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Abstract

An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical
theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and
squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law
for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern
treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive
equations we limit our attention to isotropic materials, and consider a model for the free energy based on a
Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled
with a non-Gaussian statistical-mechanical model for the change in configurational entropy — a model
which accounts for the limited extensibility of polymer chains. As representative examples of application of
the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained,
stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii)
consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across
elastomeric membranes.

Keywords : A. Gels B. Elastomeric materials C. Diffusion D. Large deformations E. Thermodynamics

1 Introduction

Elastomeric materials consist of a three-dimensional network of long polymer molecules which are laterally
attached to one another at occasional points along their length; the attachment points are called cross-links.
The basic physical elements of the network are the portions of molecules reaching from one cross-linkage
to the next, and are called the chains in the network. The elastic reactive forces in such materials arise
principally from the decrease in the configurational entropy of the chains as the material is stretched.

There are numerous elastomeric materials which can absorb large quantities of suitable fluids without
the essential skeletal network structure of the elastomer being disrupted by the action of the fluid. Such a
polymer network, together with the fluid molecules, forms a swollen aggregate called an elastomeric gel.1

Elastomeric gels are ubiquitous; they are found in foods and medicines, and they find use in several important
and diverse applications including valves for microfluidic devices, and tissue engineering. Indeed, many body
parts in humans and other animals are gel-like in constitution.

Early studies of swelling of gels are due to Tanaka and co-workers (cf., e.g., Tanaka and Filmore, 1979),
and in recent years there have been several notable attempts to formulate a coupled deformation-diffusion

∗Tel.: +1-617-253-1635; E-mail address: anand@mit.edu
1Gels can also be made from colloidal solutions, and such gels are called colloidal gels. In this paper we restrict our attention

to elastomeric gels, and within this class of materials we further restrict our attention to non-ionic gels.
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theory for describing more complete aspects of the response of gels, including swelling and drying, squeezing
of fluid by applied mechanical deformation, and forced permeation; cf., e.g., Durning and Morman (1993),
Baek and Srinivasa (2004), Hong et al. (2008), Doi (2009), and the recent paper of Duda et al. (2010),
and references to the vast literature therein. However, a suitable theory appears still not to be widely
agreed upon. The purpose of this paper is to develop a thermodynamically-consistent, large-deformation,
continuum-mechanical theory to describe the mutual interaction of mechanics and chemistry for solids capa-
ble of absorbing fluid-like chemical species, when the fluid-solid mixture is treated as a single homogenized

continuum body which allows for a mass flux of the fluid.2 Although differing in the details of its development,
our theory has many similarities to the recent theories of Hong et al. (2008) and Duda et al. (2010).3

An essential kinematical ingredient of our theory is a multiplicative decomposition

F = FeFs, with Fs = λs1, λs > 0,

of the deformation gradient F into elastic and swelling parts Fe and Fs, respectively, with the swelling taken
to be isotropic, where λs is the swelling stretch.4 The roots of this kinematical decomposition of F for
discussing the swelling and mechanical stretching of elastomeric materials are attributed to Flory (1950).5

Following Flory (1950, 1953), Boyce and Arruda (2001), and Duda et al. (2010), we adopt this kinematical
decomposition of F in formulating our coupled deformation-diffusion theory.

In what follows, we review the basic laws for the balance of forces and the balance of fluid content, and
formulate a frame-indifferent and thermodynamically-consistent coupled deformation-diffusion theory for
elastomeric gels. In discussing special constitutive equations, we limit our attention to isotropic materials,
and consider a model for the free energy based on a Flory-Huggins theory for the free energy change due to
mixing of the fluid with the polymer network (cf., e.g., Doi, 1996, 2009), and a statistical-mechanical model
for the change in configurational entropy of the polymer chains as they are stretched. It has been common
practice in the recent literature on the swelling of gels (Baek and Srinivasa, 2004; Hong et al., 2008; Doi,
2009; Duda et al., 2010) to model the changes in configurational entropy due to mechanical stretching, based
on classical Gaussian-statistics, which unfortunately is valid only for small stretches. For larger stretches,
as are typically encountered in highly-swollen gels, it is necessary to use non-Gaussian statistics to account
for the limited extensibility of the polymer chains. Thus, unlike the recent theories in the literature, here
we consider a mechanical contribution to the free energy based on the more realistic non-Gaussian statistics
(cf., Treloar, 1975; Arruda and Boyce, 1993; Anand, 1996; Bischoff et al., 2001).

As representative examples of application of the theory, we study (a) isotropic three-dimensional swelling-
equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional
transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-
difference-driven diffusion of organic solvents across elastomeric membranes. For the last example, we also
compare results from our numerical calculations, against corresponding experimental results of Paul and
Ebra-Lima (1970) for the steady-state diffusion across a membrane.

2And not as a multi-component mixture, as in the Theory of Mixtures (cf. e.g. Bowen, 1969; Truesdell, 1984; Rajagopal,
2003); as is well-known, there are inherent difficulties associated with specifying boundary conditions within the context of a
mixture theory.

3However, we do note that while the basic balance laws are deduced by Duda et al. (2010) by adapting a virtual-power
format proposed by Podio-Guidugli (2009), here we follow a different, more traditional and direct approach, which is in the
spirit of the developments of Fried and Gurtin (1999, 2004) for coupled elastic deformation and diffusion of atomic/molecular
species.

4Such a decomposition is widely used in plasticity theories, where Fs is written as Fp, and represents the plastic part of F

(Kröner, 1960; Lee 1969); in plasticity theory Fp is of course not taken to be spherical. Also see Lubarda (2004), who discusses
the history and use of such a multiplicative decomposition of the deformation gradient in a variety of situations, including
isotropic thermoelasticity, and isotropic growth in bio-mechanics.

5An explicit decomposition of the deformation gradient is not apparent in the paper by Flory (1950); although, writing α

for the stretch, he does distinguish between a total stretch α, and a swelling stretch αs.
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2 Kinematics

Consider a fluid-free (dry) macroscopically-homogeneous elastomeric body. In what follows, the spatially-
continuous fields that define our continuum theory represent averages meant to apply at length scales which
are large compared to the length scales associated with the molecular network and its microscopic-scale
free-volume. We identify such a macroscopically-homogeneous body B with the region of space it occupies
in a fixed reference configuration, and denote by X an arbitrary material point of B. A motion of B is then
a smooth one-to-one mapping x = χ(X, t) with deformation gradient, velocity, and velocity gradient given
by6

F = ∇χ, v = χ̇, L = gradv = ḞF−1. (2.1)

We base the theory on a multiplicative decomposition of the deformation gradient

F = FeFs, with Fs = λs1, λs > 0. (2.2)

Here, suppressing the argument t:

• Fs(X) represents the local distortion of the material at X due to swelling, and λs is the swelling stretch.
This local deformation accounts for the swelling of the material due to absorbed fluid molecules which
are pinned to the coherent polymer network structure that resides in the structural space7 at X (as
represented by the range of Fs(X));

• Fe(X) represents the subsequent stretching and rotation of this coherent swollen network structure,
and thereby represents a corresponding mechanical elastic distortion.

We refer to Fs and Fe as the swelling and elastic distortions. Figure 1 schematically shows the mapping
properties of F, Fs, and Fe.

We write
J

def
= detF > 0, (2.3)

and hence, using (2.2),

J = JeJs, where Je def
= detFe > 0 and Js def

= detFs > 0. (2.4)

Thus, using (2.2)2,
Js = (λs)3. (2.5)

As is standard,
F = RU = VR and Fe = ReUe = VeRe, (2.6)

denote the right and left polar decompositions of F and Fe, respectively, with U, V, Ue and Ve symmetric
and positive definite tensors, and R and Re rotations. Also, the tensors

C = U2 = F⊤F, B = V2 = FF⊤, and Ce = Ue2 = Fe⊤Fe, Be = Ve2 = FeFe⊤, (2.7)

denote the total and elastic right and left Cauchy-Green tensors.
Next, by (2.1)3 and (2.2),

L = Le + FeLsFe−1, (2.8)

with
Le = ḞeFe−1, Ls = ḞsFs−1. (2.9)

6Notation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: ∇ and Div denote
the gradient and divergence with respect to the material point X in the reference configuration; grad and div denote these
operators with respect to the point x = χ(X, t) in the deformed body; a superposed dot denotes the material time-derivative.
Throughout, we write Fe−1 = (Fe)−1, Fe−⊤ = (Fe)−⊤, etc. We write trA, symA, skwA, A0, and sym0A respectively, for
the trace, symmetric, skew, deviatoric, and symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and
B is denoted by A :B, and the magnitude of A by |A| =

√
A :A.

7Also sometimes referred to as the intermediate or relaxed local space at X.
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As is standard, we define the elastic and swelling stretching and spin tensors through

De = symLe,

Ds = symLs,

We = skwLe,

Ws = skwLs,

}

(2.10)

so that Le = De + We and Ls = Ds + Ws.
Further from (2.2), (2.9)2, and (2.10)

Ds =
(
λ̇sλs−1

)
1 and Ws = 0; (2.11)

and since
J̇s = Js trDs, (2.12)

we also have

Ds =
1

3

(
J̇sJs−1

)
1. (2.13)

3 Frame-indifference

A change in frame, at each fixed time t is a transformation — defined by a rotation Q(t) and a spatial point
y(t) — which transforms spatial points x to spatial points

x∗ = F(x), (3.1)

= y(t) + Q(t)(x − o), (3.2)

the function F represents a rigid mapping of the observed space into itself, with o a fixed spatial origin. By
(3.2) the transformation law for the motion x = χ(X, t) has the form

χ
∗(X, t) = y(t) + Q(t)(χ(X, t) − o). (3.3)

Hence the deformation gradient F transforms according to

F∗ = QF. (3.4)

The reference configuration and the intermediate structural space are independent of the choice of such
changes in frame; thus the fields

Fs = λs1, Js, and Ls ≡ Ds =
(
J̇sJs−1

)
1 are invariant under a change in frame, (3.5)

which also of course follows from the fact that Fs is spherical. This observation, (2.2), and (3.4) yield the
transformation law

Fe ∗ = QFe. (3.6)

4 Balance of forces and moments

Throughout, we denote by P an arbitrary part (subregion) of the reference body B with nR the outward unit
normal on the boundary ∂P of P.

Since time scales associated with fluid diffusion are usually considerably longer than those associated
with wave propagation, we neglect all inertial effects. Then standard considerations of balance of forces and
moments, when expressed referentially, give:

(a) There exists a stress tensor TR, called the Piola stress, such that the surface traction on an element of
the surface ∂P of P, is given by

s(nR) = TRnR. (4.1)
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(b) TR satisfies the macroscopic force balance

DivTR + bR = 0, (4.2)

where bR is an external body force per unit reference volume, which, consistent with neglect of inertial
effects, is taken to be time-idependent.

(c) TR obeys the the symmetry condition
TRF⊤ = FT⊤

R
, (4.3)

which represents a balance of moments.

Further, under a change in frame TR transforms as

T∗

R
= QTR. (4.4)

Finally, as is standard, the Piola stress TR is related to the standard symmetric Cauchy stress T in the
deformed body by

TR = J TF−⊤, (4.5)

so that
T = J−1TRF⊤. (4.6)

5 Fluid content. Balance law for the fluid content

Let
cR(X, t) (5.1)

denote the number of fluid molecules absorbed by the elastomer, reckoned per unit volume of the dry reference

configuration. We call cR the fluid content.
Define a fluid flux jR, measured per unit area, per unit time, so that −

∫

∂P
jR · nRdaR represents the

number of fluid molecules entering P across ∂P, per unit time. In this case the balance law for fluid content

takes the form
˙∫

P

cR dvR = −
∫

∂P

jR · nR daR, (5.2)

for every part P. Bringing the time derivative in (5.2) inside the integral and using the divergence theorem
on the integral over ∂P, we find that ∫

P

(ċR + Div jR) dvR = 0. (5.3)

Since P is arbitrary, this leads to a (local) balance law for fluid content

ċR = −Div jR. (5.4)

6 Free energy imbalance

We consider a purely mechanical theory based on an energy imbalance that represents the first two laws
of thermodynamics under isothermal conditions. This imbalance requires that the temporal increase in free

energy of any part be less than or equal to the power expended on that part plus the free energy carried into

P by fluid transport. Thus, letting ψR denote the free energy per unit reference volume, the second law takes
the form

˙∫

P

ψR dvR ≤
∫

∂P

TRnR
︸ ︷︷ ︸

s(nR)

·χ̇ daR +

∫

P

bR · χ̇ dvR + T (P), (6.1)
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for each part P, where the term T (P) represents the free energy flow due to fluid transport. We characterize
this flow through a chemical potential µ; specifically, following Gurtin (1996) and Fried and Gurtin (1999,
2004), we assume that the fluid flux jR carries with it a flux of energy described by µ jR, so that

T (P) = −
∫

∂P

µ jR · nR daR. (6.2)

Thus, using (6.2) in (6.1) we are led to

˙∫

P

ψR dvR ≤
∫

∂P

TRnR · χ̇ daR +

∫

P

bR · χ̇ dvR −
∫

∂P

µ jR · nR daR. (6.3)

Bringing the time derivative inside the integral, and using the divergence theorem on the integrals over ∂P,
reduces (6.3) to

∫

P

ψ̇R dvR ≤
∫

P

(

TR : Ḟ− µDiv jR − jR · ∇µ
)

dvR +

∫

P

(

DivTR + bR

)

· χ̇ dvR. (6.4)

Using (4.2) and (5.4), and since P is arbitrary, (6.4) yields the local free energy imbalance

ψ̇R − TR : Ḟ− µċR + jR · ∇µ ≤ 0. (6.5)

Next, using (2.2) , (2.9)2 and (4.5),

TR : Ḟ = TR : (ḞeFs + FeḞs)

= (TRFs⊤) : Ḟe + (Fe⊤TR) : Ḟs,

= (TRFs⊤) : Ḟe + (Fe⊤TRFs⊤) :Ls,

= (JTFe−⊤) : Ḟe + (JFe⊤TFe−⊤) :Ls.

For convenience, we define two new stress measures

Te def
= JTFe−⊤ and Me def

= JFe⊤TFe−⊤. (6.6)

Then
TR : Ḟ = Te : Ḟe + Me :Ls . (6.7)

Next, recalling (2.11)2 and (2.13), we may write (6.7) as

TR : Ḟ = Te : Ḟe +
1

3
Js−1(trMe)J̇s. (6.8)

Let

p̄
def
= −1

3
Js−1(trMe) = −1

3
Js−1tr(JFe⊤TFe−⊤) = −1

3
JetrT, (6.9)

define a mean normal pressure. Then, using (6.9), the stress-power (6.8) may be written as

TR : Ḟ = Te : Ḟe − p̄J̇s. (6.10)

Hence, using (6.10) in (6.5), the local free energy imbalance may be written as

ψ̇R − Te : Ḟe + p̄J̇s − µċR + jR · ∇µ ≤ 0. (6.11)
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6.1 Kinematical constraint between c
R

and Js for elastomers

Now,
Js − 1 (6.12)

represents the change in volume per unit reference volume due to swelling. We assume that this change

arises entirely due to the change in the fluid content, so that with υ denoting the volume of a fluid molecule
(presumed to be constant) we have the important swelling constraint

Js = 1 + υcR, (6.13)

or equivalently that
J̇s = υċR. (6.14)

Note that on account of (2.5), the constraint (6.14) may also be stated as

λs = (1 + υcR)1/3. (6.15)

Upon enforcing the constraint (6.14), the free energy imbalance (6.11) becomes

ψ̇R − Te : Ḟe − µact ċR + jR · ∇µ ≤ 0, (6.16)

where we have written
µact

def
= µ− p̄ υ , (6.17)

for an active chemical potential.

6.2 Kinematical constraint of elastic incompressibility

As is standard, we consider the permeating fluid to be incompressible. Next, for most elastomeric materials
the bulk modulus is two or more orders of magnitude higher than the shear modulus, and these materials
are also typically approximated to be mechanically incompressible. Accordingly, we consider the overall
mechanical or “elastic” response of an elastomeric gel to be incompressible. This assumption is embodied in
the constraint

Je ≡ detFe = 1, (6.18)

or equivalently that

J̇e = Jetr (ḞeFe−1) = 0 ⇒ tr(ḞeFe−1) = 0 ⇒ Fe−⊤ : Ḟe = 0. (6.19)

The essential change induced by the constraint of elastic incompressibility lies with how the elastic stress
power Te : Ḟe enters the free energy imbalance (6.16). Note that the elastic stress power is unaltered by
adding a term of the form P Fe−⊤ : Ḟe, where P is an arbitrary scalar field. We may therefore write

Te : Ḟe = Te : Ḟe + P Fe−⊤ : Ḟe
︸ ︷︷ ︸

=0

= Te
act

: Ḟe, (6.20)

where
Te

act

def
= Te + P Fe−⊤, (6.21)

defines an active elastic stress. Also, recalling (6.6)1, Te itself is now given by

Te = JsTFe−⊤. (6.22)

Thus, accounting for the elastic incompressibility constraint, the free energy imbalance (6.16) becomes

ψ̇R − Te
act

: Ḟe − µact ċR + jR · ∇µ ≤ 0. (6.23)

In what follows we shall prescribe a constitutive equation for Te
act

. The field P does not expend power;
it is irrelevant to the internal thermodynamic structure of the theory and for that reason is considered
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indeterminate — that is, it is not specified constitutively; instead it is determined by the solution to the
mechanical boundary value problem with appropriate boundary conditions.

Using (3.4) and (4.4), we note that Te
act

transforms as

Te∗
act

= QTe
act
, (6.24)

under a change in frame, and also that

ψR, p̄, µ and ∇µ are invariant under a change in frame; (6.25)

ψR, p̄, and µ because they are scalars, and ∇µ because ∇ is a referential gradient.

7 Constitutive theory

7.1 Basic constitutive equations

Guided by the dissipation inequality (6.23), we assume that the free energy, ψR, the active stress, Te
act

, the
active chemical potential, µact, and the fluid flux, jR, are given by

ψR = ψ̂R(Fe, cR),

Te
act

= T̂e
act

(Fe, cR),

µact = µ̂act(F
e, cR),

jR = ĵR(Fe, cR,∇µ);







(7.1)

with Fe constrained to satisfy detFe = 1. For simplicity, from the outset we have assumed that the
constitutive equations for the free energy, active stress, and active chemical potential are independent of ∇µ,
and depend only on the mechanical deformation gradient Fe and the fluid content cR.

7.2 Consequences of the principle of material frame-indifference

The principle of material frame-indifference asserts that the constitutive equations (7.1) must be independent
of the observer. Using the transformation rules (3.6), (6.24) and (6.25), we find that the constitutive equations
must satisfy

ψR = ψ̂R(QFe, cR),

Te
act

= Q⊤T̂e
act

(QFe, cR),

µact = µ̂act(QFe, cR),

jR = ĵR(QFe, cR,∇µ),







(7.2)

for every rotation Q and all Fe, cR, and ∇µ in the domain of the constitutive functions.
By the polar decomposition theorem, Fe = ReUe, where Re is a rotation, and Ue is symmetric and

positive definite. Since (7.28) must hold for all rotations Q, they must hold when Q takes the value Re⊤, in
which case we obtain

ψR = ψ̂R(Ue, cR),

Te
act

= ReT̂e
act

(Ue, cR),

µact = µ̂act(U
e, cR),

jR = ĵR(Ue, cR,∇µ).







(7.3)

Recall (2.7)3, viz.
Ce = Fe⊤Fe, (7.4)
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and in (7.28) replace Re by FeUe−1 and Ue by
√

Ce; this reduces (7.3) to

ψR = ψ̄R(Ce, cR),

Te
act

= FeT̄e
act

(Ce, cR),

µact = µ̄act(C
e, cR),

jR = j̄R(Ce, cR,∇µ).







(7.5)

7.3 Thermodynamic restrictions

With a view towards determining the restrictions imposed by the local free energy imbalance (6.23), note
that

ψ̇R =
∂ψ̄R

∂Ce
: Ċe +

∂ψ̄R

∂cR
ċR. (7.6)

Further, using the symmetry of ∂ψ̄R/∂C
e,

∂ψ̄R

∂Ce
: Ċe =

∂ψ̄R

∂Ce
: (2Fe⊤Ḟe) =

(

2Fe ∂ψ̄R

∂Ce

)

: Ḟe.

Thus,

ψ̇R =
(

2Fe ∂ψ̄R

∂Ce

)

: Ḟe +
∂ψ̄R

∂cR
ċR. (7.7)

If we substitute (7.5) and (7.7) into (6.23) we find that

(

2Fe ∂ψ̄R

∂Ce
− FeT̄e

act

)

: Ḟe +
(∂ψ̄R

∂cR
− µ̄act

)

ċR + j̄R(Ce, cR,∇µ) · ∇µ ≤ 0. (7.8)

This inequality is to hold for all values of Ce, cR, and ∇µ. Since Ḟe and ċR appear linearly, their “coeffi-
cients” must vanish, for otherwise Ḟe and ċR, may be chosen to violate (7.8). We are therefore led to the
thermodynamic restrictions that the free energy determines the active stress Te

act
and the active chemical

potential µact through the “state relations”

Te
act

= 2Fe ∂ψ̄R(Ce, cR)

∂Ce
,

µact =
∂ψ̄R(Ce, cR)

∂cR
,







(7.9)

and that the response function j̄R satisfies the fluid-transport inequality

j̄R(Ce, cR,∇µ) · ∇µ ≤ 0. (7.10)

We assume henceforth that the fluid-transport inequality is strict in the sense that

j̄R(Ce, cR,∇µ) · ∇µ < 0 when ∇µ 6= 0. (7.11)

Recalling (6.17) and (6.21), the state relations (7.9) yield

Te = 2Fe ∂ψ̄R(Ce, cR)

∂Ce
− PFe−⊤,

µ =
∂ψ̄R(Ce, cR)

∂cR
+ p̄υ.







(7.12)

Further, recalling that

Je = 1, J ≡ Js = (1 + υcR), Te = JTFe−⊤, and TR = TeFs−⊤, (7.13)
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(7.12) gives

T = J−1

[

2Fe ∂ψ̄R(Ce, cR)

∂Ce
Fe⊤ − P1

]

, (7.14)

and

TR = 2Fe ∂ψ̄R(Ce, cR)

∂Ce
Fs−⊤ − PF−⊤. (7.15)

Also, from (6.9) and (7.14),

p̄ = −1

3

(

J−1 2Ce :
∂ψ̄R(Ce, cR)

∂Ce

)

+ J−1P . (7.16)

For later use, we note that from (7.12)2 and use of the chain-rule, that

µ̇− ˙̄p υ =
(∂2ψ̄R(Ce, cR)

∂cR∂Ce

)

: Ċe +
(∂2ψ̄R(Ce, cR)

∂c2
R

)

ċR. (7.17)

For convenience, we introduce a scalar modulus Λ(Ce, cR), and a tensor modulus Λ(Ce, cR), defined by

Λ(Ce, cR)
def
=
(∂2ψ̄R(Ce, cR)

∂c2
R

)

and Λ(Ce, cR)
def
=
(∂2ψ̄R(Ce, cR)

∂cR∂Ce

)

. (7.18)

We assume further that the scalar modulus Λ(Ce, cR) is non-zero, so that by (7.17), ċR may be related to
changes in µ, p̄ and Ce by

ċR = Λ(Ce, cR)−1

(

µ̇− ˙̄p υ − Λ(Ce, cR) : Ċe

)

. (7.19)

7.4 Fluid flux

We assume henceforth that the constitutive equation (7.5)4 for the fluid flux obeys a Darcy-type relation.
That is, the fluid flux jR depends linearly on the chemical potential gradient ∇µ,

jR = −M(Ce, cR)∇µ, (7.20)

where M is a mobility tensor. Note that on account of (7.11), the mobility tensor is positive definite.

Remark 1:

The general equations derived in this paper have been recently also derived (from different beginnings and
in a different notation) by Duda et al. (2010). The following correspondence exists between the work of
Duda et al., and that presented here:

1. Balance of forces and fluid content: Duda et al. eq. (8) ≡ Eqs. (4.2) and (5.4) of this paper.

2. Free energy imbalance: Duda et al. eq. (12) ≡ Eq. (6.5).

3. State relations for stress and chemical potential: Duda et al. eq. (28) ≡ Eq. (7.12).

4. Fluid-transport inequality: Duda et al. eq. (29) ≡ Eq. (7.10).

7.5 Isotropic materials

Henceforth we confine our attention to isotropic materials. The following definitions help make precise our
notion of an isotropic material (cf., Anand and Gurtin, 2003, and Anand et al., 2009):

(i) Orth+ = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group GR, is the group of all rotations of the reference configuration that leaves the
response of the material unaltered;

(iii) the symmetry group GI at each time t, is the group of all rotations of the intermediate structural space
that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transformations.
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7.5.1 Isotropy of the reference configuration

Let Q be a time-independent rotation of the reference configuration. Then F → FQ, and hence

Fs → FsQ, and Fe is invariant. (7.21)

We may therefore use (2.7)3 to conclude that

Ce is invariant. (7.22)

Since Te
act

and µ are derived from the free energy function, we need only focus on the effect of such a
symmetry transformation of the reference space on ψ̄R(Ce, cR).

• Thus, using (7.22) we see that ψ̄R(Ce, cR) and hence the constitutive equations (7.12) are unaffected
by such rotations of the reference configuration.

Next, concerning the constitutive equation (7.20) for the species flux, mimicking a standard result from
the theory of finite thermoelasticity (cf., Gurtin, Fried, Anand, 2010, Section 57.8), under a symmetry
transformation Q for the reference configuration, the referential gradient of the chemical potential ∇µ and
the species flux jR transform as

∇µ→ Q⊤∇µ, jR → Q⊤jR.

Hence, from (7.20) the mobility tensor must obey

M(Ce, cR) = Q⊤M(Ce, cR)Q (7.23)

for all rotations Q in the symmetry group GR.
We refer to the material as initially isotropic (and to the reference configuration as undistorted) if

GR = Orth+ (7.24)

so that the response of the material is invariant under arbitrary rotations of the reference space. Henceforth

• we restrict attention to materials that are initially isotropic.

In this case, the mobility tensor has the standard representation

M(Ce, cR) = m(Ce, cR)1, with m(Ce, cR) > 0 (7.25)

a scalar mobility.

7.5.2 Isotropy of the intermediate structural space

Next, let Q, a time-independent rotation of the intermediate space, be a symmetry transformation. Then F

is unaltered by such a rotation, and hence

Fe → FeQ and Fs → Q⊤Fs, (7.26)

and also
Ce → Q⊤CeQ. (7.27)

Again, since Te
act

and µ are derived from the free energy function, we need only focus on the effect of such a
symmetry transformation of the intermediate space on ψ̄R(Ce, cR). In addition we also need to consider the
effect of the symmetry transformation on the scalar mobility m(Ce, cR) in (7.25). Using (7.27)1 we conclude
that

ψ̄R(Ce, cR) = ψ̄R(Q⊤CeQ, cR),

m(Ce, cR) = m(Q⊤CeQ, cR),

}

(7.28)

must hold for all rotations Q in the symmetry group GI at each time t.
We refer to the material as one which is continually isotropic, if in addition to the referential isotropy

discussed in the previous subsection,
GI = Orth+, (7.29)

so that the response of the material is also invariant under arbitrary rotations of the intermediate space at
each time t. Henceforth

11



• we restrict attention to materials that are not only initially, but also continually isotropic.

In this case, the response functions ψ̄R and m must also each be isotropic. Thus, ψ̄(Ce, cR) has the repre-
sentation

ψ̄(Ce, cR) = ψ̃(ICe , cR), (7.30)

where
ICe =

(
I1(C

e), I2(C
e)
)

is the list of principal invariants of Ce for an elastically-incompressible material. Also the scalar mobility
m(Ce, cR) has the representation

m(Ce, cR) = m(ICe , cR). (7.31)

In this case (7.20) becomes8

jR = −m(ICe , cR)∇µ. (7.32)

8 Specialization of the free energy function ψ
R

The constitutive equations considered thus far are fairly general. With a view towards applications we now
specialize the theory by imposing additional constitutive assumptions. We begin by assuming that the free
energy ψR may be written in a separable form as (cf., e.g., Flory, 1953)

ψ̄R(Ce, cR) = µ0cR + ψR,mixing(cR) + ψR,mechanical(C
e, cR), (8.1)

where µ0 is the chemical potential of the unmixed pure solvent, ψR,mixing(cR) is the change in free energy
due to mixing of the solvent with the polymer network, and ψR,mechanical(C

e, cR) is the contribution to the
change in the free energy due to the deformation of the polymer network.

Estimate for ψ
R,mixing

In the literature on swelling of elastomers, the quantity

φ
def
= (1 + υcR)−1 = (λs)−3 = Js−1, 0 < φ ≤ 1, (8.2)

is called the polymer volume fraction. The dry state corresponds to φ = 1, and φ < 1 represents a swollen
state.

Following Doi (1996, 2009), we adopt the following form of the Flory (1942)-Huggins (1942) theory for
the contribution to the free energy due to mixing

ψR,mixing =
kBϑ

υ

1

φ

(

(1 − φ) ln(1 − φ) + χφ(1 − φ)
)

, (8.3)

where kB is Boltzmann’s constant, ϑ is the absolute temperature, and χ is a dimensionless parameter (called
the chi-parameter, or interaction parameter), which represents the dis-affinity between the polymer and the
the fluid;

• if χ is increased the fluid molecules are expelled from the gel and the gel shrinks, while if χ is decreased,
the gel swells.

The expression (8.3) for the mixing energy when expressed in terms of cR is

ψR,mixing(cR) = kBϑcR

(

ln
( υcR

1 + υcR

)

+ χ
( 1

1 + υcR

)
)

. (8.4)

8Note that our eq. (7.32) for the referential fluid flux differs from eq. (67) of Duda et al. (2010), who presume an equation
of the form j = −m̂(c)grad µ in the deformed body (cf., also Section 4 of Hong et al., 2008). In our theory, material symmetry
considerations involving rotations of the referential and structural space directly lead to (7.32).
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Estimate for ψ
R,mechanical

In elastomeric materials, the major part of ψR,mechanical arises from an “entropic” contribution. Let

λ̄
def
=

1√
3

√
trC (8.5)

define an effective stretch, then classical statistical mechanics models of rubber elasticity (cf., Treloar, 1975;
Arruda and Boyce, 1993; Anand, 1996; Bischoff et al., 2001) provide the following estimates for the entropy
change due to mechanical stretching:

1. For small to moderate values of λ̄, based on Gaussian statistics,

ηR,mechanical = −3

2
NR kB (λ̄2 − 1) +NR kB lnJ, (8.6)

where NR represents the number of polymer chains per unit reference volume.

2. For larger values of λ̄ it is necessary to use non-Gaussian statistics to account for the limited extensibility
of the polymer chains, and for these circumstances the entropy change is given by

ηR,mechanical = −NRkBλ
2
L

[(
λ̄

λL

)

β + ln

(
β

sinhβ

)

−
(

1

λL

)

β0 − ln

(
β0

sinhβ0

)]

+NRkB lnJ, (8.7)

with

β
def
= L−1

(
λ̄

λL

)

, and β0
def
= L−1

(
1

λL

)

, (8.8)

where L−1 is the inverse of the Langevin function L(x) = coth(x) − (x)−1. This functional form for
the change in entropy involves two material parameters: NR, the number of polymer chains per unit
reference volume, and λL, the network locking stretch.9

In what follows, we consider the more general form (8.7) for the entropy change, but when needed we also
specialize our results for the simpler estimate (8.6) based on Gaussian statistics.

Let ϑ denote the constant temperature under consideration. Then, neglecting any energetic contribution
to mechanical stretching (as is typically assumed), using (2.4), (8.6) – (8.8), Je = 1, the identities

trC = (λs)2 tr(Ce) = (1 + υcR)2/3 tr(Ce), lnJ = ln(1 + υcR), (8.9)

and writing

G0
def
= NR kB ϑ, (8.10)

for a ground-state shear modulus at the constant temperature under consideration, we obtain the estimate

ψR,mechanical(C
e, cR) = G0λ

2
L

[(
λ̄

λL

)

β+ ln

(
β

sinhβ

)

−
(

1

λL

)

β0 − ln

(
β0

sinhβ0

)]

−G0 ln(1+υcR), (8.11)

with

β = L−1

(
λ̄

λL

)

, and β0 = L−1

(
1

λL

)

, (8.12)

where, using (8.5) and (8.9),

λ̄ = ˆ̄λ(Ce, cR) =
1√
3
(1 + υcR)1/3

√
trCe. (8.13)

9In the non-Gaussian model, the network locking stretch λL is related to the number of links n in a freely-jointed chain by
λL =

√
n.
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Total free energy, stress, chemical potential

Thus, using (8.4) and (8.11) in (8.1), a simple form of the free energy function which accounts for the
combined effects of mixing, swelling, and elastic stretching is

ψR = µ0cR + kBϑcR

(

ln
( υcR

1 + υcR

)

+ χ
( 1

1 + υcR

)
)

+G0λ
2
L

[(
λ̄

λL

)

β + ln

(
β

sinhβ

)

−
(

1

λL

)

β0 − ln

(
β0

sinhβ0

)]

−G0 ln(1 + υcR).

(8.14)

Then, using (7.14), we find that the Cauchy stress tensor is given by

T = J−1
[

G (1 + υcR)2/3Be − P1
]

, (8.15)

where

G
def
= G0 ζ with ζ

def
=

(
λL

3λ̄

)

L−1

(
λ̄

λL

)

, (8.16)

is a generalized shear modulus, and Be is the elastic left Cauchy-Green tensor. Note that since L−1(z) → ∞
as z → 1, the stretch-dependent shear modulus G → ∞ as (λ̄/λL) → 1. Also, since the first two terms in
the series expansion of the inverse Langevin function are L−1(z) = 3 z + (9/5) z3 + . . ., for small departures
of the effective stretch form unity we have ζ ≈ 1, and hence that G ≈ G0.

Next, on account of (2.5) and (6.14),

(1 + υcR)2/3 = (λs)2,

and also since
B = (λs)2Be, (8.17)

where B = FF⊤ is the left Cauchy-Green tensor, (8.15) reduces to

T = J−1 [GB− P1] . (8.18)

Hence the Piola stress, TR = JTF−⊤, is given by

TR = GF − PF−⊤. (8.19)

Also using (7.12)2 and (8.14) the chemical potential µ is given by

µ = µ0 + kBϑ

(

ln
( υcR

1 + υcR

)

+
1

(1 + υcR)
+ χ

1

(1 + υcR)2

)

+G λ̄2 (1 + υcR)−1 υ −G0 (1 + υcR)−1 υ + p̄υ.

(8.20)

Further, from (6.9), (8.18), (8.13) and using (8.2), viz.

J−1 ≡ Js−1 = (1 + υcR)−1 = φ,
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we obtain

p̄ = −Js−1

[

G
1

3
(1 + υcR)2/3trBe − P

]

,

= −Gλ̄2(1 + υcR)−1 + Pφ, (8.21)

use of which in (8.20) gives

µ = µ0 + kBϑ
(

ln(1− φ) + φ+ χφ2
)

− υG0φ+ υPφ. (8.22)

Remark 2:

For a theory based on Gaussian statistics for configurational changes in entropy, cf. eq. (8.6), the generalized
shear modulus is no longer stretch-dependent, so that G = G0, and the expression (8.18) for the stress,
reduces to

T = J−1(G0B− P1), (8.23)

while the expression (8.22) for the chemical potential remains unchanged. In Section 10 where we discuss a
few applications of our theory, we will compare results using a theory based on Gaussian statistics against
those based on the more general non-Gaussian statistics.

9 Governing partial differential equations for the deformation and

fluid content fields. Boundary conditions

The governing partial differential equations consist of

1. The swelling constraint (6.13) (with detFe = 1),

detF = (1 + υcR). (9.1)

2. The local force balance for the macroscopic Piola stress,

DivTR + bR = 0, (9.2)

with TR given by (8.19).

3. Use of (7.32) in the balance equation (5.4) for the fluid content gives

ċR = Div (m∇µ), (9.3)

in which m = m̂(ICe , cR) > 0 is the scalar fluid mobility, and the chemical potential µ is given by
(8.22).

In applications it may be advantageous to use (7.19), (7.32), (8.13), and (8.20) and express (9.3) as

µ̇ = Λ Div (m∇µ) + ˙̄pυ + Λ : Ċe, (9.4)

with the moduli

Λ
def
=

∂2ψ̄R(Ce, cR)

∂c2
R

= kBϑ

[
1

cR(1 + υcR)
− υ

(1 + υcR)2
− 2χυ

(1 + υcR)3

]

(9.5)

− 1

3
G0

[

ζ λ̄2 − λ̄3 ∂ζ

∂λ̄

]
υ2

(1 + υcR)2
+G0

υ

(1 + υcR)2
, (9.6)
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and

Λ
def
=

∂2ψ̄R(Ce, cR)

∂cR∂Ce
=

1

6
G0

(
υ

(1 + υcR)1/3

)(

λ̄
∂ζ

∂λ̄
+

1

2
ζ

)

1, (9.7)

calculated from the free energy function (8.14).
We also need initial and boundary conditions to complete the model. Let Sχ and St be complementary

subsurfaces of the boundary ∂B of the body B in the sense ∂B = Sχ ∪ St and Sχ ∩ St = ∅. Similarly let
Sµ and Sj be complementary subsurfaces of the boundary: ∂B = Sµ ∪ Sj and Sµ ∩ Sj = ∅. Then for a time
interval t ∈ [0, T ] we consider a pair of boundary conditions in which the motion is specified on S1 and the
surface traction on S2:

χ = χ̂ on Sχ × [0, T ],

TRnR = t̂R on St × [0, T ],

}

(9.8)

and another pair of boundary conditions in which the chemical potential is specified on Sµ and the fluid flux
on Sj

µ = µ̂ on Sµ × [0, T ],

−m(∇µ) · nR = ĵ on Sj × [0, T ],

}

(9.9)

with χ̂, t̂R, µ̂, and ĵ prescribed functions of X and t, and the initial data

χ(X, 0) = χ0(X) and µ(X, 0) = µ0(X) in B. (9.10)

The coupled set of equations (9.1), (9.2), and (9.4), together with (9.8), (9.9) and (9.10) yield an initial
boundary-value problem for the motion χ(X, t) and the chemical potential µ(X, t).

In applications, for the case in which the environment consists of a pure and incompressible liquid, the
boundary condition on chemical potential µ̂ is given by

µ̂ = µ0 + paυ, (9.11)

where µ0 is a reference chemical potential, pa is the hydrostatic pressure of the liquid (expressed referentially),
and υ is the volume of a liquid molecule. Also, if a portion of the boundary is impermeable to the liquid,
then on that portion the prescribed flux ĵ vanishes.

10 Applications

In this section, as representative examples of application of the theory, we study (a) isotropic three-
dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the
following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already
swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.
For the last example, we also compare results from our numerical calculations, against corresponding exper-
imental results of Paul and Ebra-Lima (1970) for the steady-state diffusion across a membrane.

We begin by specializing the mobility m. Referring to (7.31) we recall that the mobility for an isotropic
material is in general a function of the invariants of the elastic Cauchy-Green tensor Ce and the fluid content
cR,

m = m̂(ICe , cR).

Not much is experimentally known about the dependence of m on ICe , and since the dominant dependence
of the mobility is expected to result from the amount of swelling Js, or equivalently cR, for the applications
discussed below we content ourselves with the assumption that

m = m̂(cR). (10.1)

In fact, following Baek and Srinivasa (2004) and Duda et al. (2010) we assume that the dependence of m
on cR is of a simple power-law form

m ∝ cn
R
, (10.2)
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with n ≥ 1 a constant; this choice for the dependence of m on cR models an increase in the mobility of fluid
permeation as the polymer network is “opened” by an increase in the local fluid content.

Since the polymer volume fraction φ is dimensionless and is a comfortably-bounded quantity between
zero and unity (cf. (8.2)),

φ
def
= (1 + υcR)−1 with 0 < φ ≤ 1, (10.3)

for the applications considered in this section we find it convenient to use φ rather than the fluid content cR
in the field equations (9.1) and (9.3).

Also, since

cR ∝
(

1 − φ

φ

)

, (10.4)

instead of (10.1) and (10.2), we assume that

m = m̂(φ) =
D

υkBϑ

(
1 − φ

φ

)n

, (10.5)

where D > 0, a constant, represents a permeability coefficient.
Next, using (10.3) and the resulting relation

ċR = − φ̇

υφ2
, (10.6)

the field equations (9.1), (9.2) (neglecting body forces), and (9.3) may be alternatively written as

φdetF = 1,

DivTR = 0,

φ̇ = −υφ2Div(m∇µ),







(10.7)

with TR given by (8.19), m = m̂(φ) given by (10.5), and µ = µ̂(φ) given by (8.22).

10.1 Isotropic stress-free equilibrium swelling

First, we consider the simple case of three-dimensional isotropic swelling-equilibrium of an elastomeric gel
in a stress-free state. For isotropic swelling the deformation gradient F has the simple form

F(X, t) = λ(X, t)1, (10.8)

and application of the swelling constraint (10.7)1 gives

λ(X, t) = φ(X, t)−1/3. (10.9)

Substituting (10.8) and (10.9) in eq. (8.19) for the stress, and using the fact that we are considering stress-free
swelling, we have

Gφ−1/31− Pφ1/31 = 0, (10.10)

so that the field P is given by
P = Gφ−2/3. (10.11)

Use of (10.11) in (8.22) gives

µ = µ0 + kBϑ
(

ln(1 − φ) + φ+ χφ2
)

+ υG0(ζφ
1/3 − φ). (10.12)

Swelling-equilibrium is attained when the chemical potential µ throughout the gel reaches the chemical
potential µ0 of the pure solvent surrounding the gel (Flory, 1953),

µ = µ0. (10.13)
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Parameter Gaussian non-Gaussian
G0 0.1MPa 0.1MPa
λL – 2.5
υ 1.7×10−28 m3 1.7×10−28 m3

χ 0.1 0.1
µ0 0.0 J 0.0 J

Table 1: Material parameters for a representative elastomeric gel.

Thus, from (10.12) the value of the polymer volume fraction after equilibrium has been attained, φe, may
be determined by solving the implicit equation

kBϑ
(

ln(1 − φe) + φe + χφ2
e

)

+ υG0(ζφ
1/3
e − φe) = 0, (10.14)

and thence λe = φ
−1/3
e , and also Je = λ3

e may also be determined.
Table 1 lists plausible values for the material properties of a polymeric gel at room temperature, 20 ◦C.

Specifically, the ground state shear modulus for the polymer, G0, is chosen to have a value 0.1MPa, and the
locking stretch parameter is taken to have a value λL = 2.5, so that the effects of chain-locking are easily
observable when we compare results from a theory based on non-Gaussian statistics against results based on
a theory which uses Gaussian statistics. The volume of a solvent molecule is taken as υ = 1.7 × 10−28m3 ≡
100.0 cm3/mol. Additionally, we have chosen a value of χ = 0.1 for the Flory-Huggins interaction parameter
— a value which is favorable for a high degree of swelling. Using the material parameters in Table 1, solutions
of (10.14) give

• Case 1, Gaussian theory:

φe = 0.0566, λe = 2.6045, Je = 17.667. (10.15)

• Case 2, non-Gaussian theory:

φe = 0.1552, λe = 1.8608, Je = 6.44. (10.16)

These results clearly show that the non-Gaussian theory, which accounts for the effects of limited chain
extensibility, predicts a significantly smaller amount of swelling at equilibrium than the classical Gaussian-
statistics-based theory.

Remark 3:

At a given temperature ϑ, the ground-state shear modulus G0 = NRkbϑ is proportional to the number of
chains per unit reference volume, NR, in an elastomer, and NR itself is directly proportional to the degree of
cross-linking (which determines the mean number of segments in a polymer chain connecting two neighboring
junction points in an elastomer). In order to get a physical feel for how NR and the χ-parameter affect the
swelling behavior of a gel, consider the Gaussian theory (ζ = 1), and a gel which shows a high degree
of swelling (φe ≪ 1); under these circumstances, using the approximation ln(1 − φe) ≈ −φe − φ2

e/2, and

neglecting the term φe as compared to φ
1/3
e in (10.14), one obtains

φe ≈
(
υNR

1
2 − χ

)3/5

. (10.17)

Thus,

• For a given value of χ < 1/2, we find that φe ∝ N
3/5
R , and hence if the gel is made from a weakly

crosslinked polymer so that NR is small, then the equlibrium volume fraction of polymer φe is small,
or the amount of swelling is large.
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• Also, for a given value of NR, as χ becomes much smaller than 1/2, the value of φe decreases, and the
amount of swelling increases. On the other hand, as χ→ 1

2 , the amount of swelling decreases until the
solvent and polymer network are no longer miscible with each other. On a cautionary note, a possible
conclusion from (10.17) that χ must be less than 1/2, is based on an approximative analysis; in actual
applications one may encounter χ > 1

2 (cf., Section 10.4.)

10.2 One-dimensional transient swelling

Next, we consider the transient swelling of a gel in a one-dimensional setting. With respect to Figure 2, the
one-dimensional reference body B is in the form of a cylinder of dry polymer with axis aligned with the e1-
direction and of height H0, placed in a rigid container. The reference body occupies the region 0 ≤ X1 ≤ H0,
and the polymer is in contact with the solvent at the surface X1 = H0, which is traction-free. The body is
constrained in the lateral e2- and e3-directions, so that the motion of the body, as it absorbs the fluid and
swells is, of the form

x1 = χ(X1, t), x2 = X2, x3 = X3, (10.18)

and the axial stretch is given by

λ = λ(X1, t)
def
=
∂χ(X1, t)

∂X1
. (10.19)

We assume that the displacement of the gel surface at X1 = 0 is zero, and that all the walls of the container
are frictionless and impermeable to fluid flow. Thus, the boundary conditions for displacement, tractions,
and chemical potential in this problem are:

• On the surface X1 = 0:
x1 = X1, −∇µ · e1 = 0. (10.20)

• On the surface X1 = H0:
µ = µ0, TRe1 = 0. (10.21)

• On the lateral surfaces:

−∇µ · e2 = 0, −∇µ · e3 = 0, e1 · (TRe2) = 0, e1 · (TRe3) = 0. (10.22)

From (10.18) and (10.19), the deformation gradient has the matrix representation

[F] =





λ 0 0
0 1 0
0 0 1



 . (10.23)

Thus detF = λ, and use of the field equation (10.7)1 (the swelling constraint) gives φλ = 1, or equivalently
that the polymer volume fraction is related to the axial stretch by the relation

φ(X1, t) = λ(X1, t)
−1. (10.24)

Next, recalling the relation (8.19) for the Piola stress, viz.

TR = GF− PF−⊤, (10.25)

and using (10.23) and (10.24), we have that the pertinent components of the Piola stress are

(TR)11 = Gφ−1 − Pφ,

(TR)22 = G− P,

(TR)33 = G− P.







(10.26)

Further, the equation of equilibrium, (10.7)2 gives the following non-trivial equilibrium equation to be
satisfied

∂

∂X1
(Gφ−1 − Pφ) = 0; (10.27)
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which is satisfied, provided
Gφ−1 − Pφ = C, (10.28)

with C independent of X1.
Next, using (10.26)1 and applying the traction-free boundary condition TRe1 = 0 at X1 = H0, requires

that
(TR)11

∣
∣
∣
X1=H0

=
[

Gφ−1 − Pφ
]

X1=H0

= 0, (10.29)

and thus, using (10.28), that also
C = 0.

Hence, from (10.28) we obtain that the field P is given by

P = Gφ−2. (10.30)

Use of (10.30) in (10.26) gives

(TR)11 = 0,

(TR)22 = G(1 − φ−2) = −G(λ2 − 1),

(TR)33 = G(1 − φ−2) = −G(λ2 − 1).







(10.31)

The stress field (10.31) satisfies the equation of equilibrium (10.7)2 and the boundary conditions (10.21)2,
(10.22)3, and (10.22)4. Note that in the present case of swelling (λ > 1), (10.31) shows that the lateral
stresses (TR)22 and (TR)33 are compressive.

Having satisfied the first two field equations (10.7)1 and (10.7)2, we turn our attention next to the
remaining field equation (10.7)3 for the transient swelling response of the gel. Recalling the relation (8.22)
for the chemical potential, and substituting for P from (10.30), we have the following expression for the
chemical potential in terms of the polymer volume fraction φ,

µ = µ0 + kBϑ
[

ln(1 − φ) + φ+ χφ2
]

+ υG0(ζφ
−1 − φ), (10.32)

with

ζ = ζ̂(φ) =

(
λL

3λ̄

)

L−1

(
λ̄

λL

)

where λ̄ =
1√
3

√

φ−2 + 2, (10.33)

as defined before in (8.16)2 and (8.5). Since the partial differential equation (10.7)3 is phrased in terms of φ
rather than µ, we next rewrite the initial and boundary conditions in terms of φ. Accordingly:

• The initial condition for the polymer volume fraction is

φ(X1, 0) = 1.0,

so that at time t = 0 the reference body is a dry polymer.10

• The boundary condition for φ at the free surface φ(H0, t) is denoted by φH0
, a time-invariant constant.11

Therefore, using (10.32) we can determine φH0
by solving the implicit equation

kBϑ
[

ln(1 − φH0
) + φH0

+ χφ2
H0

]

+ υG0(ζH0
φ−1

H0
− φH0

) = 0, (10.34)

where ζH0
= ζ(φH0

). Note that φH0
will also correspond to the equilibrium value of φ in the whole

body as t→ ∞.

10In practice, we have used φ(X1, 0) = 0.999 rather than 1.0 to eliminate numerical difficulties with the ln(1 − φ) term in
(10.32). This approximation has no noticeable effect on the final numerical results.

11The boundary condition φH0
is time-invariant since, at time t = 0 the surface of the body is in contact with the solvent,

and correspondingly, the chemical potential on the surface X1 = H0 is in equilibrium with that of the pure solvent, µ(X1 =
H0, t) = µ0.
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• Since the flux in the e1-direction is

j = −m̂(φ)
∂µ̂(φ)

∂X1
= −m̂(φ)

∂µ̂(φ)

∂φ

∂φ

∂X1
, (10.35)

the no-flux boundary condition (10.20)2 is enforced by setting ∂φ/∂X1 = 0 at X1 = 0.

The partial differential equation (10.7)3 with m = m̂(φ) given by (10.5), µ = µ̂(φ) given by (10.32) and
(10.33), and the boundary conditions listed above, may be solved numerically for φ(X1, t) using a finite-
difference scheme. Details on our numerical solution procedure are given in an Appendix.

Parameter Gaussian non-Gaussian
G0 0.1MPa 0.1MPa
λL – 2.5
υ 1.7×10−28 m3 1.7×10−28 m3

D 5.0×10−9 m2/sec 5.0×10−9 m2/sec
n 1.0 1.0
χ 0.1 0.1
µ0 0.0 J 0.0 J

Table 2: Parameters used in the transient swelling and squeezing problems.

The material parameters in our simulation for the transient free-swelling problem were chosen to be
representative of a generic polymeric gel at room temperature, 20 ◦C, and are listed in Table 2. Values for the
list {G0, λL, υ, χ, µ

0} are taken from the previous example, and to that list we append the permeation-related
parameters (D,n) for simulation of the transient response. We have chosen a value D = 5.0 × 10−9m2/sec
for the permeability coefficient, and n = 1. The initial height of the dry polymer is taken as H0 = 0.01m.

• Case 1: We first consider results from simulations which use the material parameters listed in Table 2
for a free energy which neglects chain-locking, and uses Gaussian statistics to account for the change
in entropy due to stretching.

Figure 3a and Figure 3b, respectively, show plots of the polymer volume fraction φ and the axial stretch
λ as functions of the normalized axial coordinate X1/H0 in the reference body, at different instances
of time; the total time of our simulations is 24 hours. Figure 3a shows that the body begins as 100%
polymer, and after 24 hours the top of the body (X1/H0 = 1) is only 19.97% polymer and 80.03%
fluid, while the bottom of the body (X1/H0 = 0) is ≈ 30% polymer and ≈ 70% fluid. Note that we
did not carry out our numerical simulations for periods of time which are long enough to have led to
a situation of equilibrium swelling. At equilibrium the polymer volume fraction in the whole body is
φ(≡ φH0

) = 0.1997 (cf. (10.34)), and the corresponding equilibrium stretch is λ = φ−1 = 5.0075; these
equilibrium values are plotted as dashed lines in Figures 3a,b.

• Case 2: Next we consider results from simulations which use the material parameters listed in Table 2
for a theory which uses non-Gaussian statistics to account for the change in entropy due to stretching.

Figure 4a and Figure 4b, respectively, show plots of the polymer volume fraction φ and the axial
stretch λ as functions of the normalized axial coordinate X1/H0 in the reference body, at different
instances of time; as before, the total time of our simulations is 24 hours. Figure 4a shows that the
body begins as 100% polymer, and after 24 hours the top of the body (X1/H0 = 1) is 28.65% polymer
and 71.35% fluid, while the bottom of the body (X1/H0 = 0) is ≈ 33% polymer and ≈ 67% fluid.
Note that as before, we did not carry out our numerical simulations for periods of time which are long
enough to have led to a situation of equilibrium swelling. At equilibrium, the polymer volume fraction
in the whole body is φ(≡ φH0

) = 0.2865 (cf. (10.34)), and the corresponding equilibrium stretch is
λ = φ−1 = 3.49; these equilibrium values are plotted as dashed lines in Figures 4a,b.

To provide a more physical picture of the swelling process, Figure 5 shows representative images of the
time history of the deformed body during transient swelling; Figure 5a shows the results from numerical
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simulations which use the Gaussian statistics-based theory, and Figure 5b shows the results from the non-
Gaussian theory. At each time, the dashed rectangle represents the reference body, and the filled rectangle
represents the deformed (swollen) body. Also shown plotted on the deformed body are contour plots of the
polymer volume fraction φ. Note that at each of the times shown in Figure 5, the non-Gaussian theory
exhibits a significantly smaller amount of swelling due to the effects of limited chain extensibility.

10.3 Squeezing/Consolidation of an initially swollen gel

Next we consider the gels from the previous example, which have been held long enough to have reached
their “equilibrium” swollen configurations. Thus, using the equilibrium solutions from the previous example,
the initial heights H0 of the specimens are now taken as

• H0 = 5.0075× 10−2 m, for the Gaussian theory,

• H0 = 3.4904× 10−2 m, for the non-Gaussian theory,

}

(10.36)

and the initial conditions for the polymer volume fraction are taken as

• φ(X1, t = 0) = 0.1997, for the Gaussian theory,

• φ(X1, t = 0) = 0.2865, for the non-Gaussian theory.

}

(10.37)

In the problem studied here, these swollen gels are subjected to a compressive normal traction of magnitude
S to the upper surface via a permeable plate; Figure 6 shows a schematic of the geometry and boundary
conditions for the problem. Under the applied compressive normal traction S, we expect that the fluid
squeezes out of the gel, so that the polymer volume fraction of the gel increases and height of the gel
decreases, both as a function of relative position X1/H0 and time t.12

The boundary conditions for the displacements, tractions, and chemical potential for this example are:

• On the surface X1 = 0:
x1 = X1, −∇µ · e1 = 0, (10.38)

• On the surface X1 = H0:
µ = µ0, TRe1 = −Se1, (10.39)

• On the lateral surfaces:

−∇µ · e2 = 0, −∇µ · e3 = 0, e1 · (TRe2) = 0, e1 · (TRe3) = 0. (10.40)

Mimicking the steps of the previous example, and accounting for the boundary condition TRe1 = −Se1,
we find that in this case

(TR)11 = −S, (10.41)

throughout the height of the gel (instead of (TR)11 = 0), the scalar field P is now given by

P = Gφ−2 + Sφ−1, (10.42)

and the lateral stresses are given by

(TR)22 = (TR)33 = G(1 − φ−2) − Sφ−1. (10.43)

Also, use of (10.42) in (8.22) shows that the chemical potential inside the body given by

µ = µ0 + kBϑ
[

ln(1 − φ) + φ+ χφ2
]

+ υG0(ζφ
−1 − φ) + υS, (10.44)

with ζ = ζ̂(φ) given in (10.33). As in the previous example,

12A similar problem was first analyzed by Terzaghi (1923,1943) in the context of one-dimensional linear poro-elasticity, and
by Biot (1941) in the context of complete theory of linear poro-elasticity; the problem has also been recently analyzed by Hong
et al. (2008) in the context of gels.
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• The boundary condition for φ at the top surface is denoted by φH0
, and following arguments similar

to those in the previous example, φH0
is determined by solving the implicit equation

kBϑ
[

ln(1 − φH0
) + φH0

+ χφ2
H0

]

+ υG0(ζH0
φ−1

H0
− φH0

) + υS = 0, (10.45)

where ζH0
= ζ̂(φH0

). Note that φH0
will also correspond to the equilibrium value of φ in the whole

body as t→ ∞.

• The no-flux boundary condition (10.38)2 is enforced by setting ∂φ/∂X1 = 0 at X1 = 0.

The field equation (10.7)3 is solved numerically by using the same finite-difference procedure as in the
previous example. The material parameters are taken to be the same as those used in the previous example,
and given in Table 2. Further, we have used a compressive stress of S = 3MPa.

• Case 1: As before, we first consider results from simulations which use the material parameters listed
in Table 2 for a free energy which uses Gaussian statistics.

Figure 7a and Figure 7b, respectively, show plots of the polymer volume fraction φ and the axial stretch
λ as functions of the normalized axial coordinate X1/H0 in the reference body, at different instances
of time; the total time of our simulations is 24 hours. Figure 7a shows that the body begins as 19.97%
polymer, and after 24 hours the top of the body (X1/H0 = 1) is 45.38% polymer, while the bottom of
the body (X1/H0 = 0) is ≈ 30% polymer. As before, we did not carry out our numerical simulations
for periods of time which are long enough to have led to an equilibrium situation. The equilibrium
value of polymer volume fraction is φ(≡ φH0

) = 0.4538 in the whole body, and the corresponding
equilibrium stretch is λ = 2.2036; these equilibrium values are plotted as dashed lines in Figures 7a,b.

• Case 2: Next we consider results from simulations which use the material parameters listed in Table 2
for a free energy which uses non-Gaussian statistics.

Figure 8a and Figure 8b , respectively, show plots of the polymer volume fraction φ and the axial stretch
λ as functions of the normalized axial coordinate X1/H0 in the reference body, at different instances
of time; as before, the total time of our simulations is 24 hours. Figure 8a shows that the body begins
as 28.65% polymer, and after 24 hours the top of the body (X1/H0 = 1) is 45.82% polymer, while the
bottom of the body (X1/H0 = 0) is ≈ 42% polymer. The equilibrium value of polymer volume fraction
is φ(≡ φH0

) = 0.4582 in the whole body, and the corresponding equilibrium stretch is λ = 2.1825;
these equilibrium values are plotted as dashed lines in Figures 8a,b.

The results clearly show that in both cases the fluid has been “squeezed” out of the body due to the applied
compressive normal traction. Finally, to provide a more physical picture of the squeezing/consolidation
process, Figure 9 shows representative images of the time history of the deformed bodies during transient
consolidation; Figure 9a shows the results from numerical simulations which use the Gaussian statistics-
based theory, and Figure 9b shows the results from the non-Gaussian statistics theory. At each of the
times depicted in Figure 9 the dashed rectangle represents the initially swollen reference body, and the filled
rectangle represents the deformed (squeezed) body. Also shown plotted on the deformed body are contour
plots of the polymer volume fraction φ at the different instances of time.

10.4 Diffusion across a membrane

As a final example, we consider the problem of pressure-difference-driven diffusion of fluids across polymer
membranes.13 The specific problem discussed here is the transport of organic liquids through a highly-swollen
rubbery membrane, a problem which has been experimentally studied by Paul and Ebra-Lima (1970). This
problem has also been previously analyzed by Rajagopal (2003) (who used a mixture-theory approach), Baek
and Srinisvasa (2004), and Duda et. al. (2010). The analysis presented here is a simplified version of the
analysis presented by Duda et. al. (2010).

13Useful practical applications of such a phenomenon are encountered in diverse applications such as water purification —
especially desalination by reverse osmosis.
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Figure 10 shows a schematic of the geometry and boundary conditions for this problem: a gel of initial
height H0 is placed on a permeable plate on a container with frictionless rigid walls, and the top and bottom
faces of the gel are subjected to pressures p(X1 = H0, t) = pH0

and p(X1 = 0, t) = p0 = 0, to obtain a
pressure difference ∆p = pH0

− p0 ≥ 0 across the membrane. We analyze two situations:

• First we consider the transient response of the system.

• Next, we consider the steady-state response of the system, and compare our theoretical result for the
steady-state flux as a function of the pressure difference against corresponding experimental data from
Paul and Ebra-Lima (1970).

Since in this example the stretches are relatively small, we use only the theory based on Gaussian statistics.

10.4.1 Transient diffusion across a membrane

The boundary conditions for this problem are:

• On the surface X1 = 0:
x1 = X1, µ = µ0, (10.46)

• On the surface X1 = H0:
TRe1 = −pH0

e1, µ = µ0 + υpH0
, (10.47)

• On the lateral surfaces:

−∇µ · e2 = 0, −∇µ · e3 = 0, e1 · (TRe2) = 0, e1 · (TRe3) = 0. (10.48)

Following a procedure similar to that in the previous examples, the state of stress inside the body is given
by

(TR)11 = −pH0
= −∆p,

(TR)22 = G0(1 − φ−2) − ∆p φ−1,

(TR)33 = G0(1 − φ−2) − ∆p φ−1.







(10.49)

Also, the chemical potential inside the body given by

µ = µ0 + kBϑ
[

ln(1 − φ) + φ+ χφ2
]

+ υG0(φ
−1 − φ) + υ∆p. (10.50)

Since the partial differential equation (10.7)3 is phrased in terms of φ rather than µ, we next rewrite the
initial and boundary conditions in terms of φ:

• The reference body is taken to be a fully-dry polymer at the start of the simulation, so that φ obeys
the initial condition

φ(X1, 0) = 1.0, 0 ≤ X1 ≤ H0. (10.51)

• Since the body is in contact with the solvent at both surfaces X1 = 0, and X1 = H0, we must prescribe
boundary conditions φ = φ0 at X1 = 0, and φ = φH0

at X1 = H0, respectively. These are obtained by
solving the following set of implicit equations

kBϑ
[

ln(1 − φ0) + φ0 + χφ2
0

]

+ υG0(φ
−1
0 − φ0) + υ∆p = 0 at X1 = 0, and (10.52)

kBϑ
[

ln(1 − φH0
) + φH0

+ χφ2
H0

]

+ υG0(φ
−1
H0

− φH0
) = 0 at X1 = H0. (10.53)

The field equation (10.7)3 for the transient diffusion problem is solved numerically using the same finite-
difference procedure used in the previous examples. The material parameters used in the numerical solution
are those for natural gum rubber immersed in toluene listed in Table 3, and estimated from the experimental
data of Paul and Ebra-Lima (1970). Further, we have used a pressure difference of ∆p = 500psi.
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Parameter Toluene o-Xylene iso-Octane
G0, MPa 0.2669 0.2669 0.2669
υ, m3 1.8 × 10−28 2.01 × 10−28 2.81 × 10−28

D, m2/sec 1.3×10−9 1.4×10−9 0.9×10−9

n 3 2 3
χ 0.425 0.408 0.572
µ0, J 0.0 0.0 0.0

Table 3: Material parameters used in the pressure-difference-induced diffusion problem. The polymeric
network is a cross-linked pure gum rubber, and the solvents are Toluene, o-Xylene, and iso-Octane. The
initial thickness of the membrane is H0 = 0.0265 cm and the temperature is 30 ◦C. Data estimated from Paul
and Ebra-Lima (1970).

Figure 11a and Figure 11b, respectively, show plots of the polymer volume fraction φ and the axial stretch
λ as functions of the normalized axial coordinate X1/H0 in the reference body, at different instances of time;
the arrows show increasing time, with the last curve shown in each figure almost at steady-state. Note that
at steady-state the polymer volume fraction at the top of the gel is φH0

= 0.3576, while that at the bottom
of the gel is φ0 = 0.6114, and correspondingly the stretch at the top of the gel is λ(X1 = H0, t) = 2.80, while
that at the bottom of the gel is λ(X1 = 0, t) = 1.64.

10.4.2 Steady state diffusion across a membrane

At steady-state, the polymer volume fraction varies with X1, as shown in Figure 11a. Presume that we have
calculated φ0 and φH0

for a given ∆p. We now wish to calculate the steady-state flux of the fluid across the
membrane.

Recall (10.35), viz.

j = −m̂(φ)
∂µ̂(φ)

∂φ

∂φ

∂X1
. (10.54)

With a function g(φ) defined by the relation

∂g(φ)

∂φ

def
= m̂(φ)

∂µ̂(φ)

∂φ
, (10.55)

we may write (10.54) as

j = −∂g(φ)

∂X1
. (10.56)

At steady-state the flux is constant, j = jss. Therefore integration of (10.56) between the limits X1 = 0 and
X1 = H0 gives14

jssH0 = g(φ0) − g(φH0
). (10.57)

For m̂(φ) and µ̂(φ), given by (10.5) and (8.22), respectively, (10.55) gives

∂g(φ)

∂φ
=
D

υ

(
1 − φ

φ

)n(

1 + 2χφ− 1

1 − φ

)

− DG0

kBϑ

(
1 − φ

φ

)n

(1 + φ−2). (10.58)

For a given positive integer value of n, (10.58) may be integrated to compute g(φ).15 Then, since φ0

and φH0
at steady-state are known for a membrane of initial thickness H0 and a given ∆p, (10.57) gives

the resulting steady-state flux jss. The corresponding steady-state volumetric flux is υjss.
16 For a given

elastomeric membrane and a given solvent, a curve of steady-state volumetric flux of solvent versus ∆p may
be computed by repeating the calculation procedure outlined above for several values of ∆p.

14Cf., Duda et al (2010), eq. (100).
15We use the commercial software package Mathematica to symbolically perform this integration.
16Recall that the flux jss is the number of particles per unit area per unit time, and υ the volume of a single solvent particle.
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The solid lines in Figure 12 show steady-state volumetric solvent flux (in units of cm3/cm2/day) versus
∆p (in psi) curves for three organic solvents — Toluene, o-Xylene and iso-Octane — across cross-linked
gum-rubber membranes of thickness H0 = 0.0265 cm, at a temperature of 30◦C. The material parameters
used to produce these curves are listed in Table 3. The material parameters (D,n) were calibrated to fit
the experimentally-measured steady-state flux versus ∆p curves, while all other material parameters for
the three membrane-solvent pairs were taken directly from Paul and Ebra-Lima (1970).17 Also plotted in
Figure 12 are corresponding data points for the steady-state flux versus driving pressure difference, measured
experimentally by Paul and Ebra-Lima (1970). The theory nicely reproduces the highly nonlinear dependence
of the flux on the driving-pressure for the three solvent-polymer combinations.

11 Concluding Remark

By viewing a fluid-solid mixture as a single, homogenized continuum body which allows for a mass flux
of the fluid, we have developed a large-deformation theory to describe the various coupled aspects of fluid
permeation and deformations of elastomeric gels. We have particularized the theory by considering a special
free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the
polymer network, coupled with a non-Gaussian statistical-mechanical model which accounts for the limited
extensibility of polymer chains.

As representative simple examples of application of the theory, we have studied (a) isotropic three-
dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the
following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already
swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.

In the future we plan to extend the theory to allow for mechanical (elastic) compressibility, and to
implement such a theory in a full three-dimensional finite element program to solve general initial-boundary-
value problems involving gels.
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Appendix: Numerical solution procedure

In this section we aim to provide the details of the numerical solution of the transient swelling example.
The procedure used in the other examples is essentially the same with the exception of minor details such
as boundary conditions. The partial differential equation for transient swelling is given by (10.7)3 with
m = m̂(φ) given by (10.5), and µ = µ̂(φ) given by (10.32). After some simplification (10.7)3 may be written
as

φ̇ =
D

kBϑ

[

n

(
1 − φ

φ

)n−1
∂φ

∂X

∂µ

∂X
− φ2

(
1 − φ

φ

)n
∂2µ

∂X2

]

. (11.1)

We solve (11.1) numerically using a forward in time, centered space finite difference scheme. A one-
dimensional grid is constructed of N points with uniform spacing h. We denote the time increment by
a superscript k, and spatial location by a subscript i, where X1 = 0 corresponds to i = 1, and X1 = H0

corresponds to i = N .
For the boundary condition at the top surface we have

φk
N = φH0

, (11.2)

where φH0
is the prescribed boundary condition (see (10.34)). And for the no-flux condition at the bottom

we have ∂φ/∂X1 = 0, at X1 = 0, which is satisfied when

φk
1 = φk

2 . (11.3)

For the interior grid points we approximate the derivatives of φ with the finite-difference equations

∂φ

∂t
≈ φk+1

i − φk
i

∆t
, (11.4)

∂φ

∂X1
≈ φk

i+1 − φk
i−1

2h
, (11.5)

∂2φ

∂X2
1

≈ φk
i+1 − 2φk

i + φk
i−1

h2
. (11.6)

Also, at any given grid point, at any time increment, we can evaluate the chemical potential

µk
i = µ0 + kBϑ

[

ln(1 − φk
i ) + φk

i + χ(φk
i )2
]

+ υG0

(
ζk
i (φk

i )−1 − φk
i

)
. (11.7)
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And we approximate derivatives of chemical potential with the finite-difference equations

∂µ

∂X
≈ µk

i+1 − µk
i−1

2h
, (11.8)

∂2µ

∂X2
≈ µk

i+1 − 2µk
i + µk

i−1

h2
. (11.9)

The generalized shear modulus may also be computed at each grid point

Gk
i = G0

(
λL

3λ̄k
i

)

L−1

(
λ̄k

i

λL

)

= G0ζ
k
i (11.10)

with

λ̄k
i =

√

(φk
i )−2 + 2

3
. (11.11)

It is important to note that the computation of L−1(z) is not trivial. Cohen (1991) has developed a Padé ap-
proximation for the inverse Langevin function which we use in this work to greatly simplify the computation.
Cohen’s approximation is given by

L−1(z) ≈ z

(
3 − z2

1 − z2

)

+ O(z6).

This Padé approximation is much more accurate (preserving the limit as L−1(z) → ∞ as z → 1) and simple
to implement than a high order series expansion.

With these approximations the discrete form of the field equation becomes

φ̇k
i =

D

kBϑ

[

n

(
1 − φk

i

φk
i

)n−1
∂φ

∂X

∂µ

∂X
− (φk

i )2
(

1 − φk
i

φk
i

)n
∂2µ

∂X2

]

, (11.12)

and values of φ at the grid points are updated in each time increment using

φk+1
i = φk

i + ∆tφ̇k
i . (11.13)

Lastly, for this specific case, since information “flows” from the top surface down, the computational loop
starts at i = N and moves down the body to i = 1 in each time increment.
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observed spacereference space infinitesimal
neighborhoods

Figure 1: Schematic of the decomposition (2.2). The grey “boxes” denote infinitesimal neighborhoods of
the points X in the reference body B, and x = χ(X, t) in the deformed body Bt. The arrows indicate the
mapping properties of the linear transformations F, Fs, and Fe.

H0 e1

Gel

e3

e2

Solvent

Figure 2: Schematic of the reference geometry of cylindrical polymer specimen in a rigid container used for
the transient swelling problem. The gel is constrained from swelling in the e2- and e3-directions, and at the
base X1 = 0, the gel is fixed to the wall of the container. The walls of the container are assumed to be
frictionless, and no fluid is allowed to diffuse through the walls.
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Figure 3: Transient swelling response of a gel using the Gaussian theory and the material parameters given
in Table 2: (a) the polymer volume fraction φ, and (b) the axial stretch λ as a function of the normalized
axial coordinate X1/H0 in the reference body at different instances of time, for a total time of 24 hours; the
arrows indicate increasing time. The dashed lines indicate the steady-state values at time t = ∞.
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Figure 4: Transient swelling response of a gel using the non-Gaussian theory and the material parameters
given in Table 2: (a) the polymer volume fraction φ, and (b) the axial stretch λ as a function of the normalized
axial coordinate X1/H0 in the reference body at different instances of time, for a total time of 24 hours; the
arrows indicate increasing time. The dashed lines indicate the steady-state values at time t = ∞.
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(a)
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0 0.2 0.4 0.6 0.8 1

Figure 5: Representative images of the time history of the deformed body during transient swelling. At each
time the dashed rectangle represents the reference body, and the filled rectangle represents the deformed
(swollen) body. Also shown plotted on the deformed body are contour plots of the polymer volume fraction,
φ, at different instances of time; the gray-scale bar gives numerical values of 0 ≤ φ ≤ 1: (a) Shows the results
from numerical simulations which use the Gaussian theory, and (b) shows the results from the non-Gaussian
theory. Note that at each time the non-Gaussian theory shows significantly smaller amount of swelling due
to the effects of limited chain extensibility.
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H0 e1
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Figure 6: Schematic of the reference geometry of cylindrical fully-swollen gel specimen in a rigid container
used for the transient squeezing problem. The gel is constrained from changing dimensions in the e2- and
e3-directions, and at the base, X1 = 0, the gel is fixed to the wall of the container. The walls of the container
are assumed to be frictionless, and no fluid is allowed to diffuse through the walls. However, at the upper
surface X1 = H0, a compressive normal traction −Se1 is applied, and fluid may squeeze out through a rigid
permeable plate.
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Figure 7: Transient squeezing response of a gel using the Gaussian theory and the material parameters given
in Table 2: (a) the polymer volume fraction φ, and (b) the axial stretch λ as a function of the normalized
axial coordinate X1/H0 in the reference body at different instances of time, for a total time of 24 hours; the
arrows indicate increasing time. The dashed lines indicate the steady-state values at time t = ∞.
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Figure 8: Transient squeezing response of a gel using the non-Gaussian theory and the material parameters
given in Table 2: (a) the polymer volume fraction φ, and (b) the axial stretch λ as a function of the normalized
axial coordinate X1/H0 in the reference body at different instances of time, for a total time of 24 hours; the
arrows indicate increasing time. The dashed lines indicate the steady-state values at time t = ∞.
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Figure 9: Representative images of the time history of the deformed body during transient squeez-
ing/consolidation. At each time the dashed rectangle represents the reference body, and the filled rectangle
represents the deformed (squeezed) body. Also shown plotted on the deformed body are contour plots of
the polymer volume fraction φ at different instances of time; the gray-scale bar gives numerical values of
0 ≤ φ ≤ 1: (a) Shows the results from numerical simulations which use the Gaussian theory, and (b) shows
the results from the non-Gaussian theory.
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Figure 10: Schematic of the geometry used for the analysis of pressure-difference-driven diffusion across a
polymer membrane. The gel is constrained from swelling in the e2- and e3-directions. At the base, X1 = 0
the gel is fixed to a permeable plate so that fluid may pass through. A pressure difference ∆p = pH0

−p0 ≥ 0
is applied across the membrane to drive the fluid flux.
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Figure 11: Inhomogeneous transient response of (a) the polymer volume fraction and (b) the stretch in the
pressure-driven-diffusion process for an applied ∆p=500psi. The arrows indicate increasing time, with the
last curve shown corresponding to ||φ̇||2 ≤ 5 × 10−5s−1 (a small value ) so that this curve corresponds to
steady-state.
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Figure 12: Comparison between numerically-calculated steady-state volumetric flux versus pressure-
difference curves and corresponding experimental data from Paul and Ebra-Lima (1970).
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