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Abstract

This dissertation is a collection of three independent essays in theoretical and applied econometrics.
The first chapter analyzes dynamic games with continuous states and controls. There are two main
contributions. First, we give conditions under which the payoff function is nonparametrically
identified by the observed distribution of states and controls. The identification conditions are
fairly general and can be expected to hold in many potential applications. The key identifying
restrictions include that one of the partial derivatives of the payoff function is known and that there
is some component of the state space that enters the policy function, but not the payoff function
directly. The second contribution of the first chapter is to propose a two-step semiparametric
estimator for the model. In the first step the transition densities and policy function are estimated
nonparametrically. In the second step, the parameters of the payoff function are estimated from the
optimality conditions of the model. We give high-level conditions on the first step nonparametric
estimates for the parameter estimates to be consistent and parameters to be v/fn-asymptotically
normal. Finally, we show that a kernel based estimator satisfies these conditions.

The second chapter, which is coauthored with Liran Einav and Amy Finkelstein, analyzes the
welfare cost of adverse selection in the U.K. annuity market. We develop a model of annuity contract
choice and estimate it using data from the U.K. annuity market. The model allows for private
information about mortality risk as well as heterogeneity in preferences over different contract
options. We focus on the choice of length of guarantee among individuals who are required to buy
annuities. The results suggest that asymmetric information along the guarantee margin reduces
welfare relative to a first best symmetric information benchmark by about 2 percent of annuitized
wealth. We also find that by requiring that individuals choose the longest guarantee period allowed,
mandates could achieve the first-best allocation.

The third chapter develops a test for the exogeneity assumptions of classical factor models
based on the fixed interactive effects estimator of Bai (2005). The exact form of the test is given
for simple linear models. Simulations are used to asses the test's performance. The application of
the test to more complicated models is also considered. The test is applied to a model of education
as an example.
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Chapter 1

Identification and estimation of

dynamic games with continuous states

and controls

Abstract. This chapter analyzes dynamic games with continuous states and con-

trols. There are two main contributions. First, we give conditions under which the

payoff function is nonparametrically identified by the observed distribution of states

and controls. The identification conditions are fairly general and can be expected to

hold in many potential applications. The key identifying restrictions include that one of

the partial derivatives of the payoff function is known and that there is some component

of the state space that enters the policy function, but not the payoff function directly.

The latter of these restrictions is a standard exclusion restriction and is used to identify

the payoff function off the equilibrium path. By manipulating the first order condition,

we can show that the payoff function satisfies an integro-differential equation. Due to

the presence of the value function in the first order condition, this integro-differential

equation contains a Fredholm integral operator of the second kind. Invertibility of this

operator, and knowledge of one of the partial derivatives of the payoff function is used

to ensure that the integro-differential equation has a unique solution.

The second contribution of this chapter is to propose a two-step semiparametric

estimator for the model. In the first step the transition densities and policy function

are estimated nonparametrically. In the second step, the parameters of the payoff



function are estimated from the optimality conditions of the model. Because the state

and action space are continuous, there is a continuum of optimality conditions. The

parameter estimates minimize the norm of the these conditions. Hence, the estimator

is related to recent papers on GMM in Hilbert spaces and semiparametric estimators

with conditional moment restrictions. We give high-level conditions on the first step

nonparametric estimates for the parameter estimates to be consistent and parameters to

be fn-asymptotically normal. Finally, we show that a kernel based estimator satisfies

these conditions.

1.1 Introduction

This chapter analyzes dynamic games with continuous states and controls. There have been many

recent papers about estimating dynamic games. but few, if any, of them allow for both continuous

states and continuous controls. This is a useful gap to fill since many state and action variables

in real applications are approximately continuous. A generic and pervasive example is investment

as a decision variable and capital stock as a state variable. This chapter gives a comprehensive

econometric analysis of continuous dynamic games. There are two main results. First, we give

sufficient conditions for nonparametric identification of the payoff function from the observed tran-

sition densities. Second, we propose a two-step seiniparametric estimator for the payoff function

and give conditions for consistency and asymptotic normality.

The first main contribution of this chapter is to give sufficient conditions for the payoff function

to be identified by the transition density of the state variables and controls. It is well known (see

e.g. Rust (1994)), that without some restrictions, the payoff function is unidentified. However,

in the case of dynamic games with discrete controls, Magnac and Thesmar (2002) and Bajari,

Chernozhukov, Hong, and Nekipelov (2009) give plausible restrictions sufficient for identification.

This chapter develops an analgous result for dynamic games with continuous controls. The key

conditions for identification of the payoff function are that one of the partial derivatives of the

payoff function is known, there is some value of the control such that value of the payoff function

is known for that value of the control and all possible values of the state, and a certain integral

operator of the second kind is invertible. The first two of these three conditions can be expected to

hold in potential applications. We illustrate their plausibility with an example. The last of these

three conditions is difficult to verify analytically, but could be checked in applications.



Our proof of identification involves manipulating the first order condition for the continuous

control. The first order condition is an integro-differential equation-it involves both a derivative

and an integral of the payoff function. After some manipulation, we transform the first order

condition into an integral equation of the second kind with the derivative of the payoff function

with respect to the control as the unknown function. We state conditions sufficient for this integral

equation to have a unique solution.

Identification conditions for dynamic games with discrete controls can be found in Magnac and

Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2009). Blevins (2009) gives

identification conditions for dynamic games with both discrete and continous controls. His result

relies on the presence of discrete controls and does not apply to the purely continous case considered

in this chapter.

Although our identification result is nonparametric, we develop a semiparametric estimator of

the payoff function. Given the limited sample sizes typically available for dynamic games, a fully

nonparametric estimator may not be informative. Therefore, like most papers on dynamic games,

we assume that the payoff function is known up to a finite dimensional parameter. but leave the

transition density and policy function nonparametrically specified. Our estimation procedure has

two steps. First, the transition density and policy function are nonparametrically estimated. In the

second step, the fact that at the true parameters the estimated policy function should maximize

the value function is used to form an objective function. Since the state and action space are

continuous, there is a continuum of optimality conditions. The parameter estimates minimize the

norm of the these conditions.

Our asymptotic results are stated at three levels of increasing specificity. First, we analyze

generic two-step semiparametric minimum distance estimators with a continuum of estimating

equations. We give high-level conditions on the initial nonparametric estimates and estimating

equations sufficient for the finite dimensional parameters to be fn asymptotically normal. Next,

we specialize this result to the estimating equations that arise from the optimality conditions of

dynamic games, but remain agnostic about the specific form of the initial nonparametric estimates.

Finally, we describe kernel estimates of the transition density and policy function that satisfy the

conditions of the previous two theorems.

The remainder of this chapter proceeds as follows. Section 1.2 describes the model. Section

1.3 gives conditions for identification. Section 1.4 describes the estimation procedure. Section 1.5

contains the asymptotic analysis. Section 1.6 concludes.



1.2 Model

We consider a dynamic decision process with state variables, x, and policy variable, i. We will refer

to the decision maker as a firm. The state variables follow a controlled Markov process, and have

a density which is absolutely continuous with respect to Lebesgue measue, i.e.

f (xTt+1|IT) = fX1Xi(Xt+1|x't, it),

where It is all information avaibable at time t. Each period a firm's payoff function depends on

the current state, the firm's actions, and an ild private shock, p. We denote the payoff function by

H (x, i, q). The firm's value function is:

00

V(XO, ro) max E o'U(xt, itt)xo, io, o]
{it=If(t~r t= to

where It(xt, 7t) denotes the policy function at time t. Under well-known regularity conditions, see

e.g. Rust (1994), a generalized version of Blackwell's Theorem ensures that the value function is

the unique solution to the Belhnan equation,

V(x, q) = nmax 1(x, i, ) + 6E [V(x', rl')Ix, i] (1.2.1)

and that there is a time invariant measurable optimal policy function, which we will denote by

I(x, r).

Although the problem above is written for a single agent making decisions in isolation, it can

be applied to dynamic games with stationary Markov perfect equilibria as well. In this case, the

state variables would include information on all firms in the same market. Suppose there are N

firms, each indexed by f. The transition density for xt given the actions of all firms can be written

F(xt+1|xt, { z ftlf-1) = F(xt+1|xt, {I(Xt, 7ft)} =1).

However, since Tjft is private knowledge each firm must form expectations using

F(xt+ 1xt, if t) = E[F(xt+1 xt, {I(xt, Tt)}N )|7Ift]. (1.2.2)

Hence, each firm's decision problem takes the form written above. In equilibrium, the policy



function must satisfy both (1.2.1) and (1.2.2). It would be necessary to take this into account if we

want to perform any counterfactual analysis. However, our identification result and estimator will

only rely on the individual optimality of each firm's actions. As such we will not be explicit about

equilibrium considerations throughout most of this chapter.

1.2.1 Example

This section describes a concrete example that fall under the above setup. Throughout this chapter,

we will return to this example to illustrate the plausibility of various assumptions.

Example 1 Investment in natural gas pipelines. In ongoing work, we apply the estimator developed

in this chapter to natural gas pipelines. For clarity, we describe a simplified version of this appli-

cation. Investment in natural gas pipelines in the United States is subject to regulatory approval.

Our goal is to recover the implicit cost of investment, including costs of regulatory compliance.

The state variables are revenues, rt, operating expenses, ot, pipeline capacity, qt, and pipeline uti-

lization, ut. Each firm tracks both its own values of these four variables, as well as those of other

firms in the same market. We will use an f subscript to differentiate among firms when necessary.

The control variable is pipeline investment measured in dollars, it. We specify the profit function

of firm f as,

Hf (Xt, ift, gt) = rft - Oft - ift - c(ift, rift, qt, ut),

where the final term, c(ift, 'ift, qt, ut) represents the cost of regulatory compliance. We include

capacity and utilization in this function based on the assumption that the regulator primilary looks

at the rate of capacity use when deciding how costly to make approval of new pipeline projects.

Also, note that although the revenues and expenses of other firms do not enter the profit function

directly, they will help the firm better forecast other firms' choices of investment. Therefore,

revenues and expenses of other firms will still enter the policy function of this firm.

1.3 Identification

Given observations of {xt, ij}, our goal is to recover the payoff function, H(x, i, i). Rust (1994)

shows that this is, in general, impossible because adding any function of x to the payoff function

results in the same policy function. However, it is still possible to give a limited set of additional



restrictions that can be used to fully identify the payoff function. With continuous states variables

and discrete actions, Bajari, Chernozhukov, Hong, and Nekipelov (2009) show that if payoffs are

additively separable in the private shock, r, and the distribution of q is known, then the payoff

function can be identified up to a location normalization with an exclusion restriction. In the same

setting, continuous states and discrete controls, Berry and Tamer (2006) give a converse result.

They show that if the payoff function is known, then the distribution of r can be identified. In a

setting very similar to this chapter's, Berry and Pakes (2001) propose a parametric estimator based

on firm's first order conditions. Their estimator requires observations of realized profits. We will

also consider an estimator based on firm's first-order conditions, but we will not require data on

profits.

We begin by assuming that the transition density of the states and controls, fx''lxe, is identified.

We then show that the optimality of observed actions imply that the payoff function must satisfy

an integro-differential equation that depends on this transition density. We propose restrictions on

the payoff function and transition density that guarantee that this integro-differential equation has

a unique solution. We begin by stating our assumptions and main result. The assumptions will be

discussed in more detail below.

Assumptions I (Payoff function identification).

I1 The transition density, f xt , is identified.

12 The policy function, I(x, rI), is weakly increasing in r] and fg, = f, is known.

13 The policy function satisfies the firm's first order condition.

I4 The discount factor, 6, is known.

15 For some value of the control, io, the payoff function, I(x,io,q), is known for all x and r1.

16 There exists a component of the state space, x(k) with compact support, such that:

9 ( x 1,i,rJ) is known and not identically zero for all x,rg and,

e The policy function is pseudo-invertible at io with respect to x(k) in that for all x--k)

and r there exists a function xk(iO, x(~k), ry) such that

I(Xk ( , ( k) I), X(-k),rI) =

and Xk is measurable with respect to x(~k) and rj.



17 Let n- E g. Define the following operators g - g,Oi

D(g)(x, I) = £ [L6T  (Xt+r U't+r) et = ,t = I(X,

;;; (g) () r g(:;(A-),X( k) ~& ~k )'~j

C(g) (x, TI) =D (C (g)) (X, r/)

The only solution in g to

0 = g(x,' ) + C(g)(x,'r) (1.3.1)

is g(x, I) = 0.

IS There is some component of the state xi excluded from U(x, i, TI), but entering I(xI).

Theorem 1 (Payoff function identification). If conditions 11-17 hold, then the equilibrium payoff

function, U*(xt, nt) = U(xt, I(xtr. /t)t) ), and value function V(xt,r/t) are identified. If, addition-

ally, condition 18 holds, then the payoff function, U(x, i.) is identified.

We now discuss the assumptions of this theorem. Its proof can be found in the next section.

If the state vector, xt is observed I1 is trivially satisfied. Hu and Shum (2008) give conditions

that ensure I1 in the presence of unobserved components of the state vector. These conditions are

discussed in detail in section 1.3.2 below.

Condition 12 is to allow I(x, ') and the distribution of r/ to be recovered from the density of

i and x. The requirement that the distribution of r/ is known is more a normalization than an

assumption since ri is an unobserved variable that enters unknown functions in an unrestricted

manner.

Condition 13 is to ensure that the first order condition can be used to recover the payoff function.

If it is not satisfied everywhere, such as with binding constraints on i or non-differentiable portions

of U(-), then the theorem can be adapted to apply for values of x and r/) where the first order

condition is satisfied.

The first order condition can be manipulated to give an integral equation that can be solved for

. Conditions 15,16, and 17 guarantee that this integral equation has a unique solution. Conditions

15 and 16 are analogous to some of the conditions for identifying dynamic discrete games in Magnac



and Thesmar (2002) or Bajari, Chernozhukov, Hong, and Nekipelov (2009). With discrete actions,

it is necessary to normalize the payoff associated with one of the alternatives to zero. Condition 15

is the continuous analog of this normalization. With discrete actions, it is also common to assume

that payoff function is additively separable in private shock. Here, the assumption that one of

the partial derivatives of the payoff function is known, 16, takes the place of the assumption of

additively separable private shocks. To make the analogy more clear, condition 16 could be placed

on q instead of X(k).

Condition 17 is a key identifying assumption. It ensures that the integral equation for has

a unique solution. Similar conditions appear in the literature on nonparametric identification of

simulataneous equation and are referred to as completeness conditions. In that literature, the

completeness condition involves an integral equation of the first kind. Inversion of such equations

is an ill-posed problem, which adds to the difficulty of estimation. Here, the completeness condition

involves an integral equation of the second kind, so there is no ill-posed inverse problem.1

It is difficult to verify condition 17 from more primitive conditions. One simple sufficient con-

dition is that the operator C : -> g defined above has operator norm less than one. However,

there is no particular reason to believe that this condition would hold in applications. Fortunately.,

although it is difficult to determine a priori whether T7 holds, the condition can be checked for any

given dataset. Condition 17 is an assumption about the transition density and the policy function.

These two things can be identified without attempting to identify the payoff function or invoking

assumption 17. Therefore, condition 17 can be checked. One could even develop a formal statistical

test for 17, but we will leave that task for future work.

Finally, the exclusion restriction, 18, allows us to separate the structural payoff function from

the equilibrium payoff function. Without the exclusion, we would only be able to identify the payoff

function along the equilibrium path, that is only at (x, I(x, ,r), ?) rather than for any combination of

(x, i, rj). While identifying the payoff function only along the equilibrium path is sufficient for some

purposes, such as predicting payoffs in the current environment, identifying the payoff function

everywhere is essential for counterfactual analysis.

We now discuss how these assumptions relate to our working example.

Example 1 Investment in natural gas pipelines (continued). All of the state variables in this ex-

ample are observed, so the transition density is identified, satisfying I1. Assumption 12 is simply

'Estimation still involves an ill-posed inveres problem in that it requires estimation of a conditional expectation

operator. However, the inversion of that operator needed to solve for the value function is well-posed.



a normalization. Condition 13, which says that first order condition holds, appears reasonable. It

would follow from concavity in i of c(i, q, q, u). One might think that investment involves a fixed

adjustment cost, in which the first order condition need not hold when investment is zero. How-

ever, in this case we would observed a mass point at zero investment, and there does not appear

to be any such mass point in the available data. Condition I5 can be met by assuming that when

investment is zero, profits are simply revenues minus expenses. In other words, c(O, i, q, u) 0.

We have revenue data, so we satisfy the first part of 16 by assuming that profits are additively

separable in revenues. The second part of the assumption is also very plausible. It is reasonable

to believe that with sufficiently negative revnue, the firm would choose to shut down by setting i

to a large negative value. Also, if revenues are sufficiently high, the firm should choose to invest

a positive amount. By continuity, there shoud be some intermediate amount of revenue that leads

to zero investment. As mentioned above, condition 17 is difficult to verify analytically, but it can

be checked using estimates of the transition density and policy function. Finally, the exclusion

restriction, 18, is met by assuming that each firm's payoffs depend on the firm's own revenue, but

not the revenue of other firms. The revenue of others still enters the firm's policy function because

the others' revenue helps each firm to predict others' actions, which can affect future payoffs.

1.3.1 Proof of identification (theorem 1)

We first show that the policy function is identified. Assumption I1 implies that the conditional

quantile function of actions given states is known. Denote it by Qil.(TX). Assumption 12 - that

I(x, q) is weakly increasing in 7j and Fy is known - imply that the policy function is

I(x, F- 1 (TF)) =Qil.-(Tlx).

Condition 13 says that the policy function satisfies the first order condition. As stated in the

text, the first order condition is

0 (Xt, I(Xt, t), Tt) + Y TE [I (xt+r, I(xt+,r, pt+r), it+r) |xt, I(Xtq)] . (1.3.2)
T~1



We can express the payoff function in terms of its derivative,

rI() o(-) [H(r, I(x, ), )1 (z, r/ +i ( Ik) r

[ (k) O11 (k) R9(11 X 7)

+ Dx(xk)io,, I, r/) ).sodr/)

(1 ()(x,r/) + H (xk(io -k, z,Tikr +

+ ) ___(x, I(x, rj), r/)dzik) (1.3.3)
+ XkGio,.r k) 8)

where the first line is just the fundamental theorem of calculus, and the second line comes from

( kk)

setting = x (io, (-k), ), and expanding [11(x, I(, ,;), r/)]. Let

+iz, i) = x ( kio, £ X zki k0 +)-

/ k B D (x , I() , r/), /)dz(k)

X~kDxak)

f~k~O. X ,(fo OX( ) 
(1.3k)

Note that by I5 and 16, p(x, r/) is known. Substituting this and (1.3.3) into (1.3.2) gives,

0= (t, I(xt,r/t ),rt) + -E IYT r E (+tr /tr)+ t++ ( Tt+r7) IXt,I

(I ~ /C) all
W e hav + K ) + D ( n)

We have assumed that ( and (, 1o, 1) are known, which implies that o(x, r/) is known. Also,

condition I7 ensures that the operator, 1 +KI, in the above equation is invertible, so we can identify

0" (x, I(x,j), rI). Integrating as in (1.3.3) gives II(x, I(x, r/), rI).

Finally, to recover the payoff function for at places where i # I(x, rI), we use the exclusion

restriction 18. In particular this exclusion implies that the payoff function can be written as

H(( i, r /), so by varying x() while holding x(-) and y; fixed, we can identify the payoff function

on the set {xE(') I, r i = I((i), z+i), r/)}.



1.3.2 Identifying transition densities with unobserved state variables

Theorem 1 above shows that given the transition density and some normalizations, we can identify

the equilibrium payoff function, fI(x, il). As stated above, when states are fully observed, the

transition density is easily identified. When some components of the state vector are unobserved,

it can still be possible to identify the transition density. Hu and Shum (2008) give conditions to

identify the transition density in the presence of unobserved state variables. Their identification

argument relies on the eigendecomposition of an integral operator associated with the joint density

of observed states.

Suppose the state vector can be written as £t = (wt, et), where wt is observed, but et is not. Hu

and Shum (2008) show that the transition density can be identified under the following assumptions:

Assumptions U (Transition density identification with unobserved states).

UJ The states and controls follow a stationary first-order Markov process,

U2 Strategies are Markovian, so that

US The unobserved states are not affected by the controls in that

w~t , tit lVwt-1,Ct- = f~tiwt'6n 1

U4 There is sufficient variation in it_1 with et-1 given fixed wt and wt_1, so that there exists a

known function w(i) such that IE[w(it 1)|wt,wi_1, et 11) < o and for any et_ 1 e' 1,

E [w(it_ 1 ) |wt, wt- 1 , e- 1] 7 E [w(it_1) Jw, Wt_1, e'_1

U5 There is sufficient variation in it with it-2 given fixed wt and wt_ 1 so that the operators

defined by

(1$ h) (i') h(it-2) wzi-1)1it2 (i',Wt, it-1 wt_1, it-2)d _1 dit-2



are one-to-one for each w, wt-1.

U6 There is variation in it with et-1 given wt.t1 so that the operators defined by

(Li ,11't,_t-j , -h)(i) = h~t ~ i o e_('Wt, Wt-1 t 1d t

are one-to-one for each w, wt-1.

U7 There is variation in it with ct given wt so that the operators defined by:

(Li L Iwt,th)(i h (,E)fit I Wtt(IlI , C) de

are one-to-one for each wt.

U8 For each component of et 1 ., there exists a known functional Gk such that

Gk ([fiI gwtowi, t (1-|wt Wt-1I, Et _1

is inonotonic in e-1,k.

Theorem 2 (Hu and Shum). If assumptions U1-U8, then the observed density of (It. wt, i 1 ,

iL'z it-2t wt.-2) uniquely determines the equilibrium transition density f

Assumptions U1 and U2, which state that the environment is stationary and Markovian, are

standard for dynamic games and have already been made above. Assuiption U3 restricts the nature

of the unobserved state variables. It says that the unobserved state variables are independent of

the control in the previous period conditional on the previous state and current observed state

variable.

Assumptions U4-U7 ensure that there is a sufficiently strong relationship between observed and

unobserved variables so that the distribution of observed variables can be used to constructed the

distribution of unobservables. Although assumptions U5-U7 can be difficult to fully verify, simple

necessary conditions for each can be expected to hold. For example, U7 requires that conditional

on each observed state, the unobserved state influences firms' actions. If this were not true for at

least some observed state, then the unobserved state is irrelevant and should not be part of the

model. Similarly, assumptions U5 and U6 require that actions be related to unobserved states and

past and current unobserved states be related. Additionally, assumptions U6 and U7 require that



the support of it be at least as "'large" as the support of ct. For example, if et is continuous with

k dimensions, it must be continuous with at least k dimensions. If et is discrete with k points of

support, it must have at least k points of support.

Assumption U4 is easier than assumptions U5-U7 to verify. However, it also fails in some

common models. In particular assumption U4 rules out models where there is a deterministic

relationship between the current state, past action, and past state. For example, if the state

includes the capital stock, the action is investment, and depreciation is deterministic, then It

wt - (1- 6)wt1 and there is no variation with E in E[w (it) wt, Wt_1, E . Nonetheless, even in models

with deterministic accumulation, the above result can be useful. Since investment can be recovered

from wt+1 and wt, it can be excluded from the model while identifying the transition density. Then

if remaining actions satisfy the above conditions, the transition density is identified. In practice,

candidates for these remaining actions include anything that satisfy assumptions U2 and U3. That

is, they must be functions of only the current state and should not influence the next unobserved

state. Even actions that have no dynamic implications, such as variable inputs would be suitable.

Additionally, depending on the model and interpretation of ct, outcome variables such as output,

revenue, or costs might be suitable.

1.4 Estimation

Although the above identification result is nonparametric, our estimation approach is semipara-

metric. We assume that the payoff function is known up to a finite dimensional parameter, but

allow the transition distribution and policy function to be nonparametric. As in much of the dy-

namic game literature, we estimate the model in multiple steps. First, we estimate that transition

distribution of state variables and the policy function. We then use the estimated policy function

and transition distribution along with the optimality conditions of the model to estimate the payoff

function.

1.4.1 Estimating policy functions

We begin by supposing we have some nonparametric estimates of the transition density, fX1, and

the conditional distribution of actions given states, Fg. Theorem 4 gives high level conditions on

these estimates for the parameters of the payoff function to be consistent and ri asymptotically

normal. In section 1.5.2 below, we show that certain kernel estimates satisfy these high level



conditions. We expect that sieve estimates would as well.

Given F12 , estimation of the policy function is straightforward. We have assumed that the

policy function is weakly increasing in q, that y is independent of x, and that the distribution of i/

is known. Therefore, an estimate of the inverse policy function can be formed from the following

relationship:

Fj(TI) =Fp (4l)

i(i, x) =Fy1 [iK (ilx).

1.4.2 Estimating the payoff function

The payoff function is estimated from the optimality conditions of the model. To do this, we must

solve for the value function given the above estimates and a candidate parameter value. This can

be done by evaluating the Bellman equation at the estimated policy function using the estimated

transition densities to evaluate the conditional expectation:

V(x, i; 0, f, j) = H(x, i, (i,x); 0) + 6Ef K(:'. i'; 0, f, )x, i] (1.4.1)

This functional equation can be used to solve for V(x.i;0), the value of being in state x with a

private shock such that i is the estimated policy.2 Let the value of deviating from the estimated

policy for one period be denoted as

V(xj, i; 0, f, ij) =I(x, i, TI; 0) + 6Ef [Z(x' i'; 0, f, q) X, i]

The optimality conditions of the model can be used to form moment conditions to estimate the

profit function. At least three ways of using the optimality conditions of the model to estimate

the payoff function have appeared in the literature. We will show that these three methods result

in asymptotically equivalent estimators when the moments are weighted appropriately. Jenkins,

Liu, Matzkin, and McFadden (2004) minimize the difference between observed actions and optimal

2 Since, given the state, investment and the private shock contain the same information, we could have instead

defined a value function over x and r7. In this case, the I in the right hand side of (1.4.1) would be replaced with

I(x, q). Although defining the value function over x and r/ would be more standard, we chose not to do this because

estimating the inverse policy function is slightly more straightforward than estimating the policy function.



actions. This action based moment condition is:

0 = m" (i, ; , h) - arg max V(x, w(i, x), i; ,h),

where h (i, f). Alternatively, the first order condition for investment can be used as a moment

condition:

8V
0 = mf (i, X; 0, h) - (i(i, i; 0, h).

Hong and Shum (2009) use this kind of first order condition based moment. A third candidate

moment condition is the difference between the value of observed actions and the maximized value

function. This type of moment condition is used by Macieira (2009):

0 - i, x; 0, h) =V(x, 1; 0, h) - max V(x, I)(i, x), i; 0, h).

Note that each of these conditions hold for all i, x. An objective function can be formed by

taking a combination of them. Since the estimates of the transtion distribution and policy are

estimated nonparametrically, we must use a continuum of moment conditions in the objective

function to enable the payoff function parameters to be V/n-consistent. Let n(.) be one of ma(.),

mf(-), or m,(-). The objective function is

Qn(0; h) f j m(i, x; 0, h)w,(i, x; , i', x')m(i', x'; 0, h)didzdi'dx'

2
Bnm(-; 0, h)

n

where w.(i, z; i', z') is some weighting function, possibly data-dependent, and the second line is

simply alternate notation for the first. In particular, ||f 12 f f(i, z) 2 didx, and B, is an integral

operator with a kernel that satisfies

wn (i, ; , I') J b (i, z; i, z9b (i', c'; i, z)didz

The parameters of the payoff function are estimated by minimizing the objective function,

0 arg min Qn (0; h).
oe



1.5 Asymptotic Theory

The above estimator of 0 is similar to the estimation frameworks of Carrasco and Florens (2000):

Carrasco, Chernov, Florens, and Ghysels (2007); and Ai and Chen (2003). As a result, we can

derive the asymptotic distribution of 0 using a suitable adaptation of their arguments. The current

situation differs from the setup of Carrasco and Florens (2000) and Carrasco, Chernov, Florens, and

Ghysels (2007) in that the moment conditions here include a preliminary nonparametric estimate.

Ai and Chen (2003) study conditional moment conditions with nonparametric components. They

derive their results for independent data, and so their weighting operator is diagonal. Here, the

data is not independent. Also, Ai and Chen (2003) consider simulataneous estimation of the

nonparametric and parametric components of their model. Here, the nonparametric and parametric

components are estimated in two steps.

The following theorem gives conditions on m(- 0, h) and h sufficient for asymptotic normality.

The conditions are stated for generic moment functions m(-; 0. h) and nonparametric estimate h.

Theorem 4 gives more specific conditions on the payoff function and transition density that imply

the generic conditions of Theorem 3 for each of the three versions of m(.: 0, h) defined above. Section

1.5.2 describes kernel estimates of the transition density and inverse policy function that satisfy

the generic conditions of 3. Let f, g) denote the inner-product associated with the norm used to

define Q, i.e.

(f, g) = f (i, x)g(i, x)didx.

For any functions, f and g, let f(x) < g(x) mean that there exist a constant A such that f(x) <

Mg(x). Similarly, let f(x) <. g(x) mean that f(x) < Mg(x) + op(1) uniformly in x.

Assumptions A (Asymptotic normality for semiparametric minimum distance estimators in a

Hilbert space).

Al 0 approximately minimizes Qn(0), so that Q,(O) < infoce Qn(0) + op(n-1/2).

A2 Let ||B||op be the usual operator norm, ||B||op = supif =1 ||Bf 1, assume that lIB, - BI0op 4 0.

AS The nonparametric estimates of the transition density and policy function corverge at a rate



faster than n- 1/4 with respect to some norm ||-||R, in that

B(h - h) = op (n- 1/4) .

A4 The following derivatives exist and satisfy the following conditions:

A 4.i For all 0 with | - O0 | 6n, m(-; 0,h) is pathwise differentiable with respect to h at ho.

We denote this derivative as D" (0, ho) This derivative is such that

sup B11
0:|l0-00oil6so, (n 0,h) - m(-;0, ho) - Dn(0, ho)(h - ho)) $, h -o

and

A4.ii

sup Bn (D (0, ho)(h - ho) - Dh (00, ho)(h - ho)) $< h - h - Bol

A4.iii In a neighborhood of 00, m(; , ho) is continuously differentiable with respect to 0. This

derivative is bounded away from zero in that

1/ inf
0:-0-|o00<n

DnOMom .; 0, ho) ) <1

and this derivative is Lipschitz continuous, so that

sup B"
01,02:||110i||00

a m (-; 01, ho) -
Dm
O-

A4.iv In a neighborhood of 00, ||Bm(-; 0, ho)|| is continuously differentiable with respect to 0

with derivative

B , (-; , ho)|| = 2 Bn a (-; 0, ho), Bam (.; 0, ho))

A5 h and Bn are bounded in the sense that there is some constant M such that with probability

approaching one

Bm(.;8, h) < M

02,1 ho) <,0 01 - 02|-



and

+ D"(0o, ho)(h - ho) < M1f.

B (-, o, ho), BD7"(60, ho),(h
d- N(O. QB)

Theorem 3 (Asymptotic distribution for semiparametric minimum distance estimators in a Hilbert

space). If Al-A6 then V ,n(O 00) + N(0, A['QBM 1 ) with MB = (B. B9')

Proof. We will show that 0, which minimizes

2

Qn (0) = Brim(- 0,h

is close to the minimizer of the linearized objective function,

L,(B) =B m(.; 0, ho) + Dm(00, ho) -ho)

First, we must show athat Q,(0) is close to L,(0) in that

sup |Qn(0) - Ln(0)I = op(n-1/2

fl0O ojj<65,

Note that

2

IQn() - Ln(0)j Bm(,;0,h) _- o 0, ho) + D'"(0o, ho)(h - ho))

Brl(-;0,h) - Bn (m(-; 0, ho) + D "(0o, ho)(1 - ho)) x

( Bm(-; 0, ) + B, (m(-; 0, ho) + DJW(0o, ho)(h - ho)

r B< im(;0,h) -Bn (m(-; O, ho) + Dm(Ooho)(h - ho)

< Bn (m(-; 0,) - r(-; 0, ho) - Dm"(0o, ho)(- ho)

B, 0m - , h,)



where we used assumption A5 and the reverse triangle inequality. Note that

m(- 0, ho) - Dm (0,. ho)(h - ho) <

;B, (m(.; 0, h) - m(-; 0, ho) - D'(, ho)(h - ho) +

+I B (DT(0, ho)(h - ho) - D7(Oo, h0 )(h - ho))

Invoking assumptions A4.i and A4.ii gives

B (m(.; 0, h) - m(-;0, ho) - Dm(0, ho)(h ho)) <p fi-
2

ho E +

+ Y± - ho |1 - 0|o|

Using assumption A3, we have

B, (mr(.- 0, h) - m(.; 0, ho) - Dr(0o, ho)(h

We will now show that P - 0o

expansion in 0 around 0o, so that

ho)) Spop(n-1/2)+

+ op(n 4) 0

(1.5.1)

(1.5.2)-00

< Op(n-1/2). By assumption A4.iii, we can take a mean value

m(-; 0o, ho) +
am(.; , ho)( - 00)00

m(.; 0, hi) - m(.; 0, ho) + (m(.; o, ho) +
m ho

ao.;,h )(0 - 0o)) =0

Rearranging and using the fact that m(.; Oo, ho) = 0, we have

BnD (;, ho)(0 -00) - Bn (m(-; e, h) - m(-; 0, ho))

By A4.i we have

Bn (-; 0, ho)(0 - 0() Bn DT (h - ho) + op(n-1/2)

-0 0o< BDW(h - ho) + op(n- 1/2)

m(-; 0, ho)

Therefore,

B" (mn(.-; 0, h)



Thus, by assumptions A4.iii and A6, we can conclude that ||0 - 0oll < Op(n 1/2)

Combining the just obtained rate bound for 0 with equation (1.5.2) gives:

Qn(0) - L,(0)| = oj(r-1/2)

Now we show that the minimizer of Q,(0) = I|Bm(-; 0. h)I is close to the minimizer of Lr,(0)

+ D "(0o, ho)(h - ho)) . Let 0 denote the former and 0 denote the later.
B (m(-, , ho)

assumption A1,

Qn(0) < Qn(O) + op(n 1/2)

Using the expansion results above we then have.

Ln(,) < L 1 (O) + op(n-/ 2 ).

On the other hand, 0 is defined as the minimizer of L,,(0), so Ln(0) < Ln(0) and we can conclude

that

L, (0) = L, (0) + op(n -1/2)

By assumption A4.iv we can expand both sides around 0 to get

Bam (-;a0 I1, ho), BnDJ"(0, ho)(h - h0 )) (0 00) =

ho ), BnD"(0o, ho)(h - ho)) ( - 00) + op(n 1/2)

Rearranging gives

(Bn am (.; 0 2, ho), BnD"(0o, ho)(h - ho) (0 - b) =

ho) BnDT,(0o, ho)(h - ho) (0- O0) +- op(n 1/2)

By assumption A4.iii,

(-01, ho) - (;02, ho) $ - 02

= Bn' (-; , h(-

=Bna (-; 2,



Also we have already shown that 0 0o < OP(n-1/2), which implies that 01 - 02| 1 O(n 1/2)

Thus, we can conclude that |O - b|| = op(n- 1/2)

Finally, expanding the first order condition for the linearized objective function gives,

O K= B= (B - 0 ho), Br? (m(- 0, ho) + D'(00, ho)(h - ho)

\ 8m ~.~m(, o, ho) + - ho) -0)+0= B, (-0, ho), B,
890 + D (0, ho) (h - hto)

(0- 0o) ,- Bam (., , ho)B 7 n ho) x

x BP (-,J Io) BD? (0o, ho)( -ho)

-- B am(-, o, hto), B am(-, Oo, ho) x

x B am(-,Go ho) BD (0,ho)( - ho) + op(n?- 1/2)

To conclude, we have

O( o) = -T Bn Bm (-, Oo, ho), B am(-, 60, ho) x

x B (-m(.,Oo,ho),BDj"(O0 , ho)(h -ho) +0o(1)

and the statement in the theorem follows from assumption A6. I

We now give conditions on the payoff function and other model primitives such that the condi-

tions of theorem 3 are satisfied. We begin by establishing differentiability of m(-; 0, h) for each

of the three candidates for m(.; 0, h) introduced above. Each m(.; 0, h) is simple function of

V(x, rj, i; 0, f, TI), so Lemma 1 about the derivatives of V is useful. Before stating this lemma,

we define some additional notation. Let Sf (g) (x, i) denote the following conditional expectation

operator:

Ef (g) (x, i) =- E [g (z' , i'/) Ix, i]

where g : X x I -+ R and the expectation is taken with respect to the transition density, fx'rxj.

Also, let I denote the identity operator, g o j = g(x, i,' (i, x)) for g : X x I x Rk, and

let fl,(xi,rg) = (xi, r;0). Note that (I - Sf)-1 exists because ||6Ef||10 = 6 < 1. Using this



notation, we can write V as

V(x, ,, i; 0, o) HO(x, i, r) + &~7 ((I - Wf)--IU o i) (x, i, rI)

Lemma 1 (Differentiability of V(x, rI, i; 0, f r) ). If

1. The payoff function is twice continuously differentiable with respect to i, r, and 0 for all (i,

x, rg), and for all 0 in a neighborhood of 0. The derivative with respect to 0 is bounded by a

function with finite expectation with respect to f, i.e.

aU
a < <m(i, x)

with

uniformly in (i. x). The derivatives with respect to rq are Lipschitz continuous in that for all

0 in a neighborhood of O0,

0110
O (x, i,r 2 ) S1 1(i, x) I? r/ - r21

with IIBMi1| bounded. Similarly, for all 0 in a neighborhood of 00,

2  i ,o a21)xi
a i(X71i1771 ) - a (x i q2) < M 2 (i, x) I1 - 'q2 |

with |IBM 2 || bounded.

2. The conditional expectation operator, S is twice continuously differentiable respect to i.

then V is twice continuously differentiable with respect to i and 0 at h = ho, for all i. and for all 0

o(X, i, r1 -

jm~, x'),fo (i', xT'|i , x) di'dx' <



in a neighborhood of 0. Moreoever, these derivatives are given by:

i, y; 0, fo, ro)

i, , fo, no)

i, ;, fo, nio)

(x, i,

- (x, i

D2110
(x, i,

-D
2

( 21i
DiD (x. i.

1) -+ jg7 0 (I-

1) + fo ((I

+ i 5

85 f ) 1DOorio) (X,i)

-Mfo)- 'Ho 77o) (X., i)

' o no) (x, i)

,DHO
DO((I - 7 fo)

Also, V is pathwise differentiable with respect to f and r; in a neighborhood of fo and no with

derivatives

- r) =oSf (I - t)

-f) =sst [(I - LoJf)

110H

O\J D
0 r) (r1(-) (-)) ))

((I - 5 f H)-1110 r0 ) (x'/ i') x 1
x (fi(', i',) - f (x', i' -)) dx'di'

+ (f ((I - E)--'HO o ri) (x', i') (fi(r' i'j-) - f(x', i'l-)) dr'di'. (1.5.8)

Finally, DV and DV are continuously differentiable with respect to i these derivatives are equal to

the pathwise derivates of 2 with respect to ri and f, which also exist. These derivatives are given

8DV
Di(8, fr)(i 1

DBD ff
O~V(0, f , r7) (fi

-- ri) =D (I - 6Ef)

8 E
f) =6FD

1 ((DH (771 -())

1 ((I -W )
((I - 8 f)-

xI (X', i'/1-)

((I - 6Ef)-H o ri) (X', i') x

x (fi (x', i'1-) - f (x', i'.)) dx'di'

'nl o rI) (X', i')x

- ( ', il-) dx'di'

and these derivatives are Lipschitz continuous with respect to ri, f, and 0 uniformly in a neighbor-

hood of rio, fo, and 0o.

Proof. Assumption 1 allows us to apply the dominated convergence theorem to show that

aOSf H(; 0)80
DH
Ol (0)

OV (x

0 (x,

D82

D2V
DiD0 (x, i, 71; 0, fo, ro)

2

71 (I -S g)

(1.5.3)

(1.5.4)

(1.5.5)

(1.5.6)0 r (x i).

D"(0, f rf)(f,

DV (0, f, r(fi

(1.5.7)

(1.5.9)

(1.5.10)



and
(IaEll(al10

(I - Sf) ) U(-; 06) = (I - ___-18 (;6

Given this, (1.5.3)-(1.5.6) follow directly from the assumed differentiability of the payoff function

and conditional expectation.

We now show (1.5.7). Recall that

V(X, i, r/; 0, fY) =H0(x, ir) + JFf [(I - SSf)- 1 o8 oTr]

Let Vj V(x, 1, q; 0, f, rm) for j= 1, 2. Note that,

Vi - V2 = f ( - Sff) 1o 0 11] - Ef [(I - ofCf) 17 o r72]

=WEf [(I - (Ef)-1 (10o 0 r1 - Ho 0 r/2)

Also.

V1 -V 2 - D(-; 0,f, i)

=WEf (I - '(f()" H 0 o71 - o r/2 ( 0I (711 - <2)

Taking a mean value expansion in r/ of 10 o 12, along with the assumed Lipschitz condition on

gives

Vi - V2 - DJ(-; 0, f, 11) < 1 | |ff, 7 ||M1| ||r - r112 |

Thus, D) is the pathwise derivative as claimed.A similar argument would also show that (1.5.9) is
77

the pathwise derivative of 2 with respect to q.

We now show (1.5.8). Recall that V(x, i, Ti; 0, f, rl) denotes the value of choosing i when the

state is x and the private shock is r; and V(x, i; 0, f, r) denotes the value of being in state x and

choosing i when r =- (i, x), i.e. the value of choosing i when rj is such that i is optimal. V can be

written as

V(X, i, rI; 0, f, r1) = H0(x, 1, r/) + Wf V(-; 0, f, r1),



where V can be defined as the solution to the following equation:

V(i, x; 0, f, n) =II0 (x, i, r (i, x)) + 6sfV(- 0, f, r).

Consider the difference between V for two values of f.

Vi - V2 = 6f V1 - SEf 2V2

= i(i', x') (fi(i',x'-) - f 2 (i', x' .)) di'dx' + S~f 2 (v 1 - 2

where now Vj = V(.- 0, f, q) and VY = V(-; 0, fy, I). Similarly,

1 -- Z2 =J Vi(i', .') (fi(i', X'-) - f 2 (i', z' .)) di'dx' + SEf 2 (1 - 2

Although this equation is nearly identical to the previous one, here we can subtract WEf2 (1 - V 2

from both sides and apply (I - 6Ef 2) I to obtain

(fi(i', X'L) - f2 (I' x'.)) di'dx'

Now note that,

V1 -V 2 - D(.;,fi, )

= '2 ((I - f2) -

- Ef (I - sef ) 91[(', x')

- f 2 (i', x'.)) di'dxz1) -

(fi(i ,'-) - f2(i', x1 )) di'dx'

I.)) di'dx'1) +

+ (Ef2 - EfI)
((I

- ffi) 1 q 1, x') (fi(i', 2(i', x'I.)) di'dx'

It is trivial that

(2 <fi)

(I - FfJ)vi [6q 9(', x') (fi(', x' -) - f 2(i'. x'I-))

$ ||f2 - fi 12

E 2) 1 ,1

(7' z') (hi W, |-) f2 (i', x'

[6 1(v I ') (fi( W |- X

=Ef2 ( ( - 06/2)l - (1 - 6Sfi)1 16j



Also, for any function g(i, x),

(Ig- 2) - (I - 6f 1 ) 9 < - | 1g|1|fi - f2117

Thus, we can conclude that

V1 - V2 - DV (.0, fi,,q )(fi - f2)
lim = 0

f2f->1 - f2| |0

and D is the derivative as claimed. It is elementary to show that Dv has the derivative with

respect to i claimed in (1.5.10). Showing that 2 has (1.5.10) pathwise derivative involves the

same argument just used to show (1.5.8)., so we omit the details. Also, showing that the pathwise

derivatives are Lipschitz can be done in similar manner, so we omit the details. I

We now give conditions on the payoff function that are sufficient for the conditions theorem 3.

Let T be the Sobolev like space of functions f : (X x I) x (X x I) that are differentiable with

respect to their last argument. Define a norm on this space by

||f 11- = sup B fg(x', i')f(x'. i'|:)dx'di' + sup B gq(x'. i')j (x' i'|-)dx'di'
|Bg| 1 IBgl= 1 07

Theorem 4 (Asymptotic distribution of the payoff function parameters). If assumptions A1, A2.

and the conditions of lemma 1 hold and,

A'1 The estimates of TI, f, and 4 converge faster than n-1/4, i.e.

||B(t - IO)| | =op(n 1/4)

f - fo =op(n 1/4)

A'2 % and 2 are Lipschitz continuous with respect to 0 in a neighborhood of 0 in that

B (-;1) - (-; 02) 101 - 021

and

B i-; (1) - (-; 02) 01 - 021



A'3 '(i) < C(. ,i) with (BC)(x, ) and ||BC| finite.

A'4 f and il arc bounded with probability approaching one

||Bi|I < M

and

f M.

A'5

(Bm (., Oo, ho), BD"(0o, ho)(i)

ho), BDf (00, ho)(f

-7/))
- fo))I

d
-+ NI(O, QB)

Proof. We will verify the conditions of theorem 3. We have assumed Al and A2. Also, condition

A'1 is basically a restatement of A3. To verify A4, first note that the derivatives of ma, mL, and

mf are simply functions of the derivatives of V. For mf, it is immediate that

Dmjf -
2V

DO 020

Df f(rf1 - r)

Df (fi - f)

=a 0 77 + a

Dv
= (fi - f).aDZ

For ma, a simple application of the implicit function theorem gives,

Dma
Oa
0

D Tnfi f)

D2 Vp" -1 D2 V

( Di2 J DiDO

(0 2V -1 (DR D
= D42  07 D 17( 2V ) - 0DV(l

Di2 a Di

KBa (., Oo,

Dv \
(rli

DnV



For n, using the envelope and mean value theorems gives.,

ama

DO C77 1

Df" (fi - f)

a2V
- i (iD0D0(1- DR DV- Dry D+Br/ Bi (~1i - rj)(i --

aDy
= (fi - f)(i -

where i*(i?,x;.f, rl) = argimax; V(x, r,(i, x), i, i;O , fT). Conditions A4.i and A4.ii then follow

BDV Bvfrom the Lipschitz continuity of and -- shown in lemma 1. Similarly, condition A4.iii follows

directly from lemma 1 and assumption A'2.

A4.iv can be verified through repeated application of the dominated convergence theorem. In

particular if (x, i 0) < C(x, i) with BC(x,i) < oc and |BC| < oc, then

a Bm
=0

m(x', i')b(x'. i'; x, )dx'di'

- (x', i')b(x'. i' x, i)dx'di'.

Also,

2(B0 )(x., i)(Bm)(x, i)dd

< IBC| ||Bm||

||Bm|1 =2 B Bm .

Thus, we just have to show for each of the three possibilities of m that |j / (x, i; 0)| < C(x, i) with

BC(x,i) < o and IBC| < o0.

Condition A5 follows from A'4 and the following inequalities. To show the first part of A5 note

that

Bm(-;0,I) < Bn D il + Bno _ I 1 i

<|Bni - ro)\I + 1 (iBnfop - f +| |Bn(Q -io)|)

- i* )

(B m)(x, i )2 dodi =



Similarly, the second part of A5 follows from

BrDj(- h) < B, (it-irl) + B . (f-fo)

<(JB, (n --'r1)|| +|- fo .
1-)

Finally, A'5 implies A6. I

1.5.1 Asymptotic equivalence

In this subsection we show that the three types of moment conditions result in asymptotically

equivalent estimators when appropriate weighting operators are used. This fact follows directly

from results derived in the proofs of Theorems 3 and 4.

Corollary 1 (Asymptotic equivalence ). Suppose the conditions of Theorem 4 hold. Let Of(B) be

the estimate from using moment conditions nt and weighting operator B. Similarly, define a(B)

and 01 (B). Then

82V
Of(B) - a(B ) =o(n- 1/2) (B) - bO(B(i* - i)1)op(n1/2

Proof. The proof of Theorem 3 shows that

frn(O - Oo) -KF B a(-, Oo, ho), B M (-, 0o, ho) x

x B (-, Oo, ho), BDj"(0o, ho)(h - ho) o(1).

Substituting in the formulas for D" and 0' given in the proof of theorem 4 verifies the proposi-

tion. 1

1.5.2 A kernel estimator

This section describes kernel estimates of the transition density and policy function that satisfy the

conditions for asymptotic normality given in theorem 4. We assume that our data comes from a

balanced panel of length T. There are M1 independent markets, each with F firms. We will state

results for M and F fixed with T - oo, but our proofs could easily be adapted to situations with

Ml -+ oc and T either growing or fixed, provided that at least MT -± c. We will let n = MTF.



When the distinction among Al, T. and F is unimportant, we will let

n T Al F

fj j Xt,mnf
j=1 t m f=1

Our estimate of the policy function is

-(i 1 Ik ( j -x l .,
ri ) = F E l

4 '_ Ak((x~j - x)/h..)

where k is a kernel satisfying the conditions states below and h, is the bandwidth. We will let

F(flx)f(x) = 1 (ij < ik ((x - x)/)

j=1

and
1

f(x) h k ((xj - x)/h,).

J 1

Let z (x. i). The transition density is estimated by

! 1 L1 k((zt+ mFf1E - z', zt,mf - i)/hn)
f (z z) = 7 = =

-:' F$ LI ET 1f k((zt,7f -z)/h)

and the estimate of its derivative is simply the derivative of the estimate of the transition density,

8Of, 8 i I_ k((zt+1 ,mf',f - Z', zt,m,f - z)/hn)
a9 (z I EF 1 ETz = k((zt,m,f - z)/hst)

We will denote the joint density of zt+1 and zt by fzz, the marginal density of z by fz, and the

marginal density of x by fx. We denote kernel estimates of these densities by fzz, fz, and fi.

To apply Theorem 4 to conclude that 0 is fn asymptotically norma; we must verify that the

kernel estimates above satisfy the rate condition A'1 and the asymptotic normality condition A'5.

The rate condition can be verified by using available results on uniform convergance rates for kernel

estimators. We employ the results of Hansen (2008) for this purpose. Showing condition A'5 is

more involved. In independent work, Srisuma and Linton (2010) propose a similar kernel estimator

for the case with continuous states and discrete actions, and Srisuma (2010) develops a similar

estimator for models with discrete states and continous controls. These papers employ U-statistics

to show fri asynptotic normality of the parameters of the payoff function. We take a different



approach. We extend the uniform central limit theorem for smoothed empirical processes of van der

Vaart (1994) and Gine and Nickl (2007) to allow for dependent data. We then utilize this theorem

to verify condition A'5.

Condition A'5 is that

/ B*B (., Oo. ha), D"(0o, ho)(h - ho)) N(0, ).

To verify this condition, we first observe that this inner-product has the following integral form:

B*B ( 0o, ho),D"(o, ho)(h - ho))

= cI(z. z) (fz', 2 (z', z) - fz',z(z' ) dz'dz+

+ Jc2(z, Z) (jz(z) - fz(z)) dz'dz+

+ c 3 ( z' Z) ( ,fZz(z', z) afz',Z(z', z) ,dz'dz+

+ I C4(Z, Z) (fz(z) Ofz(z) dz'dz+c4(z7* ,a)l zlz

+ c5 (z', z) (jf(x) - f.(x)) dz'dz+

f c6 (z', z) (F(f(x) - F(ilx)f (x)) dz'dz + op(n-1/2), (1.5.11)

where cj (.) are functions that depend on B, 2 and D". The exact form of cj (.) and formal

verification of (1.5.11) are given in Lemma 2 below. Given (1.5.11), we can then apply the following

theorem, which is an extension of van der Vaart (1994) and Gine and Nickl (2007) to allow for

dependent data and estimates of derivatives of densities as well as densities themselves. This result

may be of independent interest.

Theorem 5 (Extension of van der Vaart (1994) and Gin6 and Nickl (2007) ). Let X= (Xi)iEZ

be a stationary sequence with marginal distribution IP and /-mixing coefficients /(k). Let F C

L2(P) be a translation invariant class of functions. Suppose there exists 2 < p < oo such that

1 k2/(2-p)3(k) < oc and F is not too complex, namely the bracketing entropy integral is finite,

J[](oT,I p(P)) < no. Let ||f |ILR - iez E [f(zo)f(zi)]. Let { p},* 1 converge weakly to the

Dirac measure at zero, o, or one of its derivatives, 0"60 . Also assume that for all n., pn,(R d) < C,



F C [1 (IpN), and f ||f(- - Y)f|LRdjpn(y) < oc for all f E F. If

sup LE (
'faT ic .

and

sup E f(X + y) - f (X)dy(y) -+ 0
f FY

then

v' (Pn * p - IP * poo) n g a (T),

where g is the P-Brownian bridge indexed by F and poo is either 60 or 060.

Proof. This is Theorem 2 of Gine and NickI (2007), except it allows for dependent data and p, -+

0'6o in addition to p -- 6o. Allowing for B'6 0 requires no modification of the proof. Allowing

for dependent data simply requires substituting the empirical process results for independent data

used by van der Vaart (1994) and Gind and Nickl (2007) with a suitable empirical process result for

dependent data. A variety of such results are available; we use Theorem 11.22 of Kosorok (2008).

This theorem says that given the condition on #-mixing coefficients and bracketing entropy above

m (IP - P) - ( in f (f),

where ( is a tight, mean zero Gaussian process with covariance

V(f, g) = Lcov (f (Xo)g(Xj)).
iEZ

Then, by following the arguments used to prove Theorem 1 and Lemmas 1 and 2 of Gin6 and Nickl

(2007), but with || - ||LR in place of | - 112, we can show that

Gn (f, p) = vn (In - 1P) J f(X + y)dpt(y)

converges in distribution in E (Y x M). Finally, the proof of van der Vaart (1994), with his

(1.5.12)

(1.5.13)

f (Xo + y) - f (Xo) dyn(y) ) ff (Xi + y) - f (Xi)dytn (y) ]-+ 0



semi-metric d redefined as

v)) =iE

z

(f f(XO + y)dp(y) - f g(Xo + y)dv(y)) x

x (f f (Xi + y)dp(y) - f g(Xi + y)dv(y))

leads to the conclusion. I

We now state regularity conditions that are sufficient for (1.5.11) to hold and Theorem 5 to

apply.

Assumptions K (Kernel estimator).

Ki The densities f(z', z) and f(z) are a > 2-times continuously differentiable.

K2 The data is comes from A markets with F firms and T -+ o periods. {zt,,,f}ftcz is stationary

and strongly mixing with strong mixing coefficients am that decay at rate 3, i.e. a, , m-3

for some in > 1. There exists q > 0 such that /3 > 1 + + d andq

1 - 1 - d - d

d(I + 3 - d)

K3 With probability approaching one,

B*BDw(h(z', z) - h(z', z))j (zo) dz'dz < C

uniformly in zo.

K4 The dimension of z (x, i) is d.

K5 cj(z', z) is s > d/2 times differentiable with uniformly bounded derivatives.

K6 The kernel is of order r = a + s - k > a + d/2.

K7 The bandwidth is such that ha±s-knd/2

K8 The weighting operator is such that f bn(zo, z 1 )bn(z, z1 )dzi has compact convex support and

vanishes at the boundary of its support.

Lemma 2 shows that these conditions are sufficient for (1.5.11).

d ((f p), (g,



Lemma 2 (Verification of (1.5.11) ). If K1-K7 hold, then the following functions exist

di(z', z; zo) =6 ((I-Sf) )] (zzo) [(I -

d2 (z', z; zo) = [6(I - 6Ef)~1 HO9 o 0no] (z')

dq(z', z; zo) = 0o (zo) + 'f ((I - )

6Ef ) - 1110o 0yO] (z')

-1 5 1100 0 ()
( O )]

and equation (1.5.11) holds with

c (z', z) = (B*Be(z'. -))(z,

m(z) b(zo, zi)b(z, zi)dzi (z', z; zo)dzo

where

c1(z' ,zo)

c2(z , z;7z0)

23( ; zo)

c4 (Z, eZ, zo)

C5(z', Z; zo)

1 , Ofzz*/i(z', z)=d ( o) -d2( -0)2fz(Z) f(z)2

fzz(z'. z)=- di( zz2o)-2

- d(Z z: O) fz+ 2 f)
df ((z' Z) f) (+)2

-(12(2 1(Z

1fz( zo )
=d2 (Z ; ZO) T

=dr/(zl ,z; zo) I

C6(Z', Z; zo) - - dr,(z', z; zo)

Proof. Equation (1.5.11) is derived by repeatedly applying the mean value theorem to write h - h

as a sum of fzz - fzz, fz - fz, fx - fx, and their derivatives. Condition K3 ensures that we can

freely interchange the order of integration while doing so. The definitions of di, d2 , and dr are then

verified by straightforward calculation. Condition K7 and K2, along with the uniform convergence

rate results of Hansen (2008), are sufficient to show that the remainder in (1.5.11) is op(n- 1/2). 1

Combining this lemma with Theorems 5 and 4 shows that the kernel estimator of 0 is asymp-

totically normal. Thoerem 6 states this result.

Theorem 6 (Asymptotic distribution for kernel estimator ). If conditions A'2-A'4 and K1-K7



hold, then

Vn(O - 00) 4 N(0, 1BQBIB)

where

cov (c1(zo+1,7m fI, ZO,mn,fi), C1(t+1, m 2 , f, Ztmf 2 )) +

+COV (f C2(Z', zo,m,fi )dz', f C2(Z', Zt,mf
2 )dz') +

o o F c o v ( (Z O + 1 m , f , Z O , n , 9i ( z t+ l , m 2 , f , Z t, mn,f 2 )) +

t=-o 2_1 +cov (f %ji (z', zo,m,fi )dz', f 4 (z', M2 , f, Zt,m,f 2 )dz' +

+coV (f c5 (z', (Xo,m,fi, i))dz'di, f c5 (z', (Xt,m,f 2 , i))dz'di) +

cov (f 26(z', zo'm'f) dz', f !2(z', m 2, f , zt, m,,f2) dz'

Proof. As in the proof of Lemm 2, conditions Ki and K7, along with the uniform convergence

rate results of Hansen (2008), are sufficient to show that the rate assumption, A'1, holds. We have

assumed A'2-A'4. All that remains is to show A'5 holds with the stated QB. By Lemma 2, equation

(1.5.11) holds. Applying Theorem 5 to (1.5.11) yields the desired conclusion. All that remains is

to show that the conditions of Theorem 5 are satisfied.

Let F {c (z', z)} 1 . This is finite class and trivially satisfies J[] (oo, F, Cp(IP)) < 0o. Condi-

tions K1 and K5 are sufficient to apply Proposition 1 of Gina and Nickl (2007) to show that (1.5.12)

holds for ci-c 6 . Conditions K5-K7 are sufficient to apply Theorem 6 of Gin6 and Nickl (2007) to

show that (1.5.13) holds for ci, c2 , c5 , and c6 . These same conditions along with K8 and a slight

modification of Theorem 6 of Gin6 and Nickl (2007) shows (1.5.13) for c3 and c4 . *

1.6 Conclusion

We have shown that the payoff function in dynamic games with continous states and controls is

nonparametrically identified by the observed distribution of states and controls. The key identifying

restrictions include that one of the partial derivatives of the payoff function is known, that there

is some component of the state space that enters the policy function, but not the payoff function

directly, and that a certain integral operator of the second kind is invertible. We have also developed

a semiparametric estimator for the model. In the first step the transition densities and policy

function are estimated nonparametrically. In the second step, the parameters of the payoff function



are estimated from the optimality conditions of the model. we gave high-level conditions on the

first step nonparametric estimates for the parameter estimates to be consistent and parameters

to be fn asymptotically normal, and we have shown that a kernel based estimator satisfies these

conditions.



Chapter 2

Optimal Mandates and The Welfare

Cost of Asymmetric Information:

Evidence from The U.K. Annuity

Market, coauthored with Liran Einav

and Amy Finkelstein

Abstract. Much of the extensive empirical literature on insurance markets has

focused on whether adverse selection can be detected. Once detected, however, there

has been little attempt to quantify its welfare cost, or to assess whether and what

potential government interventions may reduce these costs. To do so, we develop a model

of annuity contract choice and estimate it using data from the U.K. annuity market.

The model allows for private information about mortality risk as well as heterogeneity

in preferences over different contract options. We focus on the choice of length of

guarantee among individuals who are required to buy annuities. The results suggest

that asymmetric information along the guarantee margin reduces welfare relative to a

first best symmetric information benchmark by about E127 million per year, or about

2 percent of annuitized wealth. We also find that by requiring that individuals choose

the longest guarantee period allowed, mandates could achieve the first-best allocation.

However, we estimate that other mandated guarantee lengths would have detrimental



effects on welfare. Since determining the optimal mandate is empirically difficult, our

findings suggest that achieving welfare gains through mandatory social insurance may

be harder in practice than simple theory may suggest.

2.1 Introduction

Ever since the seminal works of Akerlof (1970) and Rothschild and Stiglitz (1976), a rich theoret-

ical literature has emphasized the negative welfare consequences of adverse selection in insurance

markets and the potential for welfare-improving government intervention. More recently, a growing

empirical literature has developed ways to detect whether asymmetric information exists in par-

ticular insurance markets (Chiappori and Salanie (2000), Finkelstein and McGarry (2006)). Once

adverse selection is detected, however, there has been little attempt to estimate the magnitude of its

efficiency costs, or to compare welfare in the asymmetric information equilibrium to what would be

achieved by potential government interventions. In an attempt to start filling this gap, this paper

develops an empirical approach that can quantify the efficiency cost of asymmetric information and

the welfare consequences of government intervention.1

We apply our approach to the semi-compulsory market for annuities in the United Kingdom.

Individuals who have accumulated funds in tax-preferred retirement saving accounts (the equiva-

lents of an IRA or 401(k) in the United States) are required to annuitize their accumulated lump

sum balances at retirement. These annuity contracts provide a survival-contingent stream of pay-

ments. As a result of these requirements, there is a sizable volume in the market. In 1998, new

funds annuitized in this market totalled £6 billion (Association of British Insurers (1999)).

oWe are grateful to three anonymous referees and Steve Berry (the Editor) for many useful comments and sugges-

tions. We also thank James Banks, Richard Blundell, Jeff Brown, Peter Diamond, Carl Emmerson, Jerry Hausman,
Igal Hendel, Wojciech Kopezuk, Jonathan Levin, Alessandro Lizzeri, Ben Olken, Casey Rothschild, and many seminar

participants for helpful comments, and to several patient and helpful employees at the firm whose data we analyze.

Financial support from the National Institute of Aging grant #RO1 AG032449 (Einav and Finkelstein), the National

Science Foundation grant #SES-0643037 (Einav), the Social Security Administration grant #10-P-98363-3 to the

National Bureau of Economic Research as part of the SSA Retirement Research Consortium (Einav and Finkelstein),
and the the Alfred P. Sloan Foundation (Finkelstein) is gratefully acknowledged. Einav also acknowledges the hospi-
tality of the Hoover Institution. The findings and conclusions expressed are solely those of the author(s) and do not
represent the views of SSA, any agency of the Federal Government, or the NBER.

1 More recently, several new working papers have presented additional attempts to quantify the efficiency cost of

adverse selection in annuities (Hosseini (2008)) and in health insurance (Carlin and Town (2007), Bundorf, Levin,
and Mahoney (2008), Einav, Finkelstein, and Cullen (2008), and Lustig (2008)).



Although they are required to annuitize their balances, individuals are allowed choice in their

annuity contract. In particular., they can choose from among guarantee periods of 0, 5, or 10

years. During a guarantee period, annuity payments are made (to the annuitant or to his estate)

regardless of the annuitant's survival. The choice of a longer guarantee period comes at the cost

of lower annuity payments while alive. When annuitants and insurance companies have symmetric

information about an annuitant's mortality rate, a longer guarantee is more attractive to an annu-

itant who cares more about their wealth when they die relative to consumption while alive; as a

result, the first-best guarantee length may differ across annuitants. When annuitants have private

information about their mortality rate, a longer guarantee period is also more attractive, all else

equal, to individuals who are likely to die sooner. This is the source of adverse selection, which

can affect the equilibrium price of guarantees and thereby distort guarantee choices away from the

first-best symmetric information allocation.

The pension annuity market provides a particularly interesting setting in which to explore the

welfare costs of asymmetric information and the welfare consequences of potential government inter-

vention. Annuity markets have attracted increasing attention and interest as Social Security reform

proposals have been advanced in various countries. Some proposals call for partly or fully replacing

government-provided defined benefit, pay-as-you-go retirement systems with defined contribution

systems in which individuals would accumulate assets in individual accounts. In such systems, an

important question concerns whether the government would require individuals to annuitize some

or all of their balance, and whether it would allow choice over the type of annuity product pur-

chased. The relative attractiveness of these various options depends critically on consumer welfare

in each alternative allocation.

In addition to their substantive interest, several features of annuities make them a particu-

larly attractive setting for our purpose. First, adverse selection has already been detected and

documented in this market along the choice of guarantee period, with private information about

longevity affecting both the choice of contract and its price in equilibrium (Finkelstein and Poterba

(2004, 2006)). Second, annuities are relatively simple and clearly defined contracts, so that model-

ing the contract choice requires less abstraction than in other insurance settings. Third, the case

for moral hazard in annuities is arguably less compelling than for other forms of insurance; our

ability to assume away moral hazard substantially simplifies the empirical analysis.

We develop a model of annuity contract choice and use it, together with individual-level data

on annuity choices and subsequent mortality outcomes from a large annuity provider, to recover the



joint distribution of individuals' (unobserved) risk and preferences. Using this joint distribution and

the annuity choice model, we compute welfare at the observed allocation, as well as allocations and

welfare for counterfactual scenarios. We compare welfare under the observed asymmetric informa-

tion allocation to what would be achieved under the first-best, symmetric information benchmark:

this comparison provides our measure of the welfare cost of asymmetric information. We also com-

pare equilibrium welfare to what would be obtained under mandatory social insurance programs:

this comparison sheds light on the potential for welfare improving government intervention.

Our empirical object of interest is the joint distribution of risk and preferences. To estimate it,

we rely on two key modeling assumptions. First. to recover mortality risk we assume that mortality

follows a mixed proportional hazard model. Individuals' mortality tracks their own individual-

specific mortality rates, allowing us to recover the extent of heterogeneity in (ex-ante) mortality

rates from (ex-post) information about mortality realization. Second, to recover preferences, we

use a standard dynamic model of consumption by retirees. In our baseline model we assume that

retirees perfectly know their (ex-ante) mortality rate, which governs their stochastic time of death.

This model allows us to evaluate the (ex-ante) value-maximizing choice of a guarantee period as

a function of ex ante mortality rate and preferences for wealth at death relative to consumption

while alive.

Given the above assumptions, the parameters of the model are identified from the variation in

mortality and guarantee choices in the data, and in particular from the correlation between them.

However, no modeling assumptions are needed to establish the existence of private information

about the individual's mortality rate. This is apparent from the existence of (conditional) cor-

relation between guarantee choices and ex post mortality in the data. Given the annuity choice

model, rationalizing the observed choices with only variation in mortality risk is hard. Indeed, our

findings suggest that unobserved mortality risk and preferences are both important determinants

of the equilibrium insurance allocations.

We measure welfare in a given annuity allocation as the average amount of money an individual

would need to make him as well off without the annuity as with his annuity allocation and his pre-

existing wealth. We also examine the optimal government mandate among the currently existing

guarantee options of 0, 5, or 10 years. In a standard insurance setting - that is, when all individuals

are risk averse, the utility function is state-invariant, and there are no additional costs of providing

insurance - it is well-known that mandatory (uniform) full insurance can achieve the first best

allocation, even when individuals vary in their preferences. In contrast, we naturally view annuity



choices as governed by two different utility functions, one from consumption when alive and one

from wealth when dead. In such a case, whether and which mandatory guarantee can improve

welfare gains relative to the adverse selection equilibrium is not clear without more information on

the cross-sectional distribution of preferences and mortality risk. The investigation of the optimal

mandate - and whether it can produce welfare gains relative to the adverse selection equilibrium -

therefore becomes an empirical question.

While caution should always be exercised when extrapolating estimates from a relatively ho-

mogeneous subsample of annuitants of a single firm to the market as a whole, our baseline results

suggest that a mandatory social insurance program that required individuals to purchase a 10 year

guarantee would increase welfare by about X127 million per year or £423 per new annuitant, while

one that requires annuities to provide no guarantee would reduce welfare by about £107 million per

year or £357 per new annuitant. Since determining which mandates would be welfare improving

is empirically difficult, our results suggest that achieving welfare gains through mandatory social

insurance may be harder in practice than simple theory would suggest. We also estimate welfare

in a symmetric information, first-best benchmark. We find that the welfare cost of asymmetric

information within the annuity market along the guarantee margin is about £127 million per year,

£423 per new annuitant. or about two percent of the annuitized wealth in this market. Thus, we

estimate that not only is a 10 year guarantee the optimal mandate, but also that it achieves the

first best allocation.

To put these welfare estimates in context given the margin of choice, we benchmark them

against the maximum money at stake in the choice of guarantee. This benchmark is defined as the

additional (ex-ante) amount of wealth required to ensure that if individuals were forced to buy the

policy with the least amount of insurance, they would be at least as well off as they had been. We

estimate that the maximum money at stake in the choice of guarantee is only about 8 percent of the

annuitized amount. Our estimates therefore imply that the welfare cost of asymmetric information

is about 25 percent of this maximum money at stake.

Our welfare analysis is based on a model of annuity demand. This requires assumptions about

the nature of the utility functions that govern annuity choice, as well as assumptions about the

expectation individuals form regarding their subsequent mortality outcomes. Data limitations, par-

ticularly lack of detail on annuitant's wealth, necessitate additional modeling assumptions. Finally,

our approach requires several other parametric assumptions for operational and computational rea-

sons. The assumptions required for our welfare analysis are considerably stronger than those that



have been used in prior work to test whether or not asymmetric information exists. This literature

has tested for the existence of private information by examining the correlation between insurance

choice and ex-post risk realization (Chiappori and Salanie (2000)). Indeed., the existing evidence

of adverse selection along the guarantee choice margin in our setting comes from examining the

correlation between guarantee choice and ex-post mortality (Finkelstein and Poterba (2004)). By

contrast, our effort to move from testing for asymmetric information to quantifying its welfare

implications requires considerably stronger modeling assumptions. Our comfort with this approach

is motivated by a general "impossibility" result which we illustrate in the working paper version

(Einav, Finkelstein, and Schrimpf (2007)): even when asymmetric information is known to exist,

the reduced form equilibrium relationship between insurance coverage and risk occurrence does not

permit inference about the efficiency cost of this asymmetric information without strong additional

assumptions.

Of course, a critical question is how important our particular assumptions are for our central

results regarding welfare. We therefore explore a range of possible alternatives, both for the ap-

propriate utility model and for our various parametric assumptions. We are reassured that our

central results are quite stable. In particular, the finding that the 10 year guarantee is the optimal

mandate, and achieves virtually the same welfare as the first best outcome, persists under all the

alternative specifications that we have tried. However, the quantitative estimates of the welfare

cost of adverse selection can vary with the modeling assumptions by a non trivial amount; more

caution should therefore be exercised in interpreting these quantitative estimates.

The rest of the paper proceeds as follows. Section 2.2 describes the environment and the data.

Section 2.3 describes the model of guarantee choice, presents its identification properties, and

discusses estimation. Section 2.4 presents our parameter estimates and discusses their in-sample

and out-of-sample fit. Section 2.5 presents the implications of our estimates for the welfare costs of

asymmetric information in this market, as well as the welfare consequences of potential government

policies. The robustness of the results is explored in Section 2.6. Section 2.7 concludes by briefly

summarizing our findings and discussing how the approach we develop can be applied in other

insurance markets, including those where moral hazard is likely to be important.



2.2 Data and environment

Environment. All of the annuitants we study are participants in the semi-compulsory market for

annuities in the U.K.. In other words, they have saved for retirement through tax-preferred defined

contribution private pensions (the equivalents of an IRA or 401(k) in the United States) and are

therefore required to annuitize virtually all of their accumulated balances. 2 They are however

offered choice over the nature of their annuity product. We focus on the choice of the length of

the guarantee period, during which annuity payments are made (to the annuitant or to his estate)

regardless of annuitant survival. Longer guarantees therefore trade off lower annuity payments in

every period the annuitant is alive in return for payments in the event that the annuitant dies

during the guarantee period.

The compulsory annuitization requirement is known to individuals at the time (during working

age) that they make their pension savings contributions, although of course the exact nature of the

annuity products (and their pricing) that will be available when they have to annuitize is uncertain.

Choices over annuity products are only made at the time of conversion of the lump-sum defined

contribution balances to an annuity and are based on the products and annuity rates available at

that time.

All of our analysis takes the pension contribution decisions of the individual during the accu-

mulation phase (as well as their labor supply decisions) as given. In other words, in our analysis of

welfare under counterfactual pricing of the guarantee options, we do not allow for the possibility

that the pre-annuitization savings and labor supply decisions may respond endogenously to the

change in guarantee pricing. This is standard practice in the annuity literature (Brown (2001),

Davidoff, Brown, and Diamond (2005), and Finkelstein, Poterba, and Rothschild (2009)). In our

context, we do not think it is a particularly heroic assumption. For one thing, as we will discuss

in more detail in Section 2.5.1, the maximum money at stake in the choice over guarantee is only

about 8 percent of annuitized wealth under the observed annuity rates (and only about half that

amount under the counterfactual rates we compute); this should limit any responsiveness of pre-

annuitization decisions to guarantee pricing. Moreover, many of these decisions are made decades

before annuitization and therefore presumably factor in considerable uncertainty (and discounting)

of future guarantee prices.

Data and descriptive statistics. We use annuitant-level data from one of the largest annuity

2For more details on these rules, see Appendix A and Finkelstein and Poterba (2002).



providers in the U.K. The data contain each annuitant's guarantee choice, several demographic

characteristics (including everything on which annuity rates are based), and subsequent mortality.

The data consist of all annuities sold between 1988 and 1994 for which the annuitant was still

alive on January 1, 1998. We observe age (in days) at the time of annuitization, the gender of the

annuitant, and the subsequent date of death if the annuitant died before the end of 2005.

For analytical tractability, we make a number of sample restrictions. In particular, we restrict

our sample to annuitants who purchase at age 60 or 65 (the modal purchase ages), and who

purchased a single life annuity (that insures only his or her own life) with a constant (nominal)

payment profile. 3 Finally, the main analysis focuses on the approximately two-thirds of annuitants

in our sample who purchased an annuity with a pension fund that they had accumulated within our

company: in Section 2.6 we re-estimate the model for the remaining individuals who had brought

in external funds. Appendix A.1 discusses these various restrictions in more detail; they are made

so that we can focus on the purchase decisions of a relatively homogenous subsample.

Table 2.1 presents summary statistics for the whole sample and for each of the four age-gender

combinations. Our baseline sample consists of over 9,000 annuitants. Sample sizes by age and

gender range from a high of almost 5,500 for 65 year old males to a low of 651 for 65 year old

females. About 87 percent of annuitants choose a 5 year guarantee period, 10 percent choose no

guarantee, and only 3 percent choose the 10 year guarantee. These are the only three options

available to annuitants in our sample and the focus of our subsequent analysis.

Given our sample construction described above, our mortality data are both left-truncated and

right-censored, and cover mortality outcomes over an age range of 63 to 83. About one-fifth of our

sample dies between 1998 and 2005. As expected, death is more common among men than women,

and among those who purchase at older ages.

There is a general pattern of higher mortality among those who purchase 5 year guarantees

than those who purchase no guarantees, but no clear pattern (possibly due to the smaller sample

size) of mortality differences for those who purchase 10 year guarantees relative to either of the

other two options. This mortality pattern as a function of guarantee persists in more formal hazard

modeling that takes account of the left truncation and right censoring of the data (not shown).4

3Over 90 percent of the annuitants in our firm purchase policies that pay a constant nominal payout (rather

than policies that escalate in nominal terms). This is typical of the market as a whole. Although escalating policies

(including inflation-indexed policies) are offered by some firms, they are rarely purchased (Murthi, Orszag, and Orszag

(1999), and Finkelstein and Poterba (2004)).
4 Specifically, we estimated Gompertz and Cox proportional hazard models in which we included indicator variables

for age at purchase and gender, as well as indicator variables for a 5 year guarantee and a 10 year guarantee. In both

models, we found that the coefficient on the 5 year guarantee dummy was significantly different from that on the 0



As discussed in the introduction, the existence of a (conditional) correlation between guarantee

choice and mortality - such as the higher mortality experienced by purchasers of the 5 year guar-

antee relative to purchasers of no guarantee - indicates the presence of private information about

individual mortality risk in our data, and motivates our exercise. That is, this correlation between

mortality outcomes and guarantee choices rules out a model in which individuals have no private

information about their idiosyncratic mortality rates, and guides our modeling assumption in the

next section that allow individuals to make their guarantee choices based on information about

their idiosyncratic mortality rate.

Annuity rates. The company supplied us with the menu of annuity rates, that is the annual

annuity payments per El of the annuitized amount. These rates are determined by the annuitant's

gender, age at the time of purchase, and the date of purchase; there are essentially no quantity

discounts. 5 All of these components of the pricing structure are in our data.

Table 2.2 shows the annuity rates by age and gender for different guarantee choices from January

1992; these correspond to roughly the middle of the sales period we study (1988-1994) and are

roughly in the middle of the range of rates over the period. Annuity rates decline, of course, with

the length of guarantee. Thus, for example, a 65 year old male in 1992 faced a choice among a 0

guarantee with an annuity rate of 0.133, a 5 year guarantee with a rate of 0.1287, and a 10 year

guarantee with a rate of 0.1198. The nagnitude of the rate differences across guarantee options

closely tracks expected mortality. For example, our mortality estimates (discussed later) imply that

for 60 year old females the probability of dying within a guarantee period of 5 and 10 years is about

4.3 and 11.4 percent, respectively, while for 65 year old males these probabilities are about 7.4 and

18.9 percent. Consequently, as shown in Table 2.2, the annuity rate differences across guarantee

periods are much larger for 65 year old males than they are for 60 year old females.

The firm did not change the formula by which it sets annuity rates over our sample of annuity

sales. Changes in nominal payment rates over time reflect changes in interest rates. To use such

variation in annuity rates for estimation would require assumptions about how the interest rate

that enters the individual's value function covaries with the interest rate faced by the firm, and

whether the individual's discount rate covaries with these interest rates. Absent any clear guidance

on these issues, we analyze the guarantee choice with respect to one particular menu of annuity

year guarantee dummy; however, the standard error on the coefficient on the 10 year guarantee dummy was high,
so it wasn't estimated to be significantly different from the 5 year guarantee dummy (or from the 0 year guarantee
dummy as well).

5 A rare exception on quantity discounts is made for individuals who annuitize an extremely large amount.



rates. For our baseline model we use the January 1992 menu shown in Table 2.2. In the robustness

analysis, we show that the welfare estimates are virtually identical if we choose pricing menus from

other points in time; this is not surprising since the relative payouts across guarantee choices is

quite stable over time. For this reason, the results hardly change if we instead estimate a model

with time-varying annuity rates, but constant discount factor and interest rate faced by annuitants

(not reported).

Representativeness. Although the firm whose data we analyze is one of the largest U.K. annuity

sellers, a fundamental issue when using data from a single firm is how representative it is of the

market as a whole. We obtained details on market-wide practices from Moneyfacts (1995), Murthi,

Orszag, and Orszag (1999), and Finkelstein and Poterba (2002).

On all dimensions we are able to observe, our sample firm appears typical of the industry as a

whole. The types of contracts it offers are standard for this market. In particular., like all major

companies in this market during our time period, it offers a choice of 0, 5, and 10 year guaranteed,

nominal annuities.

The pricing practices of the firm are also typical. The annuitant characteristics that the firm

uses in setting annuity rates (described above) are standard in the market. In addition, the level

of annuity rates in our sample firm's products closely match industry-wide averages.

While market-wide data on characteristics of annuitants and the contracts they choose are more

limited, the available data suggest that the annuitants in this firm and the contracts they choose

are typical of the market. In our sample firm, the average age of purchase is 62, and 59 percent

of purchasers are male. The vast majority of annuities purchased pay a constant nominal payment

stream (as opposed to one that escalates over time), and provide a guarantee, of which the 5

year guarantee is by far the most common. 6 These patterns are quite similar to those in another

large firm in this market analyzed by Finkelstein and Poterba (2004), as well as to the reported

characteristics of the broader market as described by Murthi, Orszag, and Orszag (1999).

Finally, the finding in our data of a higher mortality rate among those who choose a 5 year

guarantee than those who choose no guarantee is also found elsewhere in the market. Finkelstein

and Poterba (2004) present similar patterns for another firm in this market, and Finkelstein and

Poterba (2002) present evidence on annuity rates that is consistent with such patterns for the

6These statistics are reported in Finkelstein and Poterba (2006) who also analyze data from this firm. These

statistics refer to single life annuities, which are the ones we analyze here, but are (obviously) computed prior to the

additional sample restrictions we make here (e.g., restriction to nominal annuities purchased at ages 60 or 65).



industry as a whole.

Thus, while caution must always be exercised in extrapolating from a single firm, the available

evidence suggests that the firm appears to be representative both in the nature of the contracts

it offers and its consumer pool - of the entire market.

2.3 Model: specification, identification, and estimation

we start by discussing a model of guarantee choice for a particular individual. We then complete

the empirical model by describing how (and over which dimensions) we allow for heterogeneity.

We finish this section by discussing the identification of the model, our parameterization, and the

details of the estimation.

2.3.1 A model of guarantee choice

We consider the utility-maximizing guarantee choice of a fully rational, forward looking, risk averse,

retired individual, with an accumulated stock of wealth, stochastic mortality, and time-separable

utility. This framework has been widely used to model annuity choices (Kotlikoff and Spivak (1981),

Mitchell, Poterba, Warshawsky, and Brown (1999), Davidoff, Brown, and Diamond (2005)). At

the time of the decision, the age of the individual is to, and he expects a random length of life7

characterized by a mortality hazard Kt during period t > to. 8 We also assume that there exists time

T after which individual i expects to die with probability one.

Individuals obtain utility from two sources. When alive, they obtain flow utility from consump-

tion. When dead, they obtain a one-time utility that is a function of the value of their assets at

the time of death. In particular, if the individual is alive as of the beginning of period t < T, his

period t utility, as a function of his current wealth wt and his consumption plan ct, is given by

V(Wt, ct) = (1 - Kt) u(ct) + Ktb(wt), (2.3.1)

where u(-) is his utility from consumption and b(-) is his utility from wealth remaining after death.

A positive valuation for wealth at death may stem from a number of possible underlying structural

TAs might be expected, we can rule out a model with deterministic length of life and perfect foresight. Most
individuals in the data choose a positive guarantee length and are alive at the end of it, thus violating such a model.

80f course, one would expect some relationship between the individual's expectation and the actual underlying
risk which governs the (stochastic) mortality outcome. We make specific assumptions about this relationship later,
but for the purpose of modeling guarantee choice this is not important.



preferences, such as a bequest motive (Sheshinski (2006)) or a "regret" motive (Braun and Muer-

manu (2004)). Since the exact structural interpretation is not essential for our goal, we remain

agnostic about it throughout the paper.

In the absence of an annuity, the optimal consumption plan can be computed by solving the

following program:

VNA(wt) = [ma (It)(u(Ct) + IV (wt+1)) + rtb(wt)J (2-3.2)
ct;>0

s.t. wt+1 = (1 + r)(wt - ct) > 0

where 6 is the per-period discount rate and r is the per-period real interest rate. That is, we make

the standard assumption that, due to mortality risk, the individual cannot borrow against the

future. Since death is expected with probability one after period T, the terminal condition for the

program is given by V 1(wT+1) = b(wT+1).

Suppose now that the individual annuitizes a fraction r, of his initial wealth, wo. Broadly

following the institutional framework discussed earlier, individuals take the (mandatory) annuitized

wealth as given. In exchange for paying qwo to the annuity company at t = to, the individual

receives a per-period real payout of -t when alive. Thus, the individual solves the same problem as

above, with two small modifications. First, initial wealth is given by (1 - j)wo. Second, the budget

constraint is modified to reflect the additional annuity payments z1 received every period.

For a given annuitized amount r7wo, consider a choice from a set G C [0, T] of possible guarantee

lengths; during the guaranteed period, the annuity payments are not survival-contingent. Each

guarantee length g E G corresponds to a per-period payout stream of zt(g), which is decreasing in

g (z(9) < 0 for any t > to). For each g, the optimal consumption plan can be computed by solving

A(g)max (1 - t)(u(ct) + 6V+(wt+1)) + itb(wt + Zt(g))J (2.3.3)
Ct >0

s.t. Wt+1 = (1 + r)(wt + z (g) - ct) > 0

to+gq -r-t

where Zt(g) = : ( ) zT(g) is the present value of the remaining guaranteed payments.

TF=t 
(

As before, since after period T death is certain and guaranteed payments stop for sure (recall,

G C [0, T]), the terminal condition for the program is given by Vr4A (wr+1) =b(wr+1)-



The optimal guarantee choice is then given by

g arg inax {V9((1 - r/)wo)} . (2.3.4)

Information about the annuitant's guarantee choice combined with the assumption that this choice

was made optimally thus provides information about the annuitant's underlying preference and

expected mortality parameters. Intuitively, everything else equal, a longer guarantee will be more

attractive for individuals with higher mortality rate and for individuals who obtain greater utility

from wealth after death. We later check that this intuition in fact holds in the context of the

specific parametrized model we estimate.

2.3.2 Modeling heterogeneity

To obtain our identification result in the next section, we make further assumptions that allow only

one-dimensional heterogeneity in mortality risk and one-dimensional heterogeneity in preferences

across different individuals in the above model.

We allow for one-dimensional heterogeneity in mortality risk by using a mixed proportional

hazard (MPH) model. That is, we assume that the mortality hazard rate of individual i at tine t

is given by

P(mi E [t, t + dt)Ixi, ni > t)Bit =_ lim -~ = ai~o(zi)00(t (2.5)dt--O dt

where mi denotes the realized mortality date, )(t) the baseline hazard rate, xi is an observable that

shifts the mortality rate, and a E R+ represents unobserved heterogeneity. We also assume that

individuals have perfect information about this stochastic mortality process; that is, we assume

that individuals know their Oit's. This allows us to integrate over this continuous hazard rate to

obtain the vector si - (r& ) that enters the guarantee choice model.

We allow for one-dimensional heterogeneity in preferences by assuming that 7?(c) is homoge-

neous across all individuals and that b2(w) is the same across individuals up to a multiplicative

factor. Moreover, we assume that

ua (c) 1 (2.3.6)

and

b,(w) = B Y. (2.3.7)
1-u7

That is, we follow the literature anid assume that all individuals have a (homogeneous) CRRA



utility function, but, somewhat less standard, we specify the utility from wealth at death using

the same CRRA form with the same parameter -y, and allow (proportional) heterogeneity across

individuals in this dimension, captured by the parameter Oi. One can interpret Bi as the relative

weight that individual i puts on wealth when dead relative to consumption while alive. All else

equal, a longer guarantee is therefore more attractive when 3 is higher. We note, however, that

since u(-) is defined over a flow of consumption while b(.) is defined over a stock of wealth, it is

hard to interpret the level of #j directly. We view this form of heterogeneity as attractive both for

intuition and for computation; in Section 2.6 we investigate alternative assumptions regarding the

nature of preference heterogeneity.

Since we lack data on individuals' initial wealth w , we chose the utility function above to

enable us to ignore w'. Specifically, our specification implies that preferences are homothetic, and

combined with the fact that guarantee payments are proportional to the annuitized amount (see

Section 2.2) - that an individual's optimal guarantee choice g* is invariant to initial wealth wv.

This simplifies our analysis, as it means that in our baseline specification unobserved heterogeneity

in initial wealth w'i is not a concern. It is. however, potentially an unattractive modeling decision.

since it is not implausible that wealthier individuals care more about wealth after death. In Section

2.6 we explore specifications with non-homothetic preferences. but this requires us to make an

additional assumption regarding the distribution of initial wealth. With richer data that included

we could estimate a richer model with non-homothetic preferences.

Finally, we treat a set of other parameters that enter the guarantee choice model as observable

(known) and identical across all annuitants. Specifically, as we describe later, we use external

data to calibrate the values for risk aversion -y, the discount rate 6, the fraction of wealth which

is annuitized r/, and the real interest rate r. While in principle we could estimate some of these

parameters, they would be identified solely by functional form assumptions. We therefore consider

it preferable to choose reasonable calibrated values, rather than impose a functional form that would

generate these reasonable values. Some of these calibrations are necessitated by the limitations of

our existing data. For example, we observe the annuitized amount so with richer data on wealth

we could readily incorporate heterogeneity in r/i into the model.

2.3.3 Identification

In order to compute the welfare effect of various counterfactual policies, we need to identify the

distribution (across individuals) of preferences and mortality rates. Here we explain how the as-



sumptions we made allow us to recover this distribution from the data we observe about the joint

distribution of mortality outcomes and guarantee choices. We make the main identification argu-

ment in the context of a continuous guarantee choice set, a continuous mortality outcome, and no

truncation or censoring. In the end of the section we discuss how things change with a discrete

guarantee choice and mortality outcomes that are left truncated and right censored, as we have in

our setting. This requires us to make additional assumptions, which we discuss later.

Identification with a continuous guarantee choice (and uncensored mortality outcomes). To

summarize briefly, our identification is achieved in two steps. In the first step we identify the

distribution of mortality rates from the observed marginal (univariate) distribution of mortality

outcomes. This is possible due to the mixed proportional hazard model we assumed. In the second

step we use the model of guarantee choice and the rest of the data - namely, the distribution of

guarantee choices conditional on mortality outcomes - to recover the distribution of preferences and

how it correlates with the mortality rate. The key conceptual step here is an exclusion restriction,

namely that the mortality process is not affected by the guarantee choice. We view this "no moral

hazard" assumption as natural in our context.

We start by introducing notation. The data about individual i is (mi, gi, .i), where mi is his

observed mortality outcome, gi E G his observed guarantee choice, and xi is a vector of observed

(individual) characteristics. The underlying object of interest is the joint distribution of unobserved

preferences and mortality rates F(a, #lr), as well as the baseline mortality hazard rate (o(xi) and

y(t)). Identification requires that, with enough data, these objects of interest can be uniquely

recovered.

At the risk of repetition, let us state four important assumptions that are key to the identification

argument.

Assumption 1. Guarantee choices are given by gi = g((r)> ,#7ilxi), which comes from the

solution to the guarantee choice model of Section 2.3.1.

Assumption 2 (MPH). Mortality outcomes are drawn from a mixed proportional hazard (MPH)

model. That is, 0 it = cio(xi)$/(t) with ai E R+-

Assumption 3 (No moral hazard). mi is independent of #i, conditional on a,.

Assumption 4 (Complete information).

( exp (- j OidT - exp ird / exp( Oid



The first assumption simply says that all individuals in the data make their guarantee choices

using the model. It is somewhat redundant, as it is only the model that allows us to define rj

and /3, but we state it for completeness. The second assumption (MPH) is key for the first step

of the identification argument. This assumption will drive our ability to recover the distribution

of mortality rates from mortality data alone. Although this is a non-trivial assumption, it is a

formulation which is broadly used in much of the duration data literature (Van den Berg (2001)).

We note that assuming that aj is one-dimensional is not particularly restrictive, as any multi-

dimensional a could be summarized by a one-dimensional statistic in the context of the MPH

model.

The third assumption formalizes our key exclusion restriction. It states that 0 it is a sufficient

statistic for mortality, and although B8i may affect guarantee choices gi, this in turn doesn't affect

mortality. In other words, if individuals counterfactually change their guarantee choice, their

mortality experience will remain unchanged. This seems a natural assumption in our context. We

note that, unconditionally, #i3 could be correlated with mortality outcomes indirectly, through a

possible cross-sectional correlation between a, and B.

The fourth and final assumption states that individuals have perfect information about their

mortality process; that is, we assume that individuals know their Oit's. This allows us to integrate

over this continuous hazard rate to obtain the vector = that enters the guarantee choice

model, so we can write g(aei, B) instead of g((Ki)T ,0 3ici). This is however a very restrictive

assumption, and its validity is questionable. Fortunately, we note that any other information struc-

ture - that is, any known (deterministic or stochastic) mapping from individuals' actual mortality

process 0 it to their perception of it ri would also work for identification. Indeed, we investigate two

such alternative assumptions in Section 2.6.4. Some assumption about the information structure

is required since we lack data on individuals' ex ante expectations about their mortality.

Before deriving our identification results, we should point out that much of the specification

decisions, described in the previous section, were made to facilitate identification. That is, many

of the assumptions were made so that preferences and other individual characteristics are known

up to a one-dimensional unobservable /i. This is a strong assumption, which rules out interesting

cases of, for example, heterogeneity in both risk aversion and utility from wealth after death.

We now show identification of the model in two steps, in Proposition 1 and Proposition 2.

Proposition 1. If (i) Assumption 2 holds; (ii) E[a] < oc; and (iii) Oo(xi) is not a constant,

then the marginal distribution of a, Fa(a ), as well as O(xi) and )(t), are identified - up to the



normalizations E [a] = 1 and 00(xi) 1 for some i from the conditional distribution of F,(mjixi).

This proposition is the well known result that MPH models are non-parameterically identified.

It was first proven by Elbers and Ridder (1982). Heckman and Singer (1984) show a similar result,

but instead of assuming that a has a finite mean, they make an assumption about the tail behavior

of a. Ridder (1990) discusses the relationship between these two assumptions, and Van den Berg

(2001) reviews these and other results. The key requirement is that xi (such as a gender dummy

variable in our context) shifts the mortality distribution.

We can illustrate the intuition for this result using two values of 00 (xi). say 01 and 02. The

data then provides us with two distributions of mortality outcomes, Hi(m) = F(m|6o(xi) = O) for

j = 1, 2. With no heterogeneity in aj, the MPH assumption implies that the hazard rates implied

by H 1 (m) and H 2 (m) should be a proportional shift of each other. Once a is heterogeneous,

however, the difference between 01 and 02 leads to differential composition of survivors at a given

point in time. For example, if 01 is less than 02, then high ai people will be more likely to survive

among those with 01. Loosely, as time passes, this selection will make the hazard rate implied by

ZI closer to that implied by Z2. With continuous (and uncensored) information about mortality

outcomes, these differential hazard rates between the two distributions can be used to back out the

entire distribution of aj, Fa(ai), which will then allow us to know 0o(xi) and V)(t).

This result is useful because it shows that we can obtain the (marginal) distribution of ai

(and the associated Oo(xi) and '(t) functions) from mortality data alone, i.e. from the marginal

distribution of mi. We now proceed to the second step, which shows that given 00 (xi), $/(t), and

Fa(.), the joint distribution F(a, 031x) is identified from the observed joint distribution of mortality

and guarantee choices. Although covariates were necessary to identify 0o(xi), 0(t), and Fa(.), they

will play no role in what follows, so we will omit them for convenience for the remainder of this

section.

Proposition 2. If Assumptions 1-4 hold, then the joint distribution of mortality outcomes and

guarantee choices identifies P(g(a, 0) < y~a). Moreover, if, for every value of a, g(a, #) is invertible

with respect to # then Fol is identified.

The proof is provided in Appendix A.2. Here we provide intuition, starting with the first part

of the proposition. If we observed ai, identifying P(g(a, /3) < yia) would have been trivial. We

could simply estimate the cumulative distribution function of gi for every value of a2 off the data.

While in practice we can't do exactly this because ai is unobserved, we can almost do this using



the mortality information mi and our knowledge of the mortality process (using Proposition 1).

Loosely, we can estimate P(g(a, 3) < y~m) off the data , and then "invert" it to P(g(a. 3) < ya)

using knowledge of the mortality process. That is, we can write

P(g(a, 3) yIm) = fm(mIa)dF, (a) J P(g(a, 3) < y Ia)fm(mIa)dFQ(a) (2.3.8)

where the left hand side is known from the data, and fm (mla) (the conditional density of mortality

date) and Fa(a) are known from the mortality data alone (Proposition 1). The proof (in Appendix

A.2) simply verifies that this integral can be inverted.

The second part of Proposition 2 is fairly trivial. If P(g(a, #) < y~a) is identified for every

a, and g(a, 3) is invertible (with respect to #) for every a, then it is straightforward to obtain

P(O < y~a) for every a. This together with the marginal distribution of a. which is identified

through Proposition 1, provides the entire joint distribution.

One can see that the invertibility of g(a, 3) (with respect to ) is important. The identification

statement is stated in such a way because, although intuitive, proving that the guarantee choice

is monotone (and therefore invertible) in 3 is difficult. The difficulty arises due to the dynamics

and non-stationarity of the guarantee choice model, which require its solution to be numerical and

make general characterization of its properties difficult. One can obtain analytic proofs of this

monotonicity property in simpler (but empirically less interesting) environments (e.g., in a, two

period model, or in an infinite horizon model with log utility). We note, however, that we are

reassured about our simple intuition based on numerical simulations; the monotonicity result holds

for any specification of the model and/or values of the parameters that we have tried, although

absent an analytical proof some uncertainty must remain regarding identification.

Implications of a discrete guarantee choice and censored mortality outcomes. In many appli-

cations the (guarantee) choice is discrete, so - due to its discrete nature - g(01a) is only weakly

monotone in #, and therefore not invertible. In that case, the first part of Proposition 2 still holds,

but P(# < y~a) is identified only in a discrete set of points, so some parametric assumptions will be

needed to recover the entire distribution of #, conditional on a. In our specific application, there

are only three guarantee choices, so we can only identify the marginal distribution of a, F(a),

and, for every value of a, two points of the conditional distribution F 1 . We therefore recover

the entire joint distribution by making a parametric assumption (see below) that essentially allows

us to interpolate F81,, from the two points at which it is identified to its entire support. We note



that, as in many discrete choice models, if we had data with sufficiently rich variation in covariates

or variation in annuity rates that was exogenous to demand, we would be non-parameterically

identified even with a discrete choice set.

Since our data limitations mean that we require a parametric assumption for FO we try to

address concerns about such (ad hoc) parametric assumptions by investigating the sensitivity of

the results to several alternatives in Section 2.6. An alternative to a parametric interpolation is

to make no attempt at interpolation, and to simply use the identified points as bounds on the

cumulative distribution function. In Section 2.6 we also report such an exercise.

A second property of our data that makes it not fully consistent with the identification argument

above is the censoring of mortality outcomes. Specifically, we do not observe mortality dates for

those who are alive by the end of 2005, implying that we have no information in the data about

mortality hazard rates for individuals older than 83. While we could identify and estimate a non-

parametric baseline hazard for the periods for which mortality data are available (as well as a

non-parametric distribution of ai), there is obviously no information in the data about the baseline

hazard rate for older ages. Because evaluating the guarantee choice requires knowledge of the

entire mortality process (through age T, which we assume to be 100), some assumption about this

baseline hazard is necessary. We therefore make (and test for) a parametric assumption about the

functional form of the baseline hazard.

2.3.4 Parameterization

Mortality process. As we have just mentioned, due to the censored mortality data, we make a

parametric assumption about the mortality hazard rate. Specifically, we assume that the baseline

hazard rate follows a Gompertz distribution with shape parameter A. That is, the baseline hazard

rate is given by $)(t) = e At and individual i's mortality hazard at time t = agei - 60 is therefore

given by #,b(t) = aieAt. We can test the Gompertz assumption in our sample against more flexible

alternatives by focusing on individuals' mortality experience prior to the age of 83. We are reassured

that the Gompertz assumption cannot be rejected by our (censored) mortality data.2 We also note

that the Gompertz distribution is widely used in the actuarial literature that models mortality

(Horiuchi and Coale (1982)).

9Specifically, we use likelihood-ratio tests of the baseline Gompertz model against more general alternatives where
A is allowed to vary with time. We divide the period of observation over which we observe mortality outcomes (21
years) into two and three evenly spaced intervals and let A vary across intervals. The p - value of these tests are
0.938 and 0.373, respectively.



We model mortality as a continuous process and observe mortality at the daily level. However,

since the parameterized version of the guarantee choice model is solved numerically, we work with

a coarser, annual frequency, reducing the computational burden. In particular, given the above

assumption, let

S(a, A, t) = exp ( l - e) (2.3.9)

be the Gompertz survival function, and the discrete (annual) hazard rate at year t is given by

i _ S(aj,A,t)-S(aj_,A,t+1)
Kt S(a?,At)

Unobserved heterogeneity. An individual in our data can be characterized by an individual-

specific mortality parameter ac and an individual-specific preference parameter #3. Everything else

is assumed common across individuals. Although, as we showed, the joint distribution F(a, 3) is

non-parameterically identified with continuous guarantee choice, in practice only three guarantee

lengths are offered, so we work with a parametrized distribution.

In the baseline specification we assume that a and 3 i are drawn from a bivariate lognormal

distribution

log aN p1 o 2 po- i-
~og 1  N I (2.3.10)

log 3j p J [ pcro-a C ]3
In Section 2.6 we explore other distributional assumptions.

Calibrated values for other parameters. As mentioned, we treat a set of other parameters y,

6, T, and r - as observables, and calibrate their values. Here, we list the calibrated values and their

source; in Section 2.6 we assess the sensitivity of the results to these values.

Since the insurance company does not have information on the annuitant's wealth outside of the

annuity, we calibrate the fraction of wealth annuitized (rq) based on Banks and Emmerson (1999),

who use market-wide evidence from the Family Resources Survey. They report that for individuals

with compulsory annuity payments, about one-fifth of income (and therefore presumably of wealth)

comes from the compulsory annuity. We therefore set q - 0.2. In Section 2.6 we discuss what the

rest of the annuitants' wealth portfolio may look like and how this may affect our counterfactual

calculations.

We use -y 3 as the coefficient of relative risk aversion. A long line of simulation litera-

ture uses this value (Hubbard, Skinner, and Zeldes (1995), Engen, Gale, and Uccello (1999),

Mitchell, Poterba, Warshawsky, and Brown (1999), Scholz, Seshadri, and Khitatrakun (2003),

Davis, Kubler, and Willen (2006)). Although a substantial consumption literature, summarized in



Laibson, Repetto, and Tobacman (1998), has found risk aversion levels closer to 1, as did Hurd's

(1989) study among the elderly, other papers report higher levels of relative risk aversion (Barsky,

Kimball, Juster, and Shapiro (1997), Palumbo (1999)).

For r we use the real interest rate corresponding to the inflation-indexed zero-coupon ten-year

Bank of England bond, as of the date of the pricing menu we use (January 1, 1992, in the baseline

specification). This implies a real interest rate r of 0.0426. We also assume that the discount rate

o is equal to the real interest rate r.

Finally, since the annuities make constant nominal payments, we need an estimate of the ex-

pected inflation rate 7r to translate the initial nominal payment rate shown in Table 2.2 into the

real annuity payout stream zt in the guarantee choice model. We use the difference between the

real and nominal interest rates on the zero-coupon ten year Treasury bonds on the same date to

measure the (expected) inflation rate. This implies an (expected) inflation rate -r of 0.0498.10

Summary and intuition. Thus, to summarize, in the baseline specification we estimate six

remaining structural parameters: the five parameters of the joint distribution of a and Bj, and

the shape parameter A of the Gompertz distribution. We also allow for observable shifters to

the means of the distribution. Specifically, we allow pa and pg to vary based on the individual's

gender and age at the time of annuitization. We do this because annuity rates vary with these

characteristics, presumably reflecting differential mortality by gender and age of annuitization; so

that our treatment of preferences and mortality is symmetric, we also allow mean preferences to

vary on these same dimensions.

To gain intuition, note that one way to summarize the mortality data is by a graph of the

log hazard mortality rate with respect to age. The Gompertz assumption implies that, without

heterogeneity, this graph is linear with a slope of A. Heterogeneity implies a concave graph, as over

time lower mortality individuals are more likely to survive. Thus, loosely, the level of this graph

affects the estimate of p, the average slope affects the estimate of A, and the concavity affects the

estimate of o-,. Since o7, is a key parameter (which determines the extent of adverse selection),

in Section 2.6 we explore the sensitivity of the results to more and less concave baseline hazard

models.

1 0We ignore inflation uncertainty, which may lead us to over-state the welfare value of the nominal annuities we
analyze. We make this abstraction for computational simplicity, and because prior work has found that incorporating
uncertain inflation based on historical inflation patterns in the U.S. has a small quantitative effect (of about 1-2
percent) on the welfare gain from annuitization (Mitchell, Poterba, Warshawsky, and Brown (1999)). Since the U.K.
inflation experience has been broadly similar, it seems natural to expect a qualitatively similar (small) effect in our
context too.



Consider now the data on guarantee choices, and its relationship to mortality outcomes. Suppose

first that there was no heterogeneity in mortality rates (o-7 = 0). In such a case, the guarantee

choice model would reduce to a standard ordered probit with three choices (see equation (2.3.14)

below), and the thresholds would be known from the guarantee choice model and estimates of pa

and A. In this simple case the mean and variance of B would be directly estimated off the observed

shares of the three different guarantee choices.

It is the presence of unobserved heterogeneity in mortality risk (o-a > 0) that makes intuition

more subtle. The guarantee choice is still similar to an ordered probit, but the thresholds (which

depend on ai) are now unobserved. Therefore, the model is similar to an ordered probit with

random effects. This is where the relationship between mortality and guarantee choices is crucial.

By observing mi, we obtain information about the unobserved a . Although this information is

noisy (due to the inherent randomness of any hazard model), it is still useful in adjusting the

weights P(mila, A) in the integral in equations (2.3.13) and (2.3.14) below. Loosely, individuals

who (ex post) die earlier are more likely (from the econoinetrician's perspective) to be of higher

(ex ante) mortality rate ai. Therefore, the mortality data is used as a stochastic shifter of the

individual random effects. This allows separate identification of o3 and the correlation parameter

p.

2.3.5 Estimation

For computational convenience, we begin by estimating the shape parameter of the Gompertz

hazard A using only mortality data. We then use the guarantee choice and mortality data together

to estimate the parameters of the joint distribution F(a, #). We estimate the model using maximum

likelihood. Here we provide a general overview; more details are provided in Appendix A.3.

Estimation of the parameters of the baseline hazard rate (A). We observe mortality in daily

increments, and treat it as continuous for estimation. We normalize ti = agej - 60 (as 60 is the

age of the youngest individual who makes a guarantee choice in our sample). For each individual

i, the mortality data can be summarized by mi = (ci, ti, di) where ci is the (normalized) age at

which individual i entered the sample (due to left truncation) and ti is the age at which he exited

the sample (due to death or censoring). di is an indicator for whether the person died (di = 1) or

was censored (di = 0).



Conditional on a, the likelihood of observing mi is

1
P (mi = (ci, tj , di) Ia, A) = (s- At) (S ,t)) , (.311

S(a A, , cti)")S A

where S(-) is the Gompertz survival function (see equation (2.3.9)) and s(.) = 0S(aAt) is the Gom-

pertz density. Our incorporation of ci into the likelihood function accounts for the left truncation

in our data.

We estimate A using only mortality data. We do so by using equation (2.3.11) and integrating

over aj. That is, we maximize the following likelihood

L" (A, pa,, oI (mi)_) = log P(mila, A) (log a - a) do) (2.3.12)

to obtain a consistent estimate of A."

Estimation of the parameters of F(a. 3). Having estimated A, we can then use the guarantee

choice model to numerically compute the optimal guarantee choice for each combination of ai and

#j. This choice is also a function of the other (calibrated) parameters of the model and of the

observed annuity rates. Consistent with intuition, the numerical solution to the model has the

property that the relative value that individual i obtains from a (longer) guarantee is increasing in

both a and 03. Recall that this monotonicity property is important for identification; specifically,

it is key to proving the second part of Proposition 2. This implies that for any value of aj, the

guarantee choice can be characterized by two cutoff points: 3* (a) and #5*/10 (as). The former

is the value of #i that makes an individual (with parameter aj) indifferent between choosing no

guarantee and a 5 year guarantee, while the latter is the value of #i that makes an individual

(with parameter aj) indifferent between choosing a 5 year and a 10 year guarantee. For almost

all relevant values of ai the baseline model - as well as other variants we estimated - and its

specification results in #3*/5 (il) < 0*/10 (ai), implying that there exists a range of 03's that implies

a choice of a 5 year guarantee (the modal choice in the data). For some extreme values of a this

does not hold, but because ai is unobserved this does not create any potential problem. Figure 2.1

illustrates the optimal guarantee choice in the space of a and #j, in the context of the baseline

specification and the mortality data (which were used to estimate A).

"Note that all three parameters - A, p, o7, -- are in fact identified and estimated. However, we later re-estimate
pa, and o-,, using the entire data (that contain the guarantee choices), which is more efficient. As will be clear below,
estimating A using the entire data is computationally more demanding.



Keeping A fixed at its estimate, we then estimate the parameters of F(a, 3) by maximiz-

ing the likelihood of guarantee choices and mortality. The likelihood depends on the observed

mortality data ni and on individual i's guarantee choice gi E {0. 5, 10}. We can write the contri-

bution of individual i to the likelihood as

fgi; y, E, A) P(mila, A) ( gi = arg max V0A(9)(#, a, A)) dF(3a; y, E) dF(a; y, E)

(2.3.13)

where F(a; y, E) is the marginal distribution of ai, F(Bla; y, E) is the conditional distribution of

Oi, A is the Gompertz shape parameter, P(miIa, A) is given in equation (2.3.11), 1(-) is the indicator

function, and the value of the indicator function is given by the guarantee choice model discussed

in Section 2.3.1.

Given the monotonicity of the optimal guarantee choice in #i (and ignoring - for presentation

only - the rare cases of 3*/ (at) > #3*1/o (ai)), we can rewrite equation (2.3.13) as

f P(mila. A) (F(# 7* (a) a; y,>E)) dF(a: ytE) if gi = 0

F(#0*11 (a) pa; Y,E)--
l1(m, gi; p. E, A) f P(miIa, A) dF(a; y, E) if gi = 5 . (2.3.14)

f P(mila, A) (I - F(B*1 (a)|a; Y,-E)) dF(a; y, E) if gi = 10

That is, the inner integral in equation (2.3.13) becomes an ordered probit, where the cutoff points

are given by the location in which a vertical line in Figure 2.1 crosses the two curves.

The primary computational challenge in maximizing the likelihood is that, in principle, each

evaluation of the likelihood requires us to resolve the guarantee choice model and compute these

cutoff points for a continuum of values of a. Since the guarantee choice model is solved numerically,

this is not trivial. Therefore, instead of recalculating these cutoffs at every evaluation of the

likelihood, we calculate the cutoffs on a large grid of values of a only once and then interpolate to

evaluate the likelihood. Unfortunately, since the cutoffs also depend on A, this method does not

allow us to estimate A jointly with all the other parameters. We could calculate the cutoffs on a

grid of values of both a and A, but this would increase computation time substantially. This is

why, at some loss of efficiency but not of consistency, we first estimate A using only the mortality

portion of the likelihood, fix A at this estimate, calculate the cutoffs, and estimate the remaining

parameters from the full likelihood above. To compute standard errors, we use a nonparametric

bootstrap.



2.4 Estimates and fit of the baseline model

2.4.1 Parameter estimates

Table 2.3 reports the parameter estimates. We estimate significant heterogeneity across individuals,

both in their mortality and in their preference for wealth after death. We estimate a positive

correlation (p) between mortality and preference for wealth after death. That is, individuals who

are more likely to live longer (lower a) are likely to care less about wealth after death. This positive

correlation may help to reduce the magnitude of the inefficiency caused by private information about

risk; individuals who select larger guarantees due to private information about their mortality (i.e.

high a individuals) are also individuals who tend to place a relatively higher value on wealth after

death, and for whom the cost of the guarantee is not as great as it would be if they had relatively

low preferences for wealth after death.

For illustrative purposes, Figure 2.2 shows random draws from the estimated distribution of

log a and log # for each age-gender cell, juxtaposed over the estimated indifference sets for that

cell. The results indicate that both mortality and preference heterogeneity are important deter-

minants of guarantee choice. This is similar to recent findings in other insurance markets that

preference heterogeneity can be as or more important than private information about risk in ex-

plaining insurance purchases (Finkelstein and McGarry (2006), Cohen and Einav (2007), Fang,

Keane, and Silverman (2008)). As discussed, we refrain from placing a structural interpretation on

the # parameter, merely noting that a higher # reflects a larger preference for wealth after death

relative to consumption while alive. Nonetheless, our finding of heterogeneity in 3 is consistent

with other estimates of heterogeneity in the population in preferences for leaving a bequest (Laitner

and Juster (1996), Kopczuk and Lupton (2007)).

2.4.2 Model fit

Table 2.4 and Table 2.5 present some results on the in-sample and out-of-sample fit of the model,

respectively. We report results both overall and separately for each age-gender cell. Table 2.4

shows that the model fits very closely the probability of choosing each guarantee choice, as well as

the observed probability of dying within our sample period. The model does, however, produce a

monotone relationship between guarantee choice and mortality rate, while the data show a non-

monotone pattern, with individuals who choose a 5 year guarantee period associated with highest

mortality. As previously discussed (see footnote 4), the non-monotone pattern in the data may



merely reflect sampling error: we are unable to reject the null that the 5 and 10 year guarantees

have the same mortality rate.

Table 2.5 compares our mortality estimates to two different external benchmarks. These speak

to the out-of-sample fit of our model in two regards: the benchmarks are not taken from the

data, and the calculations use the entire mortality distribution based on the estimated Gompertz

mortality hazard, while our mortality data are right censored. The top panel of Table 2.5 reports

the implications of our estimates for life expectancy. As expected, men have lower life expectancies

than women. Men who purchase annuities at age 65 have higher life expectancies than those who

purchase at age 60, which is what we would expect if age of annuity purchase were unrelated

to mortality. Women who purchase at 65, however, have lower life expectancy than women who

purchase at 60, which may reflect selection in the timing of annuitization. or the substantially

smaller sample size available for 65 year old women. As one way to gauge the magnitude of the

mortality heterogeneity we estimate. Table 2.5 indicates that in each age-gender cell, there is about

a 1.4 year difference in life expectancy, at the time of annuitization. between the 5th and 95th

percentile.

The fourth row of Table 2.5 contains life expectancy estimates for a group of U.K. pensioners

whose mortality experience may serve as a rough proxy for that of U.K. compulsory annuitants. 12

We would not expect our life expectancy estimates - which are based on the experience of actual

compulsory annuitants in a particular firm - to match this rough proxy exactly, but it is reassuring

that they are in a similar ballpark. Our estimated life expectancy is about 2 years higher. This

difference is not driven by the parametric assumptions, but reflects higher survival probabilities for

our annuitants than our proxy group of U.K. pensioners; this difference between the groups exists

even within the range of ages for which we observe survival in our data and can compare the groups

directly (not shown).

The bottom of Table 2.5 presents the average expected present discounted value (EPDV) of an-

nuity payments implied by our mortality estimates and our assumptions regarding the real interest

rate and the inflation rate. Since each individual's initial wealth is normalized to 100, of which

20 percent is annuitized, an EPDV of 20 would imply that the company, if it had no transaction

costs, would break even. Note that nothing in our estimation procedure guarantees that we arrive

at reasonable EPDV payments. It is therefore encouraging that for all the four cells, and for all

2 Exactly how representative the mortality experience of the pensioners is for that of compulsory annuitants is not

clear. See Finkelstein and Poterba (2002) for further discussion of this issue.



guarantee choices within these cells, the expected payout is fairly close to 20; it ranges across the

age-gender cells from 19.74 to 20.66. One might be concerned by an average expected payment that

is slightly above 20, which would imply that the company makes negative profits. Note, however,

that if the effective interest rate the company uses to discount its future payments is slightly higher

than the risk-free rate of 0.043 that we use in the individual's guarantee choice model, the esti-

mated EPDV annuity payments would all fall below 20. It is, in practice, likely that the insurance

company receives a higher return on its capital than the risk free rate, and the bottom row of Table

2.5 shows that a slightly higher interest rate of 0.045 would, indeed, break even. In Section 2.6 we

show that our welfare estimates are not sensitive to using an interest rate that is somewhat higher

than the risk free rate used in the baseline model.

As another measure of the out-of-sample fit, we examined the optimal consumption trajectories

implied by our parameter estimates and the guarantee choice model. These suggest that most of

the individuals are saving in their retirement (not shown). This seems contrary to most of the

empirical evidence (e.g., Hurd (1989)), although there is evidence consistent with positive wealth

accumulation among the very wealthy elderly (Kopczuk (2007)), and evidence, more generally, that

saving behavior of high wealth individuals may not be representative of the population at large

(Dynan, Skinner, and Zeldes (2004)); individuals in this market are higher wealth than the general

U.K. population (Banks and Emmerson (1999)). In light of these potentially puzzling wealth

accumulation results, we experimented with a variant of the baseline model that allows individuals

to discount wealth after death more steeply than consumption while alive. Specifically, we modified

the consumer per-period utility function (as shown in equation (2.3.1)) to be

vt(w ,Ct) = (I - Ki) u& (ct) + (i9 b(wt), (2.4.1)

where ( is an additional parameter to be estimated. Our benchmark model corresponds to ( 1.

Values of ( < 1 imply that individuals discount wealth after death more steeply than consumption

while alive. Such preferences might arise if individuals care more about leaving money to children

(or grandchildren) when the children are younger than when they are older. We find that the

maximum likelihood value of ( is 1. Moreover, when we re-estimate the model imposing values of

( relatively close to 1 (such as ( = 0.95), we are able to produce more sensible wealth patterns in

retirement, but do not have a noticeable effect on our core welfare estimates.



2.5 Welfare estimates

We now take our parameter estimates as inputs in calculating the welfare consequences of asym-

metric information and government mandates. We start by defining the welfare measure we use,

and calculating welfare in the observed, asymmetric information equilibrium. We then perform

two counterfactual exercises in which we compare equilibrium welfare to what would arise under a

mandatory social insurance program that does not permit choice over guarantee, and under sym-

metric information. Although we focus primarily on the average welfare, we also briefly discuss

distributional implications.

2.5.1 Measuring welfare

A useful monetary metric for comparing utilities associated with different annuity allocations is the

notion of wealth-equivalent. The wealth-equivalent denotes the amount of initial wealth that an

individual would require in the absence of an annuity, in order to be as well off as with his initial

wealth and his annuity allocation. The wealth-equivalent of an annuity with guarantee period g

and initial wealth of wo is the implicit solution to

V Mo) V0NA (wealth - equivalent), (2.5.1)

where both VA6 ) and VNA(-) are defined in Section 2.3. This measure is commonly used in

the annuity literature (Mitchell, Poterba, Warshawsky, and Brown (1999), Davidoff, Brown, and

Diamond (2005)).

A higher value of wealth-equivalent corresponds to a higher value of the annuity contract. If

the wealth equivalent is less than initial wealth, the individual would prefer not to purchase an

annuity. More generally, the difference between the wealth-equivalent and the initial wealth is the

amount an individual is willing to pay in exchange for having access to the annuity contract. This

difference is always positive for a risk averse individual who does not care about wealth after death

and faces an actuarially fair annuity rate. It can take negative values if the annuity contract is

over-priced (compared to the individual-specific actuarially fair rate) or if the individual sufficiently

values wealth after death.

Our estimate of the average wealth-equivalent in the observed equilibrium provides a monetary

measure of the welfare gains (or losses) from annuitization given equilibrium annuity rates and

individuals' contract choices. The difference between the average wealth equivalent in the observed
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equilibrium and in a counterfactual allocation provides a measure of the welfare difference between

these allocations.

We provide two ways to quantify these welfare differences. The first provides an absolute

monetary estimate of the welfare gain or loss associated with a particular counterfactual scenario.

To do this, we scale the difference in wealth equivalents by the £6 billion which are annuitized

annually (in 1998) in the U.K. annuity market (Association of British Insurers (1999)). Since the

wealth equivalents are reported per 100 units of initial wealth and we assume that 20 percent

of this wealth is annuitized, this implies that each unit of wealth-equivalent is equivalent, at the

aggregate, to £300 million annually. We also occasionally refer to a per-annuitant welfare gain,

which we compute by dividing the overall welfare effect by 300,000, which is our estimate of new

annuitants in the U.K. market in 1998.1' Of course, one has to be cautious about these specific

numbers, as they rely on extrapolating our estimates from our specific sample to the entire market.

While an absolute welfare measure may be a relevant benchmark for policies associated with the

particular market we study, a relative measure may be more informative when considering using our

estimates as a possible benchmark in other contexts, or examining the quantitative sensitivity of

our estimates. For example, if we considered the decision to buy a one month guarantee, we would

not expect efficiency costs associated with this decision to be large relative to life-time wealth. A

relative welfare estimate essentially requires a normalization factor.

Therefore, to put these welfare estimates in perspective, we measure the welfare changes relative

to how large this welfare change could have been, given the observed annuity rates. We refer to

this maximum potential welfare change as the "Maximum Money at Stake" (MMS). We define the

MMS as the minimum lump sum that individuals would have to receive to insure them against the

possibility that they receive their least-preferred allocation in the observed equilibrium, given the

observed equilibrium pricing. The MMS is therefore the additional amount of pre-existing wealth

an individual requires so that they receive the same annual annuity payment if they purchase

the maximum guarantee length (10 years) as they would receive if they purchase the minimum

guarantee length (0 years).

The nature of the thought experiment behind the MMS is that the welfare loss from buying a

10 year guarantee is bounded by the lower annuity payment that the individual receives as a result.

This maximum welfare loss would occur in the worst case scenario, in which the individual had

13 We obtain it by dividing the E6 billion figure we have just referred to by the average annuitized amount (in 1998)
in our full company data (rather than the sample we use for estimation; see Appendix A.1), which is £20,000.



no chance of dying during the first 10 years (or alternatively, no value of wealth after death). We

report the MS per 100 units of initial wealth (i.e., per 20 units of the annuitized amount)

MMS 120 ( - 1 , (2.5.2)

where zo and z1o denote the annual annuity rates for 0 and 10 year guarantees, respectively (see

Table 2.2). A key property of the MMS is that it depends only on annuity rates, but not oil our

estimates of preferences or mortality risk. Converting this to absolute amounts, the MMS is just

over £500 million annually, just below 41, 700 per new annuitant, or about 8 percent of the market

as a whole.

2.5.2 Welfare in observed equilibrium

The first row of Table 2.6 shows the estimated average wealth equivalents per 100 units of initial

wealth in the observed allocations implied by our parameter estimates. The average wealth equiv-

alent for our sample is 100.16. and ranges from 99.9 (for 65 year old males) to 100.4 (for 65 year

old females). An average wealth equivalent of less than 100 indicates an average welfare loss asso-

ciated with the equilibrium annuity allocations relative to a case in which wealth is not annuitized;

conversely, an average wealth equivalent of more than 100 indicates an average welfare gain from

annuitization at the observed rates. Note that because annuitization of some form is compulsory,

it is possible that individuals in this market would prefer not to annuitize.14

Figure 2.3 shows the distribution across different types of the welfare gains and losses from

annuitization at the observed annuity rates, relative to no annuities. This figure super-imposes

iso-welfare contour lines over the same scatter plots presented in Figure 2.2. It indicates that, as

expected, the individuals who benefit the most from the annuity market are those with low mortality

(low a) and weak preference for wealth after death (low #). The former are high (survival) risk, who

face better than actuarially fair annuity rates when they are pooled with the rest of the annuitants.

1 4 Our average wealth equivalent is noticeably lower than what has been calculated in the previous literature
(Mitchell, Poterba, Warshawsky, and Brown (1999), Davidoff, Brown, and Diamond (2005)). The high wealth

equivalents in these papers in turn implies a very high rate of voluntary annuitization, giving rise to what is known as

the "annuity puzzle" since, empirically, very few individuals voluntarily purchase annuities (Brown, Mitchell, Poterba,
and Warshawsky (2001)). Our substantially lower wealth equivalents - which persist in the robustness analysis (see

Table 2.6) arise because of the relatively high 0 that we estimate. Previous papers have calibrated rather than
estimated # and assumed it to be 0. If we set log a = pt and 3 = 0, and also assume - like these other papers - that

annuitization is full (i.e., 100 percent vs. 20 percent in our baseline), then we find that the wealth equivalent of a 0

year guarantee for a 65 year old male rises to 135.9, which is much closer to the wealth equivalent of 156 reported by
Davidoff, Brown, and Diamond (2005).



The latter are individuals who get less disutility from dying without much wealth, which is more

likely to occur with than without annuities.

2.5.3 The welfare cost of asymmetric information

In the counterfactual symmetric information equilibrium, each person faces an actuarially fair

adjustment to annuity rates depending on her mortality. Specifically, we offer each person payment

rates such that the EPDV of payments for that person for each guarantee length is equal to the

equilibrium average EPDV of payments. This ensures that each person faces an individual-specific

actuarially fair reductions in payments in exchange for longer guarantees. Note that this calculation

is (expected) revenue neutral, preserving any average load (or subsidy) in the market.

Figure 2.2 may provide a visual way to think about this counterfactual. In the counterfactual

exercise, the points in Figure 2.2, which represent individuals, are held constant, while the indif-

ference sets, which represent the optinmal choices at a given set of annuity rates, shift. Wealth

equivalents are different at the new optimal choices both because of the direct effect of the different

annuity rates and because these rates in turn affect optimal contract choices.

We note that our welfare analysis of the impact of adverse selection considers only the impact

of selection on the pricing of the observed contracts. Adverse selection may also affect the set of

contracts offered, and this may have non trivial welfare costs. Our analysis however treats the

contract set (of 0, 5, and 10 year guarantees) as given; that is, we assume that the contract space

does not change in the counterfactual of symmetric information. The most important reason for

this assumption is that incorporating the impact of adverse selection on the contract space would

require a model of guarantee lengths in which the current offered guarantee lengths are optimal.

This seems difficult given that the three offered guarantee lengths are fixed over time, across the

annuity providers in the market, and perhaps most surprisingly over different age and gender

combinations, which are associated with different mortality profiles.

The second panel of Table 2.6 presents our estimates of the welfare cost of asymmetric in-

formation. The first row shows our estimated wealth-equivalents in the symmetric information

counterfactual. As expected, welfare is systematically higher in the counterfactual world of sym-

metric information. For 65 year old males, for example, the estimates indicate that the average

wealth equivalent is 100.74 under symmetric information, compared to 100.17 under asymmetric

information. This implies that the average welfare loss associated with asymmetric information is

equivalent to 0.57 units of initial wealth. For the other three age-gender cells, this number ranges



from 0.14 to 0.27. Weighting all cells by their relative sizes, we obtain the overall estimate reported

in the introduction of annual welfare costs of E127 million, £423 per new annuitant, or about 2

percent of annuitized wealth. This also amounts to 0.25 of the concept of maximum money at stake

(MIMS) introduced earlier.

What is the cause of this welfare loss'? It arises from the distortion in the individual's choice

of guarantee length relative to what he would have chosen under symmetric information pricing.

Despite preference heterogeneity, we estimate that under symmetric information all individuals

would choose 10 year guarantees (not shown). However, in the observed equilibrium only about 3

percent of individuals purchase these annuities. This illustrates the distortions in optimal choices

in the observed equilibrium.

To illustrate the impact on different individuals, Figure 2.4 presents contour graphs of the

changes in wealth equivalents associated with the change to symmetric information. That is, as

before, for each age-gender cell we plot the individuals as points in the space of log a and log 3.

and then draw contour lines over them. All the individuals along a contour line are predicted to

have the same absolute welfare change as a result of the counterfactual. Figure 2.4 indicates that,

while almost all individuals benefit from a move to the first best, there is significant heterogeneity

in the welfare gains arising from individual-specific pricing. The biggest welfare gains accrue to

individuals with high mortality (high a) and high preferences for wealth after death (high 3).

Two different factors work in the same direction to produce the highest welfare gains for high

a, high # individuals. First, a standard one-dimensional heterogeneity setting would predict that

symmetric information would improve welfare for low risk (high a) individuals relative to high risk

(low a) individuals. Second, the asymmetric information equilibrium involves cross-subsidies from

higher guarantees to lower guarantees (the EPDV of payout decreases with the length of the guar-

antee period, as shown in Table 2.5);15 by eliminating these cross-subsidies, symmetric information

also improves the welfare of high # individuals, who place more value on higher guarantees. Since

we estimate that a and # are positively correlated, these two forces reinforce each other.

A related question concerns the extent to which our estimate of the welfare cost of asymmetric

1 5The observed cross-subsidies across guarantee choices may be due to asymmetric information. For example,
competitive models of pure adverse selection (with no preference heterogeneity), such as Miyazaki (1977) and Spence

(1978), can produce equilibria with cross-subsidies from the policies with less insurance (in our context, longer

guarantees) to those with more insurance (in our context, shorter guarantees). We should note that the observed cross

subsidies may also arise from varying degrees of market power in different guarantee options. In such cases, symmetric

information may not eliminate cross-subsides, and our symmetric information counterfactual would therefore conflate

the joint effects of elimination of informational asymmetries and of market power. Our analysis of the welfare
consequences of government mandates in the next subsection does not suffer from this same limitation.



information is influenced by re-distributional effects. As just discussed, symmetric information

produces different welfare gains for individuals with different a and /. To investigate the extent to

which our welfare comparisons are affected by the changes in cross-subsidy patterns, we recalculated

wealth-equivalents in the symmetric information counterfactual under the assumption that each

individual faces the same expected payments for each option in the choice set of the counterfactual

as she receives at her choice in the observed equilibrium. The results (not shown) suggest that, in

all the age-gender cells, our welfare estimates are not, in practice, affected by redistribution.

2.5.4 The welfare consequences of government mandated annuity contracts

Although symmetric information is a useful conceptual benchmark, it may not be relevant from

a policy perspective since it ignores the information constraints faced by the social planner. We

therefore consider the welfare consequences of government intervention in this market. Specifically,

we consider the consequences of government mandates that each individual purchases the same

guarantee length, eliminating any contract choice; as noted previously, such mandates are the

canonical solution to adverse selection in insurance markets (Akerlof (1970)). To evaluate welfare

under alternative mandates, we calculate average wealth equivalents when all people are forced

to have the same guarantee period and annuity rate, and compare them to the average wealth

equivalents in the observed equilibrium. We set the payment rate such that average EPDV of

payments is the same as in the observed equilibrium; this preserves the average load (or subsidy)

in the market.

Before presenting the results, it is useful to note a contrast between our setting and the standard

or canonical insurance model. As mentioned in the introduction, unlike in a standard insurance

setting, the optimal mandatory annuity contract cannot be determined by theory alone. In the

canonical insurance model - that is, when all individuals are risk averse, the utility function is

state-invariant, and there are no additional cost of providing insurance - it is well-known that

mandatory (uniform) full insurance can achieve the first best allocation, even when individuals

vary in their preferences. Since adverse selection reduces insurance coverage away from this first-

best, no estimation is required in this standard context to realize that the optimal mandate is full

insurance. In contrast, our model of annuity choices is governed by two different utility functions,

one from consumption when alive, u(.), and one from wealth when dead, b(-) (see equation (2.3.1)).

Therefore optimal (actuarially fair) guarantee coverage will vary across individuals depending on

their relative preference for wealth at death vis-a-vis consumption while alive. In such a case,



whether and which mandatory guarantee can improve welfare gains relative to the adverse selection

equilibrium is not a-priori clear.16 The investigation of the optimal mandate - and whether it can

produce welfare gains relative to the adverse selection equilibrium - therefore becomes an empirical

question.

The results are presented in the bottom panels of Table 2.6. In all four age-gender cells, welfare

is lowest under a mandate with no guarantee period, and highest under a mandate of a 10 year

guarantee. Welfare under a mandate of a 5 year guarantee is similar to welfare in the observed

equilibrium.

The increase in welfare from a mandate of 10 year guarantee is virtually identical to the increase

in welfare associated with the first best, symmetric information outcome reported earlier. This

mandate involves no allocative inefficiency, since we estimated that a 10 year guarantee is the

first best allocation for all individuals. Although it does involve transfers (through the common

pooled price) across individuals of different mortality risk, these do not appear to have much effect

on our welfare estimate. 17 Consistent with this, when we recalculated wealth-equivalents in each

counterfactual under the assumption that each individuals faces the same expected payments in the

counterfactual as she receives from her choice in the observed equilibrium, our welfare estimates

were not noticeably affected (not shown). As with the counterfactual of symmetric information,

there is heterogeneity in the welfare effects of the different mandates for individuals with different

a and 3. Not surprisingly, high 3 individuals benefit relatively more from the 10 year mandate and

lose relatively more from the 0 year mandate (not shown).

Our findings highlight both the potential benefits and the potential dangers from government

mandates. Without estimating the joint distribution of risk and preferences, it would not have been

apparent that a 10 year guarantee is the welfare-maximizing mandate, let alone that such a mandate

comes close to achieving the first best outcome. Were the government to mandate no guarantee,

it would reduce welfare by about £107 million per year (£357 per new annuitant), achieving a

welfare loss of about equal and opposite magnitude to the £127 million per year (£423 per new

annuitant) welfare gain from the optimal 10 year guarantee mandate. Were the government to

16This is somewhat analogous to an insurance market with a state-dependent utility function. In such a case, the
optimal mandate could be either full, partial, or no insurance (and analogously longer or shorter guarantee). For
more details, see Sections 2 and 3.1 of the working paper version (Einav, Finkelstein, and Schrimpf (2007)).

"7We estimate that welfare is slightly higher under the 10 year mandate than under the symmetric information
equilibrium (in which everyone chooses the 10 year guarantee). This presumably reflects the fact that under the
mandated (pooling) annuity payout rates, consumption is higher for low mortality individuals and lower for high
mortality individuals than it would be under the symmetric information annuity payout rates. Since low mortality
individuals have lower consumption in each period and hence higher marginal utility of consumption, this transfer
improves social welfare (given the particular social welfare measure we use).



pursue the naive approach of mandating the currently most popular choice (5 year guarantees) our

estimates suggest that this would raise welfare by only about £2 million per year or less than £7 per

new annuitant, foregoing most of the welfare gains achievable from the welfare maximizing 10 year

mandate. These results highlight the practical difficulties involved in trying to design mandates to

achieve social welfare gains.

2.6 Robustness

In this section, we explore the robustness of our welfare findings. Our qualitative welfare conclusions

are quite stable across a range of alternative assumptions. In particular, the finding that the

welfare maximizing mandate is a 10 year guarantee, and that this mandate achieves virtually the

same welfare as the first best outcome, persists across all alternative specifications. The finding of

welfare gains from a 10 year guarantee mandate but welfare losses from mandating no guarantee

is also robust.

However, the quantitative estimates of the welfare cost of asymmetric information can vary

non-trivially across specifications, and as a result needs to be interpreted with more caution. It is

£127 million per year (i.e. 25 percent of the MMS) in our baseline specification. It ranges from

£111 million per year to £244 million per year (or from 22 percent to about 50 percent of the MMS)

across the alternative specifications. Our bounds exercise, which we discuss below, produces similar

conclusions concerning the robustness of our findings concerning the optimal guarantee mandate

and its ability to achieve close to the first best outcome, as well as the greater uncertainty about

our quantitative welfare estimates of the gains from symmetric information.

Finally, we note that our robustness discussion focuses on the (qualitative and quantitative)

sensitivity of our welfare estimates, rather than the estimates of the underlying parameters (e.g.,

the magnitude of the average #). The underlying parameters change quite a bit under many of

the alternative models. This is important for understanding why, as we vary certain assumptions,

it is not a-priori obvious how our welfare estimates will change (in either sign or magnitude). For

example, although it may seem surprising that welfare estimates are not very sensitive to our

assumption about the risk aversion parameter, recall that the estimated parameters also change

with the change in the assumption about risk aversion.

The change in the estimated parameters across specifications is also important for the overall

interpretation of our findings. One reason we hesitate to place much weight on the structural



interpretation of the estimated parameters (or the extent of heterogeneity in these parameters)

is that their estimates will be affected by our assumptions about other parameters (such as risk

aversion or discount rate). This is closely related to the identification result in Section 2.3.

The remainder of this section describes the alternative specifications we explored. Table 2.6

provides a summary of the main results.

2.6.1 Parameter choices

Following our discussion of the baseline model in Section 2.3, although we estimate the average level

and heterogeneity in mortality (Oa) and in preferences for wealth after death (#j), we choose values

for a number of other parameters based on external information. While we could, in principle,

estimate some of these parameters, they would be identified solely by functional form assumptions.

Therefore, we instead chose to explore how our welfare estimates are affected by alternative choices

for these parameters.

Choice of risk aversion coefficient (7). Our baseline specification (reproduced in row 1 of Table

2.6) assumes a (common) CRRA parameter of y = 3 for both the utility from consumption u(c)

and from wealth after death b(w). Rows 2 and 3 of Table 2.6 show the results if instead we assume

y=5 or -y = 1. 5.

Rows 4 and 5 report specifications in which we hold constant the CRRA parameter in the utility

from consumption (at -y = 3) but vary the CRRA parameter in the utility from wealth after death.

Specifically, we estimate the model with y 1.5 or -y = 5 for the utility from wealth after death

b(w).

A downside of the specifications reported in rows 4 and 5 is that they give rise to non-homothetic

preferences and are therefore no longer scalable in wealth. This implies that heterogeneity in initial

wealth may confound the analysis. Therefore, in row 6, we also allow for heterogeneity in initial

wealth. As in row 5, we assume that y = 3 for utility from consumption, but that y = 1.5 for

the utility from wealth after death. This implies that wealth after death acts as a luxury good,

with wealthier individuals caring more, at the margin, about wealth after death. Such a model

is consistent with the hypothesis that bequests are a luxury good, which may help explain the

higher rate of wealth accumulation at the top of the wealth distribution (Dynan, Skinner, and

Zeldes (2004), Kopezuk and Lupton (2007)). Unfortunately, we do not have data on individual's

initial wealth wi, which would allow us to incorporate it directly into the model. Instead, to



allow for heterogeneity in initial wealth, we calibrate the distribution of wealth based on Banks

and Emmerson (1999) and integrate over this (unobserved) distribution. 18 We also let the means

(but not variances) of log a and log 3 to vary with unobserved wealth. The welfare estimates are

normalized to be comparable with the other exercises.

Choice of other parameters. We also reestimated the model assuming a higher interest rate than

in the baseline case. As already mentioned, our estimates suggest that a slightly higher interest

rate than the risk free rate we use in the individual's value function is required to have the annuity

company not lose money. Thus, rather than the baseline which uses the risk free rate as of 1992

(r 6 = 0.043), in row 7 we allow for the likely possibility that the insurance company receives a

higher rate of return, and reestimate the model with r = 6 = 0.05. This in turn implies an average

load on policies of 3.71 percent.

In row 8 we use a different set of annuity rates. Since the choice of 1992 pricing for our baseline

model was arbitrary, we report results for a different set of annuity rates, from 1990, with the

corresponding inflation and interest rates.

2.6.2 Wealth portfolio outside of the compulsory annuity market

As noted, our data do not contain information on the annuitant's wealth portfolio outside of the

compulsory market. This is an important limitation to the data. In our baseline specification

we used survey data reported by Banks and Emmerson (1999) to assume that 20 percent of the

annuitants' financial wealth is in the compulsory annuity market (T = 0.2), and the rest is in liquid

financial wealth. Rows 9 and 10 report results under different assumptions of the fractions of wealth

annuitized in the compulsory market (we tried values of 0.1 and 0.3 of I).

In row 11 we report results in which we allow for heterogeneity in T1. We calibrate the distribution

of q and integrate over this unobserved distribution. 9 We allow the means (but not variances) of

log a and log # to vary with this unobserved g.

In row 12, we assume that 50 percent of wealth is annuitized (at actuarially fair annuity rates)

through the public Social Security program.20 We then consider the welfare cost of asymmetric

1 8 fBanks and Emmerson (1999) report that the quartiles of the welath distribution among 60-69 pensioners are
1,750, 8,950, and 24,900 pounds. We assume that the population of retirees is drawn from these three levels, with
probability 37.5%, 25%, and 37.5%, respectively.

19Banks and Emmerson (1999) report an average q of 20 percent and a median of 10 percent. We therefore calibrate
heterogeneity in i7 by assuming it can obtain one of three values - 0.1, 0.2, and 0.4 - with probabilities of 0.5, 0.25,
and 0.25, respectively.

2 0 On average in the U.K. population, about 50 percent of retirees' wealth is annuitized through the public Social



information for the 20 percent of wealth annuitized in the compulsory market. As can be seen in

Table 2.6, this alternative assumption has by far the biggest effect on our estimate of the welfare

cost of asymmetric information, raising it from £127 million per year (or about 25 percent of the

MMS) in the baseline specification to E244 million per year (or about 50 percent of the MMS).

As we noted at the outset of this section, it is difficult to develop good intuition for the coin-

parative statics across alternative models since the alternative models also yield different estimated

parameters. However, one potential explanation for our estimate of a larger welfare cost when 50

percent of wealth is in the public annuity may be that the individual now only has 30 percent of

his wealth available to "offset" any undesirable consumption path generated by the 70 percent of

annuitized wealth.

A related issue is the possibility that annuitants may adjust their non-annuitized financial

wealth portfolio in response to the changes in guarantee prices created by our counterfactuals. Our

analysis assumes that individuals do not adjust the rest of their portfolio in response to changes

in their guarantee length or price. If individuals could purchase actuarially fair life insurance

policies with no load, and without incurring any transaction costs in purchasing these policies,

they could in principle undo much of the efficiency cost of annuitization in the current asymmetric

information equilibrium. More generally, this issue fits into the broader literature that investigates

the possibility and extent of informal insurance to lower the welfare benefits from goverunment

interventions or private insurance (Golosov and Tsyvinski (2007))

Of course, in practice the ability to offset the equilibrium using other parts of the financial

portfolio will be limited by factors such as loads and transaction costs. Given that the maximum

money at stake in the choice of guarantee is only about 8 percent of annuitized wealth under the

observed annuity rates (and only about 4 percent (on average) under the counterfactual symmetric

information rates), even relatively small transaction costs could well deter individuals from re-

optimizing their portfolios in response to changes in guarantee prices. Re-optimization will also be

limited by the fact that much of individuals' wealth outside of the compulsory annuity market is

tied up in relatively illiquid forms such as the public pension. Indeed, the data suggest that for

individuals likely to be in the compulsory annuity market, only about 10 to 15 percent of their total

wealth is in the form of liquid financial assets (Banks, Emmerson, Oldfield, and Tetlow (2005)).

Security program, although this fraction declines with retiree wealth (Office of National Statistics (2006)). Compulsory

annuitiants tend to be of higher than average socio-economic status (Banks and Emmerson (1999)) and may therefore

have on average a lower proportion of their wealth annuitized through the public Social Security program. However,

since our purpose is to examine the sensitivity of our welfare estimates to accounting for publicly provided annuities,
we went with the higher estimate to be conservative.



A rigorous analysis of this is beyond the scope of the current work, and would probably require

better information than we have on the asset allocation of individual annuitants. With richer data

that included information on the life insurance holdings in each individual's portfolio, we could

potentially expand our model to include a model of life insurance demand and thereby use our

estimates to examine how this aspect of the portfolio would respond to our counterfactual annuity

rates, and how this in turn it would affect the welfare estimates of these counterfactuals. We hope

that further research with hopefully richer data will build on the model and identification results

here to extend the analysis in this important dimension.

2.6.3 Modeling heterogeneity

Different distributional assumptions of heterogeneity. We explored the sensitivity of our welfare

estimates to the parameterization of unobserved heterogeneity. One potential issue concerns our

parametric assumption regarding the baseline mortality distribution at the individual level. As dis-

cussed in the end of Section 2.3, our assumption about the shape of the individual mortality hazard

affects our estimate of unobserved mortality heterogeneity (i.e., o-a). To explore the importance of

our assumption, row 13 presents results under a different assumption about the mortality distri-

bution at the individual level. In particular, we assume a mortality distribution at the individual

level with a hazard rate of ai exp (A(t - to)h) with h = 1.5, which increases faster over time than

the baseline Gompertz specification (which has the same form, but h = 1). This, by construction,

leads to a higher estimated level of heterogeneity in mortality, since the baseline hazard is more

convex at the individual level.

We also investigated the sensitivity of the results to alternative joint distributional assumptions

than our baseline assumption that a and # are joint lognormally distributed. Due to our estima-

tion procedure, it is convenient to parameterize the joint distribution of a and # in terms of the

marginal distribution of a and the conditional distribution of 0. It is common in hazard models

with heterogeneity to assume a gamma distribution (Han and Hausman (1990)). Accordingly, we

estimate our model assuming that a follows a gamma distribution. We assume that conditional on

a, / is distributed either lognormally (row 14) or gamma (row 15). Specifically, let a, be the shape

parameter and b0 be the scale parameter of the marginal distribution of a. When # is conditionally

log-normally distributed, its distribution is parameterized by

log (0)| ~ z N (pp, + p (log (ae) - log (ba,)) , o-') . (2.6.1)



When 3 is conditionally gamma distributed, its shape parameter is simply a3, and its conditional

scale parameter is b3 - exp (pp + p (log(a) - log(b))). These specifications allow thinner tails,

compared to the bivariate lognormal baseline.

In unreported specifications, we have also experimented with discrete mixtures of lognormal

distributions, in an attempt to investigate the sensitivity of our estimates to the one-parameter

correlation structure of the baseline specification. These mixtures of lognormal distributions almost

always collapsed back to the single lognormal distribution of the baseline estimates, trivially leading

to almost identical welfare estimates.

Bounds. As mentioned earlier, an alternative to a parametric interpolation is to make no

attempt at interpolation, and to simply use the identified points as bounds on the cumulative

distribution function. To do so, we fix t and o (and A) at our baseline estimates, and then use

semiparametric Maximum Likelihood to obtain estimates for P(g(a, /3) = y~a), where y = 0, 5, 10.

As shown in Proposition 2, this conditional guarantee choice is identified even when the choice set

is discrete. Using the guarantee choice model and the fact that the guarantee choice is (weakly)

monotone in 3 in our model, these conditional guarantee choices can be mapped to bounds on the

conditional distribution Fj3a (see our discussion of 0*/5 (ai) and #3*/1 (ai) in the end of Section

2.3). We can then use these bounds to compute bounds on any object of interest.

To be more precise, let h(a.# 3) be an object of interest (e.g.. welfare), and consider the case in

which we wish to bound its population average. We then compute an upper bound by:

sup(<# (a) h(a, #)) P (# < #*/5 (a) +

Eh J + (supp, [* 3)* O(a)] h(a, /)) P (/ E [*/), (a) '05/10 (a)1 + dF(a), (2.6.2)

+ (sup3 >3*(a) h(a, 0)) P (0 > 3 0 (a))

and similarly for the lower bound (with sup replaced by inf). We focus on bounding the welfare

change from the different counterfactuals. To do this, we first compute the expected annuity

payments in the observed equilibrium (these are point identified, as they are a function of the

conditional guarantee choice, P(g(a, #) = yja)), and use this to compute annuity rates in each of

the counterfactuals. We then follow the procedure above to obtain bounds on the welfare change

for each of the counterfactuals (a symmetric information case, and each of the three mandates we

explored), for each of the age and gender combination separately.

The results from this exercise (not shown) imply that across all age and gender combinations,



the welfare ranking of the different mandates is the same as in our baseline case. In all age-gender

cases, the welfare effect of the different mandates can be unambiguously ranked in the sense that

their bounds do not overlap. In particular, a 10 year guarantee mandate results in a positive welfare

gain which even at its lower bound is always higher than the upper bound of the welfare gain from

any other mandate. The no guarantee mandate always produces a negative effect on welfare (even

at the upper bound), and a 5 year guarantee mandate results in a small and mostly negative welfare

effect (in two of the four age-gender combinations the upper bound of the welfare is positive, but

very small). As in the baseline model, the welfare gain of the symmetric information equilibrium

is similar to that of a 10 year guarantee mandate in the sense that the ranges of these welfare

gains largely overlap (although in most cases the symmetric equilibrium outcome results in slightly

tighter bounds). Consistent with the baseline results, in all cases we also obtain the result that the

vast majority of individuals choose the 10-year guarantee contract in the symmetric information

counterfactual. To check robustness, we also use the same procedure to bound the difference in

welfare between one counterfactual to each of the others. Given that the bounds on the welfare

change do not overlap, it may not be surprising that the bounds on the welfare differences also

give rise to the same ranking of guarantee mandates. That is, zero is never within these bounds,

so each mandate can be unambiguously ranked with respect to each of the alternatives.

In contrast to the robust ranking, the bounds on the estimated magnitude of the welfare gains

(from either symmetric information or from the 10-year guarantee mandate) are not tight. For

example, in the largest age-gender cell (65 year old males), we estimate the lower bound on the

welfare gain from symmetric information to be as low as 30 percent of our baseline estimate, and in

another cell (60 year old males) the upper bound on the welfare change from symmetric information

is 56% higher than our baseline estimate. We view these results as largely consistent with the rest

of the sensitivity analysis in this section; the results regarding the optimal mandate, as well as

the similarity of the welfare gains from the optimal mandate and symmetric information are quite

robust, but the quantitative estimates of the welfare gains are more sensitive to various assumptions.

Allowing heterogeneity in other parameters. While we allow for heterogeneity in mortality

(a) and in preference for wealth after death (/), our baseline specification does not allow for

heterogeneity in other determinants of annuity choice, such as risk aversion and discount rate.

Since the various parameters are only identified up to a single dimension (see Section 2.3), except

by functional form, more flexible estimation of a and 0 is analogous to a specification which frees



up these other parameters.

One way to effectively allow for more flexible heterogeneity is to allow the mean of / and a

to depend on various observable covariates. In particular, one might expect both mortality and

preferences for wealth after death to vary with an individual's socioeconomic status. We observe

two proxies for the annuitant's socioeconomic status: the amount of wealth annuitized and the

geographic location of the annuitant residence (his or her ward) if the annuitant is in England or

Wales (about 10 percent of our sample is from Scotland). We link the annuitant's ward to ward-

level data on socioeconomic characteristics of the population from the 1991 U.K. Census; there is

substantial variation across wards in average socioeconomic status of the population (Finkelstein

and Poterba (2006)). Row 16 shows the results of allowing the mean of both parameters to vary

with the annuitized amount and the percent of the annuitant's ward that has received the equivalent

of a high school degree of higher; both of these covariates may proxy for the socioeconomic status

of the annuitant.

We also report results from an alternative model in which - in contrast to our baseline model

we assume that individuals are homogenous in their 3 but heterogeneous in their consumption

7. Rows 17 and 18 report such a specification. In row 17 we fix 3 at its estimated conditional

median from the baseline specification (Table 2.3) and assume that a and the coefficient of risk

aversion for utility from consumption are heterogeneous and (bivariate) lognormally distributed.

The y coefficient in the utility from wealth after death b(w) is fixed at 3. As in row 6, this

specification gives rise to non-homothetic preferences, so we use the median wealth level from

Banks and Emmerson (1999) and later renormalize, so the reported results are comparable.

Row 18 allows for preference heterogeneity in both # and -y. For computational reason, we

assume that y is drawn from a discrete support (of 1.5, 3, and 4.5). We assume that a and 3 are

(as in the baseline model) joint lognormally distributed, but we allow -y (which is unobserved) to

shift their means. We note that this specification of heterogeneity in both 0 and -y is only identified

by functional form, cautioning against structural interpretation of the estimated distribution of

heterogeneity.

2.6.4 Imperfect information about mortality

Throughout we made a strong assumption that individuals have perfect information about their

actual mortality rate ao. This is consistent with empirical evidence that individuals' perceptions

about their mortality probabilities covary in sensible ways with known risk factors, such as age,



gender, smoking, and health status (Hamermesh (1985), Smith, Taylor, and Sloan (2001), Hurd

and McGarry (2002)). Of course, such work does not preclude the possibility that individuals also

make some form of an error in forecasting their mortality.

We therefore investigate other assumptions about the information structure. Recall that while

we make a perfect information assumption in order to establish identification, we can identify the

model using alternative assumptions about the information structure. We report two such exercises

here.

Before reporting the exercises, we note at the outset two potential complications with models

of imperfect information, which are why we prefer to work with perfect information in our baseline

specification. First, the dynamic nature of our model gives rise to potential learning. As individuals

survive longer they may update their prior about their true underlying mortality process. While

such learning can no longer affect their (past) guarantee choice, it could affect their consumption

decisions. If forward looking individuals anticipate this possibility for learning, they may take this

into account and it could alter their guarantee choice. We do not account for such learning in the

exercises we report below. Second, once information is imperfect, the notion of welfare may be less

obvious. One could measure "perceived" welfare which is measured with respect to the individual's

information, or "true" welfare which is measured with respect to the true mortality process. We

choose to report perceived welfare, which is more consistent with our notion of wealth equivalence.

Throughout, we assume that individuals have perfect information about the mortality process,

except for their idiosyncratic risk characterized by a. With some abuse of notation, we denote

by I,(ai) the perceived mortality risk by individual i. Our first set of exercises assumes that

individuals have biased beliefs about their mortality risk. In particular, individuals know that

log /(ai) = Pa (Xi) + 0 (log ai - Pa (Xi)) , (2.6.3)

where a2 is the true mortality rate of individual i, ya is the population mean of log ai (estimated in

Table 2.3), and K(aj) is the mortality rate perceived by individuals when they make their guarantee

choice and subsequent consumption decisions. 0 is a free parameter. When 0 1 individuals have

correct beliefs and the above assumption reduces to our baseline model. When 0 < 1 individuals

perceive their mortality process as closer to the mean, while 0 > 1 is the case where individuals

over-weight idiosyncratic information. Results for the cases of 0 = 0.5 and 0 = 2 are summarized

in rows 19 and 20 of Table 2.6.



The second set of exercises assumes that individuals have correct, but uncertain beliefs about

their mortality risk. In particular, let

log A(aT) ~ N (log aj, a ). (2.6.4)

Our baseline model is the special case of o = 0. The case of a. > 0 represents specifications where

individuals are more uncertain about their mortality realization. We model the guarantee choices

by having individuals form expected value functions by integrating over this additional uncertainty.

In rows 21 and 22 we summarize results for the cases of a, = 0.027 and a, = 0.108, which are half

and twice our estimate of o (see Table 2.3).

2.6.5 Departing from the neoclassical model

Our baseline model is a standard neoclassical model with fully rational individuals. It is worth

briefly discussing various "behavioral" phenomena that our baseline model (or extensions to it) can

accommodate.

A wide variety of non-standard preferences may be folded into the interpretation for tle prefer-

ence for wealth after death parameter #. As previously noted, this preference may reflect a standard

bequest motive, or some version of "regret" or "peace of mind" that have been discussed in the

behavioral literature (Braun and Muermann (2004)).

Another possibility we considered is non-traditional explanations for the high fraction of indi-

viduals in our data who choose the 5 year guarantee option. One natural possibility that can be

ruled out is that this reflects an influence of the 5 year guarantee as the default option. In practice

there is no default for individuals in our sample, all of whom annuitized at age 60 or 65. Individuals

in this market are required to annuitize by age 70 (for women) or 75 (for men). To annuitize before

that age, they must actively fill a form when they decide to annuitize, and must check a chosen

guarantee length. Failure to complete such an active decision would simply delay annuitization

until the maximum allowed age.

Another natural possibility is that the popularity of the 5 year guarantee may partly reflect

the well-known phenomenon in the marketing literature that individuals are more likely to "choose

the middle" (Simonson and Tversky (1992)). We therefore estimated a specification of the model

in which we allow for the possibility that some portion of individuals "blindly" choose the middle,

that is the 5 year guarantee option. We allow such individuals to also differ in the mean mortality



rate. Row 23 summarizes the results from such a specification.21

2.6.6 Estimates for a different population

As a final robustness exercise, we re-estimated the baseline model on a distinct sample of annuitants.

As mentioned briefly in Section 2.2 and discussed in more detail in Appendix A.1, in our baseline

estimates we limit the annuitant sample to the two-thirds of individuals who have accumulated

their pension fund with our company. Annuitants may choose to purchase their annuity from an

insurance company other than the one in which their funds have been accumulating, and about

one-third of the annuitants in the market choose to do so. As our sample is from a single company,

it includes those annuitants who accumulated their funds with the company and stayed with the

company, as well as those annuitants who brought in external funds. Annuitants who approach

the company with external funds face a different pricing menu than those who buy internally.

Specifically., the annuity payment rates are lower by 2.5 pence per pound of the annuitized amount

than the payment rates faced by "internal" annuitants. 2 2 Annuitants who approach the company

with external funds may also be drawn from a different distribution of risk and preferences, which is

why we do not include them in our main estimates. The estimated parameters for this population

are, indeed, quite different from the estimates we obtain for the internal individuals (not shown).

Row 24 shows the results of estimating the model separately for this distinct group of individuals,

using their distinct pricing menu. We continue to find that the welfare minimizing mandate is of

no guarantee and that the welfare maximizing mandate is a 10 year guarantee, and it can get very

close to the welfare level of the first best outcome. The welfare cost of asymmetric information is

also quite similar: £137 in this "external" annuitant sample, compared to our baseline estimate of

£127 in our sample of annuitants who are "internal" to our firm. This gives us some confidence

that our results may be more broadly applicable to the U.K. annuitant population as a whole and

are not idiosyncratic to our particular firm and its pricing menu.

2
1Welfare of individuals who always choose the middle is not well defined, and the reported results only compute

the welfare for those individuals who are estimated to be "rational" and to choose according to the baseline model.
For comparability with the other specifications, we still scale the welfare estimates by the overall annuitized amount
in the market.

2 2 We found it somewhat puzzling that payout rates are lower for individuals who approach the company with
external funds, and who therefore are more likely to be actively searching across companies. According to the
company executives, some of the explanation lies in the higher administrative costs associated with transferring
external funds, also creating higher incentives to retain internal individuals by offerring them better rates.



2.7 Conclusions

This paper represents, to our knowledge, one of the first attempts to empirically estimate the

welfare costs of asymmetric information in an insurance market and the welfare consequences of

mandatory social insurance. We have done so in the specific context of the semi-compulsory U.K.

annuity market. In this market, individuals who save for retirement through certain tax-deferred

pension plans are required to annuitize their accumulated wealth. They are allowed, however, to

choose among different types of annuity contracts. This choice simultaneously opens up scope for

adverse selection as well as selection based on preferences over different contracts. We estimate that

both private information about risk and preferences are important in determining the equilibrium

allocation of contracts across individuals. We use our estimates of the joint distribution of risk and

preferences to calculate welfare under the current allocation and to compare it to welfare under

various counterfactual allocations.

We find that government mandates that eliminate any choice among annuity contracts do not

necessarily improve on the asymmetric information equilibrium. We estimate that a mandated

annuity contract could increase welfare relative to the current equilibrium by as much as £127

million per year, or could reduce it by as much as £107 million per year, depending on what

contract is niandated. Moreover, the welfare maximizing choice for a mandated contract would not

be apparent to the government without knowledge of the joint distribution of risk and preferences.

Our results therefore suggest that achieving welfare gains through mandatory social insurance may

be harder in practice than simple theory would suggest.

Our results also suggest that, relative to a first-best symmetric information benchmark, the

welfare cost of asymmetric information along the dimension of guarantee choice is about 25 percent

of the maximum money at stake in this choice. These estimates account for about £127 million

annually, or about 2 percent of annual premia in the market. However, these quantitative results are

less robust to some of the modeling assumptions than the results concerning the optimal mandate.

Although our analysis is specific to the U.K. annuity market, the approach we take can be

applied in other insurance markets. As seen, the data requirements for recovering the joint distri-

bution of risk and preferences are data on the menu of choices each individual faces, the contract

each chooses, and a measure of each individual's ex-post risk realization. Such data are often

available from individual surveys or from insurance companies. These data are now commonly

used to test for the presence of asymmetric information in insurance markets, including automobile



insurance (Chiappori and Salanie (2000), Cohen and Einav (2007)), health insurance (Cardon and

Hendel (2001)), and long term care insurance (Finkelstein and McGarry (2006)), as well as annuity

markets. This paper suggests that such data can now also be used to estimate the welfare conse-

quences of any asymmetric information that is detected, or of imposing mandatory social insurance

in the market.

Our analysis was made substantially easier by the assumption that moral hazard does not exist

in annuity markets. As discussed, this may be a reasonable assumption for the annuity market. It

may also be a reasonable assumption for several other insurance markets. For example, Cohen and

Einav (2007) argue that moral hazard is unlikely to be present over small deductibles in automobile

insurance. Grabowski and Gruber (2005) present evidence that suggests that there is no detectable

moral hazard effect of long term care insurance on nursing home use. In such markets, the approach

in this paper can be straightforwardly adopted.

In other markets, such as health insurance, moral hazard is likely to play an important role.

Estimation of the efficiency costs of asymmetric information therefore requires some additional

source of variation in the data to separately identify the incentive effects of the insurance policies.

One natural source would be exogenous changes in the contract menu. Such variation may occur

when regulation requires changes in pricing, or when employers change the menu of health insurance

plans from which their employees can choose. 23 Non-linear experience rating schemes may also

introduce useful variation in the incentive effects of insurance policies (Abbring, Chiappori, and

Pinquet (2003), Abbring, Heckman, Chiappori, and Pinquet (2003), Israel (2004)). We consider

the application and extension of our approach to other markets, including those with moral hazard,

an interesting and important direction for further work.

2 3 See also Adams, Einav, and Levin (2009) for a similar variation in the context of credit markets.



Figure 2.1: Schematic indifference sets
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The figure provides an illustration of the pairs of points (a/ ) which would make individuals indifferent between
choosing 0 year guarantee and 5 year guarantee (lower left curve) and between 5 year guarantee and 10 year guarantee
(upper right curve). These particular curves are computed based on our baseline estimate of A and the annuity rates
faced by 65 year old males; the sets are not a function of the other estimated parameters. Individuals are represented
as points in this space, with individuals between the curves predicted to choose 5 year guarantee, and individuals
below (above) the lower (upper) curve predicted to choose 0 (10) year guarantee.



Figure 2.2: Estimated distributions
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The figure presents the estimated indifference sets for each age-gender cell, with a scatter plots from the estimated
joint distribution of (logolog) super-imposed; each point is a random draw from the estimated distribution in the
baseline specification. The estimated indifference sets for the 65 year old males are given by the pair of dark dashed
lines, for the 60 year old males by the pair of lighter dashed lines, for the 65 year old females by the pair of dotted
lines, and for the 60 year old females by the pair of solid lines. The estimated indifference sets for the 65 year old
males are the same as those shown in Figure 1 (but a "close up" and in log scale).

10.1

10

9.9

9.8

9.7

-4.8 -4.6



Figure 2.3: Wealth contours
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The figure super-imposes iso-welfare (wealth equivalent) contour lines on the previous Figure 2. Individuals with
wealth equivalent greater than 100 would voluntarily annuitize, while individuals with wealth equivalent less than
100 would not. Each panel represents a different age-gender cell: 60 year old females (upper left), 65 year old females
(upper right), 60 year old males (lower left), and 65 year old males (lower right).
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Figure 2.4: Welfare change contours
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The figure presents Figure 2, with contour lines that present the change in welfare (wealth equivalent) from the
counterfactual exercise of symmetric information. Individuals with positive (negative) welfare change are estimated
to gain (lose) from symmetric information, compared to their welfare in the observed asymmetric information equi-
librium. Each panel represents a different age-gender cell: 60 year old females (upper left), 65 year old females (upper
right), 60 year old males (lower left), and 65 year old males (lower right).
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Table 2.1: Sunmary statistics

60 Females

No. of obs.

choosing

choosing

choosing

0 year guarantee

5 year guarantee

10 year guarantee

Fraction who die within observed mortality period:

Entire sample

Among those choosing 0 year guarantee

Among those choosing 5 year guarantee

Among those choosing 10 year guarantee

1,800

14.0

83.9

2.1

8.4

6.7

8.7

8.1

Recall that we only observe individuals who are alive as of January 1, 1998, and we observe mortality only for individuals who die before December 31, 2005.

Fraction

Fraction

Fraction

65 Males65 Females

651

16.0

82.0

2.0

12.3

7.7
13.3

7.7

60 Males

1, 444

15.3

78.7

6.0

17.0

17.7

17.0

16.1

5,469

7.0

90.0

3.0

25.6

22.8

25.9

22.9

9,364

10.2

86.5

3.2

20.0

15.7

20.6

18.5



Table 2.2: Annuity payment rates

Guarantee Length 60 Females

0.1078
0.1070
0.1049

65 Females

0.1172
0.1155
0.1115

60 Males

0.1201

0.1178
0.1127

65 Males

0.1330
0.1287
0.1198

These are the rates from January 1992, which we use in our baseline specification. A rate is per pound annuitized.
For example, a 60 year old female who annuitized X pounds and chose a 0 year guarantee will receive a nominal
payment of 0.1078X every year until she dies.

Table 2.3: Parameter estimates

Estimate Std. Error

/n 60

65
60
65

113 60

65
60
65

og

p

No. of Obs.

Females

Females

Males

Males

Females

Females

Males

Males

-5.76
-5.68
-4.74

-5.01

0.054

0.110

9.77
9.65
9.42

9.87

0.099

0.881

9, 364

(0.165)
(0.264)

(0.223)
(0.189)

(0.019)

(0.015)

(0.221)

(0.269)
(0.300)
(0.304)

(0.043)

(0.415)

These estimates are for the baseline specification described in the text. Standard errors are in parentheses. Since
the value of A is estimated separately, in a first stage, we bootstrap the data to compute standard errors using 100
bootstrap samples.
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Table 2.4: Within-sample fit

60 Females

ObservedPredicted

65 Females

ObservedPredicted

60 Males

ObservedPredicted

65 Males

ObservedPredicted

Overall

ObservedPredicted

Fraction 0 year guarantee 14.00

Fraction 5 year guarantee 83.94

Fraction 10 year guarantee2.06

Fraction die while observed:

14.42

83.16
2.42

15.98 15.32
82.03 83.21
2.00 1.47

15.30 14.49

78.67 80.27

6.03 5.25

6.99 7.10
89.98 89.75

3.04 3.15

10.24 10.22

86.52 86.57

3.24 3.22

Entire sample
0 year guarantee
5 year guarantee

10 year guarantee

8.44 7.56

6.75 6.98
8.74 7.63
8.11 8.48

12.29 14.23

7.69 13.21
13.30 14.39
7.69 16.05

17.04 19.73
17.65 18.32
16.99 19.86
16.09 21.67

25.56

22.77

25.80
23.14

25.87 25.31

22.89 27.88

20.03 20.20

15.75 18.60

20.60 20.31
18.48 22.37

This table summarizes the fit of our estimates within sample. For each age-gender cell, we report the observed quantity (identical to Table I) and the

corresponding quantity predicted by the model. To construct the predicted death probability, we account for the fact that our mortality data is both censored

and truncated, by computing predicted death probability for each individual in the data conditional on the date of annuity choice, and then integrating over all
individuals.



Table 2.5: Out-of-sample fit

60 Females 65 Females 60 Males 65 Males Overall

Life Expectency:

5th percentile 87.4 86.7 79.4 81.4 79.8
ledian individual 88.1 87.4 80.0 82.1 82.2
95th percentile 88.8 88.2 80.7 82.8 88.4

U.K. mortality table 82.5 83.3 78.9 80.0 80.5

Expected value of payments:

0 year guarantee 19.97 20.34 20.18 21.41 20.63
5 year guarantee 19.77 20.01 19.72 20.64 20.32
10 year guarantee 19.44 19.49 19.12 19.61 19.45
Entire sample 19.79 20.05 19.74 20.66 20.32

Break-even interest rate 0.0414 0.0430 0.0409 0.0473 0.0448

This table summarizes the fit of our estimates out of sample. The top panel report life expectancies for different
percentiles of the mortality distribution, using the parametric distribution on mortality to predict mortality beyond
our mortality observation period. The bottom row of this panel presents the corresponding figures for the average
pensioner, based on the PFL/PML 1992 period tables for "life office pensioners" (Institute of Actuaries (1992)).
While the predicted life expectancy is several years greater, this is not a problem of fit; a similar difference is also
observed for survival probabilities within sample. This simply implies that the average "life office pensioner" is not
representative of our sample of annuitants. The bottom panel provides the implications of our mortality estimates
for the profitability of the annuity company. These expected payments should be compared with 20, which is the
amount annuitized for each individual in the model. Of course, since the payments are spread over a long horizon
of several decades, the profitability is sensitive to the interest rate we use. The reported results use our baseline
assumption of a real, risk-free interest rate of 0.043. The bottom row provides the interest rate that would make the
annuity company break even (net of various fixed costs).
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Table 2.6: Welfare estimates

60 Females 65 Females 60 Males 65 Males Average

Observed equilibrium:24

Average wealth-equivalent 100.24 100.40 99.92 100.17 100.16

Maximum Monet at Stake (MMS) 0.56 1.02 1.32 2.20 1.67

Mandate 0 year guarantee counterfactual: 25

Average wealth-equivalent

Absolute welfare difference (M pounds)

Relative welfare difference (as a fraction of MMS)

Mandate 5 year guarantee counterfactual:

Average wealth-equivalent

Absolute welfare difference (M pounds)

Relative welfare difference (as a fraction of MMS)

Mandate 10 year guarantee counterfactual:

100.14

-30.1

-0.18

100.25

2.8

0.02

100.22

-53.2

-0.17

100.42

6.0

0.02

99.67

-73.7

-0.19

99.92

1.7

0.004

99.69

-146.1

-0.22

100.18

1.6

0.002

99.81

-107.3

-0.21

100.17

2.1

0.006



Average wealth-equivalent

Absolute welfare difference (M pounds)

Relative welfare difference (as a fraction of MMS)

100.38

43.7

0.26

100.64

72.1

0.23

100.19

82.3

0.21

100.74

170.0

0.26

100.58

126.7

0.25

Symmetric information counterfactual:26

Average wealth-equivalent 100.38 100.64 100.19 100.74 100.58

Absolute welfare difference (M pounds) 43.7 72.0 82.1 169.8 126.5

Relative welfare difference (as a fraction of MMS) 0.26 0.23 0.21 0.26 0.25



108



Table 2.6: Robustness

Specification Avg. wealth equivalent
Average absolute welfare

Mandate 0 Mandate 5

difference (million pounds)

Mandate 10 Symm. info.

1 Baseline specification 100.16

Different choices of -y's:

2 Consumption -y=5, Wealth after death -y=5

3 Consumption 7=1.5, Wealth after death -y=1.5

4 Consumption -y-=3 , Wealth after death -=5

5 Consumption -y=3 , Wealth after death -y=1.5

6 Row 5 + allow heterogeneity in initial wealth 28

Other parameter choices:

7 r=0.05 and 6=0.05

8 January 1990 annuity rates

Wealth portfolio outside of compulsory annuity:

9 Fraction annuitized (r) = 0.3

10 Fraction annuitized (?) 0.1

100.51

99.92

100.47

99.94

101.18

99.29

100.16

100.65

99.93

-107.3

-117.0

-102.0

-123.0

-96.9

?148.3

-97.5

-112.5

-118.0

?108.0

126.7

0.0

0.6

3.0

2.1

-32.9

5.7

0.0

0.0

?4.2

111.0

133.2

120.0

135.3

128.8

119.4

123.0

114.0

135.0

126.5

111.0

133.2

120.0

135.3

127.4

119.4

123.0

114.0

135.0

27 The table reports summary results - average wealth equivalent and average welfare effects - from a variety of specifications of the model. Each specification
is discussed in the text in more detail. Each specification is shown on a separate row of Table VII and differs from the baseline specification of Table VI (which
is reproduced in the first row of Table VII) in only one dimension, keeping all other assumptions as in the baseline case.

28 a See text for the parameterization of the unobserved wealth distribution. For comparability, the average wealth-equivalent is normalized to be out of 100
so that it is on the same scale as in the other specifications.



11 Allow heteregoeneity in r/29  100.22 -113.7 2.5 132.4 141.3

12 Half of initial wealth in public annuity 30  99.95 -426.3 -34.2 243.6 255.6

Parametereization of heterogeneity:

13 Non-Gompertz mortality distribution 31  100.06 -100.8 6.0 144.0 144.0

14 a dist. Gamma, # dist. Lognormal 100.20 -111.6 3.0 132.0 132.0

15 a dist. Gamma, # dist. Gamma 100.14 -105.6 3.0 123.0 123.0

16 Allow covariates3 2  100.17 -110.1 3.0 132.0 132.0

17 0 fixed, Consumption -y heterogeneous 100.55 -110.0 2.1 129.4 129.3

18 Heterogeneity in both # and 7 100.05 -117.0 -5.9 129.0 131.9

Different information structure

19 Biased belief: 0 0.5 100.16 -104.0 3.0 122.9 122.9

20 Biased beliefs: 0 = 2 100.19 -101.6 5.9 126.0 126.0

21 Uncertain a: o-c 0.027 100.15 -104.7 5.9 128.9 128.9

22 Uncertain a: oc = 0.108 100.17 -105.9 3.0 126.0 126.0

Departure from neo-classical model:

2 9 See text for the parameterization of the unobserved fraction of non-annuitized wealth (r/) distribution.
30 We assume the public annuity is constant, nominal, and actuarially fair for each person.
3
'This specification uses hazard rate of a, exp (A(t - t")h) with h = 1.5 (Gompertz, as in the baseline, has h = 1 ).

32Covariates (for the mean of both a and 0) consist of the annuitized amount and the education level at the individual's ward.

320 is fixed at the estimated pi (see Table III). Since the resulting utility function is non-homothetic, we use the average wealth in the population and

renormalize, as in row 6. See text for more details.



23 Some individuals always "pick the middle" 33

Different sample:

24 "External" individuals34 95.40 -134.4 -16.8 137.7 137.4

3 3 The welfare estimates from this specification only compute welfare for the "rational" individuals, ignoring the individuals who are assumed to always pick
the middle.

S"External" individuals are individuals who did not accumulated their annuitized funds with the company whose data we analyze. These individuals are not
used in the baseline analysis (see Appendix B).

100.22 -99.9 9.0 132.0 132.0
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Chapter 3

Testing for Fixed Interactive vs

Random Interactive Effects

Abstract.This chapter develops a test for the exogeneity assumptions of classical

factor models based on the fixed interactive effects estimator of Bai (2005). The exact

form of the test is given for simple linear models. Simulations are used to asses the test's

performance. The application of the test to more complicated models is also considered.

The test is applied to a model of education as an example.

3.1 Introduction

The use of models with a multifactor error structure has received considerable attention recently.

Examples from labor economics include Carneiro, Hanson, and Heckman (2003) and Heckman

and Navarro (2005) both of which employ a factor error structure to study individuals' education

decisions. Additionally, Andr6n and Andr n (2004) use a single factor model to assess a training

program, and Coelli, Green, and Warburton (2004) intvestigate the effect of education on welfare

receipt with a factor model. Factor models have also been employed in finance. Recent examples

include Favero, Marcellino, and Neglia (2002) and Stock and Watson (2002). Traditional factor

analysis, as exemplified by Goldberger (1972), assumes that the individual effects are independent

of included regressors. Bai (2005) develops an interactive fixed effects estimator that relaxes this

assumption. This chapter considers using the approach of Hausman (1978) to test the exogeneity

assumption of traditional, random interactive effects, factor models. Section 3.2 describes the

random and fixed interactive effects estimators. Section 3.3 presents a Monte-Carlo study of the
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performance of the estimators and the test of exogeneity. Section 3.4 discusses using a similar

approach for more complicated factor models. Section 3.4.1 applies the proposed test to a miodel of

education similar to the one found in Cunha, Heckman, and Navarro (2005). Section 3.5 concludes.

3.2 Basic Framework

This chapter is concerned with linear factor models of the form:

Yit xit# + Oiat + Cit (3.2.1)

yit is an observable outcome. xit are observed covariates, which need not vary over time. thetai is a

1 x Al vector of unobserved individual effects, which have time varying coefficients, at. This chapter

assumes that ci is independently and identically distributed with diagonal covariance matrix E,,

and uncorrelated with xit.

There is some confusion of language in the literature regarding the terms used to refer to

OB and at. Some authors, such as Pesaran (2004) refer to at as the factors and O6 as loadings.

Others, like Cunha, Heckman, and Navarro (2005) call O the factors and at the loadings. In part,

this difference in terminology reflects slightly different interpretations of equation 3.2.1. When at is

called the vector of factors, the focus is often on common time shocks, which affect differents units of

observation differently according to their individual loadings 0j. On the other hand, when the factors

are called 0j, they are interpreted as individual characteristics that have time varying loadings.

These two interpretations differ only in flavor and have no substantial difference. Nonetheless, to

avoid confusion, this chapter will avoid using the terms "factors" and "loadings." Instead, O6 will

be referred to as individual effects, and at will be called time effects.

3.2.1 Random Interactive Effects

Classical factor analysis assumes that Oiat + eit is uncorrelated with xit. In this case equation 3.2.1

can be estimated by generalized least squares. Let:

Y=X# + U (3.2.2)
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Y11

be equation 3.2.1 in stacked form. In other words, Y Y12

YNT j
there are N individuals and T time periods. Similarly, X is a NT x

1Oi + el1

01 a2 + 6121
co ite U = i- NT 1 i I i

oNaT + ENT
The GLS estimator of 0 is then

is a NT x 1 matrix, where

K matrix, where there are K

h i dO 1I suii A i mtri x. is asume ut at i s in ependentu of J.

'LS N 1)X|-IX'( -Y/3 (X'(I A 0 Ej)X UX(N (3.2.3)

In this equation, EU is the covariance matrix of Uj and is equal to:

E(Uj Uj) = E(a'0'0a + c)

= a'EOa + E%, (3.2.4)

Since E and 0 are uncorrelated with X, 3 can be consistently estimated with least squares. The

residuals can be used to estimate EU, which can then be used to form the GLS estimator. Although

it results in no gain in asymptotic efficiency, if desired, this procedure can be iterated to convergence

to produce the maximum likelihood estimator.

Eu does not uniquely determine 0 and a without further restrictions. This chapter will follow

Bai (2005) and impose the following normalizations:

a'a/T =IM (3.2.5)

EQ = diagonal (3.2.6)

The choice of normalization does not affect the estimate of /, and these particular normalizations

are only made for convenience. If desired, the estimates of 0 and a can be rotated to allow a

structural interpretation.

If the number of individual effects, M is less than T 2 1, an unrestricted estimate of Eu might

not satisfy equation 3.2.4. In this case, a restricted estimate of EU can be recovered in a number of

ways. For example, principal components analysis can be used to extract estimates of a, EO, and

Es. These can be used to construct an estimate of Eu that satisfies equation 3.2.4.
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3.2.2 Fixed Interactive Effects

A nuniber of authors have developed estimators that relax the assumption that O6 is uncorrelated

with zitr. For example, Hotz-Eakin, Newey, and Rosen (1988) estimate equation 3.2.1 by quasi-

differencing and using lagged variables as instruments. However, this approach rules out time

constant regressors. Coakley, Fuertes, and Smith (2002) propose estimating equation 3.2.1 by

augmenting the regression of y on x with the principal components of the OLS residuals. Pesaran

(2004) shows that this method is inconsistent unless the correlation between xit and OB tends to

zero or one as N -± 00. As an alternative, Pesaran (2004) develops a "correlated common effects"

estimator, where equation 3.2.1 is augmented by the cross-sectional averages of xit. This estimator

is consistent, but it does not allow for time-invariant individual regressors. Ahn, Lee, and Schmidt

(2001) develop a GIMM1\ estimator for equation 3.2.1. Their estimator is more efficient than least

squares under fixed T. However, identification of their estimator requires that zit is correlated with

0Q, making testing the interactive random effects assumption impossible.

This chapter focuses on the interactive fixed effects esitmator proposed by Bai (2005). Bai

shows that this estimator is NT consistent and provides monte carlo evidence that it performs

well in panels as small as N = 100 and T = 10. Bai's estimator is the minimizer of the least squares

objective function,
N

SSR(3, a, 0) = Z(yi - xiB - OGa)'(yi - xL/ - 0ia)
i=1

subject to the normalizations above, with the second normalization (3.2.6) replaced by '0 =

diagonal, since 0 is now treated as an incidental parameter instead of a random variable. Bai

shows that the least squares estimators of p and a are the solution of the following nonlinear

system of equations:

BAI
/ = (X'(IN 9 M&BAI)X)- 1X'(IN ® MBAI)Y (3.2.7)

N

&BAI NT ( yi - iBAI _ - BAI) & BAI (3.2.8)

where Ma = IT - a(a'a)-la' is a projection matrix, and VNT is a diagonal matrix consisting of

the MI largest eigenvalues of ( , 7E1(yi _ XABAI ~ -zJ A )') arranged in decreasing order.

The solution to this system of equations can be obtained by iteration. As noted by Bai (2005),

the iterated solution is somewhat sensitive to starting values. Bai proposes using either the least

squares esimator of / or the principal components estimate of a to begin. Like Bai, we find that
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using the principal components estimator as initial values is more robust. Generally, the presence

of poor initial values is quite obvious and results in an exceptionally large number of iterations.

Among the simulation results reported in section 3.3, in no case did both sets of initial values fail

to converge to an acceptable solution.

Conditions for identification

Bai (2005) gives detailed conditions for identification. The existence of A interactive effects requires

that plimTr_ aa'/T and plimN-a 0'0/N are positive definite. It is also assumed that eit is

independent of xj,, Oj, and a, for all i,t,j, and s. Bai allows for the possibility of weak serial

and cross-sectional correlation and time and cross-sectional heteroskedasticity in et. However, to

match the random interactive effects model above, this chapter will assume that there is no serial

or cross-sectional correlation in cit. Also, only heteroskedasticity across time will be considered.

Thus, if Ei = Eil,..., Ei]', the assumption is that Ec is i.i.d., and E(eie) is diagonal.

The key condition for the identification of 8 is that the following matrix is positive definite at

the true value of a:

D (a) x'Aaxi - x'Maxj0(0'0/N) 10) (3.2.9)
i=1 i=1 j=1

With time varying regressors, this condition will be met provided there is sufficient variation is xit.

However, one advantage of the interactive fixed effects estimator over the traditional fixed effects

estimator is that the former allows for regressors that are constant over time. In the presence of

time-invariant regressors, for D(a) to be positive definite, the individual effects must genuinely be

interactive. In other words, there cannot be a fixed effect, m, with atm = asm for all t and s.

Similarly, there cannot be an m such that 0 im = Ojm for all i and j. Alternatively, one can think

of this as ruling out the inclusion of time or individual dummies among xit.

Bai (2005) shows that 3A is consistent as N and T approach infinity with T/N converging

to zero. If N/T -+ p > 0, then the estimator is not consistent. Bai develops a biased corrected

estimator for this case. Let

B = ( xi - ( xJOb(4 0/N)-15 )) (0) l)iue2)

(i=1 (J=1

O T= >1 x'Mased(0 0)
1=1
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Then the bias corrected estimator is

BAI -BAI + D(6 )- (B + 0 (3.2.10)

This estimator is consistent if eit is not serially or cross-sectionally correlated and both T/N 2 
-> 0

and N/T 2 -+ 0 as N and T -+ 00. All simulations and results reported in this chapter use the bias

corrected version of the estimator.

Asymptotic Distribution

Let

DE = (xEeax-x' E c Maxj 01 ('0 /IN) -0'
1 i=1 j=1

where the only difference from equation 3.2.9 is the inclusion of EE. Bai (2005) shows that as N

and T -+ oc with T/N -+ 0,

NT(3 BA 3) -d N(0, D(a)~'DED(a)-1) (3.2.11)

Bai shows that Dz and D(a) can be consistently estimated by replacing the parameters in the

expressions above with their estimates. Similarly, if if T/N 2 -+ 0 and N/T 2 -> 0 as N and T -+ o,.

then

NT(/3AB - -_d N(0, D(a)~'DE D(a)1) (3.2.12)

Applying to Unbalanced Panels

Bai (2005) only gives formulas for his estimator for balanced panels. Many panels are not balanced,

including the one used in our empirical application below. Therefore, this section derives the formula

for unbalanced panels, assuming random attrition. Equation 3.2.7 comes from minimizing the least

squares objective with respect to 0 for a given a, while recognizing that 0i = (&'6)1d'(yi - xi)

is the estimate for 82 given a and /. In an unbalanced panel, this expression must be modified

slightly. Suppose a person is observed at times [ti, if,..., ti ]. Redefine y2 to be a T7 x 1 vector

consisting of the outcomes that were actually observed. Similarly redefine xi to be Ti x K. Let

&i denote the Ti x I matrix consisting of the elements of & associated with the time periods that

person i was in the panel. The formula for O given / and a is then:

Oi(0, a) (a'a)1a'(yi - zi#) (3.2.13)
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The estimate for # given a simply becomes:

NV - Ni

/3(a) = ( if Xi (Z' AI yi (3.2.14)

which is just a trivial variation of the formula for a balanced panel.

However, estimating a given # is not as simple in an unbalanced panel. As discussed by Stock

and Watson (1998), the solution to the least squares problem for a cannot be expressed in terms

of eigenvectors and eigenvalues when the panel is not balanced. One could numerically solve:

N

&(3) =arg min a (yi - Xi# - Oioi)'(yi - zi3 - oiao)
i=1

s.t. 0, = (a'ai)1 a'(yi - o)

However, computing the solution to this problem is rather time consuming. Instead, Stock and Wat-

son (1998) propose using the EM algorithm to calculate 6. We adopt this approach. This strategy

proceeds iteratively. Given initial estimates of a and 0, the data is completed by setting yit - xtB =

Oiaj when it is missing. From the completed data, & is estimated as the square root of T times the Al

eigenvectors associated with the M largest eigenvalues of ((y - z Al I - zi.BAI)'

as in the balanced panel case. New estimates of 0 are then calculated from 3.2.13 using only data

that is actually observed. This process is iterated to convergence. Thus, with an unbalanced panel,

calculation of /3 and dBAI involves two nested iterative process. The inner iteration calculates

a(0) using the EM algorithm just described. The outer iteration alternately computes #3(a) and

d(o) until convergence. Despite all this, computation time is very reasonable. In the empirical ex-

ample below, with N = 1343 and T = 24, the entire estimation only takes twenty seconds. The EM

algorithm typically converges very quickly, typically in five or fewer iterations. The outer iteration

seems to take between twenty and thirty repetitions before convergence.

3.2.3 Testing for Interactive Random vs Fixed Effects

If the identification conditions in section 3.2.2 hold, and O6 is independent of xit, then the random

interactive effects (GLS) estimator is asymptotically efficient, as shown by Chamberlain (1987).

Futhermore, under these conditions, Bai's interactive fixed effects estimator will also be consistent,

but less efficient. Bai's estimator remains consistent even if 64 is not independent of xit. However,

in this case the random interactive effects estimator will not be consistent. Therefore, the principal

of the Hausman (1978) test applies. Under the null hypothesis that 0, is independent of xit,
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GLS ~BAI
3L is orthogonal to A , since the former is efficient. Therefore, the asvpmptotic variance of
GLS~ BAI B3AI GLS

3 GL - / I is simply V(/3 ) - V(/3 ). Thus,

NT(BAI LS)'V(BA) - Va GLS) -(# BAI- GLS) X2 (3.2.15)

where V(j3 ) = NTD(a)-YDED(a)--1 and V(/GLS) = NT(X'yuX)-1. Although the above

exposition has presented this as a test of whether 0 is independent of x, it is important to keep

in mind that rejection of the null could result from any sort of specification error. Therefore, care

must be taken in interpreting rejection in real data.

3.3 Simulations of test performance

We conduct a number of Monte Carlo experiments to assess the finite the finite sample properties

of the Hausman test for random versus fixed interactive effects. We present results using the

graphical approach advocated by Davidson and MacKinnon (1998). P-value plots are used to

gauge the agreement of the finite sample distribution of the test statistic and its theoretic asymptotic

distribution. The relationship among sample size, true alternative hypothesis, and test performance

is assessed with size-power curves.

Throughout this section, the data-generating process is made as simple as possible, while re-

taining the key features of the model. We set M = K = 1. Oi and ct are generated as standard

normal random variables. The regressor is constant through time and is created according to

zit = 00i + ui

where ui is a standard normal random variable. V@ is the covariance between 0 and x. When the

null hypothesis is true, ) = 0. The coefficient on 0 at time t is equal to t/T. 3 is set to one.

Figure 3.1 plots the theoretical size of the test against the simulated size when the null hypothesis

is true (> = 0). Data is generated and the test performed 1,000 times. The figure plots the empirical

cumulative distribution function of the test's p-value. If the small sample distribution of the test

statistic matches its theoretical distribution, then the size of the test should be equal to the chosen

critical value. In this case, the ploted empirical distribution function should coincide with the 45

degree line. If the test rejects too often, the empirical distribution function will lie above the 45

degree line. Here, we see that the empirical distribution function is below the 45 degree line. The

test fails to reject too frequently. For example, with a critical value of 10%, the test would only

120



reject the null hypothesis 5% of the time when the null hypothesis is true. However, the discrepency

between the empirical and theoretical distribution of the p-value is not overly large. Furthermore,

in another set of simulations not shown here, with K = 2, and at = t 2/T 2 , the samples with T = 5

rejected too often, but the samples with T = 10 fit the theoretic distribution nearly perfectly.

0.6

0.5

0.4

0.3

0.2

0.1

0.5
Nominal Size

Figure 3.1: Size under the null hypothesis

This figure shows the empirical distribution function of the test's p-value. The empirical distribution function is
defined as:

P(x) = 1(p < x)
s-1

where there were S simulations, and P, is the p-value from the sth simulation.

To assess the performance of the estimators and the tests under the alternative hypothesis, we

repeat the simulations described in the previous paragraph for ' = 0.25 and 4 = 0.5. Tables 3.1-3.3

shows the average and mean squared errors of the two estimators in each set of simulations. Table

3.1 shows that both estimators are unbiased under the null hypothesis. The GLS estimator has a
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lower MSE since it is more efficient. Tables 3.2 and 3.3 show that GLS is biased when V) is not zero.

Also, the fixed interactive effects estimator appears to be slightly biased in these small samples.

The bias of both estimators increase as sample size decreases. The GLS estimator generally has a

larger MSE due to its larger bias.

Table 3.1: MSE and Bias with /= 0
BAI -GLS

0BC
N T Bias MSE Bias MSE

100 10 0.001008 0.006534 0.00143 0.003939
100 5 0.006121 0.01517 0.004225 0.006078
50 10 0.007937 0.0152 0.00783 0.009185
50 5 -0.00865 0.0453 -0.007938 0.01401

Table 3.2: MSE and Bias with 3 = 0.25
)BAI -GLS

OBC
N T Bias MSE Bias MSE

100 10 0.01535 0.00671 0.08225 0.01315
100 5 0.0252 0.01735 0.1191 0.02575
50 10 0.02736 0.01507 0.08614 0.01868
50 5 0.03481 0.03866 0.1175 0.03024

Table 3.3: NISE and Bias with y = 0.5
BAI -GLS

4BC

N T Bias MSE Bias MSE
100 10 0.02427 0.008129 0.1377 0.02743
100 5 0.03485 0.02662 0.1928 0.05198
50 10 0.03529 0.03078 0.1439 0.03323
50 5 0.06862 0.06358 0.1978 0.0599

Figures 3.2 and 3.3 illustrate the power of the test with b = 0.25 and V = 0.5, respectively.

They show the relationship between the critical value and power of the test under a particular

alternative. The closer the curve is to the upper left coner of the figure, the more powerful the test.

From the first of these figures, we see that with 0 = 0.25, even with N = 100 and T = 10, the

test has fairly low power. At the usual 95% critical value, we would only reject the null about 30%

of the time. Given the relatively small sample size and the fact that the random effects estimator

is only biased by 10%, the low power of the test is not very surprising or concerning. Most real

panel datasets are larger, and a difference in estimates of 10% is often not economically meaningful.

Figure 3.3 shows that the performance of the test improves when 0 = 0.5. With greater correlation
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Figure 3.2: Power with P = 0.25

This figure shows the power of the test under the alternative hypothesis with 0 = 0.25. We plot the empirical
distribution function of the p-value, which is defined as:

P(X) = Y1(P, < x)
s=1

where there were S simulations, and P, is the p-value from the sth simulation.
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Figure 3.3: Power with V) 0.5

This figure shows the power of the test under the alternative hypothesis with V = 0.25. We plot the empirical
distribution function of the p-value, which is defined as:

1 s

s=1

where there were S simulations, and p3s is the p-value from the sth simulation.
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between 0 and x, the test rejects the null at the 95% critical value three-quarters of the time.

3.4 Testing More Elaborate Models

Typically, empirical work that invokes the interactive random effects assumption is not based on a

model as simple as equation 3.2.1. Instead, these papers recognize that one or more components

of xit may be correlated with Oi and include that relationship in the model. To formalize this idea,

redefine xit as only those regressors that are thought to be uncorrelated with 0, and let zit be a set

of regressors that are related to 0. Equation 3.2.1 becomes:

Yit = j 3it + zit6 + 0iat + Et (3.4.1)

This equation is augmented by a model of zit:

zitj fi (wi, Oi, vig)

where zitj is the jth component of zit, wi is vector of regressors uncorrelated with 0i, vij is a random

variable independent of all other components of the model, and fj(-) is some function. wi contain

some or all of the components of xit or zit.

Examples of models of this sort include Carneiro, Hanson, and Heckman (2003), Andren and

Andren (2004), and Coelli, Green, and Warburton (2004). Carneiro, Hanson, and Heckman (2003)

use a factor model to estimate the distribution of the return to education. Andren and Andrnn

(2004) employ a single factor model to estimate the treatment effect of a vocational training program

in Sweden. Coelli, Green, and Warburton (2004) estimate the effect of education on welfare receipt

using a factor model.

Even in more complicated models such as these, the fixed interactive effects estimator can form

the basis of a specification test. The model must containt a portion that resembles equation 3.4.1.

In other words, the model should contain a panel of outcomes that are a linear function of regressors

and individual effects. The coefficients on the regressors must be constant across time, and the

coefficients on the individual effects must change through time. The application of the test will

vary from case to case. Of particular concern is the variance of the difference between the estimate
BAI

of # from the full model and 3 . Unless the full model estimate of # is efficient, the variance

of the difference is not a simple difference of variances. In this case, the bootstrap can be used to

estimate the difference, provided that computation of the estimates is not overly burdensome.
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3.4.1 Example: Estimating the Return to College

This section applies the fixed interactive effects specification test to a model of education choise.

The model is closely based on Cunha, Heckman, and Navarro (2005). Cunha, Heckman, and

Navarro (2005) use a factor structure to endogeneously model individuals' decisions between high

school and college and their subsequent earning. Some deviations from Cunha, Heckman, and

Navarro's setup are needed to accomadate the fixed interactive effects estimator. These differences

will be highlighted below.

Model

The model includes two possible education levels. High school graduates are denoted by s = 0,

and college graduates are labeled s = 1. Earnings at time t for individual i in education level s are

given by:

y jts = zBs + 0iat + ECt (3.4.2)

It is assumed that O is independent of xi, and et is independent of xi and Oi. The number of

factors, Al, is set to two. In Cunha, Heckman. and Navarro (2005), time periods are defined as

10 years, and yits represents the present value of earnings during that time. Here, a time period

will be a single a year. Also, Cunha, Heckman. and Navarro (2005) allow the distribution of eit to

differe by education level, whereas in this chapter it only differs across time.

More importantly, Cunha, Heckman, and Navarro (2005) specify that at varies with s. This is

not possible is the fixed interactive effects model above. Operationally, the fixed interactive effects

estimator views equation 3.4.2 as:

yit * (1- si) Xi* si 0 + Oiat + Eit (3.4.3)
01

Thus, the fixed interactive effects estimators assumes that an individual's O may be correlated

with their schooling choice, but has the same effect on the person's earnings regardless of their

education. In other words, the estimator makes what Cunha, Heckman, and Navarro (2005) call

the 'common coefficient' returns to schooling assumption and rules out unobserved heterogeneity in

returns. Cunha, Heckman, and Navarro (2005) strongly criticize this assumption and their results,

as well as those of Carneiro, Hanson, and Heckman (2003) violate it. Clearly, this makes the

fixed interactive effects estimator less than ideal for this application. A useful generalization of the

estimator would be to allow at to be a function of xit. Nonetheless, we proceed, keeping in a mind
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that a rejection of the null hypothesis in the specification test may simply indicate a failure of the

common coefficient assumption.

In the model of Cunha, Heckiman, and Navarro (2005), education is modeled with a latent index.

Let:

si = ziy + OiV + Mi (3.4.4)

where zi is a vector of observed variables, rji is an unobserved random variable, and 7 and &l' are

coefficients to be estimated. A person does not to college if (si = 0) if s* < 0, and graduates from

college otherwise. As in the earnings equation, O6 is independent of zi, and ri is indepedent of Oi,

zi, xi, and cit.

To aid identification and interpretation of O6, the model is augmented with information on test

scores. The test scores come from the Armed Service Vocational Aptitude Battery (ASVAB). The

ASVAB consists of ten subtests. The same five of these ten tests are used as in Cunha, Heckman,

and Navarro (2005). They are a test on coding speed and the four tests that form the Armed Forces

Qualifying Test (AFQT), Arithmetic Reasoning, Paragraph Composition, Word Knowledge, and

Math Knowledge. These five test scores are meant to be measures of cognitive ability. Let M0g for

j 1, ... , 5 denote the test scores. We estimate:

Mij = wi6j + Oi(j + vi (3.4.5)

where wi is a vector of observable characteristics, 6i and (j are parameters, and vij is a mean zero

unobserved random variable. As above, vij is independent of all other regressors.

Data

A subset of the NLSY79 was used to estimate the above model. Specifically, white males whose

highest education level complete was either high school or college and were not missing any necessary

variables were included in the analysis. Cunha, Heckman, and Navarro (2005) are interested in

estimating the portion of lifetime earnings that was known to individuals at age 18, so they combine

the NLSY and PSID to obtain data on earnings at all ages. Estimating an earnings function for

the entire life-cycle is not necessary in this chapter, so the PSID is not used. Instead, we just use

the NLSY to estimate earnings from age 18 to 41. Table 3.4 shows summary statistics for each

variable and indicates which portion(s) of the model use that variable.
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Table 3.4: Summary statistics

Included in:
Variable Mean Std. Dev. Tests Schooling Earnings

Arithmetic Reasoningi 0.717 0.955 Yes - -
Word Knowledgeyl 0.526 0.728 Yes --

Paragraph Comprehensioni 0.428 0.8 Yes -
Coding Speed' 0.214 0.841 Yes - -
Math Knowledgel 0.634 1.035 Yes -
Mother's Education 2  12.393 2.279 Yes Yes -
Father's Education 2  12.802 3.189 Yes Yes -
Family Income 3 23.889 13.799 Yes Yes -
Divorced Parents 0.157 0.364 Yes Yes -
Number of Siblings 2.824 1.812 Yes Yes -
Grew up in the South 0.211 0.408 Yes Yes -
Grew up in Urban Area 0.748 0.434 Yes Yes -
Age at Test Date 19.255 2.19 Yes -

In School at Test Date 0.572 0.495 Yes -

Education at Test Data 2  12.076 1.667 Yes -

Dist. from Nearest College 7.946 19.172 - Yes
Local College Tuition 3  2.151 0.826 - Yes
High School 0.543 0.498 - Yes Yes
College Graduate 0.457 0.498 - Yes Yes

N 1343
'Standardized in the full NLSY
2Measured in years of schooling
31n thousands of year 2000 dollars
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Estimates

Table 3.5 shows the estimates of #3 from both the full random interactive effects model described

above and the fixed interactive effects model of just earnings. The estimates of the full model are

computed using Markov Chain Monte Carlo methods described in Carneiro, Hanson, and Heckman

(2003). This is the same method used as in Cunha, Heckman, and Navarro (2005). In fact, the

same program is used to compute the estimates. The Markov Chain was run for 75,000 iterations.

The first 50,000 iterations were discarded. Every fifth of the last 25,000 iterations were saved. The

reported estimates are the average of these 5,000 saved iterations. The standard errors are the

standard errors of the 5,000 saved iterations. The interactive fixed effects estimates were computed

using the unbalanced panel estimator described in section 3.2.2. The standard errors were computed

by bootstrap with fifty repetitions. The estimates appear roughly similar, but their standard errors

are small enough to suggest that they may be statistically different. This will be formally tested

below. To get a better idea of the economic significance of the difference in the estimates, figure 3.4

shows the estimuated age-earnings profiles for high school and college with OB = 0 and Eit = 0. With

both estimators, college earnings begin below high school earnings, but college earnings increase

more rapidly. However, with the fixed interactive effects estimates, college earnings increase more

rapidly and reach a higher level.

Table 3.5: Earnings Estimates

Interactive FE Full Model
Variable Estimate (Std. Err.) Estimate (Std.Err)

HS 3.82 0.22 4.89 0.26
HS*Age 15.8 0.64 12.7 0.798

HS*Age 2  -9.49 0.458 -7.35 0.522
College -0.826 0.305 -0.312 0.342

Col*Age 25.6 0.889 24 1.07
Col*Age 2 -13.9 0.631 -13.1 0.691

Test

A Hausman specification test can be applied to the null hypothesis that the variant of the Cunha,

Heckman, and Navarro (2005) model is correctly specified. Of particular concern is the assumption

that 0 is independent of the regressors included in the test equations (3.4.5) and the schooling

equation (3.4.4). For example, 0, is commonly interpreted as representing unobserved ability, and

it seems unlikely that ability would be independent of parent's education and income, which are
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20 25 30 35 40
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Figure 3.4: Estimated Age-Earnings Profiles
This figure shows the estimated age-earnings profiles for both the full (CHN) model and the fixed interactive effects
(BAI) estimator. We set Oi = 0 and et -= 0.
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included in the test and schooling equations. If O6 is not independent of these regressors, then the

full model is misspecified and estimates of the earnings equation will be inconsistent. On the other

hand, the fixed interactive effects estimator will remain consistent, so a Hausman test should be

able to detect this sort of misspecification (in the sense that as sample size approaches infinity, the

power of the test approached one). As mentioned above, another concern with the model is that

at might vary with schooling. In this case, both models are misspecified. If this misspecification

causes the estimates of the two models to have different probability limits, then the Hausman test

might detect it as well.

The test statistic is:

BAI CHN, BAI CHN 1  BAI CHN 2t (/ -3 ) jV(/ -/3) 1(3 -/3 ) xI<

The Markov Chain Monte Carlo estimate of B is not necessarily the most efficient estimate. There-

fore, the variance of the difference of the estimates is not just the difference of variances. Instead,

we compute the variance of the difference by bootstrap with fifty replications. For each bootstrap

sample, the estimate of the ) HN using the full model and 3A using the fixed interactive effects

model are computed as above.

Table 3.6 shows the test statistic and p-value. As shown, we strongly reject the null hypothesis.

This may be a sign that the exogeneity assumptions of the full model fail to hold. Specifically, it

is likely that parents' education and income are correlated with O6. Alternatively, the rejection of

the null hypothesis may indicate that both models are misspecified. For example, at might depend

education level. This seems especially likely given the findings of Cunha, Heckman, and Navarro

(2005). They strongly reject the common coefficient returns to schooling assumption imposed by

making at the same for all schooling levels. Thus, although this test provides evidence that the full

model estimated here is misspecified, it does not tell us whether the misspecification is because of

an incorrect exogeneity assumption or something else.

Table 3.6: Specification Test

Test Statistic 28.82
P-Value 6.569e-05
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3.5 Conclusions

This chapter has presented a method for testing the exogeneity assumptions of classical factor

models. The fixed interactive effects estimator of Bai (2005) is consistent whether or not individual

effects are correlated with regressors. For simple linear models, GLS is the efficient estimator

when individual effects are uncorrelated with the regressors. This allows for easy application of

the Hausman (1978) test. The simulations above show that the test performs reasonably well in

small samples. Admittedly, such simple linear models are of limited interest. However, the fixed

interactive effects estimator can also be used for specification tests of more complicated models.

As discussed in section 3.4, as long as the model includes a panel of linear outcomes, the test can

be applied. Application of the test to a model of college attendance leads to a rejection of the

null hypothesis. However, as discussed above, it is unclear whether the misspecification lies in a

violation of the exogeneity assumptions or an incorrect restriction on the factor loadings. A useful

generalization of the fixed interactive effects estimator would be to allow factor loadings to depend

upon observed regressors.
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Appendix A

Appendix to chapter 2

A.1 Additional details about the data

As mentioned in the text, we restrict our sample in several ways:

" As is common in the analysis of annuitant choices, we limit the sample to the approximately

sixty percent of annuities that insure a single life. The mortality experience of the single life

annuitant provides a convenient ex-post measure of risk: measuring mortality risk of a joint

life policy which insures multiple lives is less straightforward (Mitchell, Poterba, Warshawsky,

and Brown (1999), Finkelstein and Poterba (2004, 2006)).

" We also restrict the sample to the approximately eighty percent of annuitants who hold only

one annuity policy, since characterizing the features of the total annuity stream for individuals

who hold multiple policies is more complicated. Finkelstein and Poterba (2006) make a similar

restriction.

" We focus on the choice of guarantee period and abstract from a number of other dimensions

of individuals' choices.

- Individuals can choose the timing of their annuitization, although they cannot annuitize

before age 50 (45 for women) or delay annuitizing past age 75 (70 for women). We allow

average mortality and preferences for wealth after death to vary with age at purchase

(as well as gender), but do not explicitly model the timing choice.

- Annuitants may also take a tax-free lump sum of up to 25 percent of the value of the

accumulated assets. We do not observe this decision - we observe only the amount

annuitized - and therefore do not model it. However, because of the tax advantage of
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the lump sum - income from the annuity is treated as taxable income - it is likely that

most individuals fully exercise this option, and ignoring it is therefore unlikely to be a,

concern.

- To simplify the analysis, we analyze policies with the same payment profile, restricting

our attention to the 90 percent of policies that pay a constant nominal payout (rather

than payouts that escalate in nominal terms). As an ancillary benefit, this may make

our assumption that individuals all have the same discount rate more plausible.

" We limit our sample of annuitants to those who purchased a policy between January 1, 1988

and December 31, 1994. Although we also have data on annuitants who purchased a policy

between January 1, 1995 and December 31, 1998, the firm altered its pricing policy in 1995. An

exogenous change in the pricing menu might provide a useful source of variation in estimating

the model. However, if the pricing change arose due to changes in selection of individuals

into the firm - or if it affects subsequent selection into the firm - using this variation without

allowing for changes in the underlying distribution of the annuitant parameters (i.e., in the

joint distribution of a and /) could produce misleading estimates. We therefore limit the

sample to the approximately one-half of annuities purchased in the pre-1995 pricing regime.

In principle, we could also separately estimate the model for the annuities purchased in the

post-1995 pricing regime. In practice, the small number of deaths among these more recent

purchasers created problems for estimation in this sample.

" Annuitants may choose to purchase their annuity from an insurance company other than the

one in which their fund has been accumulating, and about one-third of annuitants market-

wide choose to do so. As our sample is from a single company, it includes both annuitants

who accumulated their fund with the company and stayed with the company, as well as those

annuitants who brought in external funds. We limit our main analysis to the approximately

two-thirds of individuals in our sample who purchased an annuity with a pension fund that

they had accumulated within our company. In the robustness section, we re-estimate the

model for the one-third of individuals who brought in external funds, and find similar welfare

estimates.

* The pricing of different guarantees varies with the annuitant's gender and age at purchase.

We limit our sample of annuitants to those who purchased at the two most common ages of

60 or 65. About three-fifths of our sample purchased their annuity at 60 or 65.
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A.2 Proof of Proposition 2

We can write the observed distribution of mortality outcomes and guarantee choices in terms of

the unobservables as

P(g(a. ) y~m m) P(m0 m) = P(g(a,#) < yja) P(mi < mla)dFa(a) (A.2.1)
JO(A2.1

The left side of this equation is known from Z(g, i). From Proposition 1 we know that P(mi < mla)

and Fa(a) can be identified from mortality data. Thus, all we need to show is that this equation can

be uniquely solved for P (g(a, #) < y a). We will use the fact that mortality follows all MPH model

to derive an explicit expression for P (g(a, #) < y~a) in terms of the inverse Laplace transform. 1

Since P(mi < rna) comes from an MPH model, we can write it as

P(mi < mia) = 1 - e-'A(m), (A.2.2)

where A(m) = I((t)dt is the integrated hazard function, which increases from 0 to oc. Substi-

tuting equation (A.2.2) into equation (A.2.1) and rearranging yields

P (g(a,13) < y,in K in) J P ( G(a,/) < ya)(1 - - A(m))dFa(a) (A.2.3)
J0

- P (g(a,/#) < yIa) dFa (a) - P (g(ae,3) < yIa) e-A(m)dF. (a)

SP (g(a, #) < y) - P (g(a, 0) < ya) e-aA(m)dF,(a).

The first part of the right side of this equation is simply the unconditional cumulative distribution

function of g and is known. The remaining integral on the right side is the Laplace transform of

P (g(a, /) < y ja) fa(a) evaluated at A(m). It is well known that the Laplace transform is unique

and can be inverted. If we let £E 1{h(-)}(a) denote the inverse Laplace transform of h(-) evaluated

at a, then

P (g(a, ) ya) = 1 -'{P (g(a,#3) < y) - P (g(a,3) < y, mi < A(-))}(a). (A.2.4)
fa (a)

This equation provides an explicit expression for P (g(a, /) < y~a), so it is identified.

Given P (g(a, /) < yla) we can recover Fo310 if g(a, /) is invertible with respect to /, for every

'Alternatively, we could proceed by noting that for each x, equation (A.2.1) is a Fredholm integral equation of
the first kind with kernel P(mi < mla). We could appeal to the theory of integral equations and linear operators
to show that the equation has a unique solution when P(mi < mla) satisfies an appropriate condition. Proving the
proposition in this way would be slightly more general, but it would lead to a highly implicit function that defines

P (g(a, 3 ) < Xla).
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a. With invertibility, we can write:

P (g(a, ) < y~a) = P (< g3 (a, y)|a) = F 1a,(g4'(a, y)ja). (A.2.5)

Thus, we identify Fga.

A.3 Additional details about estimation

A.3.1 Likelihood

For each individual we observe mortality data, mi = (ci, ti, di), where ci is the time at which person

i entered the sample, t1 is the time at which the person left the sample, and di indicates whether

the person died (di = 1) or was censored (di - 0). The contribution of an individual's mortality to

the likelihood, conditional on aj, is:

P (mi = (ci, ti, di) la, A) = P(t = tjIt > c, a, A)dip(t > t It > c, a, A) 1- d

1
= (s(a, A, ti))di (S(a, A, ti))1-d , (A.3.1)

S(ae, A, ci)

where S(a, A, t) = exp ( 1(1 - eA)) is the Gompertz survival function, and s(a, A, t) = aet exp (j(1 - cA))

is the Gompertz density. The log likelihood of the mortality data is computed by integrating equa-

tion (A.3.1) over a, and adding up all individuals:

L '(A, p., oa|, (mi)N) = log P(mi la, A) (log a - Pa da). (A.3.2)

We maximize equation (A.3.2) over A, pa, and oa to obtain an estimate of A. The initial estimates

of pa, and o-, are not used, as we obtain more efficient estimate of these parameters in the next

step (described below).

The contribution of an individual's guarantee choice to the likelihood is based on the guarantee

choice model above. Recall that the value of a given guarantee depends on preference for wealth

after death 13, and annual mortality hazard, which depends on A and a. Some additional notation

will be necessary to make this relationship explicit. Let VoA(9)(wo; /3, a, A) be the value of an annuity

with guarantee length g to someone with initial wealth wo, Gompertz parameter A, mortality rate

a, and preference for wealth after death /. Conditional on a, the likelihood of choosing a guarantee

of length gj is:

P(gila, A) gi arg max V()(wo; , a, A) dF (|a) (A.3.3)
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where 1(-) is an indicator function. As mentioned in the text, we numerically verified that the

relative value of a longer guarantee increases with #. Therefore, we know that for each a there

is some interval, [0, B0 5(a, A)), such that the zero year guarantee is optimal for all # in that

interval. B0 5 (a, A) is the value of 3 that makes someone indifferent between choosing a 0 and 5

year guarantee. Similarly, there are intervals, [BO ,(a, A), B, 10(a, A)), where the five year guarantee

is optimal, and [0* 1 (a, A), oo), where the ten year guarantee is optimal.2

We can express the likelihood of an individual's guarantee choice in terms of these indifference

cutoffs as:

F,3 C (#,5(a, A)) if g 0

P(gila, A) F I (a, A)) F3 1 (, 5(a, A)) if g 5 (A.3.4)

1 - Fga (#5 10(a, A)) if g 10

Given our lognormality assumption, the conditional cumulative distribution function F31 (-) can

be written as:
~~~log (6(a, A)) - pela I(A.35

Fcl (3*(a, A)) = <D (A.3.5)

where 4(-) is the normal cumulative distribution function, It1, = p + <(log a - pIn) is the

conditional mean of #, and a = o- is the conditional standard deviation of #. The full

log likelihood is obtained by combining P(g Ia, A) and P(mila, A), integrating over a , taking logs,

and adding up over all individuals:

N '
- N I (~~1 log a - PC a . A36L (p, E, A) = log P(m I a, A)P(gi Ia, A) # da. (A.3.6)

We calculate the integral in equation (A.3.6) by quadrature. Let {g}xj i and {wyjAI be M

quadrature points and weights for integrating from -oc to c. Person i's contribution to the

likelihood is:

M

Li(p, E, A) ZP(mila = (eUaPa, A)P(gia - e=xja+", A)#(xj)wj. (A.3.7)
j=1

We maximize the likelihood using a gradient based search. Specifically, we use the modeling

language AMPL along with the SNOPT sequential quadratic programming algorithm (Gill, Murray,

and Saunders (2002)) for maximization.

2Note that it is possible that 13*0(a, A) > *.i1o(a, A). In this case there is no interval where the five year guarantee
is optimal. Instead, there is some J, 1o(, A) such that a 0 year guarantee is optimal if 3 < 3 1o(a, A) and a 10
guarantee is optimal otherwise. This situation (which does not create potential estimation problems, but simply
implies that a 5 year guarantee is never optimal) only arises for high values of a's that are well outside the range of
our mortality data.
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A.3.2 Guarantee indifference curves

As mentioned in the text, the most difficult part of calculating the likelihood is finding the points

where people are indifferent between one guarantee option and another, that is finding 0*(a, A)

and #31 0 (a, A). To find these points we need to compute the expected utility associated with each

guarantee length.

The value of a guarantee of length g with associated annual payments zt(g) is

VA(9)(wo; a, ) =maxyat(a)Jt c +ft (Wt + Z(g))- (A.3.8)
ct'1wt 1= - -Y 1 - -Y

s-t. wt+1  (1 + r)(wt + zt(g) - ct) > 0

to +9 T-t
where 5 is the discount factor, r is the interest rate, and Zt(g) = r z(g) is the presentZr~ (iir I T (g)stersn
discounted value of guaranteed future payments at time t. Also, at(a) =- l{(a)) is the

probability of being alive at time t and ft(a) = Kt(a) 1!-(1 - KT(a)) is the probability of dying

at time t. Note that a person who dies at time t, dies before consuming ct or receiving zt(g).

Technically, there are also no borrowing constraints and non-negativity constraints on wealth and

consumption. However, it is easy to verify that these constraints never bind, the former due to the

fact that the individuals are retirees who do not accumulate new income, and the latter due to the

form of the utility functions.

We used the first order conditions from equation (A.3.8) to collapse the problem to a numerical

optimization over a single variable, consumption at time zero. The first order conditions for equation

(A.3.8) are

6tat(a)ct iV=t Vt e {0, 1, ... , T} (A.3.9)

otft(a)#(wt + Gg)-7 = -Ot + V 9t-1 Vt E {1, 2, ... , T} (A.3.10)t I~~ + r I-

(wt + zt - ct)(1 + r) = Wt+1 Vt E {0, 1, ... , T - 1} (A.3.11)

where Qt is the Lagrange multiplier on the budget constraint at time t. Initial wealth wo is taken

as given. It is not possible to completely solve the first order conditions analytically. However,

suppose we knew co. Then from the budget constraint (equation (A.3.11)), we can calculate wi.

From the first order condition for co (equation (A.3.9)), we can find Vfo:

o = so(a)6 0 cC 7. (A.3.12)
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We can then use the first order condition for wi to solve for $)i

1
i = -fi(a)Y3(wi + Gg)- + I- Vor 0. (A.3.13)

1+ r

Then, $1i and the first order condition for et gives ci:

ci = .(A .3.14)
( 61a I(a))-/

Continuing in this way, we can find the whole path of optimal ct and wt associated with the cho-

sen co. If this path satisfies the non-negativity constraints on consumption and wealth, then we have

defined a value function of co, V(co, g, a, 3). Thus, we can reformulate the optimal consumption

problem as an optimization problem over one variable.

max V(co, g, a, 0). (A.3.15)
CO

Numerically maximizing a function of a single variable is a relatively easy problem and can

be done quickly and robustly. We solve the maximization problem in equation (A.3.15) using a

simple bracket and bisection method. To check our prograi, we compared the value function as

computed in this way and by an earlier version of the program that used a discretization and

backward induction approach. They agreed up to the expected precision.

Finally, the guarantee cutoffs, 3 5 (a, A) and # 10 (a, A), are defined as the solution to

VA(O)(wo;a,3o5 (a,A)) = VA(5) (wo; a,A))(a,A)) (A.3.16)

VA55)(wo; a, #3 10 (a, A)) = VA(10)(wo; a, #3, 10 (a, A)) (A.3.17)

For each a, we solve for these cutoff points using a simple bisective search. Each evaluation of the

likelihood requires knowledge of /3 5 (a(x3 ), A)) and #*,,O(a(xj), A)) at each integration point Xj.

Maximizing the likelihood requires searching over t, and o-, which will shift a(xj). As mentioned

in the text, rather than recomputing these cutoff points each time a(xj) changes, we initially

compute them on a dense grid of values of a, and log-linearly interpolate as needed.
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