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Abstract We consider the partially observable control problem wlieie poten-
tially necessary to perform complex information-gathgroperations in order to
localize state. One approach to solving these problemsdsette plans ifbelief-
spacethe space of probability distributions over the undewdystate of the system.
The belief-space plan encodes a strategy for performinglavtaile gaining infor-
mation as necessary. Most approaches to belief-spaceipdamy upon represent-
ing belief state in a particular way (typically as a Gauskibimfortunately, this can
lead to large errors between the assumed density représardad the true belief
state. We propose a new computationally efficient algoritbrmplanning in non-
Gaussian belief spaces. We propose a receding horizomaneipty approach where
planning occurs in a low-dimensional sampled represamtatf belief state while
the true belief state of the system is monitored using artrarlgiaccurate high-
dimensional representation. Our key contribution is a milagy problem that, when
solved optimally on each re-planning step, is guaranteedeiucertain conditions,
to enable the system to gain information. We prove that whesd conditions are
met, the algorithm converges with probability one. We cbimaze algorithm per-
formance for different parameter settings in simulatiod agport results from a
robot experiment that illustrates the application of thgoathm to robot grasping.

1 Introduction

A fundamental objective of robotics is to develop systenas ¢lan function robustly
in unstructured environments where the state of the woiddlig partially observed
and measurements are noisy. For example, robust robot oiatgm is well mod-
eled as patrtially observable problem. It is common to modetrol problems such
as these as partially observable Markov decision proc€8s@bIDPs). However,
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in general, finding optimal solutions to POMDPs has been shimabe PSPACE
complete [12]. Even many approximate approaches are catiqually complex:
the time complexity of standard point-based algorithmshsas HSVI and SAR-
SOP, is exponential in the planning horizon [17, 9, 15]. Avgrey body of work
is focused on finding correct rather than optimal solutianthe partially observ-
able control problem. Many of these approaches search &msghbelief space
the space of probability distributions over the underlystgte space. The idea of
planning in belief space can be traced back to some of thg éaal control work
where differential dynamic programming was used to find sbpolicies in stochas-
tic domains [1]. More recent work has explored the applaradf different planning
and re-planning mechanisms to the belief space planninglgmro[13, 6, 11]. Al-
though these approaches are well suited to finding compfexniration-gathering
behavior, they do so at the expense of solving a planninglg@moihat is higher
dimensional than the underlying perfectly-observablenpilag problem. Another
recent class of approaches avoids this complexity by etiatyéarge numbers of
candidate trajectories in the underlying state space mdeaf the information that
is likely to be gained during execution and the chances dfdiof) with prob-
lem constraints [18, 14, 5]. Although these approaches gilactly in the (lower-
dimensional) state space, it may be necessary to creatge tamber of plans
before finding one with satisfactory information-gathgrproperties.

One drawback with the belief space planning work cited ahswhe assump-
tion that belief state (the probability distribution ovenderlying system state) is
Gaussian. Unfortunately, this assumption is unwarrantechany robot naviga-
tion and manipulation applications (witness the populaoit the particle filter in
these applications). Furthermore, directly extending@pr@ach such as in [13] to
non-Gaussian distributions quickly results in a compatatlly complex planning
problem because of the high dimensionality of typical nani€sian parametriza-
tions (for example, see [2]). This paper considers the prolbf planning in non-
Gaussian belief spaces. We propose an algorithm that, wed&in conditions, is
provably correct and also computationally efficient. Biesipace planning implic-
itly necessitates tracking belief state using a Bayes.fier key idea is to separate
the representation used to track belief state from the septation used for plan-
ning. During execution of the plan, system state is tracksdguan arbitrary Bayes
filter implementation that is selected by the system desi¢mearticle filter, for
example). For the purposes of planning, however, this piadgnhigh-dimensional
belief state representation is projected onto a low-dinogras sampled represen-
tation. Plans are created that generate observations iffexedtiate a hypothesis
sample from the other samples while also reaching a goa. dfahe true belief
state diverges too far from the nominal belief space trajgatiuring execution of
the plan, then a re-planning cycle is triggered and the poiterates. The dimen-
sionality of this planning problem is linear in the dimensatity of the underlying
state space. This compares favorably with other algoritfii8s 6, 11, 1] which
must solve planning problems quadratically larger thanftitlg observable prob-
lem. Perhaps surprisingly, this approach can be proved It sbe belief space
planning problem (under certain conditions) with probiépibne when as few as
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two samples are used for planning. Moreover, our experigieadicate that, for rel-
atively simple problems at least, it is unnecessary to uge laumbers of samples
in order to obtain good plans. After defining the problem ict®a 2, this paper
describes the algorithm in Section 3 and proves convergen8ection 4. In Sec-
tion 5, we experimentally characterize the performanceégufréhm as a function of
the number of samples used. Finally, in Section 6, we apghatforithm to a robot
grasping problem where a robot must simultaneously loealizd grasp objects in
the environment.

2 Problem Statement

We are concerned with the class of control problems wher diesired to reach
a specified goal state even though state may only be estirbateed on partial
or noisy observations. Consider a discrete-time systeim @ghtinuous non-linear
deterministic process dynamitsx. 1 = f (%, W), where statex, is a column vector
in R", and actionu € R'. Although state is not directly observed, an observation,
z = h(x) + v, is made at each timg wherez € R™ is a column vector ang; is
zero-mean Gaussian noise with covariagce

Bayes filtering can be used to estimate state based on theysections taken
and observations perceived. The estimate is a probabisitsililition over state rep-
resented by a probability density function (pdfix;b) : R" — R™ with parameter
vector,b € #. The parameter vector is called thelief stateand the parameter
space 4, is called thebelief-spaceFor deterministic process dynamics, the Bayes
filter update can be written:

11X, bt )P(z41/X, W)
P(z41) ‘

m(f(xu);bii1) = 1)
The Bayes update calculates a new belief state, givenby, u;, andz. 1. It will
sometimes be writtery 1 = G(bt, U, z1). In general, it is impossible to imple-
ment Equation 1 exactly using a finite-dimensional paraizegton of belief-space.
However, a variety of approximations exist in practice [4].

Starting from an initial belief statdy;, the control objective is to achieve a task
objective with a specified minimum probability of successs [0,1). Specifically,
we want to reach a belief state,such that

Obrxg) = [ mhcrxgb) > o @

XEBn(r)

whereBy (1) = {x € R",x"x < r?} denotes the-ball in R" for somer > 0, andw de-
notes the minimum probability of success. There are stronigsities between this

1 Although we have formally limited ourselves to the case of deteistic process noise, we find
in Section 6 that empirically, our algorithm performs well imlveonments with limited amounts
of process noise.
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control problem and the more general Partially Observaldekibl Decision Pro-
cess (POMDP) problem. Both define a partially observablérobproblem. How-
ever, whereas the objective of a POMDP is to minimize expbobst, our objective
is to reach a goal region with a specified minimum probabiktiso, in contrast
to the more general POMDP problem, we have only allowed detéstic process
dynamics.

3 Algorithm

Our algorithm can be viewed as a receding horizon controtagmh that creates
and executes nominal belief space plans. During executiertyack a belief dis-
tribution over underlying state based on actions and obsiens. If the true belief
state diverges from the nominal trajectory, our algoritleyplans and the process
repeats. Our key contribution is a planning problem thagnvolved optimally on
each re-planning step, is guaranteed, under certain conslito enable the system
to gain information.

3.1 Creating plans

The key to our approach is a mechanism for creating horizdrelief-space plans
that guarantee that new information is incorporated ineohblief distribution on
each planning cycle. Given a prior belief stabe, define a “hypothesis” state at
the maximum of the pdf! = argmaxcgn 11(x; by). Then, samplé— 1 states from
the prior distributionx ~ 71(x;by),i € [2,K], such that the pdf at each sample is
greater than a specified threshatdx'; by) > ¢ > 0, and there are at least two unique
states among thle— 1. We search for a sequence of actiams,; = (ug,...,Ur_1),
that result in as wide a margin as possible between the ddismmg that would
be expected if the system were in the hypothesis state andbervations that
would be expected in any other sampled state. As a resulipa glan enables the
system to “confirm” that the hypothesis state is in fact the 8tate or to “disprove”
the hypothesis state. If the hypothesis state is disprabed, the algorithm selects
a new hypothesis on the next re-planning cycle, ultimatelysing the system to
converge to the true state.

To be more specific, &% (x,u;_1) be the state at timeif the system begins in
statex and takes actionsg; ;. Recall that the expected observation upon arriving in
statex; is h(x). Therefore, the expected sequence of observations is:

he(x,Ui—1) = (h(FL(x,u1)) ", ..., h(R_1(x, ut,l))T)T

We are interested in finding a sequence of actions that nmaeisnine probability
of seeing the observation sequence expected in the samated when the system
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is actually in the hypothesis state. In other words, we warfind a sequence of
actions,ut_1, that minimizes

k .
Jod, . X urTog) = _%N (h(X,ur_1)|h(x},ur_1),Q)

whereN(-|u, 2) denotes the Gaussian distribution with mgaand covariance
and Q = diag(Q,...,Q) is the block diagonal of measurement noise covariance
matrices of the appropriate size. When this sum is small, 8&itering will more
accurately be able to determine whether or not the true statear the hypothesis

in comparison to the other sampled states.

The above expression for observation distance is only d&fiith respect to the
sampled points. However, we would like to “confirm” or “dispe” states in regions
about the hypothesis and samples — not just the zero-mepsinmes themselves.
This can be incorporated to the first order by defining smallssen distributions
in state space with covariandé, about the samples and taking an expectation:

k .
IO, X urr ) = _ZE;ANN(-\xi,v>,yl~N(-\x1,V)N (h(y,ur-1)|h(y*,ur-1),Q)
i=

k . .
::E;N(h(w,uT,lﬂhoé,uT,g,r(w,uT,ln, ©)

&

where I_(X, LIT_]_) =20+ H'|'(X7 U'|'_;|_)VH'|'(X7 UT_l)T + HT(Xl, UT_;]_)VHT(Xl7 l,l'|'_;|_)T7

(4)

Hi(x,u11—1) = dhi(X,u11—1)/0x denotes the Jacobian matrix laf(x, us+_1) atx,
andV is the appropriately sized block diagonal matrinofRather than optimizing
for J(x%,..., X, uy.t 1) (Equation 3) directly, we simplify the planning problem by
dropping the normalization factor in the Gaussian and dpiimg the exponential
factor only. Let

O (K, ur_1) = [h(x,ur_1) — h( ur-) |17

UT_1)
The modified cost function is:
— 1Kk i
J(xl,...,xk,ul;T,l) =% g P(Xur-1) (5)
i=
The optimization problem becomes:
Problem 1.
Minimize  J(x},.... % ur_ 1)+ aul_jur 4 (6)
subjectto X, = f(x,w),i € [1,K (7)

X =xg, ¥ =X,i € [1,K]. (8)
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Equation 6 adds an additional quadratic cost on action tiig a small preference
for short trajectories. The associated weighting paranstteuld be set to a small
value @ < 1). Problem 1 can be solved using a number of planning teaksiguch
as rapidly exploring random trees [10], differential dyneamrogramming [8], or
sequential quadratic programming [3]. We use sequentedigiic programming to
solve the direct transcription [3] of Problem 1. Althoughedit transcription is only
guaranteed to find locally optimal solutions, we have foumat it works well for
many of the problems we have explored. The direct transorigolution will be
denoted
ur_1 = DIRTRAN(X, ..., X, xg,T), (9)

for samplesx?,...,x¥, goal state constraintg, and time horizonT. Note that the
dimensionality of Problem 1 iek — linear in the dimensionality of the underlying
state space with a constant equal to the number of samplescdimpares favor-
ably with the approaches in [13, 6, 11] that must solve plagmiroblems im?-
dimensional spaces (number of entries in the covariancexhat

3.2 Re-planning

After creating a plan, our algorithm executes it while tiagkthe belief state using
the user-supplied belief-state update, If the actual belief state diverges too far
from a nominal trajectory derived from the plan, then exicustops and a new
plan is created. The overall algorithm is outlined in Alglom 1. The outervhile
loop iteratively creates and executes plans until the phgnobjective (Equation 2)
is satisfied. Step 2 sets the hypothesis state to the maxirfitiia prior distribution.
Step 3 samplels— 1 additional states. Step 4 of Algorithm 1 calls theEATEPLAN
function (Algorithm 2). REATEPLAN has two steps. First, it solves Problem 1 with
the final value (first condition, Equation 8) constraint. RhnEREATEPLAN calcu-
lates a corresponding belief trajectory forward by assgrttiat the hypothesis state
is equal to the true state. If the resulting trajectory doesreach a belief state
that satisfies thevhile loop condition in step 1 of Algorithm 1, thenREATEPLAN
solves Problem 1 again, this time without the final value trairst. Steps 6 through
12 execute the plan. Step 9 updates the belief state givenetlieaction and ob-
servation using the user-specified Bayes filter implemiamtaStep 10 breaks plan
execution when the actual belief state departs too far flmembminal trajectory,
as measured by the KL divergen@®, [71(-; br11), 71(+; br11)| > 6. The second con-
dition, J(x%,..., X uy_1) < 1—p, guarantees that ttvehile loop does not terminate
before a (partial) trajectory with codt< 1 executes. We show in Section 4 that the
second condition guarantees that the algorithm makes fpsstjon each iteration
of thewhile loop.
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Input :initial belief statep, goal statexg, planning horizonT, and belief-state updat,

1 while ©(b,r,xg) < wdo
1

2 X+ = argmaxegn 1(X; b);

3 | Vie[2,K,X ~nxb): n(x;b) > ¢;

4 byr,ur_1 = CreatePl an(b,x,..., X xg, T);
5 b1 =b;

6 fort<1toT —1do

7 execute actiony, perceive observation, 1;
8 bri1=G(br,u,z+1); a

9 if D1 [7(x; by 1), 7(X; by1)] > 6 and I(¥,up—1) < 1—p then
10 | break

1 end

12 end

13 b=b1;

14 end

Algorithm 1: Belief-space re-planning algorithm

Input : initial belief statep, sample set, ..., x, goal region#, and time horizonT.
Output: nominal trajectoryby t andug.t_1
urt—1=DirTran(xt,... X4 T);
by=b;vt€[1:T—1], by1=G(br,u, h(x));
if ©(h,¥) < wthen
urt_1=DirTran(x',... xXT);
by=b;Vt e [1:T—1], brya=G(br,u,h(x));
end

o g~ WN P

Algorithm 2: CREATEPLAN procedure

3.3 lllustration

Figures 1 and 2 show a simple example that illustrates bgfiate planning. Fig-
ure 1 shows a horizontal-pointing laser mounted to the dfedter of a two-link

robot arm. The end-effector is constrained to move onlyie@ty along the dotted
line. The laser points horizontally and measures the rarae the end-effector to
whatever object it “sees”. There are two boxes and a gap leettveem. Box size,
shape, and relative position are assumed to be perfecthyrkatong with the dis-
tance of the end-effector to the boxes. The only uncertaiabie in this problem is
the vertical position of the end-effector measured witlpees to the gap position.
This defines the one-dimensional state of the system antlissrdted by the ver-

e e

Fig. 1 SLAG scenario. The arm
robot must simultaneously

localize the gap and move the

end-effector in front of the

gap.

gap

A SN
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Fig. 2 lllustration of CREATEPLAN. (a) An information-gathering trajectory (state as a functio
of time) found using direct transcription. Blue denotes thgttary that would be obtained if the
system started in the hypothesis state. Red denotes the trgjebtamed starting in the true state.
(b) The planned belief-space trajectory illustrated by pbdkig distributions superimposed over
time. Distributions early in the trajectory are light gray Vehdistributions late in the trajectory
are dark. The seven “X” symbols on the horizontal axis denotetsiions of the samples (red
denotes the true state while cyan denotes the hypothesis)hépdtual belief-space trajectory
found during execution. (d-f) Comparison with the EKF-basedhogtproposed in [13]. (d) The
planned trajectory. (e) The corresponding nominal belietspeajectory. (f) Actual belief-space
trajectory.

tical number line in Figure 1. The objective is to localize trertical end-effector
with respect to the center of the gap (state) exactly and ntowveend-effector to
the center of the gap. The control input to the system is tiiceé velocity of the
end-effector.

Figure 2(a) illustrates an information-gathering trapegtfound by DRTRAN
that is expected to enable the Bayes filter to determine wehétle hypothesis state
is indeed the true state while simultaneously moving theothygsis to the goal state
(end-effector at the center of the gap). The sample set useal¢ulate the trajec-
tory wasx!,..., XX = 5,2, 3,4,6,7,8, with the hypothesis sample located<ht= 5.
The action cost used while solving Problem 1 was- 0.0085. DRTRAN was ini-
tialized with a random trajectory. The additional smalli@etcost smooths the tra-
jectory by pulling it toward shortest paths without chamginformation gathering
or goal directed behavior much. The trajectory can be utaedsntuitively. Given
the problem setup, there are two possible observationgerareasurements that
“see” one of the two boxes and range measurements that ‘tseeigh the gap. The
plan illustrated in Figure 2(a) moves the end effector shehdifferent sequences of
measurements would be observed depending upon whethgstleeswvere actually
in the hypothesis state or in another sampled state.
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Figures 2(b) and (c) show the nominal belief-space trajgciad the actual tra-
jectory, respectively, in terms of a sequence of probabiistributions superim-
posed on each other over time. Each distribution descrheedikelihood that the
system started out in a particular state given the actidentand the observations
perceived. The nominal belief-space trajectory in Figut® & found by simulat-
ing the belief-space dynamics forward assuming that futlogervations will be
generated by the hypothesis state. Ultimately, the platrageictory reaches a be-
lief state distribution that is peaked about the hypothstsite x! (the red “X”). In
contrast, Figure 2(c) illustrates the actual belief-spaajectory found during exe-
cution. This trajectory reaches a belief state distribupeaked about the true state
(the cyan “X"). Whereas the hypothesis state becomes thenmsmiof the nominal
distribution in Figure 2(b), notice that it becomes a minimaf the actual distribu-
tion in Figure 2(c). This illustrates the main idea of theaithm. Figure 2(b) can be
viewed as a trajectory that “trusts” that the hypothesisoisert and takes actions
that confirm this hypothesis. Figure 2(c) illustrates thagrewhen the hypothesis
is wrong, the distribution necessarily gains informati@tduse it “disproves” the
hypothesis state (notice the likelihood of the region alibethypothesis is very
low).

Figure 2 (d-f) compares the performance of our approach thighextended
Kalman filter-based (EKF-based) approach proposed in [L3¢ problem setup
is the same in every way except that cost function optiminetiis scenario is:

J(Ul;T_l) = 1*10 (O’-%)T O'-% + O.OOSHJI:T_lul;T_l,

wherea? denotes covariance. There are several differences inrpeafce. Notice
that the two approaches generate different trajectoriesare Figures 2(a) and
(d)). Essentially, the EKF-based approach maximizes thie eelduction in variance
by moving the maximum likelihood state toward the edge ofgéye where the gra-
dient of the measurement function is large. In contrastapproach moves around
the state space in order to differentiate the hypothesis fitte other samples in
regions with a small gradient. Moreover, notice that simeeEKF-based approach
is constrained to track actual belief state using an EKF Bdyter, the tracking
performance shown in Figure 2(f) is very bad. The EKF inniovaterm actually
makes corrections in the wrong direction. However, in spitéhe large error, the
EKF covariance grows small indicating high confidence ingbtmate.

4 Analysis

We are interested in the correctness of Algorithm 1. Can waraniee that Algo-
rithm 1 eventually reaches a belief state in the goal regide?show that ifG is

an exact implementation of Equation 1, then Algorithm 1 ipeoted to localize
the true state of the system after a finite number of iteratmfrthe outer loop. As
the number of iterations of the outer loop goes to infinitg ginobability of having
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localized the true system state goes to one. We start bydingva lower bound on
the expected probability of states in a neighborhood of e $tate. On a particu-
lar iteration of the outewhile loop in Algorithm 1, suppose that the system begins
in belief stateb;, while the true state ig, and executes a sequence of actions,
u = (ug,...,ur_1) (subscript dropped for conciseness). During executic sts-
tem perceives observations= (z,...,zr) and ultimately arrives in belief statg .
The probability of a statey = Fr(x,u), estimated by recursively evaluating Equa-
tion 1is:

. _ . qX(Zau)
Ty br) = T b) LS (10)
where
Ok(z,u) = N(z[h(x,u),Q) (11)

is the probability of the observations given that the sys$earts in state and takes
actions,u, and

p(z,u) = /X.E]Rn 11(x; b1)N(z|h(x,u),Q) 12)

is the marginal probability of the observations giver he following Lemma shows
that ri(y; br) can be lower-bounded in terms of the proximityxa the true state,
K.

Lemma 1. Suppose we are given an arbitrary sequence of actionand an arbi-
trary initial state, xe R". Then, the expected probability ofyFr(x,u) found by
recursively evaluating the deterministic Bayes filter upd&quation 1) is

iy, br)
E%wm

b2 exp(D1(.p) - Da(a. 0.

where ¢, 0y, and p are defined in Equations 11 and 12 angd denotes the KL
divergence between the arguments.

Proof. The log of the expected change in the probability ¢:

o { ) ~°9%{ e )

e [ G(Z.U)gx(z,u)
B log -/Z€]Rm p(Z, U)

2/ 0k (2) (109K (2, u) — log p(z, 1))
zZeRM
= Dl(qu p) - Dl(qqu)v

where the third line was obtained using Jensen’s inequatitythe last line follows
from algebra. Taking the exponential gives us the claim.

Lemma 1 expresses the bound in terms of the diverg&hge, p), with respect
to the true stateg. However, since is unknown ahead of time, we must find a lower
bound on the divergend®;(qy, p) for arbitrary values of. The following lemma
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establishes a bound on this quantity. We use the notatidn|/tija = vVa'A-1la
denotes the Mahalanobis distance with respegt to

Lemma 2. Given an arbitraryu and a distributionm, supposeiA;, A, € R" such
thatVxi, X2 € Ap x Az, [|h(x1,u) —h(x2,U) |3, > {2 and [,z @(X) > ¥, fycp, B(X) >
y. Then

. 2 _ _152 2
minDa(gy, p) > 211 v’ (1 e? ) :
wheren = 1/4/(2w)"|Q| is the Gaussian normalization constant.
Proof. By Pinsker’s inequality, we know th&t; (gx, p) > 2sup, (ax(z,u) — p(z, u))2.
Notice thatp(h(xz,u)) <n (1— y+ ye*%zz). Sincegx(h(xg,u)) = n, we have:

2
(a0, )) — plh(xa,)))? > y? (1 7).
We obtain the conclusion by using Pinsker’s inequality.

As a result of Lemmas 1 and 2, we know that we can lower boundxpected
increase in probability of a region about the true state bgifiig regions A1 and
/\2, that satisfy the conditions of Lemma 2 for a giveri emma 3 shows that these
regions exist for any with a cost (Equation 3) < 1. The proof uses Lemmas 4
and 5, stated and proved in the appendix.

Lemma 3. Suppose thatl is a plan with costl = J_(xl,...,xk,u) defined over the
samples, Xi € [1,K]. If the maximum eigenvalue of the Hessian of M jsthen
Ji € [1,K] such that:

R 81,8 € Bn(r). X+ 1) -+ )2 > 1/~ loaT - 20r o)

where c= A||1]|g/2and By(r) = {x€ R";x"x <r?}.

Proof. Considering Equation 3, we know that a CQgﬁ,mpIies that there is at least
one samplex/, such that

—logd < @(x,u)
= [|h(x!) —h(xl)||?(xj7u>~

Notice thatvy € R", the matrixH (y)"I" (y,u)~*H(y) is positive semidefinite with
eigenvalues no greater than one. Therefore, we know/thatR ™, d € B, (r),

||H (y)(SHIZ'(y,u) = r2.

Using Lemma 4 twice to combine the above equations, we WaweR™, &, €
Bn(r),
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_ 2
IPOX.81) PO 8 B ) > (/- l0g32r)

whereP(x,0) = h(x) — H(x)d. Using Lemma 5, we have thai, € R" andd €
Bn(r),
I(x+8) ~ P(x,8)[2 ) < (cr?)>.

Applying Lemma 4 twice gives us the conclusion of the thearem

We now state our main theoretical result regarding Algamithcorrectness. Two
conditions must be met. First, the planner in step 4 of Algoni 1 must always find
low-cost plans successfully. Essentially, this guarastbat each plan will acquire
useful information. Second, step 8 of Algorithm 1 must usexatt implementation
of the Bayes filter. In practice, we expect that this secomdlition will rarely be
met. However, our experiments indicate that good resultsbzaobtained using
practical filter implementations (Section 5).

Theorem 1. Supposélr, & € R* such thatvi € [1,k] andVd € B(r), (X +6) > €
with k> 2. Suppose:

1. DIRTRAN (Algorithm 1, step 4) always finds a horizon-T trajectarywith cost,

_ 2
I, X u) < exp{ (2r+r2/\h/\fT‘1||1H@+ \/Iog¢2) ] ,

whereAn and A are the maximum eigenvalues of the Hessian matrix of h and f,

respectively an@ > 1is the threshold parameter in step 3 of Algorithm 1; and
2. G is an exact implementation of the Bayesian filter updatgiétion 1) in step 8

of Algorithm 1.

Then, when Algorithm 1 executes,

1. the expected probability of the true state increases @h @aration of the outer

while loop by at leas2n?y?(1—1/¢), wheren = 1/,/(2m)"Q] is the Gaussian
normalization constanty = eVoly(r), and Voj(r) is the volume of the r-ball in
n dimensions; and

2. as the number of iterations of the outer while loop goesfinity, the true state
becomes the maximum of the belief state distribution withgmoility one.

Proof. Condition 2 in the premise implies that

\/—logd —2r —r2ApAf[1]j > /log 2.

Lemma 3, gives us thati € [1,k] such thatvd;,& € B(r), ||h(x' + &) —h(x* +
62)||12'(xi7u) > /log¢2. Then, Lemma 2 gives us that

minDa(ay, p) > 2n%y(1—1/9)?,
yeR?
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wherey = gVoly(r). Lemma 1 gives us the first conclusion. The constraint that
¢ > 1 implies that the right side of the above equation is pasitAs a result, the
probability of the true state is expected to increase on @achtion of the outer
while loop and we have the second conclusion.

At the end of Section 3.1, we noted that the planning probleivesl in step 4
of Algorithm 1 was linear in the dimensionality of the undeéng space. Theorem 1
asserts that the algorithm is correct with as few as two sasnpls a result, we know
that the linear constant can be as small as two.

5 Experiments
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Fig. 3 (a) the experimental scenario. (b) a path found by Algorithmith @ nine-sample planner.
It starts in the upper right and ends at a point directly infiafrthe right-most box. The red circles
denote where re-planning occurred. (c) belief state entespg function of time step. The solid
black line corresponds to the trajectory shown in (b). The dadihee lines correspond to five
additional nine-sample runs.

From a practical perspective, the preceding analysis ifulbecause it tells
us that if we execute thehile loop in Algorithm 1 a sufficient number of times,
we can expect to localize the state of the system with aritmacuracy (we can
drive ©(b,r,xg) arbitrarily low). However, for this result to hold, we reqaithe
planner to find low cost paths each time it is called and forttheking Bayes
filter to be an exact realization of Equation 1 (the premis@loéorem 1). Since
these conditions are difficult to meet in practice, an impatrguestion is how well
the approach works for approximately accurate Bayes fittgriémentations and
for planners that only succeed some of the time. Furthernvegeare interested in
knowing how the performance of the algorithm changes wigmtlimber of samples
used to parametrized the planner. Figure 3(a) illustrdtesxperimental scenario.
A two-link robot arm moves a hand in the plane. A single rafigding laser is
mounted at the center of the hand. The laser measures the faong the end-
effector to whatever object it “sees”. The hand and lasecanstrained to remain
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horizontal. The position of the hand is assumed to be medsuegectly. There
are two boxes of known size but unknown position to the lefthef robot (four
dimensions of unobserved state). The boxes are constrairteelaligned with the
coordinate frame (they cannot rotate). The control inpahéosystem is the planar
velocity of the end-effector. The objective is for the robmtocalize the two boxes
using its laser and move the end-effector to a point direstfyont of the right-most
box (the box with the largest-coordinate) so that it can grasp by extending and
closing the gripper. On each time step, the algorithm spettfie real-valued two-
dimensional hand velocity and perceived the laser rangesunement. If the laser
missed both boxes, a zero measurement was perceived. Ehar]sneasurements
were corrupted by zero-mean Gaussian noise wif 8tandard deviation.

xxxxxxxxxxxxxxxxxxxx

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
xxxxxxxxxx

(e) (f) (9 (h)

Fig. 4 Histogram probability distributions (a-d) and planner sampts é&-h) at time steps 10,
100, 200, and 300 during the path shown in Figure 3(b).

Figure 3(b) illustrates the path of the hand (a point disebitween the two
jaws of the gripper) found by running our algorithm paranzed by nine samples.
The state space was four dimensional and comprised of twddmations rang-
ing between—1,1] on thex-axis and[—2, 2] on they-axis. The hand starts in the
upper right corner at5,5) and ends at a point directly in front of the lower right
box. The blue line shows the path and the red circles idettigypoints along the
path at which re-planning occurred (there are 14 re-plamtevia this example).
The tracking Bayes filter was implemented using a griddetbgram filter com-
prised of 62500 bins over the four-dimensional space (ttsitipa of each of the
two boxes was denoted by a point in ax@5 grid). At the start of planning, the
prior histogram distribution was assumed to be uniform. €bst function opti-
mized by the DRTRAN planner (Equation 6) was parametrized dy= 0.01 and
V = diag(0.5) (Equations 3 and 4). The planning horizon vilas- 50. The algo-
rithm did not terminate until the histogram Bayes filter w@8®confident that it
had localized the right-most box to withih0.3 of its true location @ = 0.9 in step
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1 of Algorithm 1). Figure 4(a)-(d) show snapshots of theddsam distribution at
time steps 10, 100, 200, and 300. (This is actually a two-dsiomal projection of
the four dimensional distribution illustrating the distition over the location aine
box only.) Figure 4(e)-(h) show the nine samples used tompeaidze the planning
algorithm at the four snapshots. Initially, (in Figures 3 #ad (e), the distribution
is high-entropy and the samples are scattered through #eesps time increases,
the distribution becomes more peaked and the sample satsbemore focused.
The solid black line in Figure 3(b) shows the entropy of th&tdgram distribution
as a function of time step. As expected, entropy decreagesisantly over the tra-
jectory. For comparison, the five additional blue dotte@dinn Figure 3(c) show
entropy results from five additional identical experimeste the relatively small
variance amongst trajectories. Even though the algorithdsfa very different tra-
jectory on each of these runs, performance is similar. Thesdts help answer two
of the questions identified at the beginning of the sectiarst,H-igure 4 suggests
that in at least one case, the histogram filter was adequegpresent the belief state
in the context of this algorithm even though it is a coarsedgebtized approxima-
tion to the true distribution. The black line in Figure 3(ciggests that R-TRAN
was an effective tool for planning in this scenario. The sidiional runs illustrated

in Figure 3(c) indicate that these results are typical.

@) (b) (©

\~

Fig. 5 (a) comparison of entropy averaged over six runs for four diffeiplanner sample set
sizes (36 samples, solid black line; 9 samples, dashed blue line; 4 sachpied magenta line; 2
samples, dash-dot green line). (b) comparison of the six thirtgaimple runs (solid black) with
the six two-sample runs (dashed blue). (c) a path found using a&awple planner.

The other question to be answered concerns the effect olutimber of samples
on algorithm performance. To find an answer, we have run taighm in the sce-
nario described above for four contingencies where thenglawas parametrized by
two, four, nine, and thirty-six samples. Figure 5(a) coregahe average (over six
runs each) information-gathering performance for the tmmtingencies. Although
increasing the number of samples improves algorithm perdioce, the gains di-
minish as the number of samples increases. Figure 5(b) cestiae two-sample
runs with the thirty-six-sample runs and demonstratesttf@atmprovement is sta-
tistically significant. The comparison of Figure 5(c) witlgére 3(b) suggests that
(in this experiment, at least) the trajectories producedhieyhigh-sample planner
are better than those produced by the low-sample plannaubecdhe high-sample
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planner does a better job covering the space in front of thedd hese results show
that it is valuable to expend computational effort planrangnformation-gathering
trajectory, even in this simple example. The results alsovdthat the performance
of our algorithm smoothly degrades or improves with fewemare samples used
during planning. Even with the minimum of two samples, thgoathm is capable
of making progress.

6 Robot Grasping application

We apply our approach to an instance of the robot graspinblgmmo where it is
necessary to localize and grasp a box. We refer to this veddithe problem, where
perception is incorporated into the problem statementsiasuitaneous localization
and grasping” (SLAG). Two boxes of unknown dimensions ams@nted to the
robot. The objective is to localize and grasp the box whighitglly found directly
in front of the left paddle. This is challenging because tleegment of the two
boxes may make localization of the exact position and dimoessof the boxes
difficult.

6.1 Problem setup

Fig. 6 lllustration of the grasping problem, (a). The robot must loeatlze pose and dimensions
of the boxes using the laser scanner mounted on the left wrist.igh&datively easy when the
boxes are separated as in (b) but hard when the boxes are pregstitet as in (c).

Our robot,Paddles has two arms with one paddle at the end of each arm (see
Figure 6(a)). Paddles may grasp a box by squeezing the baebetthe two pad-
dles and lifting. We assume that the robot is equipped witteggpogrammed “lift”
function that can be activated once the robot has placed/@gpaddles in opposi-
tion around the target box. Paddles may localize objectsenatorld using a laser
scanner mounted to the wrist of its left arm. The laser scaprugluces range data
in a plane parallel to the tabletop over a 60 degree field af.vie
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Fig. 7 Example of a box localization task. In (a) and (d), the roboielvek the gap between the
boxes is large and plans to localize the boxes by scanningésin (b) and (e), the robot has
recognized that the boxes abut each other and creates aplarg¢ase gap width by pushing the
right box. In (c) and (f), the robot localizes the boxes by swag the newly created gap.

We use Algorithm 1 to localize the planar pose of the two bgpa@smetrized
by a six-dimensional underlying metric space. The boxesisseamed to have been
placed at a known height. We reduce the dimensionality ofptaaning problem
by introducing an initial perception step that localizes tfepth and orientation of
the right box using RANSAC [7]. From a practical perspectités is a reasonable
simplification because RANSAC is well-suited to finding thepth and orientation
of a box that is assumed to be found in a known region of the &sa. The remain-
ing (four) dimensions that are not localized using RANSAGatibe the horizontal
dimension of the right box location and the three-dimersi@ose of the left box.
These dimensions are localized using a Bayes filter thattap@dahistogram distri-
bution over the four-dimensional state space based onitasasurements and arm
motions measured relative to the robot. The histogram fdteomprised of 20000
bins: 20 bins (12 cm each) describing right box horizontal position timesirGs
(2.4 cm each) describing left box horizontal position times tsl{24 cm each)
describing left box vertical position times 10 binsAB6 radians each) describing
left box orientation. While it is relatively easy for the lagtam filter to localize the
remaining four dimensions when the two boxes are separgtadjap (Figure 6(b)),
notice that this is more difficult when the boxes are pressgdther (Figure 6(c)).
In this configuration, the laser scans lie on the surfacelsefwo boxes such that it
is difficult to determine where one box ends and the next lsedipte that it is diffi-
cult to locate the edge between abutting boxes reliablygugision or other sensor
modalities — in general this is a hard problem.
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Our implementation of Algorithm 1 used a set of 15-sampletuiting the hy-
pothesis sample. The algorithm controlled the left padgisecifying Cartesian
end-effector velocities in the horizontal plane. Thesea&sgan velocity commands
were projected into the joint space using standard JacdPsaudoinverse tech-
niques [16]. The algorithm was parametrized by process migsgthat modeled
arms motions resulting from velocity commands and box nmstiproduced by
pushes from the arm. Box motions were modeled by assumingstiprwhile push-
ing the box and assuming the center of friction was locateédeatenter of the area
of the box “footprint”. The observation dynamics descriltkd set of range mea-
surements expected in a given paddle-box configurationplganing purposes, the
observation dynamics were simplified by modeling only a leirigrward-pointing
scan rather than the full 60 degree scan range. Howevecenibiat since this is a
conservative estimate of future perception, low cost plarder the simplified ob-
servation dynamics are also low cost under the true dynaimsgertheless, the ob-
servation model used foracking(step 8 of Algorithm 1) accurately described mea-
surements from all (100) scans over the 60 degree rangeefin@ation threshold
in Algorithm 1 was set to 50% rather than a higher threshotthbse we found our
observation noise model to overstate the true observatisen

Our hardware implementation of the algorithm included semell variations
relative to Algorithm 1. Rather than monitoring divergemsglicitly in step 9, we
instead monitored the ratio between the likelihood of thpdiljesis state and the
next most probable bin in the histogram filter. When this réglbbelow 0.8, plan
execution was terminated and thvdile loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned dtajg, a ratio of less
than one implies a positive divergence. Second, ratherfihding a non-goal di-
rected plan in steps 3-5 of Algorithm 2, we always found gtiedcted plans.

Figure 7 illustrates an example of an information-gattgetiajectory. The al-
gorithm begins with a hypothesis state that indicates thatwo boxes are 10 cm
apart (the solid blue boxes in Figure 7(a)). As a result, therghm creates a plan
that scans the laser in front of the two boxes under the agsomihat this will
enable the robot to perceive the (supposed) large gap. intfectwo boxes abut
each other as indicated by the black dotted lines in Figusg After beginning the
scan, the histogram filter in Algorithm 1 recognizes this terchinates execution of
the initial plan. At this point, the algorithm creates thesping trajectory illustrated
in Figure 7(b). During execution of the push, the left box e®in an unpredicted
way due to uncertainty in box friction parameters (this fe@fvely process noise).
This eventually triggers termination of the second trajgctThe third plan is cre-
ated based on a new estimate of box locations and executesairsg motion in
front of the boxes is expected to enable the algorithm tdilethe boxes with high
confidence.
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Fig. 8 “Easy” and “hard” experimental contingencies. (a) shows imadéken12 randomly se-
lected “easy” configurations (both box configurations chosemomly) superimposed on each
other. (b) shows images of the 12 randomly selected “hard” comdfigms (boxes abutting each
other). (c) and (d) are plots of error between the maximum a postécalization estimate and
the true box pose. Each line denotes a single trial. The red “Xksdenote localization error at
algorithm termination.

6.2 Localization Performance

At a high level, the objective of SLAG is to robustly localiaed grasp objects even
when the pose or shape of those objects is uncertain. Werpestba series of ex-
periments to evaluate how well this approach performs wisex to localize boxes
that are placed in initially uncertain locations. On eachsgrtrial, the boxes were
placed in a uniformly random configuration (visualized imguiies 8(a) and (c)).
There were two experimental contingencies: “easy” anddhdn the easy contin-
gency, both boxes were placed randomly such that they weentially separated
by a gap. The right box was randomly placed in ax1B6 cm region over a range
of 15 degrees. The left box was placed uniformly randomly 20& 20 cm region
over 20 degrees measured with respect to the right box &ig(&)). In the hard
contingency, the two boxes were pressed against each atti¢he pair was placed
randomly in a 13« 16 cm region over a range of 15 degrees (Figure 8(b)).
Figures 8(c) and (d) show right box localization error asrecfion of the num-
ber of updates to the histogram filter since the trial statttrials were performed
in each contingency. Each blue line denotes the progressioigée trial. The ter-
mination of each trial is indicated by the red “X” marks. Eaainor trajectory is
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referenced to the ground truth error by measuring the disthetween the final po-
sition of the paddle tip and its goal position in the left carof the right box using
a ruler. There are two results of which to take note. Firstirals terminate with
less than 2 cm of error. Some of this error is a result of thesepdiscretization
of possible right box positions in the histogram filter (natso the discreteness of
the error plots). Since the right box position bin size in tiieogram filter is 12
cm, we would expect a maximum error of at leas2 tm. The remaining error is
assumed to be caused by errors in the range sensor or theatimemodel. Sec-
ond, notice that localization occurs much more quickly @ratly in less than 100
filter updates) and accurately in the easy contingency, vitveboxes are initially
separated by a gap that the filter may used to localize. Irasttaccurate local-
ization takes longer (generally between 100 and 200 filtelatgs) during the hard
contingency experiments. Also error prior to accurate ligation is much larger
reflecting the significant possibility of error when the bsae initially placed in
the abutting configuration. The key result to notice is tvanethough localization
may be difficult and errors large during a “hard” contingerady/trials ended with
a small localization error. This suggests that our algaoritiermination condition
in step 1 of Algorithm 1 was sufficiently conservative. Alsotice that the algo-
rithm was capable of robustly generating information gatiuetrajectories in all of
the randomly generated configurations during the “hardtiogencies. Without the
box pushing trajectories found by the algorithm, it is lik¢hat some of the hard
contingency trials would have ended with larger local@aterrors.

7 Discussion

Creating robots that can function robustly in unstructieedronments has always
been a central objective of robaotics. In order to achievs, tihiis necessary to de-
velop algorithms capable of actively localizing the statehe world while also
reaching task objectives. We introduce an algorithm thiaieses this by planning in
belief-space, the space of probability distributions dherunderlying state space.
Crucially, our approach is capable of reasoning aboutdtajes through a non-
Gaussian belief-space. The fact that we can plan effegtiveh-Gaussian belief
spaces makes our algorithm different than most other bgfiate planning algo-
rithms currently in the literature. The non-Gaussian asjseessential because in
many robot problems it is not possible to track belief stateugately by project-
ing onto an assumed Gaussian density function (this is the, éar example, in the
two-box example described in this paper). This paper pesvia novel sufficient
condition for guaranteeing that the probability of the tstate found by the Bayes
filter increases (Lemma 1). We show that our algorithm méwetsd conditions and,
as a result, converges to the true state with probability(@heorem 1). Although
our theoretical results hold only under strict conditioosr experiments indicate
that the algorithm performs well in practice. We empirigalharacterize the effect
of changing the number of samples used to parametrize toeithign on the result-
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ing solution quality. We find that algorithm performance éarly optimized using
very few (between two and nine) samples and that, as a rédselplanning step in
our algorithm is computationally efficient. Finally, weugitrate our approach in the
context of a robot grasping problem where a robot must sanefbusly localize and
grasp and object that is known only to be found somewhereint fif the robot.
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Appendix

Lemmad. If ||x||Z > 62, ||6]|% < €2, and @ > ¢, then||x— 5|3 > (6 — &), where
x,0 €R", 0, € R, and A= AT >0,

Proof. By the triangle inequality, we havigx||a < ||d]|a+ [|X— d]|a. Rearranging,
this becomegix — d||a > ||X||la — [|0]|a. We obtain the conclusion by squaring both
sides and substituting ande.

Lemmab. If f(x) = (f1(X),..., fa(x))" is a vector-valued function with Jacobian
matrix F, and each scalar-valued componenthfis a Hessian matrix with a max-
imum eigenvalue of¢, thenvx € 27,0 € By(r),

r4a2
2 f 2
[T (x+6) =P(x,0)[]a = —~11]a;

wherel is a column vector of n ones,(Rd) = f(X) + F(x)0 is the first-order
Taylor expansion df, Aa is the maximum eigenvalue of A, ang(B is the r-ball in
dimension n.

Proof. For alli € [1,n], the Taylor remainder iB(x,d) = f (x+ ) — P(x,d). By the
Taylor remainder theorem, we know tHE(x, d)| < %6TCi J, whereG; is the Hes-
sian off;. Notice thatvd € By(r), 87Ci8 < r2As. LetR(x,8) = (Ry(X, 8), ... Ra(x,8))".

4A2
Then|R(x,8)|% < rTf||1||,§ and we have the conclusion.






