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Abstract

We study a model of sequential decision making under uncertainty by a population
of agents. Each agent prior to making a decision receives a private signal regarding
a binary underlying state of the world. Moreover she observes the actions of her
last K immediate predecessors. We discriminate between the cases of bounded and
unbounded informativeness of private signals.

In contrast to the literature that typically assumes myopic agents who choose the
action that maximizes the probability of making the correct decision (the decision
that identifies correctly the underlying state), in our model we assume that agents
are forward looking, maximizing the discounted sum of the probabilities of a correct
decision from all the future agents including theirs. Therefore, an agent when making
a decision takes into account the impact that this decision will have on the subsequent
agents. We investigate whether in a Perfect Bayesian Equilibrium of this model
individual's decisions converge to the correct state of the world, in probability, and
we show that this cannot happen for any K and any discount factor if private signals'
informativeness is bounded.

As a benchmark, we analyze the design limits associated with this problem, which
entail constructing decision profiles that dictate each agent's action as a function
of her information set, given by her private signal and the last K decisions. We
investigate the case of bounded informativeness of the private signals. We answer
the question whether there exists a decision profile that results in agents' actions
converging to the correct state of the world, a property that we call learning. We
first study almost sure learning and prove that it is impossible under any decision
rule. We then explore learning in probability, where a dichotomy arises. Specifically,
if K = 1 we show that learning in probability is impossible under any decision rule,
while for K > 2 we design a decision rule that achieves it.
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Chapter 1

Introduction

1.1 Problem motivation

Imagine a situation where each of a large number of entities has a noisy signal about

an unknown underlying state of the world. There are many scenarios that fit in

this framework. One example is a set of sensors each of which takes a measurement

from the environment related to an unknown parameter. This unknown state of

the world might also concern the unknown quality of a product, the applicability

of a therapy, the suitability of a political party for the welfare of the citizens of a

country. If the private signals, i.e., the private information that each entity receives

is unbiased, their combination - aggregation - would be sufficient to "learn" the true

underlying state of the world. On the other hand, because of communication or

memory constraints, central processing of individuals' private information is usually

not possible. Typically agents' information is summarized in a finite valued statistic

which is then observed by other agents to refine their own belief about the unknown

state. This thesis investigates what type of communication behaviors and information

structures accommodate such information aggregation.

Such considerations can be modeled as sequential learning problems: there is an

unknown state of the world that can take one of two possible values and agents act

sequentially, making a binary decision on the basis of their private information and

observation of some of the previous agents. These problems have been studied both in

the statistics/engineering and economic literatures. The statistics literature focuses

on designing decentralized decision profiles under which information aggregation takes

place, delineating the impact of different communication structures. The economics

literature, on the other hand, considers strategic agents and investigates how infor-

mation aggregation may fail along the (perfect) Bayesian equilibrium of a dynamic



game due to information externalities. Almost all the economics literature assumes

that agents are myopic,that i.e., they choose the action that maximizes the quality

of their decision. Under widely applicable assumptions on the private signal informa-

tivity, information aggregation fails when agents are myopic because of the creation

of herds; agents copy the observed decisions irrespective of their private signal.

The myopic assumption is a good benchmark but does not capture the behavior of

agents in several occasions. Consider the case where the unknown state of the world

is indeed the quality of a new product. Individuals receive noisy private information

about the unknown quality by testing it in the store where it is demonstrated, but

also have access to review sites where others have already expressed their opinion

about whether the unknown quality is good or bad. It is reasonable to assume that

individuals do not go over the whole history of reviews but just some of the latest.

Moreover, an individual, when stating her own personal preference in a review site

does not only care that her opinion coincides with the true quality, but also cares for

the future agents to learn the truth. Therefore, when writing a review, individuals

are forward looking in the sense that they are taking into account how their opinion

will affect future readers. For example a new technology adopter may be tempted

to be contrarian so as to enhance informational efficiency, for instance if she believes

that choosing what currently appears the better technology is more likely to trigger

a herd.

Another setting that infuses altruistic behaviour is that of a sequential electoral

mechanism. Each voter will choose between two parties, based on her private infor-

mation and after observing what others' have voted. A strategic voter recognizes that
her decision affects the outcome of the election directly through the vote itself and

indirectly by affecting subsequent voters. A voter whose interest is the best party to
win the election must account for both the quality of her decision and the effect to
future decisions.

Finally, consider an agent that at each point in time receives a signal that is
relevant to the underlying state of the world and her goal is to eventually learn its'

true value. It is reasonable to assume that the agent has finite memory. The number

of bits of information that she can store is bounded and it is reasonable to assume

that they represent a finite valued statistic of her information at the last K time

instances.

This thesis studies an observational learning problem of this kind, with the con-

straint of finite memory; each agent can observe (or remember) only the last K

actions. Our work contributes to both trends of the literature. First, we provide



necessary and sufficient conditions for the possibility of information aggregation un-

der this specific observation structure. Second, motivated by the discussion of this

section, we analyze, under the same observation structure, the equilibrium learning

behavior of forward looking agents.

1.2 Contributions

Consider a large number of agents that sequentially choose between two actions.

There is a binary underlying state of the world. Each agent receives a noisy signal

regarding the true state and observes the actions of the last K individuals. Their

signals are assumed independent, identically distributed, conditional on the true state.

The purpose of this thesis is to study asymptotic information aggregation-learning-

in this environment, i.e., investigate whether there exist decision profiles, such that

agents' actions converge almost surely or in probability, to the correct state of the

world as the number of agents grows large. Two features turn out to be crucial in the

study of learning. The first is whether the Likelihood Ratio implied by individual

signals is always bounded away from 0 and infinity. We refer to this property as

Bounded Likelihood Ratios. The second is the number K of observed actions.

This thesis makes two sets of fundamental contributions to this problem:

(i) As a benchmark, we start by analyzing the design limitations of this observation

model. Specifically, we focus on conditions under which there exist decision

profiles that guarantee convergence to the correct state. Our main results are

summarized in two main theorems.

" We first prove that, under the Bounded Likelihood Ratio assumption, there

does not exist any decision profile, for any value of K, that achieves almost

sure convergence of agents' actions to the correct state of the world -

almost sure learning. Our result, combined with a result from [7] establishes

that Unbounded Likelihood Ratios are necessary and sufficient for the

existence of a decision profile that achieves almost sure learning.

" Next, we investigate the existence of decision profiles under the Bounded

Likelihood Ratio assumption, that achieve convergence in probability of

agents' actions to the correct state of the world- learning in probability.

There, a surprising dichotomy emerges. We prove that if K = 1 such a

decision profile does not exist. On the other hand, if K > 1, we pro-



vide a decision profile that achieves learning in probability, underlining the

delicate sensitivity of learning results to the observation structure.

(ii) The second part of the thesis focuses on forward looking agents. The obser-
vation structure remains unchanged but, in this framework, each agent makes
a decision that maximizes the discounted sum of the probabilities of a correct
decision from the future individuals, including herself. We study this model as
an insightful approximation to the forward looking behaviors discussed in the
previous section.

" We prove that, under the Bounded Likelihood Ratios assumption there
exists no Perfect Bayesian Equilibrium of the corresponding game that
achieves learning in probability, a result that contrasts to the existence of
a decision profile that would achieve it.

" In contrast we construct, for the case of Unbounded Likelihood Ratios, a
Perfect Bayesian Equilibrium that achieves learning in probability and one
that does not.

1.3 Related literature

The literature on decentralized information aggregation is vast. Roughly, it can be
separated in two main branches; one is the statistics/engineering literature and the
other the economics literature.

1.3.1 Statistics/engineering literature

Research on decentralized information aggregation was initiated by [7] and [11]. An
infinite population of sensors arranged in a tandem is considered, each of which re-
ceives a signal relevant to the underlying state of the world. Each sensor summarizes
its information in a message that can take finitely many values, and prior to sending
its own message, it receives the message of it' immediate predecessor. The issue of
resolving the hypothesis testing problem asymptotically is studied, in the sense of
convergence of a component of agents' messages to the correct state of the world.
There, the sharp dichotomy between Bounded and Unbounded Likelihood Ratios is
underlined, pointing out the importance of the signal structure to learning results.
This dichotomy is evident throughout the literature in the field. [10] also studied this
problem but focusing on the case where every agent uses the same decision rule.



Another branch of decentralized information aggregation problems was initiated in

[19] with a problem to be discussed below. The main difference and novelty of the new

setting is in the communication structure as well as in the evaluation criterion. There

are two hypotheses on the state of the world and each one of a set of sensors receives

a noisy signal regarding the true state. Each sensor summarizes its information in

a message that can take finitely many values, and sends it to a fusion center. The

fusion center solves a classical hypothesis testing problem and decides on one of the

two hypotheses. The problem posed is the design of optimal decision profiles in terms

of error probability of the fusion center's decision. A network structure, in which some

sensors observe other sensors' messages before making a decision was introduced in [8]
and [9]. Sensors, prior to sending their message on top of receiving a signal relevant

to the underlying state observe the messages of a subset of sensors that have already

communicated their information. Finding the optimal decision profiles is in general

a non trivial task - it requires an optimization over a set of thresholds that sensors

will use for their Likelihood Ratio test (see [20] for a survey on the topic).

Traditionally, the probability of error of the fusion center's decision converges to

zero exponentially in the number of peripheral sensors. However, as the number of

sensors increases, the communication burden for the fusion center grows unbound-

edly. For this reason, [14] returns to the tandem configuration and studies the learning

behavior of the decision rule that minimizes the last agent's error probability. More-

over they introduce the myopic decision profile; sensors are choosing the action that

maximizes the probability of a correct decision given their information, and study

its' learning behavior. In both cases the result depends on the signal structure and

the dichotomy between Bounded and Unbounded Likelihood Ratios reappears. With

the same flavor, [12] studies sequential myopic decisions based on private signals and

observation of ternary messages transmitted from a predecessor, under the tandem

configuration.

Research in the field is vast and by no means the list of papers mentioned here is

exhaustive; we list those that most closely relate to our analysis.

1.3.2 Economics literature

The references [4] and [3] started the literature on learning in situations in which

individuals are Bayesian maximizers of the probability of a correct decision given the

available information, assuming that agents, prior to making a decision observe the

whole history of actions. They illustrate a "herding externality" through an exam-



ple with an ex-post incorrect herd, after the two first individuals' signals by chance

are misleading. The most complete analysis of this framework is [16], illustrating

the dichotomy between Bounded and Unbounded Likelihood Ratios and establishing

qualitative results to those in [14].

Generalizing to more general observation structures, [17] and [2] study the case
where each individual observes an unordered sample of actions drawn from the pool
of history and the observed statistic gives only the numbers of sampled predecessors
who took the two possible actions. The most comprehensive and complete analysis
of this environment, where agents are Bayesian but do not observe the full history,
is provided in [1]. They study the learning problem for a set of agents connected via
a general acyclic network. In their framework, agents observe the past actions of a
stochastically-generated neighbourhood of individuals and provide conditions on the
private signal structure and the social network's structure under which asymptotic
learning, in the sense of convergence in probability to the correct state of the world,
is achieved.

To the best of our knowledge, the first paper that studies forward looking agents
is [18], where individuals minimize the discounted sum of error probabilities of all
the subsequent agents including their own. They consider the case of observing the
full history and show that when private signal distributions are characterized by un-
bounded informativeness, learning can be achieved while, for the case of bounded
informativeness, the event of an incorrect herd has positive probability. Finally, [13]
for a similar model and Bounded Likelihood Ratios, explicitly characterizes a simple
and tractable equilibrium that generates a herd, showing that even with payoff inter-
dependence and forward-looking incentives, observational learning can be susceptible
to limited information aggregation.

1.4 Organization

The thesis is organized as follows. Chapter 2 introduces the model, distinguishes
between Bounded and Unbounded Likelihood Ratios, and compares the engineered
with the strategic setting. Chapter 3 studies the existence of decision profiles for
almost sure convergence of actions to the correct state when Likelihood Ratios are
Bounded. Chapter 4 explores the existence of decision profiles that achieve conver-
gence in probability to the correct state. Chapter 5 introduces forward looking agents
and focuses on their learning properties under Bounded Likelihood Ratios. Chapter
6 studies forward looking agents under Unbounded Likelihood Ratios, and Chapter
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Chapter 2

The model

In this chapter we introduce our sequential learning model, which specifies the agents'

available information prior to making a decision. We define two important proper-

ties of signal structures, i.e., Bounded Likelihood Ratios and Unbounded Likelihood

Ratios that will be key in establishing our learning results. We present the notions

of learning under consideration and finally contrast the engineered to the strategic

version of our problem.

2.1 Formulation

2.1.1 Observation model

Consider a countably infinite population of agents, indexed by n E N. Each agent in

sequence is to make a binary decision.

There exists an underlying state of the world 0 E {0, 1} which is modeled

as a random variable whose value is unknown by the agents. To simplify notation,
we assume that both of the underlying states are a priori equally likely, that is,
P(6 = 0) = P( =1) =. Each agent n forms beliefs about this state based on a

private signal s, that takes values in a set S and also by observing the actions of

his K immediate predecessors. Note that we will denote by s, the random variable

of agent n's private signal while s will denote a specific value s in S. The action

or decision of individual n is denoted by x, C {0, 1} and will be a function of her

available information.

Conditional on the state of the world 0, the private signals are independent ran-

dom variables distributed according to a probability measure F0 on the set S. The

pair of measures (Fo, F1) will be referred to as the signal structure of the model.



.9 9

dFO dF,
ds d

Figure 2-1: The observation model. Agents receive an independent private signal
drawn from the distribution FO, and observe the last K immediate predecessors'
actions. If agent n observes the decision of agent k, we draw an arrow pointing from
n to k.



Throughout this thesis, the following two assumptions on the signal structure always

remain in effect. First, IFo and IF1 are absolutely continuous with respect to each

other, implying that no signal is fully revealing about the correct state. Second, IFo

and IF1 are not identical, so that some signals are informative.

The information set I,, of agent n is defined as her private signal and the deci-

sions of her last K predecessors. Let D, A {n - K, ... , n -1} denote the neighbour-

hood of agent n, that is, the agents whose actions are included in her information

set. In other words,

I A {sn, Xk for all k E Dn}. (2.1)

A decision rule for agent n is a mapping d : S x {0, I}K - {O, 1} that selects an

action given the available information to agent n. A decision profile is a sequence

of decision rules d = {df}nEN. Given a decision profile, the sequence of decisions

for all agents {Xn}nEN is a well defined stochastic process and induces a probability

measure which will be denoted by Pd.

2.1.2 Bounded and unbounded likelihood ratios

In this subsection, we discuss alternative assumptions on the signal structure, dis-

criminating between two cases, of bounded and unbounded likelihood ratios. We first

state the definition and discuss its implications.

Definition 1. The signal structure has Bounded Likelihood Ratios if there exists

some m > 0, M < o, such that the Radon-Nikodym derivative d satisfies

dIE0
m < do< M7dF1

for almost all s C S under the measure (F0 + F)/2.

In order to understand the implications of this property observe that the Bayes rule

yields
1

Therefore, under the Bounded Likelihood Ratio assumption, we have:

1 1
-< P(O = 1 | s" = s) < for all s E S.

1 + M 1I + M

Intuitively, under the Bounded Likelihood Ratio assumption, there is a maximum

amount of information that an agent can extract from her private signal.



Definition 2. The signal structure has Unbounded Likelihood Ratios if the es-
sential infimum of dIO/dFI(s) is 0, while the essential supremum of dFo/dlFi(s) is
infinity, under the measure (IF0 + F 1)/2.

The Unbounded Likelihood Ratio assumption implies that agents may receive
arbitrarily strong signals about the underlying state.

Differentiating between the cases of Bounded and Unbounded Likelihood Ratios
is critical in the analysis that follows. We illustrate their difference by means of
examples. The first example involves a biased coin.

Example 1 (Biased coin). Consider a biased coin whose bias is unknown. Let p =

P(Heads) take one of the two values, either po or pi. Assume that po < 1 < p1 ; the
bias po corresponds to 6 = 0, while pi corresponds to 0 = 1. A priori the two biases
are equally likely.

Each agent is allowed to privately flip the coin once and observe the outcome.
Therefore our signal space is S = { H, T}. Assume that agent n observes heads.

dF0 S
dF

i-p 0
1-p

Po

PO

H T

Figure 2-2: Likelihood ratios for the coin tossing example

Then,
dI (H)= Po

-1F Pi

Similarly,
dIE 0  

1 -po
(T) = .

dIF1  -p1
Obviously, the likelihood ratios are bounded in this example and the conditions of
Definition 1 are met with M = (1 - po)/(l - p1) and m = po/p1.

Example 2. Consider a scenario where agents have an risky investment option that
returns a reward from a normal distribution with unit variance, but unknown mean



p. Let t take one of two possible values -1 or 1. Let the case y = -1 correspond to

0 = 0 and p 1 to 0 = 1. The agents want to determine whether the investment is

good or bad; namely whether the mean is +1 or -1 by just observing the payoffs from

trying it.

In this case,

dF exp( (s+1)
2

1 exp ( 2 1)

One can observe that lim,8 o dFO/dF1(s) = 0 while lim do/dF1(s) = +o
establishing that in this case the private signal distribution is characterized by un-

bounded likelihood ratios.

The fact that for signal structures characterized by Unbounded Likelihood Ratios

an agent can receive arbitrarily strong signals about the underlying state, in an in-

tuitive level, suggests that beliefs about the underlying state evolve faster and it is

expected that agents who exploit their information reasonably can eventually learn

the correct state of the world. At some points in time, arbitrarily strong signals ar-

rive that indicate the underlying state with high certainty, leading to more informed

decisions and eventually correct actions.

On the other hand, for signal structures characterized by Bounded Likelihood

Ratios, it appears to be less intuitive that, especially with finite memory, there exists a

way of exploiting available information that can lead to certainty about the underlying

state. As we shall see later in this thesis, this intuition may, surprisingly, not be valid.

However, in order to deal with these issues, we need to provide a precise definition

of "learning", which is done in the next section.

2.2 Almost sure learning versus learning in prob-

ability

In this section we shortly present the two modes of learning studied in this thesis. As

we shall see, we obtain significantly different results based on the mode of learning

under consideration.

Definition 3. We say that the decision profile d = {dn}'_ 1 achieves almost sure

learning if

lim X, = 0, w.p.1.
n-*oo

We also investigate a looser mode of convergence, i.e., learning in probability.



Definition 4. We say that the decision rule d = {dn} _1 achieves learning in
probability if

lim Pd(xz = 0) = 1.
n-+oo

2.3 Designed decision rules versus strategic agents

Chapters 3 and 4 will be devoted to providing a benchmark for the two modes of

learning defined in the previous subsection. We study whether there are decision
rules that achieve almost sure learning and learning in probability, respectively. For
the case where it is possible to do so, learning relies on the presence of an engineer or
a social planner who can design the agents' decision rules. This approach is applicable
to a sensor network scenario, where sensors could just be programmed to act according
to the programmer's will.

In a social network scenario, on the other hand, it is not reasonable to make
such an assumption. There, agents are modeled as being strategic; each individual
is assumed to take the action that maximizes her payoff. In this case, behaviors and
strategies rise as equilibria of the corresponding games. Traditionally, in this trend
of the literature, agents have been using the probability of making a correct decision
as a metric for the quality of their decisions. In particular, the payoff of agent n
typically is

un(Xn 0) ={1 if Z. 
0, if zu 0.

For the case K = 1, Cover [7] asserted that under the Bounded Likelihood Ratio
assumption and myopic decision rules, there is no learning in probability. 1 A (rather
complicated) proof was provided in [14]. It has been shown by Acemoglu et al. [1]
that the strategy profile which emerges as a Perfect Bayesian Equilibrium of this game
achieves learning in probability for the case of Unbounded Likelihood Ratios while
learning in probability is not achieved if the private signal structure is characterized
by Bounded Likelihood Ratios for any value of K.

This payoff structure fails to achieve learning in probability under Bounded Like-
lihood Ratios because of the creation of herds, a term introduced and studied in [3]
and [4]. When the probability of error becomes large enough, agents start copying

iThe exact statement reads: "In the Bayesian formulation, where prior probabilities are associ-
ated with the two hypotheses, the rule which stores the Bayes decision at each stage will not learn.
Eventually the posterior probabilities will be such that no single observation will yield a change in
the decision."



the actions of their predecessors just because they could not do better by trusting

their private signal (which has bounded informativeness) if it indicated the oppo-

site decision. This phenomenon prevents learning in probability, in contrast to the

Unbounded Likelihood Ratio case.

We discuss another metric for the quality of the decisions, which assumes forward

looking agents. This model is introduced by Smith and Sorensen [18] but under a

different observation model; there agents observe the whole history of decisions. The

payoff of agent n depends on the underlying state of the world 0, her decision, as well

as the decision of all subsequent agents, and is given by

oc
un (x 0)=(6)ZE6k lx n (2.2)

k=n

where 6 E (0, 1) is a discount factor, x+ = {Xn+k= 0, and lA denotes the indicator

random variable for the event A. In other words, each agent not only cares for herself

to make a correct decision, but also takes into account the influence of this decision

on the future actions.

One can directly observe that if 6 < 1/2, then the immediate payoff, namely

the payoff for making a correct decision herself, overcomes the continuation payoff,
the payoff that she gains if the future agents decide correctly. On the other hand if

6 > 1/2, then the continuation payoff dominates and thus we could hope for equilibria

that would favour escaping from herds leading to learning in probability. Chapter 5

will prove this intuition wrong for any value of 6.
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Chapter 3

Designing decision rules for almost

sure learning

In this chapter we study almost sure learning and establish necessary and sufficient

conditions for this to occur. Traditionally, in the existing literature, the dichotomy

that arises, as far as learning is concerned is that between Bounded and Unbounded

Likelihood Ratios ([1], [14]). In agreement with previous results, in this chapter

we prove that almost sure learning is possible if and only if the signal structure is

characterized by Unbounded Likelihood Ratios.

3.1 Unbounded likelihood ratios: Cover's construc-

tion

We first consider the case of Unbounded Likelihood Ratios, a problem that has been

studied by Cover in [7].

Cover considers the case where K = 1 and provides a decision rule that achieves

almost sure learning. That decision rule is as follows:

, if 1(sn) > In,

dn (s, iXn- 1) = 0, if d (s) <i,

ln_ 1, otherwise.

where In and In are suitably chosen thresholds. These thresholds 1n and 1n are non-

increasing and non-decreasing sequences, converging at a suitable rate to infinity and

zero, respectively.



The fact that Cover's decision rule achieves almost sure learning is in agreement
with the intuitive discussion from the previous section. Specifically, an agent makes
a decision different from that of the previous agent only when her signal is strong

enough in either direction. In the beginning, agents need not have a strong signal to
change the decision and report what they observed. But as n increases, the thresh-

olds approach the endpoints of the support of the likelihood ratios, namely zero and
infinity, and one needs an extremely strong signal in order to switch. In other words,
for large n, agents copy their predecessor except when they have an extremely strong
indication for the opposite. Since arbitrarily strong signals in favour of the underlying
state arrive almost surely, learning can be established.

Such a decision rule would not achieve learning in the case of Bounded Likelihood
Ratios for the following simple reason. As l, and In approach infinity and zero,
respectively, at some point they go outside the interval [im, M] (cf. Definition 1).
Thus eventually, for some n*, ln. > M and 1n. < m. For every n > n* agent n will

be copying the decision of n* and hence will be taking the wrong action with positive
probability.

We provide a stronger result in the next section; no decision profile can achieve
almost sure learning under Bounded Likelihood Ratios.

3.2 No almost sure learning for the case of Bounded

Likelihood Ratios

If the signal structure is characterized by Bounded Likelihood Ratios, it is known
from [11] that for the case of tossing a coin with unknown bias and if K = 1, then
there does not exist a decision rule that achieves almost sure learning. Later, [12]
proves that for agents who maximize a local cost function (essentially maximizing the
probability of a correct decision) after observing their immediate predecessor, but are
allowed to make three-valued decision, almost sure learning does not occur.

We provide a more general result arguing that almost sure learning cannot be
achieved by any decision rule under any signal structure that is characterized by
Bounded Likelihood Ratios, for any number of observed predecessors. Actually, our
proof generalizes for any observation structure, allowing access to any subset of past
agents' decisions.

This subsection will be devoted to proving the following Theorem.

Theorem 1. Under the Bounded Likelihood Ratio assumption and for any number



K of neighbours being observed, there does not exist a decision rule d = {dn} 1
that achieves almost sure learning.1

Throughout this section, let D, denote the set of actions observed by agent n.

For the case of observing the last K predecessors, we have Dn = {n - K,. .. , n - 1}.

For brevity, let XDn be the vector of observed actions, that is,

XDn {k: k E Dn}.

A decision rule d {dn}c 1 specifies for any observed vector of actions XDn a

partition of the signal space S in two subsets Sd(xD) and (xD ) S \ S (XDs)

such that
{1, if s E Sd(xDs)

dn (sn, xDJ i n Xn

0, if Sn E Sn xDJ)

For example, in Cover's decision rule (denoted by d* here),

S*(1) = { S : () > I
dF1

and

S *(0) { : ( dF > In
>dF1

From now on, let us fix a specific decision profile d so that we can drop the

subscripts and superscripts related to a specific rule, for illustration purposes For

notational convenience, let P(.) denote conditioning on state of the world j, that is

Pi(-) = P(-| = j).

The following Lemma, is central for the analysis that ensues.

Lemma 1. For any XDn, we have

m < P(Xn j XD < M, j{o, 1}. (3.1)
P1l(Xn = j XD)

where m and M are scalars defined in Definition 1.

Proof. We give the proof for the case where j 1. The other case follows from a

symmetrical argument.

'The proof of this theorem does not use anywhere the fact that agents only observe the last K
immediate predecessors. The result can be directly generalized to agents who observe the actions of
any subset of the first n 1 agents.



The probability of agent n choosing 1 when she observes XDn under state of the

world 0 is the probability of her private signal lying in Sn,(XDa) under state 0, i.e.,

P'0(x, = 1 XDh) = dFo(s,) = d (sn)dF1(sn).
SnCSn(xD) dsnESn(xDn) dF,

Using Definition 1 we obtain

P 0(x= 1 | XDJ dF (sn) dF1(sn) < M dFI(Sn),
fsnESn(xon) IF fsnESn(xDn)

=M - P1(xn=1 XD,),

and similarly,

IP (Xn = 1 I xDJ s~ (n) d(I sn) > mn dIFI(sn),
IsnESn(xDn) 1(Sd fsnESn(xDn)

- m - P1 (x= 1 xD),

from which the result follows. D

This Lemma says that the probabilities of making a decision given the observed
actions are coupled between the two states of the world, under the BLR assumption.

Therefore, if under one state of the world some agent n after observing XDn decides

0 with positive probability, then the same has to occur with proportional probability

under the other state of the world. This proportional dependence of decision prob-
abilities for the two possible underlying states is central to the proof of Theorem
1.

Before going to the main proof, we need two more lemmas. Consider a probability

space (Q, C, P) and a sequence of events {Ek}, k = 1, 2,. . .. The upper limiting set
of the sequence lim supko Ek is defined by

oo oo

lim sup Ek= n U Ek.
k-o n=1 k=n

The next, stronger version of Borel-Cantelli lemma that does not require indepen-

dence of events will be used.

Lemma 2. Consider a probability space (Q, C, P) and a sequence of events {Ek},
k = 1, 2,.... If

P(Ek I E'... E'_1) = oo,
k=1



then

P(lim sup Ek) = 1,
k-+oo

where E' denotes the complement of Ek.

Proof. See p. 48 of [5] or [6]. E

Finally, we prove an algebraic fact with a simple probabilistic interpretation.

Lemma 3. Consider a sequence {an}nEN of real numbers an E [0, 1], for all n E N.

Then

1- an < 7~ ~ e- ZlEjQ a,1- <ang (1 -an)seEo"
nCQ nEQ

for any Q C N.

Proof. The second inequality is standard. For the first one, interpret the numbers

{an}nEN as probabilities of independent events {En}nEN. Then, clearly,

lP(U En) + P(n En) = 1.
nEQ nEQ

Observe that

P(U En) = J(1 - an),
nEQ nEQ

and by the union bound,

P(n o < 1 an.
nEQ nEQ

Combining the above yields the desired result.

Now, we are ready to prove the main result of this chapter.

Proof of Theorem 1. Let V denote the set of all sequences that end up in ones, namely

V A {v E {0, 1}N : there exists some N E N such that Vn 1 for all n> N}.

Observe that V can be equivalently written as

V = U VN, where VN {v E {0, 1I}N : 1n = 1 for all n > N}.
NEN



Each of the sets VN is finite, since it contains 2 N elements, and hence V is countable,
as a countable union of countable sets. Therefore, we can enumerate the elements of

V by the positive integers and write V = {V }iEN-

We argue by contradiction. Suppose that d achieves learning with probability one.

Then,

P ({Xk=i E V) 1,

or equivalently,

P-(zl'1 = vi for some i ) = 1. (3.2)

That is, almost surely, there exists some (random) N after which all agents n > N

decide x, = 1 under the state of the world one.

Let now V be defined as follows

V {v E V: P'({zXk}i = v) > 0}.

It follows from Equation (3.2) that V f 0. We will prove that V 0, thus obtaining

a contradiction. Since V C V and V / 0, we will look for elements of V from within

V.

Fix some i C N. Let vi E V. Then,

Pl(Xk=vi for allk<n) >0, for alln EN. (3.3)

The above implies that

P 0(Xk=vi for allk<n) > 0, for alln EN. (3.4)

Indeed, assume the contrary and let

min{n c N: P(Xk vi for all k n) =0}.

Then, IP'(X = vi for all k<n-1) >Oand

1P0(zx= = v' for all k < n -1) =0,

which in turn, using Lemma 1, implies that

0 < P'(Xt = Vi | = vi for all k < h - 1)
1

< -P(Xr = Vi | X = vi for all k < h - 1) = 0,m



which contradicts (3.3).

Define ai, b' as follows:

a' = P(x, v' | ze = v' for all k < n),

IP (Xn # vI |k- = v' for all k < n),

and observe that Lemma 1 implies that

m < -s"- < M,
azn

because IP (Xn / vi I Xk = Vi for all k < n) =j P(Xn z/ Vi I XD,

(3.5)

= VD.) for j C {0, 1}.

We claim that

a = oo (3.6)

Indeed, assume the contrary, namely that

00

ai < 00.

n=1

Then,
00

Sb' <
n=1 n=1

and
00

lim E b
N-noo n

n=N

00

lim [ PO(Xn / v2 I Xk = vik
n=N

for all k < n) = 0.

Choose some N such that

0P(xn $ v | xk =v for all k < n) < -

n=N

Such a N exists because of (3.7). Then,

P 0({Xk}kEN = vi)

= PO(Xn v' for all n < N) H (1 - PO(Xn
n=N

vi | xk = vk for all k < n)).

(3.7)



The first term of the right hand side is bounded away from zero by (3.4) while

H(1-P(xn#v i | X v = Vi for all k < n)) > (1- P(X # Vi | Xk = vi for all k <n)
n=N n=N

Combining the above, we obtain

PW({Xk}kEN Vi) > 0,

which is a contradiction to the almost sure learning assumption, establishing (3.6).
We now show that if E a' = oc then v' cannot belong to V. Indeed, using

Lemma 2 we get that P1 (lim sup{Xk # vk }) = 1 showing that with probability one

a deviation from the sequence vi will happen under the state of the world one and

therefore that v' cannot belong to V. This is a contradiction and concludes the

proof. E

3.3 Discussion and Conclusions

In this chapter we completed the results of the existing literature as far as almost sure

learning is concerned. It was known from [7] that there exists a decision profile which
achieves almost sure learning for any K > 1 if the signal structure is characterized by
Unbounded Likelihood Ratios. Our results strengthens this theorem making it an if
and only if statement; there exists a decision profile that achieves almost sure learning
for any K > 1 if and only if the signal structure is characterized by Unbounded
Likelihood Ratios.



Chapter 4

Designing decision rules for

learning in probability

In this chapter we discuss a looser learning mode, learning in probability, as defined

in Section 2.2. We prove that learning in probability cannot be achieved when agents

observe their immediate predecessor, i.e., K = 1. In contrast, we design a decision

profile that achieves learning in probability when K > 2.

Koplowitz [11] showed that if K = 1 then, for the problem of tossing a coin with

unknown bias, learning in probability cannot be achieved. Moreover [12] proves that

if agents take a three valued action that maximizes their local payoff function, then

learning in probability does not occur. In contrast to [11] we prove the result for any

signal distribution that is characterized by Bounded Likelihood Ratios. On the other

hand, our result does not imply that of [12] since we only allow binary actions but it

applies in a broader setting since we consider all possible decision profiles.

4.1 No learning in probability when K=1

We start with the case where K = 1. Agents observe their immediate predecessor

and the decision process can be described in terms of two Markov chains, one for each

possible state of the world, as depicted in Figure 4-1. Indeed, consider a two-state

Markov chain where the state corresponds to the observed action x,_i E {0, 1}. A

transition from state i to state j for the Markov chain associated with 0 = 1, where

i, j, 1 E {0, 1}, corresponds to agent n taking the action j given that her immediate

predecessor n - 1 decided i under the state 0 = 1. Indeed, the Markov property is

satisfied since agents' decisions, conditioned on the immediate predecessor's action,
are independent from the history of actions. In other words, for any strategy profile
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Figure 4-1: The Markov chains that model the decision process for K = 1. States
correspond to observed actions while transitions correspond to agents' decisions.

i,j E {O, 1}.Pd(Xn = j | Xn-1, ..., i , 0 = i) = Pd(Xn, =j|Xn_1, 0 = i),

We denote the transition probabilities by

SPd(Xn = j 1 = ii, = 0),

SPd(Xn j | z =i, = 1),

i,j E {0, 1},

ij E {0, 1}.

Observe that using the notation from the previous chapter we have

ag (d) = PO(sn E S d(i))

and a corresponding expression for all other transitions. Thus, we can deduce from
Lemma 1 the following corollary.

Corollary 1. Consider a strategy profile d and let m > 0 and M < oo be as defined

a'3(d)

a (d)

(4.1)

(4.2)



in Definition 1. Then,

am (d)
M <n < M, for all i, jE{O, 1}.

an(d)

In this subsection we establish the following impossibility result.

Theorem 2. Assume that the signal structure is characterized by BLR and let agents

observe their immediate predecessors (K = 1). Then, there does not exist a decision

profile d that achieves learning in probability. Equivalently, for any decision profile

d = {dn} 1 we have

lim Pd(Xn = 0) < 1.

Once more the coupling between the probabilities of taking an action given the

observed decision under the two states of the world implied by Corollary 1 is key

for this result. To simplify exposition our proof will be presented through a series of

lemmas. For the rest of this section, we fix some decision profile d and for notational

convenience we suppress the dependence on d.

The first lemma, which is directly obtained from the Bounded Likelihood Ratios

property, couples the states of the Markov chains associated with the two states of

the world, after a finite number of transitions.

Lemma 4. Assume that the signal structure is characterized by Bounded Likelihood

Ratios. Then, for any j E {0, 1} and n E N,

m PTEG(x =-j)
m < P(x= < M . (4.3)--- Pi (Xn = j) -

Proof. We will use induction on n. For n = 1, (4.3) holds from Lemma 1. Assume

that (4.3) holds for some n c N and for all j E {0, 1}. Then,

P(Xn=j) = P(x =j xn_1 =O)IP(xn_1 = 0) + PO(xn = j X 1 =1)P 0 (Xn 1)

P'(Xn=j) - P(Xn =j xn_1 =0)P(Xn_ = 0) + Pl(Xn = J xn_1 =)IP(Xn_1 =1).

Using the induction hypothesis and Lemma 1, we obtain

IPO (xn = j)
IP'jxn = j)

< MP(x = j xn_1 = O)M"P 1(Xo_1 = 0) + MIPl(Xn = j X n1 = 1)MIP1(xn_ 1 = 1)
PI(xn = j | Xn_1 = 0)lP1(x-1 = 0) + P(x, = j | Xn_1 = 1)P'(Xn 1 = 1)

= Mn+1 .



The lower bound follows using a similar argument concluding the induction and the

proof of the lemma. F

We next establish that for learning in probability to occur, transitions between

different states should not stop at some finite n. The intuitive argument for this result

is expressed as follows. Assume that transitions stopped in favor of one of the states

in some finite time under one state of the world. Then, the same would happen under

the other state of the world, by Corollary 1, contradicting learning in probability.

The next lemma formalizes that intuition.

Lemma 5. Assume that learning in probability occurs. Let Aij = {n : ag > O} and

Aij = {n : ad/ > 0}. Then, |Agj| = |Ai| = oc, for all i, j E {0, 1}, with i # j, where

denotes the cardinality of a set.

Proof. The first implication is straightforward. If for some n E N we have a = 0,
then 0 < aj < M - 0, establishing that a7 = 0 which yields |Asj| = |Aiy .

Consider, first, the case where |Aail < o0. Then, we can distinguish between the

following cases.

(i) |Aio| = o.

Then, there exists some n > |A01 for which

P 1(xj = 0) > 0,

and for all n > h,

P'(Xz = 1 |n_1 = 0) = 0.

Therefore, for all n > h,

P'1(x = 0) > P'(xn = 0 Xt = 0)PI (x = 0) = P1xi = 0),

which in turn yields

11
lim inf P(x, f 6) > -IP1(xn = 0) > 0,
n-oo 2

contradicting learning in probability.

(ii) |A10| = |Aiol < oo

Without loss of generality, assume that |Aoi > Aio|. In that case, transitions

between states stop at some finite time n > max{|Aiol, IAoi } and therefore, by



the learning in probability assumption,

IPI(x, = 1) = P'(xza = 1) = 1, for all n > h.

On the other hand, only finitely many transitions have occurred and thus, from

Lemma 4,
PO (xj- = 1)

m f < " < Mn
-- PI (zi = 1) ~

from which we have

PG(xn = 1) = P 0(Xz = 1) ;> m"IP0(xh = 1) > 0, for all n > n.

contradicting the learning in probability assumption.

Symmetric arguments can be used for the case |Aiol < oc, concluding the proof.

A consequence of the previous Lemma is the following corollary, which states that

there cannot be learning in finite time, i.e., that the state of the Markov chain can

take any of the two values infinitely many times with positive probability.

Corollary 2. Assume that the decision d achieves learning in probability. For all

no e N , there exists some n > no such that

lP(x= j) > 0, for allj, 0 E {0, 1}

The next step is to derive some properties of the transition probabilities under the

d that achieves learning. The first result extends the previous corollary and proves

that transitions between states occur infinitely many times.

Lemma 6. Assume that the decision d achieves learning in probability. Then,

01 = 0 0 
(4.4)

n=1

and

a .0 = 00 (4.5)
n=1



Proof. For the sake of contradiction, assume that an l <o0. Then,

00

lim a0 =o.
n=N

Therefore there exists some N E N such that

a0 
< 17 n 2M*

n=N

Corollary 2 guarantees that there exists some N > N such that P1 (xk 0) > 0.

Since N > N, we have

Using Corollary 1 we get

00

n-N

001

a., < .
2M

n=N

a01 < -n -2

Moreover, for all n > N we have

P(X" = 0 | Xg = 0) =

n

k=N+1

01),

and thus,

PI(Xn = 0) > Pl'(Xr+1 = 0) -7J (1 - )
k=N

On the other hand,

nh (1ca) > 1
k=lN+1

which leaves us with,
1

IP1(Xn = 0) > - - P(zg = 0),2

for all n > N.

Therefore,
1

lim inf P1 (Xn = 0) ;> - -P P(zg = 0) > 0n-+oo 2

+00

n=N+1

0> 1
2

oo



contradicting the asymptotic learning assumption and thus concluding the proof. E

The last lemma states that transition probabilities between different states should

asymptotically converge to zero, for a decision that achieves learning in probability.

Intuitively, if this were not the case, even if agents' decisions converged to the cor-

rect state, infinitely often a transition to the other state would occur with positive

probability, preventing learning in probability.

Lemma 7. Assume that the decision d achieves learning in probability. Then

lim a01 = 0.
72-+oc

(4.6)

Proof. Assume, to arrive to a contradiction that there exists some C E (0, 1) and a

subsequence {rk} i such that

(4.7)

for all k c N.

The learning assumption implies that there exists N C N such that for all n > N,

IP0(x, = 0) > 1 -

Let k be such that rk > N. Then,

P 0 (Xr = 0) = P (Xr = 0 Xr_1 = 0)P (Xr1 = 0)+P 0 (Xr=

Using (4.7) we get

P(Xr = 0 1 Xrj-_ = 0) <1 - E,

0 Xr_1 = 1)IP(Xr _1 = 1).

while using (4.8) we get

PX0(Xr_1 = 1) <

Combining the above we get that

P(Xr = 0) 1 - 1+1 -
k4

3E
4

which contradicts (4.8), completing the proof.

At this point we are ready to prove the main theorem of this section.

43

(4.8)

ak = Xr 01 , = 1 |x,,_1 = 0) > E,



Since the sum of transition probabilities from state 0 to state 1 is infinite, we

can divide the agents into blocks so that the corresponding sums over each block are

approximately constant. If during a block the sum of transition probabilities from

state 1 to state 0 is small, then under state of the world 0, there is high probability

of starting the block at state 0 and ending at state 1. If on the other hand the sum

of the transition probabilities from state 1 to state 0 is large, then under the state of

the world one, there is high probability of starting the corresponding block at state 1

and ending at state 0. Both cases prevent actions' convergence in probability to the

correct state. The main idea is illustrated in Figure 4-2.

I A, I A,-, I A,, I

large small

7 VV
0=0 0=1 0=0 0=1

Figure 4-2: Proof sketch for theorem 2. Divide agents into blocks so that the sum, in
each block, of transition probabilities from 0 to 1 are constant. If during such a block
the sum of transition probabilities from 1 to 0 is small there is positive probability
of "getting stuck" at state 1 under 9 = 0. Similarly, if it is large there is positive
probability of getting stuck at state 0 under 0 = 1.

Proof of Theorem 2. We prove the result by contradiction. Assume that a decision

profile d achieves learning in probability. From Lemma 7, limneo a0 = 0 and there-



fore there exists a N E N such that for all n > N,

a01 < . (4.9)n 6M*

Moreover, by the learning in probability assumption, there exists some N E N such

that for all n > N,

1
PO (X = 0) > -, (4.10)

2'

and

P 1(x = 1) > 1. (4.11)
2

Let N = max{N, N} so that for all n > N Eqs. (4.9)-(4.11) all hold.

The next step is to divide the agents in blocks such that in each block the sum of

the transition probabilities from state 0 to state 1 can be simultaneously bounded from

above and below. Define the last agents of each block using the following recursive

procedure.

N,

r =m {l: m a 01  .
n=rk 1+1

From Lemma 6 we have that N a0 = oc. This fact together with Equation (4.9)

guarantee that the sequence rk is well defined and strictly increasing.

Let Ak denote the block that ends with agent rk+1, i.e., Ak A {rk + 1, . .. , rk+1}-

The construction of the sequence {rkjk yields

21
ncAk

On the other hand, rk+1 is the first agent for which the sum is at least 1/2M and

since by (4.9) ark+l < 1/6M, we get that

a 1 1 2
n -- 2M 6M 3M

neAk



Using Corollary 1, we conclude that blocks {Ak} 1 satisfy

1 2a0 < and (4.12)
2M - ~ n - 3M'

<" n . (4.13)nEc Ak

2M - \7o 3

Consider the following two cases for the summation of transition probabilities from

state 1 to state 0 during block Ak:

(i) Assume that

E a1 0 >
nEA 2

Using Corollary 1, we obtain

al" > 1:m -al0 > M(4.14)
neAk neAk

The assumption of learning in probability suggests that at the beginning of the

block, under the state of the world 6 = 1, the chain is more likely to be at
state one as (4.10) indicates, namely P'(xrk+l = 1) > 1/2. The probability of a
transition to state zero during the block Ak can be computed as

IPI(UneA({Xn = 0} Xr+1 - 1) [1 - J - d0)

By (4.14) the right-hand side can be bounded from below using the inequality

d10 m
(10\-) < e ^lk e 2

nE AnflGAk

which yields

'P1 (UnE A,{xn =0} | xrk+1 = 1)- e -

After a transition to state 0 occurs the probability of staying at that state until
the end of the block is bounded below as follows,

P 1 (Xrk+l = 01 UneAk{Xn n0) -1 (
nEcAk



The right-hand side can be bounded using Equation (4.13) as follows:

17 (1 -
01) ;> 1 - 01

n n - 3

ncAk nEAk

Combining the above, we conclude that

P 1 (Xrk+l = 0)

> IP(x,kl = 0 | UnEAk{Xn =})P(UnCAk Xn O} Xrk±= 1)W'(Xrk+= 1)

> -(1 - e2).

(ii) Assume

nEAk

The assumption of learning in probability implies that at the beginning of the

block, under the state of the world 0 = 0, the chain is highly likely to be at

state zero as (4.11) indicates, namely P0(Xrk+l = 0) > 1/2. The probability of

a transition to state one from any agent during the block Ak is

P4(UneAk{xn = 1} Xrk+ 1 = 0) = [i - f (1 a0)
nE Ann

The right-hand side can be bounded from below using the inequality

' (1-a )<; e- kdo e ,
nEAk

which yields

P0 (UneAk{Xn =}1)rk+1 1 - e 2M

After a transition to state one occurs, the probability of staying at that state

until the end of the block is bounded from below as follows:

0 (rk+l 1 = 1}) > Jfj (1 
flGAk



The right-hand side can be bounded using Equation (4.13) as follows:

fi (1-a) > 1- alO >
nEAk ncAk

Combining the above, we conclude that

1P0(xrk+l =1)

> P0 (xrk = 1 | UneAk{§Xn = O})PF(UnEAkfXn 1} XTk+1 O)P 0 (Xrk+1 0)

> 1 -_ e)
-4

Combining those two cases we conclude that

lim inf P(xn#, 0) > ! min (1-e ), ( > 0 (4.15)
n-o 2 6 4

which contradicts the learning in probability assumption and concludes the proof. D

The coupling between the two states of the world is central in the proof of Theorem
2. The importance of the Bounded Likelihood Ratio assumption is highlighted by the
observation that if either m = 0 or M = oc then the lower bound obtained in (4.15)
is zero, making our proof to fail.

The main idea underlying this proof is the following. For learning in probability
to occur the state of the Markov chain should converge to 0 or 1 depending on the
state of the world. In order for this to happen, that is, for convergence to the correct
state, the chain should be given enough time to explore between the possible states;
transitions out of each of the desired states should happen infinitely often, otherwise
the chain could get "stuck" to the wrong state with positive probability. For the
case K = 1, transitions out of one of the two desired states correspond to transitions
towards the other. Therefore, the "experimentation" necessity leads to a positive
probability of transitions between states 0 and 1 during certain finite intervals, under
both states of the world because of the Bounded Likelihood Ratio assumption. Then,
even if the state of the Markov chain is at the correct state, after some time it will
make a transition to the wrong one with positive probability and thus will not learn.

An analogous proof technique was expected to hold for the case of K > 2. The
next section explores this case and, surprisingly, constructs a decision that achieves
learning in probability when agents observe the last 2 immediate predecessors.



4.2 Learning in probability when K > 2

In this section we discuss learning in probability when agents observe two or more

of their immediate predecessors and the private signal structure is characterized by

Bounded Likelihood Ratios.

4.2.1 A first approach

A first attempt to tackle the problem when K = 2 would be to mimic the proof

techniques of the previous section. The Markov chains that correspond to the new

problem are illustrated in Figure 4-3. The Bounded Likelihood ratio assumption

would imply

m < -"- < M,di
n

for all i E {1, ... , 6}.

The "experimentation" necessity would imply that for a decision profile which

achieves learning in probability, we should have

a.- 00,
nEN

and

3=ao00,
nEN

for i = 1, 6 while we should not have this property for the rest values of i. Finally,
for learning in probability to occur, we should have a' -+ 0 as n - 00, for i = 1,6.

In words, for learning in probability to occur, the state of the Markov chain should

converge in probability to 00 and 11 when 0 = 0 or 0 = 1, respectively. Observe now

that the experimentation necessity implies that transition out of those desired states

should happen infinitely often. In contrast to the case K 1 a transition out of state

00 does not imply a transition to state 11. Therefore for those intervals that either

E a' is large or E a6 is large, it is not necessarily implied that a visit to state 11

or 00 will occur with non-negligible probability. In order to make such a statement,
one should establish properties for the intermediate transition probabilities a' , for

i C {2, ... , 5}.

For example, if one could argue that transitions between the intermediate stages

01 and 10 happen at most L times then the transition probabilities between state

00 and 11 would be bounded from below and above by mL+ 2 and ML+2 respectively



0=0 0=1

Figure 4-3: The Markov chains that correspond to the decision process when K=2.

and the arguments from the previous section would go through. Such guarantees, on
the other hand, cannot be obtained. Specifically, consider a decision rule for which if

the process visits state 10 at time ni it oscillates between 10 and 01, q, times where

{q,} is a strictly increasing sequence. Then, transition probabilities between the
desired states 00 and 11 cannot be bounded by numbers independent of ni and the

proof techniques used so far fail. This is exactly the property that we exploit in our
construction that follows.

4.2.2 Biased coin observation model

Consider the biased coin example that we introduced in Section 2.1.2. Denote by po
and pi the two possible values for the bias of the coin with po < Pi, corresponding to
the cases of 9 = 0 and 0 = 1 respectively, and let p denote the true value. Define pm

to be the average bias, namely pm A (po + p1)/ 2 . Resolving the uncertainty between

the two possible states of the world is equivalent to deciding whether p > po or p < pi.
The agents' private information consists of the outcome of a coin toss; their private

signal can take values sa E {H, T} and the private signal distributions are Bernoulli

with IP(so = H) = p and IP(se = T) = 1i-p.

Observe that the general two-hypothesis testing problem, with sri drawn from any
private signal structure (IFo, F1) characterized by Bounded Likelihood Ratios may be



put in this framework under the correspondence

Hif dg (p,) ;>1
Sn H F

T, if dFO(s) < 1

Therefore, constructing a decision that achieves learning in probability for the case

of the biased coin can be extended to any private signal structure. For this reason, we

focus on constructing a decision that achieves learning in probability for the biased

coin signal structure.

4.2.3 Cover's decision and Koplowitz's modification

In this framework, two papers by Cover [7] and by Koplowitz [11] are closely related

to our work. In their papers, agents are not constrained to make a binary decision.

Cover exhibits a decision profile under which the hypothesis p < Pm vs p > Pm is

resolved with limiting error probability of zero under either hypothesis.

We first present the decision profile proposed by Cover. Agents' decisions can

take four values represented by the pair (Tn, Qn) where Ts, Q. E {0, 1}. Consider

two sequences {ki}iEN and {tri}iEN of appropriately chosen positive integers. Divide

agents into blocks according to the following rule. The first ki agents will be block

S1, the next r1 agents will be block R 1, the next k2 agents will be block S2, the next

r 2 agents will be block R2, etc.

The decision profile is defined as follows:

(i) During an S block:

(a) At the beginning of the block if the initial observation is 1 (Heads) set

Qn = 1.

(b) Subsequently, in that block let

0, if s" = 0,

Qn-1, otherwise,

Tn = Tn_1.



(c) For the last agent of the block

= 1, if Qn = 1,

Tn , otherwise.

(ii) During an R-block:

(a) At the beginning of the block, if the initial observation is 0 (Heads), set

Qn = 1.

(b) Subsequently, in that block let

0, if sn = 1,

Qn-, otherwise,

Tn = Tn_1.

(c) For the last agent of the block

T = 0, if Q, = 1,

Tni_, otherwise.

Thus, R checks for ri consecutive zeros while Si checks for ki consecutive ones,
and Q, = 1 at the end of the block if and only if the desired run has occurred. After

the occurrence of such a run, the T component of the last agent's decision changes to

0 and 1, respectively, indicating the success.

By choosing appropriately the lengths {k}icN and {rj}cN of the blocks, the com-

ponent Tn of agents' actions converges in probability to the correct state of the world.
Later Koplowitz [11] observed that during an S-block, if the currently favored

hypothesis is Tn = 1, then regardless of the observations throughout the block the

favored hypothesis remains Tn = 1. Only if the favored hypothesis is T" = 0 it

is necessary to check for consecutive ones. Using this fact, he proposed a decision

profile where agents are allowed to take a three-valued decision (in contrast to Cover's

four-valued). It turns out that the sequence of {Tq }kCN, where {qk}kEN denotes the

sequence of the first agents of each block converges to the correct state of the world,
in probability.

Those decision profiles do not fit in our framework for the following two reasons:

(i) Agents' actions are allowed to take more than two values.
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Figure 4-4: Dividing agents in R-blocks and S-blocks

(ii) More importantly for Cover's decision profile just one component of agents'

actions converges in probability to the correct state of the world. Similarly, for

Koplowitz's decision profile only one subsequence of agents, that of the blocks'

leaders learns in probability.

In the next section we provide a decision for K > 1 requiring agents to take binary

decisions, under which agents' actions converge to the correct state in probability

(not just along a subsequence).

4.2.4 Learning in probability when observing two or more of

the immediate predecessors

In this section we construct a decision profile that achieves learning in probability.

For brevity we define q AI - p, qi - pi for i E {0, 1} and qm = - pm. Observe

that p > pm if and only if q < q,. Let {ki}icN and {friiEN be sequences of integers

that we will define later in this section.

Divide agents in S-blocks, R-blocks and transient agents as follows.

(i) The first two agents do not belong to any block.

(ii) The next 2ko - 1 agents belong to the block So.

(iii) The next agent is an SR transient agent.

(iv) The next 2ro - 1 agents belong to the block Ro.

(v) The next agent is an RS transient agent.

(vi) Division continues as illustrated in Figure 4-4.

Agents' information set consists of the outcome of their coin tossing as well as the

last two decisions, denoted by T = (Xn2, Xz-1).

Our decision profile is as follows:



(i) Agents 1 and 2 choose 1 irrespective of their private signal.

(ii) During block Sm:

(a) If the first agent observes 11 she chooses 1 irrespective of her private signal.

If she observes 00 and her private signal is 1 then

1, with probability 1,

0, otherwise.

If the first event is realized we say that the searching phase is initiated.

In all other cases she decides 0.

(b) For the rest of the agents in the block:

" Agents who observe 01 decide 0 for all private signals.

* Agents who observe 10 decide 0 if and only if their private signal is 0.

* Agents who observe 00 decide 0 for all private signals.

* Agents who observe 00 decide 0 for all private signals.

(iii) During block Rm :

(a) If the first agent observes 00 she chooses 0 irrespective of her private signal.

If she observes 11 and her private signal is 0, then

0, with probability 1,
Xn = 

f

0, otherwise.

If the first event is realized, we say that the searching phase is initiated.

In all other cases she decides 0.

(b) For the rest of the agents in the block:

" Agents who observe 10 decide 1 for all private signals.

" Agents who observe 01 decide 1 if and only if their private signal is 1.

" Agents who observe 00 decide 0 for all private signals.

" Agents who observe 11 decide 1 for all private signals.

(iv) SR transient agents decide 1 if and only if they observe 10 for any private signal.

(v) RS transient agents decide 0 if and only if they observe 01 for any private signal.



fnA

(7 (
KI,

Figure 4-5: The decision profile during an S-block. (a) Current state is 11 anywhere
in the block (b) The state at the beginning of the block is 00 (c) The current state is
01. (d) The current state is 10.

The decision profile is summarized in Table 4.1.

Observe that by the construction of the decision , at the beginning of each block

the state can be either 00 or 11. If at the beginning of an S-block the state is 11, it

does not change. On the contrary, if the state is 00, then we consider two cases. If

the searching phase is not initiated, the state remains 00 until the end of the block. If

the searching phase is initiated, the state at the beginning of the next block becomes

11 if and only if km ones are observed. Otherwise it returns at state 00. The same

holds for the R-blocks.

4.2.5 Proof

The following fact is used in the proof that follows.

Lemma 8. If a > 1, then the series

±00 
1

Yi log(i)a' with L > 2

converges; if a < 1, then the series diverges. Here log(.) denotes the natural logarithm.

n

T

kIT



Decision that achieves learning under BLR

During Si block

If agent n is the first

ds(ss,0,0) = so, with probability
0, otherwise

dn(sn, 1,1) = 1

If agent n is not the first
dn(sn, 1,1) = 1
dn(s,0, 0) = 0
dn(sn,0, 1) = 0
dn(sn, 1,0) = sn

is SR transient
-0
=-1

x1= 1 andX 2 =1

During Ri block

If agent n is the first

da(ss, 1, 1) = s, with probability i
1, otherwise

dn(sn,OO) 0

If agent n
dn(sA, 0,0)
dn(s, 1, 1)
dn(sn, 1,0)
dn(sA, 0,1)

If agent n
dn(sn, 1,1)
dn(s, 1, 0)

is not the first
=0
=0

= 1
= Sn

is RS transient
=0
=0

Table 4.1: A decision profile that achieves learning in probability. Note that this is
a randomized decision . Our analysis in the previous chapters assumes deterministic
decision s but can be extended to randomized by standard arguments that would just
make notation harder.

If agent n
dn(Sn, 0, 0)
dn(sn, 0, 1)



Proof. See Theorem 3.29 of [15].

Define k =max 2, [el} and r = max 2, [en]}.
Moreover let {ki} , {ri}o be sequences of integers defined as

ki = logp" (4.16)
1 log (i + Ik)'

r logqn .log i+O)) (4.17)
**log(i + f

Theorem 3. Let the agents decide according to the decision described in Section

4.2.4. Then,
lim P(xn = 0) = 1.

n-oo

Proof. Let {li}j denote the sequence of the first agents of consecutive R-blocks or

S-blocks. In other words li is the first agent in the first S-block, 2 is the first agent in

the first R-block etc. Moreover, remember that Tn {x -2, Xn-i} denotes the string

of observed actions for agent n. From the definition of the decision profile, we have

T2 C {00, 11} with probability one for all i c N.

Observe that if for some io , T 0 = 00, then T, = 11 if and only if the following

three conditions hold. First, the block starting from li0 is an S-block; denote it by Smo,
m = i0+1 Second, the searching phase did start; which happens with probability

. Finally, s, = 1 for all agents in Sm who are an odd number away from the

first; which happens with probability pSmo. Similarly, if for some io, T= 11, then

T+ = 00 if and only if the following three conditions hold. First, the block starting

from li0 is an R-block; denote it by Rmo, mo = 2. Second, the searching phase did

start; which happens with probability . Finally, sn = 0 for all n in Sm that are

an even number away from the first; which happens with probability qrko. Therefore,

1 i±+1
P(T =11| T% 00) = pSmo , where m, = and i is odd, (4.18)

k- +mo 2
1i

P(Tm = 00 T = 11) = qrmo _ , where mo = - and i is even. (4.19)
r + mO 2

It follows, by the independence of the blocks and the Borel-Cantelli Lemma, that



T1, -+ 11, with probability one if

+oo

Zpki - = o, and (4.20)
i+k

i=0

since if both conditions hold, transitions from the state 00 to the state 11 happen

infinitely many times, while transitions from state 11 to state 00 happen only finitely

many times.

Similarly, T, - 00 with probability one if

p1- 1 < oc, and (4.21)

P + kq' .i 1 _ = 00
S +r

The definition of the sequence {ki} implies that

1 1
logP.(. -I )< ki < gp -k( ) + 1

i +k i+ Ik

or, equivalently,
plo~pg -Y < Pki < lp10,%~

Consequently,

1 k 1 1
p <py < a log (p) (4.22)(i + k) logP .(i ± Ic)+ i + k - (i + k) logp,(i + k) a

Similarly,

1 k 1 1
q < q K oI < - #=logq (q) (4.23)

(i + 0) logqm. (i + ) i+f r (i + f ) logam (i + k)#'84

Now, observe that if 0 1 or equivalently p > pm then a > 1 and # < 1. In

that case, Lemma 8 implies that the conditions (4.20) hold and thus T, - 11 with

probability one. Similarly, if 0 = 0 or equivalently p < pm then a < 1 and # > 1. In

that case, Lemma 8 implies that the conditions (4.21) hold and thus T,, - 00 with

probability one. In other words, under the proposed algorithm, T, -+ {0, 0} with

probability one.



Fix some E > 0. Without loss of generality assume that 0 = 0. Note that almost

sure convergence implies convergence in probability and therefore there exists N E N
such that

P(Tin= 00 |0 = 0) >1- for all n > N
2

Let no be the first agent of an R block, and assume T,0 = 00. Then with probability

one the state will not change throughout the block. On the other hand if at the

beginning (no) of an S block Ts, = 00 then the searching mode will initiate with

probability 1n. Let c(n) argmax{k : 12k < n, k even} denote the closest to agent

n S-block, then for all n > N,

6 1
IP(Tn f 00 0 = 0) < - +,2 k + c(n)'

where the first term on the right-hand side corresponds to initiating a block from a

state other than 00, while the second term corresponds to the case of initiating the

search phase in the closest S block.

Let K = max{0, 2 - k} and observe that for all k > K, k < . Let N-

max{N, l2K}. Then, for all n > N,

P(T 7# 00 10 = 0) < - + < - + -=6.
2 k + c(n) 2 2

which concludes the proof. E



4.3 Discussion and Conclusions

The dichotomy that this chapter presents is un-

expected, especially combined with the results of

Chapter 3. First, we should explain the difference

between the cases K = 1 and K > 1. In order to

do that we should go back to the Markov chain

representation where the core difference can be il-

lustrated. Observe that the property of Bounded

Likelihood Ratios couples the transition proba-

bilities between the states 0 and 1,at which, if

learning was achieved, the state would converge

under either state of the world. This fact, as

illustrated, is central in the impossibility proof

presented in Section 4.1. In contrast, observe the

Markov chain for the case K = 2. The Bounded

Likelihood Ratio property does couple the indi-

vidual transition probabilities, but the same does

not hold for transitions between states 00 and

11. Indeed, a transition from state 00 to state 11

would go through state 01. Then, the chain could

cycle arbitrarily many times among the interme-

diate states before reaching state 11. In that case,
the multi-step transition probabilities consist of a product of a growing number of
terms. Individually, those terms are coupled between the two states of the world
but the bounds for the ratio of their products asymptotically reach zero and infin-
ity respectively. Allowing a growing number of cycles between intermediate states
essentially decouples the transition probabilities between the two desired states 00
and 11 making the problem equivalent to a private signal structure with Unbounded
Likelihood Ratios.

Finally, Theorem 3 can be contrasted with Theorem 1. In the latter we prove
that there does not exist a decision that achieves almost sure learning. On the other
hand, in the former, we provide a decision that achieves learning in probability. This
contrast highlights the delicate difference between those two modes of convergence.
For almost sure convergence we require the existence of a finite time/agent after which
all actions are equal to the true state of the world. This restricts our attention to a



countable subset of possible realizations of the decision process. Our proof exhausted

all those possible realizations. On the other hand, for learning in probability to occur,

all we require is the probability of a wrong decision to asymptotically go to zero. This

allows for a larger set of realizations of the decision process. We made use of this

relaxation by instructing the first agent of each block to initiate a searching phase

with a probability E(1/n), thus constraining agents' actions to deviate from the final

state with limiting probability of zero.



(a) (b)
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Figure 4-6: An illustration of the algorithm. (a) A state automaton that represents
the possible histories observed. (b) The decision process for of a signal realization
of all H * H * H * H * H * .., where * represents any possible private signal, during
an S block that begins from 00 and for which the search phase is initiated. (c) An
R block that begins with 00. (d) The decision process during an S-block where the
search phase is initiated in case of signal realization of H * T * * * *...



Chapter 5

Forward looking agents: Bounded

Likelihood Ratios

In this chapter we consider forward looking agents, i.e., agents with a utility function

given by (5.2). We study the resulting dynamic game and in particular we characterize

its Perfect Bayesian Equilibria. Eventually we prove that there does not exist a Perfect

Bayesian Equilibrium that achieves learning in probability. Throughout this chapter

we focus on the case of private signal structures that are characterized by Bounded

Likelihood Ratios.

5.1 Basic definitions

We adopt the same observation model as in Section 2.1.1. The information available

to agents prior to making their decisions consists of their private signal and the actions

of their K immediate predecessors,

1In{, xk for all k E D,}, (5.1)

where D, = n - K,..., n - 1.

A strategy for individual n is a mapping U : S x {0, I}K -± {0, 1} that selects a

decision for each possible information set. Let E denote the pure strategy space for

each player n , i.e., the set of all mappings o-, : S x {0, 1}K _ { , 1}.

A strategy profile is a sequence of strategies o- = {Un}nEN. We will use the standard

notation o {o-1,. . . , Un1, on+1,...} to denote the strategies of all agents other

than n, and o {o-, U-n}.

Given a strategy profile o, the sequence of decisions {Xn}neN is a well defined



stochastic process and we denote the measure generated by this stochastic process by

'PU.

We call the resulting game the altruistic learning game and it consists of the

following components.

(i) The set of players is N.

(ii) The set of states of the world is {0, 1}.

(iii) The set of actions of each player is {0, 1}.

(iv) The set of types for each player is S x {O, 1}K.

(v) The payoff function zti {0, 1} x {0, 1}N -± oc for each player i given by

+00

un(O, x) (1 6)S 6 k- 1xk=O, (5.2)
k=n

where 5 is a discount factor with 6 E (0, 1), x = {xn} 0 and 1 A denotes the

indicator random variable for the event A.

(vi) Each player has a uniform prior distribution over the state of the world.

Definition 5. A strategy profile o-* is a pure-strategy Perfect Bayesian Equilibrium
of the altruistic learning game if for each n e N, -* maximizes the expected payoff of

agent n given the strategies of other agents o* .

In the rest of this thesis we focus on pure-strategy Perfect Bayesian Equilibria,
and simply refer to them as equilibria (without the other qualifiers).

Given a strategy profile o-, the expected payoff of agent n from action xn = y E
{0, 1} is given by

O
Un(y; In) = (1 - 6) 6n-kP, (Xk = 0 1 xn = y, In)

k=n

and therefore, for an equilibrium o- we have,

oo
o*C(In) E argmax 6 k-]P . k 0 xn y, In)-

y&E{O,1} k~n

Typically, in the Bayesian learning literature, learning fails when private signals
are characterized by Bounded Likelihood Ratios because of the creation of herds;



when the probability of a correct decision by copying the observed action becomes

large, then it is suboptimal for individuals to trust their private signal and decide

accordingly. This behaviour allows the creation, with positive probability, of an

incorrect herd. It should be evident, though, that the creation of herds is strongly

dependent on the selfish decisions of agents, who copy the myopically optimal action

disregarding their private information.

In our model though, the payoff structure does not necessarily encourage myopic

decisions. Consider the case of large discount factors; making a suboptimal deci-

sion yields an immediate payoff of zero in the worst case but, if this suboptimal

action instructs better decisions for future agents it could yield a continuation pay-

off of 1/(1 - 6) and therefore our payoff structure potentially encourages altruistic

behaviour. Unfortunately, it turns out that myopic decisions may arise under the

forward looking model as well, as the following equilibrium illustrates for the special

case of coin tossing.

Example 3 (A naive herding equilibrium for symmetric coin tossing). Consider the

standard example of coin tossing and let the bias take the following possible values. If

0 0, then IP(Heads) = 0.75, otherwise IP(Heads) = 0.25. Fix some K > 0 and let

3 c (0,1). Let agents decide according to the following strategy profile -:

1, if n = 1 and s = Heads,

o-n(snixD) 0, if n = 1 and sn= Tails,

xn_1, otherwise.

The strategy profile o is a Perfect Bayesian Equilibrium for the corresponding

game. Indeed, consider the decision problem for the first agent and assume that the

result of his coin tossing is si = Heads. The Bayes rule yields,

P(Heads |0 = 1) 1 0.75
P(6 = 1 | si = Heads) = 2 _ 0.75.

P(Heads |0 = 1)' + P(Heads |0 = 0)1 0.75+ 0.25
(5.3)

Clearly, P(O = 0 s1 = Heads) = 0.25. By the definition of the strategy profile a

it follows that

P,(Xky x1 = y) = 1 for all k > 1 and y E {0, 1}.



Therefore, the expected payoff for the first agent from action lis

Ui(1; Heads) = (1 - 6) [0.75(1 +6+62+ ... ) + 0.25(0 + 0 +...)]= 0.75,

where the first term corresponds to the expected payoff conditioned on 0 = 1 and the

second term to 0 = 0.

Similarly the expected payoff from action 0 is

Ui(0; Heads) = (1 - 6) [0.75(0 + 0 + ... ) + 0.25(1 + 6 + 62 +...)] 0.25.

Therefore, the optimal action is to choose 1 if the private signal is Heads. A symmetric

argument holds for the case of Tails.

The next step is to consider a typical agent n > 1. We prove that conditioned on

the fact that the rest of the agents decide according to o-_ it is optimal for agent n

to follow the strategy o-,.

Indeed, assume that xn_1 = 1. First, consider the case sn = Heads . Observe

that by the definition of the strategy profile,

IPu(xn=1 = 1 = j) = IP(si = Heads 0 =j), jE {0,

and therefore,

Pa (0 1 In)
P, (s = Heads, xn_ 1 0 = 1)1

P, (s, = Heads, Xn_ 1 |10 = 1)j + P, (s= Heads, = 1 0 = 1)j
0.75 -0.75

= 0.9. (5.4)
0.75 - 0.75 + 0.25 -0.25

Arguing as before, the expected payoffs from the two possible actions are equal to

U(1; Heads, 1) = 0.9 and U(0; Heads, 1) = 0.1 respectively. Clearly, it is optimal for

agent n to choose 1.

The last case to consider is xn_1 = 1 but sn = Tails . In that case,

P,(sn = Tails,xn_1= 10 = 1)
P, (s = Tailsjx 1 = 1 0 = 1)) + P,(sn = Tails, Xn 1 = 10 = 1)

0.75 - 0.25
0.75 0.75 -= 0.5. (5.5)

0.25 - 0.75 + 0.75 -0.25

It follows that U(1; Tails, 1) = 0.5 and U(0; Tails, 1) = 0.5 and therefore in this case

agent n is indifferent between the two actions. Therefore, deciding according to o- is
indeed weakly optimal, proving that o- is a Perfect Bayesian Equilibrium.

Pa (0 =1|IIn)



The equilibrium strategy profile that we analyze in this example does not achieve

learning in probability because for all n > 1,

1 1
Po(x = 0) = P,(x= 1 = 1)- + Pc(Xn = 0 0 = 0)-2 2

1 1
= P(si =Heads |0 = 1)- + IP(si= Tails 0 = 0)- = 0.75 < 1

2 2

The above equilibrium illustrates how forward looking agents can fail to achieve

learning in probability, by following myopic strategies. On the other hand, equilibria

need not be unique and therefore there may exist other, more sophisticated equilibria

with strategy profiles that achieve learning, such as the decision rule of Section 4.2.

The calculations (5.3)-(5.5) suggest the following definition.

Definition 6. We refer to the probability

pn A lP(0 = 1 | sn)

as the private belief of agent n.

The following Proposition is a direct application of the Bayes' rule.

Proposition 1. For any n E N and any sn E S the private belief pn of agent n is

given by

Pn(s) = [1 + dFi (8n)]

The assumption of Bounded Likelihood Ratios for the private signal structure

implies bounded support for the private beliefs as the Proposition below implies.

Proposition 2. Assume that the private signal structure is characterized by Bounded

Likelihood Ratios. Then, there exist #3> 0 and # < 1, where

# = inf{r E [0, 1] | P(pn < r) > 0} and # = sup{r E [0,1] | P(pn < r) < 1}

Proof. Clearly #3= 1 and / = 1 satisfy the conditions in the proposition. w

Similar to the private belief we define the social belief and the posterior belief.

Definition 7. Given a strategy profile o-, the social belief ,rn(xk, k E D,) of agent

n given a set of observations {Xk, k C Dn is defined as

7rn(xk, k E Dn) = P,( = 1 | xk, k E Dn). (5.6)



Definition 8. Given a strategy profile -, the posterior belief f,, of agent n given
a set of observations {Xk, k G Dn} and a private signal sn, is defined as

fn(sn, Xk, k E Dn) = P,0(= 1 |s, Xk, k E Dn). (5.7)

The Bayes' rule connects the different types of beliefs with the following relation:

n.(8n, Xk, k E Dn) = -Fn (xk, k EDn)pn (sn)

T(Xk k E D,)pn(sn) + (1 (Xk, k E DD))p(+ - Pn( n))
(5.8)

For illustration purposes, whenever the arguments follow directly from the context,
we will denote the social beliefs by just writing 7n and the posterior beliefs by fn.

5.2 Characterization of Best Responses

In this section we characterize agents' best responses assuming fixed strategies for the
rest and express them in terms of thresholds in the private or posterior belief space.

Specifically, assume that all agents other than n follow the strategy profile or-.
By the definition of agents' utilities, the expected payoff of agent n from taking action
y E {0, 1}, given that her private signal is §n and that she has observed decisions zk
for k E Dn is equal to

U"(y; sn, z, k E Dn) = E,_, (1 - 5) ( k- 4=19 , n= Y

where the expectation is taken over the state of the world 0 and the process of all
subsequent decisions. For compactness, we wrote Ik = {sa, zj, k E Dn}.

The law of total expectation, conditioning on the value of 0, yields

Un(y; n, zk, k c Dn)

=P(6 = 1 | §n, zk, k E Dn)E_ (1 6) (: 6 --n ) k, x = y, 0 =i

+ P(0 = 0 | k, e k c Dn)E_, (1 - 6) (i 61-n1X 0 ) _ k, Xn y, 0 01,

where expectations are now taken only with respect to the decision process {xl}>n.
Note that the private signal of agent n and the action of individual k > n are

independent conditioned on Xn, since private signals are not observable by subsequent



agents. Using the latter property and the linearity of expectations we obtain,

= fn(sni z, k E Dn)(1 - 6)
(=n

+ (1 - fn (9n, zI k E Dn)) (1 - 6)

5nI 0- _(x 1 = 1 | xn = y, zE, k E Dn, 0 = 1)

= 0 | Xn=y, z,;, k C D, O = 0) ).

The probabilities that appear on the right hand side of each of the terms in the above

expression can be computed given the private signal distribution and the strategies

ou1 n. For ease of exposition we write,

(5.9)An k D= = 1, X, k ED
j=n+1

Bq(Xk, k E Dn) 6 oj-(n+l)P,(Xy
j=n+1

+oo
Cn(Xk, k E Dn) E 6j-(n+)P,(Xj

j=n+1

+oo
F0"z1 k E 6 j-(n+l P,(Xj

j=n+1

Using Eqs. (5.9)-(5.12) we can

0 X = 1, Xk, k D, 0 = 0),

1 X, = 0, Xk, k Dn, 0 = 1),

0 X, = 0, z, k EDn, = 0).

(5.10)

(5.11)

(5.12)

calculate the expected payoffs from each action, for a

specific private signal sn and observations zC, k E D, as follows:

= (1- 6)fn(, ik, k E Dn)A"(zk, k E Dn)

+ (1- 6)(1 - fn(9n, z4, k c Dn))Bo"(ik, k E Dn),

and

U(0; sgJzk for all k C Dn) = (1- 6)fn(gn, 1k, k E Dn)Cn,"(, k E Dn)

± (1-6)(1 - fn(, zk, k E Dn))Fnj(zkk E Dn).

Clearly, expected payoffs from each action are affine with respect to the posterior

belief. The best response o-*(in) of agent n given her information set In = {sn, Xk, k E

U(1; s, zk for all k E Dn)

U" (y; so, z ek k E Dn)

co

E 61-nlp,_" (X1
1=n



Dn}, i.e. the action that maximizes her expected payoff, is the outcome of the com-

parison of the corresponding expected payoffs. Specifically,

o-(I n) = argmax {Un(y; Ck, k C D, n)}.
yG{0,1}

Let L (zk, k E Dn) the indifference point, i.e., the value of fn(sr, zk, k E Dn) for

which the expected payoff from each action is the same. A simple calculation yields,

L (zk, k C Dn) (5.13)

1+6(Fn0(k, k E Dn) - B (z4 k G Dn))
2+6(A07kzk,k E Dn)+ F(6 ,k,k E Dn)- B9(zk,k E Di ) -C(zkk C Do))

An agent's best response is the outcome of the comparison of two affine functions

that meet at L'jzk, k C Dn). Therefore her best response can be described as in the

following lemma.

Lemma 9. Given the strategies 9-_n of all agents other than n a best response o-*(In)

of individual n, given in is, modulo an arbitrary tie braking rule, of the form

Or*(In) = 1
fnQsn,k,kEDn) Lc(Xk,kcDn) Or 0 '*(In) = 

1
fn(§n,ik,kCDn)<Lg(xk,kcDn)

The above characterizes the best response of agent n in terms of a threshold in

the space of posterior beliefs. We translate a best response in the space of private

beliefs by defining for each possible set of observations {Xk}kEDn,

An (k, k C Dn) (5.14)

SL(zk, k E Dn)(1 - rn(zk, k c Dn))
Ln (ik, k e Dn) - 2Ln(zk, k E Dn)7n(zk, k E Dn) + 7rn(k, k E Dn)'

Using (5.8) we immediately get the equivalent characterization of the best response

of agent n given her observations set In:

o*(In) = 1
pn(sn) pn(zk,kEDn) or -*(In) = 1

Pn(§n)<pAQGk,kCDn)-

The discussion of this section can be summarized in the following lemma.

Lemma 10. Let o {-n}nCN be a Perfect Bayesian Equilibrium of the altruistic

learning game. Then o-, modulo an arbitrary tie breaking rule, is of the form

o-(In) = 1Pr(Sf) I(xk,ke Dn) or 0^(In) = 1 Pn(sn)<0(Xk,kEDn)



or equivalently,

o-(I) = 1fn(sn,xk,kEDl)>L-(xk,keDn) or o(In) = 
1 f,(sn,xk,kEDn)<L0(xk,kcDn)

where 1 denotes the indicator function and L (xk, k E Dn), yt(xn, k c Dn) are as

defined in (5.13) and (5.14).

5.3 No learning in probability for forward looking

agents

In this section we show the main result of this chapter; there is no Perfect Bayesian

Equilibrium of the altruistic learning game that achieves learning in probability.

Throughout the rest of the chapter we assume that the private signal structure

is characterized by Bounded Likelihood Ratios. Moreover we consider some fixed

Perfect Bayesian Equilibrium o- and we drop the corresponding indices associated

with a.

Assume that the Perfect Bayesian Equilibrium o- achieves learning in probability.

Then, under state of the world 0 = 1, since all agents will eventually be choosing 1

with high probability, blocks of size K with all agents choosing 1 will also occur with

high probability. Simultaneously, this implies that the posterior probability of the

state of the world being 0 after observing Xk = 1 for all k E D, is negligible. Therefore,
the social belief inferred from observing Xk = 1 for all k E D, will eventually be

arbitrarily close to one. Our first lemma formalizes this argument. For brevity, we

define

~rn A (Xk = 1, k E Dn).

Lemma 11. Assume that learning in probability occurs for equilibrium o-. Then

(i) lim co P(xk = 1, k E Dn |0 = 1) = 1, and

(ii) linnoo 7~rn = 1.-

Proof. (i) Fix some c > 0. We have assumed that learning in probability occurs.

Since
1 1

P(x = 0) =-P(x = 1 = 1) + -IP(x = 0 0 - 0),2 2

we obtain

lim P(x = 110 = 1) = 1, (5.15)
n-+oo



lim P(x, = 0 |0 = 0) = 1. (5.16)

Hence, there exists some K E N such that for all n > k, the following hold

simultaneously:

IP(zk = I10 = 1) > -K, (5.17)

P(xk= 1 10 = 0) <6. (5.18)

Using the union bound and Equation (5.17) we obtain, for all n > K + K,

n-1

P(Xk = 1,k E D 1| = 1) > 1 - P(k = 0 0 = 1) (5.19)
k=n-K

n-1

1 (1 - P(Xk = 1 = 1)) > 1-e.
k=n-K

(ii) Continuing from above, using Equation (5.18) we have

IP(Xk = 1, k E Dn 10 = 0) < P(Xn-1 = 1 |=0) < 6. (5.20)

Direct application of Bayes rule yields:

SP(z = 1, k c Dn | 0 0)
Lr =1+IP C=,.~ =) (5.21)

P(zk = 1,lk E Dn |0 1)_

It is immediate from the above equation that -~n is increasing with respect to

P(Xk = 1, k E Dn 10 = 1) and decreasing with respect to P(Xk = 1, k E Dn

0 = 0). Therefore, for all n > K + K

-1

which completes the proof.

The next lemma follows directly from the Bounded Likelihood Ratio assumption.

Since agents' decisions are coupled between the states of the world, if a specific

outcome of decisions for a finite subset of agents has positive probability under one

state of the world, the same should hold under the other.



Lemma 12. Assume that learning in probability occurs for equilibrium o-. Then there

exists some N E N such that for all n > N

P(Xk = 1, k - DO 0 = 0) > 0 (5.22)

Proof. From part (i) of Lemma 11 we know that there exists some N C N such that

for all n > N,
1

IP(Xz =1 for all k c D, |0 = 1) >-. (5.23)
2

We claim that for all n > N, we have P(Xk 1 for all k E D, |0 = 0) > 0. For the

purpose of contradiction assume the contrary and let

n = min{n > N: P(Xk = 1, k E D, | = 0) = 0}.

Then, P(Xk = 1 for all k c Da_1 |0 = 0) > 0 and

Po(X =1 X =1, k E D 1 0 = 0) =0,

which, using Lemma 1, implies that

1
0 < P(xih 1 | IX =1, k E DO = 1) -IP(Xz = 1 Xk 1, k E Da, = 0) 0,m

and thus

IP(Xk 1, k E Dn+1 0 1) =0,

which is a contradiction by (5.23).

D

Since Lemma 11 shows that the social belief converges to one for agents who

observe ones from their K predecessors, and since the private signal of an agent cannot

be strong enough to overcome the change of bias caused by strong social beliefs, the

posterior belief must converge to one as well, as stated in the next Lemma. For

brevity, define

f, A fn(s, Xk = 1, for all k c D,).

Lemma 13. Assume that learning in probability occurs for the equilibrium o-. Then,

limf =1
n-+o

Proof. Observe from Equation (5.8) that fi is increasing with respect to fra, as -rT



ranges in [0, 1]. From Proposition 2, sn > /, with probability one. Therefore,

~ A
fn = fn(6, Xk = 1,lk E D,) =

Lemma 11 guarantees that under the assumption of learning in probability,

lim -Rn = 1.
n- oo

Therefore, taking limits on both sides of the above, we get

1> lim fn > liminffn> 1,
n-+oo n-4oo

which completes the proof.

If learning in probability occurs for the equilibrium o, under the state of the

world 0 1 agents' decisions are 1 with high probability. If there were agents who

deviate with sufficiently positive probability from choosing 1 when observing all their

predecessors' decisions to be 1, this would immediate contradict learning. The next

lemma formalizes this argument.

Lemma 14. Assume that learning in probability occurs for the equilibrium o-. Then,

(5.24)lim P(Xn = 1 | xk =I1, k E D, 0 = 1) = 1.I
n-+oo

Proof. Assume for the purpose of deriving a contradiction that there exists an e > 0

and a subsequence {ri} 1 of agents for which for all i E N

(5.25)

Part (i) of Lemma 11 suggests that

lim P(Xk = 1, k E Dn 1 ) 1
n-+oo

Therefore, there exists some N c N such that, for all n > N

6
P(X = 1,1k E D |10 = 1) > 1 - -,4

(5.26)

Let H A {0, 1}^ \ {e}, where e denotes the K-dimensional vector of ones. In words,
H consists of all K-dimensional vectors for which at least one element is not one.

7rno-n + (1 - 7rn)(1 - 0-n)

#---

IP(Xri = 1 | Xk = 1, k E Drs, 1 = 1) < 1 - E.



P(xa "1=1) = P(DEH |O=1)
hEH

= 1 - P(xk = 1 for all k D, =1) <
4

for all n > N.

Define the subsequence

wi choosing one is equal to

wi} ={r : ri > N, i E N}. The probability of agent

= IP(XD =e

+ > 3P(xD~ h
hcH

1)(X~ = 1Dw = e, h O1)

0w =1PXi=II D,, =h0

We can bound the first component of the first term by one and the second by 1 - C

using Equation (5.25). Similarly, for the second term,

>IP(XDr, = h 10 =1)IP(xw, 1 XD,, = h,0= 1) <Y >P(XD,,
heH hE H

where we bound P(x,= 1 XD , 0 = 1) by one for the first

use (5.27) for the second. Therefore, we obtain

E 3
P(Xw = 10 = 1) < 1 + - = 1 - -6,4 4

which contradicts (5.26), completing the proof.

inequality and we

The sequence of lemmas that follow, are the core of our proof and essentially

prove a stronger version of Lemma 14, establishing that the thresholds with which

agents compare their private beliefs converge to zero. This fact, combined with the

boundedness of the support of the private beliefs established in Proposition 2, proves

that there exists some finite time after which agents start choosing one irrespective

of their private signal, when observing ones from their predecessors, for any state of

the world. This is acceptable and expected when 0 = 1 but not, as we will shortly

prove, if 0 = 0.

For brevity, let

An = An(xk =1,ke D.) and Bf= Bn(xk =1,k C Dn),

Then,

(5.27)

P(z., = I1 |0 = 1)



where An(xk = 1, k E D,) is defined in (5.9).

Lemma 15. Assume that learning in probability occurs for equilibrium o. Then,

(i) limns) An = 1/(1 - 6) and

(ii) limn_-o Bn = 0.

Proof. (i) From the definition of A, we have

00

An = 6 k-(n+1)'P(xk
k=n+ 1

I zy= 1,j e Dni = 1) ok-(n+1) -

k=n+1

Therefore
1

lirn sup An . (5.28)

Getting a lower bound for lim infnsc An is more involved. From the definition

of An obtain

An = 6k-(n+l)P(xk 1 | I X= 1,j
k=1

- 1 +6 ok-(n+2)IP(xk =1
k=n+2

C Dnixn = 1, 0 = 1) (5.29)

|X =1,j E D Xn = Xn+ 1,0 1))

where the inequality follows from the fact that when expanding An we only

consider the case whereXn+1 = 1.

Now, we can use the following Markovian property of the decision process: an

agent's decision is independent of the past decisions, conditioned on the observed

actions of agents in Dn. More precisely,

P(Xn+1 = 1 | Xi = 1, jEDn, Xn = 1, 0 = 1) = P(Xn+1 = 1 | Xi = 1, 7 Dn+1, 0 = 1),

and

P(xk = 1 xi = 1,j E Dn,xl= 1, Xn+1 = 1,0= 1) =P(xk = 1 X = 1,jE Dk,0= 1),

for all k >n+ 2.

1

> P(Xn+1 =1|Ixj= 1, jECDsn =1,60=1I)



Rewriting (5.29) by using the equalities above, we obtain

+ 6 6k-(n+2) P(Xk = 1 I Xj = 1, jE Dn+2, 0 = 1)
k=n+2

- 1

We recognize the second term in the parenthesis as An+1, so that

An ;> P(Xn+1 =I | X ,j E D,+1, O= 1)(1 + An+1). (5.30)

Lemma 14 implies that for any c > 0 there exists some N such that for all n > N

P(Xn+ n d | X = 1, fDo, X = 1, 0 = 1) > 1-

and thus, for those agents

Therefore,

lim infAn ;> (1
n->oo

- e)(1 + 6 lim inf A.)
n--oo

and consequently,

lim inf A, >
n-oo - 1-(1-)'

for all c > 0,

which in turn implies that

lim inf An >
n->- -

The above, together with (5.28) proves the desired result.

(ii) Arguing similar to part (i), we get

B P(xn+1  1 Xk = 1, k E Dn, Xn = 1, 0 = 0)(0 + 6Bn+1 )
1

+ IP(xn+1 =0 |Xk 1, k E Ds o 1,0 0= 0)

An > P(Xn+1 = 1 | Xi = 1, j' E Dn+1, 1 = 1)

An ;> (1 - c)(1 + 6An+1)-



where the inequality follows from the obvious bound

1+ S E 6j-(n+')IP(X= 1 IXk = 1,k c DmXn x= 1, n+1 = 0) < 1
j=n+1

Lemma 14 implies that for any e > 0 there exists some N such that for all

n > N,
1

IP(xn+1 = 0 | Xk = 1, k E Dn+1,6 = 1) < C.

By the Bounded Likelihood Ratio assumption we get that for all n > N,

P(Xn+1 = 0 1 Xk = 1, k c Dn+1, 0 = 0) < 6

and thus,

5, < 65n+1 -+
fro~ 1  1 w

from which we conclude that

lim sup Bn
n--o0 (1 -6)2

Letting E -* 0 yields the desired result.

The above is an important step for the proof of our main theorem. It states that
the thresholds Ln(xk = 1, k E D,), to which agents compare their posterior belief (cf.
Equation 5.13), do not converge to one as shown in the following lemma. For brevity
we use the following notation :

SALn(, x = 1,(k, Dn).

Lemma 16. Assume that learning in probability occurs for the equilibrium o-. Then,

limsupLn < 1.
n-+oo

Proof. For convenience let An = A,(rk = 1, k E Dn) , Bi = Bn(Xk = 1, k E Dn) ,

Cn = Cn (Xk = 1, k E Dn) , Fn = F,(Xk = 1, k E Dn). Moreover, for compactness

define,

a,= 1 + 3(F - Bn)



and

bn= 1 -+ 6(A, - Cn).

From part (i) of Lemma 15 we get that

lim inf bn > 1, (5.31)
n-+oo

while from part (ii) of the same Lemma we conclude that

lim inf an > 1. (5.32)
n-*OO0

By the definition (5.13) of the thresholds in the posterior belief space,

~an
L = b.

From (5.31) and (5.32) we conclude that there exists a N E N such that for all

n > N a, > 1/2 and bn > 1/2. Then, for all n > N, Ln is increasing with respect to

bn and therefore,

Ln i -.
an + 2

A trivial upper bound for an can be obtained by observing that

1 1
an = 1+ o(F -B5) 1+6 +±0= ,

1-6 1-6'

from which we conclude that for all n > N,

1

n - i i 1
1 -6 + 2

implying,
1

lim sup fLn < < 1,
n- oo T+1-3+

which concludes the proof.

The next Lemma establishes that for learning in probability to occur only one

of the two possible strategies of Lemma 9 should eventually "survive", because the

contrary would contradict learning.

Lemma 17. Assume that learning in probability occurs for the equilibrium o-. Then



there exists some N such that for all n > N, agents, when they observe Xk = 1 for
all k e Dn, decide according to

Xn =0xn-o
fn Ln(xk = 1, k E Dn) or equivalently Pn p /tn(Xk= 1, k E Dn).

Xn=1 xn=1

Proof. Assume to arrive at a contradiction that there exists a sequence {ri}iEN that
decides according to

Xrj

f, '5 L,
xqi=0

that is, they choose zero for large posterior beliefs.

From Lemma 16, there exists some L < 1 and some N E N such that for all
n > N, Lr < L.

From Corollary 13 limioo fri = 1 and therefore there exists a N C N such that
for all i > N, fr > (1 + L)/2. In that case, for all i > max{N, N},

IP(Xri = 0 | Xk = 1, k E Dri, 0 = 1) = 1,

contradicting Lemma 14 and concluding the proof. D

The last step is to prove that the threshold with which agents compare their private
belief converges to zero. What we need, in order to prove that for an equilibrium which
achieves learning in probability, agents eventually copy blocks of ones (under either
state of the world), is to bound lim supn_,c p(Xk = 1, k E Dn) by a number below 3,
the lower end of the support of the private beliefs, but this lemma proves something
stronger.

Lemma 18. Assume that, for the equilibrium a-, learning in probability occurs. Then,

lim P(6, Xk = 1 for all k c D,) = 0.
n--oc

Proof. Assume, to arrive at a contradiction, that there exists a sequence {ri}iEN such
that

lim p(Xk = 1, k C Dr) =, C # 0.i +oo

Rearranging (5.14), yields

p(Xk 1, k ED,)Lr 1 - ~r - p(xk = 1, k E Dr) + 2(Xk = 1, k C Dri)~ri



Using Lemma 11 and taking the limit as i -+ oo, we get

limsupL,- - 1 (5.33)
i-+oo

which contradicts Lemma 16, completing the proof. E

At this point we have established that under either state of the world, at some

finite time, the threshold with which agents compare their private belief given that

they observe 1 from their predecessors, falls below the lower end of the support of

their private belief. Therefore, irrespective of their private signal, after that point in

time agents will choose one with high probability. On the other hand, with positive

probability, under state 0 = 0, K agents may choose 1. In that case, all subsequent

agents will be choosing 1, contradicting the learning in probability assumption. The

next theorem formalizes this argument.

Theorem 4. Assume that the signal structure is characterized by Bounded Likeli-

hood Ratios and that agents are forward looking. Then, for any 6 C [0,1) there does

not exist a Perfect Bayesian Equilibrium of the altruistic learning game under which

learning in probability is achieved. In other words, if o- is a Perfect Bayesian Equi-

librium of the altruistic learning game, then

lim P,(Xn = 0) < 1.
n-+oo

Proof. Assume that learning in probability did occur under the perfect Bayesian

Equilibrium o-. We prove the result by contradiction.

By Lemma 18, there exists a Ni E N such that for all n > N 1,

1
p(Xk =1, k c D) < .2-

where # > 0 is the left end of the support of the private beliefs as defined in Propo-

sition 2. Therefore, using Lemma 17, we conclude that for all n > N1

P(xn = 0 | Xk = 1, k c Dn, sn, = j) = 0 for all j C {0, 1}. (5.34)

On the other hand, Lemma 12 guarantees the existence of a N2 E N such that for

all n > N2 ,

P(Xk = 1, k E Dn, 0 = 0) > 0.



Choose some ft > max{ NI, N2} such that

IP(Xk = 1,k E D |0 = 0) > 0.

Then for all n > ft, using (5.34),

?(Xn 1 |10 = 0) ;> P(Xk = 1, k E D |1  = o)P(X = 1 Xk =1, k E Df, 0 = 0)

- P(zXk=1,kEDf|J0=0)>0,

and thus,

liminf P(xo = 1 = 0) ;> P(X = 1, k E Da |0 = 0) > 0,n-*oo

contradicting the learning in probability assumption and concluding the proof of the
Theorem.

5.4 Discussion and Conclusions

The main result of this chapter is the impossibility of learning in probability by
agents who are forward looking, maximizing the discounted sum (over themselves
and subsequent agents) of the probabilities of a correct decision. This is in contrast
to the results of Chapter 4 where we showed that there exists a decision rule that
guarantees learning in probability. One would have hoped that, since agents are
altruistic and as we argued earlier in this chapter could sacrifice myopically optimal
decisions for the welfare of future agents, learning in probability might be possible.

Surprisingly, this is not the case. One could argue that this happens because of
the fact that in individuals' payoffs the payoff from a correct decision is multiplied by
1 while correct decisions for subsequent agents return payoffs 6, 62,... and therefore
myopic behaviour dominates. On the other hand, if we change our model slightly
starting the summation in agents' payoffs from agent n + I for some 1 > 0 the same
proof and therefore the same results would go through. (But, if individuals' payoffs
are given by the limit itself of the probability of correct decisions, then the decision
rule designed in Chapter 4 is an equilibrium.)

Note that in he course of our proof we did not at any point characterize equilibrium
strategy profiles for the altruistic learning game. We just stated necessary conditions
for a strategy profile to be a Perfect Bayesian Equilibrium and built on them to prove
our result. As we discuss in the next chapter, an explicit characterization of equilibria



is very involved and for this reason it is harder to establish positive results.

Concluding, it is an open and especially interesting problem to provide a natural

payoff structure that would allow equilibria that achieve learning in probability. On

the other hand, decision rules such as the one in Chapter 4 involve peculiar actions

(for example, always choosing one when the observed actions are 01 for any private

signal) that are unlikely to be supported as best responses of strategic agents.
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Chapter 6

Forward looking agents:

Unbounded Likelihood Ratios

In this chapter we focus on forward looking agents and study the learning properties

of the equilibria of the altruistic game under the Unbounded Likelihood Ratios as-

sumption. The first section explores some useful properties of monotone equilibria,

that will be used in the analysis that follows. The second section presents an equi-

librium for the case of symmetric private signal distributions that achieves learning

in probability. Next, we construct from this equilibrium an equilibrium that does

not achieve learning in probability. A key property of the non-learning equilibrium

is its non monotonicity; i.e., there exist agents who decide zero when their posterior

belief is large, which draws our attention to monotone equilibria. Finally, we prove

the existence of monotone equilibria for the altruistic learning game and we state a

conjecture about necessary and sufficient conditions under which equilibria achieve

learning in probability.

6.1 Characterization and properties of monotone

equilibria.

Throughout this chapter we consider forward looking agents, introduced in Section

2.3. We concentrate on the case K = 1, i.e. on agents who just observe the decision of

their immediate predecessor. We start this section by defining monotone equilibria.

Definition 9. We say that a Perfect Bayesian Equilibrium a- is monotone if there

exist sequences {/I}nN, {/in nGN of real numbers such that the strategy of each player



can be described as

1, if pn(sn) > fin

on(sn, i _1) = _i, if pn > Pn(Sn) ;> p

0, if pn(sn) < _p

Equivalently, for a specific monotone Perfect Bayesian Equilibrium o- one could specify
a sequence of thresholds {ln}nEN such that agents' strategies are given by

o-n (sn, zn_1) = 1, if fn(sn, X_ 1) ;> In,

0, otherwise.

Once a sequence of thresholds {l}ncN is specified, a sequence of {p}nEN, {pn}nCN

thresholds is also defined through,

pn = min In{(1 7f(xn =)) + , (6.1)
jEfO,1} Trn(Xn_1 = j) - 21nirn(Xn_1=jI +i

and
nn = max {n(1 (rn(zf_1 = j)) + (6.2)

M0a,1} 7rn(X_1 = j) - 2ln7rn(X-I = j) + In J
Therefore, whenever we refer to agents' strategies through the thresholds {ln}nEN we
essentially refer to the corresponding sequences of thresholds {_}fnEN, {fpn}nEN-

In order to study the properties of monotone equilibria we make use of a fact
about the private belief distribution that we present in the following Lemma from [1].
We denote the conditional distribution of private beliefs, given the underlying state
by Gj for each j E {0, 1}, i.e.,

Gjr)=IP(p < r =j).

Lemma 19. Assume that the private signal structure is characterized by Unbounded
Likelihood Ratios. Then, the following relation holds:

Go(r) > G1 (r), for all r E R.

This lemma establishes an intuitively obvious fact, that it is more likely to get
smaller private beliefs under state of the world 0 = 0 than under state of the world
0 = 1. Using the above, we establish a series of properties for monotone equilibria.



Lemma 20. Consider a monotone equilibrium o-, described by the sequence of thresh-

olds {ln}neN. Then, for all n E N, i,j C {0, 1}, and k > n, we have:

(i) Pa(Xn =j 10 = j) > P,(xn j 10 = 1 - j)

(ii) zP (xk = i i,0 =j) > P,(x = i Xn1 1 - i, =j)

(iii) P, (kze =i|Xn = i, 0 = j > P, (Xk = i I Xn =1-i, 0 )

Proof.

(i) We prove the result by induction. Indeed, for n 1

P,(X1 = 1 1) = G1(p > 1i) > dGO(p > 1i) P'(x1 = 1| = 0), E0, 1}

and

P,(x1 = 0 |0 0) = (Go(pn < 1i) < G1I(pn > 1l) = ,(X1 = 0 |10 = 1), j to{, 1}.

Assume that

P,(Xn_1 = 6=j > P?,(Xn_1 = 0 )

for all j C {0, 1}. We prove the result for agent n.

The social belief induced from the observed decision x,_1 xn1 is

1
Po(0 1 I)n-1 = nP(- I =0)

U P(X-1=hcn-110=1)

Using the induction hypothesis we can conclude that

P(x, 1 = 1 0 = 0)

P(xn =1 = 1)

IP(xn_1 = 0 0 = 0)

IP(Xn_1 = 0 | = 1)'

and therefore

P,(6 = 1 xI X1 = 1) > lP,(6 = 1 | Xn_1 = 0),

establishing that the social belief induced by decisions of 1 is higher, namely

r (Xn_1 = 1) > gr(xn-1 = 0). Therefore,

pn(Xn_1 = 1) =
ln(1 - irn(Xn_1 = 1)) < btn(Xn-1 = 0)

-rn(Xn_1 = 1) - 2lrn(xn_1 = 1) + i=



and thus,

1 -IP(pn < pn(xn_ 1 = 1) 10 j) > 1 - P (pn < pn(xn 1 = 0) 0 =),

which in turn implies

(6.3)

A symmetric argument yields

P,(zX - 0 | X 1 =, 0 0 = j) > Por(x = 0 1 = 1, 0 = j). (6.4)

Assume that agent n observes the action An-i from her immediate predecessor.
Then, she computes her social belief frk = wrn(iA_1) and decides according to

xn-o
Pn In (1 - fra)

xn=1 n -- 21inr ± in

Therefore,

P(Xn = 1 _1 =n1, 0 1) =1 - P,

On the other hand,

Pn < - 1n(1 -r)
7rn - 21n rn + 1n

( ln(1 - fra)1-P, p< < (I - 2lni
(P fn - 21nITn + 1n

0 = 1 > 1-Pa < i1n (1 - frn)

7P Tu - 21nftn + 1n

from Lemma 19 and thus,

]P,(Xn = n|z-1 2-1,-l 0 = 1) > IP,(Xn = 1 | n_1 = in_1, 6 = 0)

Hence,

P,(Xn = 1 10 1)

= P(X=1 | XnI 1, 0 1)P,(Xn_= 1 0 1)

+ P,(Xn=1|zn_1=0,6=1)P,(zn_1=0|0=1)

(6.5)

= (P,(xn = 1 X _1 = 1,0 = 1) - IP,(x, = 1 | Xn 1 = 0,06 = 1))P,(xn_1 = 1 0 = 1)

+ P,(x= 1 Xn 1 0,= 1).

0 = 1

0= 0 ,

P,(X, = 11 | n-1 = 1, 0 = J) > P,(Xn = 1 | Xn_1 = 0, 0 = j ).



Equation (6.3) guarantees that P,(x, = 1 Ix,1 = 1,0 = 1) - Po,(x = 1|

xn_1 =0,0 = 1) > 0 from which, using the induction hypothesis we obtain

P,(xn = 11|0 = 1)

= lat se I t on1 s P,(Xn = | Xn_1 =u 0th = 1))P(Xn1 = 1 | = 0)

+ P,(Xn = 1|Xn_1 =0,76 1)

= Pu(Xn = 1|xn_1 =1, 0 = )P,(Xn_1 =1 |0 0)

+ P,(Xn = 1|Xn_1 = 0 I )P,(Xn_1 = 0 6=0).

The last step is to use (6.5) and conclude that

P, (Xn = I10 = 1)

= Pa(Xn 1|Xn- 1=1, =1)P,(Xn_1

+ Po-(Xn = l n-1 = 0, 6 )lP,(Xn_1

1 0= 0)

0 0 =0)

> IP,(Xn = I10 = 0).

The other case (j = 0) follows similarly.

(ii) This has already been proven in (i).

(iii) We use induction to prove the result. For brevity we write I to denote condi-

tioning on the event 0 = j. The first step of the induction, namely for k = n + 1

is part (ii). Assume that the result holds for k, i.e.,

P,0(xk = z | X, = 2) > P(xk =i|xn =1-i

where i, j C {0, 1}. We prove it for k + 1. Indeed,

PI(xk+1 = i = i)

= IP(xk±1 = i Xk = i)Wok - i Xn = i)

+ PI(Xk+1 - i | Xk = 1 -- )IP3(Xk = 1 i x = i)

from which, using P07(xk = i I x = i) +Pj(xk = 1 -i X = i) = 1, we conclude
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that

POXk+1 n X
+P))xk =- | xi =i).

±P ,.(Xk= 1 I Xk (). X

From the previous part, we get that P,(xk+l = i Xk= i) - P4(Xk+1 = Xk | =

1 - i) > 0 and thus, by the induction hypothesis,

IP(Xk+l - 1 i) =

+IP(Xk= - Xk)

= PI(Xk+1 = 1 - i)-

Part (i) of the above lemma establishes a monotonicity property, namely, that it
is more likely to make the correct decision than the wrong one when all agents decide
according to a monotone strategy profile. Part (ii) is a weak positive correlation prop-
erty establishing that it is more likely for the subsequent agent choose the observed
action than to switch it. Finally, part (iii) establishes a stronger positive correlation
property showing that it is more likely for any agent in the future to chose the same
decision as agent n than to switch it.

6.2 Myopic behaviour as equilibrium for symmet-

ric distributions

In this section we prove that when private signal distributions are symmetric, the
myopic strategy profile that was described in Section 2.3 is a Perfect Bayesian Equi-
librium for the altruistic learning game. First, we define symmetric distributions.

Intuitively, the private signal distributions are symmetric when the probability of in-

ferring a private belief above a specific threshold under state of the world one is the

same as inferring a private belief below the symmetric threshold under state of the
world zero.



Definition 10. We say that the private signal structure is symmetric if for all r e
(0,1),

Go(1 - r) + G1(r) 1.

Another important definition is that of the myopic strategy profile. It is essentially

each agent's best response assuming that she is just maximizing her own probability

of a correct decision.

Definition 11. We say that agents are myopic when their strategies can be described

by

U (sX 1) 1, if f. (s., X._1) > 2,
0, otherwise.

It is clear that the myopic strategy profile is monotone and therefore the properties

in Lemma 20 are applicable. Simultaneously, under the assumption of symmetric

private signal distributions, we can deduce some properties of the myopic strategy

profile which would not otherwise hold. These are summarized in the following lemma.

Lemma 21. Assume that private signal distributions are symmetric and that agents

are myopic. Then for all k > n-+1, i, j (E 0, 1}, and k > n, we have:

(i P(xn = j 10 - 1) = P(xn = 1 -* j1|0 0),

(ii) Pj (xn+ 1 = j nz = i) =7I3o=1 -j (X, Xn=1 )

(ii*i) Pj (zk - j =0, -i)- Pl-j(Xk = X n -- 1- )

Proof. (i) We use induction to prove the first part. For the first agent,

1
P(zi = 1 0 = 1) = P(pi ;> - |10 = 1) = 1-(G1(1/2) = (Go(1/2) = IP(x1 = 0 |0 0),

2

where the third equality follows from the symmetry assumption and

1
P(zi = 0 | = 1) = P(p1 < - |1 = 1) = G1(1/2) = 1-(Go(1/2) = IP(x1 = 1 0 0).

2

Assume that the result holds for n; we prove that it also does for n+ 1. Indeed,
The social belief induced by the action Wn = 1 is calculated as follows

1)Px (= 1 | 0 = 1)
P(X = 1 = 0) + P(x, = 1 0 = 1)

IP(x = 0 0 = 0)
P(X =0 0 = 1) + P(X =0 0 = 0)'



where we used the induction hypothesis to obtain the second equality.

Observe that the second term is essentially the posterior probability of the state

of the world being zero given x, = 0,

P(Xn = 0 0 = 0)
P(Xz = 0 10 = 1) + P(Xn = 0 10 = 0)

= P(6 = 0 | zn = 0) = 1 - -rn+1(X, = 0)

Concluding, 7rn+ 1 (x = 1) 1 - 7n+1(z= 0). Then, by (6.1)

pn+1(xw w(e)) o-npn+1(ud t)

from which we conclude that

1P1(n+1 = 1 Xn = i) = 1 - 1i)) = Go(1 - pn+ = i))

= Go(pn+I(Xn= 1-i)) =IP0 (Xn+1 = 0 1= 1-i),

and similarly,

= G1(pn+ 1(X = i)) = 1G(-p 1 = i)) -i)

= 1 - (GO(pn+1(Xn =1-i)=PO(Xn+1 = 1 | n = 1I )

Clearly,

P(n+1j 01)

= P1(Xn+1 = X|z = 1)Pl(zn = 1) + Pl(Xn+1 = X n = 1)p (Xn =1

and by using the above, we get

P 1(xn+1 =j IXn = 1)FP (Xn = 1) + P 1 (xn+1 =j Xn = 1)P1(x = 1)
= PD (Xn+ 1 =1 - j I Xn = 0)P0 (x = 0) + P(Xn+1 = 1 - j I zn = 0)

= P(on+1 = 1 -j 10 = 0)

completing the proof.

(ii) This has already been proven in (i).

(iii) We use induction to prove this part. For k = n + 1, the result holds from part
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IP'(Xn+1 = 0 | X, = i)

= 0)P (Xn



(ii). Assume that it holds for some k. Then,

= I (k+1 - j | Xk = )P(Xk = J | Xn = i)

+P1 (xk+l 1-j | k j)P1- 3(Xk = j n- -i)

S P (+ 1 j | X ) = 1 (xk - ( 1i

IP 1 (Xkl=1-jXflzl

Combining the properties of monotone equilibria established in Section 6.1 and

the properties that we derived for symmetric private signal distributions, we prove

the main result of this subsection, i.e., that the myopic strategy profile is a Perfect

Bayesian Equilibrium for the forward looking game.

Lemma 22. Let o' be the myopic strategy profile. Then, for all 6 E (0,1), a m is a

Perfect Bayesian equilibrium of the altruistic learning game.

Proof. Assume that the updated posterior belief of agent n given her private infor-

mation is fn(In). Note that because none of the subsequent agents observe the action

of n - 1, the private information of agent n will appear in her expected payoff only

through the updated posterior belief. The expected payoff from choosing action 1 is

equal to

U(1; In) =fn(In) 1 + k~"Pmr (Xk - 1 n
k=n+1

00

+ (1 - fn (In)) 0k-Pim (Xk = 0 1n = 1)
k=n+1

while the expected payoff from choosing action 0 is equal to

oo

Z ok-Pm (Xk = 1 = 0)
k=n+1

+ (1 - fn(In)) ( 1+ k-n k-P m(Xk = 0 | X= 0))

1))

IP (xk+1 = i | Xn = i)

U(0; In) =fn(-In)



Using part (iii) of Lemma 21 we can rewrite the above as

00(1; In) = fn (1n) 1~ +ak-"~ (zk = |z =1

+ (1 - fn(In)) Sok--"Pi (X 1 Xn= 0),
k=n

and

00

U(0; In) =fn(In) E Pk X( = 0)
k=n

(1 - fn (In)) 1 + k-"P (zk = X n =1

and therefore

U(1; In) - U(0; In) = (2fn(In) - 1)

- 1+ o: k-" (Pom (X = 1 | n = 1,60 = 1) - IPemn(zXk 11 | n= 0, 0= 1) .

k=n

Since the myopic strategy profile is monotone, we get from Lemma 20 that for all

k > n + 1,

Pam(X- 1 | n = 1, 0 = 1) - Pm(Xk = 1 | 0, 0 1) 0

and thus, U(1; In) > U(0; I,) if and only if fn(In) > 1/2 concluding the proof.

It is well known (Athans and Papastavrou [14] and Acemoglu et al. [1]) that when

agents are myopic and the private signal structure is characterized by Unbounded

Likelihood Ratios, then learning in probability occurs. Therefore, we have constructed

an equilibrium for the altruistic learning game that achieves learning in probability.

If 3 < 1/2 and for any private signal distribution it is straightforward to show that

the myopic strategy profile is the unique Perfect Bayesian Equilibrium of the forward

looking game and therefore all equilibria achieve learning in probability when 6 < 1/2

. One conjecture could be that this is the case for all equilibria of this game and for

all values of the discount factors. We show in the next section that this is not correct,
by constructing an equilibrium which does not achieve learning in probability.



6.3 Construction of a non-learning equilibrium

We established that for the case of symmetric private signal distributions, the myopic

strategy profile, denoted by o', is a Perfect Bayesian Equilibrium that achieves learn-

ing in probability. In this section we construct another strategy profile aC which we

show is a Perfect Bayesian Equilibrium that does not achieve learning in probability.

Fix M C N and define M = {kM}kEN. Consider the following decision rule:

(i) For n V M

-n(sn, xn_1)

(ii) For n E M

= 1, if fn(s, xn_1) > 1
0, otherwise.

0, if fnse, Xn-1) > 1
1, otherwise.

We prove that for large values of M this strategy profile is an equilibrium for the

altruistic learning game (Proposition 3). The main idea is captured in Figure 6-1.

Proposition 3. Consider the strategy profile ac and let 5 G (1/2,
exist values of M for which o-c is a Perfect Bayesian Equilibrium

learning game.

Proof. We prove the result by considering the optimization problem

of agents: the myopic and the counter-myopic.

1). Then, there

of the altruistic

of the two types

(i) Consider a myopic agent n M. Note that for all k V M

Porc(xk = j | xn =i0 = 1) -- P,(xk = j|xn =0, = 1) (6.6)

while if k c M

Prc (xk -- j | x i,0 = l) = Pm(Xk= 1j |x=i,O l ) (6.7)

for all i, j,l E {, 1}.

Using Eqs. (6.6) and (6.7), we can write the expected payoffs from each action,
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Figure 6-1: In our construction, most agents behave myopically, except for those that
are multiples of M. Those behave counter-myopically; they are choosing zero when
they believe that the state of the world is one. If M is large enough, we prove that
this strategy profile is a Perfect Bayesian Equilibrium of the forward looking game
for 3 E (1/2, 1). Indeed, each of the myopic agents, by acting myopically, drives most
future agents (the myopic ones) towards her favored decision and some (the counter-
myopic ones) towards the opposite decision, since according to the monotone strategy
profiles properties agents are more likely to copy than to switch the observed actions.
As long as counter-myopic agents are placed in the tandem sparsely enough, myopic
decisions remain optimal. Similarly, for counter-myopic agents it is optimal to choose
non-monotonically since the subsequent agents expect them to do so. Clearly, such
a construction is possible only when the continuation payoff can be greater than the
immediate payoff, which happens only if 3 > 1/2.



given the information set I, as

Un(1; In)

=fn(In) 1+ S k~P0m (Xk =1 x 1)+ k (Xk0
k>n k>n

k M kEM

(1 - fn(In)) )7 6k-"Pomz 0|z 1) + 6k~,"om(k=
± ~ ~ ~ 0 (1f(~)( klPr(Xk 0 1 n1) + 5 klPr(Xk

k>n k>n
\k VM kcM

1 
= 1))

1 | z = 1))

and

Un(0; In)

fn (In) k>n
k gM

6k~lPim (Xk = 1 I n = 0) + 5k-"Pm (Xz
k>n
kcMC+ Ek

k>n
kgM

= 0 1 z = 0))

= 0))

Observe that, using part (iii) of Lemma 21 we obtain

1+(k = 0 1 n = 0) + - (k = 1 | Xz = 0)
k>n
kgM

=1+

k>n
kVM

k>n

6k-npl~ ~ E M knl

k-"IP m(Xk 1 | = 1) +1 3k-"P m (Xk = 0 1),
k>n

k e M

and

3k-P0rm (Xk = 0 | Xn = 1) + 5 ok~PX( - 1 |n - 1)
k>n k>n

k M kcM

= ok= 1 n = 0) + kP 1 (X = 0 Xn = 0).
k>n
k4M

k>n
keM

It should now be obvious that if In is such that fn(In) = 1/2, Un(1; In) =

Un(0; In).

From the discussion in Section 5.2 we know that expected payoffs from each

"Pm(Xk = 0 | = 0) + 5k- (zk = 1 |
k>n
keM



action are affine with respect to the updated posterior belief. Therefore in order

to prove optimality of or we need to show that if I is such that f,(I) = 1 it is

optimal for agent n to choose 1. To this end we first show that In is such that

fn(In) = 1 then, for all i, j E {0, 1} and k > n,

IP(x=j X =j, =i) - 1.

Indeed, assume that fn(sn, X-1) = 1. Then, it has to be the case that X_1 = 1.

Assume the contrary. Since

1

PF xm- (x -=y=0
S+ P~m(X1Y-O)'

it follows that Pom (x, = 0 |0 = 0) = 0. But, from the properties of monotone

equilibria, P m (Xn_ 1 = 0 10 = 1) < Pm(n_1 = 0 0 = 1) 0 and therefore

Pom (Xn_ 1 = 0) = 0 which is a contradiction.

At this point we make use of the well known monotonicity property of the myopic

decision rule (Acemoglu et al. [1]), namely,

Prn (n+I = j |0 = j) > Pm(x j 0j). (6.8)

Using the above we can show that if fn(s, Xn 1) = 1 then fn+1(sn+1 , X =
1) = 1 while fn+ 1(sn+ 1,Xn = 0) = 0 for all n+1 S. Indeed, if fn(s,Xn_1 =
1) - 1 then Pm (zn 1  1 0 = 0) 0 and using (6.8) we obtain P m (xn = 1 |
0 0) = 0. But then fn+1(sn+1, Xn 1) = 1. Similarly, Pam (Xn 0 0 1) <
POm (Xz-1 = 0 |0 = 1) = POm(xn_1 = 1 = 0) = 0, where we used part (i) of

Lemma 21 to obtain the last equality. The latter yields fn+1 (xn+1  0) = 0..
Therefore, by the definition of the myopic strategy profile, for all i, j E {0, 1}

P(k =j | IX = j, 0=i)=1.

Using a trivial induction argument our claim follows.

Given the above, if the information set In of agent n is such that fn(In) = 1, we

can compute the expected payoffs from each action, as follows

Un(1; In) = 1 + 6k-n 1 + E5 40,
k>n k>n
kgM k EM



Un(0; In) = k-
k>n
kgM

no + Z 6k-1.
k>n

kEM

Z6kn 1 - 2 E ok-".
k>n k>n
kEM kEM

The worst case is when n = 1 -M - 1 for some I E N and in that case.

6
-2 _

1 - 6M'

which yields

lim (Un(1; In) - Un(0
M-*oo

In)) = I - 26 > 0
1-6

and therefore there exists some M such that for all M >

Un(0; In) > 0 concluding the proof for the myopic agents.

(ii) Consider a counter-myopic agent n E M. We follow similar reasoning as for the

previous case. Note that for all k M

Porc(xk = j | xn = i,0 =) - Po-,(xk xn = 0,0 = l)

while if k E M

Prc(xk =j xn=i,0 1) =Pym(Xk - 1 - xn=0,0=i)

for all i, j,l E {0, 1}.

Given the above we get

= fn (In) 1 +

+ (1 - fn(In))

-m( k = 1 Xn = 0) + > o
k>n
kEM

E 6k
k>n
kgM

"m (Xk = 0 | zn

S k m(Xk =0 |z=0) + 1: 6k- m (Xk
k>n k>n
kgM keM

= 0))

1 | z, = 0))

and

Therefore,

Un(1; In) - Un(0; In) = + E ok-"
k>n
kgM

1

Un(1; In)

M,1 Un(1; In)-



and

Un(0;In) fn(In) a 8k-"Pim(Xk = 1 = 1) + - (Xk = 0 | Xn = 1)k>n k>n
k M kEM

+ (1-fn(I_[)) 1 + E 6 k-"Pm (k = 0 u1  1) S ok-lPm(Xk= x, 1)
k>n k>n

k4M kEM

Observe that using part (iii) of Lemma 21 we get

1+ 3 5k-IPoam (Xk = 0 Xn 1) + E kPm (Xk 1 Xn = 1)
k>n k>n
k$M kEM

= 1 ( k-"plmx -1|x 0) + E ok-"Plm~x n=01±a 5 6  I~§(Xkl Xn0)01fl ~ (Xk =0 X, 0)

k>n k>n
kgM kEM

and similarly,

S 6-" m(Xk = 0 | Xn 0) + kPm(x = 1| xn = 0)
k>n k>n
kgM kE M

S 6-Pim(Xk 1 Xn 1) + kPm (Xk = 0 | x 1).
k>n k>n
kVM kcM

It should now be obvious that if In is such that fn(In) = 1/2, Un(1; In) =

Un (0; In).

From the discussion in Section 5.2 we know that expected payoffs from each
action are affine with respect to the updated posterior belief. Therefore in order

to prove optimality of or we need to show that if In is such that fn(I") = 1 it

is optimal for agent n to choose 0.

Arguing similarly to the previous case, the expected payoffs from each action
for the case of an information set I, for which fn(In) = 1 is given by

Un (1; In) = 1 + 6k~0 + E 6k-kl,
k>n k>n

k gM kcM
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and

U"( ; In ) = 6k-"1 + (: ok-"0.

k>n k>n
kgM k6 M

Therefore,

Un(1; In) - Un(; In) = 1 + E -"
k>n

kEM

Thus,

iM (Un (1; In) - Un(M- o0

for 8 > 1/2 and therefore there exists

Un(1; In) - Un(0; In) > 0 concluding the

- 6k-n + 2" .

k>n
kiM

0 In)) = 1 - < 0

some M such that for all M > M,
proof for the counter-myopic agents.

Therefore if M > max{M, M}, the strategy profile c is a Perfect Bayesian Equi-

librium.

After establishing that ac is a Perfect Bayesian Equilibrium, we now prove that

it does not achieve learning in probability. This should be intuitively clear by the

fact that infinitely often there are those counter-myopic agents who are flipping the

correct decision, preventing learning in probability.

Proposition 4. Assume that each agent's strategy is given by ac. Then,

lim P(x, = 6) < 1
n-+oo

Proof. Assume that ac achieves learning in probability. Then, by Lemma 11 and the

learning in probability assumption, there exists an N E N such that for all n > N

the social belief r(xn_1 = 1) > 1 - 7y and P(Xn_1 = 10 = 1) > 0. Moreover, from

our assumptions on the private signal distributions, there exists some y for which

Pi(pn > -Y) > 0 for all j E {0, 1}. In that case, consider a counter-myopic agent

n > N. If she observes Xn_1 = 1 and receives a private signal that induces private

belief greater than -y, then her posterior belief will be

fn(sn, nI1 = 1) =
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and therefore for all counter-myopic agents after N,

(x, = 0 |0 = 1) > PI1(s. > Y)IPc (x _1 = 1) > 0,

contradicting the learning assumption and concluding the proof. D

This construction shows that not all equilibria of the forward looking game achieve

learning in probability. A characteristic property of the non-learning equilibrium is

that there are infinitely many agents who choose non-monotonically, deciding zero

for large updated posterior beliefs. Such a strategy can be a best response as we saw,

exactly because of the incorporation of future agents' probability of a correct decision

in each individual's payoff. In other words, individuals may act non-monotonically

because future agents expect them to. Our conjecture is that monotone Perfect

Bayesian Equilibria achieve learning in probability but we were not able to prove it.

Conjecture 1. Let or be a monotone Perfect Bayesian equilibrium of the forward

looking game. Then o- achieves learning in probability or equivalently

lim P,(xn = 0) = 1.
n-+oo

In the next section we prove the existence of such equilibria.

6.4 Existence of monotone Perfect Bayesian Equi-

libria

We start by presenting a continuity result, namely that if for two different strategy

profiles the thresholds according to which agents decide are arbitrarily close, then so

are the probabilities of making the corresponding decisions. Throughout this section

we are assuming atomless private signal distributions and therefore continuity of Gi (r)
for all j E {0, 1}.

Proposition 5. Assume that G1 (-) and Go(-) are continuous. Let o- and -' be two

different strategy profiles and let {I_}nEN, fAnEncN, {,'nEN, {p nnEN be the corre-

sponding thresholds. If supnEN max{ pu - P , jt - } < e , then there exist 6 nn(e),

6n(e), and 6ni(e), with 6nn(e) - 0, 6n(E) -* 0, and 6,i f(e) -+ 0 as e -+ 0, such that for

all i,j, k E {0, 1}, n, 1 E N:

(i P, (Xn= k | Xn_1 = Z, 0 = ) - Pr (Xn = k | Xn-1 = i, 0 ) < onn (E),
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(i|P, (xn= k |0 = j ) - Pal,(xn k |10 = |< t)

(iii) |P,(xi = k X n1 =0 = Pa(x = k | x,_1 = i,0 =j) < 6nl(E).

Proof.

All results are direct consequences of the continuity of Gj (r) with respect to r for

all j E {0, 1}.

6.4.1 Existence of a monotone Perfect Bayesian Equilibrium

for the finite horizon altruistic learning game

Let M denote the number of agents in a finite horizon forward looking game. The

utility of each gent is now be given by

M

un(xn, 0) = (1 - k) 1_= , for n < M.
k=n

Observe that the properties of monotone equilibria established in Lemma 20 still hold,
despite the modification of the game. We will exploit those properties to establish

the following. If all other agents use monotone strategies then it is optimal for any

other agent to also use monotone strategies, as the following lemma shows.

Lemma 23. Assume that agents {1, .. . ,n - 1, n + 1, .. .} use monotone strategies

described by {tk}kEN\{n}, {btkjkEN\{n}. Let a(f p, ) : [0, 1]> {0, 1} be a best

response of agent n given her posterior belief fn. Then a (fn | p, ) : [0,1] - {0, 1} is

non decreasing in fn.

Proof. Let In be the information set of agent n and let fn A fn(In) denote the

posterior belief inferred from In. The information set appears in the calculation of

the expected payoffs of agent n only through the posterior belief f(In). Therefore,
without loss of generality we write Un(j; fn) to denote U(j; In) for all j c {0, 1}. The
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expected payoff for agent n by choosing action one can be evaluated as follows:

M M

Un(1; fn) = fn 1 + 1: ok-n-Pikz1 Xl= 1) I+ (1f fn) -)IPlx = 1 i =O0)

k=n k=n I(Xxk- lnO)))
M

=fn 1 + kE I -(iXk 1 |xn 1 P11z =X 1 n | - 0))

k=n

From Lemma 20 we get that for all k > n,

IPI(Xk =1 | X, = 1) - IPIXk=1 | Xn = 0) > 0,

establishing that the expected payoff from choosing action 1 is non-decreasing in the

updated posterior belief. Similarly, we get that the expected payoff from choosing 0

is non-increasing in the updated posterior belief, establishing that the best response

is non-decreasing in fn. E

The next Corollary formalizes our intuition that the best response to monotone

strategies is a monotone strategy.

Corollary 3. Assume that agents {,... , n - 1, n + 1 .... .} use monotone strategies.

Then there exist two thresholds A, pin such that a best response of agent n is given by

1, if pn(sn) > IAn,

on(s, Xn1) = n_1, if in > Pn(sn) ;> yi, (6.9)

0, if pn(sn) < A

Proof. Let in be the point of indifference between the expected payoffs from choosing

one and zero respectively. Then from the previous lemma, the best response of agent

n is 1f,,>, which translates to (6.9), using (6.1) and (6.2).

The last step before we proceed to the main result is another continuity result,
which follows directly from Proposition 5. Since transition probabilities are continu-

ous with respect to the thresholds so are agents' expected payoffs from each action.
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Corollary 4. Let -and -' be two different monotone strategy profiles and let {ft_}nE1.

Ann{1,...,M}\{n}, 'nE{1,...,M}\{n},{/ nEnG{1,.,M}\{n} be the corresponding thresh-

olds. Then if sup{ 1 . M}\{fn} max{| I - p'j1, |t - p' } < E , and y ,pn, p' ,pn
are the thresholds associated with the best responses of agent n we have

lim| -I I ' = 0
E-+O -n -ni

and

lim Ipn - pn|1 0.
E-+0

Proof. From Proposition 5 it follows that, for a given updated posterior belief the

expected payoffs from choosing one and zero respectively satisfy ,

lim|U(1; fn) -U (1; fJ) = 0

and

limI U(0; fn) - U'(0; fn) 0.
E-+O

Therefore, if ln, l' denote the indifference points, we get that

lim l-l' = 0

and thus since the corresponding private belief space thresholds y,, P are continuous

functions of In and the posterior beliefs we get the desired result. D

Using this property we are able to prove the existence of a Perfect Bayesian Equi-

librium for the finite horizon forward looking game. In order to do that we define the

correspondence

Rs(p, P) = {(r, 1) E [0, 11 : a(pn, xn - 1 pi) = lPnyr + (1 Ip<i) + Xn_ il<pn<r}.

(6.10)
of the best responses of agent n to monotone strategies of the rest of the agents

characterized by thresholds {p_} nE{ 1,...,M}\{n}, {fPn}n{1,...,M}\{n}. We prove that the

correspondence R = (R 1,..., RM) has a fixed point using Kakutani's fixed point

theorem.

Theorem 5. Let M > 0. There exists a monotone Perfect Bayesian equilibrium for

the M-horizon forward looking game.

Proof. We prove that the correspondence defined in (6.10) has a fixed point using

Kakutani's fixed point theorem. We need to check the following:
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(i) [0, 1]M is a compact, convex subset of IRM

(ii) Since each agent has two possible actions her optimization problem has a solu-
tion. This, together with Corollary 3 establish the non emptiness of R(p, p).

(iii) R(p, -) is convex, since there is a unique best response to other agents' strategies

(comparison of two linear functions).

(iv) R(_p, j) has a closed graph. This follows from Corollary 4.

6.4.2 Existence of a monotone Perfect Bayesian Equilibrium

for the forward looking game

In this last subsection we prove the existence of a monotone Perfect Bayesian Equi-
librium.

Lemma 24. There exists a monotone Perfect Bayesian Equilibrium for the infinite
horizon forward looking game.

Proof. Consider the sequence of M-horizon games for M C N. From the previous
section, for each M there exists a sequence of thresholds { p"}_ 1, {jim'},1 such
that the strategy profile

1, if p, > p',,

o-1 = z _ , if M <_

0, otherwise,

is a Perfect Bayesian equilibrium. Since [0, 1] is a compact subset of R there exists a
subsequence {Mk kCN such that the corresponding sequences {pMk }, {AIk } converge,
and let {p }_14, {pi} _1 be the corresponding limits.

Without loss of generality we prove that if pn > fA and Xn-1 = 0, deciding one
is optimal. The other cases follow similarly. Indeed, let E > 0. Consider an agent
n E N. Choose a K E N such that for all k > K, 6Mk < c. From Proposition 5 there
exists an c' > 0 such that

max 6 k(E) <
k=n,...,MK -

Let K' be such that for all k > K', supmCN max M _ [ M

There exists some K" c N such that for all k > K", pn > pnM
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In that case for all k > K = max{K, K', K"}, using Proposition 5, we get that

U,(1; fn(p, n1 = 0)) >U, ( f.(Pn,Xn_1 = 0)) - (1 -6) +6of<

and

_Mk 
6

U,(1; fn (p, Xn- 1 = 0)) < U, "(0;1 fn (pn, X,-_1 = 0)) + -(1 - 6) + 6Mk .

Therefore,

U1(1; fn(pn, xn_1 = 0)) '> UO(1; fn(pn, Xn_1 0)) - 4e

for all 6 > 0 and, letting c - 0 we get the desired result concluding the proof.

6.5 Discussion and Conclusions

This chapter studies some equilibria that arise from the altruistic learning game.

Specifically, for symmetric distributions, we construct an equilibrium that achieves

learning in probability, when the private signal structure is characterized by Un-
bounded Likelihood Ratios. On the other hand, we can also construct a Perfect

Bayesian Equilibrium that does not and therefore we cannot expect all equilibria of

the game to achieve learning in probability. Therefore, different equilibria of the game

may have different learning properties. We conjecture that all monotone equilibria

of the forward looking game achieve learning in probability. Finally, the existence of

such monotone equilibria is established.
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Chapter 7

Conclusions

7.1 Summary

Table 7.1 summarizes the results that are currently known for the observational learn-

ing problem under consideration, including the contributions of this thesis.

In this thesis, we studied different aspects of the problem of sequential decision

making under uncertainty. A large literature, pioneered by Cover [7] and Koplowitz

[11] from the statistics/engineering literature, and Bikhchandani, Hirshleifer and

Welch [4], Banerjee [3] and Smith and Sorensen [16] from the economics literature,
has studied such problems of decentralized information aggregation. Our focus has

been dual. First, to find necessary and sufficient conditions under which informa-

tion aggregation is possible and second to study whether equilibria may lead to such

information aggregation and thus to learning.

In many situations in engineering systems there are memory or communication

constraints. In social settings individuals obtain their information not by observing

all past actions but the agents who made a decision most recently. These motivate our

observation model according to which each agent receives a signal about the underly-

ing state of the world and observes the past actions of her K immediate predecessors.

The signal structure determines the conditional distributions of the signals received

by each individual as a function of the underlying state. Each individual then chooses

one of two possible actions. Learning corresponds to agents' decisions converging (al-

most surely or in probability) to the right action as the number of agents becomes

large.

We first studied the possibility of learning under arbitrary decision rules. Two

concepts turn out to be crucial in determining whether there will be learning. The first

whether the informativity of private signals is bounded or unbounded, distinguishing
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between private signal structures with Bounded and Unbounded Likelihood Ratios.

The second is the size K of the observed neighbourhood. We prove that almost

sure learning is possible if and only if the private signal structure is characterized by

Unbounded Likelihood Ratios, irrespective of K. Our second main result is sensitive

to the size of the neighborhood. Specifically, under the Bounded Likelihood Ratios

assumption, if K = 1, learning in probability is impossible under any decision rule.

On the other hand, if K > 2, we construct a decision rule that achieves learning in

probability.

We then focus on equilibrium learning behavior. We assume forward looking

agents, who make a decision that maximizes the discounted sum of probabilities of

correct decisions over all subsequent agents, including theirs. We prove that, in con-

trast to the existence of a decision rule that achieves learning in probability, there

is no equilibrium of the corresponding game that achieves information aggregation.

The latter is surprising since it suggests that even with payoff interdependence and

forward-looking incentives, observational learning can be susceptible to limited infor-

mation aggregation.

Concluding, we believe that contrasting between the engineering/designed learn-

ing and equilibrium learning illustrates the importance of strategic interactions. In

simple words, if agents followed decision rules that were predefined by a social planner

they could eventually learn the truth, even with boundedly informative signals. On

the other hand, strategic interaction, even with altruistic incentives and collective

preferences, leads to limited information aggregation.

7.2 Research directions-Open problems

This thesis has explored many aspects of the learning problem under a specific in-

formation structure. Nevertheless, there are questions that remain unanswered. A
quick look at Table 7.1 reveals an obvious one; whether almost sure learning is possi-

ble under Unbounded Likelihood Ratios for the myopic strategy profile. Similarly, an

interesting problem concerns almost sure learning along the equilibria of the altruistic

learning game that do achieve learning in probability.

For the benchmark case of engineered systems, we proved that there exist decision

profiles that achieve learning in probability when K > 2. In order to achieve this, for

some observed actions agents are requires to take non-monotone actions. For example,
during S-blocks agents decide 0 when observing 01 irrespective of their private signal

and the order of the block. We believe that if we focus on monotone strategies, in
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the sense that each agent's decision rule is monotone in the number of observed ones,
then learning in probability does not occur.

Along the same lines, we believe that for payoff structures that satisfy assumptions

(Al) and (A2) of [13], i.e., that preferences are collective and agents prefer higher

actions when the state is 1, there exists no Perfect Bayesian Equilibrium that achieves

learning in probability ([13] constructs one such equilibrium but of course it is not

unique).
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B.L.R. UB.L.R.

engineered myopic forward looking engineered myopic forward looking
almost sure learning X [DOT] X[7][1] X [DOT] /[7] ? ?/XK [DOT]

K=1 K=1 K=1
X[DOT] X [7] /DT /7 [14]

learning in probability X [DOT] [7] K 1 [DOT]

/ [DOT] X [1] _/[1]

Table 7.1: Summary of results. / denotes positive results while X denotes negative results. The references next to each
result cite the paper who obtained it. [DOT] stands for this thesis. Theorem 1 of this thesis establishes that if the private signal
structure is characterized by Bounded Likelihood Ratios then there does not exist a decision rule that achieves almost sure
learning. Therefore there cannot exist an equilibrium strategy profile that achieves almost sure learning for the forward looking

game. Theorems 2 and 3 of this thesis establish that if the private signal structure is characterized by Bounded Likelihood
Ratios then there does not exist a decision rule that achieves learning in probability if K = 1 but there exists one that achieves
learning in probability when K > 1. (The first result for the special case of coin tossing has been established by Koplowitz
in [11]). If the private signal structure is characterized by Unbounded Likelihood Ratios then Cover in [7] has constructed a
decision rule that achieves almost sure learning and consequently learning in probability. For the case of Unbounded Likelihood
Ratios and forward looking agents we were able to show that there exist equilibria that learn and others that do not. Therefore,
one cannot give specific answers for this case.
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