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ABSTRACT

Parallel transmission (pTx) is a promising improvement to coil design that has been
demonstrated to mitigate B1* inhomogeneity, manifest as center brightening, for high-field
magnetic resonance imaging (MRI). Parallel transmission achieves spatially-tailored pulses
through multiple radiofrequency (RF) excitation coils that can be activated independently. In
this work, simulations of magnetic fields in numerical phantoms using an FDTD solver are used
to estimate the excitation profiles for an 8-channel RF head coil. Each channel is driven
individually in the presence of a dielectric load, and the excitation profiles for all channels are
combined post-processing into a B1 profile of the birdcage (BC) mode. The B1 profile is
calculated for a dielectric sphere phantom with material properties of white matter at main
magnetic field strengths of 3T and 7T to demonstrate center brightening associated with head
imaging at high magnetic field strengths. Measurements of a circular ROI centered in the image
show more B1 inhomogeneity at 7T than at 3T. The B1* profile is then simulated for a
numerical head phantom with spatially segmented tissue compartments at 7T. Comparison of
the simulated and in vivo B1* profiles at 7T shows agreement in the B1 inhomogeneity. The
results provide confidence in numerical simulation as a means to estimate magnetic fields for
human imaging. This work will allow further numerical simulations to model the propagation of
electric fields within the body, ultimately to provide an estimate of heat deposition in tissue,
quantified by the specific absorption rate (SAR), which is a limiting factor of the use of high-
field MRI in the clinical setting.
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Chapter 1

Introduction

As research in Magnetic Resonance Imaging (MRI) strives for improved signal-to-noise

ratio (SNR), MRI scanners operating at higher magnetic field strength are a natural choice since

SNR is linearly proportional to the strength of the main magnetic field. Results show that

averaged SNR in a 7T scanner is at least 1.6 times larger than that of a 4T scanner and are

largely in agreement with theoretical predictions [1].

A critical limitation of human brain imaging at 7T is spatial inhomogeneity of the

magnitude of the B1 + excitation field-often seen as 'center brightening' in the image-that

accompanies standard radiofrequency (RF) coils designed for lower field strengths [2],[3].

Spatial inhomogeneity arises as a consequence of the reduction in relative permittivity of

dielectrics in the presence of stronger magnetic fields, coupled with the increase in frequency of

the excitation field to maintain the resonance condition. The net result is a decrease in

wavelength that accompanies RF excitation at higher magnetic field strengths. In 7T scanners,

the RF wavelength is comparable to the size of the head, allowing for interference effects in the

center of the head. The extent of spatial inhomogeneity in head imaging at lower field strengths

is less significant, but center brightening does exist at lower field strengths, especially in body

imaging since the large size of the torso permits interference of longer wavelengths [4].

Center brightening negatively impacts the reconstructed images in two ways: in causing

spatially-dependent SNR and contrast. Though the SNR profile can be rectified using proper

filtering techniques, there is no known way to recover the correct contrast [4].



One approach to mitigate B1
t inhomogeneity with RF pulse design uses tailored

excitation profiles in the low-flip angle domain to modulate the B1* excitation field. Slice-

selective spoke trajectories from conventional single-channel RF excitation coils, for example,

can produce the necessary excitation profile but have long pulse durations because of the number

of kz spokes required and because of limitations on gradient amplitude and slew rate [5].

Parallel transmission (pTx) is a promising improvement to coil design that has been

demonstrated to mitigate B1t inhomogeneity. Parallel transmission achieves spatially-tailored

pulses through multiple RF excitation coils that can be activated independently [6]-[12].

Compared to single-channel excitation, pTx can create the same excitation using fewer kz

spokes, thus reducing the pulse duration.

Care must be taken when designing RF pulses on multiple excitation channels to avoid

excessive constructive interference of the electric fields emitted by the individual coils. Body

tissue has electrical conductivity and will heat in the presence of electric fields. The extent of

this heating, quantified by the specific absorption rate (SAR), is proportional to the square of the

electric field amplitude and to the conductivity of the tissue [6]. Limits on both the local SAR

(averaged within any 1 g of tissue) and global SAR (averaged over the imaged subject) maintain

RF safety for human subjects participating in MRI studies. For clinical operation in the United

States, the Food and Drug Administration refers to the limits set by the International

Electrotechnical Commission; global head SAR must not surpass 3 W/kg averaged over any 10

minute period while local SAR for head imaging must not surpass 8 W/kg averaged over any 5

minute period [13].

Numerical simulation of pTx coil arrays is a valuable tool to estimate the propagation of

electromagnetic waves through tissue and to verify that SAR requirements are being met [14].



Simple geometrical shapes, despite allowing for analytical results, have limited application as

anatomical models. SAR levels vary depending on the individual anatomy of the patient, and

using numerical simulations is the more practical route towards testing the broad range of

anatomical variation between subjects required to ensure safety [14].

An 8-channel parallel transmission head coil has been built and is being tested at the

Athinoula A. Martinos Center for Biomedical Imaging in Charleston, MA [4], [9]. The goal of

this thesis is to compare the experimental B profiles of in vivo images with those obtained with

the simulation software, Semcad (Schmid & Partner Engineering AG, Zirich, Switzerland). The

simulated results will ultimately allow for characterization of the SAR using the 8-channel coil.



Chapter 2

Background

2.1 The Basics of Magnetic Resonance Imaging

Nuclear Magnetic Resonance

Hydrogen atoms have intrinsic nuclear spin angular momentum. When body tissue is in

the presence of a strong uniform external magnetic field BO, a small fraction of its constituent

hydrogen protons will align with the magnetic field, giving rise to a net magnetic moment M of

magnitude MO within the object.

The protons can be excited to a higher energy state by applying a radiofrequency (RF)

electromagnetic wave B1 perpendicular to the main BO field. This applies a torque to the

magnetic dipoles according to the Bloch Equation

dN--MXx" + Myf" (Mz - MO) A (Eq. 1)

=t -yM x B - T2TdtTzT

where y is the gyromagnetic ratio specific to the nucleus type; and T1 and T2 are relaxation

parameters of the tissue that describe the rate at which the transverse and longitudinal

components of M reequilibrate along BO. The finite-duration RF pulse ends once the net

magnetic moment M is in the transverse plane, at which point M precesses about BO at a

frequency proportional to the strength of the external magnetic field. Specifically, precession

occurs at the Larmor frequency wo, which is given by

= y|Bo (Eq. 2)



The precessing spins create a dynamic magnetic flux in the transverse plane that can be detected

as an electromotive force (EMF) by one or more conductive loops, called receive coils,

according to Faraday's Law.

The process of receiving and encoding the data for image reconstruction is an expansive

field. There are several excellent texts that delve into the theory of generating images using MRI

[15], [16]. For the purposes of this thesis, limiting the discussion to the RF excitation stage of

the MR scan is sufficient.

Magnetic Fields in a Dielectric

A dielectric is a type of material that becomes polarized in the presence of an electric

field, quantified by the permittivity E of the dielectric material. The wavelength of an

electromagnetic wave within a dielectric depends on the permittivity of a dielectric since

Iadielectric - vacuum C (Eq. 3)

NIJ-C f %JC-

where Er is the permittivity of the material relative to vacuum, c is the speed of light, andf is the

frequency of the wave. Further; different anatomical structures in the body have different

permittivity since their unique chemical environments respond uniquely to applied electric fields,

as depicted by Figure 1 for white matter, gray matter, and cerebrospinal fluid (CSF). The

wavelength of the RF wave in these tissue types is also calculated.
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Figure 1 - Relative permittivity 4 (left) and wavelength A (right) of different body dielectrics as a function of EM
wave frequency.

2.2 The Excitation Field

RF Transmission on a Single Coil

Just as nuclear spins precess at the Larmor frequency once excited into the transverse

plane, so is the excitation pulse most effective in rotating the spins when it is applied on

resonance with the nuclear spins, that is, at the Larmor frequency. Common MRI scanners used

clinically have external Bo field strengths of 1.5T and 3T, so RF excitation pulses on these

scanners are tuned to a frequency of 63.8MHz and 127.6MHz, respectively. Experimental MR

scanners operating at 7T have RF coils tuned to 297.3MHz.

The excitation pulse, when coupled with gradient fields G that add linear perturbations to

the external Bomagnetic field, will excite a spatially-selective region within the object, called the

excitation profile. Typically, the region could be a large 3D slab, thin 2D axial slices, or small

3D volumes as used in spectroscopy, though the excitation profile need not be limited to these



simple geometries [4]. In fact, to mitigate B1 inhomogeneity in 2D slices, excitation profiles are

designed to be the inverse of the inhomogeneity [4].

The specific design of the excitation profile is founded on (Eq. 1), though simplifying

assumptions are made to achieve a linear equation. First, the pulse duration is assumed to be

sufficiently short (between 200ps and 5ms) to render the T1 and T2 relaxation terms negligible

[16]. Second, the small tip angle approximation for the magnetization vector is made, with the

resulting linear equation

T (Eq. 4)
m (r) = iyMf Bl(t)e (dt

where

T

k(t) = -y f (s)ds (Eq. 5)

An important observation is that (Eq. 4) effectively defines the spatial excitation profile as the

inverse Fourier Transform of the temporal Blexcitation pulse envelope. The term k(t) thus

defines a trajectory in the Fourier space ("excitation k-space"), which depends on the amount of

remaining gradient G left to be applied during the excitation pulse. It should be noted that the

small tip angle approximation is valid for relatively large tip-angles, including 600 and even

approaching 90*, though the approximation does fail for 180* pulses [17].

To maximize the effectiveness of the RF pulse in creating the desired excitation profile,

the high-energy region of k-space must be covered as thoroughly as possible while satisfying the

Nyquist limit,

Ak < (Eq. 6)
2 - FOV

to avoid aliasing of the excitation profile. Conversely, the duration of the RF pulse must be kept

short to avoid detrimental Ti and T2 relaxation. With hardware and biological limitations on the
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maximum gradient amplitude and slew rate dG/dt, the design of the trajectory is an important

component to achieving the desired excitation profile.

As a simple yet practical example of RF excitation, consider the excitation of a uniform

axial slice using a single transmit coil. According to the Fourier relationship of the

magnetization profile and the amplitude of the excitation pulse, the Bifield should be deposited

with a sinc-like distribution in the kxky plane. Further, a thin slice is achieved by depositing the

Bifield with a large extent in kz. At low BO field strengths, a single coil (and systems of multiple

coils driven by the same modulating amplitude but with different, fixed phase shifts, such as

quadrature or birdcage coils) is capable of producing a uniform excitation profile, but using this

same technique at high Bo field strengths introduces inhomogeneity into the excitation profile.

The excitation profile of a nonuniform 2D slice, such as one used to mitigate B1

inhomogeneity, follows similar design principles but requires a different distribution of RF

deposition in k-space. The mitigation pattern is slowly varying in the plane, thus for a sharp

slice profile, the high-energy region of k-space will surround the kz axis. A spoke trajectory is

used to traverse k-space [4], [5], [18].

Acceleration of RF Transmission via Parallel Transmit Coils

The desired excitation profile can be achieved using single transmit coils. However, for

the purpose of B1 mitigation, the number of kz spokes that must be used in order to sufficiently

cover k-space requires a long RF pulse. For instance, a sparsely-designed 7.5ms 19 spoke pulse

has been shown to achieve sufficient excitation modulation in a 20mm thick slab [5].

Parallel transmission is a strategy to shorten the duration of RF pulses. It relies on

systems of N multiple coils driven independently with respect to amplitude and phase. Each coil



has a unique sensitivity profile - that is, each coil excites a localized, spatially-varying region of

the magnetization slice. Linear independence of the coil sensitivity profiles allows for a

reduction of the number of kz spokes because each spoke contributes excitation information to

the N different coils, which can be combined to produce the net excitation profile.

In reality, the coil sensitivity profiles are not orthogonal because they overlap and have

rapid spatial variation, so an acceleration of N cannot be achieved. The exact acceleration will

depend on the number of coils and the coil geometry, since more transmit coils have more

excitation information but also more overlap and spatial variation. Despite this limitation,

experiments have shown that 8 spokes on 8-channel pTx coils are enough to achieve the same

excitation profile as a 41 spoke pulse on a single transmit coil [10]. Further, novel algorithms

show that the number of spokes can be reduced to 4 spokes on 8-channel RF excitation coils [11]

and 2 spokes on 16-channel RF coils [12].

The Circularly-Polarized B' Fields

A single coil generates a linearly-polarized B1 field, but it must be decomposed into two

circularly-polarized fields with opposite polarity in order to excite the magnetization [2]. The

B- fields represent the two circularly-polarized fields and are calculated using:

B+ =(B iBy). (Eq. 7)
2 -

Only one of the fields precesses in the same direction as the proton magnetic moments and

contributes to excitation.

The birdcage (BC) configuration drives multiple coils with the same amplitude

modulation in a way that their B± fields add coherently. The coils are distributed evenly in a



circular pattern around the head and the B-f7 fields from the N total coils are then recombined

into the BC mode by adding a phase to each coil according to [8]:

N

1 N Ti(n1)27/N (Eq. 8)

n=1

The effect that RF wavelength has on B1* homogeneity of the BC mode can be estimated

by considering the effect only on white matter. At the magnetic field strengths of 3T and 7T, the

wavelength of RF waves within white matter is 32.4cm and 15.2cm, respectively. For an 18cm

diameter sphere of white matter, which roughly corresponds to the size and geometry of the

head, the individual coil fields will superimpose in phase at the center of the sphere. At 7T, the

amplitude of the RF waves is near a maximum at the sphere center, giving rise to a large B1*

field amplitude. Conversely, at 3T, the amplitude of the RF waves is less than maximum at the

sphere center, giving rise to a large Bi* field amplitude; further, the fields are more slowly

spatially-varying so the inhomogenity is less localized to the sphere center.

2.3 Field Simulations

Classification of Numerical Solvers

Several algorithms and tools exist that allow for the numerical simulation of

electromagnetic fields within the body. Computationally-efficient approximations of Maxwell's

Equations, either in the integral or differential form, are used to model the propagation of

electromagnetic waves in a system. Solutions can be computed in the frequency domain or in

the time domain. Frequency domain analysis, in which time-harmonic behavior is assumed, has

the benefit of being more suited to obtaining analytical solutions. Time-domain analyses are



easier to formulate and adapt in computer simulation models without complex mathematics.

Additionally, solutions from time-domain analyses can cover a wide frequency range with a

single simulation run, which is useful for broadband excitation.

Within each category of solver exist several algorithms that have different merits

depending on the system to be modeled. The boundary element method (BEM) - also called the

method of moments (MoM) - is a popular integral equation solver that uses Green's functions.

Because it works with boundaries rather than full volumes, BEM is computationally efficient for

problems with a small surface to volume ratio. However, the matrix solutions resulting from

BEM formulations are fully populated, which is taxing on the computation time and memory

requirements for large domains.

Some numerical solvers, such as the Finite Element Method (FEM) can be used with

either form of Maxwell's Equations. FEM is particularly useful when the desired precision

varies over the entire domain. The solution matrices in FEM are banded because of near-

neighbor node coupling, thus less memory is required than BEM.

The Finite Difference Method (FDM) simplifies the differential form of Maxwell's

Equations into finite difference equations meeting appropriate boundary conditions. The finite-

difference time domain (FDTD) algorithm used in this work simulates the electromagnetic fields

based on a time domain FDM algorithm. The FDTD begins with a discretized model of the body

and coil circuitry then estimates a linear solution to Maxwell's equations for each voxel, iterating

the process over small time steps. FDTD has been widely implemented in many software

packages, such as Remcom and Semcad, which allow for the integration of model design and

field simulations.



Complications in Numerical Simulations

There are several complicating factors in the design of numerical simulations. Memory

limitations are commonly encountered, limiting the resolution and geometrical complexity of the

model.

Even with sufficient memory, the duration of simulations can also be prohibitive for large

models. In order to maintain the linearity of the finite difference equations, the numerical

integrator must use small time steps with a maximum value limited by

At < (Eq. 9)

~cVd

where c is the speed of light and VF appears because the simulation space is 3-dimensional [19].

Thus, for a resolution of 2mm, a time step smaller than 3.85ps must be used.

The FDTD simulation of electromagnetic waves can be accelerated by the parallel

computation of field solutions on graphical processing units (GPUs). Adaptive gridding is

another approach to decreasing both simulation duration and memory. Adaptive gridding uses a

nonuniform discretization with a fine resolution near important model elements and a coarse

resolution in unpopulated regions of the simulation space.

The quality and stability of the numerical simulations is affected by more than the time

step of the integrator. Discretizing the model is a potential source of error. Model elements with

thin dimensions, such as a wire or thin metallic sheet, may be entirely eliminated during the

discretization process; model elements with non-Cartesian geometry or alignment can become

distorted. For example, a thin rectangular sheet might be discretized as a diagonal chain of

squares adjoined corner to corner, which would change the path of an electrical current applied

to the sheet. Finally, to ensure stability, the absorbing boundary of the simulation space must be

placed far enough from the model so that the RF waves are not reflected.

18



Chapter 3

Model

3.1 Software Requirements

The primary software package used in simulations is Semead X running on a Windows

64 bit operating system. Simulation acceleration is performed on a Tesla C1060 card (NVIDIA;

Santa Clara, CA) using NVIDIA Cuda drivers and Toyama (AXWare; Austin, TX) libraries.

3.2 Eight-channel transmission coil

An 8-channel coil model with RF shield has been imported into Semcad. Each channel

consists of 16 individual coil elements made of thin perfect electrical conducting (PEC) sheets,

as shown in Figure 3. The twelve vertical PEC elements have 1.8cm height and 3mm width; the

four horizontal elements have 2.1cm width and 3mm height. The individual coil elements are

separated by 3mm so that each coil has overall dimensions 13.5cm total length and 4.5cm total

width. The RF shield is thin PEC, 40cm in diameter and 33cm in height, and is concentric with

the 8 coils.

The coil elements are joined by identical tuning capacitors and PEC wire. At the bottom

of the coil is a port consisting of a harmonic voltage source with 50Q internal resistance and

tuning and matching capacitors, shown in Figure 2. A PEC wire is added to the port so that the

elements are aligned on a rectilinear grid. The capacitors of the coils in the anterior/posterior

direction have identical values, as do the capacitors of the coils in the left/right direction and the



capacitors that are slanted with respect to the FDTD grid, though the capacitor values of these

three orientations are independent.

3.3 Dielectric Loads

The magnetic fields have been simulated for the 8-channel coil with a dielectric spherical

load and with a 2mm isotropic resolution Virtual Family Ella body phantom provided by Semcad

(shown in Figure 4). The dielectric sphere has a diameter of 18cm and is centered in the coil.

The dielectric sphere has also been simulated at the frequencies 128MHz and 297MHz

corresponding to the common clinical external magnetic field strengths of 3T, and 7T. The

material properties of white matter were used, with conductivity a, relative permittivity c/so, and

wavelength X within the dielectric as described in the following table [20]:

Table 1 - Dielectric properties of white matter at the two simulated field strengths of 3T and 7T
o [MHz] Bo [T] a [S/rn] C/so k [m]

128 3.0 0.342 52.6 0.324
297 7.0 0.412 43.8 0.152

The tissue density, permittivity, and conductivity for each tissue type of the Ella phantom

are calculated within Semcad for the frequency of 297MHz. The background of the simulation

volume is air.



CS T

Figure 2 - Model of a single coil of the 8-channel RF excitation head coil (left) and close-up of port (center).
A schematic of the coil is also shown (right), with the port highlighted in blue. The rest of the coil is
condensed into the equivalent circuit represented in black by CF and the inductor.

rigure . - Moael or 5 cnannei coil coniguraion witn Kir snieia ana spnericai ioaa. Lem: uoronai sice snowing
geometry of coils, dielectric sphere, and RF shield. Height of RF shield is 33cm. Center: Axial slice of model. Right:
Off-axis view of coil geometry (RF shield and spherical load are hidden).

Figure 4 - The 2mm resolution Virtual Family model of Ella in the 8-channel coil with RF shield. Left: Coronal
slice of model. Right: Axial slice of model.
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3.4 Excitation

All simulations run the voltage source at 1V peak voltage for 100 periods, with a ramp on

during the first period. The simulations use an FDTD solver to iterate through time steps. Only a

single coil is excited during each simulation. The voltage source of unexcited coils is

disregarded during the simulation so that the ports appear open. Field estimates for a birdcage

configuration were calculated in MATLAB (MathWorks; Natick, MA) by recombining the

individual coil solutions.

The boundary of the modeling space is perfectly absorbing. A minimum of 10 voxels

pad the outside of the RF shield inside the boundary to prevent ringing artifacts caused by

reflections.

3.5 Discretization and Image Resolution

The dielectric sphere and Ella are simulated at a resolution of 2mm. Despite this, the

gridding algorithm aligns the baselines with natural object boundaries in the model, so the grid

deviates up to 10% from isotropic resolution. Further, the solver changes the local wavelength of

the fields to reflect changes in permittivity and conductivity, so to keep the grid as uniform as

possible, the boundaries of dielectric materials are ignored and only the PEC elements are

considered when designing the grid. The resulting simulated fields are regridded in MATLAB

onto a (2mm)3 isotropic grid.

The simulation of Ella takes 40 minutes per coil for a total simulation time of 5 hours and

20 minutes. Stability of the FDTD method requires proportionality between the spatial resolution

and the iterative time step so doubling the resolution in each dimension would undesirably

increase the simulation duration by a factor of 8 [19].



Chapter 4

Methods

4.1 Tuning

Before running a simulation, each coil must be tuned to the Larmor frequency.

Considering each coil as a simplified circuit shown in Figure 2, tuning is done by adjusting the

capacitance CF following

2f15 +1_ (Eq. 10)
1 Jo2  C0  C Mf ==- - s27tVC f12  C1  15 + 1M

where the subscript 0 indicates the desired capacitances at the Larmor frequency fo and the

subscript 1 indicates the current capacitances at untuned frequency fi. The frequency of the

unturned coil is estimated by the reflection coefficient S11, which physically represents the ratio

of the reflected voltage to the driving voltage at a port [19]. The minimum of SII over a broad

frequency band occurs at the resonant frequency of the system.

Although all eight coils must be tuned, recalling that there are only three unique coil

types (the anterior/posterior coils, the left/right coils, and the four coils slanted with respect to

the FDTD grid) reduces the degrees of freedom. The reflection coefficient S1 is calculated for

each coil type and used to provide an estimate of the needed capacitances CF to achieve

resonance at the Larmor frequency. However, coupling of the coils makes this estimate

imperfect, so tuning is performed iteratively until all coils are tuned to within an acceptable

range of the Larmor frequency.



In real MR scanners, the coils are also matched so that their reflection coefficient at the

resonant frequency is as small as possible. This can similarly be implemented in the numerical

model by adjusting the capacitances Cm and Cs but it will affect the frequency to which the coil

is tuned. Thus, to completely tune and match the system requires the interleaving of separate

tuning and matching iterations for all coil types, which introduces an additional level of

complexity. Due to time constraints, only tuning was performed on the coils for the work in this

thesis.

4.2 Quantification Metrics

The presence of B1 inhomogeneity is easily qualifiable by visual inspection of the center

brightening present in acquired MR images. Quantifying the extent of B1+ inhomogeneity is a

more challenging task with a host of possible metrics; this work is based on metrics used

previously in the context of B1+ inhomogeneity quantification for parallel RF excitation coils,

[9], [12]. The analysis will only be performed on a region of interest (ROI) surrounding the

center brightening artifact to reduce the effect of spatially-varying fields near the outside edge of

the imaged object caused by the individual coil excitation profiles.

First, the intensity of the ROI is normalized to 1 and the mean p and standard deviation a

of the normalized ROI are calculated. Normalization is useful because the coils in each

simulation and experiment are tuned and matched differently so the comparison should not

consider differences due to absolute field magnitude. Next, the root magnitude mean-squared

error (RMMSE) is calculated according to

RMMSE - REOIJi -- 2 
(Eq. 11)

ROI 1



for each pixel in the ROI, where I is the normalized intensity at pixel i within the ROI. The last

metrics are <10%dev and <20%dev which give the percentage of pixels in the ROI that have

intensity within 10% or 20% of the mean intensity.



Chapter 5

Results

5.1 Dielectric sphere at 3T and 7T

The electromagnetic fields have been simulated for a spherical load in the 8 channel coil

array with RF shield. The magnitude Bx, BY, and Bz fields for a single excited coil and for the

birdcage configuration are shown in Figure 5. Even though only a single coil is excited in the top

row of images, coupling to other coils is visible. These images follow the radiological

convention, in which x increases in the right-left (RL) direction, y increases in the posterior-

anterior direction, and z increases in the superior-inferior direction.

The B1*'~ fields for an individual coil are calculated in MATLAB using (Eq. 7). The coils

are then recombined into a birdcage configuration (BC) by adding a phase to each coil with the

result shown in Figure 6. The presence of the load is not easily visible on a linear display scale

but when a mask is applied to the external fields, the fields in the dielectric become more

apparent, as shown in Figure 7 for the dielectric sphere in birdcage configuration.

The B1*'- fields exhibit a larger degree of center brightening as the external field strength

increases, consistent with experiment results [9]. The wrapped phase maps are smooth

throughout the models, as expected from slow spatially-varying fields. The ROI used for

quantitative analysis is the inner circle of the phantom with radius 4.5cm-half that of the

phantom itself. The ROI is the region within the black rings in the Figure 7 |B1I* images.

The measurements summarized in Table 2 are consistent with the observation that the

|B1I fields in the center of the sphere are larger at 7T than at 3T. The mean IB1*I of the sphere at



7T is substantially smaller than at 3T while the standard deviation is four times larger at 7T than

at 3T. These two measurements show the extent that the |B | field diminishes outside the center

peak. Almost all pixels of the 3T ROI but only one-third of the pixels in the 7T ROI are within

10% of the mean intensity. Even 20% of the pixels in the 7T ROI deviate from the mean by

more than 20% of the mean. Interestingly, the RMMSE at both external field strengths is equal

to the standard deviation o, indicating that the estimator is unbiased.

Table 2 - Metrics comparing spherical dielectric ROIs at 3T and 7T
P a RMMSE <10%dev [%] <20%dev [%]

3T 0.931 0.030 0.030 99.8 100
7T 0.760 0.129 0.129 35.1 80.0
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Figure 5 - Magnitude of B,, By, and Bz of 8-channel coil. Top: B-field component magnitudes when a single coil
is excited. Bottom: B-field component magnitudes when all 8 coils are combined in a birdcage configuration.
The load is a dielectric sphere and the image is an axial slice through the center of the sphere.
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Figure 6 - Magnitude of B1 of the 8-channel coil when a single coil is excited (left) and for all eight coils combined
in a birdcage configuration (right). The load is a dielectric sphere and the image is an axial slice through the center of
the sphere.
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Figure 7 - Magnitude (top) and phase (bottom) ot B1 (right image in each pair) and Bj- (left image in each pair) for
8-channel coil with 18cm-diameter spherical load, birdcage excitation (axial view). The left set of images are for
o = 128MHz (BO = 3T, X = 32.4cm); the right set of images are for o = 297MHz (BO = 7T, X = 15.2cm). The black

ring indicates the ROI used for evaluation. The magnetic field of the background has been masked to generate the
images. The driving voltage is IV.
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5.2 Numerical Head Phantom at 7T

Central brightening is also visible in the magnitude Bi'~ fields with the Ella phantom,

shown in Figure 8 and Figure 9. The wrapped phase maps in Figure 9 are smooth throughout the

models, as expected. Analysis of the numerical phantom is postponed to the next section.
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Figure 8 - Sagittal (left) and coronal (right) maps of B1' obtained of the Ella model in
birdcage excitation.
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Figure 9 - Axial view of the magnitude and phase of BI+ and B{ of the Ella model in the 8-channel coil with
birdcage excitation. The simulations are run on a nonuniform grid of maximum resolution 2mm and the results are
remapped onto a uniform (2mm) 3 grid. The slice shown is at the maximum of the IB +I field shown in Figure 8.
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5.3 B1 of Simulated Head Model versus in vivo scan at 7T

The magnitudes of the central brightening in the Ella simulation and in the in vivo sample

are in good agreement, shown in the ROIs of Figure 10 and in the IB1I profile in a left-right

cross-section through the center of the images depicted in Figure 11. Discrepancy in the size of

the head should not be worrisome as only one slice of in vivo data was acquired (at the bore of

the magnet); the discrepancy is a result both of imaging/simulating both different head sizes and

different slices within the head.

Quantitative metrics summarized in Table 3 are consistent with the observation that the

B1* fields in vivo and in the numerical phantom are in agreement, though there are some subtle

differences. Although the normalized IBi*| field in the in vivo and numerical phantom ROIs have

the same mean value, the standard deviation of the numerical phantom is 2-3 times larger than

that of the in vivo ROI, indicating that the IB1*I field in the numerical phantom has a larger

plateau of intense voxels and a sharper drop-off of field intensity outside the centrally-bright

plateau. Correspondingly, the <10%dev and <20%dev of the in vivo ROI is between 75% and

90%, less than the near 100% <1O%dev of the phantom ROI.
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Figure 10 - B 1+1 of an in vivo sample (left) compared to the Ella model (right), both in an 8-channel coil with
birdcage excitation. Both ROIs are (4 cm) 2 centered on the central bright peak in the brain; the FOV of each image
is (24 cm) 2.

- In vivo
- Simulated phantom

-60 -40 -20 0
Position from

20
center [mm]

40 60

Figure 11 - IB1+I of an in vivo sample (blue) compared to the numerically simulated Ella model (red) in a LR cross-
section through the center of each ROI.
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Chapter 6

Discussion
An 8-channel parallel RF excitation coil has been modeled in Semead following the

design of a head coil built for 3T and 7T MRI scanners. RF excitation fields played individually

on each coil were combined into a birdcage mode to yield magnitude and phase B1* profiles.

Simulations were run for an 18cm diameter dielectric sphere with properties of white matter at

3T and 7T and for a numerical head phantom at 7T.

Insignificant B1 + inhomogeneity at 3T was measured in an intensity-normalized ROI in

the dielectric sphere. B1* inhomogeneity manifest as a center brightening artifact was present in

both the dielectric sphere and numerical head phantom profiles at 7T. Interestingly, the

normalized sphere ROI had a mean of 0.76, a standard deviation of 0.13, and both <10%dev and

<20%dev well under 100%, whereas the numerical head phantom had a larger mean of 0.9, a

smaller standard deviation of 0.07, and a <%10dev of approximately 100%. In total, these

measurements indicate a more inhomogeneous B1* profile for the dielectric sphere than for the

head phantom. Part of this finding can be explained by the different size and geometry of the

ROIs for the sphere and the head phantom, but experimental results have also shown more B1+

inhomogeneity for uniform objects than for homogenous objects like the head [12].

The simulated B1* profile of the numerical head phantom was compared to the B1* profile

of a single in vivo slice acquired by an 8-channel transmission coil in a 7T MR scanner. The

normalized ROIs agree in mean and RMMSE, though the standard deviation in the in vivo ROI is

more than half that of the phantom ROI, indicating that the center brightening in vivo is less

sharply localized than in the numerical phantom.
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Agreement of the experimental B1
t profile and that obtained through numerical

simulation give us confidence in simulation as a means to estimate magnetic fields from parallel

transmit coils for human imaging. Numerical simulation can be implemented in several phases

of parallel transmit coil design and evaluation, ranging from optimization of the number and

geometry of RF coils for B I inhomogeneity mitigation to estimation of local and global SAR.

One limiting factor of this work is the duration of the FDTD simulations. A single

iteration of coil tuning took upwards of four hours for the three coil types; three or four tuning

iterations were performed for a total simulation time of nearly a day. This duration is prohibitive

for the design of RF excitation coils with more than eight channels, and introducing matching

would be infeasible for any parallel excitation coil design. In comparison, tuning and matching

experimental RF coils involves only the manual dialing of variable capacitors and can be

completed in minutes.

One possible remedy is to use other categories of numerical solvers to estimate the B1*

profiles. The boundary element method has been proposed as an alternative approach with

substantially faster execution time but the numerical phantoms present in BEM software

packages are less complex than the Semcad Virtual Family and might not estimate SAR with the

same degree of accuracy as would a lengthier simulation in Semcad.

Another current limitation of this work is how it calculates the B1 profile of coils in a

birdcage mode from individual coil fields. In principle, the fields of individual coils should be

independent and thus can be linearly combined post-processing to derive the birdcage mode B1

profile as was done in this work, but the simulated magnetic fields of a single coil as shown in

Figure 5 and Figure 6 demonstrate coupling between the coils. Inter-coil coupling will affect the



generated RF pulse when all coils are excited simultaneously. It would be interesting to see how

the birdcage B1* profile changes for a simulation in which all coils are excited simulateously.

Similarly, this work only demonstrates the source of B1* inhomogeneity but does not try

mitigation using the inverse field. It would be useful to calculate the other modes (in addition to

the birdcage mode) that are combined for ideal B1* mitigation [8]. Implementing the

corresponding RF pulse sequence on the eight channels designed to mitigate B1* inhomogeneity

would be a fruitful next step for numerical simulation.

With the numerical phantom implemented in Semcad, another future direction would be

estimation of local and global SAR. Even though SAR cannot be measured directly by

experimental transmission or receive coils, SAR can be estimated experimentally with MR-

compatible electric field probes, however, such hardware is expensive and the results would

likely require validation through simulation. Estimating SAR through numerical simulations

requires only minimal work because the electric fields are solved concurrently with the magnetic

fields and the numerical phantoms include information on tissue conductivity and density. In

fact, the Semcad software package includes a tool for directly calculating the temperature of

tissue in RF fields that could be investigated as an alternative or additional measure of safety.
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