectors generated in

attB-P[acman]-ApR were termed P[acman]-Cpx (unmutated), P[acman]-CpxA7A

(exon 7A splice acceptor site mutated), and P[acman]-CpxA7B (exon 7B splice

acceptor site mutated). All products were confirmed by PCR analysis and DNA

sequencing and then injected into Drosophila embryos to generate transgenic
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animals with a targeted insertion at the AttP40 site on the second chromosome

(Genetic Services, Inc., Cambridge, MA).
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Figures

Figure 1. The Drosophila complexin locus. A) Schematic illustrating the
Drosophila complexin locus and potential splicing events. Untranslated regions are
shown as white boxes, and protein-coding regions are shown as black boxes. The
deletion in cpx572 and the Pumilio binding sites in exon 8A are shown. B) Protein
sequence alignment of Drosophila Cpx7A (dmCpx7A) and Cpx7B (dmCpx7B); squid
Cpx (IpCpx); C. elegans Cpx-1 (ceCpxl) and Cpx-2 (ceCpx2); mouse Cpx-1
(mmCpxl), Cpx-2 (mmCpx2), Cpx-3 (mmCpx3), and Cpx-4 (mmCpx4); Nematostella
vectensis Cpx (nmCpx); and Trichoplax adhaerens Cpx (taCpx). Alignment was
generated using ClustalW.
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Figure 2. Complexin mRNA expression. A) qRT-PCR expression data for
Cpx7A and Cpx7B from wandering third-instar larvae and whole adults. Absolute
quantification was done using a standard curve of Cpx7A or Cpx7B mRNA. Error
bars show SEM. B) Cpx7A and Cpx7B expression in whole adults of the
indicated genotypes is shown relative to actin for three treatment conditions:
room temperature (RT), 24-hr recovery following four separate 5-min heat shock
pulses at 380C spaced 1 hr apart (4x5+24), and 30-min recovery following a 20-
min heat shock at 380C. Expression is normalized to the RT condition. Error bars
show SEM. *p < 0.05, **p < 0.01, ***p < 0.001. C) In situ hybridization with
antisense probes for Cpx7A and Cpx7B shows strong expression of both
transcripts in the developing nervous system. No staining was observed with
sense probes.
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Figure 3. Complexin protein expression. A) Western blot using a pan-Complexin
antibody (anti-Cpx), specific antibodies against Cpx7A (anti-Cpx7A) and Cpx7B
(anti-Cpx7B), and anti-DLG as a loading control. Lanes 1 and 2 contain recombinant
Cpx7A (rCpx7A) and Cpx7B (rCpx7B), respectively. Lanes 3 and 4 contain protein
extracts from adult heads of white and Cpx7A rescue (elavc 55-Gal4;;cpxSH1,UAS-
Cpx7A) animals, respectively. Note the specificity of anti-Cpx7A and anti-Cpx7B for
their respective recombinant proteins, but the absence of any Cpx band detected by
these specific antibodies in the head extracts. B) Immunostaining of muscle 6/7 of
wandering third-instar larvae with anti-Cpx and anti-HRP. The bottom row shows an
overlay. Cpx7A rescue (elavc1 55-Gal4; ;cpxSH1 ,UAS-Cpx7A) and Cpx7B rescue
(elavC155-Gal4; ;cpxSH1 ,UAS-Cpx7B) animals are shown. Note the apparent increase
in anti-Cpx staining in type 1 b terminals vs. type 1s terminals.
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Figure 4. RNA editing in Cpx7A. A) Genomic DNA sequence alignment of 12
Drosophila species showing near perfect conservation from the end of intron 6
through the beginning of exon 7. Alignment was generated using ClustalW. B)
Predicted RNA folding (mfold) of the region shown in A. C) Predicted RNA folding of
the region shown in A following RNA editing at site A375. Arrows indicate sites
where RNA editing can occur.



85



86



Chapter 3

Functional characterization of the Complexin C-terminus

Lauren K. Buhl', Ramon Jorquera', Richard Cho', Dina Volfson', and J. Troy
Littleton'

Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, MA 02139

The majority of the work described in this chapter was performed by Lauren Buhl.
Sarah Huntwork-Rodriguez generated the Cpx572 mutant. Voltage clamp
electrophysiology was performed by Ramon Jorquera. Generation and analysis of
phospho-incompetent Complexin transgenic animals was performed by Richard Cho
and Dina Volfson.

87



Introduction

Complexin regulates a late step in synaptic vesicle fusion, but it is still

debated whether complexin acts as positive or negative regulator of neurotransmitter

release (see Chapter 1). Genetic knock out (KO) studies, particularly in mice and

Drosophila, have reached different conclusions about the role of complexin in

neurotransmitter release. Cultured neurons from complexin triple KO mice show a

decreased rate of spontaneous neurotransmitter release events (i.e., minis) and a

decreased amplitude of evoked EPSCs compared to controls, favoring a positive role

for complexin in vesicle fusion (Xue et al., 2008). On the other hand, Drosophila

complexin KO animals show a dramatically elevated mini frequency and a

decreased amplitude of evoked EPSCs at the larval neuromuscular junction (NMJ) at

elevated Ca2, concentrations, favoring a role for complexin as a fusion clamp

(Huntwork and Littleton, 2007).

An emerging view is that individual domains of complexin perform different

roles during the multistep process of vesicle fusion: the N-terminus appears to

promote fusion and balance the negative influence of the accessory helix (Xue et al.,

2007), whereas the central helix is critical for SNARE complex binding (Chen et al.,

2002; Bracher et al., 2002), and the C-terminus appears to inhibit vesicle fusion

(Giraudo et al., 2008; Martin et al., 2011). Of these domains, the C-terminus is the

least conserved (see Chapter 2) and has been perhaps the least studied. In

Drosophila, alternative splicing and RNA editing combine to generate multiple
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different complexin C-termini, making it an ideal system in which to study the

functions of this domain.

Drosophila complexin mutants also show overgrowth of synaptic terminals at

the larval NMJ, suggesting that their defects in synaptic transmission, particularly the

elevated mini frequency, may lead to changed in synaptic morphology. Although

many pathways that regulate synaptic growth at the larval NMJ have been

described, it is unknown how these pathways are affected by changes in mini

frequency.

Here, we demonstrate that the C-terminus is important for complexin protein

trafficking and stability and that two complexin isoforms, Cpx7A and Cpx7B, with

different C-termini have different effects on evoked and spontaneous

neurotransmitter release and on synaptic growth. These data are among the first to

show that the opposing effects of complexin on evoked and spontaneous

neurotransmitter release may be mediated by the C-terminus. We further show that

the synaptic overgrowth observed in complexin null larvae can be suppressed by

mutations that inhibit known synaptic growth pathways. Finally, we show that Cpx7A

is a phosphorylation target of PKA in vitro and that phosphorylation of complexin is

necessary for certain forms of short-term plasticity.

Results

cpx null mutants show synaptic overgrowth

In addition to a > 20-fold increase in mini frequency at the larval NMJ in

cpxSH1 animals, Huntwork and Littleton (2007) also reported an 84.4% increase in
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the number of synaptic boutons, suggesting that the increase in mini frequency may

be driving synaptic growth. I carried out a more in depth analysis of this synaptic

overgrowth phenotype using a variety of different allelic combination and RNAi. In

cpxSH1 homozygotes, I observed only a 53.6% increase in bouton number compared

to a precise excision control strain (Fig. 1A-B). This increase in bouton number was

not observed in CpxSH1 heterozygotes, despite a 50% reduction in complexin protein

levels. The reasons for the rather large discrepancy between my observations and

those reported by Huntwork and Littleton (2007) are unclear but may include the fact

that I used an anti-horse radish peroxidase (HRP) antibody to label synaptic

boutons, whereas Huntwork and Littleton (2007) used an anti-synaptotagmin-1

antibody, which has previously been noted to increase the number of type I boutons

observed relative to anti-HRP staining (Lnenicka and Keshishian, 2000).

As an additional approach, I evaluated cpx null mutants using different allelic

combinations with the deficiency strains cpxAl and cpxA2 (gift from James McNew),

which were generated using the FLP/FRT system (Parks et al., 2004) and lack only

the complexin locus. Evaluating these alleles in combination with cpxSH1 eliminates

the influence of recessive mutations present in any of the strains and allows for more

robust analysis of synaptic growth in cpx null larvae. Compared to controls, both

cpxSH1/cpxAl and cpxSH1/cpxA2 animals showed a 22% increase in bouton number

(Fig. 1C-D), confirming the presence of synaptic overgrowth in cpx null mutants,

albeit to a smaller degree than previously reported (Huntwork and Littleton, 2007).

Given that unhealthy Drosophila strains such as cpxSH1 will often acquire second-site
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mutations that mask their initially observed phenotypes (J. Troy Littleton, personal

communication), I backcrossed the cpxSH1 line to the Canton S (CS) wild type (WT)

strain for five generations and rebalanced two independent "cantonized" lines

(cpxSH1- 5 and CpXSH1- 6) over TM6B in a white"" (w"') background. Compared to

w1118 controls, neither w;;cpxSH1-5 nor w;;cpXSH1- 6 larvae showed a significant

increase in bouton number (Fig. 1 E-F). When evaluated in combination with cpxAl,

however, both cpxSHl-5/cpXAl and cpXSH1-6/cpxA1 animals showed a ~30% increase

in bouton number at muscle 6/7 (Fig. 1 G-H), but not at muscle 4 (Fig. 1 1-J),

compared to cpxAl heterozygous controls.

In order to further characterize synaptic growth in complexin null larvae, I

utilized two different UAS-Cpx RNAi lines (Vienna Drosophila RNAi Center). When

driven with a pan-neuronal elavc155-Gal4 driver along with UAS-Dicer2, both RNAi

lines completely inhibit complexin protein expression, making it undetectable on

western blots of adult head extracts (data not shown). As the cpxSH1 allele also

deletes a second gene (CG9780) and microRNA (mir-929) nested within the

complexin locus, an RNAi approach is particularly advantageous in that it selectively

eliminates complexin protein expression. I observed a 42% increase in bouton

number for both of the Cpx RNAi lines driven with elavc155-Gal4 along with UAS-

Dicer2 compared to the undriven Cpx RNAi lines alone (Fig. 1K-L). Driving UAS-

Dicer2 alone with elavc155-Gal4, however, resulted in an 23% increase in bouton

number compared to control animals, suggesting the presence of endogenous RNAi

targets involved in synaptic growth at the larval NMJ (Fig. 1 K-L). This finding



complicates analysis of the Cpx RNAi results. In fact, the difference in synaptic

growth between elavC155-Gal4 driving Cpx RNAi together with UAS-Dicer2 vs.

driving UAS-Dicer2 alone was not significant.

Suppression of synaptic overgrowth in cpx null mutants

It has been well described how retrograde TGF signaling regulates synaptic

growth at the Drosophila larval NMJ, and mutations that reduce this signaling

decrease bouton number (Aberle et al., 2002; Marqu6s et al., 2002; McCabe et al.,

2003). To test whether the synaptic overgrowth observed in cpxSH1 larvae requires

TFGP signaling, I generated double mutants for complexin (cpxSH1) and the type-Il

BMP receptor wishful thinking (wit), which is expressed on motor neuron terminals

and required to transmit retrograde BMP signals from the muscle to the motor

neuron. Wit single mutants showed a significant reduction in bouton number relative

to controls as previously reported (Marques et al., 2002), and the synaptic growth of

cpx,wit double mutants was indistinguishable from that of the wit single mutants (Fig.

2A-B). These findings indicate that TGFp signaling is necessary for the synaptic

overgrowth observed in cpxSH1 mutant larvae and further show that this overgrowth

is a regulatable process, not simply an artifact due to a drastically elevated mini

frequency.

Synaptotagmin-4 (syt-4) is known to be required postsynaptically for certain

types of synaptic plasticity (Yoshihara et al., 2005), and the syt-4BA1 null mutant is

known to suppress synaptic overgrowth at the larval NMJ in certain hyperactivity

mutants (Barber et al., 2009). I generated double mutants for syt-4BA1 and cpXSH1
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and found that these double mutant larvae had fewer boutons than cpxSH1 single

mutants, but more boutons than syt-4BA1 single mutants (Fig. 2C-D). These findings

indicate that syt-4 is required for some, but not all, of the synaptic overgrowth

observed in cpxSH1 mutant larvae, again showing that this overgrowth is regulatable

by known synaptic growth signaling pathways. Interestingly, syntaxin- 69 (syx3-69)

mutants, which have an increased mini frequency and synaptic overgrowth

qualitatively similar to cpx null mutants, showed complete suppression of their

synaptic overgrowth in a syt-4 null background (Fig. 2E-F).

The paralytic (para) locus encodes a voltage-gated sodium channel involved

in action potential conduction, and temperature-sensitive para mutants are paralyze

above the restrictive temperature due to action potential failure (Siddiqi and Benzer,

1976; Wu and Ganetzky, 1980). Interestingly, even at room temperature, paraTsl

was able to suppress the synaptic overgrowth of cpxSH1 mutants (Fig. 2G-H). The

paraT mutation would not be expected to alter the increased mini frequency of

cpxSH1 mutants; therefore, its suppression of the cpXSH1 overgrowth phenotype may

be related to altered action potential conduction. It has been reported, however, that

paraTS1 mutants do not show conduction abnormalities at room temperature (Siddiqi

and Benzer, 1976; Wu and Ganetzky, 1980). It is possible that cpxSH1 mutants have

increased action potential propagation to the NMJ that drives synaptic growth and

cannot be sustained in the presence of the paraTS1 mutation, even at room

temperature.

The far C-terminus of complexin is necessary for protein stability and localization
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In an EMS screen to identify additional complexin alleles in Drosophila, cpx572

was identified as a likely loss-of-function mutation. Sequence analysis revealed that

cpxs72 contains a small deletion near the end of exon 6, leading to a premature stop

codon and essentially deleting exon 7 (see Chapter 2, Fig. 1A). Similar to the cpxSH1

null allele, cpx572 is semi-lethal, and the adult escapers are severely uncoordinated

and ataxic. This behavioral phenotype highlights the importance of the far C-

terminus in complexin function. I evaluated the complexin protein levels in cpx572

adult head extracts and found that while the truncated protein product was present, it

was only expressed at < 20% of WT levels (Fig. 3A), suggesting that the far C-

terminus is important for complexin protein stability. I also evaluated complexin

expression at the third-instar larval NMJ in cpx572 animals and found that while some

expression could be detected within motor axons, there was no expression observed

at synaptic boutons (Fig. 3B), even at increased laser power by confocal

microscopy. This finding suggests that the far C-terminus is important for complexin

localization, although Cpx7A and Cpx7B transgenes that differ entirely in the far C-

terminus show similar expression patterns at the larval NMJ (see Chapter 2). Given

the lack of complexin expression at synaptic terminals, it is not surprising that cpx5 72

larvae also show a dramatic increase in mini frequency at the NMJ (Fig. 3C), similar

to that reported for cpxSH1 null larvae (Huntwork and Littleton, 2007). It is difficult to

ascertain the effects of the cpx572 mutation on neurotransmitter release at the larval

NMJ, however, without proper localization to synaptic terminals. Interestingly, I did

not observe hyperproliferation of synaptic bouton at the larval NMJ in cpx572 animals
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(Fig. 3D), unlike the reported overgrowth phenotype of cpxSH1 animals. This

separation of increased neurotransmitter release and synaptic growth in cpx572

animals is intriguing and may indicate that complexin regulates synaptic growth

separately from its role in neurotransmitter release at synaptic terminals.

Cpx7A and Cpx7B differentially rescue synaptic overgrowth and synaptic

transmission defects in cpx null mutants

Alternative splicing of the complexin pre-mRNA generates isoforms with two

alternative C-termini termed Cpx7A and Cpx7B (see Chapter 2). To evaluate the

existence of any functional differences between these two isoforms, I tested the

ability of Cpx7A and Cpx7B transgenes expressed pan-neuronally to rescue the

phenotypes of cpx null mutants in terms of locomotor behavior, synaptic morphology,

and synaptic transmission. Both Cpx7A and Cpx7B were equally able to rescue the

profound locomotor deficits of complexin mutant animals in a climbing assay,

although not to control levels (Fig. 4A), suggesting that multiple isoforms are

required to rescue this behavior or that the Ga14/UAS system cannot fully

recapitulate endogenous complexin expression patterns. Interestingly, whereas

Cpx7A was able to rescue the synaptic overgrowth of complexin mutant animals,

Cpx7B was not able to do so (Fig. 4B). Cpx7A and Cpx7B also differed in their

abilities to rescue the synaptic transmission defects of complexin null animals.

Cpx7A rescued both mini frequency and the amplitude of evoked EPSCs back to

control levels. In contrast, Cpx7B only partially rescued mini frequency but over-

rescued the amplitude of evoked EPSCs to nearly twice control levels (Fig. 4C-D).
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Thus, Cpx7A has a greater ability to clamp spontaneous vesicle fusion, whereas

Cpx7B has a greater ability to promote evoked vesicle fusion. There have been a

number of reports that complexin has different effects on spontaneous vs. evoked

neurotransmitter release (Huntwork and Littleton, 2007; Maximov et al., 2009; Cho et

al., 2010; Hobson et al., 2011; Martin et al., 2011), but these data are among the first

to suggest that the C-terminus might mediate these differences.

Complexin kinase assays

It has been suggested that phosphorylation of presynaptic targets by cyclic

AMP-dependent protein kinase A (PKA) underlies some forms of short-term synaptic

plasticity at the Drosophila NMJ such as the increased mini frequency observed

following high-frequency stimulation of the motor neuron (Yoshihara et al., 2005).

Given the increased mini frequency observed at the larval NMJ in cpx null mutants,

complexin is a likely candidate to be a target of PKA phosphorylation mediating this

form of plasticity. I scanned the sequences of Cpx7A and Cpx7B for predicted PKA

phosphorylation sites (MetaPredPS) and found one site in Cpx7A (Thr-102) and two

sites in Cpx7B (Thr-101 and Ser-126), all of which are located in the C-terminus. To

evaluate whether any of these sites could be phosphorylated by PKA, I carried out

an in vitro kinase assay comparing WT Cpx7A and Cpx7B with mutated versions of

the proteins in which each kinase site was individually altered to a phospho-

incompetent alanine residue (Fig. 5A-B). Based on this approach, only Ser-126 of

Cpx7B was robustly phosphorylated by PKA as nearly all of this phosphorylation

was lost in the Ser-126-Ala mutant (Fig. 5B). In addition to PKA, other kinases are
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also predicted to phosphorylated Cpx7A and Cpx7B, including protein kinase C

(PKC) at Thr-102 of Cpx7A and at Thr-101 and Ser-126 of Cpx7B, cyclin-dependent

kinase (CDK) at Thr-102 of Cpx7B and Thr-101 of Cpx7B, and protein kinase CK2 at

Ser-126 of Cpx7B (MetaPredPS). Using the same in vitro assay with these kinases, I

found that PKC phosphorylates both Cpx7A and Cpx7B, although not at Thr-102 or

Thr-101, respectively, as the phosphorylation was unaltered when these residues

were mutated to become alanines (Fig. 5C). Both CK2 and CDK-5, a member of the

CDK family with known roles in the nervous system (for review, see Lai and Ip,

2009), failed to phosphorylate either Cpx7A or Cpx7B; however, an appropriate

positive control was not identified for either kinase so it is likely that these assays

were not optimized. As described in Chapter 2, RNA editing of Cpx7A can create a

potential phosphorylation site in the Asn-130-Ser isoform. This serine is predicted to

be a phosphorylation target of Ca 2 /calmodulin-dependent protein kinase II

(CamKII), which has a number of known roles in the nervous system (for review, see

Wayman et al., 2008). An in vitro kinase assay with CamKII and both the WT and

Asn-130-Ser isoform of Cpx7A gave variable results, with CamKll phosphorylating

both isoforms. In some experiments, the phosphorylation was slightly increased in

the Asn-130-Ser isoform (Fig. 5D). I also attempted to identify phosphorylated

residues in complexin derived from protein extracts of adult heads using

immunoprecipitation followed by mass spectrometry. This approach did not identify

any phosphorylated residues, but it is still possible that complexin is phosphorylated

at low levels or in an activity-dependent manner.
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Complexin phosphorylation is important for synaptic plasticity

To evaluate the importance of phosphorylation for complexin function in vivo,

we generated transgenic animals expressing phospho-incompentent versions of

Cpx7A or Cpx7B (termed Cpx7A 5P and Cpx7B5P, respectively) in which all potential

Ser and Thr phosphorylation sites were mutated to Ala (Ser-15, Thr-102, Thr-120,

Thr-127, and Thr-134 for Cpx7A5P, and Ser-1 5, Thr-1 01, Thr-1 19, Thr-1 20, and Ser-

126 for Cpx7B5P). When expressed pan-neuronally in a cpx null background, both of

these transgenes behaved similarly to their WT counterparts in terms of their effects

on mini frequency, the amplitude of evoked EJCs, and bouton number (Fig. 6A-C),

suggesting that phosphorylation is not critical for complexin function at baseline.

Unlike their WT counterparts, however, larvae expressing these phospho-

incompetent transgenes did not exhibit activity-dependent enhancement of mini

frequency following high-frequency stimulation at the NMJ (Fig. 6D), suggesting that

complexin phosphorylation is necessary for some forms of short-term synaptic

plasticity.

Discussion

Cpx null mutants show synaptic overgrowth

It is well established that synaptic activity can drive synaptic growth, but the

role of minis in this process is unknown. In addition to a dramatic increase in mini

frequency, complexin null mutants show an increased number of synaptic terminals

at the larval NMJ (Huntwork and Littleton, 2007). My findings confirm this synaptic

overgrowth, although to a much smaller degree than previously reported, and they
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suggest that the synaptic growth assay is highly sensitive to genetic background. In

C. elegans, complexin mutants do not show an increased number of synaptic

terminals at the NMJ (Hobson et al., 2011; Martin et al., 2011), but complexin 2 has

been linked to synaptic growth in rat cerebellar cortex (Yang et al., 2009). Complexin

2 is a target of the transcription factor NeuroD, and the E3 ligase Cdc20/APC targets

NeuroD for proteasomal degradation, decreasing complexin 2 levels and driving

presynaptic differentiation. Although the increased mini frequency at the Drosophila

larval NMJ in complexin null mutants could be driving synaptic overgrowth, it is

actually quite difficult to separate the effects of minis vs. action potential-induced

neurotransmitter release. Syx3-69 mutants have a point mutation in the Habc domain

that leads to paralysis at elevated temperature and an increase in mini frequency at

room temperature (Littleton et al., 1998). I found that these mutants also showed

synaptic overgrowth (Fig. 2E-F), suggesting that minis can drive synaptic growth. In

contrast, the lack of synaptic overgrowth in cpx572 mutants (Fig. 3D) despite a

dramatic increase in mini frequency (Fig. 3C) suggests that minis do not drive

synaptic growth in all circumstances.

Synaptic overgrowth in cpx null mutants requires known growth pathways

Given the presence of both a dramatic increase in mini frequency and

synaptic overgrowth in cpx null mutants, I was interested in determining whether this

growth was dependent on known signaling pathways or represented a separate

mechanism. The synaptic overgrowth observed in cpxSH1 null mutants was fully

suppressed by null mutations in the type I BMP receptor wit and partially



suppressed by a null mutation in the post-synaptic vesicle protein syt-4. Wit is

present presynaptically at motor neuron terminals where it forms a heterodimer with

the type I BMP receptor thick veins (tkv) and acts as a receptor for the retrograde

messenger glass bottom boat (gbb). This signaling complex is then internalized and

eventually acts through a number of pathways to promote synaptic growth and

maturation (Marques, 2005). In contrast, the signaling pathway for syt-4 is less well

established. Syt-4 is required for the synaptic growth observed in response to

increased temperature, and a null mutation in syt-4 (syt-4BA1) is able to suppress

temperature-dependent synaptic overgrowth in seizure mutants (Barber et al., 2009).

It is interesting that syt-4BA1 was fully able to suppress the synaptic overgrowth

observed in syx3-69 mutants but only partially able to suppress the synaptic

overgrowth observed in cpxSH1 mutants. This finding suggests that something more

than just an increased mini frequency in responsible for driving synaptic growth in

cpx null mutants.

Cpx7A and Cpx7B have divergent effects on synaptic transmission

It has previously been reported that complexin has different effects on evoked

vs. spontaneous neurotransmitter release, tending promote evoked release and

inhibit spontaneous release (Huntwork and Littleton, 2007; Maximov et al., 2009;

Cho et al., 2010; Hobson et al., 2011; Martin et al., 2011), although this is not the

case in all systems (Xue et al., 2007; Xue et al., 2008; Xue et al., 2009; Xue et al.,

2010). Here, we show that Drosophila Cpx7A and Cpx7B also have different effects

on these two modes of release, with Cpx7A showing a greater ability to inhibit
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spontaneous release and Cpx7B showing a greater ability to promote evoked

release to even greater than control levels. The reasons for these differences are

unclear. The far C-termini of Cpx7A and Cpx7B share essentially no homology, and

the most concrete difference between the two is the presence of a C-terminal

farnesylation motif in Cpx7A that is absent from Cpx7B. Farnesylation of Cpx7A

could anchor it in either the vesicle or plasma membrane and effectively increase the

local concentration of Cpx7A at sites of vesicle fusion. If promoting vesicle fusion in

response to an action potential and clamping vesicle fusion in the absence of such

signals required different numbers of complexin molecules, a difference in local

concentration could explain the functional differences between Cpx7A and Cpx7B

observed here. For example, clamping vesicle fusion in the absence of an incoming

action potential might require a complexin molecule to be present on every SNARE

complex connecting the vesicle and plasma membranes, whereas promoting fusion

might require a complexin molecule on only a few SNARE complexes.

Cpx7A, but not Cpx7B, rescues synaptic overgrowth in complexin mutants

Along with their different effects on evoked vs. spontaneous neurotransmitter

release, Cpx7A and Cpx7B also showed differences in their effects on synaptic

growth: Cpx7A was able to rescue the synaptic overgrowth of complexin mutants,

whereas Cpx7B was not. Larvae expressing Cpx7B showed an elevated mini

frequency and an elevated amplitude of evoked EPSCs compared to larvae

expressing Cpx7A, and either of these factors could contribute to the failure of

Cpx7B to rescue the synaptic overgrowth of complexin mutants. Given that the
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cpx572 mutants showed normal synaptic growth, however, even with a dramatically

increased mini frequency, it is more likely that synaptic overgrowth observed in

larvae expressing Cpx7B is due to the increased amplitude of their evoked EPSCs.

Alternatively, the differences in synaptic growth between larvae expressing Cpx7A

vs. Cpx7B could be unrelated to synaptic transmission and indicate a separate role

for the C-terminus of complexin.

Complexin phosphorylation is necessary for short-term synaptic plasticity

Certain forms of patterned synaptic activity have the ability to modify

subsequent synaptic transmission, and this phenomenon is termed synaptic

plasticity. One form of short term synaptic plasticity in Drosophila is an increase in

mini frequency following trains of high-frequency stimulation at the NMJ (Yoshihara

et al., 2005). This form of plasticity requires post-synaptic expression of syt-4, which

presumably mediates release of an unknown retrograde messenger that leads to

signaling events in the presynaptic terminal and modifies the vesicle fusion

machinery. Furthermore, the effects of high-frequency stimulation can be mimicked

by presynaptic application of forskolin, an activator of adenylyl cyclase and the

downstream kinase PKA (Yoshihara et al., 2005). Given that complexin mutants

show a phenotype similar to presynaptic forskolin application, it is possible that

complexin may be a target of PKA and that this phosphorylation event underlies the

effects of both high-frequency stimulation and forskolin application.

Here, I show that Cpx7A can be phosphorylated in vitro by PKA at Ser-126 in

the C-terminus. The only previous report of complexin phosphorylation is of mouse
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complexin 1 being phosphorylated by protein kinase CK2 at Ser-1 15 in the C-

terminus (Shata et al., 2007), increasing its affinity for the SNARE complex and

decreasing its ability to promote liposome fusion in vitro (Malsam et al., 2009).

Although there is essentially no homology between this region of mouse complexin 1

and Drosophila Cpx7A, these phosphorylation events do occur in similar domains of

the protein and could have similar effects. Interestingly, the CK2 inhibitor 5,6-

dichlorobenzimidazole riboside causes a nearly 100-fold increase in mini frequency

at the frog NMJ (Rizzoli and Betz, 2002), similar to that observed with forskolin at the

Drosophila NMJ (Yoshihara et al., 2005). In addition to the demonstrated

phosphorylation of Cpx7A by PKA, both Cpx7A and Cpx7B contain predicted CK2

phosphorylation sites, raising the possibility that both PKA and CK2 might regulate

complexin function to mediate their effect on synaptic transmission. Unfortunately,

the in vitro kinase assay used here was not optimized for CK2; thus, it is unclear if

CK2 actually phosphorylates Cpx7A or Cpx7B.

We further show that complexin phosphorylation is not required for proper

synaptic transmission and growth at baseline but is required to increase mini

frequency following high-frequency stimulation at the larval NMJ, given the absence

of this form of synaptic plasticity in animals expressing phospho-incompetent forms

of Cpx7A or Cpx7B. Further studies will be necessary to determine the contributions

of individual phosphorylation sites and different kinases to overall complexin function

in vivo.
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Methods

Drosophila genetics

Drosophila were cultured on standard medium at 220C. The cpx572 mutant

was identified in a standard EMS mutagenesis screen of the 3rd chromosome based

on failure to complement the cpxSH1 allele.

Immunohistochemical and western blot analysis

Anti-complexin antiserum (Huntwork and Littleton, 2007) was used at 1:500

for immunohistochemistry and 1:1,000 for western blots and detected using goat

anti-rabbit antiserum conjugated to Alexa Fluor 546 (Invitrogen, #A-1 1035) for

immunohistochemistry and Alexa Fluor 680 (Invitrogen, #A-21076) for western blots.

Western blot analysis was done using a LICOR Odyssey infrared scanner (LICOR).

Synaptic growth assay

Low density Drosophila cultures were set up between 3-5 adults males and 3-

5 virgin females allowed to lay eggs for 24 hours. Immunostaining was performed on

wandering third-instar larvae at room temperature. Third-instar larvae were dissected

in Drosophila HL3.1 physiological saline and fixed in 4% formaldehyde for 30 min

before staining with goat anti-HRP antiserum conjugated to DyLight 549 (Jackson

ImmunoResearch) at 1:500. Immunoreactivity was visualized on a Zeiss Pascal

confocal microscope. Confocal images were quantified for varicosity number with

blinding to genotype. All error measurements are SEM. Comparisons between

groups were made using one-way analysis of variance followed by Tukey's post-test
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to compare pairs of groups. Statistical analysis was done used GraphPad Prism

software.

In vitro kinase assays

In vitro Cpx kinase assays were performed using the catalytic subunit of PKA,

PKCa, CamKII, CDK5, and protein kinase CK2 (all from New England Biolabs),

according to the manufacturer's instructions, with the addition of [g-32P]ATP (Perkin

Elmer). Approximately 10mg of purified GST-fusion protein was used per reaction

and incubated with 2500 units of recombinant kinase. Reaction products were

separated by SDS-PAGE, and the gels were stained with Bio-Safe Coomassie (Bio-

Rad), dried, and exposed to autoradiography film for 30 min to 24 hr at room

temperature.

Immunoprecipitation/Mass spectrometry

Adult head extracts were prepared from WT CS flies by grinding in lysis buffer

containing PhosStop phosphatase inhibitors (Roche) and Complete protease

inhibitors (Roche). Extracts were then centrifuge to remove debris and incubated

overnight at 40C with a slurry of protein A sepharose beads (GE Healthcare) bound

to anti-Cpx. The beads were then washed in lysis buffer and boiled to separate any

bound proteins. The samples were then centrifuged to pellet the beads, and the

supernatant was run on a 10-20% acrylamide gel (Bio-Rad). The gel was then fixed

in 40% methanol/10% acetic acid and stained with Bio-Safe Coomassie (Bio-Rad).

The ~18-kD band corresponding to Cpx was excised and submitted to Ion Trap
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LCMS with a Thermo Electron Model LTQ Ion Trap mass spectrometer connected to

an Agilent Model 1100 Nanoflow HPLC system (MIT Biopolymers Laboratory).

Electrophysiology

Excitatory junctional potentials (EJPs) were recorded in current clamp mode

as described previously (Rieckhof et al., 2003) at the NMJs of ventral longitudinal

muscle 6 in segments A3 to A5 of wandering third-instar larvae at the indicated

concentrations of extracellular Ca 2 . Excitatory postsynaptic currents (EPSCs) were

recorded using two-electrode voltage clamp (OC-725, Warner Instruments, Hamden,

CT) at the NMJs of ventral longitudinal muscle 6 in segment A3 of wandering third-

instar larvae using a holding potential of -80 mV and modified HL3 solution

containing (in mM) 10 NaHCO3, 5 KCl, 4 MgCl2, 5 HEPES, 70 NaCl, 5 trehalose,

and 115 sucrose at pH 7.2. Data acquisition and analysis were done using Axoscope

9.0 and Clampfit 9.0 software (Axon Instruments, Foster City, CA), respectively. For

stimulation, segmental nerves were cut as close as possible to the ventral nerve

cord and sucked into the stimulating pipette. Nerve stimulation was applied at the

indicated frequencies using a programmable stimulator Master-8 (A.M.P.I.,

Jerusalem, Israel).
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Figures

Figure 1. Complexin null mutants show synaptic overgrowth. Quantification of
NMJ bouton number at muscles 6/7 (except I and J, which show muscle 4) in
segment A3 of wandering third-instar larvae. Immunostaining was done with anti-
HRP. Representative images are shown to the right of each graph in the same order
as the bars on the graph. Error bars show SEM. P-values for Student's t-test or one-
way ANOVA with Tukey's post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001. Average
values (±SEM) are as follows: A) cpxPre = 68.93 ± 2.577 and cpxSH1 = 105.9 2.173;
C) cpxPre = 77.78 ± 4.663, cpxSHl/cpXA1 = 94.67 ± 4.876, and cpxSH1/cpxA2 = 95.17

3.361; E) control (w 118) = 89.73 ± 3.639, cpxSH1- 5 = 89.08 ± 3.957, and cpxSH1-6
92.13 ± 3.386; G) cpxAl/+ = 75.94 ± 2.068, cpxSH1- 5/cpXA1 = 98.00 ± 2.559, and
cpxSHl-6/cpXA1 = 100.3 ± 2.396; 1) cpxAl/+ = 28.47 ± 1.564, cpxSH1-5/cpXA1 = 30.65 ±
1.210, and cpxSH1-6/cpXA1 = 33.25 ± 1.726; K) CpxRNAi = 82.14 ± 2.805, C155>Dic2
= 101.3 ± 5.138, and C155>Dic2,CpxRNAi = 116.9 ± 4.050.
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Figure 2. Suppression of synaptic overgrowth in cpxSH1 mutants. Quantification
of NMJ bouton number at muscles 6/7 in segment A3 of wandering third-instar
larvae. Representative images are shown to the right of each graph. Immunostaining
was done with anti-HRP. Error bars show SEM. P-values for one-way ANOVA with
Tukey's post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001. Average values (±SEM)
are as follows: A) witA12/B11 = 54.00 ± 2.113, cpxSH1 = 106.3 ± 4.245, and
cpxSH1,witA12/Bl = 47.75 ± 2.73; C) cpxPre = 77.78 ± 4.663, cpxSH1 = 106.3 ± 4.245,
syt4Pre = 83.60 ± 3.174, syt4BA1 = 77.54 -'4.034, and cpxSH1 syt4BA1 92.63 ± 2.468;

E) control (w 118) = 87.75 ± 3.940, syt4 BA1 = 83.29 ± 4.121, SyX3-69  124.8 ± 4.394,
and syt4BA1,SyX3-69 = 80.17 - 2.330; G) cpxPre = 77.78 ± 4.663, cpxSHl = 106.3
4.245, para TS1;;cpxSH1 = 69.09 ± 2.567.
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Figure 3. cpx572. A) Western blot analysis of protein extracts from adult heads of the
indicated genotypes using anti-Cpx and anti-arginine kinase (anti-ArgK) as a loading
control. The graph to the right quantifies Cpx protein levels relative to ArgK and
normalized to WT. B) Immunohistochemistry of the NMJ on muscles 6/7 of
wandering third-instar larvae of the indicated genotypes (control - CanS (Canton S))
using anti-Cpx and anti-HRP. Note the lack of Cpx expression in synaptic terminals
of cpx572 mutants. C) Sample traces and quantification of mini frequency in control
(precise excision), cpx (cpxSH1/cpXSH1), and cpX572 (cpX572/DfED5021) larvae. cpx572

mutants have an elevated mini frequency similar to that of complexin null mutants (**
= P < 0.0001). Data used in the analysis include: control (mini frequency (MF) =
3.14±0.3 Hz; n=18); cpxSH1 (MF = 66.9 ± 4.8 Hz; n=27); cpx572/Df (MF = 79.75
2.69, n=6). Error bars show SEM. D) Quantification of NMJ bouton number at
muscles 6/7 in segment A3 of wandering third-instar larvae. Representative images
are shown to the right of each graph. Immunostaining was done with anti-HRP. Error
bars show SEM. P-values for Student's t-test: not significant (n.s.). Average values
(±SEM) are as follows: control (w118) = 87.75 ± 3.940 and cpx572/cpxAl = 99.57 +
3.897.
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Figure 4. Cpx7A and Cpx7B rescue different aspect of the cpx null phenotype.
A) Climbing times for a 5-cm vial are reported. Note that neither Cpx7A or Cpx7B
driven with elavCl 55-Gal4 were able to fully rescue the cpx null phenotype. Average
times (in sec) were as follows: control (elavCl 55-Gal4) = 6.00 ± 0.378, C1 55>Cpx7A
(elavc155 -Gal4; ;cpXSH1,UAS-Cpx7A) =28.00 ± 5.148, and C155>Cpx7B (elavc' 55 _

Ga14; ;cpXSH1,UAS-Cpx7B) = 34.45 ±2.934. B) Average mini frequencies recorded
under voltage clamp in 0.2 mM Ca2+ are shown for the indicated genotypes. Control
(black, cpx precise excision), cpx-/- (red, cpxSH1), DmCPX 7A (green, elav 155 _
Gal4; ;cpxSH1 ,UAS-Cpx7A), and DmC PX7B (cyan, elavC1 55 -Gal4; ;cpxSH1 ,UAS-Cpx7B).
C) EPSC amplitudes recorded under voltage clamp in 0.2 mM Ca2+ are shown for
the same genotypes as is B (same color scheme). Error bars show SEM. D)
Quantification of NMJ bouton number at muscles 6/7 in segment A3 of wandering
third-instar larvae. Representative images are shown to the right of each graph.
Immunostaining was done with anti-HRP. Error bars show SEM. P-values for one-
way ANOVA and Tukey's post hoc test: **p < 0.01; n.s. (not significant). Average
values (±SEM) are as follows: UAS-Cpx7A (w;;cpxSH1,UAS-Cpx7A) = 92.62 +
3.567, C155>UAS-Cpx7A = 71.56 ± 3.307, UAS-Cpx7B (w;;cpxSH1,UAS-Cpx7B) =
89.91 ± 5.171, and C155>Cpx7B = 96.11 ± 4.486.
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Figure 5. Complexin phosphorylation in vitro. Phosphorylation of different Cpx
isoforms and mutants by (A-B) the catalytic subunit of PKA, (C) PKCa, and (D)
CamKil. Ten micrograms of recombinant GST alone (green arrowhead) or GST-Cpx
was incubated with 0.5 mg of each kinase in the presence of [g32P]ATP. Coomassie
staining of the SDS-PAGE gel is shown in the top panels, and the bottom panels
show the autoradiographs.

117

I.

C

Coomassie

Autorad



Figure 6. Functional consequences of Cpx phosphorylation. A) Representative
traces of mEJCs recorded in 0.4 mM Ca2* in current clamp mode at muscle 6 of
wandering third-instar larvae. For neuronal rescues, the indicated transgenes were
driven with elavc155-Ga14 in a cpxSH1 background. Quantification of mEJP frequency
for each genotype is shown in the graph to the right. Error bars in all panels show
SEM. Note that the phospho-incompetent Cpx transgenes (5P) rescue mEJP
frequency similarly to their WT counterparts. B) Representative traces of evoked
EJCs recorded in 0.4 mM Ca2+ in current clamp mode at muscle 6 of wandering
third-instar larvae. EJP amplitude for each genotypes is shown in the graph to the
right. Note that the phospho-incompetent Cpx transgenes (5P) rescue EJC
amplitude similarly to their WT counterparts. C) Quantification of NMJ bouton
number at muscles 6/7 in segment A3 of wandering third-instar larvae.
Representative images are shown to the left of the graph. Immunostaining was done
with anti-HRP. Error bars show SEM. P-values for one-way ANOVA followed by
Tukey's post hoc test: **p < 0.01; not significant (n.s.). D) Representative traces of
mEJCs recorded in voltage clamp mode before and after high-frequency stimulation
(indicated by arrows). Note that the phospho-incompetent Cpx transgenes fail to
show an increased mEJC frequency following high-frequency stimulation.
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Introduction

Great strides have been made in recent decades to define the cellular

processes underlying memory consolidation. It has long been known that following

acquisition of knowledge through some form of training, nascent memories exist in a

labile state that is susceptible to disruption by a broad range of interventions (e.g.,

head trauma, electroconvulsive shock, anesthetics) that alter patterns of neural

activity (James, 1890). Over time, however, memories are consolidated and become

less and less sensitive to such interventions. More specific approaches to memory

disruption have taken advantage of chemicals such as actinomycin D and

cycloheximide that disrupt the synthesis of new mRNA transcripts and new proteins,

respectively (Flexner et al., 1963; Agranoff, 1967; Barondes, 1970; Springer and

Agranoff, 1976). Blocking these cellular processes has seemingly little effect on

initial memory formation but prevents persistence of memory beyond a few hours

after training. The generation of lasting long-term memory, therefore, appears to

involve transit through a labile state and consolidation into a more durable form that

requires the synthesis of new mRNA transcripts and proteins.

Drosophila has proven to be an ideal model system in which to identify the

molecular players in memory formation. Pioneering work by Quinn et al. (1974)

allowed for large-scale forward genetic screens of performance on an olfactory

discrimination assay using an operant conditioning paradigm. Tully and Quinn (1985)

later introduced an olfactory discrimination assay using a classical conditioning

paradigm, and both assays have led to the identification of numerous genes involved
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in learning and memory (for review, see Davis, 2005). Memory formation in

Drosophila has been defined behaviorally in three distinct phases: short-term

memory (STM) lasting on the order of hours; anesthesia-resistant memory (ARM), a

form of long-term memory (LTM) lasting on the order of days; and long-lasting long-

term memory (LLTM) lasting on the order of days to a week (Tully et al., 1994).

Initially after training, memory consists of both STM, which is sensitive to

interventions that disrupt neural activity (e.g., electrical shock and cold shock), and

ARM, which is insensitive to these interventions (Quinn and Dudai, 1976).

Subsequently, memory consists of a combination of protein synthesis-dependent

LLTM and ARM, depending on the training protocol. Multiple training sessions

conducted one after another without a break ("massed" training) only generate ARM,

whereas sessions with breaks in between ("spaced" training) generate both ARM

and LLTM (Tully et al., 1994).

In Drosophila, cAMP levels are critical for the formation of STM. In fact, two of

the original STM mutants, dunce and rutabaga, actually have opposing effects on

cAMP. Dunce encodes a phosphodiesterase that acts to reduce the level of cAMP

(Dudai et al., 1976; Byers et al., 1981; Chen et al., 1986), whereas rutabaga

encodes an adenylyl cylcase that converts ATP into cAMP (Livingstone et al., 1984;

Levin et al., 1992). In addition, the middle term memory mutant amnesiac encodes a

neuropeptide with homology to pituitary adenylyl cyclase activating peptide in

mammals and increased cAMP production in Drosophila (Quinn et al., 1979; Feany

and Quinn, 1995; Moore et al, 1998; Waddell et al, 2000). cAMP activates cAMP-
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dependent protein kinase (PKA), which phosphorylates downstream targets that

may be important for STM. The catalytic subunit of PKA acts locally by

phosphorylating nearby ion channels (Klein et al., 1982) and also translocates to the

nucleus where it phosphorylates the transcriptional activator CREB-1 (cAMP-

responsive element binding protein) (Kaang et al., 1993; Bartsch et al., 1998) and

the transcriptional repressor CREB-2 (Bartsch et al., 1995; Lee et al., 2003). CREB-

1 phosphorylation leads to the activation of immediate early genes such as the

CAAT box enhancer binding protein (ApC/EBP) (Alberini et al., 1994; Lee et al.,

2001) that regulate downstream gene expression.

Central among the genes important for LTM in Drosophila are the radish gene

product, which underlies ARM (Folkers et al., 1993), and CREB, which is necessary

for the formation of LLTM (Yin et al., 1994). In fact, these two gene products appear

to define LLTM and ARM as two separable components of LTM (Yin et al., 1994).

Radish mutant flies show normal initial learning in the QHB assay, but their

performance decays to baseline over the course of eight hours. When tested

specifically for ARM by using a cold-shock two hours after training and then testing

one hour later, these mutants display a complete lack of ARM. Their protein

synthesis-dependent LLTM, however, remains intact (Folkers et al., 1993). Studies

of CREB function in Drosophila have taken advantage of a dominant negative

isoform of this dimeric transcription factor. Flies expressing this isoform are able to

generate ARM but completely lack LLTM. Furthermore, when this isoform is

expressed in radish mutants, all LTM is lost, suggesting that ARM and LLTM as
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defined by radish and CREB, respectively, are the predominant components of LTM

(Yin et al., 1994).

As the only molecular link to understanding ARM, the radish gene product has

been a subject of great interest. Folkers et al. (2006) used positional cloning to

identify the radish gene product as CG15720 (hereafter referred to as Radish), and

comparative sequencing indicated an early stop codon resulting in a small C-

terminal truncation in radish mutant flies. Restoration of Radish expression using a

heat shock-regulated transgene rescued the memory performance defects in radish

mutant flies, and western blot analysis showed abundant expression of Radish upon

heat shock in lines expressing the transgene. Both of these points suggest that the

mutation in CG15720 is in fact causative of the radish mutant phenotype.

The Radish protein has orthologs in the mosquito Anopheles gambiae (66%

identity) and the honey bee Apis mellifera (45% identity) but lacks substantial

similarity to any proteins of known function. This lack of sequence homology,

however, does not necessarily indicate a lack of functional homology in vertebrates

and mammals. Among mammalian proteins, Radish shows the closest homology to

Arg/Ser-rich splicing factors, and Radish itself is Arg/Ser-rich (14% Arg and 15%

Ser) (Folkers et al., 2006). Radish functioning as a splicing factory would appear

contrary to the finding that ARM is insensitive to inhibitors of protein synthesis. In

those experiments, however, protein synthesis was only reduced by about 50%

using cycloheximide (Tully et al., 1994); therefore, ARM may simply be less sensitive

than LLTM to protein synthesis inhibition.
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The radish locus encodes a 583-residue protein that lacks any predicted

functional domains but contains 23 predicted PKA phosphorylation sites, 2 predicted

PKC sites, and 5 predicted bipartite nuclear localization sites that overlap with a

number of the PKA sites (Folkers et al., 2006). These PKA sites may represent a link

between STM pathways known to involve PKA and the pathway leading to ARM.

Furthermore, a large-scale yeast-two-hybrid screen identified the small GTPase

Rac1 as a binding partner for Radish (Formstecher et al., 2005), perhaps indicating

a role of Radish in actin dynamics in the nervous system. Immunohistochemistry

shows strong Radish expression in all lobes of the mushroom body, a structure

known to be important for olfactory conditioning, in addition to expression in the

ellipsoid body and central complex (Folkers et al., 2006).

Given the lack of any striking hints regarding the molecular function of Radish,

I undertook a yeast-two-hybrid screen to identify Radish-interacting proteins and

perhaps shed light on the role of Radish and the identity of other molecular

components of ARM. In addition, I evaluated the localization of Radish and its role at

the larval neuromuscular junction (NMJ), reasoning that the defect in central nervous

system (CNS) plasticity that blocks the formation of ARM in radish flies may also be

evident as a defect in peripheral nervous system (PNS) plasticity. Finally, given the

potential role of PKA as a link between STM and ARM, I investigated the ability of

PKA to phosphorylate Radish in vitro.
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Results

Radish regulates synaptic morphology and localizes to both the cytoplasm and

nucleus

The Drosophila larval NMJ has become a popular system in which to study

synaptic growth and plasticity due to its ease of accessibility and well-characterized

innervation pattern. Given that radish mutants are defective in memory

consolidation, a process involving synaptic plasticity in the CNS, they might also

show defects in synaptic plasticity and growth in the PNS. Compared with Canton S

(CS) wild type control animals, rsh' mutants displayed a 21% increase in varicosity

number (P < 0.001) and a 15% decrease in innervation length (P < 0.05), resulting in

a compact innervation pattern at the larval NMJ (Fig. 1 B-D). These results indicate

that rsh' mutants have altered axonal branching and synaptic growth.

To analyze the cellular compartment in which the Radish protein may function

to regulate ARM and synaptic morphology, I generated Radish anti-serum against a

predicted immunogenic region of the protein (iRsh, Ala-383 to Pro-484). I also

generated Radish transgenes tagged with eGFP at the N-terminus (UAS-eGPF:Rsh)

to evaluate Radish localization in transgenic animals. Previous analysis of Radish

immunostaining revealed expression in the calyx, peduncle, and lobes of the

mushroom bodies (Folkers et al. 2006), suggesting localization to synapses.

Furthermore, the presence of multiple NLSs within the protein suggests Radish

might also act in the nucleus. Unfortunately, both the previously published Radish

antiserum (Folkers et al., 2006) and my newly generated iRsh antiserum failed to

127



identify any Radish expression in larval preparations or on western blots. Transgenic

animals expressing UAS-eGFP:Rsh in larval salivary glands showed prominent

nuclear accumulation of eGFP:Rsh, overlapping with DAPI staining (Fig. 1 E-F).

Weaker staining in the cytoplasm of the salivary gland cells was also observed.

Similarly, robust nuclear accumulation of eGFP:Rsh was observed when driven with

the muscle driver mef2-Gal4 (Fig. 1 G). When the pan-neuronal elavc155-Gal4 driver

was used to express UAS-eGFP:Rsh in the brain, immunostaining was observed in

the cytoplasm of neuronal cell bodies and in larval axons (Fig. 1 H). Immunostaining

was not readily apparent in presynaptic terminals. These data suggest that Radish

can localize to both the cytoplasm and nucleus depending on cell type.

Given its weak homology to Ser/Arg-rich splicing factors and the overlap of

multiple NLSs with PKA sites, it is tempting to hypothesize that Radish may shuttle in

and out of the nucleus in a PKA-dependent manner. Based on the predicted PKA

sites contained in the Radish protein, I assessed whether Radish could be

phosphorylated by PKA in vitro. Full-length Radish proved difficult to purify as a

recombinant protein. To overcome these difficulties in protein stability, I generated a

recombinant GST:iRsh fusion protein from the same 102-residue fragment used to

generate the Radish antiserum. This fragment is predicted to be surface exposed

and contains six predicted PKA sites. I assayed phosphorylation of this fragment in

in vitro assays with recombinant PKA. GST:iRsh underwent PKA-dependent

phosphorylation, whereas GST alone was not phosphorylated by PKA, suggesting

that Radish function and localization may be regulated through cAMP/PKA signaling.
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Yeast two-hybrid screen

To gain insight into the molecular function of Radish, I conducted a yeast two-

hybrid screen to identify Radish interactors and other potential players in ARM

formation. Full-length Radish was used as bait to screen 1.5x10 6 transformants of a

cDNA library generated from whole adult Drosophila (Clontech). Twenty-three clones

were identified as Radish interactors, representing 0.0015% of the entire library. Of

the genes identified, none had a clear association with learning and memory based

on previous work, but a number of them were intriguing nonetheless. A clone of

CG2982 was pulled out five times. The predicted gene product of CG2982 contains

a Jumanji C domain, which is often present in histone demethylases (for review, see

Clissold and Ponting, 2001), consistent with the nuclear localization of Radish. A

clone of Pellino, a binding partner of the Ser/Thr kinase Pelle involved in Toll

signaling (Grosshans et al., 1999), was pulled out three times. Pellino also

possesses E3 ligase activity via its RING domain (Schauvliege et al., 2006),

suggesting a possible role in proteasomal degradation. Two clones of proteasomal

subunits, Pros26 and Pros28.1, were also pulled out. Mutations that affect

proteasomal degradation are known to alter synaptic transmission and plasticity at

the Drosophila larval NMJ (Speese et al., 2003; Haas et al., 2007). Five members of

the Jonah family of proteinases were pulled out: Jon25Bi, Jon25Biii, Jon99Cii,

Jon99Ciii, and Jon99Fi (Carlson and Hogness, 1985). Interestingly, Jon99Cii

undergoes circadian fluctuations in mRNA levels and is present at reduced levels in

dunce mutants (Yun and Davis, 1989). Finally, a clone of CG8216 was pulled out
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once. The predicted gene product of CG8216 contains a paired domain, which is

important for DNA binding, and is enriched 32.5 times in the brain relative to the

whole fly (http://www.flyatlas.org). A biding interaction between CG8216 and Radish

is consistent with the nuclear localization of Radish and a role for Radish in the CNS.

A previous large-scale yeast two-hybrid screen identified the small GTPase

Rac1 as a Radish interactor (Formstecher et al., 2005). Interestingly, the interaction

involved the far C-terminus of Radish, the very region that is truncated in radish

mutants, suggesting that disruption of this interaction could mediate the defects in

ARM observed in these animals.

Discussion

Drosophila has proven to be a valuable genetic system to identify the

molecular players underlying learning and memory formation, and the precise

functions of these proteins at synapses in the CNS and PNS is an ongoing area of

research. I used the well-characterized larval NMJ preparation as a model

glutamatergic synapse to study the role of Radish in synaptic morphology. Radish

mutants displayed an increased number of synaptic boutons, but a decreased

innervation length along the muscle, resulting in a compact innervation pattern

compared to controls. This pattern stands in contrast to the STM mutants rutabaga,

which shows a decrease number of synaptic boutons and a decreased innervation

length along the muscle, and dunce, which shows an increased number of synaptic

boutons and a wild type innervation length along the muscle (Guan et al., 2011).
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These specific changes in synaptic morphology may contribute to the specific

behavioral deficits in each of these mutants.

Attempts to define the transition from the short-term plasticity events

underlying STM to the formation of consolidated memories have highlighted the

central role of cAMP. Perhaps no STM process has been better defined at the

molecular level than sensitization of the siphon withdrawal reflex in Aplysia.

Repeated conditioned stimuli signal through GPCRs in the presynaptic sensory

neuron to increase levels of cAMP, activating PKA (Cedar and Schwartz, 1972;

Brunelli et al., 1976). PKA is then able to phosphorylate a potassium channel (Klein

et al., 1982), resulting in prolonged Ca2 , influx and increased neurotransmitter

release (Klein and Kandel, 1980). Meanwhile, the transcription factor CREB, another

target of PKA, plays a central role in LLTM in Aplysia. Robust training or application

of the neuromodulator serotonin leads to translocation of the catalytic subunit of PKA

to the nucleus, where it can activate the transcription factor CREB-1 and inhibit the

transcriptional repressor CREB-2 (Bartsch et al., 1995). This process leads to the

generation of specific mRNA transcripts that can be transported to and captured by

activated synapses. Subsequent local protein synthesis and growth of these synaptic

connections is thought to underlie the formation of LTM in this system (Dash et al.

1990; Bailey et al. 1992; Kaang et al. 1993; Casadio et al. 1999). The importance of

PKA for memory formation is also evident in other systems. Drosophila expressing

inducible inhibitors of PKA show memory defects (Drain et al., 1991), and PKA is

necessary for the proper induction of LTP in the Schaffer collateral pathway and for
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hippocampal-dependent memory tasks (Huang et al., 1995; Roberson and Sweatt,

1996; Abel et al., 1997). All of these studies place cAMP/PKA at the transition from

short-term plasticity to memory consolidation.

Radish mutant flies lack ARM, a component of LTM, but maintain protein

synthesis-dependent LLTM (Tully et al., 1994). Given this phenotype and the

multiple PKA phosphorylation sites in the Radish protein, Radish may be another

key player in the transition from short-term plasticity events to the formation of

consolidated memories. Unfortunately, few clues as to its precise cellular function

can be gleaned from primary sequence analysis, and Radish has no clear orthologs

beyond a handful of other insect species (Folkers et al., 2006). By utilizing

transgenic animals expressing eGFP-tagged Radish, it is clear that Radish can

localize to both the nucleus and the cytoplasm depending on cell type, with robust

nuclear expression observed in salivary glands and muscle cells and robust

expression in cell bodies observed in the CNS. Given the overlap between several

NLS and PKA sites in the Radish protein and my confirmation that a surface-

exposed fragment of Radish can be phosphorylated by recombinant PKA in vitro, it

would be interesting to see if the nuclear vs. cytosolic localization of Radish depends

on its PKA phosphorylation status. Furthermore, the time course of ARM makes a

role for Radish in the nucleus an attractive hypothesis.

Despite the fact that I was unable to detect eGFP:Rsh expression at NMJ

synapses in transgenic animals, radish mutants showed altered synaptic

connectivity compared to controls. Specifically, they displayed an increased number
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of synaptic boutons with a decreased innervation length along the muscle, resulting

in a more compact innervation pattern than control animals. This pattern is distinct

from that observed in dunce and rutabaga mutants that have altered cAMP levels

(Guan et al., 2011). The mechanism underlying this change in synaptic connectivity

is unclear, but given the lack of Radish expression at NMJ synapses, it likely

involves secondary effects to the loss of Radish in a compartment other than the

synapse. The reported interaction of Radish with the small GTPase Rac1

(Formstecher et al., 2005) suggests that cytoskeletal changes may disrupt synapse

formation or stability in radish mutants. Other Rac1 interactors such as the kinase

PAK1 (Hayashi et al., 2002) and the Fragile-X Mental Retardation protein (Schenck

et al., 2003; Hayashi et al., 2007) have been linked to changes in synaptic and

behavioral plasticity in mammals. Furthermore, Rac1 function has recently been

implicated in the act of forgetting in Drosophila (Shuai et al., 2010). Although a

robust interaction between Radish and Rac1 was not apparent in our yeast two-

hybrid system or in GST pull-down assays, such an interaction may be transient or

dependent on other factors in the cellular milieu.

I identified a number of potential Radish-interacting proteins in my yeast two-

hybrid screen, but none of them has a clear role in learning and memory reported in

the literature to date. A handful of interactors (Pellino, Pros26, and Pros 28.1)

pointed to a connection between Radish and proteasomal degradation. The

ubiquitin-proteasome system (UPS) has been shown to regulate presynaptic release

probability in Drosophila by affecting the levels of dUNC13 (Speese et al., 2003),
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and postsynaptic disruption of UPS function has been reported to cause altered

glutamate receptor abundance (Haas et al., 2007). Such changes in synaptic

physiology may contribute to the memory defects observed in radish mutants and

could secondarily lead to the changes in synaptic connectivity I observed at the

larval NMJ. Other Radish interactors identified in my yeast two-hybrid screen are

currently uncharacterized, including CG2982 and CG8216. CG2982 is intriguing

given its Jumanji C domain, which is often present in histone demethylases (Clissold

and Ponting, 2001), suggesting a role for Radish in the nucleus. In contrast, CG8216

lacks any clear functional domains, but its transcripts are enriched 32.5 times in the

brain relative to the whole fly (http://www.flyatlas.org). Both of these genes deserve

further study to evaluate their roles in memory formation and synaptic structure and

function.

In short, the precise function of Radish remains somewhat mysterious. I was

able to establish the localization of eGFP-tagged Radish in transgenic animals and

identified unique defects in synaptic connectivity in radish mutants. Primary

sequence analysis of the Radish protein, however, yielded few clues as to its

function, and none of the interactors identified in my yeast two-hybrid screen has a

clearly defined role in learning and memory. Regardless, a number of these

interactors are intriguing and deserve further investigation. Loss-of-function studies

testing ARM and synaptic structure and function could provide important insight into

the role of Radish in the nervous system. Furthermore, although I was able to show

that a surface-exposed fragment of Radish can be phosphorylated by recombinant
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PKA in vitro, the role of PKA phosphorylation of Radish in vivo remains untested.

Purification and mass spectrometry analysis of eGFP-tagged Radish from fly

extracts could identify key phosphorylated residues in vivo. Subsequent mutation of

these residues to phosphoincompetent amino acids would not only test the role of

phosphorylation in Radish trafficking between the nucleus and cytosol but also shed

light on the connection between Radish and PKA and, in turn, the connection

between short-term plasticity and long lasting forms of memory storage.

Methods

Drosophila genetics

Drosophila were cultured on standard medium at 220C. The rsh' mutants

were outcrossed into the Canton S (CS) genetic background, with CS serving as a

control for experimental manipulations.

eGFP-tagged and HA-tagged transgenic lines

Full-length Radish was cloned into pUAST in-frame with an N-terminal eGFP

tag or HA tag. Each construct was injected into embryos to generate multiple

independent transgenic lines that were subsequently crossed to elavc155-Gal4 and

mef2-Gal4 driver lines and screened for expression of eGFP.

Radish antibody generation

Residues 383-484 were identified as the most immunogenic fragment of

Radish using the Jameson-Wolf antigenicity index. This fragment, termed iRsh

(immunogenic Rsh), was subcloned into pGEX-5X-1, expressed, and purified as a

GST fusion protein. GST was then cleaved from iRsh using a Factor Xa Cleavage
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Capture Kit (Novagen). Anti-iRsh antiserum was generated in rabbits immunized

with the iRsh peptide (ProSci Inc.).

Immunohistochemical and western blot analysis

Anti-GFP antibodies (Invitrogen, #A1 1120) were used at 1:5,000 and detected

using goat anti-mouse antiserum conjugated to IRDye800 (Rockland, #610-132-

121). Anti-Complexin (Huntwork and Littleton 2007) antiserum was used at 1:1,000

and detected using goat anti-rabbit antiserum conjugated to Alexa Fluor 680

(Invitrogen, #A21076). Cell nuclei were detected with SYTO Orange (Molecular

Probes) at 1:1000. Western blot analysis was done using a LICOR Odyssey infrared

scanner (LICOR).

Yeast two-hybrid screen

Yeast two-hybrid assays were conducted using the Matchmaker system

(Clontech, Mountain View, CA). Full-length Radish was cloned into pGBKT7,

transformed into yeast strain AH109, and used to screen 1.5x1 06 transformants of a

pACT2 Matchmaker library generated from whole Drosophila adult cDNA (Clontech)

for growth on minimal media lacking leucine, tryptophan, histidine, and adenine.

DNA from colonies passing this screen was purified and retransformed into AH109

yeast cells carrying plasmid pGBKT7-rsh. Directed two-hybrid tests were conducted

with pGBKT7-rsh and Rac1 in pAct2 (Clontech). Yeast cells containing both prey

and bait constructs were selected on minimal media lacking leucine and tryptophan,

then restruck on plates additionally lacking histidine and adenine. Yeast colonies

were scored for growth after 3 d at 300C.
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NMJ morphological analysis

Immunostaining was performed on wandering third-instar larvae at room

temperature. Third-instar larvae were dissected in Drosophila HL3.1 physiological

saline and fixed in 4% formaldehyde for 30 min before staining anti-Complexin

antiserum at 1:500 or goat anti-HRP antiserum conjugated to DyLight 549 (Jackson

ImmunoResearch). Immunoreactive proteins were visualized on a Zeiss Pascal

confocal microscope. Rhodamine-phalloidin (Invitrogen) was used at 1:250 to stain

muscles for surface area measurements. Confocal images were quantified for

varicosity number, synapse branch number (branches with at least five boutons per

branch), innervation length along the muscle (measured as the distance between the

most distal boutons on muscles 6 and 7), muscle length, and muscle width. All error

measurements are SEM.

PKA phosphorylation assay

The Radish kinase assay was performed in triplicate using the catalytic

subunit of PKA (New England Biolabs) according to the manufacturer's instructions,

with the addition of [gamma-32P]ATP (Perkin Elmer). Approximately 10 mg of purified

GST-fusion protein was used per reaction and incubated with 2,500 units of

recombinant PKA. Reaction products were separated by SDS-PAGE, and the gels

were stained with Bio-Safe Coomassie (Bio-Rad), dried, and exposed to

autoradiography film for 30 min at room temperature.
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Figures

Figure 1. Characterization of Radish function and localization. (A)
Phosphorylation of a Radish protein fragment (amino acids 383-484) by the catalytic
subunit of PKA. Ten micrograms of recombinant GST alone (green arrowhead) or
GST-Radish (black arrowhead) was incubated with 0.5 mg of the PKA catalytic
subunit in the presence of [g32P]ATP. Coomassie staining of the SDS-PAGE gel is
shown at top, and the bottom panel shows the autoradiograph. (B) Quantification of
average varicosity number at muscles 6/7 NMJs in segment A3 in third-instar CS or
rshl larvae. Average varicosity number was significantly increased in rsh' (99.2 ±
3.2, n = 14) compared with CS (82.2 ± 2.1, n = 11). (***) P-value of Student's t-test
(P, 0.001). Error bars represent SEM. (C) Quantification of average innervation
length normalized to muscle surface length at muscles 6/7 NMJs in segments A3-A5
in third-instar CS or rshi larvae. Innervation length was significantly decreased in
rshl mutants (0.27 ± 0.014, n = 39) compared with CS (0.36 ± 0.017, n = 27). (*) P-
value of Student's t-test (P, 0.05). Error bars represent SEM. (D)
Immunocytochemistry with anti-Complexin antiserum on muscles 6/7 NMJs in
segment A3 of third-instar larvae. (E,F) Expression of UAS-rsh-GFP by elavc 55_
GAL4 in third-instar larvae. (E) Radish-GFP was concentrated in the nucleus of
salivary gland cells compared with GFP alone. (F) Colocalization of Radish-GFP
and DAPI in the nucleus of salivary gland cells. (G) Radish-GFP was concentrated
in the nucleus of muscle cells when driven by the Mef2-GAL4 driver. Nuclei were
counterstained with SYTO orange (shown in magenta). (H) Radish-GFP localized to
neuronal cell bodies in the ventral nerve cord and axons (arrows) in third-instar
larvae. (Middle) A magnified view of the framed area in the left panel. (Right)
Radish-GFP in nerve bundles (arrows) exiting the ventral nerve cord. Nuclei were
counterstained with SYTO orange (shown in magenta).

144



A kDa B Co
ER x

100
Goomassie 25- so

~60.

32P-ATP 40.Rds 0
~20-I

0-

D E

F---

G _ _ _ _

145



146



Professional acknowledgements

First and foremost, I would like to thank my thesis advisor, Troy Littleton, for

striking the perfect balance between not looking over my shoulder, yet always being

around for advice and encouragement. He has taken great care to create a lab

environment that is nurturing, supportive, and especially fun for all those who work in

it, and for this, he is truly exceptional. I would also like to thank my past thesis

committee members Mark Bear and Morgan Sheng and present thesis committee

members Chip Quinn, Yingxi Lin, and Mel Feany for their guidance and support

throughout this process. I would especially like to thank my committee chairman,

Chip Quinn, for helping me to maintain focus on the truly important questions and

avoid wasting time on minutiae. Thanks to Dina Volfson for technical assistance on

numerous experiments, particularly during my maternity leave. A special thanks to

Richard Cho and Ramon Jorquera for many helpful discussions and arguments

about complexin function. Finally, thanks to Avital Rodal and Timothy Mosca for their

seemingly endless knowledge of Drosophila neurobiology (among many other

topics) and for answering nearly all of my questions such that I rarely needed to

bother Troy with them.

147



148



Personal acknowledgements

I am incredibly grateful for the support of my wonderful husband, Derek Buhl. He is

my rock, my computer technician, my copy editor, my punching bag, my partner in

parenthood, and the love of my life. I could never have completed this thesis without

his help and encouragement. A special thanks to our beautiful daughter, Margot,

who has changed my life completely and irreversibly for the better. I love her more

than words can say. Another special thanks to our wonderful pug, Otis, who has

weathered the storm of a new baby and a thesis with incredible patience (save a few

small "accidents") and whose undying love makes coming home a joyful experience

every single day. I would like to thank my parents, Steve and Cynthia Barr, for their

continued support for my education as it extends into a third decade and for not

asking too often when I plan on graduating. Finally, I would like to thank all of my

friends and classmates who have helped me along the way and often suffered

through with me, in particular Peggy Hsu, who was there at the very beginning of this

MD/PhD adventure and has grown up with me in so many ways; Rachel Schecter,

who keeps me connected with the outside universe when I become too wrapped up

in my own little world and helps me forget about my troubles with gossip about the

troubles of celebrities and co-workers; and my fellow Littleton Lab graduate students

Sarah Huntwork-Rodriguez, Cindy Barber, Aline Blunk, Robin Stevens, Kurt Weiss,

and Jan Melom, who have worked, suffered, and partied alongside me for many

years and given me some wonderful memories as I move on to the next stage of my

career.

149



150


