AUTOMATED DATA COLLECTION TECHNIQUES

Outline

1. Farebox Data
2. Operations Data Needs and Availability
3. Automatic Passenger Counter Systems (APC)
4. Automated Vehicle Location Systems (AVL)
5. Trip Time Analyzer
Farebox Data Problems

- Operator error and inattention
- Poor AFC system design
- Poor integration between AFC and other systems
- Lack of management use of data
Farebox can be your primary passenger counting tool, if …

You invest in Management:

- Someone responsible to check for data quality **every day**
- Discipline, retraining for non-performing operators
- Priority in maintenance & servicing
- Manual verification counts
Farebox can be your primary passenger counting tool, if …

You invest in Hardware:

• Card & transfer readers
• Link farebox to destination sign, on-board computer to segment trips, verify sign-in
• Transactional data (new generation farebox)

You invest in Software:

• Develop your own database
• Automate data screening, editing
• Integrate with schedule data, payroll, other data sources
Estimating Ridership from Revenue

Revenue is Accurate
• on sampled trips: read it now or later
• annual, systemwide (but possibly not by route)

Relationship to Ridership Is Variable
• pass use, transfers, discounts, etc., distort the ridership-revenue relationship
• “average fare” surveys become out-of-date
• wide continued use is an industry weakness
Transactional Farebox Data Innovations

Transfer and Linked Trip Data
- capture time and route of previous trip encoded on pass or transfer
- successful in NYC subway

Estimate load, passenger-miles
- transactional data with location stamp
- estimate alightings using symmetry
Extensive + Intensive Data

Extensive: farebox
• every trip, every day (weekends, too!)
• only a rough measure of passenger activity

Intensive: ride checks, point checks, surveys
• insight on a sample of trips
• expand using farebox data
 -- expand a survey by route, period
 -- apply load-boardings factors found in one day’s ride check

APC can be both extensive and intensive
Two Quality Loops: Real-Time and Planning

Service Plan

Operational control & Passenger info

Real time

Transit Operation

Automated Data Gathering

Off-line

Analyze Performance
Off-Line Applications

- Monitoring service quality (several dimensions)
- Schedule improvements
- Match supply to demand
- Support traffic signal priority (schedule)
Operations Data Needs

• Scheduling
 -- mean running time - usual basis of scheduled running time
 -- 95-percentile running time - basis for scheduled recovery time
 -- demands lots of data collected on lots of days

• Analyzing Bunching Effect
 -- late causes early; early causes late
 -- data on sequential buses
 -- integrate operations data with passenger counts
Operations Data Needs (cont.)

• Analyzing Operator Effect (slow, fast)
 -- extensive data on each operator for peer comparison

• Analyzing Traffic Impact
 -- isolating traffic delay from dwell time, holding

• Analyzing Dwell Time
 -- integrate passenger counts, fare payment, door open times

• Schedule Adherence
 -- quality: plan what you’ll do, do what you plan
 -- virtue can be lost to passengers and operators
Operations Data Collection Techniques

- **Traffic Checkers (with handheld device)**
 - ride check (running time, sched. adherence)
 - point check (headway, sched. adherence)

- **But I want both headway and running time!**
 - ride check on all (or most) buses
 - point check at all (or most) points

- **Supervisors**
 - schedule adherence

- **Automatic Data Collection**
Inadequacy of Manual Data Collection

• **Running Time**
 -- often revised based on a single day’s check
 -- frustrates operators; impossible to control

• **Recovery Time**
 -- too little, too much
 -- rely on rules of thumb, supervisor impressions

• **Schedule Adherence**
 -- Measures quality of {schedule + performance}
Automated Data for Off-Line Application: APC

Tied to on-board computer w/ nightly upload

- APC Analyzer converts sensor signals into counts
- On-board computer stores one record per stop
- Other events may also trigger records
- Nightly upload can be painless

```
passenger sensors, door sensors, speedometer

On-Board Computer
(includes APC Analyzer)

Garage Computer

Control Center

LAN
during fueling
```
Passenger Detection Methods

• Breaking light beam
 -- multiple beams (high/low; inner/outer pairs)
 -- sturdy mount to prevent misalignment

• Pressure sensitive mats
 -- some designs won’t work with low floor
 -- footprint detection

• Infrared (overhead)
 -- requires ambient temperature < body temperature

• Image interpretation
Event Records & Contents

• Stop record
 -- time door opened, closed
 -- location (GPS, odometer, etc.)
 -- on count, off count
 -- [maximum speed since last stop]
 -- [time at crawl speed with door closed since last stop]

• Other record types (contain time, location)
 -- speed threshold passed
 -- signpost or “virtual signpost” passed
 -- turn began/ended
 -- periodic (e.g., 10 s)
APC - Historic Uses

• Mimic ride check analysis
 -- Route load profiles
 -- Passenger-miles, NTD sampling
 -- Running time distribution (limited)
 -- On-time performance (limited)
APC - Historic Deficiencies

High cost, few vendors, short-life vendors
 -- Usually, only 10% of the fleet gets equipped

25% to 75% data recovery
 -- On / off imbalance, negative loads
 -- Route / schedule matching problems

End-of-line issues
 -- Zero-out load to prevent “drift”
 -- End-of-line operation is often irregular, hard to match
 -- Ons for next trip may begin before offs from previous are finished
Equipping 10% of the Fleet ...

• Logistical problems assigning equipped buses

• Not so bad for passenger count data ...
 -- Sufficient for NTD
 -- Superior to any checker force
 -- Adequate for conventional planning methods

• Barely adequate for scheduling data (running time, schedule adherence)
 -- 5% effective sample - each weekday trip sampled once a month

• Inadequate for detailed operations analysis
Automated Data for Real-Time Application: AVL

Tied to Radio and Central Computer

Each bus polled in turn (Wide Area Network)

Polling interval

\[\text{Polling interval} = \frac{\text{unit poll time} \times \text{no. of buses}}{\text{no. of channels}} \]

Ex: 0.5 s per poll

* 1000 buses
* 4 channels

= 125 s polling interval

Variable polling interval possible
Problem of Polling Interval

• **Analysis demands time at location; AVL gives location at (arbitrary) time of poll**
 -- interpolation errors can be significant

• **Too imprecise for efficient signal priority**
 -- predict arrival time to within 5 s
 -- detect exit time to within 1 s
Location Method 1: GPS

- Interpret signals from 4+ satellites
- Low maintenance
- More $$ = more accuracy
 -- accurate clock
 -- differential correction
- Lose signal in tunnels canyons & tunnels
 -- re-radiate in subway tunnel
- Reflection ("multipath") downtown: info deteriorates where you need it most
Other Location Methods

• **Odometer**
 -- buses have electronic odometer/speedometer
 -- subject to calibration error, drift
 -- effective if route is known

• **Signpost (broadcasts ID)**
 -- positive location; useful at key points
 -- correct drift, calibrate odometer readings
 -- useless off-route
 -- maintenance hassle

• **Combinations of methods**
Poll Message Contents

- **Time and Location**
 -- GPS coordinates
 -- odometer reading (in “clicks”)
 -- ID of last signpost passed
 -- [odometer reading when signpost was passed]

- **ID (bus / run / route / operator)**

- **Mechanical alarms**

- **Other info: possible, but longer message slows polling rate**
AVL - Historic Uses
Control Center Only

• Security

• Crisis management (see big picture)

• Line management (limited)
 -- What actions can dispatchers take?
 -- Comparison to schedule often unavailable

• Off-line playback for incident investigations
AVL - Historic Deficiencies

- Data not stored for off-line analysis, except for playback (incident investigation)
- Often unmatched to vehicle route / schedule
- Always unmatched to operator schedule
Trip Time Analyzer

It’s APC without the passenger counter; it’s AVL without the radio

- Record location and time in on-board computer
- Record events such as door open/close, speed threshold passed, etc.
- Permits analysis of running time, delay, schedule adherence
- Dutch experience: Delft University with several transit agencies
- Equip 100% of the fleet