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Abstract

Nonlinear optical properties and ultrafast carrier dynamics of slab-coupled optical waveguide
amplifiers, silicon nanowaveguides, and III-V semiconductor saturable Bragg reflectors are
studied. The limits imposed by two photon absorption and free-carrier absorption on the gain and
output powers of an InGaAsP/InP slab-coupled optical waveguide amplifier with a confinement
factor of F = 0.5% are determined. The two-photon absorption coefficient and the induced free-
carrier absorption cross-section were measured to be 65cm/GW and 7x10-4 cm2, respectively.
The effects of two-photon absorption begin to limit the gain significantly for pulses shorter than
40ps. The carrier recovery times were observed to vary between 390 to 160ps for 1A to 4A bias
currents, and the short-pulse saturation fluence of the gain was determined to be 1.4mJ/cm2.
Furthermore, nonlinear optical processes in high-index-contrast waveguide circuits consisting of
106nm x 497nm silicon waveguides with Si0 2 and HSQ cladding layers were studied using a
heterodyne pump probe experimental setup. The linear loss of the waveguides was determined to
be 6.5dB/cm. The two-photon absorption coefficient and free-carrier absorption effective cross-
section were determined to be 0.68cm/GW, and 1.9x10-17 cm 2, respectively. Coefficients for the
index changes due to optical Kerr effect, and free-carrier density were determined to be 3.2x10- 4

cm 2/W, and -5.5x10-21 cm3. Effects of the proton bombardment on linear loss and carrier
lifetimes in the devices were also studied. Carrier lifetime reduction to 33ps with a linear loss of
only 14.8dB/cm was achieved using a proton bombardment level of 105 /cm 2. Ultrafast dynamics
of semiconductor saturable absorber mirrors were also investigated. The addition of resonant
layers to the absorbers resulted in lower saturation fluence and increased non-saturable loss.
Proton bombardment was utilized on these devices as well, to decrease the carrier recovery
times. With proton bombardment of single-absorber layer devices with 40KeV proton energies at
a dose of 1015/cm2, a 1.5ps carrier recovery time was achieved in single-absorber structures.

Thesis Supervisor: Erich P. Ippen
Title: Elihu Thompson Professor of Electrical Engineering and Computer Science

Professor of Physics
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Chapter 1

Introduction

1.1. Motivation

The explosive growth in the internet traffic experienced in the late 90s has only become more

explosive in the past 5 years with the increasing demand for personal mobile devices, digital TV

and radio, gaming industry, and online videos. In 2009, the data consumption by Americans was

estimated at 3.6 zettabytes equivalent to 36 million million gigabytes, and enough to fill 7 DVDs

per day. The breakdowns of this data consumption are 55% games, 35% digital TV and 10%

movies and computer data only took up less than 1% of the total data [1, 2]. The demand is not

stopping at these numbers but growing at 5.4% per year, and for most part many users still feel

that their connection to the internet is not fast enough. To move such a large volume of data, new

ways to pack more data into the fiber is being explored. For this purpose, new methods for faster

data transfer using dense wavelength division multiplexing (DWDM) [3-8] and optical time-

division multiplexing (OTDM) [9-12] have been studied. In a DWDM system, several

wavelengths closely separated by wavelength are each modulated with data and transmitted over



the optical fiber networks to the destination. While in transit from the source to the destination

and at the receiver, each wavelength is separated and the data is extracted. In OTDM networks,

in addition to having the option of using different wavelengths, the data is multiplexed in the

time domain by the sender and demultiplexed at the receiver and the routers. In the conventional

DWDM and OTDM systems, each wavelength is generated by a different optical source.

However, with the broad spectral bandwidth of mode-locked lasers, the output of these devices

can be sliced in the frequency domain to generate different wavelengths. The high repetition rate

of mode-locked lasers can also be utilized in the OTDM systems for generation high frequency

pulse trains. One of the topics covered in this thesis is the study of the ultrafast carrier dynamics

and nonlinear optical properties of saturable absorbers which are amongst the main constituent

elements of mode-locked lasers.

Free-space optical communication (FSO) systems also offer large data rates and have

received a great deal of attention in the past years [13-16]. Optical signals transmitted over long

distances must be amplified at several intervals to overcome the scattering and atmospheric

losses. Eye-safe, high power optical lasers and amplifiers operating around 1.5 pm can extend the

transmission range and reduce the number of repeater stations. High power SOAs have also

found application in laser imaging and detection systems[17, 18]. Conventional SOAs offer

several advantages including high gain, large bandwidth, low-noise operation, and compact size.

However, obtaining high saturation powers from these devices remains a challenge. A class of

SOAs that overcomes this is the slab-coupled optical waveguide amplifiers (SCOWAs) [19-21].

SCOWA design is based on Marcatili's coupled-mode analysis which demonstrated that a large

multimode waveguide structure can be designed to operate in the single fundamental mode by

coupling the higher order modes to the adjacent slab waveguide[22]. SCOWAs offer large



saturation powers and large mode-size, the latter being compatible with that of a single-mode

fiber for efficient coupling. The SCOW topology has also been applied to lasers (SCOWL) in

both CW[23, 24] and mode-locked configurations[25-27]. However, because of the high

intensity of the optical signals inside the slab, optical nonlinearities limit the maximum

achievable saturation energy[28, 29]. In this thesis, the limitations imposed by optical

nonlinearities on the saturation energy of a SCOWA for transmission of pulses and their carrier

dynamics as a function of the bias current are studied.

The large bandwidth and high data rates offered by these photonic technologies is also

being extended to solving the current bottle-neck that exists in communication between different

chips on the same CPU board. Therefore, development of different silicon-based optical devices

using silicon technology has received a great deal of attention [30-37]. Silicon-photonics is an

attractive technology because of its compatibility with the mature CMOS technology which

enables low-cost large-volume production of devices. Because of advancements in silicon

technology, driven mainly by the semiconductor industry, silicon-waveguides with transverse

dimensions less than 20nm can be efficiently fabricated[38]. With such small feature sizes, many

compact silicon-based devices can be integrated on the same chip to produce a complete on-chip

transceiver[39-41]. However, with the increasing data rates, the pulsewidths of optical signals

become shorter resulting in higher optical signal peak power. The small transverse dimension of

waveguides carrying data results in peak intensities in the order of several MW/cm 2. At such

high intensities, the nonlinear optical properties of silicon limit the maximum power that can be

transmitted through these waveguides. This, combined with the carrier lifetime in silicon devices

which, depending on the quality of the material, can vary from a few hundreds of picoseconds to

several nanoseconds, limit the maximum achievable data rates. Nonlinear silicon photonics have



been extensively studied and has received much attention in recent years[32, 33, 42-57]. In this

thesis, we present the results of self-consistent femtosecond studies of these properties at 1.5pjm

in silicon nanowaveguides using a heterodyne pump-probe technique. This measurement

technique is sensitive to both instantaneous and longer-lived optically induced loss and index of

refraction changes. Therefore, both loss and refractive index changes are measured

simultaneously using the same technique. In the following sections, some of the applications of

mode-locked lasers and silicon-photonics are described.

1.2. Mode-locked lasers

Mode-locked lasers offer several advantages including high peak intensities, highly stable

repetition rate, and broad spectral range that have found many applications. The high peak

intensities produced by femtosecond and picosecond mode-locked lasers can be utilized to apply

a very high intensity burst of energy in a very short period of time, breaking bonds between

molecules or resulting in ablation of tissue. Therefore, mode-locked lasers have found

applications in nanosurgery[58, 59] and precision micro-machining[60, 61]. Their broad output

spectrum combined with their highly stable repetition rate has been utilized in many applications

such as frequency metrology[62-64], astrophysics[65], optical coherence tomography[66-68],

and optical arbitrary waveform generation (OAWG) [69-72]. Recently, a multi-disciplinary

collaborative project between MIT, UC Davis, and several companies was funded by DARPA to

develop such an OAWG system. An arbitrary optical waveform can be manipulated in the time

domain by controlling its Fourier components in frequency domain. The broad optical spectrum

generated by a high repetition-rate mode-locked laser is ideally suited to being divided spatially

in a way that permits each frequency component to be modulated rapidly for ultra-broadband



arbitrary optical waveform generation in the time domain. Figure 1-1 shows a conceptual picture

of this process. Mode-locked lasers play an important part in making OAWG systems possible.
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Figure 1-1 - Optical arbitrary waveform generation using a mode-locked laser. The output spectrum of
the laser is sliced into different wavelengths and each is amplitude and phase modulated in frequency
domain to generate an arbitrary E-field in time domain [69].

Stable operation of mode-locked lasers with femtosecond or picosecond pulsewidths has become

possible by addition of a semiconductor saturable absorber in the laser cavity. A saturable

absorber (SA) consists of a normally absorptive layer, the loss of which decreases with

increasing intensity of the incident light. As the formation of a pulse in a laser cavity results in

high peak intensities, this intensity-dependent transparency of SAs results in preferential

operation of the laser in a short-pulse mode. With the advancement in fabrication processes and

advent of bandgap engineering, broadband SAs with different absorption spectra nonlinearity

and bandwidth have become possible[73-79]. In addition to the saturation dynamics of an SA,
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the recovery times of a device can determine for a given output power, both the duration of the

pulses generated and the maximum repetition rate that can be achieved in the laser. Studies of

both saturation and ultrafast carrier dynamics of saturable absorbers are extremely important for

predicting the stability and limitations of a mode-locked laser. Saturation dynamics and effects of

proton bombardment on the carrier lifetime of different semiconductor saturable absorber mirror

(SESAM) structures are studied in this thesis.

1.3. Analog-to-digital conversion

Mode-locked lasers also offer low timing-jitter which can play a role in improving high

frequency electronic analog-to-digital conversion[80-82]. An example of such a system is

demonstrated in Figure 1-2. A mode-locked laser produces short pulses that are passed through a

length of fiber. The chirped output of the fiber is passed through an electro-optic modulator

(EOM), the input to which is the RF signal to be sampled. The output of the EOM is passed

through N-number of ring-resonator filter banks that spectrally separate the chirped pulses into N

wavelength-separated sub-pulses. These pulses are then converted to electrical domain using N-

photodetectors and sampled using commercially available ADCs. This provides an effective

sampling rate of N-times the sampling rate of that of the pulse repetition rate and electronic

quantization rate. One of the advantages offered by this system is that all the devices with the

exception of the mode-locked lasers can be fabricated in silicon, hence allowing for integration

of most of the components on a single chip. This project has been a collaborative effort between

MIT and Lincoln Lab funded by DARPA. In this thesis, the nonlinear optical properties of these

silicon nanowaveguides and the effects of proton bombardment on their recovery times are



studied. The results of these studies can lead to the design optimization at both component and

system levels.
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Figure 1-2 - An example of a photonic analog-to-digital converter. The optical path consists of a mode-
locked laser, 2km spool of fiber, an optical modulator, and several ring-resonator filter banks and
photodetectors. The electronics consist of several sample-and-hold and commercially available ADC
circuits, and a DSP chip.

1.4. Thesis outline

In chapter 2 of this thesis, I will give a brief overview of the nonlinear optical processes that play

a role in the experimental investigations described in the following sections. In Chapter 3,

limitations imposed by nonlinear optical processes on the saturation energy of a SCOWA are

. .. ....... ....... ....... .... ....... .. .... ............
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presented. A degenerate double-chopped pump-probe experiment using pulsewidths varying

between 1.4 to 40ps is utilized to extract the two-photon absorption coefficient. The gain

dynamic of the SCOWA as a function of the input power and pulsewidth is studied and the free-

carrier absorption effective cross-section and saturation energy of the device are extracted.

Chapter 4 contains a detailed study of ultrafast nonlinear optical processes in silicon

nanowaveguides in both phase and magnitude. The results of self-consistent femtosecond studies

of these properties at 1.5gm in silicon nanowaveguides using a heterodyne pump-probe

technique are presented. This measurement technique is sensitive to both instantaneous and

longer-lived optically induced loss and index of refraction changes. Therefore, both loss and

refractive index changes are measured simultaneously using the same technique. The results of

the study of the effects of proton bombardment on the carrier lifetime are also presented.

Chapter 5 deals with the study of semiconductor saturable absorber mirrors. A cross-

polarized pump-probe experiment was setup to study the ultrafast carrier dynamics of different

saturable absorber designs. These designs include single-absorber structures, single-absorber

SESAMs with resonant coatings, and double-absorber structures. The saturation dynamics and

the carrier lifetime in these devices as a function of proton-bombardment were determined.
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Chapter 2

Nonlinear Optical Processes

2.1. Introduction

The optical electric field incident on a semiconductor structure interacts with the outershell

electrons of the atoms and the free electrons resulting in polarization. The nonlinear polarization

P(o) at frequency w induced by an optical signal with electric field E(o) on a centrosymmetric

semiconductor structure, can be described by [1]

P(w) = E(w)+z E3(a)+...), (2.1)

where go is the permittivity of vacuum, and /") are the nth-order susceptibility terms. While the

optical susceptibilities can be tensors of order n, for simplicity, they are assumed to be scalars

with real and imaginary parts. The real and imaginary parts of ji) correspond to the refractive

index, and loss or gain of the device, respectively.

The /3) terms result in several different nonlinear optical effects such as two-photon

absorption (TPA), self-phase modulation, third harmonic generation, etc. TPA, gain saturation,

and free-carrier absorption (FCA) are optical effects that will be studied in this thesis using

several different pump-probe techniques. These processes are examined in the following

sections.



2.2. Two-photon absorption processes

When two-photons with energy below the bandgap but greater than half the band gap are

incident on a semiconductor structure, they can excite an electron from the valence band to the

conduction band. The excitation of the electron to a higher state can be said to be facilitated

through a virtual midgap transition. However, in the presence of midgap defect states, whether

created by proton-bombardment or created in the fabrication process, the electron transition takes

place through actual electronics states which are created by these defects. This latter process is

called two-step absorption (TSA). Because of the creation of the actual midgap states, the effects

of the TSA process can be several orders of magnitude larger than the TPA process, most

notably in comparing the TPA and TSA absorption coefficients of silicon and polycrystalline-

silicon[2].

Although TSA may be influenced by the lifetimes of the midgap states, two-photon

absorption is instantaneous and proportional to the intensity of the optical signal. An important

consequence is that TPA loss may impose limitation on the pulsewidth that can be transmitted

through a semiconductor waveguide structure for a given pulse energy. The free carriers

generated by the TPA process may further absorb light by excitation to higher states in the

conduction band. This loss is called free-carrier absorption (FCA) and is dependent on the

density of carriers in the conduction band. The two-photon processes as well as free-carriers in

the conduction band also result in refractive index changes in the material. The so-called optical

Kerr-effect results in an intensity dependent change in the refractive index of the material. In

addition, the free-carriers in the conduction band also result in a change in the index of refraction

of the material which is dependent on the carrier density.



These nonlinear optical effects can be demonstrated by examining the j3) terms in

Equation (2.1) for an optical signal with an electric field described by

E(r,t) = I-I(5,M (r, c)e'' +5s,,n (r, os )ejo'st + c.c.)e,, (2.2)

where e,, is the unit polarization vector, Epm, and Es,, are the complex electric fields and their

corresponding angular frequencies, co, and cos of the pump and probe pulses, respectively. The

nth order nonlinear polarization component can be written in terms of its Fourier components

using [3]:

P'") (r,t) = ( Zk (n) "e (r,woP-kPsr)" + P( )ei(ostks c.c.), (2.3)

where and can be related to the electric field components Ep, (r, w,) and

Es,m (r, os) by the nonlinear susceptibility terms. As discussed earlier, the third order nonlinear

polarization terms are the most relevant terms to the study of the nonlinear optical effects in this

thesis. Therefore, we consider as an example the case where the pump and probe pulses are both

of the same frequency and both are linearly co-polarized. Therefore, substitution of Equations

(2.2) and (2.3) in (2.1) to produce a nonlinear polarization at co for a centrosymmetric crystal

such as silicon while showing two of the terms that play an important part in studying the

different nonlinear optical effects, results in a third-order polarization of the form

p(3 ) (o) - Ac_(3) (O; o,-o, ) (JE, (c) Es (w) + c.c.) (2.4)

+ A2 OX(
3

) (c; o, o,-c)(E, (c)E* (c)E, (o) + c.c.)

where A, and A 2 coefficients are constants and they are determined by proper summing over non-

distinguishable terms[1, 3]. It is obvious from this equation that 20) process can be considered as
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an intensity-dependent variation of the /") process. One consequence of this nonlinear

polarization then, if it has an imaginary part, is an induced absorption proportional to jE, (ao)j

which is in turn proportional to the intensity of the optical field. The real part of /) results in an

intensity-dependent refractive index change, called optical Kerr-effect.

The second term in the above equation is proportional to the product of the pump and

probe electric fields. This term is a result of the coherent interference between the pump and

probe beams near zero time delay. Sometimes called the coherent artifact, this term is

proportional in magnitude to the cross correlation term at zero time delay and contributes a factor

of 2 to the magnitude of the measured response[4]. However, for a cross-polarized pump-probe

measurement of population dynamics in a semiconductor, the coherent artifact diminishes to zero

because of faster-than-the-pulsewidth relaxation of any transition-induced anisotropy in the

excited population. The coherent artifact term is an important factor in the other components of

pump-probe experiments described in this thesis.

Free-carriers generated by the TPA process results in a change of index of refraction of

the material. The complex refractive index can be written as [5, 6]

n(I)= no +n21-i--(an, +11) (2.5)
47r

where no is the refractive index of the material, n2 is the optical Kerr coefficient, an is the linear

loss in the material, and p is the two-photon absorption coefficient. These intensity-dependent

parameters are related to susceptibilities by [5]

#=l -3co Im (2.6)
2c 2 ng (2.6

n2 3 Re { (3), (2.7)4cnoeo



where c is the speed of light in vacuum, no is the refractive index and so is the vacuum

permittivity. The FCA effects can also be added to the complex index of refraction of Equation

(2.5) to lead the following formula:

n(I)=no+n2 1+f#(N)-i a +1+-f,(N)), (2.8)
4;f

where f, (N) and o-fa (N) are the refractive index change and loss due to free-carriers in the

conduction band with density N [7]. Several different measurement techniques have been used

to extract these parameters for both direct and indirect bandgap materials. In addition to

measurement techniques, models predicting the TPA and Kerr coefficients have been developed

and their predictions were compared to the measured results[6].

2.3. Band-gap dependence of TPA and Kerr coefficients

The band-gap dependence of the TPA and Kerr coefficients of several different semiconductor

materials have been modeled previously[6, 8]. The TPA coefficient in (cm/GW) was found to be

given by[8]

p = F ,2h o (2.9)

where K is empirically equal approximately to 3100 and is independent of the type of material, n

is the refractive index, Eg is the bandgap of the material, Ep is nearly material independent and

for most direct semiconductor materials, it is approximately 21 eV, and F is a function that is

dependent on the band structure and is given by[8]

F(x=(2x -l)3/
F (2x) (2x) for 2x > 1. (2.10)

(2x)5



The optical Kerr-effect is similarly modeled by[8]

G h0

2 = K' , (2.11)
nE,

where K'=3.4x 10-8, Eg is the bandgap of the material, and G is a function given by the following

formula:

-2+6x -3x 2 _X3 _ 4_ sG(x)(= for 2x <1. (2.12)
(2x)

These models apply to direct bandgap material. In the following chapters, the effects of

these nonlinear optical processes on the performance of several passive and active devices are

studied. The above equations were utilized to compare the measured and theoretical TPA

coefficient of InGaAsP in the slab-coupled optical waveguide amplifier (SCOWA) of Chapter 3.
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Chapter 3

Slab-Coupled Optical Waveguide Amplifiers

Abstract:

The limits imposed by two photon absorption and free-

carrier absorption on the gain and output powers of an

InGaAsP/InP slab-coupled optical waveguide amplifier with a

confinement factor of r = 0.5% were studied. The two-photon

absorption coefficient and the induced free-carrier absorption

cross-section were measured to be 65cm/GW and 7x10- 7 cm2,

respectively. The effects of two-photon absorption begin to limit

the gain significantly for pulses shorter than 40ps. The carrier

recovery times were observed to vary between 390 to 160ps for 1A

to 4A bias currents, and the short-pulse saturation fluence of the

gain was determined to be 1.4mJ/cm 2.



3.1. Introduction

Transmission of optical signals over long distances, whether in fiber or in free space, suffers

from attenuation due to scattering and absorption. Free-space optical communication (FSO)

systems also offer large data rates and have received a great deal of attention in recent years[1-

4]. Optical signals transmitted over long distances must be amplified at several intervals to

overcome the scattering and atmospheric losses. Eye-safe, high power optical lasers and

amplifiers operating around 1.5pm can extend the transmission range and reduce the number of

repeater stations. Output powers in the excess of 1W at wavelengths near 1.5pm are in demand

for free space optical communication systems, optical array transmitters, and laser radar systems

[5-8].

Semiconductor optical amplifiers are compact in size, have large optical bandwidths

(~I00nm)[9], and can produce high powers in the order of 400mW[10]. SOAs have also found

application in the design of wavelength convertors and optical switches[l 1, 12], making them

devices of choice for photonic integration leading to a single-chip optical system. Despite their

advantages, SOAs exhibit poor coupling to optical fibers. An important goal of semiconductor

optical amplifiers technology is to increase the single-mode output powers, both CW and pulsed,

that can be produced by these compact devices.

The saturation energy of an SOA is defined as the output power where the amplifier gain

has dropped by half of the small signal gain. This saturation power can be written[13]:

PO T Go ln 2)wd)(ho'(31
Go -2 F' ar

where Go is the small-signal gain of the amplifier, w and d are the width and thickness of the

active material, respectively, F is the confinement factor, ie the overlap between the optical mode



and the active region, hco is the photon energy, a is the differential gain, and r is the carrier

lifetime. One approach to achieving such high powers is to increase the size of the optical mode

in lateral(w), vertical(d), or both dimensions. This can be accomplished by a tapered waveguide

which requires complex coupling optics to a single mode fiber. The other method is to decrease

the confinement factor (F). A device that incorporates both strategies is the slab-coupled optical

waveguide amplifier (SCOWA)[13]. The SCOW topology has also been applied to lasers

(SCOWL) in both CW[14, 15] and mode-locked configurations[ 16-18]. The limitations related

to two-photon absorption (TPA) in these devices have been discussed[ 19-22]. The low-

confinement factor (<1%) increases the importance of nonlinearity in the passive waveguide

relative to that of gain saturation in the active region. Furthermore, the fact that instantaneous

nonlinearities such as TPA depend on peak power, whereas gain saturation depends principally

on the optical energy within a population recovery time, imposes limitations on the output power

in general and more severely on short pulses. In this chapter, the topology of a SCOWA is

described, and the limitations imposed by the nonlinear optical processes are discussed and

studied. In addition, the recovery times of one of these devices are measured as a function of the

bias current to determine the maximum data rate through it.

The rest of this chapter consists of a section describing the SCOWA device physics

followed by a model describing the evolution of a pulse as it propagates along the device.

Because of the high input polarization dependence of a SCOWA, a double-modulated degenerate

pump probe experiment was used to study the ultrafast carrier dynamics and nonlinear optical

processes in a SCOWA. The description of this experimental setup is given in Section 3.3. The

results of the pump probe experiment are presented in Section 3.4, including the extraction of the

nonlinear parameters using both a model which is fit to the data and direct measurement using



the pump probe results. This chapter is concluded with suggested future work and a summary of

the study.

3.2. SCOWA basics

Slab coupled optical waveguide amplifier design is based on Marcatili's coupled-mode analysis

which demonstrated that a large multimode waveguide structure can be designed to operate in

the single fundamental mode by coupling the higher order modes to the adjacent slab

waveguide[23]. By incorporating an active region using quantum-well technology in an

otherwise passive waveguide, an optical amplifier with large fundamental mode can be designed.

An example of a schematic diagram of a SCOWA is shown in Figure 3-1 which illustrates the

propagation of a single mode optical signal in the n-doped InGaAsP layer with a small overlap

with the active multiple quantum-well region. Careful selection of the dimensions w, h, and t

results in a structure that supports only the fundamental mode. The higher order modes are

dissipated in the cladding. The optical mode of a SCOWA can be designed to match the

fundamental mode of an optical fiber, hence butt-coupling efficiency in the order of 90% has

been demonstrated [24].

-+W

i SlabWaveguide

n4nP

Figure 3-1 - InP based slab-coupled optical waveguide amplifier
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In a SCOWA, the gain is provided by the overlap of the mode with the active region of

the device, made up of p-doped multiple quantum-wells. The confinement factor F is designed

to be in the order of 0.1 to 0.5% to achieve high saturation power (>1W). However, as the net

gain coefficient of a waveguide is g,,, = [go - a, (cm 1 ), where go is the active-material gain

coefficient, and a, is the intrinsic loss of the device, to achieve reasonable gains (10-15dB), the

low confinement factor results in a long device. A benefit of a long device is that it facilitates

heat removal, hence allowing for large bias currents to achieve higher gains and faster recovery

times.

3.2.1. SCOWA device physics

The two main nonlinear optical processes, namely, two-photon absorption (TPA), and free-

carrier absorption (FCA), impose limitations on the maximum achievable output power in a

SCOWA device. TPA and FCA are both loss processes. To help understand their effects, the

band diagram of a SCOWA is examined. The band diagram of a p-i-n SCOWA is shown in

Figure 3-2, with the optical mode intensity overlayed on this diagram. The optical propagation in

this figure is into and out of the page.
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Figure 3-2 - Band diagram of a p-i-n SCOWA electronic carrier injection. Optical propagation in this
figure is into and out of the page[20].

As depicted in this figure, the active region consists of a multiple quantum-well (MQW)

region with a bandgap of 1540nm. This active region is placed between the p and n-doped

InGaAsP regions of wider bandgap (1040nm). When the device is forward biased, the electron

and holes are injected into the multiple quantum-well region of the SCOWA from the n-doped

and p-doped regions, respectively. Once the carrier density in the MQW region becomes large

enough, the input signals within the gain bandwidth of quantum-wells (-1540nm) experience

gain through stimulated emission. As shown, the optical mode has a small overlap with the

MQW region; hence the majority of the optical mode lies within the n-InGaAsP waveguide

which has a bandgap of approximately 1040nm. Therefore, even as the optical signal experiences

gain, the high intensity region of the optical mode self-induces loss by generation of electron-

hole pairs via TPA in the waveguide. The TPA-generated carriers also cause another loss

mechanism through FCA. The combination of these two mechanisms limits the maximum

intensity that can be produced in these amplifiers.
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3.2.2. Pulse propagation model

The pulse propagation through an active medium is a function of the material gain, the internal

losses and the confinement factor. The differential equation describing pulse propagation along

the length of a SCOWA is given by:

dI(z,t) =J(z,t)[g, (z, t) -a(z,t)], (3.2)
dz

where F is the confinement factor, g,,, (z, t) is the local material gain, and a (z, t) is the local

loss coefficient. I(zt) is defined here to be the peak intensity of the pulse and is related to the

power P(z, t) by

P(z,t) = JfJ(x,y,z, t)dxdy = I(z, t)- Amode . (3.3)

For pulses much shorter than the gain (carrier) recovery time, the local dynamic material

gain, g,,, (z, t), can be determined from

t
- jdrI(z,z)/Fsat

g, (zt)= goe , (3.4)

where g0 is the unsaturated small signal gain, and F,,, is the pulse saturation energy density

related to the saturation energy, Et,, by Fa, = Esat/Amode . We note that the gain is not constant

over the duration of a pulse and that this can result in pulse shape changes.

The loss, a(z, t), is a sum of several mechanisms:

a (z, t)= a, (z, t)+ a2FCA (Z it) n +a. (3.5)

The internal loss, ain, is a property of the constituent material and can be approximated

to be uniform along the length of the device and independent of optical power. The two-photon

loss is a function of the incident intensity and is described by



a,,A (z,t) = #'I(z, t), (3.6)

where 8' differs from the plane wave TPA coefficient # according to

/6' = j 1 2 (x, y,z,t)dxdy (37)
I 2 (z,t ). Amode

This is equivalent to defining an effective area for a Gaussian mode as described in [19] and for a

Gaussian mode profile this results in p' = ,/2.

In addition to TPA loss, the free carriers generated by this process can further absorb

energy from the incident beam. This free-carrier absorption (FCA) depends on the square of the

intensity of the pulse and, for pulses much shorter than the carrier lifetime and diffusion time, the

FCA loss can be expressed by:

a2FCA (z,t)= a' '29T) dr , (3.8)

where hw is the incident photon energy. The effective FCA cross-section a' used in this

expression is related to the plane wave cross section a- by

S ffj 3 (x, y, z, t)dxdy (39)
I 3(z,t)- Amode

For a Gaussian mode profile a'= o-/3.

Using the above definitions, the differential equation of (3.2) can be written as:

t~

dz It) - zdr(z,r)/Fa t 82(z9r)
dz I(z, t) [ge -p'I(z, t)- fa' dr - a . (3.10)

-00I

This differential equation was solved numerically for different pulse energies. The result of this

analysis is compared to the measured data and presented in Section 3.4.



3.2.3. SCOWA Device Structure

The devices used in this study are InGaAsP/InP slab-coupled optical waveguide amplifiers

fabricated at the MIT Lincoln Laboratory. They were grown on n-type InP substrate using

organic-metallic vapor-phase epitaxy method, and consist of n-InP cladding layers of 1 prm

thickness. The device waveguide is constructed from a lightly-doped n-InGaAsP layer with 5pm

thickness. The active region consists of 5 compressively strained (1%) InGaAsP quantum wells

of 8nm thickness with composition yielding a peak photoluminescence at 1530nm[20]. The

lateral confinement is achieved by etching a strip-loaded waveguide into the InGaAsP waveguide

with a width of 5.4pm and depth of 0.5pm. As a result, the fundamental mode of the optical

wave in this structure is 5x7Rm comparable to the mode size of single-mode fiber. To minimize

the optical feedback into the device, and hence lasing, the output facets were cleaved at a 5

degree angle. The device is then mounted on a copper baseplate with a thermoelectric cooler to

stabilize the temperature of the device. Figure 3-3 depicts the actual device as mounted on a

metal block. The optical input is coupled into the device using a lensed-tip fiber, and the output

is collected using a high NA lens.



Figure 3-3 - SCOWA device mounted on a copper plate in the center of the picture. The mount on the
right hand side of the picture contains a lens-fiber to couple light into the device. The output is collected
using a large NA lens as shown on the left hand side of the picture.

3.3. Experimental Setup

To study the ultrafast nonlinear processes and the recovery times of a SCOWA, a pump probe

experiment is utilized. Because of the large polarization dependence of the gain of the SCOWA

(-20dB), a degenerate double-chopped pump-probe experiment as shown in Figure 3-4 was set

up. The optical source is an optical parametric oscillator (OPO) pumped by a femtosecond

Ti:Sapphire laser (Spectra-Physics MaiTai and OPAL). The output wavelength of the OPO can

be tuned between 1100 and 1600nm. The output pulses are 150fs in duration with the repetition

rate of 80 MHz.

. .. . .. ........ ... ...
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Figure 3-4 - Double-chopped degenerate pump probe setup

The light from this laser source is split into two paths, the pump and the probe, at the

ratio of 70:30, respectively. The pump path traverses through an optical delay stage, and is

recombined with the probe at the beam splitter with the same polarization. The pump is chopped

at 1.9KHz, and the probe at 2.6KHz. Two halfwave plates, one in each arm of the pump and the

probe signals, in combination with a polarization beam splitter are used as variable attenuators to

control the incident pump and probe power levels. The pump and probe beams are passed

through a double-pass grating pair separated by a variable distance D. The grating pair is used to

stretch the 150fs pulses from the OPO, to pulses with duration in the range of 1.4ps to 40ps.

These stretched pulses are then utilized to study the effects of the nonlinear optical processes in a

SCOWA, as a function of the signal pulsewidth.

splitter

.. .. .... ...... _ ... ..... ......



The stretched pulses are then coupled to a short length of fiber and a polarization

controller. To monitor the optical power that is coupled into the SCOWA, the combined pump-

probe pulses are passed through a 10:90 coupler with the 10% port used to monitor the input

power. A lensed-tip fiber with mode profile matching that of a SCOWA is utilized to couple the

incident light to the SCOWA. The amplified light from the output of the SCOWA is collected

with a high NA lens and passed through a 50:50 beam splitter. One port is utilized for measuring

the absolute power, while the other port is connected to a lock-in amplifier where the magnitude

of the signal at the sum of the two chopping frequencies, i.e. 4.5KHz is measured. The 4.5KHz

reference signal is generated by mixing and filtering the pump and probe chopping frequencies.

This method ensures that any variations in the probe chopping frequency caused by the

mechanical chopper are tracked by the lock-in amplifier. The detected signal from the lock-in

amplifier is collected and analyzed later.

This setup was further utilized to make direct gain measurements of the SCOWA as a

function of the pulsewidth and input power. For this, the probe path was blocked, and the output

of the SCOWA was detected using the power meter and the lock-in amplifier. In the direct gain

measurement, the combination of chopper and lock-in amplifier technique eliminates the offset

due to the ASE.

3.4. Results and Discussion

The pump-probe traces as a function of the pulse energy for 10ps pulses are shown in Figure 3-5.

In double-chopped pump-probe, unlike in cross-polarized and heterodyne pump-probe

techniques, at low powers, the traces are symmetric around t=O. The symmetric pump probe

traces is an inherent property of the double-chopped pump probe technique when the pump and



the probe are not optically separated. When the probe is leading the pump, the probe induces

changes on the pump at its chopping frequency, and vice versa. Since the product of the pump

and probe signals is measured, the resulting trace is symmetric around t=O. This symmetry holds

for low powers.

As shown in Figure 3-5, the pump-probe data yielded an instantaneous induced

absorption followed by a longer recovery time of the depleted gain. The large induced absorption

at zero time delay consists of two components: the smaller component which is due to the

depletion of the carrier as the pump and the probe signals get amplified in the device, and the

larger component is due to the two-photon absorption when the pump and probe are perfectly

overlapped in time domain. This instantaneous response is followed by a slow gain recovery

time which is a function of the carrier lifetime in the device. As a result, the pump probe traces

are the result of the convolution of the device transfer function and the pulse. The transfer

function of the device can be modeled using

h(t)= a5(t)+aie- t/rU(t), (3.11)

where ao is the amplitude of the instantaneous response and it is proportional to the TPA induced

effect, a, is a function of the FCA loss which is a function of the number of free-carriers, u(t) is a

unit step function, and -rr is the carrier recovery time of the device.
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Figure 3-5 - Double-chopped pump traces of the SCOWA device with 10ps pulses. Consists of TPA
induced absorption at the delay, t=0, and long a recovery time.

As Figure 3-5 shows, the induced loss due to the TPA process is proportional to pulse

energy for a fixed 10Ops pulse duration. As demonstrated in Figure 3 -6, for the same pulse energy,

the induced absorption due to the TPA decreases with increasing pulsewidth as expected for a

process that depends on peak intensity. From the same figure, we can see that after about 60ps,

the longer-lived gain compression is the same for all pulse durations since the number of carriers

depleted as a result of the stimulated emission depends only on total pulse energy which is the

same for all traces.
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Figure 3-6 - Induced absorption as
1.8pJ.
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Figure 3-7 - Fractional TPA induced loss as a function of inverse pulsewidth, measured vs theory.
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The peak value of the instantaneous TPA loss was measured for different pulse widths at

a 4A bias current. With adjustment for the coherent artifact at t=0[25], the results are plotted in

Figure 3-7 as a function of inverse pulse width 1/. For a given input pulse energy, absorption

due to TPA is expected to vary linearly with 1/ given by (Appendix A):

M_ 1 -e-g"L EA =-26 LI, (L)cos(o, + E2)t oc - (3.12)
I, (L) gEL ')T

where I, is the pump intensity, wz and w2 are the pump and probe chopping frequencies, L is the

length of the device, g is the material gain, F is the confinement factor, and 8 is the two photon

absorption coefficient. For pulse energies below 900fJ, there is an excellent agreement between

the above formula and the measured results. From this figure and the slope of the line, the TPA

coefficient was measured to be 65cm/GW. However, at higher pulse energies, the curves deviate

due to higher order effects such as absorption of the pump and induced FCA losses. This is

evident in Figure 3-7 for the input energy of 900 fJ.

In addition to the nonlinear optical process, from the pump-probe traces, we can

determine the gain recovery times of the SCOWA. The longer gain recovery characteristic was

studied at different bias currents for a time delay of up to 400ps. The results, shown in Figure

3-8, reveal a recovery time that varies from 390ps at IA to 160ps at 4A. These measurements

are important for the design of modelocked systems and also provide an accurate determination

of the relative magnitudes of the ultrafast TPA response and the carrier depletion. At the higher

pulse energies the additional gain suppression due to FCA is also evident on this time scale.
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Figure 3-8 - Carrier recovery times of the SCOWA as a function of the bias current.

The net saturated gain of the device, biased at 4A, was measured as a function of input

pulse energy, for several different input pulse durations. The results are shown by the dotted

lines in Figure 3-9. These measurements demonstrate that the 3dB gain roll off moves to lower

pulse energies as pulse duration is decreased. This can be directly attributed to the effects of the

TPA and FCA losses which are proportional to the intensity and the square of the pulse intensity,

respectively. The solid lines in Figure 3-9 are the results of simulations of pulse propagation

through the device using the analysis described in Section 3.2.2. The close fit between the

simulations and the measured results were achieved with a single set of parameters for all curves:

unsaturated gain go = 640/cm, confinement factor IF = 0.5%, material loss a int= 0.5/cm, FCA

effective cross section a- = 7x10-4 cm2, saturation energy density, Fsat = 1.4mJ/cm 2 , and TPA

coefficient, p8 = 65cm/GW. The resulting TPA coefficient of 65cm/GW is in close agreement

with the calculation of the TPA coefficient based on its dependence on the inverse cube of the



bandgap energy[26], assuming the TPA coefficient of InP as reported in[27]. The FCA effective

cross section, a is in close agreement with the value reported in[20]. The small deviations

between the measured and simulated results at high pulse energies may be due to the pulse

shaping in the amplifier due to self-phase modulation and dispersion. The instantaneous

components in the pump-probe data at low energy show that dispersion by itself is not a

significant factor.

The 3dB saturation-energy level which is defined to be the input energy level that results

in the gain of the device to be half of that of the small-signal linear region is calculated and its

difference with respect to an ideal case where there is no TPA or FCA in the device is

determined. The result of this calculation is shown in Figure 3-10. As can be seen in this figure,

the 3dB input energy level is decreased dramatically at very short pulsewidths (150fs). In fact,

even at very low input pulse energies, the effects of the TPA can be observed.



-Model
- -- Measured

o TPAr FCA

40Ops

~ Ops

1ps

0 I
10 10

Figure 3-9 - SCOWA gain dynamics
solid lines are the modeled results.

-280

-300 ------------

-320 -- ---- - -

-340 -

- -360 - - --- -

i -380 --

-1 400 ------------ ------- Y

at 4A bias current. The dashed lines are the measured data and the

0 5 10 15 20 25 30 35 40
Pulsewidtli (ps)

Figure 3-10 - 3dB gain roll-off penalty relative to a SCOWA with zero TPA and FCA effects, as a
function of the input pulsewidth.

10 2I -3
10~ 10-1

E./Em sat



3.5. Conclusion

In this chapter, the limitations imposed on the saturation output power of a SCOWA device by

TPA and FCA processes, have been demonstrated. The quantities of the ultrafast nonlinear

coefficients were determined. A model was developed to predict the saturation energy of the

amplifier as a function of the input pulsewidth. The gain of the SCOWA rolls-off at very low

input pulse energy levels for pulses of 150fs, and it becomes a challenge to produce significant

output energy to transmit such pulses over long distances. This also creates a challenge to design

femtosecond mode-locked lasers using SCOWAs. Solutions to reduce the effects of the TPA

may facilitate implementation of these amplifiers in the ultrafast optical systems. A solution

may be to construct the slab layer, where the optical intensity is the highest, from higher bandgap

materials compatible with the InP technology.
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Chapter 4

Ultrafast Nonlinear Optical Processes in

Silicon Nanowaveguides

Abstract:

Optical nonlinear processes in high-index contrast

waveguide circuits consisting of 106nm x 497nm silicon

waveguides with SiO2 and HSQ cladding layers were studied using

a heterodyne pump probe experimental setup. The linear loss of the

device was determined to be 6.5dB/cm. The two-photon absorption

coefficient and free-carrier absorption effective cross-section were

determined to be 0.68cm/GW, and 1.9x1O~" cm 2, respectively. The

plasma dispersion effects, Kerr coefficient, and free-carrier

induced refractive index change were determined to be 0.32x10-3

cm2/W, and -5.5x10 2 cm3. The effects of the proton bombardment

on the linear loss and the carrier lifetime of the devices were also

studied. Carrier lifetime reduction to 33ps with a linear loss of only



14.8dB/cm was achieved using a proton bombardment level of

lO/cm2.

4.1. Introduction

Silicon-based optical devices have received a great deal of attention in recent years in both

telecomm and electronics industries[ 1-12]. Nonlinear optical properties of silicon provide both

advantages and disadvantages in the design and implementation of such optical devices. They

have been utilized in the design of modulators, receivers, and filters to achieve optical

communication systems with bit rates in the order of ITbits/sec[3]. At a component level, high-

sensitivity sensing[13], optical switches[14-16], and broadband electro-optic modulators[17-21]

have been demonstrated. Although similar performance can be achieved using III-V devices,

silicon optical devices can be produced efficiently, taking advantage of the mature silicon

technology that has been extensively developed and perfected over the last century to permit

low-cost, large-volume production. This leads to optical devices compatible with the CMOS

technology for on-chip integration. The high bandwidths and the high speeds of optical

communication systems allow for on-board communication systems at speeds greatly surpassing

the electronic altemative[22].

To realize on-board all-optical processing, it's necessary to design and implement both

passive and active optical components. Some of the inherent properties of silicon that facilitate

the design and implementation of such components are the ultrafast and slow nonlinear optical

properties of silicon that can be utilized in the design of optical switches[14-16], wavelength

converters[23-25], and analog-to-digital converters[26-28]. In addition, as this technology is

based on silicon-on-insulator (SOI) structures, a very high index contrast can be achieved



between Si (n=3.45) on SiO2 (n=1.45). This high index contrast makes possible highly-confined

optical modes in the 1.5pjm wavelength range below the bandgap of silicon. Efficient, low-loss

transmission of optical modes in waveguides with submicron features makes these devices

suitable for the integration of optics and electronics on the same chip[29-33]. The high

confinement factor also results in containment of the optical signal inside the silicon section of

the device and maximizes the nonlinear optical effects which are solely dependent on the peak

intensity of the signal. In addition, the high index contrast achieved with this technology allows

for on-chip features such as small-radius ring resonators, and tight, low-loss bends that are not

easily achieved using other technologies[30]. Finally, because of a century of continuous

research and development driven by the demand for faster processing and communication

networks, 10nm feature sizes can be efficiently and easily implemented at low cost using the

CMOS technology[34]. Such small feature sizes have been utilized to make slow-light photonic

crystals[35] that increase the nonlinear interaction length and enhance the nonlinear effects.

While the nonlinear optical processes are often highly desirable, other inherent properties

of silicon make the implementation of silicon-based optical active and passive devices

challenging. One of these properties is the indirect bandgap of silicon which makes the

realization of an efficient silicon-based laser a great challenge. Another property of silicon is the

centrosymmetric property of its crystal. Because of this property of silicon, the design of silicon-

based electrooptic modulators is challenging since it makes a long interaction length necessary.

Finally, the recovery times in silicon devices vary from several hundreds of picoseconds to

several microseconds depending on the structure and the type of silicon crystal[36, 37]. This

imposes another challenge in implementation of silicon-based devices in fast optical

communication systems since accumulating carriers can produce loss and phase patterning



effects. Nevertheless, many of these challenges have been overcome, and silicon-based lasers

[38, 39] and devices with fast recovery times[40, 41] have been demonstrated.

Silicon-based devices that are of particular importance are those that employ the high-

index contrast (HIC) structure. Several different types of devices have been designed and

demonstrated using HIC[30, 31, 33]. Because of this versatility and variety of designs, HIC

structures have received a great deal of attention in both the computer and telecom industries.

Since nonlinear optical properties of silicon and the recovery time of these structures play an

important part in the performance of devices employing this technology, the rest of this chapter

describes the study of these properties.

In the next sections, some of the background of nonlinear optical processes and their

application in the design of optical devices is presented. In Section 4.3, the description of the

device used, including fabrication process, geometry and mode profile in the waveguides is

provided. To study the nonlinear optical processes in these waveguides, a heterodyne pump-

probe experiment was implemented. It is described in this Section 4.4. Pump-probe results to

extract the nonlinear optical parameters as well as the effect of proton bombardment on the

carrier recovery times in the waveguide are discussed. In addition, in this section, an accurate

method for determining the coupling loss between the waveguides and the lens fiber is described.

Furthermore, the effects of proton bombardment on the carrier recovery and the linear loss of the

waveguides are studied and the results are presented in Section 4.6.3.



4.2. Background

4.2.1. Linear and nonlinear optical processes

The complex refractive index of a device can be described by[42]

n = nR+ In on 21 # (N)-i (al, +/pI + o-f (N)) (4.1)
4z

where no is the refractive index of the device, n2 is the Kerr coefficient, A is the optical

wavelength, alin is the linear optical loss, p is the two photon absorption coefficient, fo (N) is

the induced phase and ofa (N) is the loss incurred due to the interaction of the optical field with

the TPA-generated free-carriers of density (N), and I is the intensity of the optical field. The

imaginary part of the complex refractive-index

2
n, = 4,(alin,8 p+ af, (N)) (4.2)

47r

demonstrates the loss mechanisms incurred by an optical field. These losses can be divided into

two categories, linear and nonlinear. Linear loss, ali, is due to the impurity of the constituent

elements and the surface roughness of the waveguides, both of which are dependent on the

fabrication process. The linear loss is relatively constant over the length of the device and scales

linearly with the length. In addition, linear losses are independent of the optical power inside the

waveguide.

Nonlinear optical losses can be further divided into two processes, two-photon absorption

(TPA) and free-carrier absorption (FCA). To explain these two processes, we refer to the band

diagram of silicon crystal as shown in Figure 4-1. As demonstrated, the energy gap of silicon at

k=O is 3.4eV, while the lowest energy difference between the conduction and valence band is
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1.12eV. However, for an electron to be excited from the valence band to the conduction band, a

photon with at least 1.12eV of energy, or two photons with the sum of energy greater than or

equal to 1.12eV, and a phonon are needed. The latter process is called two-photon absorption.

The fact that silicon is an indirect bandgap material, and that both a photon and a phonon are

needed for an optically induced transition, greatly limits silicon's use as a light emitter[43, 44].

The free-carriers that are excited to the conduction band as a result of either single photon or

two-photon absorption can further absorb photons and be excited to higher energy states. This

absorption process is named free-carrier absorption (FCA) and its magnitude is proportional to

the number of free-carriers. Both TPA and FCA contribute to optical losses incurred in silicon

devices at 1.5ptm wavelengths, and their magnitude is a function of the optical intensity.

Energy 300 K E = 1.12 eV
EL= 2.0 eV
E = 1.2 eV

E =0.044 eV
Eri= 3.4 eV
En= 4.2eV

<100> x E 11

E_ Heavy holesWave vector

Light holes

Split-off band

Figure 4-1 - Band diagram of silicon crystal. The indirect bandgap of silicon is 1.12eV [45].

Silicon-based devices have received attention for telecom applications in which the

photon energy is in the order of 0.8eV and silicon devices are practically transparent for very low

optical power transmission. In fact, due to the indirect bandgap of silicon, its TPA is much



smaller than that of III-V based devices. However, with the increasing demand for higher bit rate

communication systems, the duration of optical pulses carrying data is getting shorter. To

maintain the same pulse energy and the same BER, shorter pulses must have higher peak powers.

As the TPA is a function of the peak intensity, the shorter pulses combined with the smaller

waveguides result in peak intensities in the order of several MW/cm 2 and to significant losses

and pulse broadening.

Although the TPA process results in optical losses in transmission of signals over long

distances and at high optical intensities, its presence can be exploited in the design of square-law

detectors and cross-absorption modulators. Square-law detectors can be utilized in optical

autocorrelators for measurement of ultrashort pulses. In contrast to using a nonlinear crystal in an

autocorrelator, a square law detector is independent of the phase-matching condition and the

incident angle or polarization of the optical pulse. In addition, the instantaneous response of TPA

can also be utilized in ultrafast cross-absorption modulation in high speed optical switches and

wavelength converters[24]. Another application of TPA is in pulse compression taking

advantage of the higher loss at the trailing edge of the pulse compared to that at the leading

edge[46].

Measurement techniques employed to characterize the magnitude of the TPA coefficient

consist of Z-scan technique[47], picosecond pump probe[41], and fitting a model to the

transmission response[48, 49]. The TPA coefficients measured using these techniques vary

between 0.44 to 0.9 cm/GW in the 1400-1600nm wavelength range. The large range of values

emphasizes the necessity to characterize the TPA coefficient more carefully.

In addition to the imaginary part, the real part of the complex refractive index plays an

important part in the design of optical devices. The real part of the refractive index indicates the



amount of phase shift that an optical pulse incurs as it propagates through a silicon layer. This

phase shift is exploited in the design of optical switches[15, 16], Mach-Zehnder

interferometers[50], super-continuum generation[5 1], and all-optical wavelength converters[23].

The phase-shift component, similar to the loss mechanism, consists of one constant term and two

intensity dependent terms:

nR n0 n 2  f(N). (4.3)

The first, denoted by no, is the refractive index of the material and is the property of the material

comprising the waveguide. The second term is a function of the optical field intensity and is

characterized by the Kerr coefficient, n2. Finally, the third component results in the refractive

index change as a function of the density of free-carriers (N) generated by the TPA process.

Measurement techniques employed to extract the Kerr coefficient include, Z-scan

technique[47, 52, 53], use of SPM[48, 54, 55], the four-wave mixing (FWM) in silicon

waveguide[56, 57]. The extracted values of the Kerr coefficient range from 2.8x10- 4 cm 2/W to

14.5x10- 4 cm 2/W. Similar to TPA, the published n2 coefficient values have a large variation.

Table 4-1 and Table 4-2 provide a list of previously published TPA and optical Kerr coefficients

measured using the above techniques. In this chapter, the direct measurements of all of the

nonlinear optical parameters with high sensitivity are presented.



Table 4-1 - Two-photon absorption published data including references and measurement techniques[58].

Table 4-2 -
techniques[58].

Optical Kerr-coefficient published data including references and measurement

TPA coefficient Wavelength Measurement
Reference

(cm/GW) (nm) technique

0.44 1560 1/transmission fit [38]

0.45 1536 1/transmission fit [55]

0.5 1455 Transmission fit [59]

0.6 1550 Transmission fit [48]

0.67 1547 1/transmission fit [60]

0.7 1550 Picoseconds pump-probe [41]

0.79 1540 z-scan [47]

0.9 1530 1/transmission fit [61]

Optical Kerr Wavelength Measurement
coefficient Reference

(cm 2/W) (nm) technique

2.8 1500 z-scan [53]

3.7 1559 SPM [54]

4.5 1540 z-scan [47]

4.5 1550 FWM [57]

5 1500 SPM [62]

6 1536 SPM [55]

6 1550 z-scan [52]

6.5 1550 Phase model [41]

7 1530 Spectral transmission [61]

9 1547 FWM [56]

14.5 1550 SPM [48]



Direct measurement of the parameters in Equation (4.1) reduces the uncertainty. For this

purpose, a heterodyne pump probe experiment is conducted. This measurement technique

provides both magnitude and phase information facilitating accurate characterization of all

nonlinear terms with the same measurement. Specifically, the heterodyne pump-probe technique

has the dynamic range and sensitivity to simultaneously extract the instantaneous response and

the FCA loss and phase change as a function of the carrier density. This measurement technique

involves mixing a reference signal with the probe signal to separate the probe from the pump.

The mixing product of the reference and the probe signals results in a beat frequency whose

amplitude and phase are modulated as a function of both the pump intensity and the delay

between the pump and probe signals. A detailed description of this technique is given in Section

4.4.

4.2.2. Ion implantation and recovery times

Generation of optical carriers as a result of TPA is an instantaneous process, while the carrier

lifetime in silicon waveguides can be in the range of tens of nanoseconds to subnanoseconds

depending on the waveguide structure. The structure determines the diffusion time of the carriers

away from the optically confined area. In applications where the speed of the optical device

plays an important part, such as in high speed telecom or on-chip interconnects, it is desirable to

engineer devices with short carrier lifetime. This can be achieved by reverse-biasing a p-i-n

structure across a silicon waveguide[41], porous[63] or poly silicon[64], or by ion-implantation

[40, 65, 66].

The reduction of carrier lifetime by reverse-biasing the waveguide structure adds

complexity to the system and its efficiency deteriorates for high-intensity optical pulses. Porous



and poly silicon are other options but engineering carrier lifetimes using this method is a

complex task. Another method is to introduce defects in the waveguide structures by ion-

implantation of different types of ions such as hydrogen, helium, oxygen, or even silicon itself.

The operation of this method is based on the principle that a charged particle traveling through

matter, releases some of its energy along its path. The loss of energy is due to collision with

other atoms and interaction with the electrons in the crystal atoms. As the charged particle loses

its energy, the interaction effective cross section increases and at a specified range, the proton

comes to a stop. Just before the charged particle comes to a stop, it releases most of its energy

and creates the most defects. This location is called the Bragg peak. The penetration depth of the

particles is dependent on the energy of the charged particles and the material density. The

amount of ions implanted in the structure is called the dose, and it is determined by the number

of atoms per area.

The defects introduced by this process result in the creation of midgap states in the

material band structure. These midgap states facilitate the non-radiative recombination of the

free-carriers from the conduction band with holes in the valence band. Therefore, the carrier

lifetime can be reduced as a function of the proton-bombardment dose. However, the

introduction of these defects in the crystal structure results in higher propagation loss along the

device. So, a trade-off must be made between the linear loss and the carrier-lifetime as will be

demonstrated in Section 4.6.3. In the following section, a description of the structures that are

going to be studied in the following sections is given.



4.3. Device structure

Photonic devices employing high index contrast designs, such as the device shown in Figure 4-2,

result in strong confinement of light with moderately low propagation loss. Strong mode

confinement facilitates the implementation of bends of small radius in the order of a few microns

with very small loss. This features results in more compact filter and coupler designs. The silicon

waveguides for this experiment were fabricated using scanning electron-beam lithography

(SEBL) as described in [29, 30, 32]. Several different structures, such as ring-resonators,

waveguides of different lengths were designed and employed on a single chip. These waveguides

were fabricated on a silicon substrate consisting of a 3pm Si0 2 (n=1.45) undercladding and 1p m

HSQ overcladding (n=1.37) layers. The waveguides are 106nm in height and 498nm in width,

made of silicon (n=3.45). A 100nm thick layer of Si0 2 was sputtered on the top cladding layer.

The structure of the waveguide as well as the SEM of the cross section of the chip are shown in

Figure 4-2.

(a) (b)

Figure 4-2 - a) Silicon waveguide structure grown on silicon substrate with SiO2 and HSQ cladding
layers[67]. b) SEM of the cross section of the chip showing the waveguide and the cladding layers[68].



(a)

(b) (c)

Figure 4-3 - (a) The physical chip on a mount. The metallic section on the top and the bottom of the chip
can be bonded for temperature tuning of filters, (b) The top part of the figure shows the paper-clip
waveguides of different lengths, while the bottom part of the figure shows the ring-resonators, (c) paper
clips and bends implemented using HIC waveguides. The diameter of the bends are 6pm.
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Figure 4-4 - Mode profile of the 106x497nm silicon waveguide
cladding (courtesy of Anatol Khilo).

with HSQ overcladding and SiO2 under



One of the HIC chips that will be studied in this thesis is shown in Figure 4-3. This chip

contains several different waveguide designs consisting of add-drop multiplexers, tunable ring-

resonator filters, and different lengths of straight waveguides as demonstrated in Figure 4-3b

where the central part of the chip is magnified under microscope. To study the ultrafast nonlinear

optical processes in silicon and to determine the effect of proton bombardment on the recovery

time and linear loss of HIC devices, the "straight" waveguides on this chip are studied. The term

"straight" refers to waveguides on the chip that consist of bends and straight sections only. As

shown in Figure 4-3c, to implement waveguides with different optical lengths on the same chip,

paper-clip structures were implemented using bends of 6pm diameter. These waveguides

facilitate the characterization of optical coupling and linear loss in the device.

Using finite-difference time-domain (FDTD) simulation, the optical mode in these

waveguides was simulated. The mode profile of a 106nm x 497nm optical waveguide using the

structure as described above is shown in Figure 4-4. The results of this simulation also show that

these waveguides can support only one polarization. Therefore, in the experiments to follow, the

input polarization of the light into these waveguides needed to be carefully adjusted.

Furthermore, the mode profile and its overlap with the waveguide structure will need to be

reconsidered again in the following section in defining "effective area" for the TPA and FCA

analyses.

4.4. Theory

The propagation loss in an optical waveguide is a function of the linear loss, TPA, and FCA

losses. The differential equation describing the energy of the pulse as it propagates along the

length of the device, z, is given in general by:



dI(z, t) (a,,L+alif)I(z,t), (4.4)
dz

where I(zt) is the instantaneous pulse intensity in the waveguide, and the losses are divided into

linear, aci, and nonlinear aNL processes. The nonlinear loss is modeled by

aNL (zA 2 (z,t)dr', (4.5)

where 8 is the TPA coefficient, o- is the FCA effective cross section, and hw is the energy of a

photon. The first term in this equation is the loss introduced by TPA which is proportional to the

optical intensity. The second term is due to the free-carrier absorption, is a function of the free-

carrier density generated by the TPA process, and is determined from the integral.

As determined from the FDTD simulation, the mode is highly confined within the

waveguide. The high mode-confinement results in optical mode with many k-vectors, and

especially a non-negligible Ez component. Since the TPA process is isotropic, the magnitude of

the electric field must be accounted for, and this is incorporated in the calculation of the effective

area as outlined in Appendix B. If the differential Equation (4.4) is solved using a plane-wave

approximation, the intensity of the optical signal inside the waveguide is defined as the ratio of

the optical power to an effective area which accounts for the optical mode profile and its

interaction with the nonlinear media. By introducing an effective area for the TPA and FCA

processes, the above equation can be written as:

dI(z t) -rP(z, t) ' p P(z,r') P(z,r)' =-, p) +o (Tf' (,,-~ ~ dr'+alin I(z,t), (4.6)
dz ATPA 0 ATPA AFCA

where two effective areas, A TPA and AFCA, defined as the effective areas of the TPA and FCA are

introduced. These effective areas are defined so that the intensities



P(z, t)TPA: I(zt)= ATP (4.7)
ATPA

FCA : I(z,t)= P(z,t) (4.8)
AFCA

may be defined in terms of a plane-wave mode with the optical power P(zt) propagating in the

optical waveguide. The overlap of the pump and probe fields, and the waveguide geometry is

incorporated in the calculation of the TPA and FCA effective areas ATpA and AFCA, respectively.

The calculations of ATP Aand AFCA for highly confined structures are described in Appendix B.

4.5. Heterodyne pump probe

As described in previous chapters, a pump-probe measurement technique can be utilized to

extract the ultrafast carrier dynamics of an active or passive device. In this method, a pump pulse

leads a weaker pulse, the probe, which experiences the change induced by the pump. At the

output, a technique to separate the pump and the probe pulses must be implemented. The

separation of the pump and the probe pulses can be accomplished using spatial separation,

wavelength separation, or orthogonal polarization of the two signals. In the case of our

experiments, where pulses of the same wavelength pass through a single-mode single-

polarization waveguide, none of these methods are applicable. The heterodyne method described

previously to distinguish between the pump and the probe is used. In the heterodyne pump-probe

technique[69] the reference and probe signals are RF frequency shifted from the pump via

acousto-optic modulators (AOMs), with slightly different amounts. Then, the probe signal is

detected using the RF mixing product of the probe with a reference signal. Therefore, the beat

frequency can be designed to be in the RF range for easy detection by conventional electronic



equipment. One of the main advantages of the heterodyne pump probe technique is that it is

phase sensitive to allow separate extraction of the loss/gain and the refractive index changes of

the device under test and that it works for both degenerate and orthogonally polarized pump and

probe signals.

4.5.1. Principles of operation

The schematic diagram of the heterodyne pump-probe experimental setup of this study is shown

in Figure 4-5. The optical source in this experiment consists of a two stage optical parametric

oscillator generating 180fs pulses at a repetition rate of 80 MHz and a center wavelength of

1.5ptm. The input pulses entering the experimental setup are split into two paths. The splitting

ratio is determined using a half-wave plate and a polarizing beamsplitter (PBS). The lower power

signal passes through an acousto-optic modulator (AOM) modulated at the RF frequency of

35MHz. The resulting pulses are used in this experiment as the probe signal. The higher power

signal passes through another variable power splitter, where the higher power signal is the pump

signal and while the lower power signal is the reference signal. The pump signal is further passed

through a variable attenuator and a variable delay stage. The pump and the probe are then

combined on a 50:50 splitter with the same polarization. The delay stage in the pump path varies

the temporal spacing between the pump and the probe signals.

The combination of the pump and the probe pulses is coupled into a short piece of fiber

attached to a 10:90 coupler. The 10% port of the fiber coupler is connected to a power meter to

monitor the input optical power. Spliced to the 90% port is a lens-tip fiber. This lens-tip fiber is

used to couple the combined pump and probe signals into the waveguide. To optimize the

coupling between the fiber and the waveguide, a lens-tip fiber with 1.7pm focal-point beam-
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diameter was utilized. After traversing the length of the waveguide, pump and probe signals are

collected using another 1.7pm lens-tip fiber at the output port. The collected signal is then

combined with the reference signal using a fiber-based 50:50 coupler.
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Figure 4-5 - Schematic diagram of a heterodyne pump probe experimental setup. The inset shows the
relation between the pump, probe, and reference signals.

The reference signal, prior to being combined with the pump probe signal, is first, passed

through a separate AOM modulated at an RF frequency of 36.7MHz. The reference and probe

pulses must arrive at the photodetector at the same time with the same polarization. Therefore, a

fixed delay is built into the reference path to ensure the temporal overlap of the reference and

probe pulses. In addition, a combination of a quarter-wave and a half-wave plate is placed in the

reference path just before the reference pulse is coupled into the 50:50 coupler. As a result of the

... ....... .................. ... ..... ... ................ .. .... ... ..... ......... ........ ........ ....... ................



interference of these two pulses on the detector, a beat frequency equal to the difference between

the two RF frequency-shift is generated.

To obtain background-free measurements, the pump signal is amplitude modulated at 1.3

KHz using a mechanical chopper. The interaction of the pump with the waveguide material,

induces changes in the magnitude and phase of the probe signal. The magnitude of the variation

is a function of the pump power and the delay between the pump and the probe signals. The

amplitude and phase variation in the probe signal is translated to the phase and amplitude

modulation on the 1.7MHz beat signal with sidebands of 1.3KHz.

P, (t,r,) oc(1+mAM (rl)cos(wCt))cos(wbt+mM(r)cos(C0t)), (4.9)

where Ps(t, rj) is the probe power, coe is the pump chopping frequency (1.3KHz), W is the beat

frequency (1.7MHz), and mAw(t1) and mFM4Xt1) are modulation depths of the AM and FM

modulated signals as a function of the relative delay, r, between pump and probe signals,

respectively. The AM modulation depth is a function of the absorption induced by the pump, and

the FM modulation depth is proportional to the index change induced. The signal is demodulated

using a Ham radio tuned to the carrier frequency of 1.7MHz. The magnitude of the audio output

of the radio, in AM or FM mode, is detected using a lock-in amplifier with the reference

frequency of 1.3KHz. In the AM mode, the two-photon absorption coefficient and free-carrier

induced absorption can be determined, while in the FM mode the Kerr nonlinearity and the free-

carrier induced index of refraction change can be characterized.

One of the advantages of utilizing a Ham radio for detection of the AM and FM

modulated beat-frequency signal is the narrow-bandwidth of its input filter, resulting in low-

noise signal detection. Alternatively, a spectrum analyzer can be used for amplitude detection;



however, the filters in a high frequency Ham radio are as narrow as those of the spectrum

analyzer, and the ratio has the additional capability to detect FM signals.

4.5.2. Receiver setting

As described in Equation (4.9), both AM and FM modulations are present on the 1.7MHz carrier

frequency. One of the important intricacies in implementation of this method is to minimize the

cross-coupling of AM and FM modulations. The cross modulation interference is caused by the

conversion of one modulation type to another can occur because of limited bandwidth and

nonlinearity of the receiver electronics, and result in erroneous detected signal levels. To

minimize this interference, the following parameters in the experiment must be carefully

controlled: the RF input power to the radio, RF gain and volume control settings of the radio, and

the chopping frequency of the pump signal. The first three parameters must be set to ensure the

linear operation of the Ham radio at the beat signal RF level. The chopping frequency must be

selected to avoid operating near the band edges of the audio filters of the radio, and away from

the vibration noise generated as a result of the movement of the translation stage, and the

mechanical chopper itself. The filter bandwidth of the radio was measured to be 2.8KHz.

Furthermore, because of the high sensitivity of the heterodyne setup, the vibration due to the

motion of the delay stage is translated to a peak frequency at 800Hz. These two parameters set a

constraint on the chopping frequency. The next step is to determine the optimum settings for the

RF and AF gain of the radio. For this purpose, the experimental setup shown in Figure 4-6 is

utilized.



Figure 4-6 - Experimental arrangement to set the radio parameters for the linear operation of the radio
receiver

The HP8675B synthesized signal generator is used to generate a signal that is both AM and FM

modulated. The carrier frequency of the signal generator is set to 1.7MHz which is the equal to

the beat frequency as a result of the mixing product of the pump and probe signals. An Agilent

33250A function generator is used to generate the modulating signal at a frequency fo. The

output of the signal generator is connected the RF input of an IC-R71 Ham radio and is set to

-60dBm. The modulation depth of each of the AM and FM modulations can be controlled

independently. The RF gain on the radio and the chopping frequency fo are varied until the

AM/PM or PM/AM conversion for modulation depths of up to 100% are eliminated, while

ensuring a linear response for modulation depths between 0 to 100% for the AM and 0 to 300%

for the FM modulated signals. Therefore, 1.3KHz chopping frequency was found to be an

excellent compromise to reduce noise and minimize modulation interference effects. The

receiver adjustments were completed, and the heterodyne pump probe was conducted to study

the nonlinear optical properties of the silicon waveguides.



4.6. Results and discussion

In this section, the results of the study of the HIC silicon waveguides as described in Section 4.3

are given. First, a technique to characterize the linear loss and optical coupling loss is discussed.

Second, the results of the heterodyne pump probe experiments characterizing the nonlinear

optical losses are presented. Finally, the study of the effects of the proton bombardment on the

carrier recovery times and linear optical losses are presented.

4.6.1. Characterization of linear and coupling losses

To study the nonlinear optical effects in the silicon waveguides, we need to accurately determine

the optical power in the waveguides. Three loss mechanisms consisting of input coupling, output

coupling, and linear losses need to be fully characterized. The linear loss is an inherent property

of the waveguides and fabrication process and is assumed constant over the length of the

waveguide. The optical coupling loss is dependent on several mechanisms some of which are,

the Fresnel reflection at the boundary of air and silicon, mode mismatch between the lens-tip

fiber and the waveguide, and surface roughness. Optical coupling at the input and output ports

are achieved using lens-tip fibers as demonstrated in Figure 4-7. These lensed fibers focus the

beam to a 1.7(-O/+3)pm beam diameter at their focal planes. Due to the variation in the beam

waist diameter and variations at the input and output interfaces of the chip, the input and output

coupling losses cannot be assumed to be equal. Therefore, they need to be accurately

characterized. For this purpose, we used the 'cut-back' technique.



Figure 4-7 - Input and output coupling of light into the silicon waveguides using two lens-tip fibers.

In this method, the light is coupled into waveguides of different lengths and the total loss

is plotted as function of the device length. As demonstrated in Figure 4-8, the total loss can be

written as:

Loss =P,,-PPo, =Cin + (a,,, + a (I))L + Cout, (4.10)

Ci,, (dB) = 1, (dBm) - P, (dBm) (4.11)

Cut (dB) = Pd (dBm ) (4.12)

where Pin and Pou,, measured in dBm, are the power-levels coupled into the input and output

lens-tip fibers, respectively, C, and Cu are the coupling losses in dB at the input and output

ports, respectively, ali, is the linear loss in dB/cm, while a(I) is the nonlinear loss as a function

......... ..........................



of the intensity (I) of the beam inside the waveguide, and L is the length of the waveguide in cm.

In this figure, the "input" port is defined to be the port where the pump and probe pulses are

coupled into the device, while the "output" port is that end of the device where the light is

collected and directed to the detector.

PiW POW
p__ _ Clii Co., Pout

Forward L 3 Reverse

Figure 4-8 - Input, output, and linear losses in a waveguide. The "input" port is defined to be the port that
the pump and probe pulses are coupled into the device. The "output" port is defined to be the port that the
light is collected from the device and directed to the photodetector.

For intensity levels such that the nonlinear effects become negligible, Equation (4.10) describes a

line with slope ali, and y-intercept point of Ciotaf=Cin+Cout. To minimize the nonlinear loss in

the above equation, the cut-back method is performed at -30 dBm input power level and the

linear response of the device is verified. Since the transverse dimensions of all the waveguides of

different lengths on this chip are equal, and they use the save cleaved facet of the chip, we

assume, the total input and output coupling losses are the same for all waveguides.

To extract the above parameters, we need at least two waveguides of different lengths.

Measurements using input power of -30dBm were conducted on five waveguides with

differential length of 6.1mm between any two adjacent waveguides. The length of different

waveguide sections were measured using the same setup as in Figure 4-5. The pump signal was

blocked, while the probe was coupled into one waveguide after another. The magnitude of the

beat frequency between the probe and the reference at 1.7MHz was monitored using a spectrum

analyzer. The reference path was adjusted to maximize the magnitude of this beat frequency, and

the differential length between two adjacent waveguides was measured to be 6.1mm. In the next
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step, the probe and reference signals were blocked while the pump power was coupled into the

waveguide. The output power was measured for each of the waveguides, and the result was

plotted as a function of the length of the waveguides as shown in Figure 4-9. Using this data, the

total coupling loss of 20.8dB and linear loss of 6.5dB/cm were measured.

50 - - - -

45
Slope = 6.5 dB/cm
Total coupling loss = 20.8 dB

35.......... ...... ............. ...........

30
10 15 20 25 30 35 40

Waveguide length (rum)

Figure 4-9 - Total loss as a function of waveguide length. Linear loss of 6.5dB/cm and total coupling loss
of 20.8dB were measured.

To determine individual coupling losses at the input and output ports of the device, we

refer back to Equation(4. 10). We can take advantage of the fact that absorption due to nonlinear

effects is a function of the intensity of the coupled-light inside the waveguide. Therefore, the

total loss deviates from a linear line as a function of the power coupled in the waveguide. To

obtain the coupling loss at each port, the device was tested in the two directions "forward" and

"reverse" as demonstrated in Figure 4-8. The output power collected by the lens-tip fiber as a

function of the input power at the end of the lens-tip fiber was obtained. The higher coupling loss

results in lower input power in the waveguide, hence smaller nonlinear optical effects, therefore,

it is expected that the port with higher input power roll-off also exhibits larger coupling loss. The
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output powers obtained as a function of the input power in each direction are shown in Figure

4-10.

-10-

-15-

-20

25-A

-30
0

-35

-40- Co - C1

-45
-t-Forward

-50 "0' Reverse

-2' ' '' - Only linear loss
-95 -20 -15 -10 -5 0 5 10 15

Input power (dBm)

Figure 4-10 - Response of the silicon waveguide when the input and output ports are switched. The linear
line is a linear response of the input vs output when there are no nonlinearities present.

The black and red curves are obtained in the "forward" and "reverse" directions,

respectively, and since the output power rolls-off at higher input power in the forward direction,

clearly, the coupling loss at this port is larger than that of the reverse direction. The blue line is

the linear response of the device, hence any variation from this linear line is deemed to be the

nonlinear loss and is a function of the light intensity inside the waveguide. Therefore, any two

points on the forward and reverse curves that deviate from the linear response by the same

amount correspond to having the same input powers inside the waveguide. Therefore, the

difference between the input powers corresponding to any two such points is equal to the

difference between the coupled powers. This is graphically shown in Figure 4-10. The deviation



of the output power response from the linear response at the input and output ports is calculated

and shown in Figure 4-11 a. The difference between the input powers corresponding to the same

loss level is plotted in Figure 4-1 lb.
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Figure 4-11 - a) Nonlinear loss in the forward and reverse direction as a function of the input power, b)
the difference between the two coupling losses resulting in 5.6dB loss difference.

From this set of measurements, we can see that there is a 5.6dB coupling-loss difference

between the input and output coupling losses, C, and C,, while the total coupling loss from

Figure 4-9 is 20.8 dB, resulting in Cn,=13.2dB and Co.,=7.6dB. We can see that there is a large

difference between the input and output coupling losses emphasizing the importance of a careful

measurement.

4.6.2. Heterodyne pump probe results

To study the carrier dynamics and nonlinear properties of these devices, the heterodyne pump-

probe method which was described in Section 4.4 was utilized. Due to the geometry of the

waveguides, only a single polarization is supported, hence a copolarized pump probe experiment



was needed. To study the magnitude of TPA and FCA, the radio was set to detect AM

modulation, while to study nonlinear index and plasma dispersion effects, the radio was set to

FM. In the following sections, the results of these studies are presented.

4.6.2.1. TPA and FCA magnitudes

Figure 4-12 shows the measured change in the probe signal as a function of the delay of the

probe with respect to the pump. When the pump is lagging the probe, there is no modulation

induced on the probe, hence no signal is detected. However, when the probe signal coincides

with or lags the pump pulses, TPA and FCA induced losses modulate the magnitude of the probe

signal at the chopping frequency of the pump. After traversing the length of the device, the probe

and the reference signals are mixed on a detector, resulting in the 1.7MHz beat frequency whose

amplitude is modulated by the probe signal level at the chopping frequency. This AM modulated

signal is detected using the Ham radio which produces a signal level proportional to the

modulation depth of the AM signal. This voltage is then compared to that of a known modulation

depth to determine how much of the probe signal is absorbed due to the various nonlinear

processes. This reference level is determined by blocking the pump signal and chopping the

probe at the same modulation frequency as that of the pump, so that 100% AM modulation is

induced on the 1.7MHz beat frequency. Since as described in the previous section, we ensured

that the radio is operating in a linear regime, the amplitude of the pump probe traces can be

normalized using the voltage obtained from chopping the probe signal. The pump probe traces of

Figure 4-12 are normalized using this technique.

The ultrafast carrier dynamic of the silicon devices as demonstrated in this figure,

consists of two distinct processes, an instantaneous component at time delay (tc=0), followed by
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a slow recovery time of several hundreds of picoseconds. The amplitude of the instantaneous

component is proportional to the intensity of the light inside the waveguide and is caused by two

photon absorption, while the magnitude of the slow response is due to absorption of the probe

pulse by the free carriers generated in the TPA process. The magnitude of this response is

proportional to the square of the intensity. The long recovery time is a function of the quality of

the material and the surface roughness of the waveguide structures.
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Figure 4-12 - Magnitude response of probe transmission as a function of delay between the pump and
probe signals.

Magnitudes of TPA and FCA induced absorptions are plotted as a function of optical

signal power inside the waveguide as shown in Figure 4-13. The measured TPA-induced loss is

shown in this figure in blue and it consists of a linear section at lower power levels, while at

higher input power levels, the magnitude of this loss saturates. The linear section of the curve is

dominated by the TPA effect, and as derived in the previous section, is proportional to the
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intensity and the TPA coefficient (p). The instantaneous response due to TPA can be described

by the following equation

dI

where I and Is are the pump and probe intensities in the waveguide, respectively. Integrating this

equation and solving for a change in I, due to Ip (Appendix C), we have

AIs 16 I- e~""-L Oj L
S= p ai= (4.14)

where the new variable Leff is the effective length of the device and is given as a function of

length (L), and the linear loss (alin), and I, is the pump intensity defined as the ratio of the pump

power to the TPA effective area. For long waveguides, the effective length reduces to 1/ alin. The

silicon waveguides in this study had a cross-sectional size of 106nm x 497nm and length equal

to 14.9mm, ATPAeff, calculated via an overlap integral of E-field and the nonlinear medium, to be

0.1 tm 2 and Leff is 0.6cm. The instantaneous response of the device is plotted in Figure 4-13.

From the slope of this plot, we extract the TPA coefficient to be 0.68 cm/GW. This compares

with the mid range of values previously published as tabulated in Table 4-1. We can see that the

TPA induced absorption is linear with optical power up to 20PW and deviates from the line for

higher powers. This can be due to the fact that the pump itself is getting increasingly absorbed by

TPA at these higher powers.

Each pair of photons absorbed as a result of the TPA process, generates an electron and a

hole. Both the electrons in the conduction band and the holes in the valence band in turn absorb

photons and result in further optical loss. The total absorption is a function of the number of free-

carrier pairs and is described by:
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Figure 4-13 - Two photon absorption both measured (+) and with linear fit (line) as a function of the
optical power in the waveguide. p&=0.68cm/GW is measured.

L L tRX2( zt N
aTFCA = o-Ndz =_ dz Ndt = ' (4.15)

0 0 -0o FCA

where the new variables, aT,FcA is the total loss due to free-carrier absorption, N is the density of

carrier pairs per cm 3, and Ntotai is the total number of carrier pairs generated. The effective area in

calculating the intensity in this formula is the geometric mean of the TPA and FCA effective

cross sections, that is

P(z,t) P(z,t)
I2 (zlt)= .Z )P('t (4.16)

4 TPA FCA

The total FCA loss is proportional to the total number of carriers generated which is in turn a

function of the square of the optical intensity. To calculate the FCA effective cross-section, first,

we need to calculate the number of carriers in the waveguide as a function of the input power.

Referring back to Equation (4.6), we can see that in the absence of any nonlinearity, the optical
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output power of the device would be a linear function of the input power. Therefore, any

deviation from a linear response is due to the TPA and FCA processes. To calculate the number

of TPA-induced free-carriers the output power of the device as a function of the input power is

measured. The direct input versus output power measurement was performed by direct detection

of the output power using a power meter, and by chopping the input signal and detecting the

modulated output signal at the chopped frequency using a lock-in amplifier. The result is shown

in Figure 4-14.
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Figure 4-14 - Measured (+) output power as a function of the input power in the silicon waveguide of
length 1.49cm. The linear response is also plotted. AP demonstrates the loss due to the nonlinearity in the
device.

Since, the waveguides are undoped, the densities of the electrons and holes are equal and are

given by (Appendix D):

Na =N = aNL 
L(-e7-2a)L

NTotal,e =Total, h 2 hi e-a,,,L (417
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where AP is the deviation of the output power from a linear response, T is the repetition rate of

the laser, hw is the energy of the photons, alin is the linear loss, and L is the physical length of

the device. The remaining term aNL is the total nonlinear loss and can be calculated from

aN =1-10 (P.,,a(dBm)-P.,,,(dBm) 101, (4.18)

where Pou,tin is the output power of the device without any nonlinear effects, and Pou meas is the

actual measured output power. The result of this calculation is shown in Figure 4-15 which

demonstrates a quadratic dependence on the input power.
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Figure 4-15 - Total number of carriers as a function of the input power of the waveguide.

Free-carriers generated by this process diffuse at 36cm2/sec[70] and redistribute evenly

across the waveguide cross section. Therefore, an effective area for the overlap of the E-field of

the propagating mode with this rectangular cross section is calculated and is equal to 0.075 pm 2.

These carriers are distributed along the length of the device over the FCA effective length,

LFCA,eff given by (Appendix C):
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LFCA eff --e 2 aL (4.19)
2a

The total FCA loss is calculated from the heterodyne pump probe experimental results by

measuring the transmission loss at time delays larger than 5ps, which is approximately how long

it takes for the carriers to diffuse throughout the device. The magnitude of this loss as a function

of the input power is calculated from the pump probe traces of Figure 4-12 and shown in Figure

4-16. The fit to the measured data is accomplished using the carrier density calculated using

Equation(4.17) and Figure 4-15 with the FCA effective cross section 0=1 .9xi1' cm 2. The

summary of extracted parameters from this section is given in Table 4-3.

5 10 15 20 25 30
Input Power(gW)

Figure 4-16 - Total loss due to FCA in a silicon waveguide with cross section of 106nm x 497nm and
length of 14.9mm. Measured results are shown with (+) markers. The quadratic fit was achieved using the
calculated carrier density in the device with FCA effective cross section of 1.9x10- 7 cm2.
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Table 4-3 - The extracted parameters of the imaginary part of the refractive index

Parameter Value

TPA coefficient (P) 0.68 (cm/GW)

FCA effective cross section (cY) 1.9 x 10~17 (cm2)

Linear loss (aui,) 1.50 (cm-1)

Wavelength ()) 1.5 (pm)

4.6.2.2. Numerical solution of output response

To further verify the linear and nonlinear parameters extracted thus far, the differential equation

describing the pulse evolution along the length of the device was solved numerically using the

parameters given in Table 4-3. This differential equation is given by (4.6) and repeated here for

convenience

dI(z, t) 8P(z) ' p P(z,r' ) P(z,r' ) , 'iI't)
dz ATPA 0 hW ATPA AFCA

Using this simulation, the output power of the device as a function of the input power was

predicted and compared to the direct input vs output power measurement described in the

previous section. The result is shown Figure 4-17. The solid line is the simulation result while

the measured data are shown with (+) markers. The results show an excellent agreement between

the model and the measured data.

Knowing the nonlinear parameters of the silicon waveguides, we can determine the

maximum power that can be transmitted through these waveguides as a function of the

pulsewidth before nonlinearity in the waveguides result in significant loss. We study the
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limitations imposed by the nonlinear optical properties of the material by determining the 3dB

roll off of the output power as a function of the input power. Using the above mode, the

responses of the waveguides are simulated for various different pulse widths from 1 OOfs to 40ps

at 80MHz repetition rate. The simulation results are shown in Figure 4-18. As demonstrated,

there is a significant loss for 100fs pulses at very low powers. This demonstrates the limitations

imposed by the TPA and FCA processes in nanowaveguides. The results from this simulation

may be utilized to determine the optimum geometry [71] and the maximum power that can be

transmitted in a waveguide.
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Figure 4-17 - Output power as a function of the input power of the 14.9mm long silicon waveguide. The
simulation was performed using p=0.68 cm/GW and o-=1.9x10' 7 cm2, usi= 1 5 0 cm', t=l80fs,
X=l1500nm, repetition rate = 80MHz.
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Figure 4-18 - Simulated output power as a function
between 1OOfs to 40ps and repetition rate of 80MHz.
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Using this simulation technique, we can also calculate the carrier density inside the

waveguide as a function of the length of the device. This calculation can be performed by

keeping track the amount of light absorbed in the TPA process which is given by:

NTotale = NTt~ LJz dz = 6 /3 ZT) P(z,r') P(z,r')

a N (z) AFAdz dr'( Icm)AFCAdz. (4.20)

o o TPA FCA

The result of this calculation as a function of the input optical power is shown in Figure 4-20and

compared to the direct measurement of Figure 4-15. We can see the simulated total number of

carriers agrees very closely with the measured results. The carrier distribution as a function of

the length of the device is shown in Figure 4-21. The carrier concentration follows an

exponential decay with the highest concentration at the input of the device. It emphasizes the

importance of using an effective length in calculating the total phase shift as a result of refractive

index change.

20 x 10

0 15-

0 0-

+ Measured
-- Simulated

-5
0 20 40 60 80 100 120

Input power (pW)

Figure 4-20 - Total number of carriers in the waveguide as a function fo the input power. (+) are
measured from the output power vs input power response of the device. The line is the result of the
simulation by solving the differential equation describing the pulse propagation along the device.
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Figure 4-21 - Free-carrier distribution as a function of the length of the device

4.6.2.3. Optical Kerr effect and free-carrier index changes

It is well known that the optical Kerr effect plays an important role in the transmission of short

pulses through waveguides since it affects the chirp and the spectrum of the pulses. In addition,

the refractive index changes induced by this process can be exploited in all-optical switching and

signal processing[14, 16]. When free carriers are generated at the same time by TPA, additional,

longer-lived changes in index of refraction are also induced. To study these effects, the

heterodyne pump probe technique at 1.5ptm was again used here. The optical phase of the probe

signal which is launched after the pump, experiences changes proportional to these refractive

index changes. Since the pump is amplitude modulated using a chopper, the phase-change in the

probe signal is modulated at chopping frequency. The magnitude of the phase change is a

function of the number of generated free-carriers, hence a function of the pump power. To detect

this optical phase change, the radio in Figure 4-5 is set to detect FM modulations. A major

advantage of the FM radio is that it automatically tracks and locks onto the RF carrier and thus,
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circumvents the need to interferometrically stabilize the optical phase between probe and

reference. The radio output voltage, proportional to the FM modulation depth of the beat

frequency is also linearly proportional to the optically induced phase changes of the probe, and is

modulated at the chopping frequency. The amplitude and phase of the output signal from the

Ham radio are then further detected with a lock-in amplifier.

To determine the FM modulation depth on the probe signal, the output of the lock-in

amplifier must be calibrated. The calibration is performed by applying a 100% FM modulated

signal to the RF port of the AOM driver in the probe path. The resulting beat frequency between

the probe and the reference is passed through the radio which is set for FM detection and the

resulting output is measured using the lock-in amplifier. The output of the lock-in is a reference

for a 100% FM modulation. The pump probe traces are normalized using this reference level.

Figure 4-22 shows the result of the normalized heterodyne pump probe traces using FM

detection. In this figure, the horizontal axis indicates the delay between the pump and probe

traces, and the vertical axis is the measured phase change incurred by the probe signal. As

demonstrated in this figure, the device response consists of an instantaneous response at time

delay of zero which is linearly dependent on the pulse intensity. This instantaneous component is

followed by a slow recovery response of several hundreds of picoseconds. The instantaneous

response is attributed to the phase response incurred by the probe due to Kerr nonlinearity. The

change in sign is due to the opposite signs in the induced refractive index changes for Kerr

nonlinearity and for free carriers.
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From this measurement, we can determine both the Kerr nonlinearity and refractive index

change as a function of carrier density for these HIC silicon waveguides. As with TPA

characterization of the previous section, the magnitude of the induced phase change at zero time

delay (vr=O) as a function of the coupled optical power inside the waveguide. These results are

shown in Figure 4-23. The measurement consists of a linear region at powers up to 30PW and

the maximum phase change starts to deviate from the linear line at higher powers. The Kerr

coefficient can be determined from:

An= A#= n2I, (4.21)
2 1rLeff

where A is the wavelength of the optical signal, Leff is the effective length of the device as

defined in pervious section, A0 is the induced phase change, I is the intensity of the optical signal

inside the waveguide, and n2 is the Kerr coefficient. The effective length and effective area are

defined as for the TPA measurement. From the slope of this plot, we extracted the Kerr

coefficient to be n2=3.2x10-4 cm 2/W. This value is in close agreement with the previously

published data using z-scan technique as tabulated in Table 4-2.

In addition to the instantaneous response, we can observe an induced phase change after a

5ps delay which has a long recovery time. This induced phase change, similar to the induced

FCA loss, is a function of the number of free carriers generated by the TPA process. Therefore,

we can take advantage of the earlier calculations of the number of carriers and determine the

index of refraction change as a function of the carrier density.

As discussed in Section 4.6.2.1, the free-carriers are distributed over the cross-section of

the waveguide and over the effective length, LFCA,eff. Using the total number of carriers, we

define the refractive index change as a function of carrier density as:

114



Nia
An = Nt''a (4.22)

AFCA

where An is the total change in the refractive index, F is a proportionality constant, Ntotal is the

total number of carrier pairs generated[72]. The fit as shown in Figure 4-24 was achieved using

$=-5.5x10-2 cm 3. The results obtained in this section are summarized in Table 4-4.

0.25-

0.2-

0.15-

-4 0.1 -

0.05- - -- .

10 20 30
Power (W)

40 50 60

Figure 4-24 - |A<1 vs power both measured and fitted with 4= -5.5x10-2 cm3.

Table 4-4 - Kerr coefficient and refractive index change due to free carriers

Parameter Value

Kerr coefficient (n2) 3.2x10-14 (cm 2/GW)

Refractive index change per free-carrier -5.5x 1021 (cm 3)
pair volume(4)

Wavelength (k) 1.5 (pm)
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4.6.3. Carrier recovery time and proton bombardment

In addition to the optical nonlinear processes discussed up to this point, the carrier recovery time

in the silicon waveguides will dictate their usefulness in high speed optical systems. In this

section, a study of the effects of ion implantation on the carrier recovery time and linear loss of

the silicon samples is presented. Proton bombardment of samples results in creation of defects in

the crystal structure. These defects create midgap states which speed up the recovery time of the

device. It has been shown that with higher dosages of ion implants which results in the desired

effect of reducing the recovery times, the defects in the crystal structure result in higher

scattering and absorption through the device, hence higher linear loss.

For the purpose of this study, several silicon waveguide chips were ion implanted at

dosages varying from 10" to 10" /cm 2. First, it was necessary to determine the energy level of

protons that will penetrate different layers of the structure. These layers are illustrated in Figure

4-2. Therefore, for the protons to reach the silicon waveguides they must penetrate through

100nm layer of SiO2 , 1 pm of HSQ, and get implanted in the 1 00nm-thick silicon waveguide. To

determine the proper energy levels, the SRIM program was utilized (www.srim.org). SRIM

program is based on the Monte-Carlo analysis and simulates the penetration depth of protons of

different energy accounting for scattering, energy loss, and non-uniformity of proton energy

levels. The result of this simulation is shown in Figure 4-25. The devices were proton-

bombarded using three different energy levels of 80, 90, and 10OKeV. Three energy levels were

used to account for variations in the density of HSQ layer, which is highly dependent on the

fabrication process, and to still create the desired distribution of defect states in the silicon

waveguides. In this figure, the silicon waveguides start at the depth of 11 00nm and extend to

1206nm where the largest number of defect states is created.
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Figure 4-25 - Cumulative distribution of ions utilizing the SRIM simulation of waveguides using a
combination of 80, 90, and 10OKeV proton energy levels and a dose of 102/cm2 protons (www.srim.org).
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After processing the samples, their linear loss and recovery times were measured and are

plotted in Figure 4-26. A recovery time as short as 33ps for a linear loss of only 14.8dB/cm was

obtained at the highest proton-bombardment level of using 10 5 /cm 2 . This combination of

recovery time reduction and degradation in linear loss seems the best thus far reported for the

proton bombardment technique[40].

4.7. Conclusion

In this chapter, the ultrafast nonlinear optical properties of high-index contrast silicon

waveguides of 106nmx497nm cross section were studied. Input and output optical coupling was

accomplished using lens-tip fibers, and a 6 dB difference between the coupling efficiencies at the

input and output ports was observed. A heterodyne pump-probe technique was utilized to

characterize the magnitude of the TPA and FCA losses as well as the Kerr nonlinearity and the

refractive index change as a function of the carrier density. The high sensitivity of the heterodyne

technique has allowed for this characterization using very small carrier densities with great

accuracy. The parameters extracted were applied to the model predicting the output power

response of the waveguides as a function of the input power. This model was utilized to predict

the limitations imposed by the nonlinearity on the transmission of pulsewidths of different

duration. As the carrier recovery of silicon can be in the order of several hundreds of

picoseconds to nanoseconds, the devices were proton bombarded with different doses. Carrier

lifetime of 33ps with proton bombardment level of 1015 /cm2 with an increase of linear loss to

14.8dB/cm was achieved.
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Chapter 5

Semiconductor Saturable Absorbers

Abstract:

Ultrafast dynamics of semiconductor saturable absorber

mirrors were studied. Addition of resonant layers to the absorbers

resulted in lower saturation fluence and increased non-saturable

loss. Proton bombardment of the devices was utilized to lower the

carrier recovery times. Proton bombardment of single-absorber

saturable absorbers with 40KeV proton energies at a dose of

1015/cm2 , a 1.5ps carrier recovery time was achieved in single-

absorber structures. Double-absorber structures were fabricated

and studied. Carrier lifetimes of these devices were also lowered

by proton bombardment using different combinations of doses and

proton energy levels.
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5.1. Introduction

Ultrafast lasers generating pulses in the range of picoseconds to femtoseconds have received a

great deal of attention in the recent years. Some of the applications that have benefited greatly

from the recent developments in ultrafast lasers are optical arbitrary wave form generation[1-4],

frequency metrology[5-8], medical imaging[9-11], surgery[12, 13], astrophysics[14], and

machining[ 15, 16]. Even with relatively low power lasers, ultrashort pulses enable generation of

high peak powers that make efficient nonlinear optics and even micro-machining possible. The

ultrabroad bandwidths of such pulses provide for high resolution 3-D imaging as well as novel

communication applications. Repetitive trains of such pulses allow for a range of applications,

facilitating studies of nonlinear optical behavior and fundamental dynamics of materials[ 17-27].

The temporal resolution of these measurements is limited only by the pulsewidth and not that of

the electronics. Therefore, shorter pulses improve this resolution and enable the study of the

ultrafast carrier dynamics in semiconductor structures.

Generation of ultrashort pulses using solid state lasers is achieved by passive mode-

locking. Some of the shortest pulses are generated using Kerr-lens mode-locking (KLM) [28, 29]

or in fibers, nonlinear polarization rotation[30-35]. One drawback of both these methods is that

they are often not self-starting. Semiconductor saturable absorber elements can be added to

facilitate self-starting[36, 37]. Furthermore, for lasers in which the reactive nonlinearity is too

weak for KLM or nonlinear polarization rotation, semiconductor saturable absorbers become the

principal mode-locking elements. Short, high repetition-rate, mode-locked fiber lasers, for

example, depend upon saturable absorbers[38] and are an important application for the devices

investigated in this thesis.
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In a mode-locked laser, the pulsewidth is related to the bandwidth of the optical signal by

the Fourier transform, hence shorter pulses in the time domain require larger optical bandwidth.

With the advent of bandgap engineering and semiconductor fabrication technology, the

bandwidth of the saturable absorbers can be designed to cover bandwidths in the order of 100nm

[39, 40]. Other important characteristics of saturable absorbers are the carrier lifetime, saturation

energy, and absorption wavelength. These parameters are discussed in detail in the following

sections.

The work in this chapter has been a collaborative effort amongst several different groups

at MIT. The saturable absorbers discussed in this chapter were designed by fellow graduate

students Hanfei Shen and Michelle Sander. They were fabricated in Professor Kolodziejski's

group by Dr. Gale Petrich. Reflectivity measurements were performed by Michelle Sander on the

FTIR measurement equipment at MIT, and some of the SBRs investigated for this work, were

tested in mode-locked lasers by Hyunil Byun in Professor Kartner's group. In the following

sections, I will present results of the study of the ultrafast carrier dynamics and pulse saturation

energies of several different saturable absorbers.

5.2. Background

We start the discussion of this section with a discussion on how a typical saturable absorber

works. Several parameters that must be considered include the center wavelength and bandwidth,

saturation property, and the temporal response of the device. The center wavelength and the

bandwidth of the device dictate the usefulness of the device for a particular application. The

saturation characteristic consists of two main parameters, saturable loss and non-saturable loss.

Saturable loss, as the name suggests, is the amount of the loss in the device that can be saturated
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with high enough optical fluence. The non-saturable loss is dependent on the structure and the

purity of the constituent material, and it is the amount of loss that cannot be overcome with

incident fluence at any energy level. Saturation fluence is the energy level at which the saturable

absorber is bleached by 2dB. Several carrier dynamics contribute to the temporal response of a

saturable absorber to short pulses, including instantaneous nonlinearity, carrier-carrier scattering,

carrier cooling, and carrier lifetime. The faster times inherent to the material, but shows carrier

lifetime in semiconductor can be reduced by low-temperature growth techniques[41-43] or

proton bombardment[18, 44, 45] both of which result in defect states in the band structure that

facilitate non-radiative recombination. In the following sections, we will describe investigations

and observations of each of these properties.

5.2.1. Optical bandwidth and center wavelength

Figure 5-1 shows a typical structure of a semiconductor saturable absorber mirror or saturable

Bragg reflector (SBR). The index profile of the structure and the square of the electric field

standing wave pattern at 1560nm are shown. In this figure, the light impinges on the sample from

the right-hand side. The SBR consists of an absorber layer grown on a Bragg stack consisting of

several alternating layers of high and low index materials. The absorber layer can be made up of

bulk semiconductor, quantum wells, or even quantum dots. The common feature amongst all is

that the absorber must be designed to have a bandgap near the wavelength of interest. As

depicted in this figure, the absorber layer consists of a thin layer of In xGaxAs where x is

selected for a bandgap corresponding to a 1.56gm wavelength. This absorber layer is grown on

top of a Bragg stack consisting of 20 to 40 pairs of GaAs/AlGaAs layers. The thickness of each

layer is chosen to be quarter-wave thick at the center wavelength of interest. The overlap of the
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E-field with the absorber layer determines how effective the incident fluence is at saturating the

absorber. Generally, the SBR is designed so that the peak of the E-field intensity coincides with

the absorber layer. This results in lower saturation fluence levels. Since the thickness of each

layer is designed to be a quarter-wave long for a particular wavelength, the peak of the square of

the E-field moves as a function of the wavelength. Therefore, the level of overlap between the

absorber and the field intensity also changes as a function of wavelength. This demonstrates that

the saturation fluence is a function of the wavelength and needs to be carefully characterized. In

an SBR, the combination of the Bragg stack and bandgap engineering of the absorber layer

dictate the center wavelength and the bandwidth. The desirable feature of this device is that the

SBR itself can be used as one of the end mirrors in a laser cavity.

Figure 5-2 shows an example of a mode-locked fiber laser. The gain medium consists of

an Er-doped fiber section pumped by a 977nm diode laser. At one end of the laser cavity a

saturable absorber is mounted on a heat sink and is utilized as one of the cavity mirrors. At the

other end of the cavity, a dichroic mirror is used as a partial reflector and as an input/output

coupler. The dichroic beam splitter transmits the pump and reflects the laser output for use.
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Figure 5-1 - Typical structure of a semiconductor saturable absorber consisting of an InGaAs absorber
layer grown on top of a Bragg-stack made up of AlGaAs and GaAs. The peak of the E-field intensity
overlaps with the absorber. The light impinges on the sample from the right side of the figure.
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Figure 5-2 - Semiconductor saturable absorber (SBR) mounted on a heatsink in a mode-locked fiber laser
at 1560nm. The gain medium consists of an Er doped fiber pumped by a 977nm pump diode. The output
at 1560 is taken out of the cavity using a dichroic beam splitter (DBS). (Courtesy of Hyunil Byun.)

5.2.2. Saturation properties

The dynamic behavior of an SBR consists of multi-temporal response. The light incident on an

SBR excites the electrons in the valence band of the absorber layer to the conduction band. As

more electrons are excited with increasing intensity, the device becomes more transparent. At
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high enough intensities, the absorber is fully "bleached" and transparent to the incident beam,

therefore, the optical signal is fully reflected by the Bragg-mirror. This mechanism favors laser

operations at high intensity which in turn leads to pulsed and mode-locking operation. In

addition, saturable absorbers offer spatial beam shaping by resulting in higher attenuation of the

low-intensity regions of a spatially Gaussian beam. An example of the saturation behavior of a

saturable absorber is depicted in Figure 5-3. In this figure, the reflectivity of a semiconductor

saturable absorber is plotted as a function of the pulse fluence which is the measure of pulse

energy per area.

The important saturation parameters of a saturable absorber are saturable loss, non-

saturable loss, modulation depth, and saturation fluence. The saturation behavior of an SBR, as

shown in Figure 5-3, starts with low-reflectivity at low fluences. With the rising fluence, the

reflectivity of the device increases, and in an ideal case, it would reach a maximum that is only

dictated by the quality of the material and the reflectivity of the Bragg mirror. However, before it

reaches this maximum, the reflectivity of the SBR rolls-off and starts to decrease with increasing

fluence due to nonlinear effects such as two-photon absorption (TPA). A saturable absorber also

exhibits a certain non-saturable loss which is independent of the pulse fluence. This non-

saturable loss is dependent on roughness scattering as well as the fundamental properties of the

material. It is an undesirable factor since it adds additional loss to the laser cavity. The

modulation depth of an SBR is the maximum differential reflectivity that can be obtained. In this

example, it is approximately 3%. The maximum saturable loss alone is demonstrated in this

figure by AR. This maximum is typically unattainable since the TPA and other nonlinearities

start to dominate at high fluences and reduce the reflectivity of the device. Finally, saturation

fluence is the fluence at which the saturable loss is bleached by 2dB and is influenced by the
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material composition and the geometry of the device. In high repetition rate lasers, it is desirable

to reduce the saturation fluence, and this can be accomplished by placing the absorber layer at

the peak of the electric field standing wave and/or placing a resonant coating on the top layer to

enhance the peak of the electric-field standing wave.

Saturable TPA

0.99 absorl)tion

0.98

0.97

0.96
AR

0.96- Modulatio
depth

0.94L
10 101 102 103

Fluence (pJ/cm2)

Figure 5-3 - An example of a saturation response of a semiconductor saturable absorber. Starting from
low fluence levels, the reflectivity rises with increasing fluence. However, at high fluences, nonlinear
processes such as two-photon absorption (TPA) dominate and limit the reflectivity.

5.2.3. Temporal dynamics

The temporal dynamics of a saturable absorber are measured using a pump probe technique

which is discussed in detail in Section 5.3. In general, in a pump probe experiment, the device is

excited with a high power optical signal, called 'pump', and a much lower-power pulse 'probe'

measures the induced changes by the pump. An example of a pump probe trace on an InGaAs

saturable absorber is shown in Figure 5-4. In this figure, the change in the reflectivity of the

saturable absorber is plotted as a function of time after the pump has passed through the device.
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As discussed in the previous section, there are two phenomena that occur in the device as

a function of the fluence. One is bleaching which occurs at low fluences and results in increased

reflectivity, while nonlinear intensity-dependent processes such as two-photon absorption and

free-carrier absorption result in increased losses and dominate the saturable absorber response at

high fluences. When light impinges on an absorber above the bandgap, there is an instantaneous

response which results in the excitation of the electrons in the valence band to the conduction

band. The carriers in this instant occupy bands of states corresponding to the spectral width of

the pulse as demonstrated in Figure 5-4a. This creates a spectral 'hole' in the absorption

spectrum. The hot carriers that are generated in this process then undergo carrier-carrier

scattering which breaks up the coherence of electrons and holes, diffuses the spectral-hole and

redistributes the carriers into a new "hot" Fermi distribution as indicated in Figure 5-4b. All of

this process occurs in less than 200fs. The redistributed carriers then interact with the lattice

emitting phonons and losing their energy. In about 1 to 2ps a Fermi distribution at equilibrium

with the lattice temperature is reached as illustrated in Figure 5-4c. The extent of absorption

bleaching that can be accomplished by the optical pulse is a function of pulse duration and

photon energy relative to the band-edge. The saturation fluence, Fsa, is that at which a specific

pulse reduces its own saturable absorption by (1-1/e).

Over a much longer period the electrons and holes recombine via non-radiative as well as

radiative processes. This recombination process can take from a few picoseconds to several

nanoseconds depending on the purity of the material and defects in the crystal structure.
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Figure 5-4 - An example of the pump probe traces obtained from a saturable absorber demonstrating the
different carrier dynamics.

The nonlinear optical losses as discussed in previous sections occur due to TPA and FCA

processes. The TPA occurs when the pump and probe are at zero delay with respect to each

other. In this process, two photons are absorbed generating an electron-hole pair. The carriers in

the conduction band can also absorb light and get further excited in the conduction band,

resulting in further loss called free-carrier absorption.

5.3. Measurement techniques

To study the ultrafast carrier dynamics and saturation characteristics of variety of semiconductor

saturable absorbers, a cross-polarized pump probe experiment was utilized. This is applicable in

this case because the reflections and responses of the devices are polarization independent. In

these experiments, the device under test (DUT) is excited by a high power pump signal, and at a
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variable delay after the pump, a much weaker "probe" signal is incident on the device to probe

the changes imposed by the pump pulse. The pump-induced modulation of the reflected probe

signal is detected. The function of the pump is to excite the sample from its equilibrium state and

the probe to determine the amount of change imposed as the device relaxes back to equilibrium.

From the differential change in the amplitude of the probe signal, the effects of the various

nonlinearities of the device can be observed, including the TPA, carrier-carrier scattering, and

carrier lifetime. The schematic diagram of a cross-polarized pump probe measurement technique

is shown in Figure 5-5.

CPU

Probe steag

Lock-in

VW2 -Amplifier

Cho periRsidual Pump

180fsPUMPPB Device
f&=80 Hz
I = 1560am 'T

I Delay stage

Figure 5-5 - Schematic diagram of a cross-polarized pump probe experiment using an optical parametric
oscillator tunable between 1. 1 to 1.6 pm producing pulses of 150fs duration at 80MHz repetition rate.

The optical source for this experiment is a Spectra-Physics optical parametric oscillator

(OPO) tunable between 1.1 and 1.6pm. The OPO is synchronously pumped by 80fs pulses

generated by a Ti:Sapphire laser at 810nm. The OPO produces 150fs pulses at a repetition rate

of 80MHz. The maximum temporal resolution of this setup is limited by the full-width half-
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maximum of the cross-correlation between the pump and probe signals, and in this case the best

temporal resolution is 212fs. The optical pulses from the OPO after passing through an isolator,

are split into two paths using a 30:70 coupler. The higher power being the pump is passed

through a mechanical chopper, a delay stage, and a half-wave plate. The lower power signal is

the probe signal and is passed through a half-wave plate and combined with the pump signals on

a polarizing beam splitter (PBS). The combination of the half-wave plates and the PBS in each

arm of the pump and probe paths allows for independent control of the pump and probe powers

incident on the sample. The combined pump and probe signals are at this point cross-polarized

and they are co-linearly focused using a lens onto the sample. A small fraction of the reflected

beam from the sample is directed towards a photodetector. A polarizing beamsplitter filters the

pump signal, and only the probe is detected. The output of the detector is connected to a lock-in

amplifier which detects the modulation on the probe signal at the chopping frequency. The

output of the lock-in amplifier is connected to a computer which collects the data as a function of

the delay.

The saturable absorption dynamics described in the previous section are dependent on the

fluence of the incident light. In the above experiment, a lens was utilized to focus the beam on

the sample, therefore, with changes in the focal length of the lens as well as by attenuating the

beam, a wide range of fluences can be achieved. To determine the fluence on the sample, the

beam diameter of the optical beam at the focal plane of the lens has to be measured. The "knife-

edge" technique was used to measure the beam diameter [46]. In this method, a sharp razor blade

was placed on a translation stage and the blade was used to gradually block the optical beam as

the unblocked power of which was measured using an optical power meter. The optical power as

a function of the position of the blade in the optical field plotted and fit to an erf function. The
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measurement was made at several different points away from the lens and the beam diameter at

the focal plane of the lens was determined. Knowing the beam waist, we can determine the

fluence from

PT
F =T2, (5.1)

where P is the average optical power, T is the repetition period of the laser, and w is the full-

width half maximum beam radius on the sample.

5.4. Theoretical Models

In this section, the models used to extract the saturation parameters and the recovery times of the

saturable absorbers are described.

5.4.1. Saturable absorption energy

The models predicting the saturation fluence of a saturable absorber require an assumption about

the dynamic recovery time of the device. A device that has a recovery time longer than the

pulsewidth of the laser, saturates with pulse energy, while a saturable absorber has a recovery

time shorter than the pulsewidth saturates with intensity. Detailed derivations of these models are

given in several references [47, 48]. In this chapter, devices are tested using 150fs pulses from an

optical parametric oscillator (OPO). Although these saturable absorbers have fast recovery

components, they all exhibit recovery times from a few to tens of picoseconds. For simplicity,

we will compare experimental saturation fluence results with the theory for a slowly recovering

absorber.
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The reflectivity of a saturable absorber is given by

R =1- q - qTPA -R, (5.2)

where R is the SBR reflectivity, q is the saturable absorption, q,,A is the TPA loss, and Rs is

non-saturable loss. The saturable absorption is determined from pump-probe experiments in

which the probe beam-waist was 0.75 times that of the pump, and is given by (Appendix E):

q(F)= qjtt " 2 z'"Zmdz (5.3)
F mz

where qo is saturable loss, Fsat is the saturation fluence, F is the fluence of the incident pump, and

m is the square of the ratio of the pump and probe beam-waists given by

2

M = "pump (5.4)

Wprobe

Using the above equation, we were able to extract out the saturable loss, saturation fluence, and

non-saturable loss of the samples.

5.4.2. Recovery time

The differential reflectivity measured using a pump-probe experiment is the convolution of the

cross-correlation intensity with the transfer function of the saturable absorber. This can be

described by [49]

AR(rprbe, ) = Jhprobe -t') X(t')dt', (5.5)

where AR is the change in the reflectivity of the SBR, X (t) is the cross-correlation of the pump

and probe pulses, and h(t) is the transfer function of the sample. The transfer function h(t) is

based on the temporal dynamics described in Section 5.2.3, and is modeled by [46]
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t t

h(t)= ao(t)+ ae a2e +a, u (5.6)

where ao is the instantaneous response, 5(t) is the Dirac delta function, rV and r2 are the carrier

cooling, and long recovery times, respectively, a3 is a rise in temperature, and u (t) is a unit step

function. This model is utilized to extract the various different relaxation times.

5.5. Saturable absorbers

Several different types of SBRs were designed and tested for this work. The goal of using

different designs is to study and understand the trade-offs among saturation fluence, non-

saturable loss, saturable loss, and recovery time of an SBR and to provide data for comparison

with results obtained from their use in laser mode-locking. One of the main challenges in the

design of high-repetition rate lasers is to generate high enough fluence per pulse to fully bleach a

saturable absorber. In a mode-locked laser, for a constant intracavity average power, with

increasing repetition rate, the energy per pulse is reduced, resulting in lower fluence on the

saturable absorber. Therefore, it is necessary to engineer devices with lower saturation fluence.

This can be accomplished by designing the layer thicknesses so that the absorber layer is placed

at the peak of the incident field. The saturation fluence can be further reduced by enhancing the

standing-wave field pattern with a resonant coating on the top layer of the SBR [46, 48].

Another parameter of a saturable absorber that plays an important part in the design of

high repetition lasers is the recovery time of the device. As discussed in the previous Sections,

the recovery time depends on the purity and quality of the crystal structure of the absorber

material. Certainly, the recovery time of an SBR should be shorter than the round-trip time of
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cavity to ensure maximum per-pulse effect. The optimum relationship between ultrafast recovery

that can lead to the shortest pulses and a somewhat longer component that can assist in self-

starting to the mode-locking, is not yet fully understood.

SBR samples in the first group that were studied were designed with a single InGaAs

absorber on top of a Bragg reflector consisting of AlGaAs and GaAs. Effects of proton

bombardment at various energies and doses on the temporal and saturation properties of these

SBRs were also investigated as part of the pump-probe study. The design of the second group of

SBRs was based on a single absorbing layer with an additional resonant coating on the top layer.

Temporal and saturation properties of these SBRs were also studied in detail. Finally, the third

group of SBRs consisted of two absorbing layers placed in layers of GaAs and grown on top of a

Bragg reflector consisting of AlGaAs and GaAs layers. The goal of multilayer absorbers in the

SBR was to increase the amount of available saturable absorption.

5.5.1. Single absorber

Saturable absorbers discussed in this section consisted of a 60nm Ino.537Gao.463As absorber

embedded in a half-wave cladding layer on 22-pairs of GaAs/Alo.95Gao.05As reflector mirror

centered at 1550nm. The InGaAs absorber layer was designed to have 1580nm band edge and it

was placed inside a layer of GaAs. The structure of this device is shown in Figure 5-6 with the E-

field standing-wave pattern at X=1560nm superimposed. The optical field impinges on the

sample from the right hand side. The X/2 top cladding layer is designed to maximize

transmission of the optical field into the device.
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The structure of the device consists of, from the left, 22 pairs of AlGaAs/GaAs. Each

layer is fabricated to be X/4 thick at the center wavelength of interest. The E-field standing wave

in this figure is calculated for a single wavelength of 1560nm. Since the optical path length of

each layer varies with the wavelength, the overlap between the absorber layer and the E-field

standing wave pattern will also change as a function of wavelength. Therefore, careful

fabrication of the devices plays an important part in the saturation properties of the device as will

be discussed in the later section. The reflectivity of the device was measured and compared to

that predicted by the design. The measurement demonstrates a shift in the center wavelength of

the device by approximately 10nm to lower wavelengths as depicted in Figure 5-7. This can be

due to the variation in the thicknesses of different layers of the Bragg mirror. The composition

and thickness of different layers of the single-absorber are given in Table 5-1.

Table 5-1 - Composition and thickness of the different layers of the single-absorber saturable absorber
(VA86)
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Layers Thickness (nm)

Top Cladding (GaAs) 83.2

Absorber (Ino. 537GaO 463As) 60

Bottom Cladding (GaAs) 83.2

Bragg Mirror (GaAs/Alo.95Gao.osAs) 114.7/132.9
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Figure 5-6 - Single
Courtesy:Hanfei Shen.

absorber (VA86) saturable absorber structure and standing E-field pattern.

Reflectivity vs. Wavelength, single 60nm absorber

Figure 5-7
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- Reflectivity of the single absorber layer measured vs design Courtesy:Hanfei Shen and Gale
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Figure 5-8 - Differential reflectivity of the single-absorber SBR as a function of the delay of the probe
with respect to pump.

To study the effects of the proton bombardment on the carrier lifetime this device, the

SBRs were sent out to Leonard Kroko, Inc., and were proton-bombarded with 40KeV protons

and over a range of doses including 10"3, 5x1", 1014, 3x10 14, and 1015 /cm 2. The protons of

40KeV are utilized to ensure that the defects reach the absorption layer and that with increasing

dosage of proton-bombardment a larger number of defects are generated to shorten carrier

lifetime. As shown in Figure 5-9, the device with no proton bombardment has a long recovery

time in the order of 11ps, while the sample with 1015/cm2 proton bombardment recovers in less

than 2ps.
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Figure 5-9 - Carrier recovery time of the single absorber device as a function of the proton bombardment
doses. Proton energy used in this study was 40KeV to ensure that it reaches the absorber layers. Doses of

proton-bombardment were 10"3, 5x10 3 , 1014, 3x10' 4, and 101" /cm 2.
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Figure 5-10 - Saturation dynamics of the single absorber (VA86) saturable absorbers as a function of the

fluence on the sample. Each trace corresponds to a different proton bombardment dose.
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The recovery times of these devices were extracted using Equation (5.5) and are tabulated

in Table 5-2.As shown, the recovery times varied between 10.8ps with no proton bombardment

down to 1.5ps with 1015/cm2. And, from the saturation dynamics, the saturable loss, non-

saturable loss, and the saturation fluence of each sample were determined and tabulated in Table

5-2.

Table 5-2 - Temporal and saturation parameters extracted for different proton bombardment levels of
single InGaAs absorber design.

Proton Short recovery Long recovery Saturable loss Saturation Non-saturable

dose time, r, time, T2  qo Fluence, Fsat loss, Rns

(/cm2) (ps) (ps) (%) (gJ/cm 2) (%)
0 1.5 10.5 3.9 12 1.1

io 3  1.5 9.9 3.5 11 1.5

5x1013 1.5 7.5 3.3 10.5 1.7

1014 1.3 5.6 3.2 12 1.8

3x1014 1 4.9 3.0 14.3 2

10'I 0.4 1.5 2.9 34 2.1

Proton bombardment has resulted in a shorter recovery time in these samples. At doses above

3x 1014/cm 2 the recovery time of the sample is reduced below 1.5 ps, but additional non-saturable

loss is introduced and the saturation fluence of the device has increased by almost 3 times to

34pJ/cm 2 with additional non-saturable loss. The large increase in non-saturable loss may be due

to the addition of impurities and defects in the crystal structure. These implanted impurities can

result in changes in the refractive indices of both GaAs and AlGaAs in the cladding layers and

the Bragg stack. These variations would change the E-field standing-wave pattern inside the

device, hence, altering the absorber layer overlap with the peak of the optical intensity and

resulting in higher saturation fluence. Hence, although the faster recovery time of the device may

be favorable for pulse-shortening, it requires 3 times higher fluence to saturate this device. And,

147



considering that increasing the repetition rate while keeping the average power inside the cavity

constant results in lower fluence on the SBR, mode-locked operation may be difficult to achieve

with a 1015/cm2 proton bombarded sample. In the following section, we will discuss the effects

of resonant layers in reducing the saturation fluence of a semiconductor saturable absorber.

5.5.2. Resonant structure

The proton-bombardment results of the previous section demonstrate the efficacy of this

technique for reduction of carrier lifetimes. However, it introduces another challenge in the

process, that for the highest doses, the saturation fluence of the device increases by a factor of 3.

To reduce the saturation fluence, a resonant coating was added to the SBR. In this section, I will

present the results obtained with such a resonant coating.

A resonant layer structure was grown on top of the single absorber design demonstrated

in Figure 5-6. The addition of the resonant layer on the top results in the creation of a Fabry-

Perot cavity between the top layer and the DBR stack with 70% reflectivity. The E-field standing

wave pattern for this device was calculated and shows that the magnitude of the E-field on the

absorber layer is 2.5 times greater than that of the SBR without the resonant cavity. The structure

and the E-field standing wave for this device (VA88) are shown in Figure 5-11. The spectral

bandwidth and the reflectivity of the device were also measured and compared to the design

simulations. This is shown in Figure 5-1 lb.

Another saturable absorber using the same topology was created, except that instead of

placing the single absorber layer in the cladding layer, it was placed in the first high index

quarter wave layer of the mirror. This group of absorbers is named VA89. The E-field pattern

and the result of the simulated and measured spectral width of the VA89 samples are shown in
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Figure 5-12. Saturation fluence curves for each were measured and are shown in Figure 5-13.

The composition of the two structures and the thicknesses of each layer are given in Table 5-3.

Table 5-3 - Composition and thickness of the VA88 and VA89 structure

Layers (Material) VA88 VA89

Resonant layer (Alo.95Gao.05As / GaAs) x 3 133/115 133/115

GaAs 83 282

Absorber (Ino.537GaO.463As) 60 60

GaAs 83 -

Alo.95Gao.o5As - 133

Bragg mirror (GaAs/ Alo.95Gao.o5As) 115/133 115/133

Substrate GaAs

[3Ia2, refkitor Resoimini laver

zV_ U
1-4HTTh1Th

-1.5 -1 -0.5 0
Miror depth z (pmn)

Single 60nm absorber with resonant layer

2 o-

1.5 1.55 1.6 1.65 1.7
Wavelength (pan)

Figure 5-11 - a)The structure of a single absorber saturable absorber (VA88) with the addition of resonant
layer on top. The absorber consists of 60mn InGaAs layer in a GaAs cladding layer. b) Measured and
simulated reflectivity of the single-absorber structure with top resonant layers. Courtesy: Hanfei Shen.
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Figure 5-12 - a)The structure of a single absorber saturable absorber (VA88) with the addition of resonant
layer on top. The absorber consists of 60nm InGaAs layer in a GaAs cladding layer. b) Measured and
simulated reflectivity of the single-absorber structure with top resonant layers. Courtesy: Hanfei Shen.
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Figure 5-13 - Saturation fluence curves for VA88 and VA89, both measured and fitted.
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Table 5-4 - Saturation parameters of VA88 and VA89 resonant saturable absorbers

Saturable loss Saturation Fluence Non-saturable loss
Sample qo (%) Fsat (pJ/cm2) Rn, (%)

VA88 7 5.8 1.2

VA89 8 9.2 4.2

From the summary, we can see that the saturation fluence and nonsaturable loss of the VA89

sample are both larger than those of VA88. The larger saturation fluence can be explained by

noting the fact that the absorber layer in VA89 does not perfectly align with the peak of the E-

field, hence larger energy is required to saturate the device.

The resonant structure on top of a Bragg stack, creating a Fabry-perot cavity, can also be

designed to exhibit a specific spectral response and provide additional optical filtering. The need

for such functionality arose in the implementation of a compact 1GHz mode-locked laser that

was developed in professor Kartner's lab by Hyunil Byun. The structure of this laser is shown in

Figure 5-14.

DBS L1 OC ESBR

(977nm EDF+SMFo
pump

output

Figure 5-14 - Schematic diagram of the lGHz compact Er doped waveguide mode-locked laser. Courtesy
of Hyunil Byun

As shown in this figure, the gain in the laser cavity is provided by an Er-doped fiber

section. The SBR is mounted on a heat sink and it is butt-coupled to the Er-doped fiber. The butt-

coupling is meant to reduce the scattering, and coupling loss between the fiber, air, SBR, and

back to the fiber. Due to the short-length of the cavity necessary to generate 1GHz repetition
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rate, the length of the Er-doped fiber had to be kept fairly short which means that to achieve

necessary optical powers to reach the saturation fluence of the SBR, this length of Er-doped fiber

had to produce significant amount of gain. Gain of an EDFA is dependent on the length of the

fiber, the doping, and the pump level. Since increasing the fiber length would reduce the

repetition rate, as a solution to this problem, the increase of the pump level was explored. The

active fiber was pumped with a 300mW diode pump at 977nm that was not all absorbed by the

fiber. A significant portion of this power was incident on the SBR. This resulted in the operation

of the laser for only a few minutes after which time the laser would fail. Careful trouble-shooting

revealed bum spots on the single absorber structures. To solve this problem, a pump-reflective

coating (PRC) was designed to reflect the 977nm pump wavelength and pass the 1560nm signal.

The filter also resulted also in the enhancement of the E-field standing wave inside the device.

The E-field profile and the structure of the device is shown in Figure 5-15.

The magnitude of the E-field on the absorber layer is approximately 3 times that of the

uncoated single absorber structure (VA86). Therefore, as expected the saturation fluence of the

PRC device is 3 times lower than the non-coated sample. The parameters for this device are

extracted from the saturation fluence dynamics and compared to the uncoated VA86 sample.
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Figure 5-15 - E-field standing wave pattern of the pump-reflected coated VA86 structure.
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Figure 5-16 - Reflectivity of the VA86 uncoated and with pump reflective coating. The unbleached
reflectivity of the PRC device is about 8% lower than the uncoated sample.
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Figure 5-17 - Saturation dynamic of VA86 sample with and without pump-reflective coating (PRC).
Addition of PRC results in larger modulation depth, and lower saturation fluence.

Table 5-5 - Saturation parameters of the VA86 with and without PRC.

Saturable loss Saturation Fluence Non-saturable loss
Sample

qo (%) Fsat (pJ/cm 2) Rs (%)

VA86 - with PRC 12 3.7 1.1

VA86 - no coating 3.9 12 1.1

The PRC layer has resulted in obtaining larger saturable loss and the saturation fluence

has decreased by a factor of 3 down to 3.7 pJ/cm2, while the non-saturable loss has not changed.

The additional functionality of reflecting 977nm wavelength range has allowed for the

integration of this saturable absorber in the compact 1GHz mode-locked laser with at least

60hours of stable operation [38].
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5.5.3. Double-absorber device

To increase the amount of saturable absorption, multiple absorber layers are used instead of a

single-absorber layer. In the studies of this section, we used two-absorber devices that were

designed by Michelle Sander in professor Ippen's group. Two different geometries were

fabricated with two 60nm Ino.537Gao.463As absorber layers in GaAs layers. The difference

between these two structures lies in the thickness of the top GaAs cladding-layer. The VA147

has 20nm thinner top layer in an effort to optimize the overlap of the absorbing layers and the

square of the E-field. The composition of the each device is given in Table 5-6. Using this

information, the standing-wave electric field patterns for these devices were calculated, and they

are shown in Figure 5-18. The spectral widths of the two devices were measured and the results

are shown in Figure 5-19. As shown in this figure, the reflectivity of VA147 rolls-off at longer

wavelengths.

Table 5-6 - Thicknesses and composition of different layers of VA147 and VA148 saturable absorbers

Thicknesses (nm)

VA147 VA148

Cladding layer (GaAs) 62.3 82.3

Absorber layers (GaAs/InGaAs/GaAs)x2 62.3/69.8/62.3 62.3/69.8/62.3

Bragg stack (GaAs/AlGaAs) 114.5/129.5 114.5/129.5
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Figure 5-18 - The intensity of the optical field in the VA147 and VA148 saturable absorbers consisting of
two InGaAs absorbing layers separated by GaAs cladding. The difference between the two designs lies in
the thickness of the top layer. This results in a different overlap between the optical intensity and the
InGaAs absorbing layers. Courtesy of Michelle Sander
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Figure 5-19 - Spectral bandwidth of VA147 and VA148. At 1560nm, the measured reflectivities of the

SBRs are 85 and 90%, respectively. Courtesy of Michelle Sander.
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The saturation and temporal dynamics of these samples were also studied. As expected,

the recovery times of the two samples were both 1 lps. The equality of the two recovery times is

expected as the relaxation time depends on the quality of the material. The probe reflectivities as

a function of pump-probe delay for both samples at a fluence of 25 pJ/cm2 are shown in Figure

5-20. The modulation depth of the VA147 sample is approximately twice that of VA148.

Because of the double-absorber layer structure of the VA147 and VA148, they are expected to

exhibit twice the modulation depth achieved with a single absorber layer such as VA86 with no

resonant coating. As shown in this figure, VA147 exhibits nearly such modulation depth and it

seems that compared to VA148, its design offers a more optimum overlap between the absorber

layers and the peak of the E-field in the device is achieved.

Furthermore, the reflectivity of the two samples as a function of the fluence on the

sample was also measured and the results are shown in Figure 5-21. The saturation parameters of

the devices are extracted and summarized in Table 5-7. VA147 sample exhibits larger saturable

loss and lower saturation fluence which are desirable characteristics for implementation in a

mode-locked laser.

Table 5-7 - VA148 and VA147 saturable loss, saturation fluence, and non-saturable loss extracted from
the measured data.

Saturable loss Saturation fluence Non-saturable loss
Sample

qo (%) Fsat (pJcm2) Rns (%)

VA148 4 5.4 6.2

VA147 7.5 4.7 8
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Figure 5-20 - Probe reflectivity as a function of the delay from the pump for both VA148 and VA147
samples at fluence of 25pJ/cm 2. Both samples have a long recovery time of 11ps.

0.96

10 10 10 10
Fluence (pJ/cm2

Figure 5-21 - Reflectivity of the VA147 and VA148 as a function of the fluence on the sample both
measured and using a model to extract the saturable loss, non-saturable loss, and saturation fluence.
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Figure 5-22 - TRIM simulation of the proton bombardment of VA148 sample. The protons enter the
structure from the left. The red cloud shows the penetration depth of the protons. The proton energy levels
of each figure are as follows: (a) 1OKeV, (b) 25KeV, (c) 40KeV, and (d) 60KeV.
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The effects of proton bombardment on the carrier dynamics of the VA148 sample were

studied further. Since the two absorber layers in this structure are located at different depths

inside the structure, several different combination of proton bombardment levels were utilized in

this study. SRIM software (www.srim.org) was utilized to determine the depth of proton

penetration as a function of the energy of the ion beams. The result of this simulation for proton

energies of 10, 25, 40, and 60KeV are shown in Figure 5-22. The protons enter the structure

from the left side of the page where the top layer of the VA148 is placed. As the protons travel

through the structure, due to their collision with nuclei and interaction with the outer-shell

electrons of the atoms in the structure, they slow down and deposit their energy along the way.

The proton beam deposits most of its energy just before it comes to rest. In Figure 5-22, the red

cloud indicates the stopping position of the protons. Based on this simulation, combination of

25KeV, 40KeV and 60KeV proton energies were selected for this study trying to reach different

absorbing layers as tabulated in Table 5-8.

Table 5-8 - Combination of proton bombardment doses and energies on VA148 saturable absorber

Proton bombardment
Sample

designation Dose
(/cm2) Energy(KeV)

PBO - -

PB40114 io14  40KeV

PB60513 5x10" 60KeV

PB60114 io14  60KeV

PB25113+60513 1013;25KeV + 5x103; 60KeV

PB25513+60114 5x 10 3;25KeV + 1014; 60KeV
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Carrier lifetimes of the proton bombarded samples were measured using the cross-

polarized pump probe experimental setup. The results for five of the six samples tested at

25pJ/cm 2 are shown in Figure 5-23. The pump probe trace for PB40114, the sixth sample, is not

shown since it exhibits the same recovery times as PB60114 and PB25113+60513 samples. The

long recovery times vary between 10.5ps for no proton bombardment down to 6ps for the

PB25513+60114 sample which has received the highest dose. This latter sample exhibits 7%

modulation depth which is more than 2 times that of the other VA148 proton bombarded

samples. It also exhibits 7% higher unbleached loss compared to the other VA 148 samples. This

is demonstrated in the saturation dynamic studies as shown in Figure 5-24.

The large difference between the response of the PB25513+60114 sample and the rest of

the VA148 samples may be due to the physical location of the wafer from which this sample was

taken. As this sample was not tested prior to being sent for proton-bombardment, the larger

unbleached loss, and modulation depth may have been present on the non-proton-bombarded

sample. Since we are operating close to the edge of the bandwidth of the SBR, any variations in

thicknesses of the mirror layers may result in a shift in the center wavelength of the Bragg stack.

This shift in the center wavelength can result in a large unbleached loss. In addition, this large

loss may be due to the refractive index changes induced by the implanted ions in different layers

of the SBR, resulting in a shift of the absorber overlap with the peak of the E-field standing wave

pattern. The large variation of the sample response observed in the PB25513+60114

characteristics emphasizes the importance of pump-probe characterization of saturable absorbers.
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Figure 5-23 - Relative reflectivity
signal with fluence of 25tJ/cm2 .
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Figure 5-24 - Reflectivity of VA148 proton bombarded samples. (a) Proton bombardment has very little
effect on the saturation dynamics of VA148. (b) Highest proton bombardment with 5x10 3 /cm 2 at 25KeV

plus 10 4/cm 2 at 60KeV results in addition 7% unbleached loss, and lower saturation fluence from 5.5 pJ/cm 2

down to 4.4 pJ/cm 2.
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Table 5-9 - Saturation dynamics of the VA148 saturable absorber as

5.6. Conclusion

Studies of ultrafast carrier dynamics of single and double absorber were described in this

chapter. Effects of different proton bombardment levels on the carrier lifetime and the saturation

dynamics of these devices were explored. We were able to reduce the carrier lifetime of the

single-absorber devices from 12ps with no proton-bombardment down to 1.5ps with 1015/cm2

dose. However, the saturation fluence of this latter sample increased by more than a factor of 2 in

the same range with the biggest increase observed between 5x 1014 and 1015/cm2 doses. We also

demonstrated that with the addition of resonant layers on an SBR, the saturation fluence of these

devices can be lowered. We demonstrated a factor of four reduction in the saturation fluence of

the single-absorber devices.

In addition, double-absorber SBRs were fabricated and their ultrafast carrier dynamics

were studied. To determine the optimum design leading to higher modulation depth and lower
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Saturable Saturation Non-saturable
Sample loss fluence loss

designation
Dose (/cm2) Energy(KeV) qo (%) Fsat (p.J/cm 2) Rs (%)

PBO - - 3.9 5.4 6.2

PB40114 1014 40KeV 5 6.1 5.2

PB60513 5xl0" 60KeV 4 5.8 6

PB60114 1014 60KeV 3.9 6.4 6.2

PB25113+60513 1013;25KeV + 5x10"; 60KeV 3.7 6.5 6.4

PB25513+60114 5x10 13;25KeV + 1014; 60KeV 9.0 4.4 8

a function of proton bombardment



saturation fluence, two different designs with different cladding-layer thicknesses were

fabricated and studied. The two different topologies demonstrated that further work is necessary

to design the layer structures for optimum overlap of the absorber layer with the peak of the E-

field pattern in the device. In addition, different proton bombardment levels and energy

combinations were utilized to lower the carrier lifetime in these SBRs. Further work is necessary

to optimize the doses and energy levels as the carrier lifetime of these devices were only

shortened by a factor of 2 compared to that of the non proton-bombarded sample.

The future work on these latter samples may consist of fabrication of several different

SBR structures with different cladding layer thicknesses. Further reduction in the saturation

fluence can be explored by addition of resonant layers. Finally, with larger combination of

proton bombardment levels and energies, the trade-off between the carrier lifetime reduction and

the saturation dynamics can be better modeled.
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Chapter 6

Conclusion

Ultrafast carrier dynamics and optical nonlinear properties of several active and passive devices

were studied in this thesis. The devices studied included slab-coupled optical waveguide

amplifiers (SCOWAs), silicon-based nanowaveguides, and Ill-V semiconductor saturable Bragg-

reflectors (SBRs).

Slab-coupled optical waveguide amplifiers exhibit high optical output powers.

Limitations imposed by nonlinear optical processes, namely TPA and FCA on the saturation

power of a SCOWA were studied. The TPA coefficient and the effective cross-section of FCA

were extracted from the study. We developed a model to predict the saturation energy of a

SCOWA as a function of the input pulse energy. This model was utilized to determine the

saturation energy of a SCOWA for amplification of ultrafast pulses. The saturation energy of a

SCOWA transmitting 150fs pulses at an 80MHz repetition rate occurs at very low input energy

levels. This makes producing any significant gain for long-haul transmission of such short pulses

a challenge. This also creates a challenge to implement SCOWAs in ultrafast mode-locked

lasers. The key to overcoming these challenges can be to reduce the effects of the TPA by

constructing the slab layer, where the optical intensity is the highest, from higher bandgap

materials compatible with the InP technology.
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Ultrafast nonlinear optical properties of high-index contrast silicon waveguides of

106nmx497nm cross section were studied. A heterodyne pump-probe technique was utilized to

characterize the magnitude of the TPA and FCA losses as well as the optical Kerr effect and the

refractive index change as a function of the carrier density. The high sensitivity of the heterodyne

technique has allowed for this characterization using very small carrier densities with great

accuracy. We developed a model to predict nonlinear optical loss and phase change as a function

of the input pulse energy. This model was utilized to predict the limitations imposed by the

nonlinearity on the transmission of different pulse energies. As the carrier recovery of silicon can

be in the order of several hundreds of picoseconds to nanoseconds, the devices were proton

bombarded with different doses. Carrier lifetime of 33ps with proton bombardment level of 105

/cm 2 with 14.8dB linear loss was achieved. Future work in this area may include further studies

of proton bombardment to achieve shorter recovery times.

Ultrafast carrier dynamics of single and double absorber were studied in this chapter.

Effects of different proton bombardment levels were explored on the carrier lifetime and the

saturation properties of these devices. We were able to reduce the carrier lifetime of the single-

absorber devices from 12ps with no proton-bombardment down to 1.5ps with 10 5 /cm 2 dose.

However, the saturation fluence of this latter sample increased by more than a factor of 2 in the

same range with the biggest increase observed between 5x 1014 and 10 5 /cm 2 doses. We also

demonstrated that with addition of resonant layers on a SESAM, the saturation fluence of these

devices can be lowered. We demonstrated a factor of four reduction in the saturation fluence of

the single-absorber devices.

In addition double-absorber SBRs were fabricated and their ultrafast carrier dynamics

were studied. To determine the optimum design leading to higher modulation depth and lower
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saturation fluence, two different designs with different cladding-layer thicknesses were

fabricated and studied. The two different topologies demonstrated that further work is necessary

to optimize the layer structures for optimum overlap of the absorber layer with the peak of the E-

field pattern in the device. In addition, different proton bombardment levels and energy

combinations were utilized to lower the carrier lifetime in these SBRs. Further work is necessary

to optimize the doses and energy levels as the carrier lifetime of these devices were only

shortened by a factor of 2 compared to that of the non proton-bombarded sample.

The future work on these latter samples may consist of fabrication of several different

SBR structures with different cladding layer thicknesses. Further reduction in the saturation

fluence can be explored by addition of resonant layers. Finally, with larger combination of

proton bombardment levels and energies, the trade-off between the carrier lifetime reduction and

the saturation properties can be better modeled.
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Appendix A

Double Modulated Pump-Probe Dynamics

In this section, the mathematics of the double chopped pump probe experiment is described and

formulas for determining the TPA coefficient using this technique are derived. To determine the

nonlinear response and the recovery time of the device, a pump signal is passed through the

device and the probe signal is used to determine the changes induced by the pump by passing the

probe signal at different delays with respect to the former. Clearly, at the output, the pump and

the probe signals must be separated and only the probe signal is detected so that the effects of the

pump can be uniquely distinguished. One method to accomplish this is by cross-polarizing the

pump and the probe so that a polarizer can be utilized to filter the unwanted pump at the output

of the device. Another method is to make the pump and the probe at two different wavelengths,

so that an optical filter can separate the probe pulse. Due to the large polarization dependence of

the gain of SCOWAs to the input polarization of the incident light, and since the optimal

operating wavelength is at 1540nm, neither one of these two methods can be utilized to measure

the response of a SCOWA. Therefore, a degenerate double-chopped pump-probe signal is used,

where the pump and the probe signals are each modulated at two distinct frequencies, and the

output signal is detected at the sum of the frequencies of the two chopping frequencies.
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The modulation of the pump and probe pulses can be accomplished using a mechanical

chopper or an AOM. To simplify the mathematical analysis, we assume sinusoidal amplitude

modulation with 100% modulation index, though this can be replaced with square wave

modulation which is the case of mechanical chopping. Therefore, we can describe the modulated

pump and probe signals as

I, (t)= I1+ m Cos(colt)) IPO (t) (A. 1)

I, (t)= 1(I + m cos(WIt))I, O (t), (A.2)

where Ip,o and Is,o are respectively the intensity of the unmodulated Gaussian pump and probe

pulses at the input of the SCOWA, m is the modulation index which without the loss of

generality are assumed to be 1, and co and '2 are the different chopping frequencies.

Differential equation describing the propagation of the probe pulse is given by

dI5s-= gI, -p3II, (A.3)
dz

where g is the gain of the amplifier, F is the confinement factor, and p8 is the two-photon

absorption coefficient. Solving this differential equation to determine the intensity of the probe

pulse at the output of the SCOWA, we have

j(gor-jIP)dz
,0(L)= Ie, (A.4)

where

I, = I,oeor. (A.5)

Substituting Equation (A.5) in (A.4), we have

I, (L)= Is, exp(geoL)exp - IO (egrL - ). (A.6)
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Since pump probe measurements are performed in the perturbative regime, the component of the

second exponential term, ie P I,O (e"ofL - 1) < 1, therefore, Equation (A.6) can be
Tg

approximated as

A, (L)= I (L)J-IO = -pIs (L)IP (L) F L . (A.7)

Substituting Equations (A.1) and (A.2) in the above equation, and only keeping the frequency

term w, + co2, and accounting for the coherent artifact, and the effect of pump on the probe and

vice versa at time delay r=O, the peak absorption in the pump probe trace, normalized to the

probe power is

AI, = -2p8 LI, (L) cos (w + 2)t. (A.8)
I, ( L) gTL L

The amplitude of the fractional loss due to TPA as detected on a lock-in amplifier at frequency

az +aC0 is

2p j -je LI, (L) c (A.9)

where r is the pulsewidth, hence

I oc -. (A.10)
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Appendix B

TPA and FCA Effective Areas

in Highly Confined Waveguides

Differential equations describing the propagation of optical pulses in silicon nanowaveguides

were given in Chapter 4. To extract the nonlinear optical parameters of these waveguides from

the pump-probe measurements, the intensity of the optical signal inside the waveguide needs to

be determined. Since the upper and lower cladding material is made up of HSQ and SiO 2, the

nonlinear interaction is limited to the waveguide and none in the cladding layers. Since only a

fraction of the optical mode interacts with the nonlinear region, it is necessary to define an

effective area to determine the effective intensity of the optical signal to determine the TPA and

FCA nonlinearities.

TPA is dependent on the intensity of the optical signal. Several different techniques have

been utilized to calculate such effective area. The following table summarizes the different

formulas for such calculation.
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Table B-I - Different techniques to calculate TPA effective area

TPA effective area

Technique Formula (Pm2) Reference

475xlO6nm 1000x800nm

-2

Integration over all space for .E2
weakly confined 0.275 0.474

waveguides J1E 4 dxdy
00

- -2

Integration over core weakly E2 dxd
confined [jE x1 0.530 0.475 [2]

with core nonlinearity JE dxdy
core

-2

(ExH).ezdxdy
Foster .. E 1 0.228 0.437 [3]

J(E x H).e] 2 dxdy
core

2 [E x H).edxdy
Strongly confined modes no .- 1 0.096 0.420 [4]

interf|E dxdy
core

Strongly confined modes

core

0.113 0.429

As shown in this table, for large waveguides, all different techniques result in the same effective

area, while in the smaller waveguides, the range of values increases dramatically. The technique

used in this thesis is based on the exact solution using a numerical mode-solver developed by
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Milos Popovic and Anatol Khilo. The mode-solver calculation results in the TPA effective area

of the silicon waveguides to be 0.098gm 2.

The free-carriers generated by the TPA process absorb light and result in further optical

loss. Similar to the TPA process, an effective area needs to be defined for FCA calculations. The

light in this case interacts with the free-carriers in the core, therefore, the distribution of these

carriers needs to be calculated. Using the same mode-solver program used for the TPA effective

area calculation, the FCA loss was modeled and the FCA effective area was determined to be

0.074 pm2.
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Appendix C

Heterodyne Pump-Probe Analysis

Using pump probe techniques, the instantaneous and long-lived effects can be separated. In this

section, the analysis on how to extract each parameter separately for the silicon waveguides

analysis is given. This analysis can be extended to other devices.

The following derivations are based on conducting the pump-probe in the perturbative

regime, i.e. where the response of the system is linear with the intensity of the pump. Therefore,

we may assume an optical signal only experiences linear loss and it can described at the output

of the waveguide by:

I (z) = I (0) e-"""z (C. 1)

where I is the optical intensity and alin is the device linear loss.

C.1. Two-photon absorption

The instantaneous response due to TPA with a corresponding coefficient, fi, can be modeled by

dI~ C2ds = -(I, + az)IS (C.2)dz
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where I, and Is are the pump and probe intensities, respectively. These intensities are

calculated using the power of each signal divided by the TPA effective as calculated in Appendix

B. Integrating both sides of this equation over the length of the device, we have

L L

- J(/Ip(z)+a,)dz - ffpI (z)dz

Is,TPA(L)=Is (0)e 0 =Is (L)e 0 (C.3)

where IsTPA is the magnitude of the instantaneous response of the probe signal measured from

the pump-probe experiment. Substituting for Ip as per Equation (C. 1), we have

L 1- exp (-aL)
ISTPA (L) = Is (L) exp -pfip (0) exp(-az) dz =Is (L)exp -pI, (0) a .(C.4)

Since the measurements are made in the perturbative regime, we can use e' ~1- x, and rewrite

Equation (C.4) as

AM I s TPA(L)-Is (L) 1-exp(-aL)
sP _L s SL = -fp (0) a =-,lp(0) LTPAff. (C.5)

IS(L) IS(L)a

AIs,TPA is the differential response of the instantaneous component of the pump-probe trace. The

term AS,TPA I is the normalized transmission or reflection measurement and it is directly

proportional to the TPA coefficient. As the optical signal propagates through the device, it is

attenuated due to the TPA loss, as a result, the effective length over which the signal experiences

loss is the TPA effective length described by

LTPAeff - exp(-aL) (C.6)
a

C.2. Free-carrier absorption

The FCA differential reflectivity can be derived similar to the TPA calculations. The

differential equation describing the FCA loss can be described by
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=-s (Z arpP dt'+ a,, Is (zt). (C.7)
dz ho> IIS(

The intensity can be separated into two functions one as a function of time, and the other as a

function of distance z. The above formula can be simplified to

d z' =Z t (0I (t)IfP (z) + a l,)IS (Z) .(C.8)

Solving this differential equation as a function of z and ignoring the time dependent part

which can be added at the end, we have

L L
IS,FCA (L) = Is (0)exp -J(ofI (t)I (z)+ a,,,)dz = Is (L) exp-rpI (t) JI/2 (z)d

0 0

(C.9)

where ISFCA is the magnitude of the long-lived free-carrier induced loss on the probe signal.

Since the pump-probe measurement is performed in the perturbative regime, Equation (C. 1) can

be used to describe the propagation of the pump intensity. This leads to

1 - exp(-2aL)
IS,FCA(L S Is()e -gP2(t 2()(C10

2a

Assuming perturbative pump-probe measurement, we have

AJs FCA 2-or

Is (L) &I (0)L , (C.1)

where LFCA,eff is the effective length of the FCA effect given by

LFCA,,=1- exp (-2aL) (C.12)
2a
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Appendix D

Carrier Density Calculation

In this appendix, the derivation of formulas to determine the TPA-induced free-carrier density in

a passive waveguide of length L using the transfer function deviation of the waveguide from a

linear response is given. As described in Chapter 4, and demonstrated in Figure D-1, the optical

output power as a function of the input power deviates from a linear response with increasing

optical input power. Since this deviation is a due to the TPA process, for every two photons

absorbed, an electron and a hole are generated. The derivations in this section are in particular

with reference to the silicon waveguides studied in this thesis. However, the formulas can be

extended to other passive devices.

The optical loss as a function of the length of the device can be described by

a (z)= a,, +aNL =alin +,8 P(z), (D.1)
ATPA

where alin is the linear loss, p is the TPA coefficient, ATPA is the TPA effective area, and P(z) is

the optical power inside the waveguide. For simplicity, we define

g = (D.2)
ATPA
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Figure D-l - Optical output power of a silicon waveguide as a function of the input power.

Assuming that the optical signal experiences linear loss only so that

P(z)=Poealz (D.3)

where Po is the input power coupled into the waveguide. The total optical loss due to the TPA

process is given by

aNL= ; P (z) dz = P - ai,L (D.4)

In terms of the measured parameters, this total deviation from the linear loss can be calculated

using

aNL= Pm0( 101 (D.5)

where P0,,ti, is the output power of the device without any nonlinear effects, and Poutmeas is the

actual measured output power. Furthermore, the total number of electrons and holes generated by

the TPA process are given by
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NTotae = NTotah =hT ;p2 (z)dz, (D.6)
0

where T is the repetition rate of the optical signal, ho is the energy of a photon at wavelength A,

and Nrotai,e and Ntotal,h are the total number of generated carriers. Evaluating this integral by

substituting Equations (D.3) and (D.4), we have

aNL ~~ n-2ain L E.NTotaIe = NTotaIh = -a L 2n , (D.7)

where Ein is the energy of the optical pulses coupled into the waveguide.
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Appendix E

Saturation Fluence Calculation Using

Pump-Probe Measurements

The saturation properties of a saturable Bragg-reflector can be studied from the pump-probe

experiments by measuring the probe transmission as a function of the pump fluence at zero time-

delay. Detailed derivations of the formulas describing the saturation dynamics of an SBR is

given in [1, 2]. These derivations are described for pump and probe beams with equal beam

waists. In this section, this derivation is extended to the case where the pump and probe beams

are of different sizes when focused on the sample.

The normalized Gaussian beam incident on an SBR can be described using [1]

I (r, t)= fEt) Se- 1o, (E. 1)

where E is the energy of the pulse, r, is the pulsewidth, ro is the beamwaist of the Gaussian

signal, and I(r, t) is the intensity of the optical signal. The coefficients are set such that

E = I (r, t) dtdA . (E.2)
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The time-averaged saturation properties of an SBR as a function of the incident fluence is given

by[2]

1-e-F|Far
q qO F/Fat

(E.3)

where F is the fluence of the optical signal, and Fsat is the saturation fluence of the SBR. The

fluence is given by

(E.4)F = e 2E 2/r
2K rp

where r, is the pump signal beam-waist. The saturation fluence is given by

F = 2Esat
sat 2

PTrp

Substituting Equations (E.4) and (E.5) in (E.3) and integrating over the probe beam diameter, we

have

(E.5)

S1-eEe r 2/r -r 2

q = jq 0  e r2/rE 2 dr ,
0 Ee- lE,, r,

(E.6)

where rs is the probe signal beam-waist. Assuming the ratio of the pump and probe beams is

2

m = (E.7)

Equation (E.6) can be re-written as

E,a, 1-e-EIEa, e

E o er I e
-r2mr 2r dr.

mr,

To simplify this integral, the following change of variables is applied

2 2r
x = >dx= dr

r, r,

(E.8)
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q 0 w -E|Esae
q = q Et, 1-e ' e- x/mdx.

m E f e-
0

Further simplification is possible by applying the following change of variables

E F -x
z= e-= e

Eat, sa v

Applying this change of variable to Equation (E. 10), we have

(E.10)

(E.11)

(E.12)
F '" /Fq(F)=q0  sat " 2 z'"dz.
F mz

In the case where the pump and probe beam-waists are equal (m=1), this equation reduces to the

formula in [1].
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